diff --git a/.gitattributes b/.gitattributes index 2cb08bc7f16c7d5a9116420a241cd8f6b70fb974..48b3f15e11048664294c0c4197a51a7e02a6a353 100644 --- a/.gitattributes +++ b/.gitattributes @@ -2369,3 +2369,53 @@ e9E5T4oBgHgl3EQfhA8F/content/2301.05637v1.pdf filter=lfs diff=lfs merge=lfs -tex V9AyT4oBgHgl3EQfV_fO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text 1NFIT4oBgHgl3EQf3ivh/content/2301.11382v1.pdf filter=lfs diff=lfs merge=lfs -text 0NFIT4oBgHgl3EQf2ysh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +7NAyT4oBgHgl3EQf2vm0/content/2301.00757v1.pdf filter=lfs diff=lfs merge=lfs -text +2tAyT4oBgHgl3EQfovik/content/2301.00513v1.pdf filter=lfs diff=lfs merge=lfs -text +ItFAT4oBgHgl3EQfux4k/content/2301.08671v1.pdf filter=lfs diff=lfs merge=lfs -text +aNE5T4oBgHgl3EQfDg77/content/2301.05407v1.pdf filter=lfs diff=lfs merge=lfs -text +XNFLT4oBgHgl3EQfTi_1/content/2301.12046v1.pdf filter=lfs diff=lfs merge=lfs -text +dNE3T4oBgHgl3EQfGgn0/content/2301.04316v1.pdf filter=lfs diff=lfs merge=lfs -text +l9A0T4oBgHgl3EQfJf8H/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +b9FKT4oBgHgl3EQfpS4j/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +RtA0T4oBgHgl3EQfDv-e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +UtE5T4oBgHgl3EQfBA5d/content/2301.05383v1.pdf filter=lfs diff=lfs merge=lfs -text +DdE2T4oBgHgl3EQf9gki/content/2301.04228v1.pdf filter=lfs diff=lfs merge=lfs -text +DdE2T4oBgHgl3EQf9gki/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +dNE3T4oBgHgl3EQfGgn0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +9dFRT4oBgHgl3EQfqjdh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +C9FRT4oBgHgl3EQfwjj-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +D9AyT4oBgHgl3EQf4vqB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +z9FJT4oBgHgl3EQfjSwc/content/2301.11573v1.pdf filter=lfs diff=lfs merge=lfs -text +7NAyT4oBgHgl3EQf2vm0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +xNFRT4oBgHgl3EQfhTfg/content/2301.13583v1.pdf filter=lfs diff=lfs merge=lfs -text +VdFOT4oBgHgl3EQf6jSQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +NdFJT4oBgHgl3EQfzy31/content/2301.11645v1.pdf filter=lfs diff=lfs merge=lfs -text +b9FKT4oBgHgl3EQfpS4j/content/2301.11869v1.pdf filter=lfs diff=lfs merge=lfs -text +UtE5T4oBgHgl3EQfBA5d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +2tAyT4oBgHgl3EQfovik/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +etFRT4oBgHgl3EQfVTd7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +4dE1T4oBgHgl3EQfmQQK/content/2301.03294v1.pdf filter=lfs diff=lfs merge=lfs -text +vdAzT4oBgHgl3EQfdPzu/content/2301.01419v1.pdf filter=lfs diff=lfs merge=lfs -text +C9A0T4oBgHgl3EQfAf_H/content/2301.01964v1.pdf filter=lfs diff=lfs merge=lfs -text +HNE1T4oBgHgl3EQf_Qa5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +xNFRT4oBgHgl3EQfhTfg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +D9AyT4oBgHgl3EQf4vqB/content/2301.00792v1.pdf filter=lfs diff=lfs merge=lfs -text +vdAzT4oBgHgl3EQfdPzu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +etFRT4oBgHgl3EQfVTd7/content/2301.13539v1.pdf filter=lfs diff=lfs merge=lfs -text +NdFJT4oBgHgl3EQfzy31/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ANFQT4oBgHgl3EQfMDYd/content/2301.13266v1.pdf filter=lfs diff=lfs merge=lfs -text +4tFJT4oBgHgl3EQfkCwt/content/2301.11577v1.pdf filter=lfs diff=lfs merge=lfs -text +P9E2T4oBgHgl3EQfVwcE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +aNE5T4oBgHgl3EQfDg77/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +B9FAT4oBgHgl3EQfsh6e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +6dAzT4oBgHgl3EQf-P4i/content/2301.01930v1.pdf filter=lfs diff=lfs merge=lfs -text +4dE1T4oBgHgl3EQfmQQK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +4tFJT4oBgHgl3EQfkCwt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +0NE2T4oBgHgl3EQfMwbp/content/2301.03729v1.pdf filter=lfs diff=lfs merge=lfs -text +odE1T4oBgHgl3EQfhwTG/content/2301.03245v1.pdf filter=lfs diff=lfs merge=lfs -text +zdE0T4oBgHgl3EQf_ALP/content/2301.02822v1.pdf filter=lfs diff=lfs merge=lfs -text +tdE5T4oBgHgl3EQfmg_h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +T9FLT4oBgHgl3EQfQi86/content/2301.12033v1.pdf filter=lfs diff=lfs merge=lfs -text +lNA0T4oBgHgl3EQfJP8k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +odE1T4oBgHgl3EQfhwTG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +VdFOT4oBgHgl3EQf6jSQ/content/2301.12959v1.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/0NE2T4oBgHgl3EQfMwbp/content/2301.03729v1.pdf b/0NE2T4oBgHgl3EQfMwbp/content/2301.03729v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f853bc9f4c2f8a61fde4ca3964400402cea92493 --- /dev/null +++ b/0NE2T4oBgHgl3EQfMwbp/content/2301.03729v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:79f52ecc02a4165e708d7090861598905099d849998debaa670b39ab20be615c +size 22312331 diff --git a/1dAzT4oBgHgl3EQft_1-/content/tmp_files/2301.01684v1.pdf.txt b/1dAzT4oBgHgl3EQft_1-/content/tmp_files/2301.01684v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e8d1112cf90a7f7f3c6f7b6b46b02fc49072d33 --- /dev/null +++ b/1dAzT4oBgHgl3EQft_1-/content/tmp_files/2301.01684v1.pdf.txt @@ -0,0 +1,1506 @@ +Astronomy & Astrophysics manuscript no. main +©ESO 2023 +January 5, 2023 +Letter to the Editor +A kinematically-detected planet candidate in a transition disk +J. Stadler1, 2 , M. Benisty1, 2, A. Izquierdo3, 4, S. Facchini5, R. Teague6, N. Kurtovic7, P. Pinilla8, J. Bae9, +M. Ansdell10, R. Loomis11, S. Mayama12, L. M. Perez13, L. Testi3 +(Affiliations can be found after the references) +Received 7 November 2022 / Accepted 2 January 2023 +ABSTRACT +Context. Transition disks are protoplanetary disks with inner cavities possibly cleared by massive companions. They are prime targets to observe +at high resolution to map their velocity structure and probe companion-disk interactions. +Aims. We present Atacama Large (sub-)Millimeter Array (ALMA) Band 6 dust and gas observations of the transition disk around +RXJ1604.3–2130 A, known to feature nearly symmetric shadows in scattered light, and aim to search for non-Keplerian features. +Methods. We study the 12CO line channel maps and moment maps of the line of sight velocity and peak intensity. We fit a Keplerian model of the +channel-by-channel emission to study line profile differences, and produce deprojected radial profiles for all velocity components. +Results. The 12CO emission is detected out to R =∼1.8′′ (265 au). It shows a cavity inwards of 0.39′′ (∼56 au) and within the dust continuum +ring (at ∼0.56′′, i.e., 81 au). Azimuthal brightness variations in the 12CO line and dust continuum are broadly aligned with the shadows detected in +scattered light observations. We find a strong localized non-Keplerian feature towards the west within the continuum ring (at R = 41 ± 10 au and +PA = 280 ± 2◦). It accounts for ∆vφ/vkep ∼ 0.4, or ∆vz/vkep ∼ 0.04, if the perturbation is in the rotational or vertical direction. A tightly wound +spiral is also detected and extending over 300◦ in azimuth, possibly connected to the localized non-Keplerian feature. Finally, a bending of the +iso-velocity contours within the gas cavity indicates a highly perturbed inner region, possibly related to the presence of a misaligned inner disk. +Conclusions. While broadly aligned with the scattered light shadows, the localized non-Keplerian feature cannot be solely due to changes in +temperature. Instead, we interpret the kinematical feature as tracing a massive companion located at the edge of the dust continuum ring. We +speculate that the spiral is caused by buoyancy resonances driven by planet-disk-interactions. However, this potential planet at ∼41 au cannot +explain the gas-depleted cavity, the low accretion rate and the misaligned inner disk, suggesting the presence of another companion closer-in. +Key words. planet formation – circumstellar disks +1. Introduction +Planet formation appears to be a robust and efficient process, oc- +curring both around single and multiple stellar systems (Kostov +et al. 2016) in protoplanetary disks. The advent of high resolu- +tion imaging facilities demonstrated that nearly all bright and +extended disks show substructures, in particular in the small +(micron-sized) and large (mm-sized) dust tracers seen through +scattered and thermal light, respectively (e.g., Andrews et al. +2018; Long et al. 2018; Rich et al. 2022; Benisty et al. 2022; +Bae et al. 2022a). Such high resolution studies applied to the +gas tracers allow to probe overall physical conditions in the disk, +such as its temperature structure, its surface height (Rich et al. +2021; Law et al. 2021), and pressure variations (Teague et al. +2018a,b; Rosotti et al. 2020). Studies of the disk density and the +velocity structure reveal a great complexity, including localized +non-Keplerian features that can be attributed to embedded mas- +sive protoplanets (e.g., Pinte et al. 2022; Wölfer et al. 2022). +Such perturbations from smooth density and velocity distribu- +tions can directly constrain planet formation, as it is expected +to leave clear signatures on the disk structure (e.g., Perez et al. +2015; Yun et al. 2019). For example, the mapping of spiral wakes +(Calcino et al. 2022), the detection of so-called ’Doppler flips’ +(change of sign in the non-Keplerian feature; e.g., Casassus & +Pérez 2019; Norfolk et al. 2022), of meridional flows within +dust-depleted gaps (Teague et al. 2019a), as well as of a veloc- +ity perturbation associated with a circumplanetary disk candi- +date (Bae et al. 2022b) enable to zoom onto the processes of +planet-disk interaction. While most localized kinematical per- +turbations are analyzed empirically, statistical methods to quan- +tify their significance have been developed and led to the de- +tection of localized signatures possibly associated with unseen +planets (Izquierdo et al. 2021, 2022). Prime targets to search for +protoplanets still embedded in their birth environment are the +so-called transition disks. As in PDS70 (Keppler et al. 2019) or +AB Aur (Tang et al. 2017), these disks host a dust-depleted cav- +ity that has possibly been cleared by massive companions (Zhu +et al. 2011). +In this Letter, we focus on RXJ1604.3-2130 A (d=144.6 pc, +1.24 M⊙, Gaia Collaboration et al. 2022; Manara et al. 2020, re- +spectively), hereafter J1604, one of the brightest protoplanetary +disks of the Upper Scorpius Association in the millimeter (mm) +regime (Barenfeld et al. 2016), that exhibits a prominent cav- +ity in the dust continuum and CO line emission (Zhang et al. +2014; Dong et al. 2017; van der Marel et al. 2021). J1604 has +a stellar companion located at ∼2300 au, itself a binary with +separation 13 au (Köhler et al. 2000). The outer disk of J1604 +was resolved with the Atacama Large (sub-)Millimeter Array +(ALMA) (Mayama et al. 2018) and the Spectro-Polarimetric +High-contrast Exoplanet REsearch instrument (SPHERE) on the +Very Large Telescope (VLT) (Pinilla et al. 2015), indicating a +nearly face-on geometry. Complementary observations are in- +dicative of a misaligned inner disk with respect to the outer disk. +Its variable light curve is that of an irregular dipper (Ansdell et al. +2020), infrared scattered light observations show the presence of +two shadows with variable morphology on timescales possibly +shorter than a day (Pinilla et al. 2018), and ALMA 12CO (J=3– +2) line observations show deviations from Keplerian rotation in +Article number, page 1 of 13 +arXiv:2301.01684v1 [astro-ph.EP] 4 Jan 2023 + +A&A proofs: manuscript no. main +Fig. 1: ALMA observations of J1604. Panel (a) 231 GHz dust continuum, black solid contours drawn at [5, 15, 25, 35, 45]σ, the image is plotted +with a power-law scaling of γ = 0.6. (b)12CO peak brightness temperature map computed from I0 using the Planck law with black solid contours +drawn at [5, 10, 20, 40, 60, 65, 70] σ, pixel below 5σ are masked. (c) Peak intensity residuals after subtracting an azimuthally-averaged radial +profile from the data, where we adjusted the colour scale such that residuals smaller than 1σ are white. The beam sizes are shown in the lower left +corner and the position of the star is marked by a green cross. In (b) & (c), we overlaid the continuum contours in white and black, respectively. +the cavity (Mayama et al. 2018). The position of the scattered +light shadows are suggestive of a large misalignment (∼70-90◦). +Measurements of the projected rotational velocity (v sini) indi- +cate that the star is aligned with the inner disk, thus misaligned +with the outer disk (Sicilia-Aguilar et al. 2020). +In this work, we present new ALMA observations of J1604 +and focus on the kinematics of the 12CO (J=2–1) line. In the +following, Sect. 2 presents the observations, Sect. 3 and 4 our +methodology and results, respectively. Section 5 provides a dis- +cussion of the results and Sect. 6, our conclusions. +2. Observations, calibration and imaging +We present new ALMA Band 6 observations (2018.1.01255.S; +PI: Benisty) with five executions spread over two years obtained +on 2019 April 4, July 30 and 31st, and 2021 April 29, Septem- +ber 27. The spectral set-up was designed for continuum detec- +tion, but includes the 12CO J=2-1 line. The data were combined +with archival data from program 2015.1.00964.S (PI Oberg; see +Tab. A.1). The data calibration and imaging were performed +following the procedure of Andrews et al. (2018), with CASA +v.5.6.1 (McMullin et al. 2007), and is detailed in Appendix +A. The synthesized beam of the 12CO line and dust continuum +images are 0.18′′ x 0.15′′ (102◦) and 0.060′′ x 0.039′′ (- 78◦), re- +spectively. The rms in a line-free channel was measured to be +1.1 mJy beam−1 (4.3 K) for CO and 10 µJy beam−1 for the dust +continuum. Figure 1 shows the dust continuum map (left), that +displays a cavity and a bright dust ring peaking at R ∼0.56′′ +(∼81 au), and the 12CO peak brightness temperature map (cen- +ter) that indicates a smaller cavity in gas, with a peak at R ∼0.39′′ +(∼56 au). A selection of channel maps can be found in Fig. A.1. +3. Methodology +Channel maps model. +To model the disk line intensity and +kinematics, we use the discminer package of Izquierdo et al. +(2021). The code uses parametric prescriptions for the line peak +intensity, line width, rotational velocity and disk emission height +to produce channel maps and emcee (Foreman-Mackey et al. +2013) to maximise a χ2 log-likelihood function of the difference +between the model and input intensity for each pixel in a channel +map. To prescribe the model intensity, we use a generalized bell +kernel, function of the disk cylindrical coordinates (R, z): +Im(R, z; vch) = Ip(R, z) +� +1 + +����� +vch − v +Lw(R, z) +����� +2Ls�−1 +, +(1) +where Ip is the peak intensity, Lw is half the line width at half +power, hereafter ’the line width’, and Ls the line slope. vch is the +channel velocity at which the intensity is computed and v the +observed Keplerian line-of-sight velocity. As the disk is nearly +face-on, the code is unable to infer an emission height, and we +therefore assume a flat emission surface. We additionally fix the +inclination i of the disk to the one inferred from the dust con- +tinuum (i = 6.0◦; Dong et al. 2017) to break the degeneracy of +M⋆ · sin i. The fitting procedure and the MCMC search are ex- +plained in detail in appendix B, where the functional form of +each model parameter together with its best-fit parameters are +summarized in Table B.1. We compare selected channel maps to +best-fit model using these parameters in Fig. A.1. +Moment +maps. +The moment maps are computed with +bettermoments (Teague & Foreman-Mackey 2018). Since the +12CO line emission is optically thick, we fitted the following line +profile to both data and model channel maps: +I(v) = I0 · 1 − exp (−τ (v)) +1 − exp(−τ0) +with τ = τ0 exp +�−(v − v0)2 +∆V2 +� +, +(2) +where I0 is the peak intensity of the line and the optical depth +τ (v) varies like a Gaussian with v0 the line centroid, τ0 the peak +optical depth and ∆V the width of the line (where the full width +at half maximum FWHM = 2 +√ +ln2∆V), as used in Teague et al. +(2022). In Fig. 1 (b), we show I0 for 12CO in units of brightness +temperature. The corresponding v0-maps for the data and model +are displayed in Fig. 2 (a) & (b), respectively. The moment maps +Article number, page 2 of 13 + +Peak Brigthness Temp. (K) +Residual (lo - ) (K) +I (mJy/beam) +0.2 +-15 +-10 +-5 +0.01 0.05 0.1 +0.4 +0 +5 +10 +20 +30 +40 +50 +60 +70 +10 +15 +0 +2.0 +12CO (2-1) +231 GHz Continuum +(a) +(b) +(c) +1.5 +1.0 +(arcsec) +0.5 +0.0 +ffset +-0.5 +-1.0 +-1.5 +-2.0. +5 +2 +0 +-2 +2 +0 +-2 +2 +0 +-2 +1 +Offset (arcsec) +Offset (arcsec) +Offset (arcsec)Stadler et al.: A kinematically-detected planet candidate in a transition disk +Fig. 2: Line of sight velocity maps for data v0 (a) and discminer model vmod (b). (c) Velocity residual map after subtracting v0-vmod, where the +dust continuum is overlaid in solid contours with equal levels as in Fig. 1. The innermost region was masked during the fit by one beam size in +radius, shown as the grey shaded ellipse. The insets in subplots (a) & (c) zoom into the innermost region of the disk to highlight the non-Keplerian +velocities. Contours are drawn at vsys = (4.62 ± 0.60) km s−1 in steps of 0.1 km s−1 and from -60 to 60 m s−1 in steps of 10 m s−1 , respectively. All +maps show the synthesized beam for CO (black) and the continuum (white) in the lower left corner and are masked where the CO peak intensity +falls below a 5σ level for panel (a) and where R > Rout for the rest. +for ∆V and τ0, as well the error of the line centroid fitting δv0 +can be found in Fig. A.4. +4. Results +4.1. Dust and gas radial and azimuthal brightness profiles +Figure 1 shows the 1.3 mm dust continuum together with the +peak brightness temperature map I0 of the 12CO (J=2-1) line +emission. Both dust and gas tracers show a cavity, and the 12CO +(J=2-1) line emission extends inward of the dust continuum as +expected if the continuum ring results from dust trapping (e.g., +Facchini et al. 2018b, see Fig. A.2). We note that the 12CO cavity +appears asymmetric with respect to the position of the star and +that we observe a gap-like feature in the 12CO peak intensity map +at R ∼1.2′′, apparent as a plateau of I0 ≈ 31 mJy beam−1 stretch- +ing over ∆R ≈ 0.1′′ (Fig. A.2). Interestingly, the disk shows sig- +nificant azimuthal intensity variations (34% at R=0.56′′; 19% at +0.39′′ for continuum and gas, respectively, see also Fig. A.3). +Figure 1 (c) shows the residuals obtained after subtracting an +azimuthally-averaged radial profile from the 12CO peak bright- +ness temperature map. Azimuthal variations are clearly apparent +within the dust cavity, with residual values of > 10σ. The fainter +regions, distributed along the east-west direction, are broadly +aligned with fainter regions seen in the continuum (see contours +of Fig. 1, b and Fig. A.3) and with the shadows reported in scat- +tered light (Pinilla et al. 2018, ; Kurtovic et al. in prep). +4.2. Kinematical features +4.2.1. Localized velocity residuals +The centroid residual map in Fig. 2 (c) shows a prominent, local- +ized non-Keplerian velocity feature of δv ≈ 60 m s−1 , between +∼0.35′′ and 0.55′′ (i.e., 50-80 au), that is, at the edge of the dust +continuum ring, and oriented at PA ≈ (270 ± 15)◦. To assess its +significance we follow the Variance Peak method from Izquierdo +et al. (2021). First, the centroid velocity residuals are folded and +Fig. 3: Folded velocity residuals (left) and detected clusters of peak +velocities (right) in the disk reference frame. Green wedges in the right +plot mark the significant clusters. The position of the localized velocity +perturbation inferred from these clusters is marked with a magenta point +with error bars. The gray region (one beam size in radius) indicates the +masked area, and the black dashed lines, the FWHM of the dust ring. +subtracted along the disk minor axis to remove axisymmetric +features. Second, a 2D scan is performed to search for peak +velocity residuals and obtain their locations in the folded map. +Using these detected points, a K-means clustering algorithm +searches for coherent velocity perturbations within predefined +radial and azimuthal bins (MacQueen 1967; Pedregosa et al. +2011). We considered seven radial and ten azimuthal bins, which +corresponds to a width of roughly one beam size, to identify +clusters. The algorithm now subdivides the input residual points +such that the center of each cluster is the closest to all points +in the cluster, by iteratively minimizing the sum of squared dis- +tances from the data points to the center of the cluster. This leads +Article number, page 3 of 13 + +Vo (km/s) +Vmodel (km/s) +Vo - Vmodel (m/s) +4.2 +4.4 +4.6 +4.8 +5.0 +5.2 +4.2 +4.4 +4.6 +4.8 +5.0 +-60 +-40 +-20 +5.2 +0 +20 +40 +60 +2.0 FT +(a) +(b) +(c) +0.5 +0.25 +1.5 +0.00 +0.0 +1.0 +-0.25 +-0.5 +(arcsec) +0.5 +0.25 +0.000.25 +0.5 +0.0 +0.5 +0.0 +Offset +-0.5 +-1.0 +-1.5 +-2.0 E +2n +6 +2n +2 +-2 +2 +0 +-2 +2 +0 +0 +-2 +-1 +-1 +Offset (arcsec) +Offset (arcsec) +Offset (arcsec)96 +0A&A proofs: manuscript no. main +to irregularly spaced bin boundaries, since the cluster centers are +near to the densest accumulations of points. +In Figure 3, we show the folded velocity residual map to- +gether with the detected peak velocity residuals (grey points). +The location of the detected peak velocity residuals in azimuth +and radius, within identified clusters, can be found in Fig. B.1. +Clusters with high significance (those with peak velocity resid- +uals larger than 3 times the variance in other clusters) are lo- +cated within one radial and azimuthal bin shown in Fig. 3 as +green shaded annuli and wedges, respectively. Taking the centers +of the selected clusters allows to identify a localized perturba- +tion at 0.28′′ ± 0.07′′ (R = 41 ± 10 au) and PA = 280◦ ± 2◦. The +reported errors are the standard deviation of the peak residual +point (R, φ)-locations within the selected clusters. The detec- +tion yields a cluster significance of 5.4 σφ in azimuth and 5.3 σR +in radius, where σ represents the standard deviation of back- +ground cluster variances with a mean of σφ = 0.034 km2s−2 and +σR = 0.018 km2s−2 (see black crosses in Fig. B.1). We note that a +localized signature is robustly detected regardless of the amount +of clusters defined, which we tested using 7-12 azimuthal or 5- +9 radial clusters. We reported the clusters associated with the +highest significance. Additionally, we note that there are other +detections with lower significance at 0.65′′ (94 au). This means +that the radial extent of the prominent perturbation is roughly +0.40′′ (58 au) and the global peak of the folded velocity resid- +uals is at 0.39′′ (56 au) (as can be seen in the middle panel of +Fig. B.1). This analysis confirms the presence of a significant lo- +calized non-Keplerian feature as identified visually in Fig. 2 (c), +within the continuum ring. +4.2.2. Spiral feature +Figure 2 (c) also shows an extended arc-like positive resid- +ual feature, beyond the dust continuum emission and cover- +ing nearly 300◦ in azimuth, more evident in the polar depro- +jection of the velocity residual map (Fig. 4). To assess if this +feature is a coherent structure, we use the FilFinder pack- +age (Koch & Rosolowsky 2015) implemented in discminer +between 0.30′′ and 1.25′′ (43-180 au) (see Fig. A.5). As indi- +cated by the coherent filaments, the strong localized positive ve- +locity residual discussed in Sect. 4.2.1 seems to be the starting +point of a spiral tracing outwards up to roughly 1.1′′ (159 au). +In Fig. 4, we overlay an Archimedean (linear) spiral, prescribed +by rspiral = a + b φspiral, using {a, b} = {0.48, 0.12}. Computing +the pitch angles tan(β) = −(dr/dφ)/r, we obtain values ranging +from 14◦ to 6◦ over the spiral extent. +4.2.3. A possible warp in the 12CO cavity +An additional feature clearly evident from the velocity maps is +the highly perturbed inner disk regions. As seen in the inset of +the v0 line centroid map in Fig. 2 (a), the iso-velocity lines show +strong bending in the inner region (∼3 beam-sizes in diameter), +indicative of non-Keplerian velocities. This is likely tracing a +warp or a misaligned inner disk, as reported in Mayama et al. +(2018); Pinilla et al. (2018); Sicilia-Aguilar et al. (2020); Ans- +dell et al. (2020) to explain the scattered light shadows and vari- +able photometry of J1604. Higher angular resolution deep gas +observations are however needed to assess its morphology and +kinematics. +Fig. 4: Polar projection of the velocity residual map. The black solid +line shows a linear spiral trace. The grey region indicates the masked +area and the black dashed lines, the FWHM of the dust ring. The y-axis +extends further than 360◦ to enhance the visibility of the spiral. +4.3. Deprojected velocity components +To understand the contributions from vφ, vr, vz, we produce three +centroid residual maps for each velocity component, after de- +projection (Eq. C.1) assuming that all the velocities are either +azimuthal, radial or vertical (see Fig. C.2; Teague et al. 2022). +The localized residual feature at the edge of the dust ring ap- +pears to trace variations in the vertical vz or in the rotational +vφ motions, or a combination of both. Radial perturbations can +be ruled out, since it is located close to the disk red-shifted +major axis (PAdisk=258◦), where vr,proj ≈ 0. Assuming purely +rotational velocities, it corresponds to perturbations as high as +δvφ ≈ 600 m s−1 (∼ 0.4 · vkepler), due to the low disk inclination. +As seen in Fig. 2 (c), the spiral-like velocity residual feature +does not change sign around the disk major/minor axes, which +would occur for rotational vφ or radial vr velocity perturbations, +respectively (see Eq. C.1). We are likely seeing vertical pertur- +bations, which we are most sensitive to in a nearly face on disk. +Figure C.1 shows the deprojected and azimuthally aver- +aged radial profiles of each velocity component determined +with eddy. For vφ, we observe super-Keplerian rotation from +R∼0.35′′-0.70′′ (51-101 au), peaking at 0.45′′ (65 au) right be- +yond the dust continuum. The rotational velocities then sharply +drop to being sub-Keplerian in the inner disk regions. However, +we stress that the azimuthally averaged velocities at the radial +location of the strong localized perturbation (R∼ 0.3 − 0.6′′,43- +87 au) are likely affected by the feature. We tentatively observe +radial inflow inward of the CO intensity peak but with very large +uncertainties on vr. Finally, we mostly detect downward vertical +motion of the disk within R∼1.25′′ (181 au). +5. Discussion +5.1. Origin of v0 residuals +In this paper, we report the detection of two main non-Keplerian +features, in addition to highly perturbed gas velocities in the gas +cavity, that are: (1) a localized positive residual near the edge +of the dust ring, and (2) an extended spiral-like feature, possibly +starting from (1). A variety of velocity residual features were +detected in other systems, with a diverse range of inclinations +(e.g., Wölfer et al. 2022). In the case of TW Hya, a similarly +face-on disk, the detected perturbations are ∼40 m s−1 (Teague +et al. 2022), lower than what is derived for (1) that can account +Article number, page 4 of 13 + +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8 +270 +major beam size +60 +dust ring FWHM +50 +linear spiral +40 +180 +30 +Postion Angle (degree) +20 +90 +10 +0 +-10 +0 +-20 + disk rotation +-30 +270 +-40 +-50 +60 +180 +: +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8 +Radius (arcsec)Stadler et al.: A kinematically-detected planet candidate in a transition disk +for 40% of the local Keplerian velocity assuming that the per- +turbation is purely due to rotational velocities. This is also larger +in the magnitude of deviation than the Doppler Flip reported in +the HD 100546 transition disk (Casassus et al. 2022). These ve- +locity residuals are often interpreted as tracing planet-disk inter- +actions from massive companions (Pinte et al. 2022) that poten- +tially carve out gaps. It is thus worth noting, that our inferred +planet location (R = 41 ± 10 au) is close to the gap location in +13CO (J=2-1) at 37 au reported in van der Marel et al. (2021). +Comparison with simulations (Rabago & Zhu 2021; Izquierdo +et al. 2022) or semi-analytical prescriptions (Bollati et al. 2021) +allows to estimate a possible planet mass from the velocity de- +viations. To this end, we consider Eq. 14 from Yun et al. (2019) +that relates the change in rotational velocity δvφ to the planet +mass Mp through two-dimensional hydrodynamic simulations. +Since δV is the difference between the super- and sub- +Keplerian peak, we consider the peak of the super-Keplerian +motion (vφ/vkep)/vkep (see Fig. C.1) as a lower limit for the +dimensionless amplitude of the perturbed rotational velocity +(δmin +V =0.06), and its double (δmax +V += 0.12) as a upper limit. As- +suming (H/R)p = 0.1 at the planet location (R = 41 au), we +estimate a planet mass to roughly be between Mp ≈ (1.6 − +2.9)Mjup (α/10−3)0.5. +The extended spiral-like feature appears to be related to the +significant localized velocity residual. Due to its low pitch an- +gles and the consistent positive velocity residuals, we speculate +that the spiral is caused by buoyancy resonances excited by a +massive planet located within the dust ring. Indeed, in contrast +with Lindblad spirals, buoyancy spirals are shown to exhibit +a tightly wound morphology with predominantly vertical mo- +tions (Bae et al. 2021). Such a spiral has also been suggested in +TW Hya (Teague et al. 2019b), which is similar in its radial ex- +tent as the one reported here. Interestingly, Wölfer et al. (2022) +reports a tentative arc-feature in J1604, at R ∼ 1.0′′ ranging from +PA≈ 160 − 200◦, probed by the kinematics of the 12CO (J=3-2) +line emission, and partly coinciding with the spiral-like feature +that we detect. Additional observations in optically thin tracers, +would be very useful to assess its nature. +5.2. Kinematic perturbations due to shadows +The localized residual feature seems to roughly align with the +shadows detected in scattered light. Comparing Figs. 1 (c) and +2 (c), positive and negative v0 residuals broadly align with cold +and hot regions in the brightness temperature of 12CO, respec- +tively (see also Fig. A.6). In particular, the orientation of the sig- +nificant localized velocity perturbation coincides with the west- +ern shadow. Such a shadow can cool down the disk material and +possibly induce a local drop in pressure support and therefore +impact the gas velocity. In this section, we estimate whether +the detected velocity perturbations could be caused by azimuthal +variations in temperature. We relate the azimuthal change in tem- +perature ∆Tφ to variations in rotational velocity ∆vφ by solving +for the Navier-Stokes-equation in cylindrical coordinates. Fol- +lowing the derivation in the appendix D, we obtain +∆vφ +vkep +≈ +�H +R +�2 ∆Tφ +T , +(3) +with H/R the disk aspect ratio, T the 12CO brightness temper- +ature tracing the gas temperature (as 12CO is optically thick) +and vkep the Keplerian velocity. Evaluating this equation for a +large H/R = 0.2 along a radially averaged annulus centered +at R = (0.39 ± 0.07)′′, where we experience the strongest az- +imuthal changes in the 12CO brightness temperature of up to +∆T ≈ 15K over T = 60K, we estimate the change in azimuthal +velocity to be a mere δvφ/vkep ≈ 1%. Hence, the shadows cannot +be solely responsible for the localized velocity residual feature. +In addition, as the shadows are nearly symmetric, we would ex- +pect a similar feature opposite along the east direction. +Montesinos et al. (2016) investigated the development of spi- +rals due to pressure gradients caused by temperature differences +between obscured and illuminated regions. In their simulations +symmetric shadows always form two-armed spirals, however, +they only develop for massive (0.25 M⋆) and/or strongly illu- +minated disks (100 L⊙) which does not seem to be the case for +J1604 (∼ 0.02 M⊙ & 0.7 L⊙, Manara et al. 2020), where we also +only observe one spiral. Additionally, we would also expect such +spiral features to appear in the brightness temperature residuals +(Fig. 1 c). It is therefore unlikely that shadows are responsible +for the extended spiral-like velocity residual feature. +5.3. A warped / misaligned inner disk? +The bending of the iso-velocity curves that we observe in the in- +set of Fig. 2 (a), is reminiscent of a warped or misaligned inner +disk (Juhász & Facchini 2017; Facchini et al. 2018a). However, +as the inner disk is unresolved in our observations, the warp mor- +phology can’t be derived. We note that radial inflows are also de- +generate in appearance with warps as shown by Rosenfeld et al. +(2014), and that our observations can not be conclusive on the +origin of the disturbed kinematics in the innermost disk. We at- +tempted to infer varying position angle or inclination with radius +by fitting the innermost disk only (R≤0.5′′) with eddy and con- +sidering a fixed stellar mass but did not find to any significant +variations compared to our best-fit values. We therefore con- +strain the warp to be confined within one beam size (∼0.18′′, i.e., +26 au) from the center. We note that we obtain a 5 % higher dy- +namical mass of the system when fitting for M⋆ while masking +the innermost beam size in radius, an effect predicted by hydro- +dynamical simulations of warps (Young et al. 2022). +While our observations cannot provide a full picture of the +system due to a limited angular resolution, the very low mass ac- +cretion rate and near infrared excess (Sicilia-Aguilar et al. 2020), +as well as the gas cavity in 12CO with non-Keplerian veloci- +ties suggest the presence of an additional, very massive (pos- +sibly stellar) companion within the inner ∼0.25′′ (∼35 au). Such +a companion would need to be on an inclined (nearly polar) orbit +to misalign the inner disk (Zhu 2019) which would then lead to +the shadows (Nealon et al. 2019) and variable extinction events +in the light curves (Ansdell et al. 2020; Sicilia-Aguilar et al. +2020). It would however not explain the strong localized veloc- +ity residual feature that we report, which we speculate traces a +planetary-mass object located at the edge of the dust continuum. +Detailed modeling of the system is thus needed to assess the +need for an additional companion. An interesting comparison +is the CS Cha spectro-binary system (separation ∼7 au) which +shows similar dust continuum and gas emission at similarly low +inclination but no departure from Keplerian rotation in the 12CO +kinematics (Kurtovic et al. 2022). +6. Conclusions +In this letter, we present new ALMA observations of the 1.3 mm +dust continuum and the 12CO (J=2-1) line emission from the +transition disk around RXJ1604.3–2130 A. The dust continuum +shows a large cavity enclosing a smaller 12CO cavity. Azimuthal +Article number, page 5 of 13 + +A&A proofs: manuscript no. main +brightness variations in the 12CO line and dust continuum are +broadly aligned with shadows detected in scattered light (Pinilla +et al. 2018). Using the discminer package (Izquierdo et al. +2021), we model the channel-by-channel line emission and cal- +culate the line-of-sight velocity maps. We report the detection +of a coherent, localized non-Keplerian feature at R = 41 ± 10 au +and PA = 280◦ ± 2◦, that is within the continuum ring. While +broadly aligned with the scattered light shadows, the localized +non-Keplerian feature cannot be due to changes in temperature. +Instead, we interpret the kinematical perturbation as tracing the +presence of a massive companion of Mp ≈ (1.6 − 2.9) Mjup. We +also detect a tightly wound spiral that extends over 300◦ in az- +imuth, possibly connected to the localized feature and caused by +buoyancy resonances driven by planet-disk-interactions. Bend- +ing of the iso-velocity contours within the gas cavity indicates +a highly perturbed inner region, possibly related to the pres- +ence of a misaligned inner disk. However, as the putative planet +at ∼41 au cannot explain the gas cavity, the low accretion rate +and the misaligned inner disk, we speculate that another mas- +sive companion, likely on an inclined orbit, shapes the inner +∼0.25′′(∼35 au). +Acknowledgements. We would like to thank the anonymous referee for the +constructive feedback, as well as Clement Baruteau, Kees Dullemond, Guil- +laume Laibe and Andrew Winter for helpful discussions. This Letter makes +use of the following ALMA data: ADS/JAO.ALMA#2017.A.01255.S and +ADS/JAO.ALMA#2015.1.00964.S. ALMA is a partnership of ESO (represent- +ing its member states), NSF (USA), and NINS (Japan), together with NRC +(Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in co- +operation with the Republic of Chile. The Joint ALMA Observatory is oper- +ated by ESO, AUI/NRAO, and NAOJ. This project has received funding from +the European Research Council (ERC) under the European Union’s Horizon +2020 research and innovation programme (PROTOPLANETS, grant agreement +No. 101002188). Software: CARTA (Comrie et al. 2021), CASA (McMullin +et al. 2007), Discminer (Izquierdo et al. 2021), Eddy (Teague 2019a), FilFinder +(Koch & Rosolowsky 2015), GoFish (Teague 2019b), Matplotlib (Hunter 2007), +Numpy (van der Walt et al. 2011), Scipy (Virtanen et al. 2020). +References +Andrews, S. M., Huang, J., Pérez, L. M., et al. 2018, ApJ, 869, L41 +Ansdell, M., Gaidos, E., Hedges, C., et al. 2020, MNRAS, 492, 572 +Bae, J., Isella, A., Zhu, Z., et al. 2022a, arXiv e-prints, arXiv:2210.13314 +Bae, J., Teague, R., Andrews, S. M., et al. 2022b, ApJ, 934, L20 +Bae, J., Teague, R., & Zhu, Z. 2021, ApJ, 912, 56 +Barenfeld, S. A., Carpenter, J. M., Ricci, L., & Isella, A. 2016, ApJ, 827, 142 +Benisty, +M., +Dominik, +C., +Follette, +K., +et +al. +2022, +arXiv +e-prints, +arXiv:2203.09991 +Bollati, F., Lodato, G., Price, D. J., & Pinte, C. 2021, MNRAS, 504, 5444 +Calcino, J., Hilder, T., Price, D. J., et al. 2022, ApJ, 929, L25 +Casassus, S., Cárcamo, M., Hales, A., Weber, P., & Dent, B. 2022, ApJ, 933, L4 +Casassus, S. & Pérez, S. 2019, ApJ, 883, L41 +Comrie, A., Wang, K.-S., Hsu, S.-C., et al. 2021, CARTA: The Cube Analysis +and Rendering Tool for Astronomy, Zenodo +Czekala, I., Loomis, R. A., Teague, R., et al. 2021, ApJS, 257, 2 +Dong, R., van der Marel, N., Hashimoto, J., et al. 2017, ApJ, 836, 201 +Facchini, S., Juhász, A., & Lodato, G. 2018a, MNRAS, 473, 4459 +Facchini, S., Pinilla, P., van Dishoeck, E. F., & de Juan Ovelar, M. 2018b, A&A, +612, A104 +Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, +306 +Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2022, arXiv e-prints, +arXiv:2208.00211 +Hunter, J. D. 2007, Computing in Science Engineering, 9, 90 +Izquierdo, A. F., Facchini, S., Rosotti, G. P., van Dishoeck, E. F., & Testi, L. +2022, ApJ, 928, 2 +Izquierdo, A. F., Testi, L., Facchini, S., Rosotti, G. P., & van Dishoeck, E. F. +2021, A&A, 650, A179 +Jorsater, S. & van Moorsel, G. A. 1995, AJ, 110, 2037 +Juhász, A. & Facchini, S. 2017, MNRAS, 466, 4053 +Keppler, M., Teague, R., Bae, J., et al. 2019, A&A, 625, A118 +Koch, E. W. & Rosolowsky, E. W. 2015, MNRAS, 452, 3435 +Köhler, R., Kunkel, M., Leinert, C., & Zinnecker, H. 2000, A&A, 356, 541 +Kostov, V. B., Orosz, J. A., Welsh, W. F., et al. 2016, ApJ, 827, 86 +Kurtovic, N. T., Pinilla, P., Penzlin, A. B. T., et al. 2022, A&A, 664, A151 +Law, C. J., Teague, R., Loomis, R. A., et al. 2021, ApJS, 257, 4 +Long, F., Pinilla, P., Herczeg, G. J., et al. 2018, ApJ, 869, 17 +MacQueen, J. 1967, in 5th Berkeley Symp. Math. Statist. Probability, 281–297 +Manara, C. F., Natta, A., Rosotti, G. P., et al. 2020, A&A, 639, A58 +Mayama, S., Akiyama, E., Pani´c, O., et al. 2018, ApJ, 868, L3 +McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in As- +tronomical Society of the Pacific Conference Series, Vol. 376, Astronomical +Data Analysis Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. +Bell, 127 +Montesinos, M., Perez, S., Casassus, S., et al. 2016, ApJ, 823, L8 +Nealon, R., Pinte, C., Alexander, R., Mentiplay, D., & Dipierro, G. 2019, MN- +RAS, 484, 4951 +Norfolk, B. J., Pinte, C., Calcino, J., et al. 2022, ApJ, 936, L4 +Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, the Journal of machine +Learning research, 12, 2825 +Perez, S., Dunhill, A., Casassus, S., et al. 2015, ApJ, 811, L5 +Pinilla, P., Benisty, M., de Boer, J., et al. 2018, ApJ, 868, 85 +Pinilla, P., de Boer, J., Benisty, M., et al. 2015, A&A, 584, L4 +Pinte, C., Teague, R., Flaherty, K., et al. 2022, arXiv e-prints, arXiv:2203.09528 +Rabago, I. & Zhu, Z. 2021, MNRAS, 502, 5325 +Rich, E. A., Monnier, J. D., Aarnio, A., et al. 2022, AJ, 164, 109 +Rich, E. A., Teague, R., Monnier, J. D., et al. 2021, ApJ, 913, 138 +Rosenfeld, K. A., Chiang, E., & Andrews, S. M. 2014, ApJ, 782, 62 +Rosotti, G. P., Benisty, M., Juhász, A., et al. 2020, MNRAS, 491, 1335 +Sicilia-Aguilar, A., Manara, C. F., de Boer, J., et al. 2020, A&A, 633, A37 +Tang, Y.-W., Guilloteau, S., Dutrey, A., et al. 2017, ApJ, 840, 32 +Teague, R. 2019a, The Journal of Open Source Software, 4, 1220 +Teague, R. 2019b, The Journal of Open Source Software, 4, 1632 +Teague, R., Bae, J., Andrews, S. M., et al. 2022, ApJ, 936, 163 +Teague, R., Bae, J., & Bergin, E. A. 2019a, Nature, 574, 378 +Teague, R., Bae, J., Bergin, E. A., Birnstiel, T., & Foreman-Mackey, D. 2018a, +ApJ, 860, L12 +Teague, R., Bae, J., Birnstiel, T., & Bergin, E. A. 2018b, ApJ, 868, 113 +Teague, R., Bae, J., Huang, J., & Bergin, E. A. 2019b, ApJ, 884, L56 +Teague, R. & Foreman-Mackey, D. 2018, Bettermoments: A Robust Method To +Measure Line Centroids, Zenodo +van der Marel, N., Birnstiel, T., Garufi, A., et al. 2021, AJ, 161, 33 +van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science +and Engineering, 13, 22 +Virtanen, P., Gommers, R., Burovski, E., et al. 2020, scipy/scipy: SciPy 1.5.3 +Wölfer, L., Facchini, S., van der Marel, N., et al. 2022, arXiv e-prints, +arXiv:2208.09494 +Young, A. K., Alexander, R., Rosotti, G., & Pinte, C. 2022, MNRAS, 513, 487 +Yun, H.-G., Kim, W.-T., Bae, J., & Han, C. 2019, ApJ, 884, 142 +Zhang, K., Isella, A., Carpenter, J. M., & Blake, G. A. 2014, ApJ, 791, 42 +Zhu, Z. 2019, MNRAS, 483, 4221 +Zhu, Z., Nelson, R. P., Hartmann, L., Espaillat, C., & Calvet, N. 2011, ApJ, 729, +47 +1 Laboratoire Lagrange, Université Côte d’Azur, CNRS, Observatoire +de la Côte d’Azur, 06304 Nice, France; +e-mail: jochen.stadler@oca.eu +2 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France +3 European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 +Garching bei München, Germany +4 Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA +Leiden, The Netherlands +5 Universitá degli Studi di Milano, via Celoria 16, 20133 Milano, Italy +6 Department of Earth, Atmospheric, and Planetary Sciences, Mas- +sachusetts Institute of Technology, Cambridge, MA 02139, USA +7 Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidel- +berg, Germany +8 Mullard Space Science Laboratory, University College London, +Holmbury St Mary, Dorking, Surrey RH5 6NT, UK +9 Department of Astronomy, University of Florida, Gainesville, FL +32611, USA +10 NASA Headquarters, 300 E Street SW, Washington, DC 20546, +USA +11 National Radio Astronomy Observatory, Charlottesville, VA 22903, +USA +12 The Graduate University for Advanced Studies, SOKENDAI, +Shonan Village, Hayama, Kanagawa 240-0193, Japan +13 Departamento de Astronomía, Universidad de Chile, Camino El +Observatorio 1515, Las Condes, Santiago, Chile +Article number, page 6 of 13 + +Stadler et al.: A kinematically-detected planet candidate in a transition disk +Appendix A: Observations, calibration and imaging +Table A.1: Summary of the ALMA Band 6 observations of J1604 presented in this paper. +ID +EB Code +Date +Baselines +Frequency +Exp. Time +PI +[m] +[GHz] +[min] +2015.1.00964.S +X412 +2016 Jul 2 +15-704 +217.2-233.4 +8.87 +Oberg +2017.A.01255.S +Xb18 +2019 Sep 4 +38-3638 +213.0-230.6 +14.49 +Benisty +X2fe5 +2021 Apr 29 +15-1263 +14.47 +X4583 +2019 Jul 30 +92-8548 +29.33 +X5f6e +2019 Jul 31 +92-8548 +29.33 +X104fc +2021 Sep 27 +70-14362 +29.33 +To self-calibrate our observations, we proceeded as follows. We first flagged the channels containing the line to produce a +continuum dataset. We centered the individual execution blocks (EBs) by fitting the continuum visibilities with a ring model, +allowing for a different center and amplitude, enabling us to recover for the phase-shift and amplitude re-scaling to apply to the EBs +before combining them. To determine a good initial model for the self-calibration, we used multi-scale cleaning with the tclean +task using a threshold of 2 times the rms noise level of the image. Using the tasks gaincal and applycal, we corrected for phase +offsets between spectral windows, and between polarizations considering a solution interval of the scan length (solint=inf). +Executions obtained in 2019 were concatenated and self calibrated together, and similarly for those obtained in 2021. In addition to +the first found of self calibration, two additional iterations of phase self-calibration were done with solution intervals of 300s and +180s for the 2019 data, and only one for the 2021 data, with a solution intervals of 360s. For both datasets, a round of amplitude +self-calibration was applied with solint=inf. The solutions were then applied to the gas data. While these two epochs will be +analyzed separately for the continuum in a forthcoming paper (Kurtovic et al.), to analyze the gas data, we concatenated them +after checking that the data do not show significant variation between the two epochs. We imaged the resulting visibilities with +the tclean task using the multi-scale CLEAN algorithm with scales of 0, 1, 3 and 6 times the beam FWHM, and an elliptic CLEAN +mask encompassing the disk emission. The 12CO (2-1) molecular line observations are imaged with a robust value of 1.0, a channel +width of 0.1 km s−1 and masked by 4.0 σ threshold. The data was tapered to 0.′′1 and we used the ’JvM correction’ (Jorsater & van +Moorsel 1995; Czekala et al. 2021). +Fig. A.1: Gallery of selected channel maps. Panels show the 12CO data (top row) and best-fit model (middle row) channel maps, together with +intensity residuals in Kelvin for each channel (bottom row), where in the latter the colorbar has been adjusted such that residuals smaller than +1σ are white. The beam size is depicted in the lower left corner of each channel. For reference the best-fit systemic velocity was found to be +vsys = 4.62 km s−1 and the channel spacing is 100 m s−1 . +Article number, page 7 of 13 + +_ 4.21 km/s +4.41 km/s +4.61 km/s +4.81 km/s + 5.01 km/s + 5.21 km/s +Data +250 +Offset [au] +0 +-250 +. +0 +_4.21 km/s +4.41 km/s +4.61 km/s +4.81 km/s +5.01 km/s +5.21 km/s +Model +250 +[au] +Offset +0 +75 +Intensity [K] +56 +37 +-250 +18 +: +4.21 km/s +4.41 km/s +5.01km/s +_5.21 km/s +4.61km/s +4.81 km/s +Residual +250 +[au] +Offset +20 +Residuals [K] +10 +0 +-250 +-10 +-20 +-250 +250 +Offset [au]A&A proofs: manuscript no. main +Fig. A.2: Radial profile of the surface brightness for different tracers. Profiles are normalized to the peak of the emission for the 231 GHz +continuum, CO peak flux, both for the data and discminer model, as well as for the SPHERE scattered light observation. Shaded regions show +the standard deviation of each azimuthal average. The lines in the lower right corner show the major beam size (resolution) for each profile in the +corresponding colour. +Fig. A.3: Azimuthal profiles of the surface brightness, normalized to the peak of the emission. Profiles extracted at an annulus with a width of +approximately one corresponding beam size centered at 0.56′′ and 0.39′′ for the 231 GHz continuum and the CO peak flux, which both show +significant azimuthal intensity variations of 34% and 19%, respectively. Shaded regions show the standard deviation of each radial average. +Fig. A.4: Additional moment maps of the centroid fitting. Panels show the line width ∆V (a), the peak optical depth τ0 (b) and the error of the +centroid fitting δv0. Note that for τ0 < 1 one can assume the line profile to be well presented by a Gaussian, while for τ0 > 5 the line profile +has a saturated cored, i.e. a very flat top (see Eq. 2). The beam size is depicted in the lower left corner and only regions where I0 > 5σ with +σ = 1.1 mJy beam−1 are shown. +Article number, page 8 of 13 + +CO peak intensity +100 +model peak intensity +Normalised Surface Brightness +dust continuum +scattered light +10- +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +Radius (arcsec)1.2 +12CO at R=(0.39±0.07)" +Normalised Surface Brightness +Continuum at R=(0.56±0.02)" +.0 +0.8 +0.7 +0.6 +-180 -150 -120 +-90 +-60 +-30 +0 +30 +60 +90 +120 +150 +180 +Position Angle (deg)△V (m/s) +6vo (m/s) +To +100 +200 +300 +400 +500 +46810121416 +¥18 +20 +2 +4 +6 +8 +10 +¥12 +14 +16 +18 +20 +0 +2 +2.0 F +(a) +(b) +(c) +1.5 +1.0 +0.5 +0.0 +Offset ( +-0.5 +-1.0 +-1.5 +D +-2.0 +2 +0 +0 +2 +0 +2 +2 +Offset (arcsec) +Offset (arcsec) +Offset (arcsec)Stadler et al.: A kinematically-detected planet candidate in a transition disk +Fig. A.5: Polar map of the velocity residuals. Same as Fig. 4, but now overlaid by filamentary structures found by FilFinder. The red and blue +lines overplotted are the medial axes of the filamentary structures found by the algorithm. To trace the apparent spiral in the residuals, we restricted +the algorithm to search for filaments in the radial locations r = [0.3, 1.25]′′. For the filamentary detection, we assume a smoothing size of one +synthesized beam size and a minimum size of 500 pixels for a filament to be considered. +Fig. A.6: Polar contour map of the centroid residuals. Upper panel shows residuals inside the cavity, middle panel between cavity and outer edge +of dust ring and lower panel the outer disk. The radial spacing between each contour is ∼1.8 au and the opacity of the lines increase with radius. +We like to emphasis that the bump between PA≈ −(110 − 70)◦ in the middle panel makes most of the residuals points we detect with the Peak +Variance method of discminer, which can readily be seen in the left panel of Fig. B.1. +In Fig. A.7, we show a comparison of velocity residual maps for additional cubes, imaged using different imaging parameters +to assess the robustness of our detections. We compare residual maps for the same cube as used in the main text, but without JvM- +correction, and for a cube imaged with a different tapering (0.15" instead of 0.10"). Best-fit Keplerian models were subtracted from +each of the cubes. As evident from the comparison of the residual maps, the detection of non-Keplerian features reported are robust +irrespectively of the imaging parameters. However, the detailed morphology of the velocity residual peaks changes with imaging +Article number, page 9 of 13 + +Location (0.09i< R ≤ 0.29)" +Continuum shadows +400 +Centroid residual (m/s) +200 +0 +200 +-400 +-270 +-240 +-210 +-180 +-150 +-120 +-90 +09- +-30 +0 +30 +60 +60 +FLocation (0.29i< R ≤ 0.62)" +Centroid residual (m/s) +40 +20 +0 +-20 +-40 +-60 +-270 +-240 +-210 +-180 +-150 +-120 +-90 +-60 +-30 +0 +30 +60 +40 FLocation (0.62 < R ≤ 1.38)" +Centroid residual (m/s) +20 +0 +-20 +-40 +-270 +-240 +-210 +-180 +-150 +-120 +-90 +-60 +-30 +0 +30 +60 +Position Angle (deg)0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8 +270 +major beam size +60 +dust ring FWHM +50 +linear spiral +40 +180 +30 +Postion Angle (degree) +20 +90 +10 +0 +0 +-20 +-30 +270 +-40 +-50 +60 +180 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8 +Radius (arcsec)A&A proofs: manuscript no. main +Fig. A.7: Comparison of the velocity residual maps for different imaging parameters. Left corresponds to the cube used in the main text, while the +middle panel corresponds to the same cube without JvM-correction. The right panel shows the residual maps for a non-JvM corrected cube with a +different taper (0.15′′). In all pannels the dust continuum is overlaid in solid contours with equal levels as in Fig. 1. Best-fit Keplerian models were +subtracted from each of the cubes. The detection of the non-Keplerian features is quite robust irrespectively of the imaging procedure. +parameters, and as a consequence, the value of the inferred planet location from the discminer analysis. We find that the best-fit +discminer models to the non-JvM corrected cubes are similar within 3% w.r.t. the best-fit parameters listed in B, with the exception +of the line slope and some of the peak intensity parameters, that vary up to 15%. While estimating the systematics due to imaging +parameters is beyond the scope of this letter, Fig. A.7 provides the evidence that the detection of non Keplerian features is robust. +We measure the rms in a line-free channel to be 2.6 mJy beam−1 and 2.9 mJy beam−1 for the non-JvM corrected cubes with a taper +of 0.10 and 0.15, respectively. +Appendix B: Model best fit parameters +Attribute +Prescription +Best-fit parameters +Centre offset +xc, yc +xc = −2.66+0.05 +−0.06 au +yc = −0.07 ± 0.03 au +Position angle +PA +PA = 258.75+0.06 +−0.05 deg +- +Systemic velocity +vsys +vsys = 4617.2+0.3 +−0.4 m s−1 +- +Rotation velocity +vkep = +� +GM⋆ +R +M⋆ = 1.220 ± 0.001 M⊙ +- +Ip = Ip0 (R/Rbreak)p0 +R ≤ Rbreak +Ip0 = 9.388+0.003 +−0.005 mJy pixel−1 +p0 = 1.497+0.004 +−0.005 +Peak intensity +Ip = Ip0 (R/Rbreak)p1 +Rbreak < R ≤ Rout +Rbreak = 56.78+0.06 +−0.05 au +p1 = −0.789 ± 0.001 +Ip = 0 +R < Rout +Rout = 267.2 ± 0.1 au +- +Line width +Lw = Lw0(R/D0)p +Lw0 = 0.4097 ± 0.0004 km s−1 +p = −0.592+0.001 +−0.002 +Line slope +Ls = Ls0(R/D0)p +Ls0 = 4.569+0.008 +−0.009 +p = −0.454+0.005 +−0.008 +Table B.1: Table of attributes of the discminer model for the 12CO intensity channel maps of the disk around J1604. PA is the +position angle of the semi-major axis of the disc on the red-shifted side, R the cylindrical radius and D0 = 100 au a normalization +constant for the line properties. The (down-sampled) pixel size of the model is 8.8 au. +For the initial emcee run, we use literature values for the position angle and stellar mass (PA=260◦, M⋆ = 1.24 M⊙, Dong et al. +2017; Manara et al. 2020, respectively). The initial values of the other parameters were found by comparing the overall morphology +between the data and a prototype model. We performed the MCMC search with 150 walkers which evolved for 2000 steps for an +initial burn-in stage. We proceeded in two steps. First, we masked the disk region inward of the dust continuum and only fitted +the outer disk (R > 90 au) to get a robust estimate of the stellar mass and avoid confusion of the code with strongly non-Keplerian +velocity features in the inner regions. In this run, we interestingly find a strong offset from the disk center in x-direction of −8.0 au. In +a second step, we fixed the stellar mass and now fitted for the whole disk, masking an inner region corresponding to one major beam +Article number, page 10 of 13 + +main cube +non-JvM +non-JvM +taper 0.10 +taper 0.10 +taper 0.15Stadler et al.: A kinematically-detected planet candidate in a transition disk +size (26 au) in radius where effects of beam smearing are strongest. We run 150 walkers for 20000 steps till we reach convergence, +resembled by a nearly normal distribution of the walkers. The variance and median of the parameters walkers remain effectively +unchanged after ∼ 7000 steps. The best-fit parameters are the median of the posterior distributions and given errors are the 16 and +84 percentiles in the last 5000 steps of the 20000 step run, summarized in Table B.1. +Fig. B.1: Location of the folded peak velocity residuals. The detected points are shown in azimuth (left) and radius (middle) obtained with the +Peak Variance method. Colours indicate the 7 different radial clusters specified, where blue peak residual points are within detected significant +radial cluster. The black crosses are the velocity variances of the clusters plotted at the (R, φ)-location of each cluster center. The centers of the +accepted clusters (those with peak velocity residuals larger then three times the variance in other clusters) in radius and azimuth are marked with +black vertical lines in both panels. The right hand plot shows the normal distribution of the peak residual points in a histogram. Note that outliers +of the distribution are related to the localized perturbation. The maximum value of all peak folded centroid residuals is at 0.39′′ (57 au), its mean +value is 39 m/s and 1σv = 20 m/s (not to be mistaken with the cluster variances). +Appendix C: Decomposition and deprojection of velocity components +To determine the rotation curves of each velocity component, we use the code eddy (Teague 2019a). We follow the method presented +in Teague et al. (2018b) that uses a Gaussian process to determine the azimuthal vφ and radial vr velocity components along a given +annulus. To this end, we divide the disk into concentric annuli with a radial width of 1/4 of the synthesized beam (∼ 0.05′′) ranging +from 0.18′′ to 1.85′′ and extract the velocities over 20 iterations to minimize their standard deviation. To obtain the vertical velocity +component vz, we use the measured azimuthally averaged profiles of vφ and vr and extend them to produce 2D maps, considering +the projection of these components along the line of sight: +vφ, proj = vφ cos (φ) sin (|i|), +vr, proj = vr sin (φ) sin (i), +vz, proj = −vz cos (i), +(C.1) +where φ is the polar angle in the disk frame (such that φ= 0 corresponds to the red-shifted major axis) and i the inclination of the +disk. In the case of J1604, the disk rotates clockwise which corresponds to a negative inclination in the above definition. We then +subtract these maps together with the systemic velocity vsys from the line of sight velocity v0-map (Fig. 2,a) to obtain a map of the +vertical velocity component vz, proj: +vz, proj = v0 − vsys − vφ, proj − vr, proj, +(C.2) +The radial profile of vz is obtained by deprojecting and azimuthally averaging its 2D velocity map. The radial profiles of the +deprojected velocity components can be found in Fig. C.1. +Article number, page 11 of 13 + +0 +0.40 +acc. cluster centers +0.10 +. +80 +80 +2 +0.35 +3 + Cluster Velocity +I Residual (m/s) +70 +70 +(s/w) +0.08 +5 +0.30 +6 +Residual +60 +1g +60 +0.25 +0.06 +y Variance ( +50 +50 +Folded Centroid +. +Centroid +0.20 +X +S +: +X +40 +40 +0.15 +0.04 + (km²/s2) +Folded ( +C +. +30 +X +30 +0.10 +8 +0.02 +20 +20 +0.05 +X +X +: +X +LX. +X +X +X +XK +0.00 +0.00 +-80 +0.0 +-40 +0 +40 +80 +0.5 +1.0 +1.5 +Azimuth (degree) +Radius (arcsec)A&A proofs: manuscript no. main +Fig. C.1: Azimuthally averaged and deprojected azimuthal, radial and vertical velocity components. The radial width of each annulus is 1/4 +synthesized beam size. The error bars are given by the standard deviation for each velocity component averaged over the 20 iterations used. +Fig. C.2: J1604 deprojected velocity components. It is assumed that all velocities are either azimuthal (left column), radial (central column) or +vertical (right column). For the azimuthal and radial components wedges along the minor and major axis have been masked as the observations +are insensitive to these components (see Eq. C.1).In each panel the synthesised beam is shown in the lower left corner. +Article number, page 12 of 13 + +6 +dust ring FWHM +12CO lo peak +(s/u>y) +Vkepl +2 +0.1 +(V - Vkepi)/Vkepl +0.0 +-0.1 +0.2 +-0.3 +100 +50 +(s/w) +0 +-50 +-100 +20 +(s/w) +0 +-20 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +Radius (arcsec)Vμ (m/s) +Vr (m/s) +Vz (m/s) +-400 +-200 +0 +200 +400 +600 +600 +-400 +-200 +0 +200 +400 +600 +-60 +-40 +-20 +0 +20 +40 +600 +60 +← slower +faster +←inwards +outwards +← downwards +upwards→ +2.0 +(b) +(a) +(c) +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +2 +1 +0 +-2 +2 +0 +-1 +-2 +2 +1 +0 +-1 +-2 +Offset (arcsec) +Offset (arcsec) +Offset (arcsec)Stadler et al.: A kinematically-detected planet candidate in a transition disk +Appendix D: Derivation of ∆vφ in dependence of azimuthal temperature variations ∆T +To relate the change in the brightness temperature ∆T of 12CO to variations in the rotational velocity vφ we solve the Navier-Stokes- +equation in cylindrical coordinates in the φ-direction: +ρg +vφ +R +∂vφ +∂φ = 1 +R +∂p +∂φ + µ +� ∂ +∂R +� 1 +R +∂ +∂R(Rvφ) +� 1 +R2 +∂2vφ +∂φ2 +� +, +(D.1) +with the cylindrical radius R, the gas density ρg and the mean molecular weight µ. In a first step, we assume that the radial variations +within the chosen annulus are negligible and insert the disk gas pressure in the vertically isothermal assumption p = ρgc2 +s = ρg +kBT +µmp , +with the Boltzmann constant kB and the proton mass mp. In the second step, we further assume the gas density to be constant along +the annulus ρg = const. and re-arrange the equation. +ρg +vφ +R +∂vφ +∂φ = 1 +R +∂ +∂φ +� +ρg +kBT +µmp +� ++ µ +R2 +∂2vφ +∂φ2 +∂vφ +∂φ − +µ +vφRρg +∂2vφ +∂φ2 = +kB +vφµmp +∂T +∂φ +∂vφ +∂φ − +0.4µ +vφ +√ +2πΣg +∂2vφ +∂φ2 = +kB +vφµmp +∂T +∂φ +(D.2) +In the last step, we inserted the gas midplane density ρg = Σg/( +√ +2πH) = Σg/( +√ +2π 0.2R) assuming a disk aspect ratio of H/R = 0.2. +Assuming that vφ ≈ vkep and Σg ≈ 1g/cm2 (see Fig. 3 of Dong et al. 2017) at the location of the annulus at R ∼ 0.4′′ (58 au), we can +assess the order of magnitude of the second term on the left hand side of the equation which is only on the order of 10−6. Therefore, +we neglect the second order derivative and further identify the sound speed cs: +∆vφ ≈ +kB +vkep µmp +T +T ∆Tφ ≈ c2 +s +vkep +∆Tφ +T +���� ÷ vkep +∆vφ +vkep +≈ +� cs +vkep +�2 ∆Tφ +T +≈ +�H +R +�2 ∆Tφ +T +(D.3) +The last equation now connects the fractional azimuthal temperature variation ∆Tφ/T to the rotational velocity deviation relative to +Keplerian ∆vφ/vkep. +Article number, page 13 of 13 + diff --git a/1dAzT4oBgHgl3EQft_1-/content/tmp_files/load_file.txt b/1dAzT4oBgHgl3EQft_1-/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..6dabbda864aced7b7f96bfb66a8545cf2a94d37c --- /dev/null +++ b/1dAzT4oBgHgl3EQft_1-/content/tmp_files/load_file.txt @@ -0,0 +1,1305 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf,len=1304 +page_content='Astronomy & Astrophysics manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' main ©ESO 2023 January 5, 2023 Letter to the Editor A kinematically-detected planet candidate in a transition disk J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Stadler1, 2 , M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Benisty1, 2, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Izquierdo3, 4, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Facchini5, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Teague6, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Kurtovic7, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Pinilla8, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Bae9, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Ansdell10, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Loomis11, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Mayama12, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Perez13, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Testi3 (Affiliations can be found after the references) Received 7 November 2022 / Accepted 2 January 2023 ABSTRACT Context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Transition disks are protoplanetary disks with inner cavities possibly cleared by massive companions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' They are prime targets to observe at high resolution to map their velocity structure and probe companion-disk interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Aims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We present Atacama Large (sub-)Millimeter Array (ALMA) Band 6 dust and gas observations of the transition disk around RXJ1604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3–2130 A, known to feature nearly symmetric shadows in scattered light, and aim to search for non-Keplerian features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We study the 12CO line channel maps and moment maps of the line of sight velocity and peak intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We fit a Keplerian model of the channel-by-channel emission to study line profile differences, and produce deprojected radial profiles for all velocity components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The 12CO emission is detected out to R =∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8′′ (265 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' It shows a cavity inwards of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='39′′ (∼56 au) and within the dust continuum ring (at ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='56′′, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', 81 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Azimuthal brightness variations in the 12CO line and dust continuum are broadly aligned with the shadows detected in scattered light observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We find a strong localized non-Keplerian feature towards the west within the continuum ring (at R = 41 ± 10 au and PA = 280 ± 2◦).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' It accounts for ∆vφ/vkep ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4, or ∆vz/vkep ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='04, if the perturbation is in the rotational or vertical direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A tightly wound spiral is also detected and extending over 300◦ in azimuth, possibly connected to the localized non-Keplerian feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Finally, a bending of the iso-velocity contours within the gas cavity indicates a highly perturbed inner region, possibly related to the presence of a misaligned inner disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' While broadly aligned with the scattered light shadows, the localized non-Keplerian feature cannot be solely due to changes in temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Instead, we interpret the kinematical feature as tracing a massive companion located at the edge of the dust continuum ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We speculate that the spiral is caused by buoyancy resonances driven by planet-disk-interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' However, this potential planet at ∼41 au cannot explain the gas-depleted cavity, the low accretion rate and the misaligned inner disk, suggesting the presence of another companion closer-in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' planet formation – circumstellar disks 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Introduction Planet formation appears to be a robust and efficient process, oc- curring both around single and multiple stellar systems (Kostov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2016) in protoplanetary disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The advent of high resolu- tion imaging facilities demonstrated that nearly all bright and extended disks show substructures, in particular in the small (micron-sized) and large (mm-sized) dust tracers seen through scattered and thermal light, respectively (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Andrews et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Long et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Rich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Benisty et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Bae et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Such high resolution studies applied to the gas tracers allow to probe overall physical conditions in the disk, such as its temperature structure, its surface height (Rich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Law et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021), and pressure variations (Teague et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018a,b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Rosotti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Studies of the disk density and the velocity structure reveal a great complexity, including localized non-Keplerian features that can be attributed to embedded mas- sive protoplanets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Pinte et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Wölfer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Such perturbations from smooth density and velocity distribu- tions can directly constrain planet formation, as it is expected to leave clear signatures on the disk structure (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Perez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Yun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' For example, the mapping of spiral wakes (Calcino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022), the detection of so-called ’Doppler flips’ (change of sign in the non-Keplerian feature;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Casassus & Pérez 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Norfolk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022), of meridional flows within dust-depleted gaps (Teague et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019a), as well as of a veloc- ity perturbation associated with a circumplanetary disk candi- date (Bae et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022b) enable to zoom onto the processes of planet-disk interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' While most localized kinematical per- turbations are analyzed empirically, statistical methods to quan- tify their significance have been developed and led to the de- tection of localized signatures possibly associated with unseen planets (Izquierdo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Prime targets to search for protoplanets still embedded in their birth environment are the so-called transition disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' As in PDS70 (Keppler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019) or AB Aur (Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2017), these disks host a dust-depleted cav- ity that has possibly been cleared by massive companions (Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In this Letter, we focus on RXJ1604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3-2130 A (d=144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 pc, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='24 M⊙, Gaia Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Manara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020, re- spectively), hereafter J1604, one of the brightest protoplanetary disks of the Upper Scorpius Association in the millimeter (mm) regime (Barenfeld et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2016), that exhibits a prominent cav- ity in the dust continuum and CO line emission (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Dong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' van der Marel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' J1604 has a stellar companion located at ∼2300 au, itself a binary with separation 13 au (Köhler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The outer disk of J1604 was resolved with the Atacama Large (sub-)Millimeter Array (ALMA) (Mayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018) and the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) on the Very Large Telescope (VLT) (Pinilla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2015), indicating a nearly face-on geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Complementary observations are in- dicative of a misaligned inner disk with respect to the outer disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Its variable light curve is that of an irregular dipper (Ansdell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020), infrared scattered light observations show the presence of two shadows with variable morphology on timescales possibly shorter than a day (Pinilla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018), and ALMA 12CO (J=3– 2) line observations show deviations from Keplerian rotation in Article number, page 1 of 13 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='01684v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='EP] 4 Jan 2023 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' main Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 1: ALMA observations of J1604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Panel (a) 231 GHz dust continuum, black solid contours drawn at [5, 15, 25, 35, 45]σ, the image is plotted with a power-law scaling of γ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (b)12CO peak brightness temperature map computed from I0 using the Planck law with black solid contours drawn at [5, 10, 20, 40, 60, 65, 70] σ, pixel below 5σ are masked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (c) Peak intensity residuals after subtracting an azimuthally-averaged radial profile from the data, where we adjusted the colour scale such that residuals smaller than 1σ are white.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The beam sizes are shown in the lower left corner and the position of the star is marked by a green cross.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In (b) & (c), we overlaid the continuum contours in white and black, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' the cavity (Mayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The position of the scattered light shadows are suggestive of a large misalignment (∼70-90◦).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Measurements of the projected rotational velocity (v sini) indi- cate that the star is aligned with the inner disk, thus misaligned with the outer disk (Sicilia-Aguilar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In this work, we present new ALMA observations of J1604 and focus on the kinematics of the 12CO (J=2–1) line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In the following, Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2 presents the observations, Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 3 and 4 our methodology and results, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Section 5 provides a dis- cussion of the results and Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 6, our conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Observations, calibration and imaging We present new ALMA Band 6 observations (2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='01255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' PI: Benisty) with five executions spread over two years obtained on 2019 April 4, July 30 and 31st, and 2021 April 29, Septem- ber 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The spectral set-up was designed for continuum detec- tion, but includes the 12CO J=2-1 line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The data were combined with archival data from program 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='S (PI Oberg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' see Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The data calibration and imaging were performed following the procedure of Andrews et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2018), with CASA v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 (McMullin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2007), and is detailed in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The synthesized beam of the 12CO line and dust continuum images are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='18′′ x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='15′′ (102◦) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='060′′ x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='039′′ (- 78◦), re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The rms in a line-free channel was measured to be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 mJy beam−1 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3 K) for CO and 10 µJy beam−1 for the dust continuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Figure 1 shows the dust continuum map (left), that displays a cavity and a bright dust ring peaking at R ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='56′′ (∼81 au), and the 12CO peak brightness temperature map (cen- ter) that indicates a smaller cavity in gas, with a peak at R ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='39′′ (∼56 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A selection of channel maps can be found in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Methodology Channel maps model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' To model the disk line intensity and kinematics, we use the discminer package of Izquierdo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The code uses parametric prescriptions for the line peak intensity, line width, rotational velocity and disk emission height to produce channel maps and emcee (Foreman-Mackey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2013) to maximise a χ2 log-likelihood function of the difference between the model and input intensity for each pixel in a channel map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' To prescribe the model intensity, we use a generalized bell kernel, function of the disk cylindrical coordinates (R, z): Im(R, z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' vch) = Ip(R, z) � 1 + ����� vch − v Lw(R, z) ����� 2Ls�−1 , (1) where Ip is the peak intensity, Lw is half the line width at half power, hereafter ’the line width’, and Ls the line slope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' vch is the channel velocity at which the intensity is computed and v the observed Keplerian line-of-sight velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' As the disk is nearly face-on, the code is unable to infer an emission height, and we therefore assume a flat emission surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We additionally fix the inclination i of the disk to the one inferred from the dust con- tinuum (i = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0◦;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Dong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2017) to break the degeneracy of M⋆ · sin i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The fitting procedure and the MCMC search are ex- plained in detail in appendix B, where the functional form of each model parameter together with its best-fit parameters are summarized in Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We compare selected channel maps to best-fit model using these parameters in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Moment maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The moment maps are computed with bettermoments (Teague & Foreman-Mackey 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Since the 12CO line emission is optically thick, we fitted the following line profile to both data and model channel maps: I(v) = I0 · 1 − exp (−τ (v)) 1 − exp(−τ0) with τ = τ0 exp �−(v − v0)2 ∆V2 � , (2) where I0 is the peak intensity of the line and the optical depth τ (v) varies like a Gaussian with v0 the line centroid, τ0 the peak optical depth and ∆V the width of the line (where the full width at half maximum FWHM = 2 √ ln2∆V), as used in Teague et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 1 (b), we show I0 for 12CO in units of brightness temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The corresponding v0-maps for the data and model are displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2 (a) & (b), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The moment maps Article number, page 2 of 13 Peak Brigthness Temp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (K) Residual (lo - ) (K) I (mJy/beam) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 15 10 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 0 5 10 20 30 40 50 60 70 10 15 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 12CO (2-1) 231 GHz Continuum (a) (b) (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 (arcsec) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 ffset 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 5 2 0 2 2 0 2 2 0 2 1 Offset (arcsec) Offset (arcsec) Offset (arcsec)Stadler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' : A kinematically-detected planet candidate in a transition disk Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2: Line of sight velocity maps for data v0 (a) and discminer model vmod (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (c) Velocity residual map after subtracting v0-vmod, where the dust continuum is overlaid in solid contours with equal levels as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The innermost region was masked during the fit by one beam size in radius, shown as the grey shaded ellipse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The insets in subplots (a) & (c) zoom into the innermost region of the disk to highlight the non-Keplerian velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Contours are drawn at vsys = (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='62 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='60) km s−1 in steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 km s−1 and from -60 to 60 m s−1 in steps of 10 m s−1 , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' All maps show the synthesized beam for CO (black) and the continuum (white) in the lower left corner and are masked where the CO peak intensity falls below a 5σ level for panel (a) and where R > Rout for the rest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' for ∆V and τ0, as well the error of the line centroid fitting δv0 can be found in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Results 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Dust and gas radial and azimuthal brightness profiles Figure 1 shows the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3 mm dust continuum together with the peak brightness temperature map I0 of the 12CO (J=2-1) line emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Both dust and gas tracers show a cavity, and the 12CO (J=2-1) line emission extends inward of the dust continuum as expected if the continuum ring results from dust trapping (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Facchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018b, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We note that the 12CO cavity appears asymmetric with respect to the position of the star and that we observe a gap-like feature in the 12CO peak intensity map at R ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2′′, apparent as a plateau of I0 ≈ 31 mJy beam−1 stretch- ing over ∆R ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1′′ (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Interestingly, the disk shows sig- nificant azimuthal intensity variations (34% at R=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='56′′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 19% at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='39′′ for continuum and gas, respectively, see also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Figure 1 (c) shows the residuals obtained after subtracting an azimuthally-averaged radial profile from the 12CO peak bright- ness temperature map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Azimuthal variations are clearly apparent within the dust cavity, with residual values of > 10σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The fainter regions, distributed along the east-west direction, are broadly aligned with fainter regions seen in the continuum (see contours of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 1, b and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3) and with the shadows reported in scat- tered light (Pinilla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018, ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Kurtovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' in prep).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Kinematical features 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Localized velocity residuals The centroid residual map in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2 (c) shows a prominent, local- ized non-Keplerian velocity feature of δv ≈ 60 m s−1 , between ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='35′′ and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='55′′ (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', 50-80 au), that is, at the edge of the dust continuum ring, and oriented at PA ≈ (270 ± 15)◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' To assess its significance we follow the Variance Peak method from Izquierdo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' First, the centroid velocity residuals are folded and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 3: Folded velocity residuals (left) and detected clusters of peak velocities (right) in the disk reference frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Green wedges in the right plot mark the significant clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The position of the localized velocity perturbation inferred from these clusters is marked with a magenta point with error bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The gray region (one beam size in radius) indicates the masked area, and the black dashed lines, the FWHM of the dust ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' subtracted along the disk minor axis to remove axisymmetric features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Second, a 2D scan is performed to search for peak velocity residuals and obtain their locations in the folded map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Using these detected points, a K-means clustering algorithm searches for coherent velocity perturbations within predefined radial and azimuthal bins (MacQueen 1967;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Pedregosa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We considered seven radial and ten azimuthal bins, which corresponds to a width of roughly one beam size, to identify clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The algorithm now subdivides the input residual points such that the center of each cluster is the closest to all points in the cluster, by iteratively minimizing the sum of squared dis- tances from the data points to the center of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' This leads Article number, page 3 of 13 Vo (km/s) Vmodel (km/s) Vo - Vmodel (m/s) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 60 40 20 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 0 20 40 60 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 FT (a) (b) (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 (arcsec) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 Offset 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 E 2n 6 2n 2 2 2 0 2 2 0 0 2 1 1 Offset (arcsec) Offset (arcsec) Offset (arcsec)96 0A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' main to irregularly spaced bin boundaries, since the cluster centers are near to the densest accumulations of points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In Figure 3, we show the folded velocity residual map to- gether with the detected peak velocity residuals (grey points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The location of the detected peak velocity residuals in azimuth and radius, within identified clusters, can be found in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Clusters with high significance (those with peak velocity resid- uals larger than 3 times the variance in other clusters) are lo- cated within one radial and azimuthal bin shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 3 as green shaded annuli and wedges, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Taking the centers of the selected clusters allows to identify a localized perturba- tion at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='28′′ ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='07′′ (R = 41 ± 10 au) and PA = 280◦ ± 2◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The reported errors are the standard deviation of the peak residual point (R, φ)-locations within the selected clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The detec- tion yields a cluster significance of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 σφ in azimuth and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3 σR in radius, where σ represents the standard deviation of back- ground cluster variances with a mean of σφ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='034 km2s−2 and σR = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='018 km2s−2 (see black crosses in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We note that a localized signature is robustly detected regardless of the amount of clusters defined, which we tested using 7-12 azimuthal or 5- 9 radial clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We reported the clusters associated with the highest significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Additionally, we note that there are other detections with lower significance at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='65′′ (94 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' This means that the radial extent of the prominent perturbation is roughly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='40′′ (58 au) and the global peak of the folded velocity resid- uals is at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='39′′ (56 au) (as can be seen in the middle panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' This analysis confirms the presence of a significant lo- calized non-Keplerian feature as identified visually in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2 (c), within the continuum ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Spiral feature Figure 2 (c) also shows an extended arc-like positive resid- ual feature, beyond the dust continuum emission and cover- ing nearly 300◦ in azimuth, more evident in the polar depro- jection of the velocity residual map (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' To assess if this feature is a coherent structure, we use the FilFinder pack- age (Koch & Rosolowsky 2015) implemented in discminer between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='30′′ and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25′′ (43-180 au) (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' As indi- cated by the coherent filaments, the strong localized positive ve- locity residual discussed in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 seems to be the starting point of a spiral tracing outwards up to roughly 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1′′ (159 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4, we overlay an Archimedean (linear) spiral, prescribed by rspiral = a + b φspiral, using {a, b} = {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='48, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='12}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Computing the pitch angles tan(β) = −(dr/dφ)/r, we obtain values ranging from 14◦ to 6◦ over the spiral extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A possible warp in the 12CO cavity An additional feature clearly evident from the velocity maps is the highly perturbed inner disk regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' As seen in the inset of the v0 line centroid map in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2 (a), the iso-velocity lines show strong bending in the inner region (∼3 beam-sizes in diameter), indicative of non-Keplerian velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' This is likely tracing a warp or a misaligned inner disk, as reported in Mayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2018);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Pinilla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2018);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Sicilia-Aguilar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2020);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Ans- dell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2020) to explain the scattered light shadows and vari- able photometry of J1604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Higher angular resolution deep gas observations are however needed to assess its morphology and kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4: Polar projection of the velocity residual map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The black solid line shows a linear spiral trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The grey region indicates the masked area and the black dashed lines, the FWHM of the dust ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The y-axis extends further than 360◦ to enhance the visibility of the spiral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Deprojected velocity components To understand the contributions from vφ, vr, vz, we produce three centroid residual maps for each velocity component, after de- projection (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1) assuming that all the velocities are either azimuthal, radial or vertical (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Teague et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The localized residual feature at the edge of the dust ring ap- pears to trace variations in the vertical vz or in the rotational vφ motions, or a combination of both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Radial perturbations can be ruled out, since it is located close to the disk red-shifted major axis (PAdisk=258◦), where vr,proj ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Assuming purely rotational velocities, it corresponds to perturbations as high as δvφ ≈ 600 m s−1 (∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 · vkepler), due to the low disk inclination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' As seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2 (c), the spiral-like velocity residual feature does not change sign around the disk major/minor axes, which would occur for rotational vφ or radial vr velocity perturbations, respectively (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We are likely seeing vertical pertur- bations, which we are most sensitive to in a nearly face on disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Figure C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 shows the deprojected and azimuthally aver- aged radial profiles of each velocity component determined with eddy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' For vφ, we observe super-Keplerian rotation from R∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='35′′-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='70′′ (51-101 au), peaking at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='45′′ (65 au) right be- yond the dust continuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The rotational velocities then sharply drop to being sub-Keplerian in the inner disk regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' However, we stress that the azimuthally averaged velocities at the radial location of the strong localized perturbation (R∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6′′,43- 87 au) are likely affected by the feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We tentatively observe radial inflow inward of the CO intensity peak but with very large uncertainties on vr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Finally, we mostly detect downward vertical motion of the disk within R∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25′′ (181 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Discussion 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Origin of v0 residuals In this paper, we report the detection of two main non-Keplerian features, in addition to highly perturbed gas velocities in the gas cavity, that are: (1) a localized positive residual near the edge of the dust ring, and (2) an extended spiral-like feature, possibly starting from (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A variety of velocity residual features were detected in other systems, with a diverse range of inclinations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Wölfer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In the case of TW Hya, a similarly face-on disk, the detected perturbations are ∼40 m s−1 (Teague et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022), lower than what is derived for (1) that can account Article number, page 4 of 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 270 major beam size 60 dust ring FWHM 50 linear spiral 40 180 30 Postion Angle (degree) 20 90 10 0 10 0 20 disk rotation 30 270 40 50 60 180 : 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 Radius (arcsec)Stadler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' : A kinematically-detected planet candidate in a transition disk for 40% of the local Keplerian velocity assuming that the per- turbation is purely due to rotational velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' This is also larger in the magnitude of deviation than the Doppler Flip reported in the HD 100546 transition disk (Casassus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' These ve- locity residuals are often interpreted as tracing planet-disk inter- actions from massive companions (Pinte et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022) that poten- tially carve out gaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' It is thus worth noting, that our inferred planet location (R = 41 ± 10 au) is close to the gap location in 13CO (J=2-1) at 37 au reported in van der Marel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Comparison with simulations (Rabago & Zhu 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Izquierdo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022) or semi-analytical prescriptions (Bollati et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021) allows to estimate a possible planet mass from the velocity de- viations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' To this end, we consider Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 14 from Yun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2019) that relates the change in rotational velocity δvφ to the planet mass Mp through two-dimensional hydrodynamic simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Since δV is the difference between the super- and sub- Keplerian peak, we consider the peak of the super-Keplerian motion (vφ/vkep)/vkep (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1) as a lower limit for the dimensionless amplitude of the perturbed rotational velocity (δmin V =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='06), and its double (δmax V = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='12) as a upper limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' As- suming (H/R)p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 at the planet location (R = 41 au), we estimate a planet mass to roughly be between Mp ≈ (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='9)Mjup (α/10−3)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The extended spiral-like feature appears to be related to the significant localized velocity residual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Due to its low pitch an- gles and the consistent positive velocity residuals, we speculate that the spiral is caused by buoyancy resonances excited by a massive planet located within the dust ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Indeed, in contrast with Lindblad spirals, buoyancy spirals are shown to exhibit a tightly wound morphology with predominantly vertical mo- tions (Bae et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Such a spiral has also been suggested in TW Hya (Teague et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019b), which is similar in its radial ex- tent as the one reported here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Interestingly, Wölfer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2022) reports a tentative arc-feature in J1604, at R ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0′′ ranging from PA≈ 160 − 200◦, probed by the kinematics of the 12CO (J=3-2) line emission, and partly coinciding with the spiral-like feature that we detect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Additional observations in optically thin tracers, would be very useful to assess its nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Kinematic perturbations due to shadows The localized residual feature seems to roughly align with the shadows detected in scattered light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Comparing Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 1 (c) and 2 (c), positive and negative v0 residuals broadly align with cold and hot regions in the brightness temperature of 12CO, respec- tively (see also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In particular, the orientation of the sig- nificant localized velocity perturbation coincides with the west- ern shadow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Such a shadow can cool down the disk material and possibly induce a local drop in pressure support and therefore impact the gas velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In this section, we estimate whether the detected velocity perturbations could be caused by azimuthal variations in temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We relate the azimuthal change in tem- perature ∆Tφ to variations in rotational velocity ∆vφ by solving for the Navier-Stokes-equation in cylindrical coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Fol- lowing the derivation in the appendix D, we obtain ∆vφ vkep ≈ �H R �2 ∆Tφ T , (3) with H/R the disk aspect ratio, T the 12CO brightness temper- ature tracing the gas temperature (as 12CO is optically thick) and vkep the Keplerian velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Evaluating this equation for a large H/R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 along a radially averaged annulus centered at R = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='39 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='07)′′, where we experience the strongest az- imuthal changes in the 12CO brightness temperature of up to ∆T ≈ 15K over T = 60K, we estimate the change in azimuthal velocity to be a mere δvφ/vkep ≈ 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Hence, the shadows cannot be solely responsible for the localized velocity residual feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In addition, as the shadows are nearly symmetric, we would ex- pect a similar feature opposite along the east direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Montesinos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2016) investigated the development of spi- rals due to pressure gradients caused by temperature differences between obscured and illuminated regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In their simulations symmetric shadows always form two-armed spirals, however, they only develop for massive (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 M⋆) and/or strongly illu- minated disks (100 L⊙) which does not seem to be the case for J1604 (∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='02 M⊙ & 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='7 L⊙, Manara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020), where we also only observe one spiral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Additionally, we would also expect such spiral features to appear in the brightness temperature residuals (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 1 c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' It is therefore unlikely that shadows are responsible for the extended spiral-like velocity residual feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A warped / misaligned inner disk?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The bending of the iso-velocity curves that we observe in the in- set of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2 (a), is reminiscent of a warped or misaligned inner disk (Juhász & Facchini 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Facchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' However, as the inner disk is unresolved in our observations, the warp mor- phology can’t be derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We note that radial inflows are also de- generate in appearance with warps as shown by Rosenfeld et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2014), and that our observations can not be conclusive on the origin of the disturbed kinematics in the innermost disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We at- tempted to infer varying position angle or inclination with radius by fitting the innermost disk only (R≤0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5′′) with eddy and con- sidering a fixed stellar mass but did not find to any significant variations compared to our best-fit values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We therefore con- strain the warp to be confined within one beam size (∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='18′′, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', 26 au) from the center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We note that we obtain a 5 % higher dy- namical mass of the system when fitting for M⋆ while masking the innermost beam size in radius, an effect predicted by hydro- dynamical simulations of warps (Young et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' While our observations cannot provide a full picture of the system due to a limited angular resolution, the very low mass ac- cretion rate and near infrared excess (Sicilia-Aguilar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020), as well as the gas cavity in 12CO with non-Keplerian veloci- ties suggest the presence of an additional, very massive (pos- sibly stellar) companion within the inner ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25′′ (∼35 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Such a companion would need to be on an inclined (nearly polar) orbit to misalign the inner disk (Zhu 2019) which would then lead to the shadows (Nealon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019) and variable extinction events in the light curves (Ansdell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Sicilia-Aguilar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' It would however not explain the strong localized veloc- ity residual feature that we report, which we speculate traces a planetary-mass object located at the edge of the dust continuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Detailed modeling of the system is thus needed to assess the need for an additional companion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' An interesting comparison is the CS Cha spectro-binary system (separation ∼7 au) which shows similar dust continuum and gas emission at similarly low inclination but no departure from Keplerian rotation in the 12CO kinematics (Kurtovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Conclusions In this letter, we present new ALMA observations of the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3 mm dust continuum and the 12CO (J=2-1) line emission from the transition disk around RXJ1604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3–2130 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The dust continuum shows a large cavity enclosing a smaller 12CO cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Azimuthal Article number, page 5 of 13 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' main brightness variations in the 12CO line and dust continuum are broadly aligned with shadows detected in scattered light (Pinilla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Using the discminer package (Izquierdo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021), we model the channel-by-channel line emission and cal- culate the line-of-sight velocity maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We report the detection of a coherent, localized non-Keplerian feature at R = 41 ± 10 au and PA = 280◦ ± 2◦, that is within the continuum ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' While broadly aligned with the scattered light shadows, the localized non-Keplerian feature cannot be due to changes in temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Instead, we interpret the kinematical perturbation as tracing the presence of a massive companion of Mp ≈ (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='9) Mjup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We also detect a tightly wound spiral that extends over 300◦ in az- imuth, possibly connected to the localized feature and caused by buoyancy resonances driven by planet-disk-interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Bend- ing of the iso-velocity contours within the gas cavity indicates a highly perturbed inner region, possibly related to the pres- ence of a misaligned inner disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' However, as the putative planet at ∼41 au cannot explain the gas cavity, the low accretion rate and the misaligned inner disk, we speculate that another mas- sive companion, likely on an inclined orbit, shapes the inner ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25′′(∼35 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We would like to thank the anonymous referee for the constructive feedback, as well as Clement Baruteau, Kees Dullemond, Guil- laume Laibe and Andrew Winter for helpful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' This Letter makes use of the following ALMA data: ADS/JAO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='ALMA#2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='01255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='S and ADS/JAO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='ALMA#2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' ALMA is a partnership of ESO (represent- ing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in co- operation with the Republic of Chile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The Joint ALMA Observatory is oper- ated by ESO, AUI/NRAO, and NAOJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (PROTOPLANETS, grant agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 101002188).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Software: CARTA (Comrie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021), CASA (McMullin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2007), Discminer (Izquierdo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021), Eddy (Teague 2019a), FilFinder (Koch & Rosolowsky 2015), GoFish (Teague 2019b), Matplotlib (Hunter 2007), Numpy (van der Walt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2011), Scipy (Virtanen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' References Andrews, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Huang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Pérez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018, ApJ, 869, L41 Ansdell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Gaidos, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Hedges, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020, MNRAS, 492, 572 Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Isella, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022a, arXiv e-prints, arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='13314 Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Andrews, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022b, ApJ, 934, L20 Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, ApJ, 912, 56 Barenfeld, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Carpenter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Ricci, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Isella, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2016, ApJ, 827, 142 Benisty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Dominik, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Follette, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='09991 Bollati, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Lodato, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Price, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Pinte, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, MNRAS, 504, 5444 Calcino, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Hilder, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Price, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, ApJ, 929, L25 Casassus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Cárcamo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Hales, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Weber, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Dent, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, ApJ, 933, L4 Casassus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' & Pérez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019, ApJ, 883, L41 Comrie, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Hsu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, CARTA: The Cube Analysis and Rendering Tool for Astronomy, Zenodo Czekala, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Loomis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, ApJS, 257, 2 Dong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', van der Marel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Hashimoto, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2017, ApJ, 836, 201 Facchini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Juhász, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Lodato, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018a, MNRAS, 473, 4459 Facchini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Pinilla, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', van Dishoeck, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & de Juan Ovelar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018b, A&A, 612, A104 Foreman-Mackey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Hogg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Lang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Goodman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2013, PASP, 125, 306 Gaia Collaboration, Vallenari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Brown, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00211 Hunter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2007, Computing in Science Engineering, 9, 90 Izquierdo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Facchini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Rosotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', van Dishoeck, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Testi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, ApJ, 928, 2 Izquierdo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Testi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Facchini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Rosotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & van Dishoeck, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, A&A, 650, A179 Jorsater, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' & van Moorsel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 1995, AJ, 110, 2037 Juhász, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' & Facchini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2017, MNRAS, 466, 4053 Keppler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019, A&A, 625, A118 Koch, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' & Rosolowsky, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2015, MNRAS, 452, 3435 Köhler, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Kunkel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Leinert, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Zinnecker, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2000, A&A, 356, 541 Kostov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Orosz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Welsh, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2016, ApJ, 827, 86 Kurtovic, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Pinilla, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Penzlin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, A&A, 664, A151 Law, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Loomis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, ApJS, 257, 4 Long, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Pinilla, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Herczeg, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018, ApJ, 869, 17 MacQueen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 1967, in 5th Berkeley Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Probability, 281–297 Manara, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Natta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Rosotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020, A&A, 639, A58 Mayama, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Akiyama, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Pani´c, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018, ApJ, 868, L3 McMullin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Waters, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Schiebel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Young, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Golap, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2007, in As- tronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 376, Astronomical Data Analysis Software and Systems XVI, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Shaw, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Hill, & D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Bell, 127 Montesinos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Perez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Casassus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2016, ApJ, 823, L8 Nealon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Pinte, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Alexander, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Mentiplay, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Dipierro, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019, MN- RAS, 484, 4951 Norfolk, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Pinte, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Calcino, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, ApJ, 936, L4 Pedregosa, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Varoquaux, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Gramfort, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2011, the Journal of machine Learning research, 12, 2825 Perez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Dunhill, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Casassus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2015, ApJ, 811, L5 Pinilla, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Benisty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', de Boer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018, ApJ, 868, 85 Pinilla, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', de Boer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Benisty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2015, A&A, 584, L4 Pinte, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Flaherty, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='09528 Rabago, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' & Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, MNRAS, 502, 5325 Rich, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Monnier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Aarnio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, AJ, 164, 109 Rich, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Monnier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, ApJ, 913, 138 Rosenfeld, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Chiang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Andrews, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2014, ApJ, 782, 62 Rosotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Benisty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Juhász, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020, MNRAS, 491, 1335 Sicilia-Aguilar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Manara, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', de Boer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020, A&A, 633, A37 Tang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Guilloteau, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Dutrey, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2017, ApJ, 840, 32 Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019a, The Journal of Open Source Software, 4, 1220 Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019b, The Journal of Open Source Software, 4, 1632 Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Andrews, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, ApJ, 936, 163 Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Bergin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019a, Nature, 574, 378 Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Bergin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Birnstiel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Foreman-Mackey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018a, ApJ, 860, L12 Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Birnstiel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Bergin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018b, ApJ, 868, 113 Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Huang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Bergin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019b, ApJ, 884, L56 Teague, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' & Foreman-Mackey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2018, Bettermoments: A Robust Method To Measure Line Centroids, Zenodo van der Marel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Birnstiel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Garufi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021, AJ, 161, 33 van der Walt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Colbert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Varoquaux, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2011, Computing in Science and Engineering, 13, 22 Virtanen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Gommers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Burovski, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020, scipy/scipy: SciPy 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3 Wölfer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Facchini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', van der Marel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='09494 Young, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Alexander, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Rosotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Pinte, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2022, MNRAS, 513, 487 Yun, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Kim, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Bae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Han, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019, ApJ, 884, 142 Zhang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Isella, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Carpenter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Blake, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2014, ApJ, 791, 42 Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2019, MNRAS, 483, 4221 Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Nelson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Hartmann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', Espaillat, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=', & Calvet, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2011, ApJ, 729, 47 1 Laboratoire Lagrange, Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, 06304 Nice, France;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' e-mail: jochen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='stadler@oca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='eu 2 Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 3 European Southern Observatory, Karl-Schwarzschild-Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2, D-85748 Garching bei München, Germany 4 Leiden Observatory, Leiden University, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Box 9513,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' NL-2300 RA Leiden,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The Netherlands 5 Universitá degli Studi di Milano,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' via Celoria 16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 20133 Milano,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Italy 6 Department of Earth,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Atmospheric,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' and Planetary Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Mas- sachusetts Institute of Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Cambridge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' MA 02139,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' USA 7 Max Planck Institute for Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Königstuhl 17,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 69117,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Heidel- berg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Germany 8 Mullard Space Science Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' University College London,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Holmbury St Mary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Dorking,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Surrey RH5 6NT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' UK 9 Department of Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' University of Florida,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Gainesville,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' FL 32611,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' USA 10 NASA Headquarters,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 300 E Street SW,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Washington,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' DC 20546,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' USA 11 National Radio Astronomy Observatory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Charlottesville,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' VA 22903,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' USA 12 The Graduate University for Advanced Studies,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' SOKENDAI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Shonan Village,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Hayama,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Kanagawa 240-0193,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Japan 13 Departamento de Astronomía,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Universidad de Chile,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Camino El Observatorio 1515,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Las Condes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Santiago,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Chile Article number,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' page 6 of 13 Stadler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' : A kinematically-detected planet candidate in a transition disk Appendix A: Observations, calibration and imaging Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1: Summary of the ALMA Band 6 observations of J1604 presented in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' ID EB Code Date Baselines Frequency Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Time PI [m] [GHz] [min] 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='S X412 2016 Jul 2 15-704 217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2-233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='87 Oberg 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='01255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='S Xb18 2019 Sep 4 38-3638 213.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0-230.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='49 Benisty X2fe5 2021 Apr 29 15-1263 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='47 X4583 2019 Jul 30 92-8548 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='33 X5f6e 2019 Jul 31 92-8548 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='33 X104fc 2021 Sep 27 70-14362 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='33 To self-calibrate our observations, we proceeded as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We first flagged the channels containing the line to produce a continuum dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We centered the individual execution blocks (EBs) by fitting the continuum visibilities with a ring model, allowing for a different center and amplitude, enabling us to recover for the phase-shift and amplitude re-scaling to apply to the EBs before combining them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' To determine a good initial model for the self-calibration, we used multi-scale cleaning with the tclean task using a threshold of 2 times the rms noise level of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Using the tasks gaincal and applycal, we corrected for phase offsets between spectral windows, and between polarizations considering a solution interval of the scan length (solint=inf).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Executions obtained in 2019 were concatenated and self calibrated together, and similarly for those obtained in 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In addition to the first found of self calibration, two additional iterations of phase self-calibration were done with solution intervals of 300s and 180s for the 2019 data, and only one for the 2021 data, with a solution intervals of 360s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' For both datasets, a round of amplitude self-calibration was applied with solint=inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The solutions were then applied to the gas data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' While these two epochs will be analyzed separately for the continuum in a forthcoming paper (Kurtovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' ), to analyze the gas data, we concatenated them after checking that the data do not show significant variation between the two epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We imaged the resulting visibilities with the tclean task using the multi-scale CLEAN algorithm with scales of 0, 1, 3 and 6 times the beam FWHM, and an elliptic CLEAN mask encompassing the disk emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The 12CO (2-1) molecular line observations are imaged with a robust value of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0, a channel width of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 km s−1 and masked by 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 σ threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The data was tapered to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='′′1 and we used the ’JvM correction’ (Jorsater & van Moorsel 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Czekala et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1: Gallery of selected channel maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Panels show the 12CO data (top row) and best-fit model (middle row) channel maps, together with intensity residuals in Kelvin for each channel (bottom row), where in the latter the colorbar has been adjusted such that residuals smaller than 1σ are white.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The beam size is depicted in the lower left corner of each channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' For reference the best-fit systemic velocity was found to be vsys = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='62 km s−1 and the channel spacing is 100 m s−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Article number, page 7 of 13 _ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='21 km/s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='41 km/s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='61 km/s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='81 km/s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='01 km/s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='21 km/s Data 250 Offset [au] 0 250 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 0 _4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='21 km/s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='41 km/s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='61 km/s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='81 km/s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='01 km/s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='21 km/s Model 250 [au] Offset 0 75 Intensity [K] 56 37 250 18 : 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='21 km/s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='41 km/s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='01km/s _5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='21 km/s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='61km/s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='81 km/s Residual 250 [au] Offset 20 Residuals [K] 10 0 250 10 20 250 250 Offset [au]A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' main Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2: Radial profile of the surface brightness for different tracers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Profiles are normalized to the peak of the emission for the 231 GHz continuum, CO peak flux, both for the data and discminer model, as well as for the SPHERE scattered light observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Shaded regions show the standard deviation of each azimuthal average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The lines in the lower right corner show the major beam size (resolution) for each profile in the corresponding colour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3: Azimuthal profiles of the surface brightness, normalized to the peak of the emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Profiles extracted at an annulus with a width of approximately one corresponding beam size centered at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='56′′ and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='39′′ for the 231 GHz continuum and the CO peak flux, which both show significant azimuthal intensity variations of 34% and 19%, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Shaded regions show the standard deviation of each radial average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4: Additional moment maps of the centroid fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Panels show the line width ∆V (a), the peak optical depth τ0 (b) and the error of the centroid fitting δv0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Note that for τ0 < 1 one can assume the line profile to be well presented by a Gaussian, while for τ0 > 5 the line profile has a saturated cored, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' a very flat top (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The beam size is depicted in the lower left corner and only regions where I0 > 5σ with σ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 mJy beam−1 are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Article number, page 8 of 13 CO peak intensity 100 model peak intensity Normalised Surface Brightness dust continuum scattered light 10- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='75 Radius (arcsec)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 12CO at R=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='39±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='07)" Normalised Surface Brightness Continuum at R=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='56±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='02)" .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 180 -150 -120 90 60 30 0 30 60 90 120 150 180 Position Angle (deg)△V (m/s) 6vo (m/s) To 100 200 300 400 500 46810121416 ¥18 20 2 4 6 8 10 ¥12 14 16 18 20 0 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 F (a) (b) (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 Offset ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 D 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 2 0 0 2 0 2 2 Offset (arcsec) Offset (arcsec) Offset (arcsec)Stadler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' : A kinematically-detected planet candidate in a transition disk Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5: Polar map of the velocity residuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 4, but now overlaid by filamentary structures found by FilFinder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The red and blue lines overplotted are the medial axes of the filamentary structures found by the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' To trace the apparent spiral in the residuals, we restricted the algorithm to search for filaments in the radial locations r = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25]′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' For the filamentary detection, we assume a smoothing size of one synthesized beam size and a minimum size of 500 pixels for a filament to be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6: Polar contour map of the centroid residuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Upper panel shows residuals inside the cavity, middle panel between cavity and outer edge of dust ring and lower panel the outer disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The radial spacing between each contour is ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 au and the opacity of the lines increase with radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We like to emphasis that the bump between PA≈ −(110 − 70)◦ in the middle panel makes most of the residuals points we detect with the Peak Variance method of discminer, which can readily be seen in the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='7, we show a comparison of velocity residual maps for additional cubes, imaged using different imaging parameters to assess the robustness of our detections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We compare residual maps for the same cube as used in the main text, but without JvM- correction, and for a cube imaged with a different tapering (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='15" instead of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='10").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Best-fit Keplerian models were subtracted from each of the cubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' As evident from the comparison of the residual maps, the detection of non-Keplerian features reported are robust irrespectively of the imaging parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' However, the detailed morphology of the velocity residual peaks changes with imaging Article number, page 9 of 13 Location (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='09i< R ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='29)" Continuum shadows 400 Centroid residual (m/s) 200 0 200 400 270 240 210 180 150 120 90 09- 30 0 30 60 60 FLocation (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='29i< R ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='62)" Centroid residual (m/s) 40 20 0 20 40 60 270 240 210 180 150 120 90 60 30 0 30 60 40 FLocation (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='62 < R ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='38)" Centroid residual (m/s) 20 0 20 40 270 240 210 180 150 120 90 60 30 0 30 60 Position Angle (deg)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 270 major beam size 60 dust ring FWHM 50 linear spiral 40 180 30 Postion Angle (degree) 20 90 10 0 0 20 30 270 40 50 60 180 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 Radius (arcsec)A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' main Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='7: Comparison of the velocity residual maps for different imaging parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Left corresponds to the cube used in the main text, while the middle panel corresponds to the same cube without JvM-correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The right panel shows the residual maps for a non-JvM corrected cube with a different taper (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='15′′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In all pannels the dust continuum is overlaid in solid contours with equal levels as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Best-fit Keplerian models were subtracted from each of the cubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The detection of the non-Keplerian features is quite robust irrespectively of the imaging procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' parameters, and as a consequence, the value of the inferred planet location from the discminer analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We find that the best-fit discminer models to the non-JvM corrected cubes are similar within 3% w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' the best-fit parameters listed in B, with the exception of the line slope and some of the peak intensity parameters, that vary up to 15%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' While estimating the systematics due to imaging parameters is beyond the scope of this letter, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='7 provides the evidence that the detection of non Keplerian features is robust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We measure the rms in a line-free channel to be 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='6 mJy beam−1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='9 mJy beam−1 for the non-JvM corrected cubes with a taper of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='10 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='15, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Appendix B: Model best fit parameters Attribute Prescription Best-fit parameters Centre offset xc, yc xc = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='66+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='06 au yc = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='07 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='03 au Position angle PA PA = 258.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='75+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='05 deg Systemic velocity vsys vsys = 4617.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4 m s−1 Rotation velocity vkep = � GM⋆ R M⋆ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='220 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='001 M⊙ Ip = Ip0 (R/Rbreak)p0 R ≤ Rbreak Ip0 = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='388+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='003 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='005 mJy pixel−1 p0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='497+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='005 Peak intensity Ip = Ip0 (R/Rbreak)p1 Rbreak < R ≤ Rout Rbreak = 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='78+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='05 au p1 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='789 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='001 Ip = 0 R < Rout Rout = 267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 au Line width Lw = Lw0(R/D0)p Lw0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4097 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0004 km s−1 p = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='592+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='001 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='002 Line slope Ls = Ls0(R/D0)p Ls0 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='569+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='008 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='009 p = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='454+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='005 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='008 Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1: Table of attributes of the discminer model for the 12CO intensity channel maps of the disk around J1604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' PA is the position angle of the semi-major axis of the disc on the red-shifted side, R the cylindrical radius and D0 = 100 au a normalization constant for the line properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The (down-sampled) pixel size of the model is 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='8 au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' For the initial emcee run, we use literature values for the position angle and stellar mass (PA=260◦, M⋆ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='24 M⊙, Dong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Manara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2020, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The initial values of the other parameters were found by comparing the overall morphology between the data and a prototype model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We performed the MCMC search with 150 walkers which evolved for 2000 steps for an initial burn-in stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We proceeded in two steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' First, we masked the disk region inward of the dust continuum and only fitted the outer disk (R > 90 au) to get a robust estimate of the stellar mass and avoid confusion of the code with strongly non-Keplerian velocity features in the inner regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In this run, we interestingly find a strong offset from the disk center in x-direction of −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In a second step, we fixed the stellar mass and now fitted for the whole disk, masking an inner region corresponding to one major beam Article number, page 10 of 13 main cube non-JvM non-JvM taper 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='10 taper 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='10 taper 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='15Stadler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' : A kinematically-detected planet candidate in a transition disk size (26 au) in radius where effects of beam smearing are strongest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We run 150 walkers for 20000 steps till we reach convergence, resembled by a nearly normal distribution of the walkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The variance and median of the parameters walkers remain effectively unchanged after ∼ 7000 steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The best-fit parameters are the median of the posterior distributions and given errors are the 16 and 84 percentiles in the last 5000 steps of the 20000 step run, summarized in Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1: Location of the folded peak velocity residuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The detected points are shown in azimuth (left) and radius (middle) obtained with the Peak Variance method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Colours indicate the 7 different radial clusters specified, where blue peak residual points are within detected significant radial cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The black crosses are the velocity variances of the clusters plotted at the (R, φ)-location of each cluster center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The centers of the accepted clusters (those with peak velocity residuals larger then three times the variance in other clusters) in radius and azimuth are marked with black vertical lines in both panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The right hand plot shows the normal distribution of the peak residual points in a histogram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Note that outliers of the distribution are related to the localized perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The maximum value of all peak folded centroid residuals is at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='39′′ (57 au), its mean value is 39 m/s and 1σv = 20 m/s (not to be mistaken with the cluster variances).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Appendix C: Decomposition and deprojection of velocity components To determine the rotation curves of each velocity component, we use the code eddy (Teague 2019a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We follow the method presented in Teague et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' (2018b) that uses a Gaussian process to determine the azimuthal vφ and radial vr velocity components along a given annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' To this end, we divide the disk into concentric annuli with a radial width of 1/4 of the synthesized beam (∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='05′′) ranging from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='18′′ to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='85′′ and extract the velocities over 20 iterations to minimize their standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' To obtain the vertical velocity component vz, we use the measured azimuthally averaged profiles of vφ and vr and extend them to produce 2D maps, considering the projection of these components along the line of sight: vφ, proj = vφ cos (φ) sin (|i|), vr, proj = vr sin (φ) sin (i), vz, proj = −vz cos (i), (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1) where φ is the polar angle in the disk frame (such that φ= 0 corresponds to the red-shifted major axis) and i the inclination of the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In the case of J1604, the disk rotates clockwise which corresponds to a negative inclination in the above definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' We then subtract these maps together with the systemic velocity vsys from the line of sight velocity v0-map (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2,a) to obtain a map of the vertical velocity component vz, proj: vz, proj = v0 − vsys − vφ, proj − vr, proj, (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2) The radial profile of vz is obtained by deprojecting and azimuthally averaging its 2D velocity map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The radial profiles of the deprojected velocity components can be found in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Article number, page 11 of 13 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='40 acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' cluster centers 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='10 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 80 80 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='35 3 Cluster Velocity I Residual (m/s) 70 70 (s/w) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='08 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='30 6 Residual 60 1g 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='06 y Variance ( 50 50 Folded Centroid .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Centroid 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='20 X S : X 40 40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='04 (km²/s2) Folded ( C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 30 X 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='10 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='02 20 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='05 X X : X LX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' X X X XK 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00 80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 40 0 40 80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 Azimuth (degree) Radius (arcsec)A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' main Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1: Azimuthally averaged and deprojected azimuthal, radial and vertical velocity components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The radial width of each annulus is 1/4 synthesized beam size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' The error bars are given by the standard deviation for each velocity component averaged over the 20 iterations used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2: J1604 deprojected velocity components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' It is assumed that all velocities are either azimuthal (left column), radial (central column) or vertical (right column).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' For the azimuthal and radial components wedges along the minor and major axis have been masked as the observations are insensitive to these components (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='In each panel the synthesised beam is shown in the lower left corner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Article number, page 12 of 13 6 dust ring FWHM 12CO lo peak (s/u>y) Vkepl 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 (V - Vkepi)/Vkepl 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3 100 50 (s/w) 0 50 100 20 (s/w) 0 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='75 Radius (arcsec)Vμ (m/s) Vr (m/s) Vz (m/s) 400 200 0 200 400 600 600 400 200 0 200 400 600 60 40 20 0 20 40 600 60 ← slower faster ←inwards outwards ← downwards upwards→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 (b) (a) (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='0 2 1 0 2 2 0 1 2 2 1 0 1 2 Offset (arcsec) Offset (arcsec) Offset (arcsec)Stadler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' : A kinematically-detected planet candidate in a transition disk Appendix D: Derivation of ∆vφ in dependence of azimuthal temperature variations ∆T To relate the change in the brightness temperature ∆T of 12CO to variations in the rotational velocity vφ we solve the Navier-Stokes- equation in cylindrical coordinates in the φ-direction: ρg vφ R ∂vφ ∂φ = 1 R ∂p ∂φ + µ � ∂ ∂R � 1 R ∂ ∂R(Rvφ) � 1 R2 ∂2vφ ∂φ2 � , (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='1) with the cylindrical radius R, the gas density ρg and the mean molecular weight µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In a first step, we assume that the radial variations within the chosen annulus are negligible and insert the disk gas pressure in the vertically isothermal assumption p = ρgc2 s = ρg kBT µmp , with the Boltzmann constant kB and the proton mass mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' In the second step, we further assume the gas density to be constant along the annulus ρg = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' and re-arrange the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' ρg vφ R ∂vφ ∂φ = 1 R ∂ ∂φ � ρg kBT µmp � + µ R2 ∂2vφ ∂φ2 ∂vφ ∂φ − µ vφRρg ∂2vφ ∂φ2 = kB vφµmp ∂T ∂φ ∂vφ ∂φ − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4µ vφ √ 2πΣg ∂2vφ ∂φ2 = kB vφµmp ∂T ∂φ (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2) In the last step, we inserted the gas midplane density ρg = Σg/( √ 2πH) = Σg/( √ 2π 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2R) assuming a disk aspect ratio of H/R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Assuming that vφ ≈ vkep and Σg ≈ 1g/cm2 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 3 of Dong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' 2017) at the location of the annulus at R ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='4′′ (58 au), we can assess the order of magnitude of the second term on the left hand side of the equation which is only on the order of 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Therefore, we neglect the second order derivative and further identify the sound speed cs: ∆vφ ≈ kB vkep µmp T T ∆Tφ ≈ c2 s vkep ∆Tφ T ���� ÷ vkep ∆vφ vkep ≈ � cs vkep �2 ∆Tφ T ≈ �H R �2 ∆Tφ T (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content='3) The last equation now connects the fractional azimuthal temperature variation ∆Tφ/T to the rotational velocity deviation relative to Keplerian ∆vφ/vkep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} +page_content=' Article number, page 13 of 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf'} diff --git a/2tAyT4oBgHgl3EQfovik/content/2301.00513v1.pdf b/2tAyT4oBgHgl3EQfovik/content/2301.00513v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..732876bbe5497c85e4a6f4bbb2186c506f4595d8 --- /dev/null +++ b/2tAyT4oBgHgl3EQfovik/content/2301.00513v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f1e160a4d2f22be06ba1e9b18a1393ab462ce96b280ee3ce3199e6a9c595d74c +size 544634 diff --git a/2tAyT4oBgHgl3EQfovik/vector_store/index.faiss b/2tAyT4oBgHgl3EQfovik/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..876603e3af3b235fdbaba8c0032dccce75c57654 --- /dev/null +++ b/2tAyT4oBgHgl3EQfovik/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:169f307601eb7b0a66ecc03ba15e01850d6c848583a7844022d1d755f63086d8 +size 5767213 diff --git a/3NFKT4oBgHgl3EQf8S4-/content/tmp_files/2301.11948v1.pdf.txt b/3NFKT4oBgHgl3EQf8S4-/content/tmp_files/2301.11948v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..ad6393fcbc57c47c344ab1df0cf3ec25f650e871 --- /dev/null +++ b/3NFKT4oBgHgl3EQf8S4-/content/tmp_files/2301.11948v1.pdf.txt @@ -0,0 +1,2362 @@ +Pseudo-Goldstone modes and dynamical gap generation from order-by-thermal-disorder +Subhankar Khatua,1, 2 Michel J. P. Gingras,2 and Jeffrey G. Rau1 +1Department of Physics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada +2Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada +(Dated: January 31, 2023) +Accidental ground state degeneracies – those not a consequence of global symmetries of the Hamiltonian +– are inevitably lifted by fluctuations, often leading to long-range order, a phenomenon known as “order-by- +disorder” (ObD). The detection and characterization of ObD in real materials currently lacks clear, qualitative +signatures that distinguish ObD from conventional energetic selection. We show that for order-by-thermal- +disorder (ObTD) such a signature exists: a characteristic temperature dependence of the fluctuation-induced +pseudo-Goldstone gap. We demonstrate this in a minimal two-dimensional model that exhibits ObTD, the fer- +romagnetic Heisenberg-compass model on a square lattice. Using spin-dynamics simulations and self-consistent +mean-field calculations, we determine the pseudo-Goldstone gap, ∆, and show that at low temperatures it scales +as the square root of temperature, +√ +T. We establish that a power-law temperature dependence of the gap is a +general consequence of ObTD, showing that all key features of this physics can be captured in a simple model +of a particle moving in an effective potential generated by the fluctuation-induced free energy. +Strongly competing interactions, or frustration, enhance +quantum and thermal fluctuations, and undermine the devel- +opment of conventional magnetic order. The latter can even be +prevented entirely down to zero temperature, leading to classi- +cal [1–3] or quantum spin liquids [4–10]. However, additional +perturbative interactions can relieve the frustration and favor +the development of long-range order (LRO). Accordingly, the +majority of spin liquid candidates ultimately evade fate as a +spin liquid [8, 11]. The ability of these interactions, incon- +sequential without frustration, to dictate the ground state and +low-temperature properties of a system is at the root of the +plethora of exotic phenomena displayed by highly-frustrated +magnetic materials [10, 12–18]. +This relief of frustration is not always complete. Instead +of an extensively degenerate manifold, a system can possess +a sub-extensive accidental ground state degeneracy, unpro- +tected by symmetry. Classically, this degeneracy can be ro- +bust to a range of realistic interactions including symmetry- +allowed two-spin exchange [19]. Here, the role of fluctuations +is dramatically changed: instead of being detrimental, they +can lift the classical degeneracy and stabilize order – this is the +celebrated phenomenon of order-by-disorder (ObD) [20–22]. +While numerous theoretical models have been proposed [20– +33], there is a paucity of real materials that unambiguously +harbor ObD [19, 34–37]. The standard strategy for exper- +imental confirmation is indirect, relying on parametrizing a +theoretical model of the material, establishing ObD within +that model, and then validating its predictions for the ordered +state experimentally. +While this program has been applied somewhat success- +fully to a handful of materials [19, 34–37], the inability +to evince ObD directly, without relying on detailed mod- +elling, highlights something lacking in our understanding +of ObD. Clear qualitative, model-independent signatures are +needed; for example, experimental observation of characteris- +tic power-laws in heat capacity or transport can diagnose the +character of low-energy excitations, such as exchange statis- +tics, dimensionality or their dispersion relations [9, 11, 38, +39]. Does the presence of ObD exhibit a “smoking-gun” ex- +perimental signature? This can be difficult or subtle to discern. +For ObD from quantum fluctuations [21], the formation of an +ObD spin-wave gap is generally not distinguishable from one +induced energetically by multi-spin interactions [40–42]. +In this Letter, we identify a clear signature of order-by- +thermal-disorder (ObTD): a dynamically generated gap grow- +ing as the square root of temperature. +We investigate this +gapped “pseudo-Goldstone” (PG) mode [44–46] in a minimal +2D classical spin model exhibiting ObTD, the ferromagnetic +Heisenberg-compass model on a square lattice, belonging to +a class of models relevant to Mott insulators with strong spin- +orbit coupling [47–55]. Through spin-dynamics simulations, +we determine the PG gap, ∆, and show it varies with tempera- +ture as ∆ ∝ +√ +T, in quantitative agreement with self-consistent +mean-field theory (SCMFT). This mode is well-defined, with +the linewidth, Γ, due to thermal broadening, Γ ∝ T 2 ≪ ∆. We +further demonstrate that our key results can be captured by an +effective description of a particle moving in a potential gener- +ated by the fluctuation-induced free energy. Using this picture, +we argue that the temperature dependence of the PG gap, +√ +T +(T) for type-I (II) PG modes [56], is universal, applicable to +any system exhibiting ObTD. Finally, due to the low dimen- +sionality [57], ObTD faces a subtle competition against poten- +tially infrared-divergent fluctuations [58, 59]. While ObTD +ultimately prevails, and true LRO develops, the magnetization +displays logarithmic corrections at low temperature, a rem- +nant of the diverging infrared fluctuations. +Model.— +We +consider +the +classical +ferromagnetic +Heisenberg-compass model on a square lattice +H = +� +r +� +−J +� +δ=ˆx,ˆy +Sr · Sr+δ − K +� +S x +rS x +r+ˆx + S y +rS y +r+ˆy +�� +, +(1) +where Sr ≡ (S x +r, S y +r, S z +r) is a unit vector at site r, and δ = +ˆx, ˆy denote the nearest-neighbor bond directions. We consider +ferromagnetic Heisenberg and compass interactions with J > +0, K > 0 (see SM [60] for a discussion of other signs) and +with J the unit of energy, setting J ≡ ℏ ≡ kB ≡ 1 throughout. +For K = 0, the model [Eq.(1)] is the well-known Heisen- +berg ferromagnet with uniform ferromagnetic ground states +of arbitrary direction, Sr = ˆn, related by global spin-rotation +arXiv:2301.11948v1 [cond-mat.str-el] 27 Jan 2023 + +2 +−π/4 +0 +π/4 +φ +0.0 +0.2 +0.4 +0.6 +0.8 +P(φ) +(a) +L = 14 +L = 10 +L = 6 +[00] +[π0] +[ππ] +[00] +[0π] +0 +5 +10 +15 +20 +25 +ω +(b) +[00] +[π0] +[ππ] +[0π] +kx +ky +0 +2 +4 +0 +200 +0 +1 +2 +3 +4 +5 +0.0 +0.2 +0.4 +0.6 +ω +S(0,ω) [arb.] +(c) +T = 0.040 +T = 0.032 +T = 0.024 +T = 0.016 +T = 0.008 +[00] +[π0] +[ππ] +[00] +[0π] +0 +5 +10 +15 +20 +25 +ω +(d) +0 +5 +Spin-dynamics +LSWT +SCMFT +FIG. 1. (a) Probability distribution, P(φ), of the angle, φ, characterizing the direction of the net magnetization obtained using MC simulations +with K = 5 at T = 0.4 for several system sizes, L. Due to C4 symmetry, P(φ) is shown for φ ∈ [−π/4, π/4]. (b) Dynamical structure factor, +S(k, ω) obtained from spin-dynamics simulations for L = 100 with K = 5 at T = 0.4 along a path through the Brillouin zone (see left inset). +Overall intensity is arbitrary. (Right inset) Spectrum near [00] showing the PG gap [43]. (c) Dynamical structure factor at k = 0, S(0, ω), +obtained from spin-dynamics simulations for L = 40 at various temperatures with K = 5. Overall intensity is arbitrary. (d) Excitation spectrum +along the same path as in panel-(b) from the LSWT, SCMFT, and spin-dynamics simulations with K = 5 for L = 100 at T = 0.4. The +spin-dynamics spectrum tracks the frequencies of maximum of S(k, ω). The inset highlights a small region near [00], showing the PG mode. +symmetry. For K > 0, this symmetry is absent and H in +Eq. (1) is minimized by any uniform magnetization in the +ˆx − ˆy plane. These ground states are characterized by an an- +gle φ ∈ [0, 2π) with Sr = cos φ ˆx + sin φ ˆy. Unlike the pure +Heisenberg ferromagnet, these are only accidentally degener- +ate, as the continuous in-plane spin rotations connecting them +do not preserve the anisotropic compass term. However, a dis- +crete C4 symmetry about the ˆz axis and C2 symmetries about +the ˆx and ˆy axes still remain. +Simulations.— We first show that this model exhibits ObTD +via Monte Carlo (MC) simulations on a lattice with N = L2 +sites. To expose the state selection, we construct a proba- +bility distribution for magnetization direction, encoded in φ, +P(φ), using a sample of thermalized states (see SM [60]). As +shown in Fig. 1(a), P(φ) exhibits maxima at φ = 0, π/2, π, +3π/2, corresponding to ferromagnetic ground states with ˆn +along the ±ˆx, ±ˆy directions. At low temperatures, fluctua- +tions thus select four discrete ground states via ObTD from a +one-parameter manifold of states. +We now consider the classical dynamics to examine the as- +sociated PG mode. The equation of motion for the classical +spins is the Landau-Lifshitz equation [61], dSi/dt = Br × Sr, +describing precession about the exchange field, Br, produced +by neighboring spins +Br ≡ − +� +δ=±ˆx,±ˆy +� +JSr+δ + KS δ +r+δδ +� +. +(2) +Starting with states drawn via MC sampling at temperature T, +we numerically integrate the Landau-Lifshitz equations, and +compute the dynamical structure factor, S(k, ω) = ⟨|Sk(ω)|2⟩, +where Sk(ω) is the Fourier transform of spins, and ⟨· · ·⟩ de- +notes averaging over the initial states [60]. Results for S(k, ω) +at a representative T and K [60] are shown in Fig. 1(b), +exhibiting sharp spin-waves with a nearly gapless mode at +k = 0. Closer examination reveals a well-defined gap, as +highlighted in the top right inset of Fig. 1(b) – this is the PG +gap. +To determine the PG gap quantitatively, we consider a cut +of the structure factor at k = 0, i.e., S(0, ω). As the PG +gap is much smaller than the bandwidth of the spectrum [see +Fig. 1(b)], a significantly higher frequency resolution is re- +quired to accurately compute the gap [60], so a much longer +integration time window is necessary. Cuts, S(0, ω), for sev- +eral temperatures are presented in Fig. 1(c), with the peak lo- + +3 +0.000 +0.005 +0.010 +0.015 +0.020 +0.025 +0.030 +0.035 +0.040 +T +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +∆ +0.00 +0.25 +0.50 +0.75 +1.00 +T +0.0 +0.2 +0.4 +Γ +Spin-dynamics +SCMFT +SCMFT asymptotic limit +FIG. 2. Pseudo-Goldstone gap, ∆, as a function of temperature from +spin-dynamics simulations with K = 5. The data is well-described +by the fit ∆ = 2.46242 +√ +T − 3.21907 T 3/2. The SCMFT gap agrees +with it quantitatively and provides the asymptotic T → 0 scaling, +2.46147 +√ +T. (Inset) Linewidth of the PG mode, Γ, as a function of +temperature from spin-dynamics simulations. It is well described by +the fit, Γ = 0.709286 T 2 − 0.329751 T 3. All data have been extrapo- +lated in the system size to the thermodynamic limit [60]. +cation indicating the PG gap (see SM [60]). The temperature +dependence of ∆ is shown in Fig. 2. The leading contribution +to the PG gap scales as the square root of temperature, van- +ishing as T → 0, and is well-described by the fit ∆ ∼ 2.46 +√ +T. +The thermal broadening of the spectrum induces a finite +width to all excitations, including the PG mode. The PG mode +linewidth, Γ, can be obtained from the full-width at half max- +imum of S(0, ω) [see Fig. 1(c)] as a function of temperature. +The inset in Fig. 2 shows that Γ ∝ T 2 at low temperatures +(see SM [60]). Since Γ ≪ ∆ as T → 0, this PG mode is +well-defined. +Spin-wave analysis.— The simulations have revealed that +the system has LRO and hosts a PG excitation, where the +PG gap and linewidth scale with temperature as +√ +T and +T 2, respectively. +To understand how these scaling laws +arise, we consider a spin-wave analysis about the ordered +state [62]. Since tackling spin-wave interactions is difficult +within a purely classical approach [63–65], we follow the +more widely used and computationally convenient quantum +spin-wave analysis [66–68], taking the classical limit only at +the end. +We first discuss the spectrum and state selection due to +ObTD in linear spin-wave theory (LSWT). Expanding about a +classical ground state (parametrized by φ) using the Holstein- +Primakoff (HP) transformation [62], we obtain to O(S ) +H2 = +� +k +� +Aka† +kak + 1 +2! +� +Bka† +ka† +−k + H.c. +�� +, +(3) +where ak denotes the bosonic annihilation operator at wave +vector k, and Ak and Bk depend on φ, J, and K (see SM [60]). +H2 in Eq. (3) can be diagonalized by a Bogoliubov transfor- +mation [62], giving spin-wave energies ωk = +� +A2 +k − B2 +k. As +the spectrum depends on the ground state angle φ, fluctuations +can lift the accidental classical degeneracy. To examine state +selection due to ObTD, we search for the ground states where +the free energy is minimal. Starting with the quantum free en- +ergy Fqu = 1 +2 +� +k ωk + T � +k ln +� +1 − e−ωk/T� +, the classical limit +T ≫ ωk yields F = T � +k ln ωk [69]. This classical free en- +ergy has four minima at φ = 0, π/2, π, 3π/2 – establishing +selection by ObTD, in agreement with the MC results. +Within LSWT, quantum and classical calculations give the +same spectrum, ωk [22]. This spectrum, calculated about φ = +0, exhibits a gapless mode at k = 0 as shown in Fig. 1(d). To +obtain a PG gap, spin-wave interactions must be included, as +we next discuss. +Interacting spin waves.— Performing the HP expansion to +next order in 1/S , the LSWT Hamiltonian [Eq. (3)] is aug- +mented by interaction terms. Three-boson interactions are ab- +sent due to a C2 symmetry about the ordering direction, leav- +ing only terms quartic in the bosons at O(S 0) (see SM [60]). +To treat this interacting problem, we adopt a mean-field ap- +proach [66, 67], decoupling the quartic terms into products +of quadratic terms and thermal averages of two-boson oper- +ators. Following this procedure, the new effective quadratic +Hamiltonian mirrors Eq. (3), but with Ak and Bk replaced with +(Ak + δAk) and (Bk + δBk). These corrections are +δAk = 1 +N +� +q +� +Vk,q,0⟨a† +qaq⟩ + 1 +2 +� +Dq,−q,k⟨a† +qa† +−q⟩ + c.c. +�� +, +δBk = 1 +N +� +q +� +Dk,−k,q⟨a† +qaq⟩ + 1 +2Vq,−q,k−q⟨aqa−q⟩ +� +, +(4) +where Vk1,k2,k3 and Dk1,k2,k3 are the coefficients for the 2-2 +and 3-1 magnon scattering terms at O(S 0) [60], and ⟨· · ·⟩ is +a thermal average. When these averages are computed using +LSWT [Eq. (3)], the corrections [Eq. (4)] reproduce leading +order perturbation theory [70, 71]. However, because of the +gapless mode, these individual δAk and δBk diverge in the +classical limit and perturbation theory breaks down [60]. +To resolve these divergences, we perform the averages in +Eq. (4) using SCMFT, obtaining a renormalized spectrum, Ωk +(see SM [60]). Explicitly, ⟨a† +qaq⟩ and ⟨a† +qa† +−q⟩ are, classically, +computed self-consistently (until convergence) using Eq. (4) +and +⟨a† +kak⟩ = T(Ak + δAk) +Ω2 +k +, +⟨aka−k⟩ = −T(Bk + δBk) +Ω2 +k +, +(5) +where Ωk = +� +(Ak + δAk)2 − (Bk + δBk)2 and ⟨aka−k⟩ = +⟨a† +ka† +−k⟩. +The SCMFT spectrum Ωk, plotted in Fig. 1(d), exhibits a +clear gap at k = 0. The PG mode, gapless in LSWT, has now +become gapped due to magnon-magnon interactions. Excel- +lent agreement between the spectra from SCMFT and spin- +dynamics simulations is observed across the full Brillouin +zone [see Fig. 1(d)]. The temperature dependences of ∆ from +the two approaches in Fig. 2 agree quantitatively, with identi- +cal +√ +T scaling as T → 0. This is a key result of this work, +establishing a clear spectral signature of ObTD. + +4 +While the SCMFT is successful in describing the excita- +tion energies, it does not address thermal broadening, since +δAk and δBk are real, giving an infinite magnon lifetime. +To obtain a finite linewidth, perturbation theory must be car- +ried out to higher order. We expect that δA0 ≡ δAk=0 and +δB0 ≡ δBk=0, interpreted as contributions to the magnon self- +energy [60], can be expanded in T as δA0 = a1T + a2T 2 + · · · +and δB0 = b1T + b2T 2 + · · · . Since |A0| = |B0|, reflecting +the gapless LSWT spectrum, and a1, b1 [the O(T) corrections +in Eq. (4)] are real; any imaginary part, and thus finite life- +time, must arise from a2 or b2. Expanding Ω0 ≡ Ωk=0 in T +yields Im Ω0 ≈ (Im a2) T 2 + · · · (see SM [60]). The real part, +Re Ω0, maintains its leading +√ +T dependence (providing the +PG gap) while Im Ω0, giving the linewidth, has a leading T 2 +dependence, consistent with the simulation results (see inset +of Fig. 2). +Effective description.— We now present an effective de- +scription capturing the key aspects of the PG mode in a +significantly simpler language and with broader applicabil- +ity, adapting an approach formulated for order-by-quantum- +disorder (ObQD) [72]. +We consider small uniform devi- +ations from a classical ground state (say φ += +0) with +Sr +≈ ( +� +1 − φ2 − θ2, φ, θ), accurate to quadratic order in φ +and θ, where φ is the soft mode and θ its conjugate momentum. +For small φ and θ, φ ≈ 1 +N +� +r S y +r and θ ≈ 1 +N +� +r S z +r, with Pois- +son bracket {φ, θ} = 1/N. For this configuration, we define an +effective free energy Feff(θ, φ) = Ecl(θ) − TS (φ), where Ecl(θ) +is the classical cost of nonzero θ and S (φ) = − � +k ln ωk(φ) +is the entropy. For small θ and φ, Feff can be expanded as +Feff ≈ 1 +2N +� +Cθθ2 + Cφφ2� +, where Cθ = (∂2Feff/∂θ2)/N = 2K +and Cφ = (∂2Feff/∂φ2)/N. Taking Feff as an effective Hamil- +tonian, the equations of motion [73] for θ and φ are +∂φ +∂t = + 1 +N +∂Feff +∂θ += +Cθθ, +∂θ +∂t = − 1 +N +∂Feff +∂φ += −Cφφ, +(6) +describing a harmonic oscillator. We identify the PG gap as +its frequency, ∆ = �CθCφ. Remarkably, the +√ +T dependence +of the PG gap is recovered, since Cφ is O(T) and Cθ is O(1). +The curvature Cφ can be calculated within LSWT, yielding a +frequency 2.46147 +√ +T for K = 5 – exactly the PG gap found +in SCMFT as T → 0 and in agreement with the spin-dynamics +simulations (see Fig. 2). +While formulated for the Heisenberg-compass model, this +line of argument can be deployed to obtain the PG gap +for any spin model exhibiting ObTD. A proof of this state- +ment, following the strategy of Ref. [72], will be reported +elsewhere [74]. +For type-I PG modes (ω ∝ |k|, as in +the Heisenberg-compass model) ∆ ∝ +√ +T, while for type-II +modes (ω ∝ |k|2), both Cφ, Cφ are O(T) and thus ∆ ∝ T. +Consequences of MWH divergence.— The ability to obtain +the PG gap from LSWT presents a puzzle: the perturbative +corrections δA0 and δB0 diverge logarithmically with system +size [57], just as in the MWH theorem [58, 59]. How then +do the curvatures of Feff avoid these singularities and give the +correct scaling? An analysis of the infrared divergences [60] +shows that while δA0 and δB0 are singular, δA0 + δB0, which +determines the leading contribution to the PG gap, is finite, +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +T +−0.16 +−0.15 +−0.14 +−0.13 +−0.12 +∂M/∂T +0.0 +0.1 +0.2 +0.3 +T +0.96 +0.98 +1.00 +M +SCMFT +Monte Carlo +FIG. 3. Derivative of magnetization with respect to temperature, +∂M/∂T, as a function of temperature for L = 60, K = 5 using MC +simulation and SCMFT. MC data is well-described by a fit motivated +by SCMFT [60], −0.09815 − 0.03563T + 0.01485 ln T. A similar +fit to SCMFT data yields −0.09631 − 0.01494T + 0.01491 ln T. The +inset shows M as a function of temperature for the same parameters. +MC error bars on M are smaller than the symbol size. +and reproduces the result from Eq. (6). However, divergences +in higher order terms do not cancel, and must be cured self- +consistently [60]. +While these divergences are mostly benign for the PG gap, +they appear more dramatically in other quantities, like the +magnetization, M = 1 − 1 +N +� +k⟨a† +kak⟩. Here, the thermal popu- +lation, ⟨a† +kak⟩ diverges in LSWT, rendering SCMFT necessary +to obtain meaningful results. In SCMFT, the PG gap provides +an infrared cutoff ℓ ∼ 1/∆ ∝ 1/ +√ +T, giving a logarithmic con- +tribution to M scaling as ∝ Tln T as T → 0 [60]. The presence +of this term can be diagnosed from ∂M/∂T, which exhibits a +logarithmic singularity as T → 0 for both the MC simulations +and SCMFT (see Fig. 3). +Outlook.— Our analysis of the PG gap will provide a deeper +understanding of real materials exhibiting ObD. The existence +of PG modes has been used to diagnose ObD, for example +in the compounds Fe2Ca3(GeO4)3 [34], Sr2Cu3O4Cl2 [35] +and Er2Ti2O7 [36, 41, 75]. +In such materials, the ObQD +gap likely dominates the ObTD-induced gap discussed in this +work. However, in systems where the effect of ObQD is weak +or the degrees of freedom are sufficiently classical, ObTD +can resurface as the leading selection effect. For example, +our results may shed light on the rapidly growing family of +two-dimensional van der Waals (vdW) ferromagnets [76–78] +where the ObQD gap is expected to be small and thus the gap +induced by thermal fluctuations may be more significant. Ad- +ditionally, while reaching the classical thermal regime is chal- +lenging in magnetic materials (due to small spin length S ), +it may be more accessible in other platforms such as those +involving lattice vibrations [79, 80], dipole-coupled nanocon- +fined molecular rotors [81–84] or artificial mesoscale mag- +netic crystals [85–88]. Whether ObTD can be realized in such +topical systems, and how to detect the temperature dependent +PG gap, are open questions; our approach provides a theoret- + +5 +ical framework and guidance for future experimental studies +in this promising area of research. +ACKNOWLEDGMENTS +We thank Itamar Aharony, Kristian Tyn Kai Chung, Alex +Hickey, Daniel Lozano-Gómez, and Darren Pereira for use- +ful discussions. We acknowledge the use of computational +resources provided by Digital Research Alliance of Canada. +This research was funded by the NSERC of Canada (MJPG, +JGR) and the Canada Research Chair Program (MJPG, Tier +I). +[1] P. W. Anderson, “Ordering and antiferromagnetism in ferrites,” +Phys. Rev. 102, 1008–1013 (1956). +[2] Jacques Villain, “Insulating spin glasses,” Zeitschrift für Physik +B Condensed Matter 33, 31–42 (1979). +[3] R. Moessner and J. T. Chalker, “Low-temperature properties of +classical geometrically frustrated antiferromagnets,” Phys. Rev. +B 58, 12049–12062 (1998). +[4] B. Canals and C. Lacroix, “Pyrochlore antiferromagnet: A +three-dimensional quantum spin liquid,” Phys. Rev. Lett. 80, +2933–2936 (1998). +[5] Alexei Kitaev, “Anyons in an exactly solved model and be- +yond,” Annals of Physics 321, 2–111 (2006). +[6] M. J. P. Gingras and P. A. McClarty, “Quantum spin ice: a +search for gapless quantum spin liquids in pyrochlore magnets,” +Reports on Progress in Physics 77, 056501 (2014). +[7] Lucile Savary and Leon Balents, “Quantum spin liquids: a re- +view,” Reports on Progress in Physics 80, 016502 (2017). +[8] Takashi Imai and Young S. Lee, “Do quantum spin liquids ex- +ist?” Physics Today 69, 30–36 (2016). +[9] J. Knolle and R. Moessner, “A field guide to spin liquids,” An- +nual Review of Condensed Matter Physics 10, 451–472 (2019). +[10] Leon Balents, “Spin liquids in frustrated magnets,” Nature 464, +199–208 (2010). +[11] Jinsheng Wen, Shun-Li Yu, Shiyan Li, Weiqiang Yu, and Jian- +Xin Li, “Experimental identification of quantum spin liquids,” +npj Quantum Materials 4, 12 (2019). +[12] C. Lacroix, P. Mendels, +and F. Mila (eds.), Introduction +to Frustrated Magnetism: +Materials, Experiments, Theory +(Springer Berlin, 2011). +[13] M. Udagawa and L. Jaubert (eds.), Spin Ice (Springer Cham, +2021). +[14] Jason S. Gardner, Michel J. P. Gingras, and John E. Greedan, +“Magnetic pyrochlore oxides,” Rev. Mod. Phys. 82, 53–107 +(2010). +[15] Alannah M. Hallas, Jonathan Gaudet, and Bruce D. Gaulin, +“Experimental insights into ground-state selection of quantum +XY pyrochlores,” Annual Review of Condensed Matter Physics +9, 105–124 (2018). +[16] Jeffrey G. Rau and Michel J.P. Gingras, “Frustrated quantum +rare-earth pyrochlores,” Annual Review of Condensed Matter +Physics 10, 357–386 (2019). +[17] Simon Trebst and Ciarán Hickey, “Kitaev materials,” Physics +Reports 950, 1–37 (2022). +[18] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. +Nagler, “Concept and realization of Kitaev quantum spin liq- +uids,” Nature Reviews Physics 1, 264–280 (2019). +[19] Lucile Savary, Kate A. Ross, Bruce D. Gaulin, Jacob P. C. Ruff, +and Leon Balents, “Order by quantum disorder in Er2Ti2O7,” +Phys. Rev. Lett. 109, 167201 (2012). +[20] J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, “Order as an +effect of disorder,” J. Phys. France 41, 1263–1272 (1980). +[21] E. F. Shender, “Antiferromagnetic garnets with fluctuationally +interacting sublattices,” Sov. Phys. JETP 56, 178 (1982). +[22] Christopher L. Henley, “Ordering due to disorder in a frus- +trated vector antiferromagnet,” Phys. Rev. Lett. 62, 2056–2059 +(1989). +[23] Jack R. Tessman, “Magnetic anisotropy at 0°k,” Phys. Rev. 96, +1192–1195 (1954). +[24] Sona Prakash and Christopher L. Henley, “Ordering due to dis- +order in dipolar magnets on two-dimensional lattices,” Phys. +Rev. B 42, 6574–6589 (1990). +[25] Kenn Kubo and Tatsuya Kishi, “Ordering due to quantum fluc- +tuations in the frustrated Heisenberg model,” Journal of the +Physical Society of Japan 60, 567–572 (1991). +[26] Andrey Chubukov, “Order from disorder in a kagomé antiferro- +magnet,” Phys. Rev. Lett. 69, 832–835 (1992). +[27] Jan N. Reimers and A. J. Berlinsky, “Order by disorder in the +classical Heisenberg kagomé antiferromagnet,” Phys. Rev. B +48, 9539–9554 (1993). +[28] S. T. Bramwell, M. J. P. Gingras, and J. N. Reimers, “Order by +disorder in an anisotropic pyrochlore lattice antiferromagnet,” +J. Appl. Phys. 75, 5523–5525 (1994). +[29] Christopher L. Henley, “Selection by quantum fluctuations of +dipolar order in a diamond lattice,” Phys. Rev. Lett. 73, 2788– +2788 (1994). +[30] J. D. M. Champion, M. J. Harris, P. C. W. Holdsworth, A. S. +Wills, G. Balakrishnan, S. T. Bramwell, E. ˇCižmár, T. Fen- +nell, J. S. Gardner, J. Lago, D. F. McMorrow, M. Orendáˇc, +A. Orendáˇcová, D. McK. Paul, R. I. Smith, M. T. F. Telling, +and A. Wildes, “Er2Ti2O7 : Evidence of quantum order by dis- +order in a frustrated antiferromagnet,” Phys. Rev. B 68, 020401 +(2003). +[31] G. Baskaran, Diptiman Sen, and R. Shankar, “Spin-S Kitaev +model: Classical ground states, order from disorder, and exact +correlation functions,” Phys. Rev. B 78, 115116 (2008). +[32] Paul A. McClarty, Pawel Stasiak, +and Michel J. P. Gin- +gras, “Order-by-disorder in the XY pyrochlore antiferromag- +net,” Phys. Rev. B 89, 024425 (2014). +[33] Bimla Danu, Gautam Nambiar, and R. Ganesh, “Extended de- +generacy and order by disorder in the square lattice J1 − J2 − J3 +model,” Phys. Rev. B 94, 094438 (2016). +[34] Th. Brueckel, B. Dorner, A. G. Gukasov, V. P. Plakhty, +W. Prandl, E. F. Shender, and O. P. Smirnow, “Dynamical in- +teraction of antiferromagnetic subsystems: a neutron scattering +study of the spinwave spectrum of the garnet Fe2Ca3(GeO4)3,” +Zeitschrift für Physik B Condensed Matter 72, 477–485 (1988). +[35] Y. J. Kim, A. Aharony, R. J. Birgeneau, F. C. Chou, O. Entin- +Wohlman, R. W. Erwin, M. Greven, A. B. Harris, M. A. Kast- + +6 +ner, I. Ya. Korenblit, Y. S. Lee, and G. Shirane, “Ordering due +to quantum fluctuations in Sr2Cu3O4Cl2,” Phys. Rev. Lett. 83, +852–855 (1999). +[36] K. A. Ross, Y. Qiu, J. R. D. Copley, H. A. Dabkowska, and +B. D. Gaulin, “Order by disorder spin wave gap in the XY +pyrochlore magnet Er2Ti2O7,” Phys. Rev. Lett. 112, 057201 +(2014). +[37] C. L. Sarkis, J. G. Rau, L. D. Sanjeewa, M. Powell, J. Kolis, +J. Marbey, S. Hill, J. A. Rodriguez-Rivera, H. S. Nair, D. R. +Yahne, S. Säubert, M. J. P. Gingras, and K. A. Ross, “Unrav- +elling competing microscopic interactions at a phase boundary: +A single-crystal study of the metastable antiferromagnetic py- +rochlore Yb2Ge2O7,” Phys. Rev. B 102, 134418 (2020). +[38] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saun- +ders College Publishing, Fort Worth, 1976). +[39] Xiao-Gang Wen, Quantum Field Theory of Many-Body Sys- +tems: From the Origin of Sound to an Origin of Light and Elec- +trons (Oxford University Press, 2007). +[40] P. A. McClarty, S. H. Curnoe, and M. J. P. Gingras, “Energetic +selection of ordered states in a model of the Er2Ti2O7 frustrated +pyrochlore XY antiferromagnet,” Journal of Physics: Confer- +ence Series 145, 012032 (2009). +[41] Sylvain Petit, Julien Robert, Solène Guitteny, Pierre Bonville, +Claudia Decorse, Jacques Ollivier, Hannu Mutka, Michel J. P. +Gingras, and Isabelle Mirebeau, “Order by disorder or ener- +getic selection of the ground state in the XY pyrochlore anti- +ferromagnet Er2Ti2O7: An inelastic neutron scattering study,” +Phys. Rev. B 90, 060410 (2014). +[42] Jeffrey G. Rau, Sylvain Petit, and Michel J. P. Gingras, “Order +by virtual crystal field fluctuations in pyrochlore XY antiferro- +magnets,” Phys. Rev. B 93, 184408 (2016). +[43] The lower intensity at the band minimum compared to its vicin- +ity is a numerical artifact. Due to the finite frequency resolution +of the spin-dynamics simulations, the intensity maximum of the +PG mode may have fallen between frequency grid points, re- +sulting in an (apparent) lower intensity at the band minimum. +[44] Steven Weinberg, “Approximate symmetries and pseudo- +Goldstone bosons,” Phys. Rev. Lett. 29, 1698–1701 (1972). +[45] C.P. Burgess, “Goldstone and pseudo-Goldstone bosons in nu- +clear, particle and condensed-matter physics,” Physics Reports +330, 193–261 (2000). +[46] Muneto Nitta and Daisuke A. Takahashi, “Quasi-Nambu- +Goldstone modes in nonrelativistic systems,” Phys. Rev. D 91, +025018 (2015). +[47] Zohar Nussinov and Jeroen van den Brink, “Compass models: +Theory and physical motivations,” Rev. Mod. Phys. 87, 1–59 +(2015). +[48] Julien Dorier, Federico Becca, and Frédéric Mila, “Quantum +compass model on the square lattice,” Phys. Rev. B 72, 024448 +(2005). +[49] G. Jackeli and G. Khaliullin, “Mott insulators in the strong spin- +orbit coupling limit: From Heisenberg to a quantum compass +and Kitaev models,” Phys. Rev. Lett. 102, 017205 (2009). +[50] F. Trousselet, A. M. Ole´s, +and P. Horsch, “Compass- +Heisenberg model on the square lattice —spin order and ele- +mentary excitations,” Europhysics Letters 91, 40005 (2010). +[51] Fabien Trousselet, Andrzej M. Ole´s, and Peter Horsch, “Mag- +netic properties of nanoscale compass-Heisenberg planar clus- +ters,” Phys. Rev. B 86, 134412 (2012). +[52] S. Boseggia, R. Springell, H. C. Walker, H. M. Rønnow, Ch. +Rüegg, H. Okabe, M. Isobe, R. S. Perry, S. P. Collins, and D. F. +McMorrow, “Robustness of basal-plane antiferromagnetic or- +der and the Jeff=1/2 state in single-layer iridate spin-orbit Mott +insulators,” Phys. Rev. Lett. 110, 117207 (2013). +[53] Vamshi M. Katukuri, Viktor Yushankhai, Liudmila Siurakshina, +Jeroen van den Brink, Liviu Hozoi, and Ioannis Rousochatza- +kis, “Mechanism of basal-plane antiferromagnetism in the spin- +orbit driven iridate Ba2IrO4,” Phys. Rev. X 4, 021051 (2014). +[54] Artem A. Vladimirov, Dieter Ihle, +and Nikolay M. Plakida, +“Magnetic order in the two-dimensional compass-Heisenberg +model,” Eur. Phys. J. B 88, 148 (2015). +[55] Long Zhang, Fa Wang, and Dung-Hai Lee, “Compass impurity +model of Tb substitution in Sr2IrO4,” Phys. Rev. B 94, 161118 +(2016). +[56] Haruki Watanabe, “Counting rules of Nambu–Goldstone +modes,” Annual Review of Condensed Matter Physics 11, 169– +187 (2020). +[57] Sidney Coleman, “There are no Goldstone bosons in two di- +mensions,” Communications in Mathematical Physics 31, 259– +264 (1973). +[58] N. D. Mermin and H. Wagner, “Absence of ferromagnetism +or antiferromagnetism in one- or two-dimensional isotropic +Heisenberg models,” Phys. Rev. Lett. 17, 1133–1136 (1966). +[59] P. C. Hohenberg, “Existence of long-range order in one and two +dimensions,” Phys. Rev. 158, 383–386 (1967). +[60] See Supplemental Material at (...) for details about Monte Carlo +and spin-dynamics simulations and finite size scaling analysis, +as well as details of the linear and non-linear spin wave theory, +including of cancellation of divergences in the PG gap calcula- +tion and derivation of logarithmic correction to the magnetiza- +tion. It also includes Refs. [62, 66, 67, 70–72, 89–97]. +[61] L. Landau and E. Lifshitz, “3 - On the theory of the dispersion +of magnetic permeability in ferromagnetic bodies,” in Perspec- +tives in Theoretical Physics, edited by L. P. Pitaevksi (Perga- +mon, Amsterdam, 1992) pp. 51–65, reprinted from Physikalis- +che Zeitschrift der Sowjetunion 8, Part 2, 153, 1935. +[62] A. Auerbach, Interacting Electrons and Quantum Magnetism, +Graduate Texts in Contemporary Physics (Springer New York, +1998). +[63] P. C. Martin, E. D. Siggia, and H. A. Rose, “Statistical dynam- +ics of classical systems,” Phys. Rev. A 8, 423–437 (1973). +[64] Uli Deker and Fritz Haake, “Fluctuation-dissipation theorems +for classical processes,” Phys. Rev. A 11, 2043–2056 (1975). +[65] C. P. Enz and L. Garrido, “Perturbation theory for classical ther- +modynamic Green’s functions,” Phys. Rev. A 14, 1258–1268 +(1976). +[66] H. Bruus and K. Flensberg, Many-Body Quantum Theory in +Condensed Matter Physics: An Introduction, Oxford Graduate +Texts (Oxford University Press, Oxford, 2004). +[67] J.P. Blaizot and G. Ripka, Quantum Theory of Finite Systems +(MIT Press, Cambridge, 1986). +[68] G. D. Mahan, Many Particle Physics, Third Edition (Springer +New York, 2000). +[69] Mehran Kardar, Statistical Physics of Particles (Cambridge +University Press, 2007). +[70] P. D. Loly, “The Heisenberg ferromagnet in the selfconsistently +renormalized spin wave approximation,” Journal of Physics C: +Solid State Physics 4, 1365–1377 (1971). +[71] A. V. Chubukov, S. Sachdev, and T. Senthil, “Large-S expan- +sion for quantum antiferromagnets on a triangular lattice,” Jour- +nal of Physics: Condensed Matter 6, 8891–8902 (1994). +[72] Jeffrey G. Rau, Paul A. McClarty, +and Roderich Moess- +ner, “Pseudo-Goldstone gaps and order-by-quantum disorder in +frustrated magnets,” Phys. Rev. Lett. 121, 237201 (2018). +[73] H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, +Third Edition (Pearson, 2002). +[74] Subhankar Khatua, Michel J. P. Gingras, and Jeffrey G. Rau, +(unpublished). + +7 +[75] E. Lhotel, J. Robert, E. Ressouche, F. Damay, I. Mirebeau, +J. Ollivier, H. Mutka, P. Dalmas de Réotier, A. Yaouanc, +C. Marin, C. Decorse, and S. Petit, “Field-induced phase di- +agram of the XY pyrochlore antiferromagnet Er2Ti2O7,” Phys. +Rev. B 95, 134426 (2017). +[76] Cheng Gong, Lin Li, Zhenglu Li, Huiwen Ji, Alex Stern, Yang +Xia, Ting Cao, Wei Bao, Chenzhe Wang, Yuan Wang, Z. Q. +Qiu, R. J. Cava, Steven G. Louie, Jing Xia, and Xiang Zhang, +“Discovery of intrinsic ferromagnetism in two-dimensional van +der Waals crystals,” Nature 546, 265–269 (2017). +[77] Lebing Chen, Jae-Ho Chung, Matthew B. Stone, Alexander I. +Kolesnikov, Barry Winn, V. Ovidiu Garlea, Douglas L. Aber- +nathy, Bin Gao, Mathias Augustin, Elton J. G. Santos, +and +Pengcheng Dai, “Magnetic field effect on topological spin ex- +citations in CrI3,” Phys. Rev. X 11, 031047 (2021). +[78] S. E. Nikitin, B. Fåk, K. W. Krämer, T. Fennell, B. Normand, +A. M. Läuchli, and Ch. Rüegg, “Thermal evolution of Dirac +magnons in the honeycomb ferromagnet CrBr3,” Phys. Rev. +Lett. 129, 127201 (2022). +[79] Yilong Han, Yair Shokef, Ahmed M. Alsayed, Peter Yunker, +Tom C. Lubensky, and Arjun G. Yodh, “Geometric frustration +in buckled colloidal monolayers,” Nature 456, 898–903 (2008). +[80] Yair Shokef, Anton Souslov, and T. C. Lubensky, “Order by +disorder in the antiferromagnetic Ising model on an elastic tri- +angular lattice,” Proceedings of the National Academy of Sci- +ences 108, 11804–11809 (2011). +[81] Jerzy Cioslowski and Asiri Nanayakkara, “Endohedral ful- +lerites: A new class of ferroelectric materials,” Phys. Rev. Lett. +69, 2871–2873 (1992). +[82] Shinobu Aoyagi, Norihisa Hoshino, Tomoyuki Akutagawa, +Yuki Sado, Ryo Kitaura, Hisanori Shinohara, Kunihisa Sugi- +moto, Rui Zhang, and Yasujiro Murata, “A cubic dipole lat- +tice of water molecules trapped inside carbon cages,” Chemical +Communications 50, 524–526 (2014). +[83] B. P. Gorshunov, V. I. Torgashev, E. S. Zhukova, V. G. +Thomas, M. A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savi- +nov, T. Ostapchuk, J. Petzelt, J. Prokleška, P. V. Tomas, E. V. +Pestrjakov, D. A. Fursenko, G. S. Shakurov, A. S. Prokhorov, +V. S. Gorelik, L. S. Kadyrov, V. V. Uskov, R. K. Kremer, and +M. Dressel, “Incipient ferroelectricity of water molecules con- +fined to nano-channels of beryl,” Nature Communications 7, +12842 (2016). +[84] M. A. Belyanchikov, M. Savinov, Z. V. Bedran, P. Bednyakov, +P. Proschek, J. Prokleska, V. A. Abalmasov, J. Petzelt, E. S. +Zhukova, V. G. Thomas, A. Dudka, A. Zhugayevych, A. S. +Prokhorov, V. B. Anzin, R. K. Kremer, J. K. H. Fischer, +P. Lunkenheimer, A. Loidl, E. Uykur, M. Dressel, and B. Gor- +shunov, “Dielectric ordering of water molecules arranged in a +dipolar lattice,” Nature Communications 11, 3927 (2020). +[85] Oleksandr V. Dobrovolskiy, Oleksandr V. Pylypovskyi, Luka +Skoric, Amalio Fernández-Pacheco, Arjen Van Den Berg, Sam +Ladak, +and Michael Huth, “Complex-shaped 3D nanoarchi- +tectures for magnetism and superconductivity,” in Curvilinear +Micromagnetism: From Fundamentals to Applications, edited +by Denys Makarov and Denis D. Sheka (Springer International +Publishing, Cham, 2022) pp. 215–268. +[86] Lukas Keller, Mohanad K. I. Al Mamoori, Jonathan Pieper, +Christian Gspan, Irina Stockem, Christian Schröder, Sven +Barth, Robert Winkler, Harald Plank, Merlin Pohlit, Jens +Müller, and Michael Huth, “Direct-write of free-form building +blocks for artificial magnetic 3D lattices,” Scientific Reports 8, +6160 (2018). +[87] Andrew May, Matthew Hunt, Arjen Van Den Berg, Alaa He- +jazi, and Sam Ladak, “Realisation of a frustrated 3D magnetic +nanowire lattice,” Communications Physics 2, 13 (2019). +[88] Peter Fischer, Dédalo Sanz-Hernández, Robert Streubel, and +Amalio Fernández-Pacheco, “Launching a new dimension with +3D magnetic nanostructures,” APL Materials 8, 010701 (2020). +[89] J. D. Alzate-Cardona, D. Sabogal-Suárez, R. F. L. Evans, and +E. Restrepo-Parra, “Optimal phase space sampling for Monte +Carlo simulations of Heisenberg spin systems,” Journal of +Physics: Condensed Matter 31, 095802 (2019). +[90] Michael Creutz, “Overrelaxation and Monte Carlo simulation,” +Phys. Rev. D 36, 515–519 (1987). +[91] M. E. J. Newman and G. T. Barkema, Monte Carlo methods in +statistical physics (Clarendon Press, Oxford, 1999). +[92] J. R. Dormand and P. J. Prince, “A family of embedded Runge- +Kutta formulae,” Journal of Computational and Applied Math- +ematics 6, 19–26 (1980). +[93] K. Ahnert and M. Mulansky, “Odeint – solving ordinary differ- +ential equations in C++,” AIP Conference Proceedings 1389, +1586–1589 (2011). +[94] K. Ahnert and M. Mulansky, “Boost C++ Library: Odeint,” +(2012). +[95] J. C. Bowman and M. Roberts, “FFTW++: A fast Fourier trans- +form C++ header class for the FFTW3 library,” (2010). +[96] M. E. Zhitomirsky and A. L. Chernyshev, “Colloquium: Spon- +taneous magnon decays,” Rev. Mod. Phys. 85, 219–242 (2013). +[97] P. M. Chaikin and T. C. Lubensky, Principles of Condensed +Matter Physics (Cambridge University Press, 1995). + +8 +Supplemental Material for “Pseudo-Goldstone modes and dynamical gap generation from +order-by-thermal-disorder” +Subhankar Khatua,1, 2 Michel J. P. Gingras,2 and Jeffrey G. Rau1 +1Department of Physics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada +2Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada +(Dated: January 27, 2023) +I. +DETAILS OF MONTE CARLO SIMULATIONS +A. +Details of Monte Carlo procedure +The Monte Carlo (MC) simulations described in the main +text are based on adaptive single-site Metropolis moves [1], +combined with over-relaxation moves [2]. A typical single- +site Metropolis move involves randomly selecting a spin and +changing its orientation to a random direction. +However, +at low temperature, most such moves result in configura- +tions that are of much higher energies and thus rejected [3]. +Therefore, we follow an adaptive approach that selects a +spin randomly and changes its orientation to a Gaussian +distributed random direction within a solid-angle of certain +width. The solid-angle-width changes adaptively to ensure +that the update-acceptance rate remains close to 50% at each +temperature (see Ref. [1] for details). +The over-relaxation +move rotates a randomly selected spin by a random angle +about its local exchange field. This move is energy-conserving +and thus always accepted. We define a Monte Carlo sweep +at a certain temperature as a combination of N (total num- +ber of spins) random successive adaptive single-site Metropo- +lis moves with each followed by five random over-relaxation +moves. All the simulation results discussed in the main text +have been obtained by considering periodic boundary condi- +tions on the square lattice of size L by L and N = L2 spins. As +in the main text, we use units such that J = ℏ = kB = 1. +B. +Simulation details of the order parameter distribution +Starting from a random spin configuration at high tempera- +ture, T = 10 (larger than K) where the system is in the param- +agnetic phase, we slowly cool down in steps of size δT = 0.1 +to a final temperature T = 0.4 (much smaller than K). At +each temperature, we perform 105 MC sweeps to equilibrate +the system. Finally, at T = 0.4, after equilibration, we record +the net magnetization-per-spin over 106 MC samples, leaving +five MC sweeps in between two consecutive measurements. +From the net magnetization per spin, M = (Mx, My, Mz), we +calculate ϕ = arctan(My/Mx), computing a distribution for ϕ. +Since the ferromagnetic Heisenberg-compass model has a C4 +rotation symmetry in the ˆx− ˆy plane, we symmetrize the distri- +bution by shifting the data by π/2, π, and 3π/2 , i.e., add π/2, +π, and 3π/2 to each entry of the dataset. We have plotted the +final dataset as a probability density, P(ϕ) for ϕ ∈ [−π/4, π/4] +with 50 bins for three different system sizes, N = 62, 102, +and 142 in Fig. 1(a) in the main text. We have chosen a large +value for K, i.e., K = 5, for all simulations in order to obtain +a strong selection effect at accessible system sizes. For the +gross spectral features, the largest system size considered for +spin-dynamics simulations was N = 1002, while for detailed +features, such as the temperature dependence of the pseudo- +Goldstone (PG) gap, up to N = 402 was used. Had smaller +values of K been used, all the MC simulations, as well as +spin-dynamics simulations, would have had to be performed +for much larger system sizes to obtain results that converge +when system size is extrapolated to the thermodynamic limit +(N → ∞). +C. +Simulation details of magnetization and its derivative with +respect to temperature +Independently at each temperature T, 5 × 105 MC sweeps +are performed on a perfectly aligned ferromagnetic spin con- +figuration along ˆx for equilibration, followed by 3 × 106 suc- +cessive MC sweeps to measure the net magnetization along +ˆx (M), energy (E), and their product (EM). Their product is +recorded in order to calculate the derivative of the magnetiza- +tion with respect to temperature, given by +∂M +∂T ≡ ⟨EM⟩ − ⟨E⟩⟨M⟩ +T 2 +, +(S1) +where ⟨x⟩ is the MC thermal average of quantity x. To es- +timate the statistical errors on static quantities, the 3 × 106 +measurements are divided into 30 blocks, and then resampled +using the standard bootstrap method [3]. Typically, O(103) +bootstrap samples were generated from these blocks to esti- +mate the statistical errors. In Fig. 3 of the main text, the error +bars shown correspond to twice the standard deviation esti- +mated via bootstrap. +II. +DETAILS OF SPIN-DYNAMICS SIMULATIONS +Numerical integrations of the Landau-Lifshitz equations +have been done using an adaptive step size RK5(4) Dormand- +Prince integrator [4] from the Boost-Odeint C++ library [5, +6]. The initial spin configurations for the numerical integra- +tion are generated from MC simulations described in Sec. I. +To obtain the results shown in Fig. 1(b) in the main text, +we perform 5 × 105 equilibration MC sweeps on a perfectly +aligned ferromagnetic configuration along ˆx at T = 0.4. Start- +ing from the final state, we perform another 15 × 103 MC +sweeps for 350 independent parallel runs to generate well- +equilibrated configurations at T = 0.4. Next, we feed each + +9 +2 +0.000 +0.001 +0.002 +0.003 +0.004 +1/L2 +0.20 +0.25 +0.30 +0.35 +0.40 +0.45 +0.50 +∆ +T = 0.040 +T = 0.032 +T = 0.024 +T = 0.016 +T = 0.008 +FIG. S1. +Finite size scaling of the PG gap obtained from spin- +dynamics simulations for several temperatures (K = 5). +0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 +1/L2 +0.20 +0.25 +0.30 +0.35 +0.40 +0.45 +0.50 +∆ +T = 0.040 +T = 0.032 +T = 0.024 +T = 0.016 +T = 0.008 +FIG. S2. Finite size scaling of the PG gap obtained using SCMFT +for several temperatures (K = 5). +of these 350 configurations into the Dormand-Prince integra- +tor as an initial state and integrate to a final time, tmax = 50. +The error tolerance of the integrator is set to 10−8, such that +the energy-per-spin and individual spin lengths are conserved +to at least one part in 107 and 1010, respectively. In each of +these independent 350 integrations, we calculate the Fourier +transform of the spin configurations in space and time, S(k, ω) +using FFTW++ [7] and then compute the dynamical structure +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +1/L +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +Γ +T = 1.000 +T = 0.800 +T = 0.600 +T = 0.400 +T = 0.200 +T = 0.016 +FIG. S3. Finite size scaling of the PG linewidth obtained from spin- +dynamics simulations for several temperatures (K = 5). +factor, S(k, ω) = |S(k, ω)|2, finally taking an average of the +structure factors found from the 350 initial configurations to +obtain Fig. 1(b). +The results in Fig. 1(c) in the main text are obtained +as follows: The system is initialized in a perfectly aligned +ferromagnetic configuration along ˆx at T += 0.0004, and +slowly warmed up in steps of δT = 0.0004 to a temper- +ature T += 0.04. +At each temperature, we perform 105 +equilibration MC sweeps, generating a configuration at T = +0.008, 0.016, 0.024, 0.032, 0.04. +At each of these tempera- +tures, we then apply the following procedure. Starting from +a given spin configuration, say at T = 0.008, we generate +a total of 2 × 103 configurations independently by perform- +ing 105 MC sweeps. Each of these configurations is fed into +the Dormand-Prince integrator independently to integrate to +a final time, tmax = 2500. Note that tmax here is taken to be +much larger than the tmax = 50 value used to obtain the re- +sults shown in Fig. 1(b). As discussed in the main text, to +determine the PG gap, ∆, and linewidth, Γ, a much higher +frequency resolution is needed and thus the total integration +time must be larger. The error tolerance of the integrator is +set to 10−10, such that the energy-per-spin and spin-length are +conserved to at least one part in 108 and 1010, respectively. +After the time evolution, we compute the Fourier transform of +the spin configurations in space and time using FFTW++ and +then compute the dynamical structure factor, S(k, ω). Finally, +we perform an average over the 2 × 103 initial spin config- +urations to obtain the average dynamical structure factor at +T = 0.008. In Fig. 1(c), we show only a cut of the average dy- +namical structure factor at the zone center, S(0, ω). To clearly +visualize S(0, ω) at several different temperatures in a single +plot, we stagger them on the y-axis with a constant spacing +between the S(0, ω) data at two consecutive temperatures. +To obtain the results shown in Fig. 2 of the main text, +we proceed as follows: At each temperature, we follow the +same method as described for Fig. 1(c) in the previous para- +graph and compute S(0, ω) for several system sizes, L = +20, 24, 28, 32, 36, and 40. To find the gap and linewidth for +each system size, we fit each data to a Gaussian (a Gaussian +lineshape fits the data in the range T ≤ 0.04 best, compared to, +e.g., a Lorentzian). The center of the Gaussian is used to de- +fine the PG gap and the full-width at half maximum (FWHM) +of the Gaussian, i.e., 2.355σ (standard deviation), is taken as +the PG linewidth. Then, finite size L-dependent PG gaps and +linewidths are then extrapolated in system size (L → ∞) to +obtain the corresponding values in the thermodynamic limit. +Finite size scaling of the PG gap is shown in Fig. S1. The finite +size scaling of the PG gap obtained using the self-consistent +mean-field theory (SCMFT) is shown in Fig. S2 (See Sec. III E +for details). +At very low temperatures, e.g., T ≤ 0.04, where S(0, ω) +falls very sharply away from the center of the peak, a Gaus- +sian lineshape is a natural choice. However, as temperature +increases further, S(0, ω) shows more pronounced tails and a +Lorentzian lineshape was found to provide a better descrip- +tion of the data. Finite size scaling of the PG linewidth is +shown in Fig. S3. At T = 0.016, the PG linewidths for differ- +ent system sizes are found by fitting to a Gaussian while for + +10 +3 +the remaining temperatures in Fig. S3, the PG linewidths are +found from fitting to Lorentzian (via the FWHM of the corre- +sponding Lorentzian). Finite size scaling reveals that at very +low temperatures, the PG linewidth scales almost linearly with +1/L with the scaling becoming quadratic in 1/L as tempera- +ture increases (see Fig. S3). +III. +SPIN WAVE THEORY +Here, we elaborate on the formalism for interacting spin +waves in the ferromagnetic Heisenberg-compass model on the +square lattice. We consider the Heisenberg-compass model +Hamiltonian +H = − +� +rδ +� +JSr · Sr+δ + KS δ +rS δ +r+δ +� +≡ +� +rδ +S⊺ +r JδSr+δ, +(S2) +where δ = ˆx, ˆy denotes the nearest-neighbour (horizontal and +vertical) bond directions. For J > 0 and K > 0, the classical +ground state is ferromagnetic and has an accidental degener- +acy parametrized by an angle ϕ +Sr = S (cos ϕ ˆx + sin ϕ ˆy). +(S3) +For small |K| and K < 0, one finds only a (symmetry- +enforced) discrete degeneracy, with Sr = ±S ˆz. For large |K| +and K < 0, the ground state is described by an XY-stripe phase +parametrized by a single angle whose two extreme limits are +X-stripe phase (i.e., all spins are lying along the ˆx axis, ar- +ranging themselves antiferromagnetically along the ˆx axis and +ferromagnetically along the ˆy axis) and Y-stripe phase (i.e., all +spins are lying along the ˆy axis, arranging themselves antifer- +romagnetically along the ˆy axis and ferromagnetically along +the ˆx axis). The phases for J < 0 can be obtained by map- +ping Sr → (−1)rSr which alternates on the two sublattices. +We note that the dynamics however differ between J > 0 and +J < 0, since the sign change on one sublattice is not a canoni- +cal transformation. +Returning to the J > 0, K > 0 case, we define a frame +aligned with the ground state with angle ϕ +ˆex = − sin ϕ ˆx + cos ϕ ˆy, +ˆey = ˆz, +ˆez = cos ϕ ˆx + sin ϕ ˆy, +as well as ˆe± ≡ (ˆex ± iˆey)/ +√ +2 and ˆe0 ≡ +ˆez. +We then +have the local exchanges Jµν +δ += ˆe⊺ +µ Jδˆeν. The Fourier trans- +forms of the exchange matrices, Jµν +δ , are defined as J k ≡ +� +δ 2 cos (k · δ)J δ where the fact that −δ and δ are equivalent +has been used. Explicitly, these are given by +J+− +k += − +� +2J + Ksin2ϕ +� +cos kx − +� +2J + Kcos2ϕ +� +cos ky, +J00 +k = −2 +� +J + Kcos2ϕ +� +cos kx − 2 +� +J + Ksin2ϕ +� +cos ky, +J++ +k += − +� +Ksin2ϕ +� +cos kx − +� +Kcos2ϕ +� +cos ky, +J0± +k += − K +√ +2 +sin (2ϕ) +� +cos ky − cos kx +� +, +with J−+ +k += [J+− +k ]∗, J−− +k += [J++ +k ]∗ and J0± +k += J±0 +k . Note +that J00 +0 += −2(2J + K). For one of the four ground states +selected by order-by-thermal-disorder (ObTD), e.g. ϕ = 0, +these Jµν +k are given by +J+− +k += −2J cos kx − (2J + K) cos ky, +J00 +k = −2 (J + K) cos kx − 2J cos ky, +J++ +k += −K cos ky, +where J0± +k += 0. Performing the usual Holstein-Primakoff +expansion [8] to O(S 0) on this model yields [9] +H ≈ E0 + H2 + �H4,2−2 + H4,3−1 + H4,1−3 +� + · · · , +(S4) +where we have defined the constant classical part E0 += +−NS 2(2J + K) [at O(S 2)] and +H2 = +� +k +� +Aka† +kak + 1 +2! +� +Bka† +ka† +−k + B∗ +ka−kak +�� +, +(S5a) +H4,2−2 = 1 +N +� +kk′q +1 +(2!)2 Vk,k′,qa† +k+qa† +k′−qak′ak, +(S5b) +H4,3−1 = 1 +N +� +kk′q +1 +3!Dk,k′,qa† +ka† +k′a† +qak+k′+q = H† +4,1−3. +(S5c) +This incldues the quadratic parts [at O(S )] in H2 as well as +the quartic parts [at O(S 0)] in H4 ≡ H4,2−2 + H4,3−1 + H4,1−3. +The quartic part has been decomposed into a 2 − 2 scattering +term, H4,2−2, and anomalous 3−1 and 1−3 terms, H4,3−1 and +H4,1−3. Since J0,± +k += 0, there are no three boson terms in H +[Eq. (S4)]. In terms of the local exchanges, the coefficents in +H2 and H4 are given explicitly by +Ak = S +� +J+− +k +− J00 +0 +� +, +Bk = S J++ +k , +Vk,k′,q = 1 +2 +� +J00 +k′−k−q + J00 +−q + J00 ++q + J00 +k−k′+q +� +− 1 +2 +� +J+− +k ++ J+− +k′ + J+− +k′−q + J+− +k+q +� +, +Dk,k′,q = −1 +2 +� +J++ +k ++ J++ +k′ + J++ +q +� +. +By construction, these coefficients must satisfy the symmetry +relations +Ak = A∗ +k, +Bk = B−k, +Vk,k′,q = Vk′,k,−q = Vk,k′,k′−k−q = Vk′,k,k−k′+q = V∗ +k+q,k′−q,−q, +Dk,k′,q = Dk,q,k′ = Dk′,k,q = Dk′,q,k = Dq,k,k′ = Dq,k′,k. +A. +Non-Interacting Spin-Waves +Consider first only the quadratic (non-interacting magnon) +portion of H, +H2 = +� +k +� +Aka† +kak + 1 +2! +� +Bka† +ka† +−k + H.c. +�� +. +(S6) + +11 +4 +This can be diagonalized by the usual Bogoliubov transforma- +tion [8]. Defining the matrix +Mk ≡ +� +Ak Bk +B∗ +k Ak +� +, +(S7) +the spin-wave spectrum is obtained by diagonalization of +σzMk, where σz is a (block) Pauli matrix. One finds the pos- +itive frequency mode +ωk = +� +A2 +k − |Bk|2 > 0. +For the ferromagnetic Heisenberg-compass model, Ak and Bk +are given by +Ak = −S +�� +2J + Ksin2ϕ +� +cos kx + +� +2J + Kcos2ϕ +� +cos ky − +2(2J + K) +� +Bk = −S +�� +Ksin2ϕ +� +cos kx + +� +Kcos2ϕ +� +cos ky +� +. +Note that A0 = KS and B0 = −KS , yielding a zero energy +mode at k = 0, with ω0 = 0 and with both Ak and Bk real. +The eigenvector of σzMk associated with the positive mode +can be written as (uk, vk) where +uk = +� +ωk + Ak +2ωk +, +vk = − +Bk +√2ωk(ωk + Ak) +, +which we have defined so that u2 +k − v2 +k = 1. Note that since +both Ak and Bk are inversion even, we have u−k = uk, v−k = vk +and ωk = ω−k. Since both Ak and Bk are real, we find that uk +and vk are real as well. The diagonalized boson operators are +defined via +ak = ukγk + vkγ† +−k, +a† +k = vkγ−k + ukγ† +k. +Expectation values of bilinears of these bosons can be written +in terms of uk and vk. Noting that at temperature T these are +⟨γ† +kγk⟩ = nB(ωk), +⟨γkγ† +k⟩ = 1 + nB(ωk), +where nB(ω) = [exp(ω/T)−1]−1 is the boson thermal occupa- +tion number. The above thermal expectations for the original +a-bosons are given by +⟨a† +kak⟩ = nB(ωk)u2 +k + [1 + nB(ωk)] v2 +k, +⟨aka−k⟩ = ⟨a† +−ka† +k⟩ +∗ = [1 + 2nB(ωk)] ukvk. +In the classical limit, where T ≫ ωk, we have nB(ωk) ≈ +T/ωk ≫ 1. The expectations then become +⟨a† +kak⟩ = T +ωk +� +u2 +k + v2 +k +� += T +ωk +� Ak +ωk +� +, +(S8a) +⟨aka−k⟩ = ⟨a† +−ka† +k⟩ = 2T +ωk +ukvk = − T +ωk +� Bk +ωk +� +. +(S8b) +Finally, the ordered moment (selected by ObTD), M ≡ +1 +N +� +r⟨Sr⟩ ≡ M ˆx, can be expressed in terms of these boson +averages as +M = S − 1 +N +� +k +⟨a† +kak⟩ ≡ S +1 − T +S N +� +k +Ak +ω2 +k + . +(S9) +B. +Interacting Spin-Waves +To consider the effects of the quartic parts of H in Eq. S4, +H4,2−2, H4,3−1 and H4,1−3, we adopt a mean-field like ap- +proach, replacing each possible contraction of operators with +averages with respect to the quadratic, or “free” part, H2 [10, +11]. This procedure is equivalent to leading order perturbation +theory in the interactions [12, 13]. For example, consider the +scattering term +a† +k+qa† +k′−qak′ak ≈ ⟨a† +k+qak′⟩a† +k′−qak + ⟨a† +k′−qak⟩a† +k+qak′ ++ ⟨a† +k+qak⟩a† +k′−qak′ + ⟨a† +k′−qak′⟩a† +k+qak ++ ⟨a† +k+qa† +k′−q⟩ak′ak + ⟨ak′ak⟩a† +k+qa† +k′−q. +Using that the expectation values satisfy ⟨a† +kak′⟩ ∝ δk,k′ and +⟨akak′⟩ ∝ δk,−k′ one finds +a† +k+qa† +k′−qak′ak ≈ +� +δq,0 + δk+q,k′ +� � +⟨a† +k′ak′⟩a† +kak + ⟨a† +kak⟩a† +k′ak′ +� ++ δk,−k′ +� +⟨a† +k+qa† +−k−q⟩a−kak + ⟨a−kak⟩a† +k+qa† +−k−q +� +. +Combing this decomposition with the interaction vertex, as +specified in Eq. (S5b), gives the expression +H4,2−2 ≈ +� +k + +1 +N +� +q +Vk,q,0⟨a† +qaq⟩ + a† +kak ++1 +2 +� +k + + +1 +2N +� +q +Vq,−q,k−q⟨aqa−q⟩ + a† +ka† +−k + H.c. + , +where Vk,k′,k′−k = Vk,k′,0 and Vk,k′,0 = Vk′,k,0 has been used +to simplify the normal term, and shifting the momentum has +been used to simplify the anomalous terms. The quartic terms +thus appear as corrections to the Ak and Bk quadratic terms. +Next, consider the same manipulations for the anomalous +boson terms, starting with +a† +ka† +k′a† +qak+k′+q ≈ ⟨a† +ka† +k′⟩a† +qak+k′+q + a† +ka† +k′⟨a† +qak+k′+q⟩ ++ ⟨a† +ka† +q⟩a† +k′ak+k′+q + a† +ka† +q⟨a† +k′ak+k′+q⟩ ++ ⟨a† +kak+k′+q⟩a† +k′a† +q + a† +kak+k′+q⟨a† +k′a† +q⟩. +Using the fact that the expectations in this last equation are +diagonal in k (or skew-diagonal) [as in Eq. (S8)], we find +a† +ka† +k′a† +qak+k′+q ≈ δk,−k′ +� +⟨a† +ka† +−k⟩a† +qaq + a† +ka† +−k⟨a† +qaq⟩ +� ++ δk,−q +� +⟨a† +ka† +−k⟩a† +k′ak′ + a† +ka† +−k⟨a† +k′ak′⟩ +� ++ δk′,−q +� +⟨a† +kak⟩a† +k′a† +−k′ + a† +kak⟨a† +k′a† +−k′⟩ +� +. +Combining this decomposition with the anomalous interac- +tion vertex, Dk,k′,q from Eq. (S5c), and using the permutation +symmetry of its arguments, we find +H4,3−1 ≈ +� +k + +1 +2N +� +q +Dq,−q,k⟨a† +qa† +−q⟩ + a† +kak ++1 +2 +� +k + +1 +N +� +q +Dk,−k,q⟨a† +qaq⟩ + a† +ka† +−k. + +12 +5 +These terms thus also appear as corrections to the Ak and Bk +in the quadratic part of the Hamiltonian. Note that the Her- +mitian conjugate term of this H4,3−1 also contributes, with its +contribution read off from the expression above. +H4,1−3 ≈ +� +k + +1 +2N +� +q +D∗ +q,−q,k⟨aqa−q⟩ + a† +kak ++1 +2 +� +k + +1 +N +� +q +D∗ +k,−k,q⟨a† +qaq⟩ + a−kak. +Finally, we can summarize all of these contributions as cor- +rections δAk and δBk to the original Ak and Bk of quadratic +H2 origin and write +δAk = 1 +N +� +q +� +Vk,q,0⟨a† +qaq⟩ + 1 +2 +� +Dq,−q,k⟨a† +qa† +−q⟩ + c.c. +�� +, +(S10a) +δBk = 1 +N +� +q +� +Dk,−k,q⟨a† +qaq⟩ + 1 +2Vq,−q,k−q⟨aqa−q⟩ +� +. +(S10b) +In terms of these corrections, the renormalized spectrum is +given by +Ωk ≡ +� +(Ak + δAk)2 − (Bk + δBk)2. +(S11) +These corrections can be evaluated using the bare, free av- +erages from Eq. (S8), though this approach leads to diver- +gences (see Sec. III F). Alternatively, they can be evaluated +self-consistently, with the averages in Eq. (S8) computed us- +ing (Ak + δAk), (Bk + δBk) and Ωk instead of Ak, Bk and ωk, +which cures the divergences. +C. +Pseudo-Goldstone gap +The effects of the interactions on the pseudo-Goldstone +mode can now be examined. The energy of the k = 0 mode is +given by +∆ ≡ Ω0 = +� +2KS (δA0 + δB0) + δA2 +0 − δB2 +0. +(S12) +For small corrections δA0, δB0, ∆ above can be approxi- +mated by (the leading term) +∆ ≈ +√ +2KS +� +δA0 + δB0. +(S13) +In the quantum limit where T ≪ ωk, the corrections δAk, +δBk are O(S 0) and thus the gap scales as ∆ ∝ +√ +S . +In +the classical limit where T ≫ ωk the corrections scale as +δAk, δBk ∼ O(T/S ) and thus the gap scales as ∆ ∝ +√ +T, inde- +pendent of S . +D. +Pseudo-Goldstone Linewidth +To estimate the scaling of the pseudo-Goldstone mode +linewidth with temperature, we consider the magnon self- +energy [11] at k = 0 near ω = 0, which takes the form +Σ(0, 0) ≡ +� +δA0 δB0 +δB∗ +0 δA∗ +0 +� +, +where δA0 and δB0 are corrections due to magnon-magnon +interactions. Perturbatively, we expect that +δA0 = a1T + a2T 2 + · · · , +(S14a) +δB0 = b1T + b2T 2 + · · · , +(S14b) +where the O(T) corrections (computed in this work) encoded +in a1, b1 are both real. The quasi-normal modes, correspond- +ing to the locations of poles of the magnon Green’s func- +tion [11, 14], are determined from eigenvalues of σzMeff +0 +where +Meff +0 = +� +A0 + δA0 +−A0 + δB0 +−A0 + δB∗ +0 +A0 + δA∗ +0 +� +. +Up to and including terms of O(T 2), the quasi-normal mode +frequency is thus given by +Re Ω0 ≈ +� +2A0(a1 + b1) +√ +T ++ + +a2 +1 − b2 +1 + 2A0(Re a2 + Re b2) +4A0(a1 + b1) + T 3/2 + · · · , +Im Ω0 ≈ (Im a2)T 2 + · · · . +We thus see that the linewidth, determined by Im Ω0, is ex- +pected to scale as T 2. +E. +Self-Consistent Mean-Field Theory (SCMFT) +To include the effects of the magnon-magnon interactions +self-consistently, we define the “mean-fields” +nk ≡ ⟨a† +kak⟩, +dk ≡ ⟨a† +ka† +−k⟩. +(S15) +Using Eq. (S10), new values of nk and dk can then be com- +puted by iteratively updating Ak and Bk to +A′ +k = Ak + 1 +N +� +q +� +Vk,q,0nq + 1 +2 +� +Dq,−q,kdq + D∗ +q,−q,kd∗ +q +�� +, +B′ +k = Bk + 1 +N +� +q +� +Dk,−k,qnq + 1 +2Vq,−q,k−qd∗ +q +� +, +which, using Eq. (S8), results in updated values of nk and dk. +This process is repeated until the variables nk and dk have con- +verged to the desired precision across the full Brillouin zone. +For the calculations reported here, and in the main text, con- +vergence was considered reached when the sum of all absolute +values of the changes in nk and dk in Eq. (S15) over the Bril- +louin zone between iterations was less than 10−10. To launch +the iterative process, the mean-fields, nk and dk for each k, +are initially set to a value of 1/2, though the precise choice of +initial value was not found to affect the final results. Follow- +ing this approach, we calculate the PG gap for several system + +13 +6 +sizes, using a discrete sum of the Brillouin zone with N = L2 +points. We then extrapolate the gap in the system size to ob- +tain the result in the thermodynamic limit (N → ∞). The +finite size scaling of the PG gap using SCMFT is shown in +Fig. S2. +F. +Cancellation of divergences in the pseudo-Goldstone gap +Since the non-interacting LSWT spectrum is gapless, we +must be mindful of infrared divergent contributions to δA0 and +δB0. Let us first address this issue in the simplest context, bare +perturbation theory in the quartic interactions. +We focus on the classical limit where ωk ≪ T, but similar +considerations apply in the full quantum case at finite tem- +perature; since ωk → 0 as k → 0, there is always a regime +in k near the zone center where the frequency is small rela- +tive to temperature, even in the quantum limit. Consider the +corrections, Eq. (S10), in the thermodynamic limit (N → ∞), +replacing the discrete sums with integrals. At k = 0, this gives +[using Eq. (S8)] +δA0 = +� +d2q +(2π)2 +T +ω2q +� +V0,q,0Aq − Dq,−q,0Bq +� +, +(S16a) +δB0 = +� +d2q +(2π)2 +T +ω2q +� +D0,0,qAq − 1 +2Vq,−q,−qBq +� +, +(S16b) +where the integral is over the Brillouin zone −π ≤ qx, qy ≤ +π (the lattice spacing has been set to one). At small q, the +spectrum is approximately linear in q with +ωq = S +� +2K +� +J|q|2 + Kq2y +� ++ O(|q|2) +and thus the factor T/ω2 +q ∝ 1/|q|2 is singular as |q| → 0. The +numerators of the integrals in Eq. (S16) remain finite in this +limit, with +V0,q,0Aq − Dq,−q,0Bq = −S K2 +2 ++ O(|q|2), +D0,0,qAq − 1 +2Vq,−q,−qBq = +S K2 +2 ++ O(|q|2). +One therefore finds that both δA0 and δB0 are logarithmically +divergent. Explicitly, integrating over a region 2π/L < |q| < +Λ ≪ π +� +2π/L<|q|<Λ +d2q +(2π)2 +1 +ω2q += +1 +4πS 2K √J(J + K) +ln +�LΛ +2π +� +. +(S17) +Since the upper cutoff is chosen to satisfy Λ ≪ π, the diver- +gent contributions to δA0 and δB0 take the form +δA0 = − +TK ln L +8πS √J(J + K) ++ (reg.), +(S18a) +δB0 = + +TK ln L +8πS √J(J + K) ++ (reg.), +(S18b) +where (reg.) stands for terms that remain finite as L → ∞. In- +terestingly, while δA0 and δB0 are each ln L divergent, the sum +(δA0 + δB0) which appears in the expression for the pseudo- +Goldstone gap [Eq. (S13)], ∆, is finite. This can be made more +explicit by carrying out the same expansions for (δA0 + δB0), +δA0 + δB0 = +� +d2q +(2π)2 +T +ω2q +� +2K2S (q2 +x − q2 +y) + O(|q|4) +� +. (S19) +The O(|q|2) term in the ω2 +q denominator is thus com- +pensated by a corresponding O(|q|2) in the numerator of +Eq. (S19). +However, note that this cancellation only oc- +curs at leading order in δA0, δB0. The complete expression +� +(A0 + δA0)2 − (B0 + δB0)2, which incorporates higher-order +contributions, remains logarithmically divergent. Similarly, +the leading corrections from bare perturbation theory to Ωk at +non-zero k are also divergent. +Since the bare perturbation theory diverges, except for the +leading temperature dependence of the PG gap at q = 0, in +order to obtain the full temperature dependence of the inter- +action corrections to Ωq, we proceed with a self-consistent +approach. This way, the equation for the corrections δA0 and +δB0 become +δA0 = +� +d2q +(2π)2 +T +Ω2q +� +V0,q,0(Aq + δAq) − Dq,−q,0(Bq + δBq) +� +, +δB0 = +� +d2q +(2π)2 +T +Ω2q +� +D0,0,q(Aq + δAq) − 1 +2Vq,−q,−q(Bq + δBq) +� +, +where the renormalized spectrum Ωq arises from evaluating +the averages in Eq. (S8) self-consistently. +In such a self- +consistent mean-field theory, the spectrum Ωq “already” con- +tains a finite gap at q = 0. The gap acts as an effective infrared +cutoff rendering the integrals in Eq. (S17) finite. The disap- +pearance of the divergence then manifests itself in the cancel- +lation of the leading (self-consistent) dependence on the gap +∆. +To see this explicitly, consider the self-consistent spectrum +which, for small q, takes the form +Ωq = +� +2KS 2 � +J|q|2 + Kq2y +� ++ ∆2 + O(|q|2). +For sufficiently small ∆, the integration region can be divided +into two parts: |q| ≳ k0 and |q| ≲ k0 such that +Ωq ≈ + +∆, +|q| ≲ k0, +S +� +2K +� +J|q|2 + Kq2y +� +, +|q| ≳ k0. +Roughly, the boundary separating these regions scales as +k0 ∼ ∆ +S K ∝ +√ +T +(S21) +when K ≳ J. Alternatively, k0 is the wave-vector at which +the bare spectrum ωk becomes comparable to the interaction +induced gap, ∆. The primary change to the spectrum, and thus +to δA0 and δB0, occurs for |q| < k0. Carrying out the integra- +tion in Eq. (S17) over the region responsible for its divergent +contributions, we find they are rendered finite. Explicitly, +� +k0<|q|<Λ +d2q +(2π)2 +1 +Ω2q +∼ +ln (KS Λ/∆) +4πS 2K √J(J + K) +. + +14 +7 +Given that ∆ ∝ +√ +T, this contribution to the integral now +scales as − ln T. Thus the divergence has been cured in the in- +dividual corrections δA0 and δB0. We note that the ln(Λ/∆) ∼ +− ln T terms cancel in the sum (δA0 + δB0) which controls the +leading contribution to the gap [similarly to Eq. (S13)] and +the result from bare perturbation theory is recovered. In this +way, bare perturbation theory for the asymptotic +√ +T scaling +of the pseudo-Goldstone gap is well-defined and divergence +free, and matches the results from the SCMFT calculations. +Note that the region 0 < |q| < k0 gives only a finite contribu- +tion that goes as +� +0<|q|Λ +d2k +(2π)2 . +The first and second integrals depend on temperature through +∆ ∝ +√ +T and k0 ∼ ∆/(KS ) [see Eq. (S21)]. The last integral +is over wave-vectors large enough such that the interaction +corrections are minor and, therefore, this contribution to the +integral has no additional temperature dependence. The cor- +rection to M from this last (third) term is thus ∝ T. +For the region |k| ≲ Λ, we approximate Ak + δAk ≈ KS , +leaving the two contributions +� +0<|k| 0, limε→0 +� t∗ +i +ε +t∗ +i −ε dχ(t, λ) = 1. Summing over +h = 1, . . . Ng, and observing that NA(t) = �Ng +h=1 (1 − σh(t)), NB(t) = �Ng +h=1 σh(t), we have +dNB(t) +dt += +NA(t) +� +h=1 +dχ(1) +h (t, k1) +dt +− +NB(t) +� +h=1 +dχ(2) +h (t, k−1) +dt +(2) +4 + +(b)(a)OPand dNA(t)/dt = −dNB(t)/dt, representing the evolution equation for NA(t) and NB(t), +attaining integer values. The stochastic evolution of the number of molecules NA(t), NB(t) +is thus expressed as a differential equation with respect to the continuous physical time +t ∈ R+, over the increments of a Poisson process. Intepreted in a mean-field way, if ctot is +the overall concentration of the reactants at time t = 0, then the concentrations cα(t) at +time t can be recovered from eq. (2) as +cα(t) = ctot +Nα(t) +Ng +, +α = A, B +(3) +representing the calibration relation connecting the stochastic description in terms of num- +ber of molecules Nα(t) and the concentrations cα(t), α = A, B entering the mean-field +description. +The analytical formulation of a stochastic differential equation for chemical kinetics, +expressed in terms of the number of molecules of the chemical species involved, rather than +an algorithm defined for discretized times, permits to develop a variety of different numerical +strategies, that naturally perform a modified tau-leaping procedure, as the occurrence of +several distinct reactive events in any elementary time step ∆t is intrinsically accounted for. +This can be easily seen by considering the simple reaction defined by the evolution equation +(2). +In terms of increments, eq. +(2) can be written as dNB(t) = �NA(t) +h=1 dχ(1)(t, k1) − +�NB(t) +h=1 dχ(2)(t, k−1). If ∆t is the chosen time step, it follows from this formulation, a simple +numerical approximation for eq. (2), namely, +∆NB(t) = NB(t + ∆t) − NB(t) = +NA(t) +� +h=1 +ξ(1) +h (k1 ∆t) − +NB(t) +� +h=1 +ξ(2) +h (k−1 ∆t) +(4) +where ξ(1)(k1 ∆t), ξ(2) +h (k−1 ∆t) h = 1, 2, . . . , are two families of independent binary random +variables, where +ξ(α) +h (p) = + + + +1 +with probability p +0 +otherwise +(5) +α = 1, 2, h = 1, 2, . . . . The time step ∆t, can be chosen in eq. (4) from the condition +K ∆t < 1 , +K = max{k1, k−1} +(6) +In practice, we choose ∆t = 0.1/K. As can be observed, the choice of ∆t is limited by the +intrinsic rates of the process. The advantage of deriving different algorithmic schemes for +5 + +solving numerically the stochastic kinetic equations becomes more evident in dealing with +bimolecular reactions (addressed below). Due to the intrinsic limitations of this commu- +nication, a thorouh discussion of this issue is postponed to a future more extensive article +[26]. +The same approach can be extended to include amongst the elementary events not only +the reactive steps, but also feeding conditions, thus representing the evolution of chemically +reacting systems with a finite number of molecules in a perfectly stirred open reactor. This is +the case of the tank-loading problem, in which a tracer is injected in an open vessel assumed +perfectly mixed, for which, in the absence of chemical reactions, the mean field equation for +the concentration of the tracer reads +dc(t) +dt += D (c0 − c(t)) +(7) +where c0 is the inlet concentration and D the dilution rate (reciprocal of the mean retention +time), and c(0) = 0. Fixing Ng so that c(t) = c0 N(t)/Ng, the corresponding stochastic +differential equation for the integer N(t) involves, also in this case, two families of counting +processes, one for the loading at constant concentration c0, and the other for tracer discharge +in the outlet stream, characterized by the same transition rate D, +dN(t) +dt += +Ng +� +h=1 +dχ(1) +h (t, D) +dt +− +N(t) +� +k=1 +dχ(2) +h (t, D) +dt +(8) +starting from N(0) = 0. Figure 2 depicts several realizations of the tank-loading process, +obtained by discretizing eq. (8) with a time step ∆t = 10−3. Despite the simplicity of the +process, this example permits to highlight the role of Ng, that can be referred to as the granu- +larity number, and the way stochastic models of chemical reactions can be fruitfully applied. +Indeed, there is a two-fold use of the stochastic formulation of chemical kinetic schemes. +The first refers to a chemical reacting system involving a small number of molecules, and +in this case Ng represents the effective number of molecules present in the system. The +other is to use stochastic algorithms for simulating reacting systems in an alternative (and +sometimes more efficient way) with respect to the solution of the corresponding mean-field +equations. In the latter case, the granularity number Ng represents essentially a computa- +tional parameter, tuning the intensity of the fluctuations. Two choices are then possible: +(i) it can be chosen large enough, in order to obtain from a single realization of the process +an accurate approximation of the mean-field behavior, or (ii) it can be chosen small enough +6 + + 0 + 0.4 + 0.8 + 1.2 + 0 + 2 + 4 + 6 + 8 + 10 +c(t) +t + 0 + 0.4 + 0.8 + 1.2 + 0 + 2 + 4 + 6 + 8 + 10 +c(t) +t + 0 + 0.4 + 0.8 + 1.2 + 0 + 2 + 4 + 6 + 8 + 10 +c(t) +t +(a) +(b) +(c) +FIG. 2. c(t) = N(t)/Ng vs t from a single realization of the tank-loading process eq. (8) with +D = 1, c0 = 1 a.u.. Panel (a): Ng = 30, panel (b) Ng = 100, panel (c) Ng = 1000. The solid +horizontal lines represent the steady-state value c∗ = 1. +in order, to deal with extremely fast simulations of a single realization of the process, that +could be averaged over a statistically significant number of realizations in due time. These +two choices are depicted in figure 2 (panel c), choosing Ng = 103, and in figure 3 panel (a) +obtained for Ng = 30. Of course, the latter approach is valid as long as the low-granularity +(low values of Ng) does not influence the qualitative properties of the kinetics. +The second (computational) use of stochastic simulations of chemical kinetics requires a +further discussion. At a first sight, it may appear that any stochastic simulation would be +computationally less efficient than the solution of the corresponding mean-field equations. +This is certainly true for classical chemical reaction schemes in a perfectly mixed system, +7 + + 0 + 0.2 + 0.4 + 0.6 + 0.8 + 1 + 0 + 2 + 4 + 6 + 8 + 10 +(t) +t + 0 + 0.05 + 0.1 + 0.15 + 0.2 + 0 + 2 + 4 + 6 + 8 + 10 +a +b +σc(t) +t +(a) +(b) +FIG. 3. Panel (a): ⟨c⟩(t) vs t at Ng = 30 (symbols) averaged over [106/Ng] realizations of the +tank-loading process with D = 1, c0 = 1 a.u. Here, [·] indicates the integer part of its argument. +The solid line represents the mean-field result ⟨c⟩(t) = 1 − e−t. Panel (b): Variance σc(t) vs t for +the tank-loading process. Symbols are the results of stochastic simulations of eq. (8) averaged +over [106/Ng] realizations, lines the solutions of eq. (10). Line (a) refers to Ng = 30, line (b) to +Ng = 100. +for which the mean-field model reduces to a system of ordinary differential equations for +the concentrations of the reactants. But there are kinetic problems e.g., associated with the +growth of microorganisms and eukaryotic cell lines in bioreactors (these growth phenom- +ena, are indeed amenable to a description in terms of equivalent chemical reactions), the +mean-field model of which is expressed in the form of higher-dimensional nonlinear integro- +differential equations . For this class of problems, the use of stochastic simulations is the +8 + +most efficient, if not the only way to achieve a quantitative description of the process, in +those cases where the number np of internal parameters describing the physiological state +of an eukaryotic cell becomes large enough, np ≥ 3. This issue is addressed in detail in [27]. +This case is altogether similar to some transport problems, such as Taylor-Aris dispersion for +high P´eclet numbers or the analysis of microfluidic separation processes (DLD devices) for +which the stochastic simulation of particle motion is far more efficient that the corresponding +solution of the corresponding mean-field model expressed in the form of advection-diffusion +equations [28, 29]. +To complete the analysis of the tank-loading problem, the associated CME reads +dp(n, t) +dt += D Ng [p(n − 1, t) ηn−1 − p(n, t)] + D [(n + 1) p(n + 1, t) − n p(n, t)] +(9) +where ηh = 1 for h ≥ 0 and ηh = 0 otherwise. It follows that ⟨c⟩(t) = c0 +�∞ +n=1 n p(n, t)/Ng +satisfies identically the mean-field equation (due to the linearity of the problem), while the +variance σc(t), with σ2 +c(t) = c2 +0 +�∞ +n=1 n2 p(n, t)/N2 +g − (c0 +�∞ +n=1 n p(n, t)/Ng)2, satisfies the +equation +dσ2 +c +dt = −2 D σ2 +c + D +� 1 +Ng ++ ⟨c⟩ +Ng +� +(10) +Figure 3 panel (b) compares the results of stochastic simulations against the solutions of eq. +(10) for two values of Ng. +The above approach can be extended to any system of nonlinear reaction schemes involv- +ing unimolecular and bimolecular reaction, and in the presence of slow/fast kinetics. The +structure of the reaction mechanism can be arbitrarily complicated without adding any fur- +ther complexity (other than purely notational) in the formulation of the stochastic evolution +expressed in terms of number of molecules. The only practical issue, is that the number +of different families of stochastic processes grows with the number of elementary reactive +processes considered. For instance, in the case of the subtrate-inhibited Michaelin-Menten +kinetics +E + S +k1 +⇋ +k−1 ES +ES +k2 +→ E + P +(11) +ES + S +k3 +⇋ +k−3 ESS +there are five reactive processes (five channels in the language of the Gillespie algorithm) +and consequently five families of counting processes {χ(h) +ih (t, ·)}, h = 1, . . . , 5, should be +9 + +introduced, so that the formulation of the discrete stochastic dynamics reads +dNS(t) +dt += − +NS(t) +� +i=1 +dχ(1) +i (t, �k1 NE(t)) +dt ++ +NES(t) +� +j=1 +dχ(2) +j (t, k−1) +dt +dNE(t) +dt += − +NS(t) +� +i=1 +dχ(1) +i (t, �k1 NE(t)) +dt ++ +NES(t) +� +j=1 +dχ(2) +j (t, k−1) +dt ++ +NES(t) +� +h=1 +dχ(3) +h (t, k2) +dt +dNES(t) +dt += +NS(t) +� +i=1 +dχ(1) +i (t, �k1 NE(t)) +dt +− +NES(t) +� +j=1 +dχ(2) +j (t, k−1) +dt +− +NES(t) +� +h=1 +dχ(3) +h (t, k2) +dt +− +NS(t) +� +k=1 +dχ(4) +k (t, �k3 NES(t)) +dt ++ +NESS(t) +� +l=1 +dχ(5) +l (t, k−3) +dt +(12) +dNESS(t) +dt += +NS(t) +� +k=1 +dχ(4) +k (t, �k3 NES(t)) +dt +− +NESS(t) +� +l=1 +dχ(5) +l (t, k−3) +dt +dNP(t) +dt += +NES(t) +� +h=1 +dχ(3) +h (t, k2) +dt +equipped with the initial conditions cS(0) = cS,0, cE(0) = cE,0, cES(0) = cESS(0) = cP(0) = +0. Observe that for the bimolecular steps we have used a number-dependent rate coefficient. +This is just one possibility, out of other fully equivalent alternatives, of defining bimolecular +reacting processes, and out of tem a numerical algorithm for solving them. This issue, and +its computational implications will be addressed elsewhere [26]. The granularity number Ng +can be fixed, so that +NS(0) = [cS,0 Ng] , +NE,0 = [cE,0 Ng] +(13) +where [ξ] indicates the integer part of ξ, thus defining the relation betwen Nα(t) and cα(t), +namely cα(t) = Nα(t)/Ng, α = S, E, ES, ESS, P. This implies also that the effective rate +parameters entering the discrete stochastic evolution equation (12), and associated with the +two bimolecular reactive steps, are given by �k1 = k1/Ng, and �k3 = k3/Ng. +Consider the case k−1 = k2 = k3 = k−3 = 1, cS,0 = 4, cE,0 = 0.1. In this case the +quasi steady-state approximation of the cES-cS curve (representing the slow manifold of the +kinetics takes the expression +cES = +cE,0 cS +KM + cS + β c2 +S +, +KM = k−1 + k2 +k1 +, +β = k−3 +k3 +(14) +Figure 4 depicts the cES-cS graph obtained from a single realization of the stochastic process +eq. (11) at several values of k1 so as to modify the Michaelis-Menten constant KM for a +value Ng = 106 of the granularity number. +10 + + 0 + 0.02 + 0.04 + 0.06 + 0.08 + 0 + 1 + 2 + 3 + 4 +cES +cS +FIG. 4. cES vs cS plot of the substrate-inhibited enzymatic kinetics discussed in the main text. +Symbols (in color) are the results of stochastic simulations of a single realization of the process eq. +(11), (black) solid lines the graph of the quasi steady-state approximation. The arrow indicates +increasing values of KM, i.e. decreasing values of k1 = 20, 6, 2. +Apart from the initial transient giving rise to an overshot in the values of cES near +cS ≃ cS,0, the dynamics rapidly collapses towards the slow manifold and the stochastic +simulations at high Ng-value provide a reliable description of the mean-field behavior starting +from a single stochastic realization. +To conclude, we want to point out some advantages and extensions of the present ap- +proach: +• it shows a direct analogy between chemical reaction kinetics, radiative processes and +stochastic formulation of open quantum systems, thus, paving the way for a unified +treatment of the interpaly between these phenomena, that is particularly important +in the field of photochemistry, and in the foundation of statistical physics [30, 31]; +• it can be easily extended to semi-Markov transition. This is indeed the case of the +growth kinetics of eukaryotic microorganisms, the physiological state of which can +be parametrized with respect to internal (hidden) parameters such as the age, the +cytoplasmatic content, etc.; +• it can be easily extended to include transport phenomena. In point of fact, the oc- +currence of Markovian or semi-Markovian transitions in modeling chemical kinetics is +11 + +analogous to the transitions occurring in the direction of motion (Poisson-Kac pro- +cesses, L´evy flights, Extended Poisson-Kac processes) or in the velocity (linearized +Boltzmannian schemes) [32–34]. +• it is closely related to the formulation of stochastic differential equations for the ther- +malization of athermal system [35], in which the classical mesoscopic description of +thermal fluctuations, using the increments of a Wiener process, is replaced by a dy- +namic model involving the increments of a counting process. +Due to the limitations of a Letter, all these issues will be addressed in forthcoming works. But +apart for these extensions and improvements, the proposed formulation indicates that the +stochastic theory of chemical reactions can be built upon a simple and consistent mathemat- +ical formalism describing the elementary reactive events as Markovian or semi-Markovian +counting processes [36], that perfectly fits with the description of molecular non reactive +events (molecular collisions), providing an unifying stochastic formalism of elementary (clas- +sical and quantum) molecular events. +[1] P. L. Krapivsky, S. Redner, E. Ben-Naim, A Kinetic View to Statistical Physics, Cambridge +University Press, Cambridge (2010). +[2] L. Boltzmann, Weitere Studien ¨uber das W¨armeglichgenicht unter Gas-molek¨ulen, Sitzungs- +berichte Akademie der Wissenschaften 66 (1872) 275-370. +[3] G. B. Marin, G. S. Yablonsky, D. Constales, Kinetics of chemical reactions: decoding com- +plexity, John Wiley & Sons, New York, (2019). +[4] O. Levenspiel, Chemical Reaction Engineering, J. Wiley & Sons (1998). +[5] Z. Wang, Z. Hou, H. Xin, Internal noise stochastic resonance of synthetic gene network, +Chemical Physics Letters, 401 (1-3) (2005) 307-311. +[6] M. Perc, M. Gosak, and M. Marhl, From stochasticity to determinism in the collective dy- +namics of diffusively coupled cells, Chemical Physics Letters, 421 (1-3) (2006) 106–110. +[7] G. Lente, A binomial stochastic kinetic approach to the michaelis–menten mechanism, Chem- +ical Physics Letters, 568 (2013) 167–169. +12 + +[8] D. A. McQuarrie, Stochastic approach to chemical kinetics, Journal of Applied Probability, 4 +(3) (1967) 413-478. +[9] D. T. Gillespie, Stochastic simulation of chemical kinetics, Annual Review of Physical Chem- +istry 58 (1) (2007) 35-55. +[10] M. Delbr¨uck, Statistical fluctuations in autocatalytic reactions, The Journal of Chemical +Physics 8 (1) (1940) 120-124. +[11] A. F. Bartholomay, A stochastic approach to statistical kinetics with application to enzyme +kinetics, Biochemistry 1 (2) (1962) 223-230. +[12] D. T. Gillespie, A rigorous derivation of the chemical master equation, Physica A 188 (1-3) +(1992) 404-425. +[13] J. Keizer, On the necessity of using the master equation to describe the chemical reaction +X + A ⇋ B + X, Chemical Physics Letters, 10 (4) (1971) 371–374. +[14] B. J. Gaynor, R. G. Gilbert, K. D. King, Solution of the master equation for unimolecular +reactions, Chemical Physics Letters, 55 (1) (1978) 40-43. +[15] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of +coupled chemical reactions, Journal of Computational Physics 22 (4) (1976) 403-434. +[16] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of +Physical Chemistry 81 (25) (1977) 2340-2361. +[17] M. A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many +species and many channels, The Journal of Physical Chemistry A 104 (9) (2000) 1876-1889. +[18] L. Lok , R. Brent, Automatic generation of cellular reaction networks with Moleculizer, Nature +Biotechnology 23 (2005) 131–36 +[19] Y. Cao, H. Li,L. R. Petzold, Efficient formulation of the stochastic simulation algorithm for +chemically reacting systems, The Journal of Chemical Physics 121 (2004) 4059–67. +[20] M. Rathinam, L. R. Petzold, Y. Cao, D. T. Gillespie, Stiffness in stochastic chemically reacting +systems: The implicit tau-leaping method, The Journal of Chemical Physics, 119 (24) (2003) +12784-12794. +[21] C. Yang, D. T. Gillespie, L. R. Petzold, Efficient step size selection for the tau-leaping simu- +lation method, The Journal of Chemical Physics 124 (4) (2006) 044109. +[22] C. Yang, D. T. Gillespie, L. R. Petzold, Adaptive explicit-implicit tau-leaping method with +automatic tau selection, The Journal of Chemical Physics 126 (22) (2007) 224101. +13 + +[23] D. C. Venerus and H. C. ¨Ottinger, A modern Course in Transport Phenomena, Cambridge +University Press, Cambridge (2018). +[24] K. Ito and H. P. McKean Jr., Diffusion Processes and their Sample Paths, Springer, Berlin +(1974). +[25] F. Campillo, M. Chebbi, S. Toumi, Stochastic modeling for biotechnologies Anaerobic model +AM2b, Revue Africaine de la de la Recherche en Informatique et Math´ematiques Appliqu´es, +INRIA 28 (2018 - 2019), Mathematics for Biology and the Environment 13-23. +[26] C. Pezzotti, M. Giona, Stochastic chemical reactions: from algorithmic approaches to stochas- +tic differential models, in preparation (2022). +[27] C. Pezzotti, G. Procopio, A. Brasiello, M. Giona, Stochastic simulations of bioreactors in +the presence of biomass heterogeneity and structured eukaryotic populations, in preparation +(2022). +[28] R. Aris, ”On the dispersion of a solute in a fluid flowing through a tube, Proceedings of the +Royal Society of London A (235) (1956) 67-77. +[29] S. Cerbelli, M. Giona, F. Garofalo, Quantifying dispersion of finite-sized particles in determin- +istic lateral displacement microflow separators through Brenner’s macrotransport paradigm, +Microfluidics and nanofluidics 15 (2013) 431-449. +[30] C. Pezzotti and M. Giona, Particle-photon radiative interactions and thermalization, in preper- +ation (2022). +[31] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Clarendon Press, Ox- +ford (2002). +[32] M. Giona, A. Brasiello, S. Crescitelli, Stochastic foundations of undulatory transport phe- +nomena: Generalized Poisson–Kac processes—Part I basic theory, Journal of Physics A (50) +(2017) 335002. +[33] M. Giona, A. Cairoli, R. Klages, Extended Poisson-Kac theory: A unifying framework for +stochastic processes with finite propagation velocity, Physical Review X (12) (2022) 021004. +[34] K.-I. Sato, L´evy processes and infinitely divisible distributions, Cambridge University Press, +Cambridge (1999). +[35] K. Kanazawa, Statistical Mechanics for Athermal Fluctuation, Springer Nature, Singapore +(2017). +[36] D. Cocco, M. Giona, Generalized Counting Processes in a Stochastic Environment. Mathe- +14 + +matics 9 (2021) 25-73. +15 + diff --git a/4NE4T4oBgHgl3EQfbQzc/content/tmp_files/load_file.txt b/4NE4T4oBgHgl3EQfbQzc/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ee21c7ee332a2836ec2edc7c2b73d143e5a6cee3 --- /dev/null +++ b/4NE4T4oBgHgl3EQfbQzc/content/tmp_files/load_file.txt @@ -0,0 +1,344 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf,len=343 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='05072v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='stat-mech] 12 Jan 2023 Chemical kinetics and stochastic differential equations Chiara Pezzotti and Massimiliano Giona1, ∗ 1Dipartimento di Ingegneria Chimica, Materiali, Ambiente La Sapienza Universit`a di Roma Via Eudossiana 18, 00184 Roma, Italy (Dated: January 13, 2023) Abstract We propose a general stochastic formalism for describing the evolution of chemical reactions involving a finite number of molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This approach is consistent with the statistical analysis based on the Chemical Master Equation, and provides the formal setting for the existing algorithmic approaches (Gillespie algorithm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Some practical advantages of this formulation are addressed, and several examples are discussed pointing out the connection with quantum transitions (radiative interactions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' ∗ corresponding author:massimiliano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='giona@uniroma1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='it 1 All the chemical physical processes involve, in an atomistic perspective, a stochastic de- scription of the events, be them reactive or associated with a change of phase (for instance adsorption) [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Nonetheless, in the overwhelming majority of the cases of practical and labo- ratory interest, the number of molecules involved is so large to justify a mean field approach, essentially based on the Boltzmannian hypothesis of molecular chaos (the “stosszahlansatz”) [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The mean field formulation represents the backbone of the classical theory of chemical reaction kinetics [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' It is well known that, in all the cases where the number of molecule is small (and this occurs in subcellular biochemical reactions, in nanoscale systems, or in the growth kinetics of microorganisms [5–7]), the effects of fluctuations become significant, motivating a stochastic description of chemical kinetic processes, involving the number of molecules present in the system, thus explicitly accounting for due to their finite number [8–11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The statistical theory of chemical kinetics in these conditions is grounded on the Chemical Master Equation (CME) [12, 13], expressing the evolution equation for the probabilities p(N, t) of all the possible number-configurations N(t) = (N1(t), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' , Ns(t)), where Nh(t) is the number of molecules of the h-th reacting species at time t, h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' , s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' However, apart from a handful of simple cases, for which the CME can be solved analytically [14], numerical methods should be applied to it in order to compute mean values and higher-order moments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' But also this choice reveals itself to be unfeasible in most of the situations of practical and theoretical interests, due to the extremely large number of configurations involved, making the multi- index matrix p(N, t) so huge to exceed reasonable computational facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' In order to solve this problem, Gillespie proposed an algorithmic solution to the numeri- cal simulation of stochastic reacting systems, based on the Markovian nature of the reactive events [15, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The original Gillespie algorithm has been extended and improved over time, providing a variety of slightly different computational alternatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' A common denominator of the first family of the Gillespie algorithms (namely those based on the direct method, the first reaction method or their derivates [17–19]) is to associate to every time step the occur- rence of just one reaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This formulation comes directly from the assumption that, if the time step is small enough, the probability that more than one reaction will occur is negligi- ble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' While correct, this choice brings to significant computational costs for complex reaction schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This problem has been highlighted several times, from the Gillespie group itself, as stiffness in stochastic chemical reacting systems [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' A brilliant way to overcome this 2 limit originates the famous tau-leaping method, which, unfortunately, requires to check that the propensity functions remain almost constant at each iteration and can be applied just if this condition is verified [21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The algorithmic solution associated with the formalism here introduced combines the accuracy of the first SSA with the computational advantages of the τ-leaping method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' There is, moreover, a missing link between the CME theory and the Gillespie algorithm, consisting in the straight mathematical formulation of the stochastic differential equations associated with a chemical reacting system, the statistical description of which would cor- respond to the CME.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' To clarify this issue, consider the conceptually analogous problem of particle diffusion over the real line, the statistical description of which is expressed by the parabolic equation ∂p(x, t)/∂t = D ∂2p(x, t)/∂x2, for the probability density p(x, t) of finding a particle at position x at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Setting xn = x(n ∆t), an algorithm describing this process can be simply expressed by the discrete evolution equation xn+1 = xn + √ 2 D ∆t rn+1, where rh, h = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' represent independent random variables sampled from a normal distribution (with zero mean, and unit variance) [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This represents an efficient algorithmic solution of the problem, whenever the time resolution ∆t is small enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Nevertheless, the mere algorithmic approach cannot be considered physically satisfactory, in a comprehensive for- mulation of transport theory embedded in a continuous space-time (in which both position x and time t are real valued).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' In point of fact, only with the mathematical formulation due to K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Ito of stochastic differential equations driven by the increments dw(t) of a Wiener process (Langevin equations) [24], namely dx(t) = √ 2 D dw(t) the theory of diffusive motion has found a proper mathematical physical setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' A similar situation applies to the case of stochastic models of chemical reaction kinetics, and the present Letter is aimed at filling this gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The basic idea is that any reactive process corresponds to a system of elementary events (the single reaction) possessing a Markovian transitional structure, and, consequently, amenable to a description by means of the increments of counting processes (Poisson processes, in the Markovian case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This topic has been also pointed out in [25] in terms of Poisson measures, although the latter formulation is much less simple and physically intuitive than the approach proposed in the present Letter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' To begin with, consider the simple case of a first-order chemical reaction A k1 ⇋ k−1 B (for instance, an isomerization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This model is perfectly analogous to the radiative transition 3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Schematic representation of the analogy between a two-level quantum system and a first- order chemical kinetics, such as an isomerization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' of a molecule possessing two energy states, due to emission and adsorption of an energy quantum (figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Let NA(0) + NB(0) = Ng the total number of molecules at time t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The state of the system is characterized by the state functions σh(t), h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' , Ng for each molecule, attaining values {0, 1}, and such that σh(t) = 0 if the energy state at time t is E0 (or equivalently if the molecule finds itself in the state A), and σh(t) = 1 in the opposite case (energy state E1, or isomeric state B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Let {χ(1) h (t, k1), χ(2) h (t, k−1)}Ng h=1 be two systems of independent Poisson processes, char- acterized by the transition rates k1, and k−1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The evolution of σh(t) can be expressed via the stochastic differential equation dσh(t) dt = (1 − σh(t)) dχ(1) h (t, k1) dt − σh(t) dχ(2) h (t, k−1) dt (1) h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' , Ng, where dχ(t, λ)/dt is the distributional derivative of the Poisson process χ(t, λ), corresponding to a sequence of unit impulsive functions at the transition instants t∗ i , i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' , 0 < t∗ i < t∗ i+1, where for ε > 0, limε→0 � t∗ i +ε t∗ i −ε dχ(t, λ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Summing over h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Ng, and observing that NA(t) = �Ng h=1 (1 − σh(t)), NB(t) = �Ng h=1 σh(t), we have dNB(t) dt = NA(t) � h=1 dχ(1) h (t, k1) dt − NB(t) � h=1 dχ(2) h (t, k−1) dt (2) 4 (b)(a)OPand dNA(t)/dt = −dNB(t)/dt, representing the evolution equation for NA(t) and NB(t), attaining integer values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The stochastic evolution of the number of molecules NA(t), NB(t) is thus expressed as a differential equation with respect to the continuous physical time t ∈ R+, over the increments of a Poisson process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Intepreted in a mean-field way, if ctot is the overall concentration of the reactants at time t = 0, then the concentrations cα(t) at time t can be recovered from eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (2) as cα(t) = ctot Nα(t) Ng , α = A, B (3) representing the calibration relation connecting the stochastic description in terms of num- ber of molecules Nα(t) and the concentrations cα(t), α = A, B entering the mean-field description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The analytical formulation of a stochastic differential equation for chemical kinetics, expressed in terms of the number of molecules of the chemical species involved, rather than an algorithm defined for discretized times, permits to develop a variety of different numerical strategies, that naturally perform a modified tau-leaping procedure, as the occurrence of several distinct reactive events in any elementary time step ∆t is intrinsically accounted for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This can be easily seen by considering the simple reaction defined by the evolution equation (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' In terms of increments, eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (2) can be written as dNB(t) = �NA(t) h=1 dχ(1)(t, k1) − �NB(t) h=1 dχ(2)(t, k−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' If ∆t is the chosen time step, it follows from this formulation, a simple numerical approximation for eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (2), namely, ∆NB(t) = NB(t + ∆t) − NB(t) = NA(t) � h=1 ξ(1) h (k1 ∆t) − NB(t) � h=1 ξ(2) h (k−1 ∆t) (4) where ξ(1)(k1 ∆t), ξ(2) h (k−1 ∆t) h = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' , are two families of independent binary random variables, where ξ(α) h (p) = \uf8f1 \uf8f2 \uf8f3 1 with probability p 0 otherwise (5) α = 1, 2, h = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The time step ∆t, can be chosen in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (4) from the condition K ∆t < 1 , K = max{k1, k−1} (6) In practice, we choose ∆t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='1/K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' As can be observed, the choice of ∆t is limited by the intrinsic rates of the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The advantage of deriving different algorithmic schemes for 5 solving numerically the stochastic kinetic equations becomes more evident in dealing with bimolecular reactions (addressed below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Due to the intrinsic limitations of this commu- nication, a thorouh discussion of this issue is postponed to a future more extensive article [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The same approach can be extended to include amongst the elementary events not only the reactive steps, but also feeding conditions, thus representing the evolution of chemically reacting systems with a finite number of molecules in a perfectly stirred open reactor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This is the case of the tank-loading problem, in which a tracer is injected in an open vessel assumed perfectly mixed, for which, in the absence of chemical reactions, the mean field equation for the concentration of the tracer reads dc(t) dt = D (c0 − c(t)) (7) where c0 is the inlet concentration and D the dilution rate (reciprocal of the mean retention time), and c(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Fixing Ng so that c(t) = c0 N(t)/Ng, the corresponding stochastic differential equation for the integer N(t) involves, also in this case, two families of counting processes, one for the loading at constant concentration c0, and the other for tracer discharge in the outlet stream, characterized by the same transition rate D, dN(t) dt = Ng � h=1 dχ(1) h (t, D) dt − N(t) � k=1 dχ(2) h (t, D) dt (8) starting from N(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Figure 2 depicts several realizations of the tank-loading process, obtained by discretizing eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (8) with a time step ∆t = 10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Despite the simplicity of the process, this example permits to highlight the role of Ng, that can be referred to as the granu- larity number, and the way stochastic models of chemical reactions can be fruitfully applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Indeed, there is a two-fold use of the stochastic formulation of chemical kinetic schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The first refers to a chemical reacting system involving a small number of molecules, and in this case Ng represents the effective number of molecules present in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The other is to use stochastic algorithms for simulating reacting systems in an alternative (and sometimes more efficient way) with respect to the solution of the corresponding mean-field equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' In the latter case, the granularity number Ng represents essentially a computa- tional parameter, tuning the intensity of the fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Two choices are then possible: (i) it can be chosen large enough, in order to obtain from a single realization of the process an accurate approximation of the mean-field behavior, or (ii) it can be chosen small enough 6 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='2 0 2 4 6 8 10 c(t) t 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='2 0 2 4 6 8 10 c(t) t 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='2 0 2 4 6 8 10 c(t) t (a) (b) (c) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' c(t) = N(t)/Ng vs t from a single realization of the tank-loading process eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (8) with D = 1, c0 = 1 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='. Panel (a): Ng = 30, panel (b) Ng = 100, panel (c) Ng = 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The solid horizontal lines represent the steady-state value c∗ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' in order, to deal with extremely fast simulations of a single realization of the process, that could be averaged over a statistically significant number of realizations in due time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' These two choices are depicted in figure 2 (panel c), choosing Ng = 103, and in figure 3 panel (a) obtained for Ng = 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Of course, the latter approach is valid as long as the low-granularity (low values of Ng) does not influence the qualitative properties of the kinetics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The second (computational) use of stochastic simulations of chemical kinetics requires a further discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' At a first sight, it may appear that any stochastic simulation would be computationally less efficient than the solution of the corresponding mean-field equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This is certainly true for classical chemical reaction schemes in a perfectly mixed system, 7 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='8 1 0 2 4 6 8 10 (t) t 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='2 0 2 4 6 8 10 a b σc(t) t (a) (b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Panel (a): ⟨c⟩(t) vs t at Ng = 30 (symbols) averaged over [106/Ng] realizations of the tank-loading process with D = 1, c0 = 1 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Here, [·] indicates the integer part of its argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The solid line represents the mean-field result ⟨c⟩(t) = 1 − e−t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Panel (b): Variance σc(t) vs t for the tank-loading process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Symbols are the results of stochastic simulations of eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (8) averaged over [106/Ng] realizations, lines the solutions of eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Line (a) refers to Ng = 30, line (b) to Ng = 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' for which the mean-field model reduces to a system of ordinary differential equations for the concentrations of the reactants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' But there are kinetic problems e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=', associated with the growth of microorganisms and eukaryotic cell lines in bioreactors (these growth phenom- ena, are indeed amenable to a description in terms of equivalent chemical reactions), the mean-field model of which is expressed in the form of higher-dimensional nonlinear integro- differential equations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' For this class of problems, the use of stochastic simulations is the 8 most efficient, if not the only way to achieve a quantitative description of the process, in those cases where the number np of internal parameters describing the physiological state of an eukaryotic cell becomes large enough, np ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This issue is addressed in detail in [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This case is altogether similar to some transport problems, such as Taylor-Aris dispersion for high P´eclet numbers or the analysis of microfluidic separation processes (DLD devices) for which the stochastic simulation of particle motion is far more efficient that the corresponding solution of the corresponding mean-field model expressed in the form of advection-diffusion equations [28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' To complete the analysis of the tank-loading problem, the associated CME reads dp(n, t) dt = D Ng [p(n − 1, t) ηn−1 − p(n, t)] + D [(n + 1) p(n + 1, t) − n p(n, t)] (9) where ηh = 1 for h ≥ 0 and ηh = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' It follows that ⟨c⟩(t) = c0 �∞ n=1 n p(n, t)/Ng satisfies identically the mean-field equation (due to the linearity of the problem), while the variance σc(t), with σ2 c(t) = c2 0 �∞ n=1 n2 p(n, t)/N2 g − (c0 �∞ n=1 n p(n, t)/Ng)2, satisfies the equation dσ2 c dt = −2 D σ2 c + D � 1 Ng + ⟨c⟩ Ng � (10) Figure 3 panel (b) compares the results of stochastic simulations against the solutions of eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (10) for two values of Ng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The above approach can be extended to any system of nonlinear reaction schemes involv- ing unimolecular and bimolecular reaction, and in the presence of slow/fast kinetics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The structure of the reaction mechanism can be arbitrarily complicated without adding any fur- ther complexity (other than purely notational) in the formulation of the stochastic evolution expressed in terms of number of molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The only practical issue, is that the number of different families of stochastic processes grows with the number of elementary reactive processes considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' For instance, in the case of the subtrate-inhibited Michaelin-Menten kinetics E + S k1 ⇋ k−1 ES ES k2 → E + P (11) ES + S k3 ⇋ k−3 ESS there are five reactive processes (five channels in the language of the Gillespie algorithm) and consequently five families of counting processes {χ(h) ih (t, ·)}, h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' should be 9 introduced,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' so that the formulation of the discrete stochastic dynamics reads dNS(t) dt = − NS(t) � i=1 dχ(1) i (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' �k1 NE(t)) dt + NES(t) � j=1 dχ(2) j (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' k−1) dt dNE(t) dt = − NS(t) � i=1 dχ(1) i (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' �k1 NE(t)) dt + NES(t) � j=1 dχ(2) j (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' k−1) dt + NES(t) � h=1 dχ(3) h (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' k2) dt dNES(t) dt = NS(t) � i=1 dχ(1) i (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' �k1 NE(t)) dt − NES(t) � j=1 dχ(2) j (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' k−1) dt − NES(t) � h=1 dχ(3) h (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' k2) dt − NS(t) � k=1 dχ(4) k (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' �k3 NES(t)) dt + NESS(t) � l=1 dχ(5) l (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' k−3) dt (12) dNESS(t) dt = NS(t) � k=1 dχ(4) k (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' �k3 NES(t)) dt − NESS(t) � l=1 dχ(5) l (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' k−3) dt dNP(t) dt = NES(t) � h=1 dχ(3) h (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' k2) dt equipped with the initial conditions cS(0) = cS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' cE(0) = cE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' cES(0) = cESS(0) = cP(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Observe that for the bimolecular steps we have used a number-dependent rate coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This is just one possibility, out of other fully equivalent alternatives, of defining bimolecular reacting processes, and out of tem a numerical algorithm for solving them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This issue, and its computational implications will be addressed elsewhere [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The granularity number Ng can be fixed, so that NS(0) = [cS,0 Ng] , NE,0 = [cE,0 Ng] (13) where [ξ] indicates the integer part of ξ, thus defining the relation betwen Nα(t) and cα(t), namely cα(t) = Nα(t)/Ng, α = S, E, ES, ESS, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This implies also that the effective rate parameters entering the discrete stochastic evolution equation (12), and associated with the two bimolecular reactive steps, are given by �k1 = k1/Ng, and �k3 = k3/Ng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Consider the case k−1 = k2 = k3 = k−3 = 1, cS,0 = 4, cE,0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' In this case the quasi steady-state approximation of the cES-cS curve (representing the slow manifold of the kinetics takes the expression cES = cE,0 cS KM + cS + β c2 S , KM = k−1 + k2 k1 , β = k−3 k3 (14) Figure 4 depicts the cES-cS graph obtained from a single realization of the stochastic process eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (11) at several values of k1 so as to modify the Michaelis-Menten constant KM for a value Ng = 106 of the granularity number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='08 0 1 2 3 4 cES cS FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' cES vs cS plot of the substrate-inhibited enzymatic kinetics discussed in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Symbols (in color) are the results of stochastic simulations of a single realization of the process eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' (11), (black) solid lines the graph of the quasi steady-state approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' The arrow indicates increasing values of KM, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' decreasing values of k1 = 20, 6, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Apart from the initial transient giving rise to an overshot in the values of cES near cS ≃ cS,0, the dynamics rapidly collapses towards the slow manifold and the stochastic simulations at high Ng-value provide a reliable description of the mean-field behavior starting from a single stochastic realization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' To conclude, we want to point out some advantages and extensions of the present ap- proach: it shows a direct analogy between chemical reaction kinetics, radiative processes and stochastic formulation of open quantum systems, thus, paving the way for a unified treatment of the interpaly between these phenomena, that is particularly important in the field of photochemistry, and in the foundation of statistical physics [30, 31];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' it can be easily extended to semi-Markov transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' This is indeed the case of the growth kinetics of eukaryotic microorganisms, the physiological state of which can be parametrized with respect to internal (hidden) parameters such as the age, the cytoplasmatic content, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' it can be easily extended to include transport phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' In point of fact, the oc- currence of Markovian or semi-Markovian transitions in modeling chemical kinetics is 11 analogous to the transitions occurring in the direction of motion (Poisson-Kac pro- cesses, L´evy flights, Extended Poisson-Kac processes) or in the velocity (linearized Boltzmannian schemes) [32–34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' it is closely related to the formulation of stochastic differential equations for the ther- malization of athermal system [35], in which the classical mesoscopic description of thermal fluctuations, using the increments of a Wiener process, is replaced by a dy- namic model involving the increments of a counting process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Due to the limitations of a Letter, all these issues will be addressed in forthcoming works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' But apart for these extensions and improvements,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' the proposed formulation indicates that the stochastic theory of chemical reactions can be built upon a simple and consistent mathemat- ical formalism describing the elementary reactive events as Markovian or semi-Markovian counting processes [36],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' that perfectly fits with the description of molecular non reactive events (molecular collisions),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' providing an unifying stochastic formalism of elementary (clas- sical and quantum) molecular events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Krapivsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Redner, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Ben-Naim, A Kinetic View to Statistical Physics, Cambridge University Press, Cambridge (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Boltzmann, Weitere Studien ¨uber das W¨armeglichgenicht unter Gas-molek¨ulen, Sitzungs- berichte Akademie der Wissenschaften 66 (1872) 275-370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [3] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Marin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Yablonsky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Constales, Kinetics of chemical reactions: decoding com- plexity, John Wiley & Sons, New York, (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [4] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Levenspiel, Chemical Reaction Engineering, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Wiley & Sons (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [5] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Hou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Xin, Internal noise stochastic resonance of synthetic gene network, Chemical Physics Letters, 401 (1-3) (2005) 307-311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Perc, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gosak, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Marhl, From stochasticity to determinism in the collective dy- namics of diffusively coupled cells, Chemical Physics Letters, 421 (1-3) (2006) 106–110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [7] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Lente, A binomial stochastic kinetic approach to the michaelis–menten mechanism, Chem- ical Physics Letters, 568 (2013) 167–169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' 12 [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' McQuarrie, Stochastic approach to chemical kinetics, Journal of Applied Probability, 4 (3) (1967) 413-478.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gillespie, Stochastic simulation of chemical kinetics, Annual Review of Physical Chem- istry 58 (1) (2007) 35-55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Delbr¨uck, Statistical fluctuations in autocatalytic reactions, The Journal of Chemical Physics 8 (1) (1940) 120-124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Bartholomay, A stochastic approach to statistical kinetics with application to enzyme kinetics, Biochemistry 1 (2) (1962) 223-230.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gillespie, A rigorous derivation of the chemical master equation, Physica A 188 (1-3) (1992) 404-425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Keizer, On the necessity of using the master equation to describe the chemical reaction X + A ⇋ B + X, Chemical Physics Letters, 10 (4) (1971) 371–374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [14] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gaynor, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gilbert, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' King, Solution of the master equation for unimolecular reactions, Chemical Physics Letters, 55 (1) (1978) 40-43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics 22 (4) (1976) 403-434.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [16] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry 81 (25) (1977) 2340-2361.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gibson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, The Journal of Physical Chemistry A 104 (9) (2000) 1876-1889.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [18] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Lok , R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Brent, Automatic generation of cellular reaction networks with Moleculizer, Nature Biotechnology 23 (2005) 131–36 [19] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Cao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Li,L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Petzold, Efficient formulation of the stochastic simulation algorithm for chemically reacting systems, The Journal of Chemical Physics 121 (2004) 4059–67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Rathinam, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Petzold, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Cao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gillespie, Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method, The Journal of Chemical Physics, 119 (24) (2003) 12784-12794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [21] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Yang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gillespie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Petzold, Efficient step size selection for the tau-leaping simu- lation method, The Journal of Chemical Physics 124 (4) (2006) 044109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [22] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Yang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Gillespie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Petzold, Adaptive explicit-implicit tau-leaping method with automatic tau selection, The Journal of Chemical Physics 126 (22) (2007) 224101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' 13 [23] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Venerus and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' ¨Ottinger, A modern Course in Transport Phenomena, Cambridge University Press, Cambridge (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [24] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Ito and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' McKean Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=', Diffusion Processes and their Sample Paths, Springer, Berlin (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [25] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Campillo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Chebbi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Toumi, Stochastic modeling for biotechnologies Anaerobic model AM2b, Revue Africaine de la de la Recherche en Informatique et Math´ematiques Appliqu´es, INRIA 28 (2018 - 2019), Mathematics for Biology and the Environment 13-23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [26] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Pezzotti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Giona, Stochastic chemical reactions: from algorithmic approaches to stochas- tic differential models, in preparation (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [27] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Pezzotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Procopio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Brasiello, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Giona, Stochastic simulations of bioreactors in the presence of biomass heterogeneity and structured eukaryotic populations, in preparation (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [28] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Aris, ”On the dispersion of a solute in a fluid flowing through a tube, Proceedings of the Royal Society of London A (235) (1956) 67-77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [29] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Cerbelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Giona, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Garofalo, Quantifying dispersion of finite-sized particles in determin- istic lateral displacement microflow separators through Brenner’s macrotransport paradigm, Microfluidics and nanofluidics 15 (2013) 431-449.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [30] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Pezzotti and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Giona, Particle-photon radiative interactions and thermalization, in preper- ation (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [31] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Breuer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Petruccione, The Theory of Open Quantum Systems, Clarendon Press, Ox- ford (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [32] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Giona, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Brasiello, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Crescitelli, Stochastic foundations of undulatory transport phe- nomena: Generalized Poisson–Kac processes—Part I basic theory, Journal of Physics A (50) (2017) 335002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [33] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Giona, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Cairoli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Klages, Extended Poisson-Kac theory: A unifying framework for stochastic processes with finite propagation velocity, Physical Review X (12) (2022) 021004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [34] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content='-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Sato, L´evy processes and infinitely divisible distributions, Cambridge University Press, Cambridge (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [35] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Kanazawa, Statistical Mechanics for Athermal Fluctuation, Springer Nature, Singapore (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' [36] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Cocco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Giona, Generalized Counting Processes in a Stochastic Environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' Mathe- 14 matics 9 (2021) 25-73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} +page_content=' 15' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf'} diff --git a/4dE1T4oBgHgl3EQfmQQK/content/2301.03294v1.pdf b/4dE1T4oBgHgl3EQfmQQK/content/2301.03294v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3c9ae5c4dcccf16ea6dbda493ddd8bbe47c6410d --- /dev/null +++ b/4dE1T4oBgHgl3EQfmQQK/content/2301.03294v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:47d4b0d29f700f9d98ef98273ffbb55dbfa3baaec534a0f52eeca84885709be3 +size 143997 diff --git a/4dE1T4oBgHgl3EQfmQQK/vector_store/index.faiss b/4dE1T4oBgHgl3EQfmQQK/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..e34f310b3599a26dcd9ac6b21e0c5ea17c600526 --- /dev/null +++ b/4dE1T4oBgHgl3EQfmQQK/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bb923a5f4d50604a55fe841aafb276d677a23634a0b9cc992c6a89fedc4c3038 +size 1835053 diff --git a/4dE1T4oBgHgl3EQfmQQK/vector_store/index.pkl b/4dE1T4oBgHgl3EQfmQQK/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..0e67f91424850cedcff5c802b10501cd65e59978 --- /dev/null +++ b/4dE1T4oBgHgl3EQfmQQK/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b398367ce5296935cfa179832ec371080587295dbdd6987019b799025b564836 +size 64185 diff --git a/4tFJT4oBgHgl3EQfkCwt/content/2301.11577v1.pdf b/4tFJT4oBgHgl3EQfkCwt/content/2301.11577v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..61b0f09a981ea87e549e6bf8c99712bd9aae3aeb --- /dev/null +++ b/4tFJT4oBgHgl3EQfkCwt/content/2301.11577v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:21652d68e533882a5f04bd0431b1f57a1ebf529f9875d525c24de7a8879b1882 +size 432790 diff --git a/4tFJT4oBgHgl3EQfkCwt/vector_store/index.faiss b/4tFJT4oBgHgl3EQfkCwt/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..89d807d2ec62ca6c8c9a780741d8d73650dc8ab1 --- /dev/null +++ b/4tFJT4oBgHgl3EQfkCwt/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:19ae3edb74421dfb699d1c36d40bef1ce5af2b48c3d811332919d186f37a36b8 +size 1966125 diff --git a/4tFJT4oBgHgl3EQfkCwt/vector_store/index.pkl b/4tFJT4oBgHgl3EQfkCwt/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..dc8fbea190f0b5b7ade0bd6d2b1a7fda95bfa9bb --- /dev/null +++ b/4tFJT4oBgHgl3EQfkCwt/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0b9aa0d2e1f84aaceec16a656ffd50a51910312ca549851d3d9e22284cfa41c9 +size 82341 diff --git a/6dAzT4oBgHgl3EQf-P4i/content/2301.01930v1.pdf b/6dAzT4oBgHgl3EQf-P4i/content/2301.01930v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2fb23905f1c5c26b294e929c64901c3b0793f9f4 --- /dev/null +++ b/6dAzT4oBgHgl3EQf-P4i/content/2301.01930v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:300a10add628570ecd83f4edf00138d3ac98774bf8baa8ba5a959fc01d84a7cb +size 3227275 diff --git a/6dAzT4oBgHgl3EQf-P4i/vector_store/index.pkl b/6dAzT4oBgHgl3EQf-P4i/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d7598b5dad841930bbaf495860a08b8d4f487931 --- /dev/null +++ b/6dAzT4oBgHgl3EQf-P4i/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:720858774ac48a4c95232460c7571bbe9a8d2c816b4524c7298aa98ac68d7a4c +size 153947 diff --git a/79E2T4oBgHgl3EQfPgaW/content/tmp_files/load_file.txt b/79E2T4oBgHgl3EQfPgaW/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..3748a806006b90849f95ca7ac01ca62f12bb6a73 --- /dev/null +++ b/79E2T4oBgHgl3EQfPgaW/content/tmp_files/load_file.txt @@ -0,0 +1,1020 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf,len=1019 +page_content='1 Over-The-Air Adversarial Attacks on Deep Learning Wi-Fi Fingerprinting Fei Xiao, Yong Huang, Member, IEEE, Yingying Zuo, Wei Kuang, Wei Wang, Senior Member, IEEE Abstract—Empowered by deep neural networks (DNNs), Wi- Fi fingerprinting has recently achieved astonishing localization performance to facilitate many security-critical applications in wireless networks, but it is inevitably exposed to adversarial attacks, where subtle perturbations can mislead DNNs to wrong predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Such vulnerability provides new security breaches to malicious devices for hampering wireless network security, such as malfunctioning geofencing or asset management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The prior adversarial attack on localization DNNs uses additive perturba- tions on channel state information (CSI) measurements, which is impractical in Wi-Fi transmissions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To transcend this limitation, this paper presents FooLoc, which fools Wi-Fi CSI fingerprinting DNNs over the realistic wireless channel between the attacker and the victim access point (AP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We observe that though uplink CSIs are unknown to the attacker, the accessible downlink CSIs could be their reasonable substitutes at the same spot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We thoroughly investigate the multiplicative and repetitive properties of over-the- air perturbations and devise an efficient optimization problem to generate imperceptible yet robust adversarial perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We implement FooLoc using commercial Wi-Fi APs and Wireless Open-Access Research Platform (WARP) v3 boards in offline and online experiments, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The experimental results show that FooLoc achieves overall attack success rates of about 70% in targeted attacks and of above 90% in untargeted attacks with small perturbation-to-signal ratios of about -18 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Index Terms—Adversarial attack, indoor localization, deep learning I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Introduction In wireless networks, accurate device location information is increasingly desired to support many security-critical appli- cations, such as device authentication and access control [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To achieve this, Wi-Fi fingerprint based indoor localization recently has gained astonishing performance via benefiting from the advances in deep neural networks (DNNs) [3], [4], [5], [6], which, however, are shown to be susceptible to adversarial attacks [7], [8], [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In such attacks, minimal perturbations on genuine input samples can steer DNNs catastrophically away from true predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' By exploiting these vulnerabilities, malicious devices have the potential to manipulate their localization results and cause the breakdown of wireless geofencing [10], [11], asset management, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Thus, it is of great importance to investigate the extent This work was supported by the Henan Province Key R&D Program with Grant 221111210400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (Corresponding author: Yong Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=') Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Huang is with the School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China (e-mail:yonghuang@zzu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Xiao is with Business School, Hubei University and School of Manage- ment, Huazhong University of Science and Technology, Wuhan 430074, China (e-mail: feixiao@hust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Zuo, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Kuang and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang are with the School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China (e-mail:{yingyingzuo, kuangwei, weiwangw}@hust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' to which DNN powered indoor localization is vulnerable to adversarial attacks in the real world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Despite the great importance, no existing study explores over-the-air adversarial attacks on indoor localization DNNs in the physical world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The prior work [12] investigates adversarial attacks on indoor localization DNNs and simply adds perturba- tion signals to original signals likewise generating adversarial images in the computer vision domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' However, additive perturbations can not characterize the impact of Wi-Fi training signals on CSI measurements, thus rendering them infeasible in over-the-air attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, these approaches [13], [14] trigger attacks by directly converting genuine CSI fingerprints into targeted ones, which are suitable for attacking single- antenna APs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Yet, they are physically unrealizable in widely- used multi-antenna Wi-Fi systems due to the one-to-many relationship between transmitting and receiving signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, this study [15] proposes a CSI randomization approach to distort device location information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Though this approach can trigger untargeted adversarial attacks, it lacks the capability of misleading location predictions close to chosen spots, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', targeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, the random perturbations are not smooth and will cause significant disturbance in the original signals, rendering them easy to be detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Thus, no existing work is suitable for launching adversarial attacks on Wi-Fi fingerprinting DNNs in the real world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this paper, we investigate a new type of adversarial attack that deceives indoor localization DNNs over realistic wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In particular, our attack model includes a Wi-Fi AP and an attacker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The AP holds a well-trained DNN for indoor localization using uplink CSI signatures as inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The attacker, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', a malicious client device, manipulates its Wi-Fi training signals and transmits them to the AP over the air, with the purpose of fooling the localization DNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this way, the AP receives the falsified signals from the attacker, generates perturbed uplink CSI signatures, and feeds them into the DNN for device localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1, over-the-air attacks can rise severe security issues in wireless networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' An outside attacker can be empowered to break the geofencing of a Wi-Fi AP by camouflaging itself within authorized areas to gain wireless connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, an attacker can bypass Sybil attack detection to deplete valuable bandwidth by pretending multiple fake clients at the same location [16], [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We argue that the major obstacle to realizing such over-the- air adversarial attacks is that the uplink CSI estimated at the victim AP is unknown to the attacker and thus effective channel perturbations cannot be generated before each attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To tackle this problem, we observe that the similarity between uplink and downlink CSIs can be exploited for launching adversarial arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='03760v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='CR] 10 Jan 2023 2 Breaking geofencing Bypassing Sybil attack detection AP Attacker Authorized area Loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' DNN Attacker Fake client AP Loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' DNN Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Attack cases with over-the-air adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' attacks over the air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In Wi-Fi networks, downlink CSIs can be easily obtained from the AP’s broadcasting packets, such as beacon frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' When one attacker stays at one spot, its uplink and downlink transmissions would experience similar multipath propagations and thus have similar CSI fingerprints [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Hence, the attacker can take benefits of accessible and informative downlink CSIs to generate adversarial perturbations locally without knowing the exact uplink CSIs that are fed into localization DNNs by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Toward this end, we present FooLoc, a novel system that fools localization DNNs by launching over-the-air adversar- ial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, before each attack, FooLoc takes obtainable downlink CSIs as a reasonable substitute of the corresponding uplink ones and trains an adversarial perturbation locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, it applies the well-trained perturbation on its own transmitted signals for manipulating the corresponding uplink CSI signatures received by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this way, FooLoc is capable of deceiving the localization DNN to output desired yet wrong location estimates over real wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To realize the above idea, we address the following two challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1) How to design realizable adversarial perturbations that are suitable for Wi-Fi transmissions?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Most adversarial attacks are based on additive perturbations and require the ability to individually alter each element of an input sample, which, however, is physically unrealizable for over-the-air perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, in Wi-Fi communications, a physical layer training symbol has a multiplicative relationship with a channel response in the frequency domain [18], thus rendering additive perturbations on Wi-Fi CSIs infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, for a multi-antenna receiver, one training symbol of each subcarrier corresponds to multiple received symbols during channel estimation, implying a one-to-many relationship between the elements of one perturbation and one CSI measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Based on the discovered multiplicative and repetitive properties, we formulate the novel over-the-air perturbations on uplink CSIs and further derive the adversarial perturbations for targeted and untargeted attacks on indoor localization DNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 2) How to efficiently craft imperceptible yet robust adver- sarial perturbations under environmental noise?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Due to the random nature of environmental noise, two CSI measurements from the same spot are unlikely to be exactly the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Consequently, one perturbation that is generated for one specific CSI may not generalize well to another one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To tackle this challenge, we propose a generalized objective function integrating both targeted and untargeted attacks and reasonably formulate the adversarial perturbation generation as a box-constrained optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this optimization problem, we ensure the robustness of adversarial perturbations by seeking a universal perturbation that works well on all CSI measurements from the same spot and guarantee their imperceptibility by maximizing the perturbation smoothness and limiting the perturbation strength at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, to ease the difficulty of problem optimization, we further transform the constrained problem into an equivalent unconstrained one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Summary of Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We implement FooLoc using com- mercial Wi-Fi APs for offline experiments and Wireless Open-Access Research Platform (WARP) v3 boards [19] for online experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In offline experiments, FooLoc obtains attack success rates (ASRs) of 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0% and 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4% for targeted and untargeted attacks, respectively, on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In online experiments, FooLoc achieves mean ASRs of 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6% and 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5% for targeted and untargeted attacks, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, FooLoc has small perturbation-to-signal ratios (PSRs) of about 18 dB in two settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The main contributions of this work are summarized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We propose FooLoc, which exploits the similarity be- tween uplink and downlink CSIs to launch over-the-air adversarial attacks on Wi-Fi localization DNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We discover the multiplicative and repetitive impacts of over-the-air perturbations on CSI fingerprints in Wi-Fi localization systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We propose an efficient algorithm to generate impercepti- ble and robust adversarial perturbations against localization DNNs over realistic Wi-Fi channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We implement FooLoc on both commercial Wi-Fi APs and WARP wireless platforms, respectively, to demonstrate its effectiveness in different environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Attack Model and Wi-Fi CSI Signatures A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Adversarial Attacks on Indoor Localization In this paper, we consider a general Wi-Fi network, where one fixed AP with multiple antennas provides wireless connec- tivity for many single-antenna clients, such as smartphones and vacuum robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The AP has the capability of device localization for delivering location based services, such as user monitoring and access control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, we focus on deep learning (DL) based indoor localization systems, which exploit accessible and fine-grained Wi-Fi CSIs as location fingerprints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Considering the randomness of CSI phases, most fingerprinting systems rely on CSI amplitudes [3], [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Hence, such DL models are assumed to accept CSI amplitudes as input features and output 2D continuous-valued location estimations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To fool such localization systems in reality, we consider the over-the-air adversarial attacks by exploiting the vulnerabilities of DNNs [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this scenario, a malicious attacker, as a client device, can not directly manipulate the input values of DL models used by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Instead, it can attack a DL model only via modifying its own transmitted Wi-Fi signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this paper, we mainly consider white-box DL models, of which the attacker knows their exact structures as well as trained parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' For black-box models that are unknown to the 3 0 20 40 # of subcarriers 50 100 150 200 Uplink CSI 1st spot 0 20 40 # of subcarriers 50 100 150 200 Downlink CSI 0 20 40 # of subcarriers 100 200 300 2nd spot 0 20 40 # of subcarriers 100 200 300 0 20 40 # of subcarriers 0 50 100 150 3rd spot 0 20 40 # of subcarriers 0 50 100 150 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Uplink and downlink CSI measurements at different spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The distances of 1st spot to 2nd and 3rd spots are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='3 m and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='2 m, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' attacker, we will discuss the feasibility of triggering adversarial attacks on them in our offline experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Furthermore, the attacker has no access to uplink CSI measurements that are used for model training and testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Yet, it has the ability to move in the targeted area and collects corresponding downlink CSI measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' For example, the attacker could be a vacuum robot, which moves between different spots to automatically collect Wi-Fi CSI fingerprints [21], [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, we assume that the attacker knows its own location information when launching adversarial attacks for misleading location based services provided by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' More- over, we consider targeted and untargeted adversarial attacks on localization DNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, in targeted attacks, the attacker aims to force the localization model to output a location estimate that is as close as possible to a chosen spot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' When comes to untargeted attacks, it only wants to be localized far away from its true location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Such over-the-air adversarial attacks can be exploited to deceive localization DNNs [3], [20] for hampering security of wireless networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The example attack scenarios include 1) breaking geofencing: a Wi-Fi AP holds a device localization model and provides wireless connectivity only to clients that are within a certain area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this scenario, an attacker stays outside of the area and can trigger over-the-air adversarial attacks to camouflage itself inside authorized areas for gaining wireless connectivity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 2) bypassing Sybil attacker detection: a Wi-Fi AP uses a localization model to detect potential Sybil attackers based on their locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Using over-the-air adversarial attacks, an attacker can masquerade many fictitious clients that are seemingly from different locations to deplete valuable bandwidth at a low cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wi-Fi CSI Fingerprints Basically, channel state information characterizes the signal propagation among a pair of Wi-Fi transceivers in a certain environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='11n/ac/ax Wi-Fi protocols divide a Wi-Fi channel into K orthogonal subcarriers and assign K pre-defined long training field signals (LTFs) for them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' For the k-th subcarrier, the transmitter sends a training signal sk, and accordingly the receiver obtains a signal yk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' With the knowledge of sk, the receiver can estimate the current channel response hk between them as hk = yk/sk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (1) Due to multipath effects, each channel response hk can be further modeled as the composition of one direct path and multiple reflected ones [18], which can be formulated as hk = α0e j2πτ0 fk + � l αle j2πτl fk + nk, (2) where nk is the complex Gaussian noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, α0 and τ0 represent the signal propagation attenuation and time delay of the direct path, respectively, and αl and τl are those of the l-th reflected path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' From the above equation, we can see that Wi-Fi CSI measurements are highly dependent on transceiver locations as well as environmental reflectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' For a fixed-position AP-client pair, uplink and downlink signals would travel through the alike line-of-sight distances as well as similar incident-reflecting paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The above geometric properties together contribute to nearly-identical path loss and time delay, thus resulting in similar channel responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Such similarity enables an adversary to replace unknown uplink CSIs with the corresponding downlink ones for generating adversarial perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We conduct some preliminary studies to verify the similarity between paired uplink and downlink CSI fingerprints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To do this, we use two off-the-shelf Wi-Fi APs with Atheros CSI Tool [23] to record CSI measurements of 56 subcarriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In our experiments, we fix one AP at a certain location and place the other at three different spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 2, we can observe that similar change patterns are shared in uplink and downlink measurements corresponding to the same spot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' This is because when the locations of two APs are fixed, the uplink and downlink signals would experience similar multipath propagations as indicated in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' It is worth noting that the occurrence of multiple clusters of CSI measurements in each subfigure is caused by automatic gain control on the receiver side for maintaining a suitable power level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, it also can be found that the similarity in CSI measurements increases as the distance between two spots decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The above observations verify that uplink and downlink CSI measurements are highly similar, providing an exciting opportunity to launch over-the-air adversarial attacks on DL indoor localization systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Over-The-Air Adversarial Attacks A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Overview of FooLoc FooLoc is a novel system that fools Wi-Fi CSI fingerprinting localization DNNs via launching over-the-air adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 3, FooLoc runs on the attacker and helps it to spoof the localization DNN used by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, before each attack, the attacker first stays at one spot and receives downlink packets, such as beacon and acknowledgment (ACK) frames [24], from the targeted AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, FooLoc generates a set of well-crafted adversarial weights based on its knowledge of the victim model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' After that, it multiplies the adversarial weights with genuine LTFs and sends their product results to the AP over the air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Once receiving these signals, the AP feeds 4 Over-The-Air Perturbation Design Adversarial Weight Optimization Attacker DL-Based Localization AP Perturbed LTFs Downlink CSI Time Perturbed CSI Loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' DNN FooLoc Adversarial weights LTFs Collecting CSIs Generating Perturbations Launching Attacks Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Workflow of FooLoc for launching over-the-air adversarial attacks on DL indoor localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' the perturbed CSI signatures to its DL localization model, which will consequently output a wrong estimation that is desired by the attacker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The main advantages of FooLoc are that it has small perturbations with respect to original signals and remains unharmful to message demodulation at the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 3, the core components of FooLoc include Over-The-Air Perturbation Design and Adversarial Weight Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Over-The-Air Perturbation Design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' First, we investigate the multiplicative and repetitive properties of over-the-air perturbations and formalize their impacts on uplink CSI measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, we define the notions of adversarial examples as well as targeted and untargeted adversarial attacks on wireless localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Additionally, we prove that our adversarial perturbation remains unharmful to the payload decoding at the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Adversarial Weight Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' First, we detail our attack strategy and propose a generalized objective func- tion that integrates both targeted and untargeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, adversarial attacks on DL localization models are formulated as a box-constrained problem that minimizes the objective function while satisfying the constraints of robustness, imperceptibility as well as efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, we carefully transform the above constrained problem into an equivalent unconstrained one for easing the difficulty of problem optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Over-The-Air Perturbation Design In this subsection, we first investigate the unique multiplica- tive and repetitive properties of over-the-air perturbations and define adversarial examples in indoor localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Multiplicative Property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Most of the prior studies on wireless adversarial attacks synthesize an adversarial example xad for each genuine sample x using an additive perturbation r likewise generating adversarial images in the computer vision domain as xad = x+r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' However, it is inapplicable for performing over-the-air attacks in real-world wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In over- the-air attacks, the attacker can change model inputs only via multiplicative perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The reason stems from the fact that a received signal is the product of a channel response and a transmitted signal in the frequency domain [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Hence, one uplink CSI measurement has a proportional relationship with the perturbed training signals as indicated in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Channel estimation FooLoc Attacker AP Wireless channel f Training symbols Perturbation Perturbed CSI Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Illustration of over-the-air adversarial perturbations from the attacker to the victim AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 4, when attempting to launch over-the-air attacks, FooLoc first generates a real-valued multiplicative perturbation set γ = [γ1, · · · , γk, · · · , γK] ∈ R1×K for its K-element training sequence s = [s1, · · · , sk, · · · , sK] ∈ C1×K, which is known by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, the scaled sequence st ∈ C1×K can be obtained as st = γ ⊙ s = [γ1s1, · · · , γksk, · · · , γKsK], (3) where ⊙ is the Hadamard product for element-wise production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, FooLoc transmits st to the victim AP over realistic wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' When hearing the signal, the AP with N antennas receives a measurement ˆY ∈ CN×K and estimates their uplink channel ˆH ∈ CN×K using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Therein, each entry of ˆH can be denoted as ˆhn,k, representing the perturbed channel response between the client and the n-th AP antenna at the k-th subcarrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Let us assume that the corresponding true channel estimation is H ∈ CN×K with each entry denoted as hn,k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (1), we can have ˆhn,k = ˆyn,k sk = hn,kγksk sk = γkhn,k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (4) According to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (4), we can see that hn,k, as the original channel response, is proportionally perturbed by γk, suggesting that over-the-air perturbations have a multiplicative effect on uplink CSI measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Using such multiplicative weights, FooLoc can easily manip- ulate uplink CSI measurements through the standard channel estimation process as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 4, which lays the foundation for further over-the-air attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Repetitive Property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Given the multiplicative perturbation, we proceed to investigate the unique pattern of our perturbation weights received by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Existing studies on adversarial attacks create different perturbation weights for different input elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Yet, this is not the case for adversarial attacks over wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 4, the uplink transmission from the attacker to the AP can be modeled as a single-input- multiple-output (SIMO) channel, which suggests a one-to-many relationship between the elements of one perturbation γ and the perturbed CSI measurement ˆH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Mathematically, given the perturbation weight γk, the k-th column of ˆH represents all estimated channel responses for the k-th subcarrier and can be 5 further written as ˆhk = ������������� ˆh1,k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ˆhN,k ������������� = ������������ γkh1,k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' γkhN,k ������������ = γk ������������ h1,k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' hN,k ������������ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (5) The above equation shows that all receiving antennas share the same perturbation weight with respect to each subcarrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Hence, the overall received perturbation weights Γ ∈ RN×K on ˆH have a repetitive pattern as Γ = JN×1 ⊗ γ = ������������ γ1 · · γK .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' γ1 · · γK ������������ , (6) where JN×1 is the all-ones matrix with a size of N × 1 and ⊗ denotes the Kronecker product that helps γ expanding in the vertical dimension in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' With the observations of multiplicative weights and repetitive patterns, we can finally formulate the impact of FooLoc’s perturbations on uplink CSIs as ˆH = JN×1 ⊗ γ ⊙ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (7) Adversarial Perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Next, we define the notion of over-the-air adversarial examples in the context of indoor localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Let P ∈ R2 be the 2D area, where the AP provides wireless connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We denote fθ(·) : X → P as the localization DNN used by the AP, where θ stands for the already trained parameters using uplink CSI fingerprints Xu A that are collected at a set of reference spots A ⊂ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Therein, each input sample Xu ∈ RN×K represents the amplitudes of one uplink CSI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, we assume that our attacker locates at a location p ∈ P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', the genuine spot, and manipulates its uplink channel using a perturbation γp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Considering that amplitude features are essentially the absolute values of complex-valued channel responses, the real-valued perturbation weights in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (7) will have the same linear scaling effect on corresponding CSI amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Using this property, we can derive our adversarial example ˆXu p as ˆXu p = JN×1 ⊗ γp ⊙ Xu p, (8) where Xu p represents the true uplink CSI amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Based on the above notion of adversarial examples, we further define the adversarial perturbations for targeted and untargeted attacks, respectively, on indoor localization DNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In the targeted case, one successful perturbation γp would mislead a location estimate fθ( ˆXu p) to a targeted spot q ∈ P as close as possible, where q � p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' That is, we seek a perturbation γp such that D � fθ � JN×1 ⊗ γp ⊙ Xu p � , q � ≤ dmax, (9) where D(·, ·) is the euclidean distance and dmax represents the acceptable maximal distance error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Whereas, in the untargeted case, one adversarial perturbation γp would make fθ( ˆXu p) away from the genuine location p as far as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Similarly, given the acceptable minimal distance error dmin, we expect a perturbation γp satisfying D � fθ � JN×1 ⊗ γp ⊙ Xu p � , p � ≥ dmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (10) We will specify the configurations of two acceptable distance er- rors dmin and dmax and verify the validity of such configurations in our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Impact on Message Demodulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' One of the major benefits of our multiplicative perturbation γ defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (7) is that it has no impact on message demodulation at the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, in each packet transmission, FooLoc not only applies the multiplicative perturbations on pre-defined LTF symbols s, but also uses them accordingly on the subsequent payload signal u = [u1, · · · , uk, · · · , uK] ∈ C1×K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' After that, the perturbed payload will go through the same real channel as the perturbed training sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this way, although the AP obtains a fake CSI response, the original message is perturbed in the same way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Thus, based on the perturbed response ˆhn,k in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (4), the payload signal uk still can be correctly decoded from the received signals hn,kγkuk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' This process can be mathematically expressed as hn,kγkuk ˆhn,k = hn,kγkuk γkhn,k = uk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (11) Hence, our adversarial perturbations remain unharmful to the message transmission from the attacker to the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The only impact of such perturbations is that the AP feeds falsified CSIs to its localization DNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Adversarial Weight Optimization In this subsection, we first detail our attack strategy and formulate adversarial perturbation generation as a box- constrained optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, we transform it into an unconstrained one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Attack Strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Since uplink CSI measurements are un- known to the attacker, one possible attack strategy is to blindly manipulate its LTF symbols in a brute-force manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' However, such an approach is prohibitively inefficient and time-consuming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Instead of blindly searching, FooLoc exploits the accessible and informative downlink CSI measurements, which can be easily obtained from the AP’s beacon or ACK packets in Wi-Fi networks [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Concretely, when our attacker stays at the genuine spot p, it first collects some downlink CSI measurements and obtains a set of amplitude features Xd p, where Xd p ∈ RN×K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, FooLoc simulates the over- the-air attacks using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (8) and optimizes the perturbation weights based on Xd p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' After that, it multiplies the optimized weights γp with the pre-defined training sequence s and sends their product results to the AP for attacking its localization model fθ(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Because uplink and downlink channel responses are similar as aforementioned, the perturbation weights learned from downlink CSI measurements are expected to generalize well to uplink ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Problem Formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' With the above attack strategy, we first integrate both targeted attacks (9) and untargeted attacks (10) in wireless localization into one objective function J � γp, fθ � as J � γp, fθ � ≜(1 − ω)EXdp � D � fθ � JN×1 ⊗ γp ⊙ Xd p � , q � − dmax �+ + ωEXdp � dmin − D � fθ � JN×1 ⊗ γp ⊙ Xd p � , p ��+ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (12) 6 Feature space Euclidean space F Focused H C B I A G D J E F H C B I A G D J E Attention Mapping Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Illustration of FooLoc’s attention scheme for targeted attacks during perturbation optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Therein, ω indicates the attack type and takes values in the set {0, 1}, where ω = 0 stands for targeted attacks and ω = 1 is for untargeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' EXdp[·] is the expectation over the dataset Xd p and [a]+ = max(a, 0) denotes the positive part of a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Using this objective function, we formulate the problem of adversarial attacks on the localization model fθ(·) as minimize γp J � γp, fθ � + β ∥∆γp∥2, (13) subject to ∥γp − J1×K∥∞ < δmax < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (14) Therein, ∆γp = � γp,i − γp,i−1 � i=2,··· ,K is the difference vector of γp and β denotes a hyperparameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, ∥a∥2 is the l2 norm and ∥a∥∞ = max (|a1|, · · · , |an|) is the l∞ norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In the following, we explain the design rationale of the above box-constrained problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Robustness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' When ω = 0 in the objective function J (·), we minimize the average error between the distance D � fθ( ˆXd p), q � and the threshold dmax over the entire downlink CSI dataset Xd p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' This is because due to the random nature of environmental noise in Wi-Fi CSI signatures, two CSI instances from one spot are unlikely to be exactly the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As a consequence, the perturbation that is crafted for a specific CSI sample may have little effect on another one with a high probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To boost the robustness of our adversarial perturbations, FooLoc seeks a universal perturbation that causes all the samples in Xd p to be estimated at a neighboring area of the targeted location q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The same reason holds for the untargeted attacks when ω = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Imperceptibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The second term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (13) and the constraint in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (14) together guarantee the imperceptibility of our adversarial perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, ∥∆γp∥2 quantifies the smoothness of one perturbation γp by measuring the difference between its consecutive weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The smaller the difference, the smoother the perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In the extreme case ∥∆γp∥2 = 0, γp shall be a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this condition, γp has the same linear scaling effect on each element of one CSI measurement and can not manipulate its changing trends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, the constraint (14) limits the perturbation strength and makes sure that FooLoc always searches a perturbation γp within the l∞ norm ball with a radius δmax centering at J1×K during optimization process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The choose of l∞ norm in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (14) makes each adversarial weight γp,k in γp satisfying 1−δmax < γp,k < 1+δmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The above two designs can guarantee a minimally-perturbed signal ˆXd p that is seemingly alike to the original signal Xd p when received by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' At each optimization step, not all samples are necessary for updating perturbation weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Without loss Transformation Domain of Constrained problem Unconstrained problem Domain of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Illustration of weight transformation in problem optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' For simplicity, we take one element of γp for illustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' of generality, we take ω = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', the targeted attacks, for explaining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Let Rmax ≜ {X : D ( fθ (X) , q) < dmax} be the set of amplitude features, whose location estimates are within Bdmax(q) ⊂ P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', the ball with a radius of dmax centering at the targeted spot q in the Euclidean space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' After some optimization steps, a part of perturbed CSI samples may have already been mapped in Bdmax(q) by fθ(·), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', the green circles in the Euclidean space in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this condition, these samples are unnecessary for optimizing new perturbation weights in the next step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Based on this observation, we devise an attention scheme to enhance the efficiency of our optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In particular, FooLoc uses the operator [·]+ in J � γp, fθ � to discriminate whether location estimates are inside or outside of Bdmax(q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, it strategically pays attention to outside samples and ignores inside ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' This operation will generally decrease the number of needed samples at each optimization step and thus lead to a lower overall computational overhead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Problem Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' With the optimization problem (13), we proceed to design a dedicated optimization scheme for gen- erating our adversarial perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Because our perturbations are multiplicative rather than additive, traditional perturbation generation algorithms, such as the well-known fast gradient sign method (FGSM) [8], are inapplicable for our optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Thus, we need to directly solve the problem (13) using other general gradient based optimization methods, such as stochastic gradient descent (SGD) and adaptive moment estimation (Adam).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' However, the constraint term (14) restricts the domain of the objective function J (·) in the space (1 − δmax, 1 + δmax)1×K and makes the optimization problem as a box-constrained one, which is not naively supported by such gradient-based optimization methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To deal with this issue, we transform the box-constrained problem (13) into an equivalent unconstrained one for easing its optimization difficulty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To do this, we first make γp satisfying the constraint (14) via the transformation as γp = tanh (ξ) · δmax + J1×K, (15) where ξ ∈ R1×K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, tanh (x) = ex−e−x ex+e−x is the hyperbolic tangent function with the range (−1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 6, each element γp,k in γp is naturally confined to the interval (1 − δmax, 1 + δmax) using the above transformation, which is equivalent to the constraint ∥γp − J1×K∥∞ < δmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, we substitute γp with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (15) in the original problem (13), which will convert the domain of J (·) into the space R1×K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this way, 7 Algorithm 1 Over-the-air adversarial attacks on DL localization models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Input: Downlink CSI samples Xd p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' the DL localization model fθ(·),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' the genuine and targeted spots {p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' q},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' the acceptable distance errors {dmin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' dmax} and the attack type ω ξ ← random(1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' K) ∈ R1×K ▶ initialization for the number of training iterations do Sample a mini-batch of training data � Xd p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='i �M i=1 from Xd p Generate adversarial examples γp ← tanh (ξ) · δmax + J1×K ˆXd p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='i ← JN×1 ⊗ γp ⊙ Xd p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='i Update parameters ξ: if ω = 0 then ξ ← ξ − η∇ξ � �M i � D � fθ � ˆXd p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='i � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='q � −dmax �+ M + β ∥∆γp∥2 � end if if ω = 1 then ξ ← ξ − η∇ξ � �M i � dmin−D � fθ � ˆXd p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='i � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='p ��+ M + β ∥∆γp∥2 � end if end for Generate and transmit perturbed LTFs and payload signals st ← (tanh (ξ) · δmax + J1×K) ⊙ s ut ← (tanh (ξ) · δmax + J1×K) ⊙ u we obtain an equivalent unconstrained problem of adversarial perturbation generation as minimize ξ∈R1×K J � γp,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' fθ � + β∥∆γp∥2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (16) where γp = tanh (ξ) · δmax + J1×K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (17) In this condition, we can leverage traditional gradient-based methods to solve the optimization problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' At last, FooLoc can apply the well-trained adversarial weights on pre-defined LTF symbols as well as payload signals and transmit their product results over wireless channels to fool the localization DNN fθ(·) at the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The way to launch our over-the-air adversarial attacks is summarized in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In our experiments, we empirically set δmax = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='15 and use the SGD optimizer for searching optimal perturbation weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Evaluation A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Victim DNNs and Evaluation Metrics Victim DNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To evaluate FooLoc, we build two victim localization models, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', DNNA and DNNB, using mainstream neural network architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In particular, both DNNA and DNNB are set as regression models, which take raw multi- dimensional CSI samples as inputs and output a continuous- valued location estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The structures and parameters of two DNNs are present in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As the table shows, DNNA is a fully connected neural network (FCNN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' It first normalizes each sample element into the interval [0, 1] along the antenna dimension for effective inference [25] and flattens a normalized sample into a one-dimensional tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, DNNA leverages six fully connected (fc) layers to extract hidden features and predicts the corresponding device location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' DNNB is a convolutional neural network (CNN) and consists of three TABLE I The structures and Parameters of Victim DNNs Used in Our Experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' DNNA DNNB Pre-processing Normalize&Flatten Normalize Layers #1 fc1024, Linear conv256@1×1, ReLu #2 fc512, ReLu conv128@1×1, ReLu #3 fc1024, Linear conv128@1×1, ReLu #4 fc512, ReLu fc512, ReLu #5 fc1024, Linear fc256, ReLu #6 fc2, Sigmoid fc2, Sigmoid convolutional (conv) layers and three fully connected layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' It also performs data normalization before feeding CSI samples into its convolutional layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, we build DNNA and DNNB on the PyTorch framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Evaluation Metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We use the following metrics to measure FooLoc’s performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Localization Error (LE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Given a localization model fθ(·) and an input sample Xu g from the ground-truth spot g, the LE to g is computed as D � fθ(Xu g), g � = ∥fθ(Xu g) − g∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Attack Success Rate (ASR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Given a set of perturbed uplink CSIs ˆXu p = � ˆXu p,m � m=1:M pertaining to the attacker’s true spot p and an adversarial perturbation γp, the ASR of targeted attacks with a targeted spot q is � m 1 � D � fθ � ˆXu p,m � , q � − dmax ≤ 0 � /M, where 1(·) denotes the indication function and dmax is the acceptable maximal distance error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' It represents the probability that a perturbed location estimation fθ � ˆXu p,m � is inside the ball centering at the targeted spot q with a radius of dmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Similarly, the ASR of untargeted attacks is given as � m 1 � D � fθ � ˆXu p,m � , p � − dmin ≥ 0 � /M, where dmin is the acceptable minimal distance error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' It indicates the probability that a perturbed location estimation fθ � ˆXu p,m � is at the outside of the ball centering at the true spot p with a radius of dmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Perturbation-To-Signal Ratio (PSR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Given the per- turbed uplink CSI ˆXu p and corresponding original one Xu p at the genuine spot p, the PSR is computed as PSR = 20 log10 ∥ ˆXu p − Xu p∥2 ∥Xup∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Offline Experiments In this subsection, we conduct our offline experiments, in which both uplink and downlink CSI measurements are first collected in real-world environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this setting, the attacker optimizes adversarial perturbations using downlink CSIs and then applies the learned perturbations directly on the collected uplink ones based on Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' (8) to spoof localization DNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In offline experiments, we implement FooLoc using two TL-WDR4310 Wi-Fi routers and one Lenovo 8 18m 12m AP A spots B spots AP with 2 antennas Client with 1 antenna Wi-Fi routers using Atheros CSI Tool Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Floor plan of the experiment environment and experimental platform in offline experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Targeted attacks Untargeted attacks B spots 90th LE + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='75m = 90th LE + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='75m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5m B spots 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='75 m Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Illustration of our attack methodology adopted in offline experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' laptop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, one router with two antennas is fixed at one spot to act as an AP, and the left one is equipped with one antenna to work as a mobile client to communicate with the AP from different spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, we connect the laptop with two routers via Ethernet cables and run Atheros CSI Tool [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Using this tool, each router is set to work at the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4 GHz Wi-Fi band and record channel responses of 56 subcarriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Hence, one CSI sample has a size of 1 × 2 × 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Data Collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We collect CSI measurements in a 12 × 18 m2 meeting room as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The AP is placed at one end of the room to avoid isotropy for better localization performance [3], [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We move the client among 40 selected locations with a spacing distance of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 m, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', A spots in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 7, to collect uplink CSI measurements at the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Accordingly, we choose 40 locations around A spots, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', B spots in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 7, to record uplink and downlink CSI measurements, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' At each spot, 250 CSI samples are recorded during data collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Thus, we can obtain three datasets DA, DB and DC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In particular, DA includes 10K uplink CSI samples from A spots and is used for training localization DNNs at the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' DB consists of 10K downlink samples from B spots and is used by the attacker to generate adversarial perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' DC has 10K uplink samples from B spots and is responsible for testing FooLoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Attack Methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We independently train DNNA and DNNB on DA, and optimize adversarial perturbations using the samples in DB according to Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, we apply the optimized perturbations on DC and feed the perturbed samples into DNNA and DNNB, respectively, to perform both targeted and untargeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 8, for each B spot p in targeted attacks, we choose the nearest B points that are outside a certain ball centering at p as targeted spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In particular, the ball radius equals to the sum of the 90th TABLE II Performance of FooLoc in Offline Experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Targeted attacks Before After DNNA DNNB DNNA DNNB LE to p (Genuine spots) 50th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='60 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='54 m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='48 m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='28 m 90th 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='85 m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='93 m 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='61 m 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='51 m LE to q (Targeted spots) 50th 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='59 m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='56 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='53 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='55 m 90th 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='08 m 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='93 m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='42 m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='38 m ASR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='1% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='1% 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='1% 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='8% PSR 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 dB 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='9 dB Untargeted attacks Before After DNNA DNNB DNNA DNNB LE to p 50th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='60 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='54 m 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='30 m 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='45 m 90th 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='85 m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='93 m 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='55 m 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='41 m ASR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='1% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0% 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4% 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4% PSR 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 dB 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 dB percentile LE of localization models and half of the spacing distance, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='75 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this way, we can have multiple targeted spots for one genuine spot p and finally obtain 119 and 116 genuine-targeted spot pairs for DNNA and DNNB, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, we configure dmax = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='75 m in targeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' When performing untargeted attacks on p, we set dmin to be the sum of 90th percentile LE at p of localization models and half of the spacing distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Experimental Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We first show the overall attack performance of FooLoc on DNNA and DNNB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' For this purpose, we report all evaluation metrics in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Before attacks, DNNA and DNNB obtain 50th LEs of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='60 m and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='54 m, respectively, which are comparable to other localization DNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We can also observe that FooLoc has better performance in untargeted attacks in terms of LEs and ASRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The reason is that FooLoc can search all directions pointing away from genuine spots in untargeted attacks, while having much fewer directions and more strict distance constraints to launch targeted attacks as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Despite that, in targeted attacks, DNNA’s 90th percentile LE to genuine spots arises from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='85 m to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='61 m, while its 90th percentile LE to targeted spots decreases from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='08 m to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='42 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Similar results can be found in DNNB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, FooLoc achieves ASRs of 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='1% and 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='8% on DNNA and DNNB, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The above observations suggest that FooLoc can effectively render victim models’ predictions close to targeted spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In untargeted attacks, FooLoc makes the 50th and 90th percentile LE of both models increase by over five and two times, respectively, implying that the two models’ predictions are easily misled away from genuine spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, FooLoc obtains high ASRs of 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4% and 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4%, respectively, on DNNA and DNNB in untargeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' It is worth noting that due to random noise and environmental dynamics, some collected Wi-Fi CSI samples may have already been predicted in targeted areas before adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' However, such samples are only a very small portion of total testing samples, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='1% as shown in Table II, which indicates the validity of targeted spot selection and acceptable distance error settings in our attack methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Furthermore, we also find that FooLoc has low PSRs of about -19 dB in both targeted and untargeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The result means that only small perturbations are introduced in original signals, which TP-LINKTP-NK9 0 10 20 30 40 50 # of subcarriers 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 Normalized CSI Original CSI at genuine spot 1st antenna 2nd antenna 0 10 20 30 40 50 # of subcarriers 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 Targeted perturbed CSI ASR=99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6%, PSR= -19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='8dB 0 10 20 30 40 50 # of subcarriers 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 Normalized CSI Original CSI at targeted spot 0 10 20 30 40 50 # of subcarriers 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 Untargeted perturbed CSI ASR=100%, PSR= -18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='3dB Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Illustration of original and perturbed signals under targeted and untargeted attacks in offline experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' suggests the imperceptibility of our adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To sum up, the above results verify the effectiveness of FooLoc to deceive DL localization models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Next, we illustrate perturbed signals under targeted and un- targeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Since FooLoc has similar attack performance on DNNA and DNNB, we take perturbed signals of DNNA for illustration in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 9, where each subfigure depicts 50 CSI samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 9, we observe that under the same attack, the perturbed signals of two antennas share the same changing trends with respect to original ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' It is due to that our adversarial perturbations have multiplicative and repetitive impacts on original signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, although the perturbed signals under two attacks are predicted to be far away from the genuine spot with high probabilities, they look very similar to original ones, which shows the usefulness of maximizing smoothness and limiting strength of adversarial weights in perturbation optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Furthermore, we can observe that targeted perturbed CSIs have more sudden changes and are less smoother when compared with untargeted perturbed CSIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' This is due to the fact that more changes are needed when FooLoc renders one sample to be estimated to come from a specified spot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Interestingly, we also find that targeted attacks have smaller perturbations on original signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Though targeted perturbed signals show a very low similarity with original signals at the targeted spot, the corresponding predictions are less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='75 m from the targeted spot with a probability of 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' These observations suggest that localization DNNs are very vulnerable to our adversarial perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, we showcase FooLoc’s targeted and untargeted attacks on DNNA at two B spots in the offline environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To do this, we plot location predictions at two spots with and without adversarial attacks in the corresponding 2D Euclidean space in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In targeted attacks, the majority of CSI samples can be successfully perturbed into the neighboring area of targeted spots within a distance dmax = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='75 m, even if these spots locate in different directions with respect to corresponding genuine spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' This observation verifies FooLoc’s ability to render location predictions close to given targeted spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In untargeted attacks, adversarial perturbations can make model predictions far away from genuine locations with a distance of more than dmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, we can find that location predictions under untargeted attacks basically have a larger distance from 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 x (m) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 y (m) Targeted ASR:75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='7% Untargeted ASR:100% 1st Targeted ASR:99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6% Untargeted ASR:100% 2nd r = dmax r = dmin Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Illustration of adversarial attacks at two spots in the offline environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The red dots are location predictions without perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The gray dots are location predictions under untargeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 ASR 0 1 2 3 4 50th LE (m) 20 10 0 PSR (dB) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 0 1 2 3 4 20 10 0 White-box Black-box Baseline 1 Baseline 2 Baseline 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Performance of untargeted attacks under different conditions in offline experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' genuine spots than that under targeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The above results illustrate the effectiveness of FooLoc to launch targeted and untargeted attacks on localization DNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Furthermore, we show the feasibility of fooling black-box DL models over the air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this case, the localization model used by the AP is unknown to the attacker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To simulate this situation, we first assume that DNNA is used by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, we train DNNA using uplink CSI samples in the dataset DA as a victim model and optimize DNNB using the dataset DB as a substitute model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Next, we use the substitute model to generate untargeted adversarial perturbations with DB according to Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this way, we can apply locally-generated perturbations on uplink CSI samples in DC to deceive unknown DNNA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Similarly, we can attack DNNB if it is used by the AP using DNNA in a black- box manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this scenario, we also set three baseline models that leverage multiplicative perturbation weights randomly sampled from the interval (1 − δmax, 1 + δmax).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The baseline models, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', Baseline 1, Baseline 2 and Baseline 3, have different perturbation constraints δmax of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='15, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='3 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='45, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' During testing, we run each of them ten times and average all ASRs, 50th percentile LEs and PSRs as their final performance results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 11 shows, FooLoc suffers performance degradation from white-box scenarios to black-box ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' These results are 10 10m AP A spots B spots Office area AP with 2 antennas Client with 1 antenna WARP boards Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Floor plan of the experiment environment and experimental platform in online experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' expected because the substitute models for perturbation gener- ation in black-box attacks are different from targeted victim models, resulting in different adversarial weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, when compared to other baseline models, Baseline 3 obtains the best performance in terms of ASRs and 50th LEs, while also having the highest PSRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, compared with Baseline 3, the black-box version of FooLoc achieves better performance on DNNA and comparable performance on DNNB with regard to ASRs and 50th LEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' However, it has much smaller PSRs on both two DNNs, suggesting that our adversarial attacks are more effective and stealthy than random perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The above results indicate that FooLoc is capable of learning some shared adversarial weights that work well on different models due to the transferability of adversarial attacks [7], [8], showing the possibility of exploiting FooLoc to perform over-the-air adversarial attacks on black-box localization models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Online Experiments In this subsection, we further examine the performance of FooLoc in online experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this setting, we multiply adversarial weights with LTF signals, transmit perturbed signals to the AP over real wireless channels and record corresponding falsified uplink CSIs to attack localization models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In online experiments, we implement FooLoc using the WARP wireless experimental platform [19] as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In particular, two WARP v3 boards are controlled by a Lenovo laptop via Ethernet cables to transfer control signals as well as their CSI measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' One of the two boards is fixed at a certain location to act as an AP with two antennas, and the left board with one antenna works as a mobile client that communicates with the AP at the 5 GHz Wi-Fi band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Since WARP boards can provide channel estimates of 52 subcarriers, one CSI sample in online experiments has a size of 1 × 2 × 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Data Collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We collect CSI measurements in a corridor environment as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, we place the client at ten A spots and ten B spots in turn to record CSI measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' First, we move the client among A spots, with a spacing distance of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 m, and receive 1K uplink CSIs at each spot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In this way, we obtain a dataset DE containing 10K samples for training localization DNNs used by the AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, by locating the client at B spots, we collect 1K downlink CSI samples at each location and have a dataset DF to generate adversarial perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Note that there are stairs at one ASR PSR 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 20 15 10 5 0 Targeted ASR PSR 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 20 15 10 5 0 dB Untargeted Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Attack performance of FooLoc in online experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' end of the corridor and people go downstairs and upstairs frequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Thus, the collected CSI measurements are impacted by environmental noise and changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Attack Methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The attack strategy adopted in online experiments is similar to that in offline settings, but the only difference is that the attacker needs to send perturbed LTF signals over the air to deceive the victim AP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Specifically, we train DNNA and DNNB, respectively, on the dataset DE and learn adversarial perturbations using DF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, we multiply the locally-optimized perturbations on Wi-Fi LTF signals and transmit the perturbed signals from the client to the AP over the air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' After the AP receives perturbed CSI measurements, we immediately feed them into DNNA and DNNB, respectively, to perform location estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, we set dmax = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='3 m, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', the half of the spacing distance, and configure dmin to be the sum of the 90th percentile LE and dmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' For a given B spot, the corresponding targeted spot is selected as a location that has a distance of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='8 m from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Experimental Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We first report FooLoc’s ASRs and PSRs in our online experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Since FooLoc’s adversarial perturbations are learned from downlink CSI measurements, they would generally be affected by random environmental noise in uplink transmissions, resulting in performance degra- dation in terms of ASRs at the testing phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 13, FooLoc achieves targeted ASRs of 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='7% and 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5% on DNNA and DNNB, respectively, which are comparable to that of FooLoc in offline experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In untargeted attacks, FooLoc obtains ASRs of above 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0% on two victim models, suggesting that FooLoc is still effective in this online setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, our adversarial attacks have small perturbations on original signals and obtain mean PSRs of less than -17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 dB in both targeted and untargeted scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The above observations indicate that FooLoc is robust to environmental noise and has comparable performance in online experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Furthermore, different AP locations will impact FooLoc’s performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In general, the displacement of AP locations will produce different training sets of CSI fingerprints, which correspondingly changes the parameters of the localization model, thus resulting in different attack performance of our system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Roughly speaking, the higher localization accuracy the model achieves, the lower ASR FooLoc obtains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In our experiments, FooLoc achieves a targeted ASR of about 73% and an untargeted ASR of about 93% in the offline experiment, while obtaining a targeted ASR of about 71% and an untargeted ASR of about 99% in the online experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The above results 11 0 10 20 30 40 50 # of subcarriers 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 Normalized CSI Original CSI at genuine spot 1st antenna 2nd antenna 0 10 20 30 40 50 # of subcarriers 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 Targeted perturbed CSI ASR=100%, PSR= -18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='7dB 0 10 20 30 40 50 # of subcarriers 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 Normalized CSI original CSI at targeted spot 0 10 20 30 40 50 # of subcarriers 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='5 1 Untargeted perturbed CSI ASR=100%, PSR= -16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4dB Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Illustration of original and perturbed signals under targeted and untargeted attacks in online experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' show that FooLoc has similar attack performance in two different experimental settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Next, we take a further step to show the imperceptibility of our adversarial perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' For this purpose, we record uplink CSI measurements at the AP with and without perturbations and depict corresponding signals for attacking DNNA in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' As the figure shows, all perturbed CSI measurements look like original ones, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', keeping the main changing trends of original signals with slight differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, FooLoc can successfully generate adversarial signals with high ASRs and low PSRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Although targeted perturbed CSIs are very different from original signals at the targeted spot, their predictions are less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='3 m from the targeted spot with a probability of 100%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To sum up, our adversarial perturbations can effectively spoof DL localization models over realistic wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Then, we present location prediction results with and without adversarial attacks at two B spots in the online environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' To do this, we depict location predictions under adversarial attacks in the 2D Euclidean space in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' At the first spot, FooLoc can successfully render all location predictions in untargeted attacks far away from it with a distance of more than dmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' At the same time, FooLoc makes location predictions in targeted attacks close to the targeted spot within a distance of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='3 m with a high probability of 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='2%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Similar observations can be also found in the second spot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The above results show the effectiveness of FooLoc to perform over-the-air targeted and untargeted adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Related Work Indoor Localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Recent years have witnessed the emerging needs of person or device locations in indoor environments, such as homes and office buildings [26], [27], [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Generally, indoor localization can be realized by exploit- ing various sensing modalities, among which Wi-Fi signals are one of the most promising ones thanks to their high ubiquity in indoor scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, due to the huge success in the computer vision domain, various DNNs have been recently exploited for accurate Wi-Fi indoor localization [29], [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The stacked restricted Boltzmann machines [20], deep autoencoder [31] as well as residual networks [6] are proposed for indoor positioning, distance estimation, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' With the increasing usage of DNNs in indoor localization, it is 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 x (m) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='2 y (m) 1st spot Targeted ASR:92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='2% Untargeted ASR:100% 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 x (m) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='2 y (m) 2nd spot Targeted ASR:100% Untargeted ASR:100% Genuine spot Targeted spot Original prediction Targeted attack Untargeted attack Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Illustration of adversarial attacks in the online environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' thus of great importance to investigate the robustness of DL localization models to adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Adversarial Attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Although deep neural networks have proven their success in many real-world applications, they are shown to be susceptible to minimal perturbations [7], [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' After that, various adversarial attacks are introduced in face recogni- tion [32], person detection [33], optical flow estimation [34], and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Recently, adversarial attacks are proposed on DNN based applications in wireless communications, such as radio signal classification [35], waveform jamming and synthesis [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, the work [12] exposes the threats of adversarial attacks on indoor localization and floor classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' However, this work uses additive perturbations, which can not tamper CSI measurements over realistic Wi-Fi channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In our work, we propose multiplicative adversarial perturbations that can be exploited by adversary transceivers to perform adversarial attacks on localization DNNs over the air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wireless Channel Manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Perturbations on wireless channels have also been investigated in the tasks of device au- thentication and device localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Recently, researchers [15] propose a CSI randomization approach to distort location specific signatures for dealing with users’ privacy concerns about locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' However, this approach lacks the capability of misleading location predictions close to specified spots, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', targeted attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, the proposed random perturbations are not smooth, which will produce significant differences between perturbed CSI measurements and original ones, rendering them easy to be detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' However, FooLoc enables the attacker to launch both targeted and untargeted attacks, and our adversarial perturbations are smooth and minimal, making perturbed CSI signatures similar to the original ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Moreover, the authors in [13] propose analog man-in-the- middle attacks to mimic legitimate channel responses against link based device identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The work [14] fools location distinction systems via creating virtual multipath signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' These approaches trigger attacks via directly transforming genuine Wi-Fi CSI fingerprints to targeted ones, which is suitable for attacking single-antenna APs, which, however, are physically unrealizable in widely-used multi-antenna Wi- Fi systems due to the one-to-many relationship between the elements of one perturbation and one CSI measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In 12 contrast, our attack takes this relationship into consideration and generates adversarial perturbations with a repetitive pattern, which characterizes the impact of over-the-air attacks on multi- antenna APs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Conclusion This paper presents FooLoc, a novel system that launches over-the-air adversarial attacks on indoor localization DNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We observe that though the uplink CSI is unknown to FooLoc, its corresponding downlink one is obtainable and could be a reasonable substitute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Instead of using traditional additive perturbations, FooLoc exploits multiplicative perturbations with repetitive patterns, which are suitable for adversarial attacks over realistic wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' FooLoc can efficiently craft imperceptible yet robust perturbations for triggering targeted and untargeted attacks against DL localization models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' We implement our system using both commercial Wi-Fi APs and WARP v3 boards and extensively evaluate it in different indoor environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' The experimental results show that FooLoc achieves overall ASRs of about 70% in targeted attacks and of above 90% in untargeted attacks with small PSRs of about 18 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' In addition, this paper reveals the bind spots of indoor localization DNNs using over-the-air adversarial attacks to call attention to appropriate countermeasures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, “Wireless sensing for human activity: A survey,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Surveys Tuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 22, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1629–1645, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Marakkalage, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Padmal, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Shaganan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Yuen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Guan, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Tan, “Collaborative SLAM based on WiFi fingerprint similarity and motion information,” IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1826–1840, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [3] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Mao, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Pandey, “CSI-based fingerprinting for indoor localization: A deep learning approach,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 66, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 763–776, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Nowicki and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wietrzykowski, “Low-effort place recognition with WiFi fingerprints using deep learning,” in International Conference Automation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Springer, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 575–584.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Abbas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Elhamshary, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Rizk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Torki, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Youssef, “WiDeep: WiFi-based accurate and robust indoor localization system using deep learning,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' IEEE PerCom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [6] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Mao, “Indoor fingerprinting with bimodal CSI tensors: A deep residual sharing learning approach,” IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 4498–4513, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Szegedy, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Zaremba, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Sutskever, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Bruna, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Erhan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Good- fellow, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Fergus, “Intriguing properties of neural networks,” arXiv:1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6199, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [8] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Goodfellow, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Shlens, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Szegedy, “Explaining and harnessing adversarial examples,” arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='6572, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [9] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Eykholt, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Evtimov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Fernandes, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Li, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Rahmati, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Xiao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Prakash, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Kohno, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Song, “Robust physical-world attacks on deep learning visual classification,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' IEEE CVPR, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1625–1634.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Sheth, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Seshan, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wetherall, “Geo-fencing: Confining Wi- Fi coverage to physical boundaries,” in International Conference on Pervasive Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Springer, 2009, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 274–290.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Pan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Pan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Zheng, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Yang, “Digital wall: A power- efficient solution for location-based data sharing,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' IEEE PerCom, 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 645–650.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Patil, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Mao, “Adversarial attacks on deep learning-based floor classification and indoor localization,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM WiseML, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 7–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [13] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Tung, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Shin, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Kim, “Analog man-in-the-middle attack against link-based packet source identification,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM MobiHoc, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 331–340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Fang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Shen, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Zhu, “Where are you from?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' confusing location distinction using virtual multipath camouflage,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM MobiCom, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 225–236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Cominelli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Kosterhon, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Gringoli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Cigno, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Asadi, “IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='11 CSI randomization to preserve location privacy: An empirical evaluation in different scenarios,” Computer Networks, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 191, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 107970, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Newsome, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Shi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Song, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Perrig, “The sybil attack in sensor networks: analysis & defenses,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' IEEE IPSN, 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 259–268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [17] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Huang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Jiang, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Zhang, “Detecting colluding sybil attackers in robotic networks using backscatters,” IEEE/ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 793–804, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Tse and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Viswanath, Fundamentals of wireless communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Cambridge university press, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [19] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Anand, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Aryafar, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Knightly, “WARPlab: a flexible framework for rapid physical layer design,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM workshop on Wireless of the students, by the students, for the students, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 53–56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [20] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Mao, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Pandey, “DeepFi: Deep learning for indoor fingerprinting using channel state information,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' IEEE WCNC, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1666–1671.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Sen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Radunovic, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Choudhury, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Minka, “You are facing the mona lisa: Spot localization using PHY layer information,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM MobiSys, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 183–196.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Ayyalasomayajula, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Arun, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Sharma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Sethi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Vasisht, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Bharadia, “Deep learning based wireless localization for indoor navigation,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='ACM MobiCom, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Xie, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Li, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Li, “Precise power delay profiling with commodity WiFi,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM MobiCom, 2015, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 53–64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [24] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Xiao, “IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content='11 n: enhancements for higher throughput in wireless LANs,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 82–91, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [25] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Goodfellow, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Bengio, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Courville, Deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' MIT press, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [26] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Xiao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Yang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Zhang, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Jiang, “Peer- to-peer localization for single-antenna devices,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1–25, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [27] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Luo, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wang, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Jiang, “Single-antenna device- to-device localization in smart environments with backscatter,” IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [28] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Hu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Xiao, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Zhang, “WiFi and vision- integrated fingerprint for smartphone-based self-localization in public indoor scenes,” IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 6748–6761, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Kotaru, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Joshi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Bharadia, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Katti, “Spotfi: Decimeter level localization using WiFi,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM SIGCOMM, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 269–282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [30] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Xie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Xiong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Li, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Jamieson, “mD-Track: Leveraging multi-dimensionality for passive indoor Wi-Fi tracking,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM MobiCom, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [31] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Jia, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Jiang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Jiang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Wu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Lv, “Wifi-sensing based person-to-person distance estimation using deep learning,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' IEEE ICPADS, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 236–243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [32] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Sharif, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Bhagavatula, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Bauer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Reiter, “Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM CCS, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1528–1540.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [33] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Thys, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Van Ranst, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Goedem´e, “Fooling automated surveillance cameras: adversarial patches to attack person detection,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' IEEE CVPR, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 0–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Ranjan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Janai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Geiger, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Black, “Attacking optical flow,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' IEEE ICCV, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 2404–2413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [35] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Sadeghi and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Larsson, “Adversarial attacks on deep-learning based radio signal classification,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 213–216, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' [36] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Restuccia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' D’Oro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Al-Shawabka, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Rendon, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Chowdhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Ioannidis, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' Melodia, “Generalized wireless adversarial deep learning,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' ACM WiseML, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} +page_content=' 49–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf'} diff --git a/7NAyT4oBgHgl3EQf2vm0/content/2301.00757v1.pdf b/7NAyT4oBgHgl3EQf2vm0/content/2301.00757v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f0f345df8377e068d44e78db1ff284c37d62b955 --- /dev/null +++ b/7NAyT4oBgHgl3EQf2vm0/content/2301.00757v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6db7262ed7dc2aa0f46d3a971237bd09ee549e1f4f9f4877451a33ccf4ff5b59 +size 2232183 diff --git a/7NAyT4oBgHgl3EQf2vm0/vector_store/index.faiss b/7NAyT4oBgHgl3EQf2vm0/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..bb93e57a8da4e42bc3c56cc7ed0d5a741341bf81 --- /dev/null +++ b/7NAyT4oBgHgl3EQf2vm0/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:34c48973a8899abd5329bc00ccc558fdf1bde514c67a03c097c4f135f677618c +size 3407917 diff --git a/7NAyT4oBgHgl3EQf2vm0/vector_store/index.pkl b/7NAyT4oBgHgl3EQf2vm0/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..fbaba8be9153fdf60c2d016b89fc7a216dd906bf --- /dev/null +++ b/7NAyT4oBgHgl3EQf2vm0/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f0be2f484c5543d4847eb1d705951df4840ac587b3ddbf524ea9f5f7f2e2cac +size 142311 diff --git a/9dFAT4oBgHgl3EQfpx0O/vector_store/index.pkl b/9dFAT4oBgHgl3EQfpx0O/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..b29576dd6f45d4215f0cee6ae86bc24dfa1a9d8b --- /dev/null +++ b/9dFAT4oBgHgl3EQfpx0O/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:45f14d75b3dbc8057feb562d2f64521bce31122f81baf7ad86739ab99ec5f18e +size 160256 diff --git a/9dFRT4oBgHgl3EQfqjdh/vector_store/index.faiss b/9dFRT4oBgHgl3EQfqjdh/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..6e5369e788ba43f74ecc0e818d43c0fe58513938 --- /dev/null +++ b/9dFRT4oBgHgl3EQfqjdh/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9738d94488a58de813c9f2ddde6d6f0097930decbc76f1f89cd2580585400795 +size 17956909 diff --git a/ANFQT4oBgHgl3EQfMDYd/content/2301.13266v1.pdf b/ANFQT4oBgHgl3EQfMDYd/content/2301.13266v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2667fd6f17d3a0f1062411382b825a00b9bb890d --- /dev/null +++ b/ANFQT4oBgHgl3EQfMDYd/content/2301.13266v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c768dec977730cfb5d3903fb0d1c35e1d274a47888d4f3804d5e55ba957d5905 +size 330246 diff --git a/ANFQT4oBgHgl3EQfMDYd/vector_store/index.pkl b/ANFQT4oBgHgl3EQfMDYd/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ed8dfffee9d9fdfc1e4356e06522005147bc411b --- /dev/null +++ b/ANFQT4oBgHgl3EQfMDYd/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d0b979ee27318feb2357a22fe683fc6f12ec51399c0540cde79d90ebe7095057 +size 155712 diff --git a/B9FAT4oBgHgl3EQfsh6e/vector_store/index.faiss b/B9FAT4oBgHgl3EQfsh6e/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..7c8d1d37fc88e383335d2a838bf4f5448683efb6 --- /dev/null +++ b/B9FAT4oBgHgl3EQfsh6e/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9f848ab8330711c2280767532827bc8a40b020e0d88223f5feb433ecb11c971e +size 10485805 diff --git a/C9A0T4oBgHgl3EQfAf_H/content/2301.01964v1.pdf b/C9A0T4oBgHgl3EQfAf_H/content/2301.01964v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..973064cfbf74b80ed6a0fe981f5dc4384516031b --- /dev/null +++ b/C9A0T4oBgHgl3EQfAf_H/content/2301.01964v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fb18ee4d7634eb4ed637f8c3deae8a6d3cb5b16d5974f921302691e2e6789459 +size 1750578 diff --git a/C9A0T4oBgHgl3EQfAf_H/vector_store/index.pkl b/C9A0T4oBgHgl3EQfAf_H/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f363f6faa1d2dc1e3a63cad71ce3160e056d6b41 --- /dev/null +++ b/C9A0T4oBgHgl3EQfAf_H/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c5755a466c4d409922ceb92366d780ae828029efc5f7edf0763e9c6674ad7a5b +size 151909 diff --git a/C9AzT4oBgHgl3EQfTvzN/vector_store/index.pkl b/C9AzT4oBgHgl3EQfTvzN/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..5300ec2e5208bbe07f6e8a03af5e929bdc059447 --- /dev/null +++ b/C9AzT4oBgHgl3EQfTvzN/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:611337e9be380c4f7b6ef3e53dfcb4cc5c6af57b64b41de0e900fffa3f8f7ad0 +size 321156 diff --git a/C9FQT4oBgHgl3EQf_jdA/content/tmp_files/2301.13458v1.pdf.txt b/C9FQT4oBgHgl3EQf_jdA/content/tmp_files/2301.13458v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..896daf03ba9a47c366c03870f21d41783c6db275 --- /dev/null +++ b/C9FQT4oBgHgl3EQf_jdA/content/tmp_files/2301.13458v1.pdf.txt @@ -0,0 +1,1107 @@ +MNRAS 000, 000–000 (0000) +Preprint 1 February 2023 +Compiled using MNRAS LATEX style file v3.0 +Tracing of Magnetic field with gradients: Sub-Sonic Turbulence +K. W. Ho, 1 ★ A. Lazarian, 1,2 † +1Department of Astronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA +2Centro de Investigación en Astronomía, Universidad Bernardo O’Higgins, Santiago, General Gana 1760, 8370993, Chile +Accepted 2023 January 12. Received 2023 January 12; in original form 2022 March 21 +ABSTRACT +Recent development of the velocity gradient technique shows the capability of the technique in the way of tracing magnetic +fields morphology in diffuse interstellar gas and molecular clouds. In this paper, we perform the numerical systemic study of the +performance of velocity and synchrotron gradient for a wide range of magnetization in the sub-sonic environment. Addressing +the studies of magnetic field in atomic hydrogen, we also study the formation of velocity caustics in the spectroscopic channel +maps in the presence of the thermal broadening. We show that the velocity caustics can be recovered when applied to the Cold +Neutral Medium (CNM) and the Gradient Technique (GT) can reliably trace magnetic fields there. Finally, we discuss the changes +of the anisotropy of observed structure functions when we apply to the analysis the procedures developed within the framework +of GT studies. +Key words: ISM: structure – ISM: atoms – ISM: clouds – ISM: magnetic fields +1 INTRODUCTION +Magnetic fields are very important for key astrophysical processes in +interstellar media (ISM) such as the formation of stars (see McKee +& Ostriker 2007; Mac Low & Klessen 2004), the propagation and +acceleration of cosmic rays (see Jokipii 1966; Yan & Lazarian 2008), +the regulation of heat and mass transfer between different ISM phases +(see Draine 2009 for the list of the different ISM phases). Polarized +radiation arising from the presence of the magnetic field also inter- +feres with the sygnal of the enigmatic CMB B-modes arising from +gravity waves in the early Universe. (Zaldarriaga & Seljak 1997; +Caldwell et al. 2017; Kandel et al. 2017). Therefore, it is essential to +have a reliable way to study the properties of magnetic fields in those +process. +The traditional way to study the Plane of Sky (POS) magnetic fields +is using polarimetry measurements (Planck Collaboration +2018; +Lazarian 2002). It is widely used from radio to optical wavelengths +to trace the magnetic field morphology at various scales in the ISM. +Recently, a new promising technique has been proposed, the veloc- +ity gradient technique (VGT), which is capable of tracing magnetic +field using spectroscopic data (Yuen & Lazarian 2017a; Lazarian et +al. 2018; Hu et al. 2019; Ho & Lazarian 2021). The technique makes +use of the fact that magnetic fields make turbulence anisotropic, with +turbulent eddies being elongated along the magnetic field (See Beres- +nyak & Lazarian (2019) for a monograph). As a result, the turbulence +induces the fluid motion mostly perpendicular to the direction sur- +rounding magnetic eddies. It is important that the magnetic field +direction is the local direction of magnetic field in the vicinity of +turbulent eddies. This follows directly from the theory of turbulent +reconnection that predicts that magnetic fields of the eddies reconnect +★ E-mail: kho33@wisc.edu +† E-mail: alazarian@facstaff.wisc.edu +over one eddy turnover time (Lazarian & Vishniac (1999), hereafter +LV99). This property of magnetic turbulence is central for magnetic +field tracing with both velocity gradients as well as other types of +gradients, e.g. synchrotron intensity gradients (Lazarian et al. 2017), +synchrotron polarization gradients (Lazarian et al. 2018). +The VGT has been numerically tested for a wide range of column +densities from diffuse transparent gas to molecular self-absorbing +dense gas (Yuen & Lazarian 2017a; Lazarian & Yuen 2018a; Hu +et al. 2019; Hu & Lazarian 2021). The technique was shown to +be able to provide both the orientations of the magnetic field as +well as a measure of media magnetization (Lazarian et al. 2018). +A VGT survey was conducted recently to study the morphology of +a few nearby molecular cloud (Hu et al. 2019). The result showed +consistency with the Planck polarization measurement and indicate +the capability of the VGT on tracing magnetic field in different ISM +region. +While the earlier VGT study mainly focused on the supersonic +spectroscopic data, the same idea of tracing magnetic with gradients +can be employed with different types of astrophysical data. For in- +stance, Lazarian et al. (2017) showed gradient can also be applied +to trace magnetic field with synchrotron intensity gradients (SIGs) +maps. The corresponding emission comes from subsonic warm/hot +media. The lack of shock wave in sub sonic environment is beneficial +for magnetic field tracing. +Tracing of magnetic field in subsonic media is also important +within the VGT. The velocity gradients can be obtained in this setting +using velocity centroids which are not sensitive to thermal broaden- +ing. If the channel maps are applied to subsonic data, first of all, one +can use heavier species as spectroscopic tracers. For such species, +the thermal broadening is suppressed and caustics produced in chan- +nel maps are prominent. In addition, the newly introduced Velocity +Decomposition Algorithm (VDA) Yuen et al. (2021) opens ways of +exploring velocity caustics in the presence of the thermal broadening. +© 0000 The Authors +arXiv:2301.13458v1 [astro-ph.GA] 31 Jan 2023 + +2 +Ho & Lazarian +Therefore this study explores the ability of magnetic field tracing +using both the VGT and the SIGs for subsonic medium. Several +concerns arise on the application of Gradient Technique (GT) in the +sub-sonic environment. First, multi-phase media study (see Yuen et +al. (2021)) shows that thermal broadening is a crucial factor that +smooths out the structure in the subsonic spectroscopic data. It may +potentially weaken the ability of the VGT to trace the magnetic field. +Second, Ho & Lazarian (2021) found out that the intermittency of fast +mode could also play an important role in affecting the VGT analysis. +In the case that the fast mode dominate the energetics of a particular +region they induce there the rotation of the velocity gradient direction +from parallel to perpendicular to the magnetic field. This, however, +does not happen with the SIGs, for which the gradients induced by +fast and Alfven modes are parallel. +In Ho & Lazarian (2021) we proposed a new technique, Gradient +of Gradient Amplitude (GGA), which improves the magnetic field +tracing by gradients. However, an in-depth study is required to ana- +lyze the applicability of GGA in sub-sonic regime versus the change +of Alfven Mach number. +Below, we perform a new study of the GT in the sub-sonic environ- +ment to answer the concerns above and evaluated the performance +of the GT in a low Ms regime. In what follows, we would cover the +theory in section 2 and our numerical setup in section 3. Then we +would discuss the result of the alignment measure of the gradient in +the ideal observable measure and the velocity gradient in the pres- +ence of thermal broadening in multi-phase media in section 4. We +further extend the study of GGA in section 5. We then discuss the the +Correlation Function Analysis (Hereafter CFA) alignment in section +6. At last, we would discuss our work in section 7 and summarize the +paper in section 8. +2 GRADIENT TECHNIQUE +2.1 Theoretical Considerations +The most important component of Magnetohydrodynamic (MHD) +turbulence is the cascade of Alfvenic motions. Therefore, below we +will focus on the properties of Alfven modes. +The modern theory of MHD turbulence originates from the work +of Goldreich & Sridhar 1995 (henceforth GS95) that described the +scaling of transAlfvenic incompressible turbulence in what is now +known to be the strong MHD turbulence regime. The description +was, however in the frame of the mean magnetic field, which, as it +was shown by the later studies, the GS95 statitical scalings are not +applicable. +Further advances were related to understanding of the importance +of the local system of reference as well as the generalization of the +theory for the sub-Alfvenic regime in Lazarian & Vishniac 1999 +(henceforth LV99). There also the regime of weak turbulence was +quantified (see also Galtier et al. (2000)). +The local system of reference is the system of reference in respect +to which the turbulent motions should be considered. Its importance +is easiest to see considering magnetic eddies. Due to fast turbulent +reconnection the eddies aligned with the magnetic field direction +in their vicinity can reconnect and perform a turnover within one +eddy turnover time (LV99). This happens on the eddy turnover scale +∼ 𝑙⊥/𝑣𝑙, +where 𝑙⊥, 𝑣𝑙 are the size of eddy perpendicular to the +local magnetic field direction and the eddy’s velocity at the scale l. +Incidentally, this mixing results in inducing an Alfven perturbation +with the same period, i.e. 𝑙⊥/𝑣𝑙 ∼ 𝑙∥/𝑉𝐴, where 𝑉𝐴 is the Alfven +velocity. The latter corresponds to the condition termed "critical +balance" in GS95. However, unlike the origianal GS95 claim, the +critical balance is only in the system of reference aligned with the +local direction of the magnetic field, i.e. with the direction of the +magnetic field in the direct vicinity of the eddy. The local system of +reference is absolutely critical for the GT. It is only because of the +localized alignment that the gradients of velocity and magnetic field +can trace 3D magnetic field. +The numerical study in Cho & Vishniac 2000; Maron & Goldreich +2000 established numerically the vital importance of the local system +of reference for the description of MHD turbulence. The subsequent +studies in Lithwick & Goldreich (2001) as well as Cho & Lazarian +(2002, 2003); Kowal et al. (2009), extended the the theory to the +compressible case. This theory of MHD compressible turbulence +(see the monograph by Beresnyak & Lazarian (2019)) is at the basis +of the GT. +It is important to note that the motions perpendicular to the lo- +cal magnetic field have the form of Alfvenic eddies and they ex- +hibit Komlogorov scaling 𝑣𝑙 ∼ 𝑙1/3 +⊥ . Therefore the gradients scale +as 𝑣𝑙/𝑙⊥ ∼ 𝑙−2/3 +⊥ +, meaning that the gradients at the smallest re- +solved scales are the most important (see Lazarian et al. (2020) for +the analytical theory of gradient measurements). These gradients are +perpendicular to the magnetic field and their direction should be +turned 90 degrees to get the magnetic field tracing. It is important +that the amplitude of the gradients increases with the decrease of the +scale. Therefore, the gradients measured at the smallest scales are +the most prominent. These gradients, similar to aligned grains (see +(Andersson et al. 2015)), sample the 3D magnetic field along the +line of sight. Due to this effect, the large scale gradients, e.g. arising +from galactic shear, are not important for the analysis of the high +resolution data. +2.2 Velocity and magnetic gradients +2.2.1 General outlook +The 3D velocity fluctuation are not directly available from the obser- +vations. Instead, the gradients of velocity centroids and the gradients +of intensity fluctuations measured within thin channel maps 1 can be +used as proxies of the velocity gradients. In both cases, the gradients +are measured for turbulent volume extended by L > 𝐿𝑖𝑛 𝑗 along the +LOS, and this entails additional complications, where L, 𝐿𝑖𝑛 𝑗is the +LOS depth and the injection scale. While eddies stay aligned with +respect to the local magnetic field, the direction of the local magnetic +field is expected to change along the LOS. Thus, the contribution of +3D velocity gradient are also summed up along the line of sight. +The spectrum of observed fluctuations changes due to the averag- +ing effect along the LOS. It is easy to show that the 2D spectrum +of the turbulence obtained by projecting the fluctuations from 3D +has the same spectral index of -11/3 2. The relation between the +spectral slope of the correlation function and the slope of the turbu- +lence power spectrum in 2D in this situation is −11/3 + 2 = −5/3, +where 2 is the dimensionality of the space. Therefore, the 2D velocity +fluctuations arise from the 3D Kolmogorove-type turbulence scale +as 𝑙5/6 +2𝐷 with the gradient anisotropy scaling as 𝑙−1/3 +2𝐷 . It is important +that the amplitude of the gradients increases with the decrease of the +1 +For a channel maps with channel width Δ𝑣, the thin channel map means +its Δ𝑣 ≤ +√︃ +𝛿𝑣2 +𝑅, where 𝛿𝑣𝑅 is the velocity dispersion. +2 Starting from 1D spectrum 𝑃1𝐷 with spectral index -5/3, we can get back +3D spectral index of −11/3 by considering the dimensional analysis of 𝑃3𝐷 += 𝑃1𝐷𝑘−2 +MNRAS 000, 000–000 (0000) + +3 +scale. Therefore, the gradients measured at the smallest scales are +the most prominent. These gradients, similar to aligned grains (see +(Andersson et al. 2015)), sample the 3D magnetic field along the +line of sight. Due to this effect, the large scale gradients, e.g. arising +from galactic shear, are not important for the analysis of the high +resolution data. +The slow modes follow the scaling of the Alfven modes (Goldreich +& Sridhar 1995; Lithwick & Goldreich 2001; Cho & Lazarian 2002, +2003) and therefore induce the same type of gradients as Alfvenic +modes. while fast modes are different (Cho & Lazarian 2002, 2003; +Kowal et al. 2009; Ho & Lazarian 2021)). It follows from the the- +ory in (Lazarian & Pogosyan (2012), hereafter LP12) that gradients +of synchrotron emission arising from fast modes are also aligned +perpendicular magnetic field direction, while the anisotropies of the +gradients of velocity caustics and velocity centroids are different +(Kandel et al. 2017, 2018). It is possible to show (Lazarian et al. +2018) that the corresponding gradients are perpendicular to those +created by Alfven and slow modes. Therefore, the contribution of the +fast modes can decrease the accuracy of the GT. We are dealing with +their contribution in this paper. +2.2.2 VGT for molecular clouds and diffuse HI +The magnetic field tracing with velocity gradients in molecular +clouds can be tested successfully with isothermal numerical sim- +ulations (see Hu et al. (2019)). This is due to efficient cooling of +the molecular clouds, which is different from HI gas (See Field et +al. (1969); Wolfire et al. (1995, 2003)). The HI gas is stabilized by +the thermal equilibrium between the heating and cooling and forms +two stable phases: the warm and cold phases. Other than the two +phases, the thermally unstable phase also plays a vital role in the +atomic hydrogen environment due to the consequence of strong tur- +bulence. Due to the presence of magnetized turbulence in the atomic +hydrogen it is a promising medium of applying the VGT. In such an +environment, the VGT has already demonstrated the reliable tracing +of the magnetic field (Yuen & Lazarian 2017a; Hu et al. 2019). +The turbulence is subsonic in most volume of galactic HI, which +corresponds to the warm phase.(Saury et al. 2014; Marchal, Mar- +tin & Gong 2021) The Velocity Decomposition Algorithm (VDA) +developed in Yuen et al. (2021) allows to identify velocity caustics +produced in this phase. +2.3 Velocity caustics +The concept of velocity caustics is first proposed by Lazarian & +Pogosyan (2000) and further facilitated by Yuen et al. (2021). Veloc- +ity caustics describes the effect of pure turbulent velocity fluctuation +and how they come into the thin channel map. One ideal picture would +be, even though considering a incompressible magnetized turbulent +fluid with no density fluctuation, we can still observe a channel map +with anisotropic fluctuation arising from the turbulence. Those fluc- +tuations are often referred to as the velocity contribution and different +statistical tools (for example, VGT) could utilize the information to +trace magnetic field. However, the fluid contains compressibility and +density contamination caused by thermal broadening effect, making +the fluctuation of channel map contains the contribution from both +density and velocity part. Nonetheless, the density effect on sub-sonic +media is sub-dominate and can be removed by using the algorithm +proposed by Yuen et al. (2021). +2.3.1 Synchrotron emission +Measurements of polarized synchrotron radiation and Faraday ro- +tation (see Beck & Wielebinski (2013); Oppermann et al. (2015); +Fletcher et al. (2011); Lenc et al. (2016); Van Eck et al. (2017) ) +provide an important insight into the magnetic structure of the Milky +Way and the neighboring galaxies. Synchrotron radiation fluctuation +carries the statistical information of MHD turbulence. Serial studies +discussed how to apply gradient onto measurable quantities, such as +synchrotron intensity and synchrotron polarization (See Lazarian et +al. (2017); Lazarian & Yuen (2018a)). In this paper we focus on the +gradient on synchrotron intensity map as it is a observable that we +deal with. +For the power-law distribution of electrons 𝑁(𝐸)𝐸 ∼ 𝐸 𝛼𝑑𝐸, the +synchrotron emissivity is +𝐼𝑠𝑦𝑛𝑐(X) ∝ +∫ +𝑑𝑧𝐵𝛾 +𝑃𝑂𝑆(X, z) +(1) +where 𝐵𝛾 +𝑃𝑂𝑆 = +√︃ +𝐵2𝑥 + 𝐵2𝑦 corresponds to the magnetic field com- +ponent perpendicular to the line of sight, X is the plane of sky vector +defined in x and y direction, z the line of sight axis and, 𝐵𝑥, 𝐵𝑦 the +3D magnetic field in x and y direction. The fractional power of the +index 𝛾 = (𝛼 + 1)/2 was a impediment for quantitative synchrotorn +statistical studies. However, LP12 showed that the correlation func- +tions and spectra of the 𝐵𝛾 +⊥ could express as 𝛼 = 3, which gives 𝛾 +and therefore the dependence of synchrotron intensity on the squared +magnetic field strength. +2.4 Application of Gradient in Sub-Sonic Environment +Below we will discuss two important examples to which we will apply +the GT. Those are the centroid map and the synchrotron intensity +map. We will perform a systematic study of the GT by changing +the magnetization of the numerical data used to produce synthetic +observations. Other than that, we would also like to study the behavior +of GT in the HI spectroscopic velocity channel maps due to the recent +debate of the velocity caustics effect in the channel map (See section +4.3 and 7.2 for more information). +3 NUMERICAL SIMULATION AND MEASURES +EMPLOYED +3.1 Simulation Setup +The numerical data that we analyzed in this work are obtained by 3D +MHD simulations using the single-fluid, operator-split, staggered- +grid MHD Eulerian code ZEUS-MP/ 3D (Hayes et al. 2006) to set up +a 3D, uniform, and isothermal turbulent medium. Periodic boundary +conditions are applied to emulate a part of the interstellar cloud. +Solenoidal turbulence injections are employed. To extend our study +from super sonic regime to sub sonic regime, we simulate two sets +of ensemble in each regime. Two sets of simulations employ various +Alfvenic Mach numbers 𝑀𝐴 = 𝑉𝐿/𝑉𝐴 with Sonic Mach Number +𝑀𝑆 = 𝑉𝐿/𝑉𝑆 at about 6 and 0.5 where 𝑉𝐿 represents the injection +velocity, 𝑉𝐴 the Alfven velocities, 𝑉𝑠 the sonic velocity. For the +generation of turbulence, the turbulence is injected solenoidally for +all the simulations using the Fourier-space method. Turbulent energy +is injected at the large scale ( k=2 ) and dissipated by the viscosity +at small scale. We adjust the strength of the injection such that the +cubes reach desired 𝑀𝑠 value. All of the cubes are listed in Table +1. However, limited by the turbulence scaling (Please see LV99), we +MNRAS 000, 000–000 (0000) + +4 +Ho & Lazarian +Subsonic +Supersonic +Model +𝑀𝑆 +𝑀𝐴 +Model +𝑀𝑆 +𝑀𝐴 +H1S +0.67 +0.13 +H1 +7.31 +0.22 +H2S +0.64 +0.38 +H2 +6.10 +0.42 +H3S +0.62 +0.64 +H3 +6.47 +0.61 +H4S +0.61 +0.90 +H4 +6.14 +0.82 +H5S +0.61 +1.17 +H5 +6.03 +1.01 +H6 +6.02 +1.21 +Table 1. Simulation parameters where 𝑀𝑆, 𝑀𝐴 represents the sonic Mach +number and Alfvenic Mach number. For all simulations, the resolution is set +to 7923. 𝑀𝑆, 𝑀𝐴 are the sonic Mach number and the Alfvenic Mach number. +devote most of our research to the sub-Alfvenic and trans-Alfvenic +case in this study. +3.2 Plane of sky magnetic field +We trace the plane of sky (POS) magnetic field orientation with +polarization. We shall assume a constant-emissivity dust grain align- +ment process. As a comparison to gradient, we generate polarization +maps by projecting our data cubes along the z-axis. We construct an +synthetic Stokes parameters Q, U. +By assuming that the constant emissivity and the dust followed the +gas, which the dust uniformly aligned with respect to the magnetic +field, the Stokes parameter 𝑄(X),𝑈(X) can than be expressed as a +function of angle 𝜃 at plane of sky magnetic field by tan(𝑥, 𝑦) = +𝐵𝑦(𝑥, 𝑦)/𝐵𝑥(𝑥, 𝑦) : +𝑄(X, 𝑧) ∝ +∫ +𝑑𝑧 𝜌(X, 𝑧)𝑐𝑜𝑠(2𝜃(X, 𝑧)) +𝑈(X, 𝑧) ∝ +∫ +𝑑𝑧 𝜌(X, 𝑧)𝑠𝑖𝑛(2𝜃(X, 𝑧)), +(2) +where 𝜌 is the density, X is the plane of sky vector defined in x and y +direction, z the line of sight axis and, 𝐵𝑥, 𝐵𝑦 the 3D magnetic field +in x and y direction. The dust polarized intensity 𝐼𝑃 = +√︁ +𝑄2 + 𝑈2and +angle 𝜃 𝑝 = 0.5𝑎𝑡𝑎𝑛2(𝑈/𝑄) are then defined correspondingly. +3.3 Synchrotron intensity map +For our present paper, we follow the approach in LP12 that amplitudes +of Stokes parameters are scaled up with respect to the cosmic-ray +index and the spatial variations of the Stokes parameters are similar +to the case of cosmic-ray index 𝛾 = 2 . +3.4 Alignment Measure (AM) and sub-block averaging +To quantify how good two vector fields are aligned, we employ +the alignment measure that is introduced in analogy with the grain +alignment studies (see Lazarian 2002): +𝐴𝑀 = 2⟨cos2 𝜃𝑟⟩ − 1, +(3) +as discussed for the VGT in González-Casanova & Lazarian 2017; +Yuen & Lazarian 2017a). The range of AM is [−1, 1] measuring +the relative alignment between the 90𝑜-rotated gradients and mag- +netic fields, where 𝜃𝑟 is the relative angle between the two vectors. +A perfect alignment gives 𝐴𝑀 = 1, whereas random orientations +generate 𝐴𝑀 = 0 and a perfect perpendicular alignment case refers +to 𝐴𝑀 = −1 . In what follows we use 𝐴𝑀 to quantify the alignments +of VGT in respect to magnetic field. +We adopt the sub-block averaging introduced in Yuen & Lazarian +(2017a). The use of sub-block averaging comes from the fact that +the orientation of turbulent eddies with respect to the local magnetic +field is a statistical concept. In real space the individual gradient +vectors are not necessarily required to have any relation to the local +magnetic field direction. Yuen & Lazarian (2017a) reported that the +velocity gradient orientations in a sub-region–or sub-block–would +form a Gaussian distribution in which the peak of the Gaussian fit +reflects the statistical most probable magnetic field orientation in this +sub–block. As the area of the sampled region increases, the precision +of the magnetic field traced through the use of Gaussian block fit +becomes more and more accurate. We will discuss it more in section +5. +4 RESULTS +For observational tracing of the magnetic field, it is essential to know +what to expect in terms of AM dependence on magnetization when +we employ the gradient method in the ideal synthetic environment. +We investigate how the change in Alfvenic Mach number 𝑀𝐴 would +alter the tracing power of Gradient Technique (GT) with two types +of data: spectroscopic maps and synchrotron intensity map. +4.1 Gradients of Synchrotron Intensity +The synchrotron intensity gradient (SIG) results are presented in the +left panel of Figure 1. We adopt the sub-block averaging approach, +and the results are computed using the block size of 722. To compare +the change of tracing power of GT in different hydro-dynamical +regimes, we include the result of supersonic simulation(𝑀𝑆 ∼ 6) +with similar coverage of 𝑀𝐴 as a reference. The setting of block size +is the same as the sub-sonic regime. +Throughout the change of 𝑀𝐴, the tracing power of SIG shows a +different trend in different hydro-dynamical regimes. The result of +sub-sonic environments (Blue curve) shows that the tracing power of +SIG is insensitive to the change of magnetization. The AM maintains +at about 0.8 with a mild drop in 𝑀𝐴 ∼ 0.4 case. For the case +of supersonic, we observe a steady downtrend of 𝐴𝑀 in the sub- +Alfvenic regime. The 𝐴𝑀 starts at ∼ 0.58 at 𝑀𝐴 ∼ 0.2 and drops +gradually to 0.38 at 𝑀𝐴 ∼ 0.8. The declining trend disappears at +the trans-Alfvenic and super-Alfvenic regime, which the AM steady +at around 0.38. Besides, we notice that the AM of SIG in sub-sonic +ensembles always higher than supersonic ensembles. +4.2 Result of Gradient in Centroid +For the benchmark of Velocity centroid gradient (VCG) in the sub- +sonic environment, Figure. 1 showed the change of AM of centroid +as a function of 𝑀𝐴 in the right panel. The sub-block setting is the +same as SIG. As a reference, we also add the change of AM for the +supersonic environment in orange color. We observe that the AM of +VGT behaves as a monotonic function of 𝑀𝐴 in the sub-Alfvenic +regime for both hydro-dynamical regimes. The 𝐴𝑀 declines when +𝑀𝐴 increased. The 𝐴𝑀 continues the declining trend throughout +from sub-Alfvenic to trans-Alfvenic regimes. However, similar to the +SIG result for supersonic ensembles, the 𝐴𝑀 of VGT for supersonic +ensembles becomes stable at about 0.4 at the transition from trans- +Alfvenic to the super-Alfvenic regime, +A tendency of well alignment between VGT and magnetic field in +the sub-sonic case is observed here. The AM of sub-sonic set always +better than supersonic case with the AM improvement of about 0.2 +throughout the change of 𝑀𝐴 from 0.2 to 1.2. +MNRAS 000, 000–000 (0000) + +5 +Figure 1. Left panel: Result of Synchrotron intensity gradient . Right panel: Result of Centroid Gradient. Both block size used = 72. X-axis: Alfvenic Mach +Number 𝑀𝐴, y-axis: AM. The blue lines represent the AM of sub-sonic ensembles and orange lines represent the change of AM of super-sonic ensembles. +Figure 2. The Comparison of intensity structure under the influence of thermal broadening. Simulation used in the figure: H4S. Warmer color means denser +pixels and coolers means pixels with lower density. The blue and red arrow represents the magnetic field direction and gradient direction within the sub-block +(block size = 662). The bottom right shows the alignment measure value between magnetic field and gradient for each maps. +4.3 Velocity Channel gradient in the multi-phase Interstellar +medium +The Velocity Channel Gradients provide another way to study the +magnetic field’s morphology in the interstellar medium Lazarian & +Yuen (2018a). The intensity fluctuation is strongly affected by its +width and the thermal properties of the medium. Hu et al. (2019) +demonstrated the reliable performance of VChGs in tracing the mag- +netic field directions in super-sonic molecular clouds. However, con- +cerns of the thermal broadening effect were raised in a sub-sonic +environment, which the effect could smooth out the velocity caustics +in the channel maps (Clark et al. 2019). In the extreme case, when +the thermal width larger than the velocity dispersion width, the fine +structure of the channel map would be washed out. In addition, this +can makes it similar to the intensity map. However, the physics of +the interstellar medium is complicated and involves external physical +processes, especially for the HI medium. Thermal instability plays a +crucial role in shaping the proprieties of the HI medium, resulting +in the multi-phase interstellar medium. In multi-phase media, the +numerical study found that the warm phase gas occupies most of +the medium with about 5000K. On the other hand, the cold phase +medium cools down to about 100K and occupied about 10% space ( +Heiles & Troland 2003; Kritsuk et al. 2017; Ho , Yuen & Lazarian +2022). +Since two-phase media has a dramatic difference in temperature, +MNRAS 000, 000–000 (0000) + +Synchrotron Intensity +Centroid +1.0 +Sub-Sonic +Super-Sonic +0.8 +0.6- +AM +0.4 - +0.2 +0.0 - +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +MA +MABroadening with warm gas only +No Broadening +Broadening with cold & warm gas +M += 0.68 +AM = 0.96 +0.94 +Broadening like +Velocity castics like6 +Ho & Lazarian +the influence of broadening effect on the intensity structure in the +channel map behaves entirely differently. The velocity profile of +warm phase gas will greatly be extended because of its tempera- +ture and its fine structure in the channel map being affected. As a +result, when we look at the transition of fine structure in channel +map when switching different velocity channel, the caustics created +in channel maps by turbulence in the warm phase gas will lose their +contrast due to thermal broadening. A new technique, namely, the +Velocity Decomposition Technique (VDA) can deal with the effect +of thermal broadening and focus on the velocity caustics (Yuen et +al. 2021). In what follows, we another way of how the dynamics of +warm gas can be revealed in the multi-phase medium. +If the multi-phase media is a unified turbulent system, dynamics +between cold gas and warm gas are coupled (Yuen et al. 2022). +The cold phase gas forms clumps that moving with the surrounding +warm gas. It suggests the dynamical information of warm phase gas +will imprint in the cold phase that is not much affected by thermal +broadening. We expect this effect to be important in multi-phase +galactic HI. +To explore and verify this effect, we adopt a post-processing analy- +sis to make synthetic observation of a multi-phase environment with +broadening based on our sub-sonic ensembles simulation set. In our +synthetic observation , we randomly select 15% of pixels and label +them as a cold phase gas tracer. We label the rest of the pixels as +warm phase gas. We then transform the Position Position Position +data cube (PPP) to Position Position Velocity (PPV) cube. We cal- +culate a PPV cube accounting for a broadening effect. To do so, we +convolved each pixel with its temperature profile. To simplify our set +up, we set the temperature of warm gas as 5000K and 100K for cold +gas. The idea of the post-processing synthetic observation is inspired +by Yuen et al. (2021). As noticed in Lazarian & Pogosyan (2000), the +fluctuation of channel maps can be divided into those arising from +density and velocity. It is demonstrated in Yuen et al. (2021) that, +without changing the density value, one can vary the sound speed to +change the fraction of density and velocity contributions in a channel +map. We should stress that the isothermal simulation could not cap- +ture the full physics in multiphase ISM. However, Yuen et al. (2021) +demonstrated that the contribution of CNM and WNM in channel +map could also be separated into the density and velocity part with +the difference of different thermal profile. As a result, we can apply +two thermal profiles to the gas to try to simulate the behaviour of +CNM and WNM in a channel map. +Figure 2 demonstrates the center channel Map of synthetic obser- +vation from one of our simulation cubes(Right). As a reference, the +figure also includes two comparison plots of the same Channel Map +but one with a broadening effect with only warm phase (Left) and +another one without broadening(Mid). This two picture represents +two different regimes. In the sub-sonic regime, the morphology of +the channel map without broadening shows a reference of intensity +fluctuations caused by velocity caustics. Because of the existence of +the velocity caustics effect, the channel map structure without broad- +ening effect would demonstrate an intensity structure, which filling +with thin and long filaments. Those intensity filaments caused by +caustics within the thin channel map are elongated along the mag- +netic field, as described in LY18. On the contrary, the morphology of +the channel map dominated by the broadening effect is different. In +particular, the intensity fluctuation in the channel map is washed out +because of the wide thermal velocity profiles. Therefore, the intensity +structure in the channel map has a high similarity with the intensity +maps. The similarity of the effects of thermal broadening and the +increase of the thickness of the channel maps is discussed in LP00. +The situation is changed if we observe the intensity of emission in +Figure 3. Result of Channel Gradient considering the effect of thermal broad- +ening. Block size used = 66. X-axis: Alfvenic Mach Number 𝑀𝐴, y-axis: AM +thin channel maps arising from the mixture of warm and cold gas. +There, the thin and long filamentary structures are clearly seen. This +suggests that the main structure of velocity caustics is preserved in +the the presence of multi-phase media with cold and warm gas mixed +together. +Figure 3 shows a scatter and line plot of AM of VGChT using +channel map of multi-phase synthetic simulation with respect to 𝑀𝐴 +using the gradient recipe same as the Figure 1. The plot includes the +𝐴𝑀 obtained in the channel maps with and without broadening. The +AM for multi-phase simulation starting with 𝐴𝑀 ∼ 1.0 in 𝑀𝐴 ∼ 0.2 +with slowly decline to 𝐴𝑀 ∼ 0.88 in 𝑀𝐴 ∼ 1.2. In contrast to the +broadening regime, the AM curve for multi-phase simulation is very +close to the velocity caustics regime in the sub-Alfvenic simulation +with a small difference of AM. This discrepancy becomes broader +as we transfer to the trans-Alfvenic environment. +5 IMPROVING AM IN SUB-SONIC MAP USING GGA +TECHNIQUE +Ho & Lazarian (2021) identified the effect of intermittency of fast +mode in low-plasma 𝛽 media. Therefore, the concentration of fast +modes in selected regions would alter the anisotropy of the distri- +bution of velocity centroids compared to the neighboring regions +dominated by Alfvenic modes (see Kandel et al. (2018)). +This effect would be reflected in the observed centroid gradients +to abruptly change 90 degrees in the fast mode dominated regions. +We refer those gradients as orthogonal gradient. Ho & Lazarian +(2021) introduced new data sets, namely, gradient amplitude map, +and demonstrated that using these data sets one could suppress the +orthogonal gradient effect. As a result, the new gradient technique, +Gradient of Gradient Amplitudes (hereafter GGA), could improve +the alignment measure. The performance of GGA in ideal case (En- +MNRAS 000, 000–000 (0000) + +Channel map with the thermal broadening effect +1.00 +0.95 +0.90 +0.85 +AM +0.80 +0.75 +No broadening +Cold gas included +0.70 +Warm gas only +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +MA7 +Figure 4. The AM of GGA versus the block size using synchrotron intensity. +The line with different colors represent the performance of GGA with certain +strength of white noise added. As a reference, the dotted line with red color +illustrate the performance of gradient with the noise amplitude of 1𝜎. The +x-axis showed in log scale for demonstrating the performance of technique in +small block size. +Simulation used: H1S +Block size covered: [11,18,22,33,36,44,66,72,99,132,198,396] +vironment without noise) could provide prefect alignment (AM∼ 1) +with the use of block size larger than 502. +However, we noticed that the performance of GGA could strongly +depends on the level of noise. The performance of GGA will declin +rapidly with the increase of noise. To demonstrate the effect of GGA +in the presence of noise, we add white noise with the amplitude +relative to the standard deviation of the observable measures and see +how the 𝐴𝑀 of GGA is varied as a function of noise amplitude. +Figure 4 shows the 𝐴𝑀 of GGA in centoid maps versus block size +with white noise added of the amplitude 0.05 𝜎 and 0.1 𝜎. As a +reference, we also added the AM of GGA without noise. Also, we +include the AM of gradient with noise of 0.1 𝜎 for a comparison. +For the computation of GGA, we first define the gradient amplitude +map (GA), which mechanistically defined as 𝐺𝐴 = � +𝑖 𝐴2 +𝑖 , where 𝐴𝑖 +is gradient component in direction i. For the gradient technique, 𝐴𝑖 +can be computed though the Sobel kernel. The GGA would then be +the output of the Sobel kernel of GA. +One can see from the figure, the performance of GGA drops rapidly +with mild noise added. Compare to ideal case, the AM of GGA falls +from ∼ 0.9 to ∼ 0.6 in the small block size For noise amplitude of +0.05𝜎. The performance gap narrows down with the larger block size +but block size of ≥ 1202 is required to match the performance of ideal +case. The advantage of GGA over ordinary gradient decreases for the +case of noise amplitude 0.1 𝜎. We can see that the performance of +GGA is very sensitive to the noise level if we use a smaller block +size. +To restore the performance of GGA, we employ the Gaussian +smoothing of 𝜎 = 2 pixel as proposed in Lazarian et al. (2017) and +tested in Lazarian & Yuen (2018a). According to Lazarian et al. +Figure 5. The comparison of GGA before and after the smoothing technique +using the synchrotron intensity map. As a reference, a blue line is added for +representing the idea case. +Simulation used: H1S +Block size covered: [11,18,22,33,36,44,66,72,99,132,198,396] +(2017), the kernel size we picked here would preserve most of the +small-scale structures while efficiently suppressing the noise in the +synthetic map globally. By adding the noise and also the smoothing +kernel, we can then test whether in noisy observations we can still +use the GGA as a tool to trace magnetic field. Figure 5 shows the +result of GGA verus block size with noise added of amplitude 0.1𝜎 +and smoothing. The setup is the same as Figure 4. We can see that the +application of the smoothing technique shows that the performance of +GGA can be improved. The drop of AM from 0.5 decrease to 0.8 in the +small block size while the performance gap between smoothing and +ideal case become negligible in the block size of 602. The smoothing +technique could relax the noise level requirement of the GGA. +6 CFA IN GRADIENT AMPLITUDE MAP +Other than gradient, Correlation Function Analysis(CFA) is another +technique of tracing magnetic field direction by utilizing observable +measure information (Esquivel & Lazarian 2005; Kandel et al. 2017; +Hernández-Padilla et al. 2020). CFA was suggested to study magnetic +field statistically and it is based on the theoretical understanding of +properties of observed fluctuations (see LP12). For the (2 order) +correlation function 𝐶𝐹𝐶 of a velocity centroid map 𝐶, it is defined +as +𝐶𝐹𝐶 (R) =< 𝐶(r)𝐶(r + R) >, +(4) +where 𝑟, 𝑅 are the vector quantities on 2D maps and separation +distance from r. The output of 2D correlation map 𝐶𝐹𝐶 (R) can +be interpreted as the fluctuations between different distance R. If +the fluctuations are isotropic, the shape of contour line will be cir- +cular. In opposite, the shape turns to elliptical when the fluctuation +MNRAS 000, 000–000 (0000) + +1.0 +0.9 +0.8 +AM +0.7 +0.6- +GGAwithout noise +GGA,noise=0.05o +0.5 +GGA.noise = O.1 o +Gradient.noise=O.lo +0.4 +101 +102 +BlocksizeSynchrotron intensity with noise = o.1 +1.0 +0.9 +0.8 - +AM +0.7 +0.6 +no noise +0.5 - +noisewithoutsmoothing +noisewithsmoothing +0.4 +101 +102 +Blocksize8 +Ho & Lazarian +is anisotropic. Therefore, the magnetic field direction could be ob- +tained from the elongated direction of elliptical shape structure after +the observational map processed by the CFA analysis (Esquivel & +Lazarian 2005). The elongation depends on the relative importance +of the three basic MHD modes in turbulence (Kandel et al. 2017). It +was applied to both observation and simulation data in Yuen et. al +(2019). However, the study showed that the tracing power of the CFA +is weaker and the technique is less stable than the gradient technique. +In this section, we explore the behavior of CFA with the gradient +amplitude maps. +A detailed study was conducted to compare the performance be- +tween gradient and other magnetic field tracing method, including +CFA (Yuen et. al 2019). One of the issues of CFA showed from Yuen +et. al (2019) is that the performance of CFA is not stable for the ve- +locity centroid map. The anisotropy is changed when one selects a +different block size (For example, figure 15 in Yuen et. al (2019)). +This change of anisotropy could change 90 degrees by switching the +block size while the mean field’s direction stays the same throughout +the region. We repeated this study and extended it to the comparison +between observable map and gradient amplitude processed map. +Figure 6 shows how the shape of anisotropy of both maps is +changed when one selects a different size of a averaging block. +For sub-Alfvenic simulations like H3S, the mean magnetic field +strength and direction remain the same throughout the region. For +CFA, showed from the top side of the figure, we get the same conclu- +sion as in Yuen et. al (2019). While switching to the small size block +region, the resolution problem can not only distort the shape of the +anisotropies in different scales but also destroy the prominent ellipti- +cal shape. The shape of the elliptical structure is being destroyed for +the block size is smaller than 120. Also, the direction of anisotropy +changes when the block size changes. +However, the situation improves dramatically with the application +of the GA technique. For the procedure of processing GA-CFA, it is +same as the computation of the CFA from Yuen et. al (2019) but +switching the input map to the gradient amplitude map. The bottom +side of the figure shows the elliptical shape of CFA can be recovered +after the GA technique. Nonetheless, the anisotropy stays towards +horizontal direction throughout different block size. From the figure, +We noticed that there are differences between anisotropy direction +and magnetic field in block size of 302 but the anisotropy aligns with +the magnetic field once increase the block size to 602. On the other +hand, one should mention that the size of the elliptical structure +is smaller and more elongated compared to the normal CFA. The +ellipse’s shape exists on a small scale, about 20 to 60 pixels for GA- +CFA, while it is about 40 to 60 pixels for the CFA. This is due to the +map process after the gradient amplitude, the morphology of the map +becomes more filamentary. The size of the filamentary structure is +more prominent on a small scale in the CFA analysis. So, to improve +the tracing power of GA-CFA, we have to measure the direction of +anisotropy on a smaller scale. +As the performance of CFA improved after combining with the +GA technique, we then test the improvement of the new GA-CFA +technique compared to gradient and GGA. We repeat the test showed +in Figure 1 and extend it to both GGA and GA-CFA technique. +Inspired by the result from figure 4 and figure 6, we observed a block +size of 722 would be a common "sweet spot" for both technique +between the resolution required and the alignment improvement. We +then pick the sub-block size of 722 for the comparison. The algorithm +of determining the anisotropy direction of the CFA technique is the +same as mentioned in the Yuen et. al (2019). For direct comparison +with Yuen et. al (2019), we also adopt the same pixel distance of +10 pixels from the center of the elliptical structure for anisotropy +contour detection. +Figure 7 shows the results. One can see a significant advan- +tage of GGA compared to the other two in the figure in terms of +the AM. For the performance of GGA in both +synthetic obser- +vation maps, the AM decreases according to the Alfvenic Mach +number. The performance drop is mild for GGA for the amount of +Δ𝐴𝑀 = 𝐴𝑀𝑀𝐴=0.13 − 𝐴𝑀𝑀𝐴=1.17 ∼ 0.1 when 𝑀𝐴 change from +sub-Alfvenic to super-Alfvenic. The performance of the GA-CFA +line between the gradient and GGA but closer to GGA in most of +the cases but with a small effect of fluctuations. Compared to the +gradient, GA-CFA has a noticeable better performance, which AM +improves by about 0.1 for most cases. This shows the performance +of CFA can be improved by unitizing the Gradient amplitude tech- +nique. The synergy of the gradients and the GA-CFA approach will +be explored elsewhere. +7 DISCUSSIONS +7.1 Connection to earlier gradient studies +The gradient research opens a new avenue of studying magnetic +fields and turbulence properties and it is based on of the modern un- +derstanding of MHD turbulence. Starting from the velocity centroids +gradient in González-Casanova & Lazarian (2017), studies employed +later the gradient to different observable maps, such as synchrotron +intensity/polarization (Lazarian et al. 2017), channel maps (Lazarian +& Yuen 2018a). This enabled to trace the magnetic field in different +media from the molecular cloud on the scale of 0.1 pc to the galaxy +clusters in the scale of 10kpc (see Hu et al. (2020, 2021)). The appli- +cability of gradient techniques covers two different hydrodynamics +regimes to both sub-sonic to supersonic regimes. Meanwhile, the +relationship between gradient and fundamental properties(such as +𝑀𝑆, 𝑀𝐴, and MHD modes) of MHD turbulence is being discovered. +The gradient behavior could change 90 degrees in the particular re- +gion, for instance, shock or fast mode dominated region. In those +regions, the direction of rotated gradient vectors would change from +parallel to perpendicular to the magnetic field, which identifies as an +orthogonal gradient region. Those orthogonal gradients could lower +the tracing performance of gradient techniques. +This paper revisits the performance of gradient techniques in the +sub-sonic turbulent environment. We study the change of perfor- +mance of different gradient techniques in sub-sonic medium regard- +ing Alfvenic number systematically. In addition, we extend the study +of gradient amplitude. This new technique showed a good perfor- +mance in removing the distortion in the VGT-produced magnetic +field maps arising from the effects of the intermittent regions dom- +inated by fast MHD mode. This GGA technique was demonstrated +to be capable of removing distortions caused by the fast mode. We +noticed that GGA amplifies the small scale fluctuation that aligned +with magnetic field, which suppresses the dominance of fast mode. +However, its performance is influenced by the noise and the relia- +bility of GGA could drop rapidly in the presence of the noise. We +showed in section 5 that the GGA performance in the presence of +noise could be improved by employing suitable Gaussian filtering. +This enables the new technique to be applied to realistic observation +data. +Furthermore, we explore a new way of combing the gradient am- +plitude maps with the CFA technique in section 6. The classical CFA +technique has its limitations while applied to the small block size +region. This results in the requirement of block size > 1002 and +MNRAS 000, 000–000 (0000) + +9 +[t] +Figure 6. Variation of correlation function anisotropy shapes with respect to block size. The subplot located at the right panel is the magnified view of the centre +part of the plot. The blue arrow at the upper left plot shows the direction of the plane of sky magnetic field. +Top panel: CFA +Bottom panel: GA-CFA +[t] +Figure 7. Left panel: Result of Synchrotron intensity map betwen the gradient, GGA and GA-CFA. Right panel: Result of Centroid map betwen the gradient, +GGA and GA-CFA. X-axis: Alfvenic Mach Number 𝑀𝐴, y-axis: AM. +MNRAS 000, 000–000 (0000) + +Block size = 30 +Block size = 60 +Block size = 120 +Block size = 480 +BposSynchrotron Intensity +Centroid +1.0 +0.8 +0.6 +AM +0.4 +0.2 - +Gradient +GA-CFA +GGA +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +MA +MA10 +Ho & Lazarian +limits the abilities of the CFA in tracing magnetic field. The new +combined GA-CFA technique minimizes the block size e.g. to 302 +without decreasing the performance of the technique. This extends +the applicability of the CFA technique and makes it competitive to +the gradient technique. +7.2 Intensity structure and velocity caustics in Channel Map +The theory of describing the fluctuations of intensity within spectro- +scopic data that arise from turbulence was formulated in (Lazarian +& Pogosyan 2000). There the concept of velocity caustics has been +proposed to describe the effect of turbulent velocities eddies made to +the channel map. This provided the basis for the technique of tracing +magnetic fields using velocity channel gradients. +However, the density also affect fluctuations in channel map fluc- +tuations. Several HI studies have been discussed on the influence of +thermal broadening of warm phase made to channel map and the +importance of cold phase media. The applicability of Lazarian & +Pogosyan (2000) to galactic HI was questioned in (Clark et al. 2019). +A rebuttal to these arguments was given by Yuen et. al (2019) and +the applicability of the LP00-based approach was demonstrated in +Yuen et al. (2021) where the Velocity Decomposition Algorithm was +introduced to deal with density fluctuations in subsonic flow. The +later observational study by Yuen et al. (2022) reported the velocity +caustics could be fully restored after applying the algorithm. +Our study in section 4.3 showed provides another argument in +favor of the applicability of the LP00 theory to multi-phase media. +We showed that if the phases of the media move together in the +galactic disk, they can be viewed as a unified turbulent system, and +our result from figure 3 suggests that most of the information of +velocity anisotropy can be preserved without the VDA. +8 SUMMARY +This paper extends our studies the Gradient Technique (GT) in the +sub-sonic environment. Our main results are: +1. The alignment between gradient and POS magnetic field is +better in the subsonic regimes compared to the supersonic one. +2. In the multi-phase media, the morphology of filamentary struc- +ture in the channel map and the statistical anisotropy of thin channel +intensity fluctuations is preserved in the presence of thermal broad- +ening if the phases are moving together. +3. We extended the study of GGA introduced in the Ho & Lazar- +ian (2021). We examined the applicability of GGA in the synthetic +observation map with noise added. The performance of GGA is sen- +sitive to noise, but the employment of the Gaussian kernel alleviates +the noise effect. +4. We demonstrated that the gradient amplitude maps can be suc- +cessfully combined with Correlation Function Analysis (CFA). In +this case the anisotropy can is prominent in small block of the order +of 302. This makes the new technique competitive with the gradient +technique. +MNRAS 000, 000–000 (0000) + +11 +ACKNOWLEDGEMENTS +We acknowledge Ka Ho Yuen and Yue Hu for the fruit- +ful +discussions. +We +acknowledge +the +support +the +NASA +ATP +AAH7546 +and +NASA +TCAN +144AAG1967 +grants. +SOFTWARE +Julia-v1.2.0/Julia-v1.8.2, Jupyter/miniconda3, LazTech-VGT (Yuen +& Lazarian 2017a) : https://github.com/kyuen2/LazTech-VGT +DATA AVAILABILITY +The data underlying this article will be shared on reasonable request +to the corresponding author. +REFERENCES +Andersson, B., G., Lazarian, A. & Vaillancourt, John E., +2015, Annual +Review of Astronomy and Astrophysics, 53, 501-539 +Armstrong, J. W., Rickett, B. J., & Spangler, S. R. 1995,The Astrophysical +Journal, 443, 209 +Beck, R., & Wielebinski, R. 2013, Planets, Stars and Stellar Systems. Volume +5: Galactic Structure and Stellar Populations, 5, 641 +Beresnyak, A., & Lazarian, A. (ed.) 2019, Turbulence in Magnetohydrody- +namics (Berlin: De Gruyter) +Burkhart, B., Lazarian, A., Ossenkopf, V., & Stutzki, J. 2013, ApJ, 771, 123 +Caldwell, A., Dvali, G., Majorovits, B., et al. 2017, Physical Review Letters, +118, 091801 +Chepurnov, A., & Lazarian, A. 2009, ApJ, 693, 1074 +Chepurnov, A., & Lazarian, A. 2010, The Astrophysical Journal, Volume +710, Issue 1, pp. 853-858 (2010)., 710, 853 +Cho, J., & Vishniac, E., T. 2000, ApJ, 539, 1, 273 +Cho, J., & Lazarian, A. 2002, PhRvL, 88, 245001 +Cho, J., & Lazarian, A. 2003, MNRAS, 345, 325 +Clark, S., E., Hill, J., C., Peek, J., E., G., Putman, M., E., & Babler, B., L. +2015, Physical Review Letters, 115, 241302 +Clark, S., E., Peek, J., E., G., & Miville-Deschenes, M.-A. 2019, ApJ, 874, 2 +Draine, B., T. 2009, Cosmic Dust - Near and Far, 414, 453 +Esquivel, A, Lazarian, A., 2005, ApJ, 631, 320 +Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, +M.-M. 2010, A&A, 512, A81 +Field, G. B., Goldsmith, D. W., & Habing, H. J., 1969, ApJ, 155, L149 +Fletcher, A., Beck, R., Shukurov, A., Berkhuijsen, E. M., & Horellou, C. +2011, MNRAS, 412, 2396 +Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763 +González-Casanova, D. F., & Lazarian, A. 2017, ApJ, 835, 41 +Galtier, S., Nazarenko, S.V., Newel, A.C., & Pouquet, A., J. Plasma Phys., +63, 447 +Hayes, J. C. , Norman, M. L., Fiedler, R. A. et al. 2006., ApJS, 165, 188 +Haud, U. 2000, A&A, 364, 83 +Hernández-Padilla, D., Esquivel, A., Lazarian, A., et al. 2020, ApJ, 901, 11. +doi:10.3847/1538-4357/abad9e +Heiles, C., Troland, T. H., 2003, ApJ, 586, 1067 +Hill, A. S., Benjamin, R. A., Kowal, G., et al. 2008, ApJ, 686, 363 +Ho, K. W. & Lazarian, A, 2021, ApJ, accepted +Ho, K. W., Yuen, K. H., & Lazarian, A, +2022, MNRAS, submitted, +arXiv:2111.06845 +Hu, Y. , Yuen, K. H., Lazarian, V. et al. 2019, Nature Astronomy, 3, 8, 776-782 +Hu, Y., Lazarian, A. & Li, Y. 2020, ApJ, 901 , 2, 162 +Hu, Y. & Lazarian, A. 2020, MNRAS, 502 , 2, 1768-1784 +Hu, Y., Lazarian, A. & Wang, Q. D., 2021, MNRAS, 511 , 1, 829 - 842 +Jokipii, J., R. 1966, ApJ, 146, 480 +Kalberla, P. M. W., & Haud, U. 2019, A&A, 627, A112 +Kandel, D., Lazarian, A., & Pogosyan, D. 2017, MNRAS, 464, 3617 +Kandel, D., Lazarian, A., & Pogosyan, D. 2018, MNRAS, 478, 530K +Kleiner, S., C., & Dickman, R., L. 1985, ApJ, 295, 466 +Kritsuk, A., G., Ustyugov, S., D., & Norman, M., L. 2017, New Journal of +Physics, 19, 065003 +Kritsuk, A., G., Flauger, R., & Ustyugov, S., D. 2018, Physical Review Letters, +121, 021104 +Kowal, G., Lazarian, A., & Beresnyak, A. 2007, ApJ, 658, 423 +Kowal, G., Lazarian, A., & Vishniac, A., L. et. al 2007, ApJ, 700, 63 +Lazarian, A., & Vishniac, E. T. 1999, ApJ, 517, 700 +Lazarian, A. 2007, Journal of Quantitative Spectroscopy and Radiative Trans- +fer, 106, 225 +Lazarian, A. 2009, Space Sci. Rev., 143, 357 +Lazarian, A., & Pogosyan, D. 2000, ApJ, 537, 720 +Lazarian, A., & Pogosyan, D. 2004, ApJ, 616, 943 +Lazarian, A., & Pogosyan, D. 2012, ApJ, 747, 5L +Lazarian, A., Yuen, K. H., Hyeseung L. , Cho, J., 2017 ApJ, 842, 30 +Lazarian, A., & Yuen, K. H. 2018, ApJ, 853, 96 +Lazarian, A., Yuen, K., H., Ho, K., W., et al. 2018, ApJ, 865, 46 +Lazarian, A., Yuen, K., H.,& Pogosyan, D., 2022, ApJ, 935, 77 arXiv preprint +arXiv:2002.07996 +Lenc, E., Gaensler, B., M., Sun, X., H., et al. 2016, ApJ, 830, 38 +Li, G.-X., & Burkert, A. 2016, MNRAS, 461, 3027 +Lithwick, Y. , & Goldreich, P. 2001, ApJ, 562, 279 +Maron, J. & Goldreich, P. 2000, ApJ, 554,1175 +Mac Low, M., M., & Klessen, R., S. 2004, Reviews of Modern Physics, 76, +125 +Marchal, A. Martin, Peter G. , & Gong, M. 2021, ApJ, 921, 11 +McKee, C., F., & Ostriker, E., C. 2007, ARA&A, 45, 565 +Miesch, M., S., Scalo, J., & Bally, J. 1999, ApJ, 524, 895 +Münch, G., & Wheelon, A., D. 1958, Physics of Fluids, 1, 462 +Oppermann, N., Junklewitz, H., Greiner, M., et al. 2015, A&A, 575, A118 +O’dell, C., R., & Castaneda, H., O. 1987, ApJ, 317, 686 +Planck collaboration, 2020, A& A, A3, 50 +Saury, E., Miville-Deschênes, M., A., Hennebelle et al. 2014, A&A, 567, +A16 +Stanimirović, S., & Lazarian, A. 2001, ApJ, 551, L53 +Van Eck, C., L., Haverkorn, M., Alves, M., I., R., et al. 2017, A&A, 597, A98 +Wolfire, M., G., Hollenbach, D., McKee, C., F., Tielens, A., G., G., M., & +Bakes, E., L., O. 1995, ApJ, 443, 152 +Wolfire, M., G., D., McKee, Hollenbach, C., F. & Tielens, A., G., G., M., +2003 , ApJ, 587, 278 +Yan, H., & Lazarian, A. 2008, ApJ, 673, 942-953 +Yuen, K., H., & Lazarian, A. 2017, ApJ, 837, L24 +Yuen, K., H., Chen, J., Hu, Y. et al 2018, ApJ, 865, 54 +Yuen, K., H., Hu, Y., Lazarian, A., & Pogosyan, D. 2019, arXiv:1904.03173 +Yuen, K., H., HO, K., W, & Lazarian, A. 2021, ApJ, 887 (2), 258 +Yuen, K. H., HO, K. W, & Law, C. Y. et al. 2022, , submitted to nature +communications, arXiv:2204.13760 +Zaldarriaga, M., & Seljak, U. 1997, Phys. Rev. D, 55, 1830 +MNRAS 000, 000–000 (0000) + diff --git a/C9FQT4oBgHgl3EQf_jdA/content/tmp_files/load_file.txt b/C9FQT4oBgHgl3EQf_jdA/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..847a6ea6f41e6be21b70b3b11acf29f77cb22631 --- /dev/null +++ b/C9FQT4oBgHgl3EQf_jdA/content/tmp_files/load_file.txt @@ -0,0 +1,964 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf,len=963 +page_content='MNRAS 000, 000–000 (0000) Preprint 1 February 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 Tracing of Magnetic field with gradients: Sub-Sonic Turbulence K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Ho, 1 ★ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Lazarian, 1,2 † 1Department of Astronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA 2Centro de Investigación en Astronomía, Universidad Bernardo O’Higgins, Santiago, General Gana 1760, 8370993, Chile Accepted 2023 January 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Received 2023 January 12;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' in original form 2022 March 21 ABSTRACT Recent development of the velocity gradient technique shows the capability of the technique in the way of tracing magnetic fields morphology in diffuse interstellar gas and molecular clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In this paper, we perform the numerical systemic study of the performance of velocity and synchrotron gradient for a wide range of magnetization in the sub-sonic environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Addressing the studies of magnetic field in atomic hydrogen, we also study the formation of velocity caustics in the spectroscopic channel maps in the presence of the thermal broadening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We show that the velocity caustics can be recovered when applied to the Cold Neutral Medium (CNM) and the Gradient Technique (GT) can reliably trace magnetic fields there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Finally, we discuss the changes of the anisotropy of observed structure functions when we apply to the analysis the procedures developed within the framework of GT studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Key words: ISM: structure – ISM: atoms – ISM: clouds – ISM: magnetic fields 1 INTRODUCTION Magnetic fields are very important for key astrophysical processes in interstellar media (ISM) such as the formation of stars (see McKee & Ostriker 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Mac Low & Klessen 2004), the propagation and acceleration of cosmic rays (see Jokipii 1966;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Yan & Lazarian 2008), the regulation of heat and mass transfer between different ISM phases (see Draine 2009 for the list of the different ISM phases).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Polarized radiation arising from the presence of the magnetic field also inter- feres with the sygnal of the enigmatic CMB B-modes arising from gravity waves in the early Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (Zaldarriaga & Seljak 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Caldwell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Kandel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore, it is essential to have a reliable way to study the properties of magnetic fields in those process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The traditional way to study the Plane of Sky (POS) magnetic fields is using polarimetry measurements (Planck Collaboration 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Lazarian 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It is widely used from radio to optical wavelengths to trace the magnetic field morphology at various scales in the ISM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Recently, a new promising technique has been proposed, the veloc- ity gradient technique (VGT), which is capable of tracing magnetic field using spectroscopic data (Yuen & Lazarian 2017a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Ho & Lazarian 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The technique makes use of the fact that magnetic fields make turbulence anisotropic, with turbulent eddies being elongated along the magnetic field (See Beres- nyak & Lazarian (2019) for a monograph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a result, the turbulence induces the fluid motion mostly perpendicular to the direction sur- rounding magnetic eddies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It is important that the magnetic field direction is the local direction of magnetic field in the vicinity of turbulent eddies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This follows directly from the theory of turbulent reconnection that predicts that magnetic fields of the eddies reconnect ★ E-mail: kho33@wisc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='edu † E-mail: alazarian@facstaff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='wisc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='edu over one eddy turnover time (Lazarian & Vishniac (1999), hereafter LV99).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This property of magnetic turbulence is central for magnetic field tracing with both velocity gradients as well as other types of gradients, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' synchrotron intensity gradients (Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017), synchrotron polarization gradients (Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The VGT has been numerically tested for a wide range of column densities from diffuse transparent gas to molecular self-absorbing dense gas (Yuen & Lazarian 2017a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Lazarian & Yuen 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Hu & Lazarian 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The technique was shown to be able to provide both the orientations of the magnetic field as well as a measure of media magnetization (Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' A VGT survey was conducted recently to study the morphology of a few nearby molecular cloud (Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The result showed consistency with the Planck polarization measurement and indicate the capability of the VGT on tracing magnetic field in different ISM region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' While the earlier VGT study mainly focused on the supersonic spectroscopic data, the same idea of tracing magnetic with gradients can be employed with different types of astrophysical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For in- stance, Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2017) showed gradient can also be applied to trace magnetic field with synchrotron intensity gradients (SIGs) maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The corresponding emission comes from subsonic warm/hot media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The lack of shock wave in sub sonic environment is beneficial for magnetic field tracing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Tracing of magnetic field in subsonic media is also important within the VGT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The velocity gradients can be obtained in this setting using velocity centroids which are not sensitive to thermal broaden- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' If the channel maps are applied to subsonic data, first of all, one can use heavier species as spectroscopic tracers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For such species, the thermal broadening is suppressed and caustics produced in chan- nel maps are prominent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In addition, the newly introduced Velocity Decomposition Algorithm (VDA) Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2021) opens ways of exploring velocity caustics in the presence of the thermal broadening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' © 0000 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='13458v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='GA] 31 Jan 2023 2 Ho & Lazarian Therefore this study explores the ability of magnetic field tracing using both the VGT and the SIGs for subsonic medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Several concerns arise on the application of Gradient Technique (GT) in the sub-sonic environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' First, multi-phase media study (see Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2021)) shows that thermal broadening is a crucial factor that smooths out the structure in the subsonic spectroscopic data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It may potentially weaken the ability of the VGT to trace the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Second, Ho & Lazarian (2021) found out that the intermittency of fast mode could also play an important role in affecting the VGT analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In the case that the fast mode dominate the energetics of a particular region they induce there the rotation of the velocity gradient direction from parallel to perpendicular to the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This, however, does not happen with the SIGs, for which the gradients induced by fast and Alfven modes are parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In Ho & Lazarian (2021) we proposed a new technique, Gradient of Gradient Amplitude (GGA), which improves the magnetic field tracing by gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, an in-depth study is required to ana- lyze the applicability of GGA in sub-sonic regime versus the change of Alfven Mach number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Below, we perform a new study of the GT in the sub-sonic environ- ment to answer the concerns above and evaluated the performance of the GT in a low Ms regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In what follows, we would cover the theory in section 2 and our numerical setup in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Then we would discuss the result of the alignment measure of the gradient in the ideal observable measure and the velocity gradient in the pres- ence of thermal broadening in multi-phase media in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We further extend the study of GGA in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We then discuss the the Correlation Function Analysis (Hereafter CFA) alignment in section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' At last, we would discuss our work in section 7 and summarize the paper in section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2 GRADIENT TECHNIQUE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 Theoretical Considerations The most important component of Magnetohydrodynamic (MHD) turbulence is the cascade of Alfvenic motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore, below we will focus on the properties of Alfven modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The modern theory of MHD turbulence originates from the work of Goldreich & Sridhar 1995 (henceforth GS95) that described the scaling of transAlfvenic incompressible turbulence in what is now known to be the strong MHD turbulence regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The description was, however in the frame of the mean magnetic field, which, as it was shown by the later studies, the GS95 statitical scalings are not applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Further advances were related to understanding of the importance of the local system of reference as well as the generalization of the theory for the sub-Alfvenic regime in Lazarian & Vishniac 1999 (henceforth LV99).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' There also the regime of weak turbulence was quantified (see also Galtier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2000)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The local system of reference is the system of reference in respect to which the turbulent motions should be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Its importance is easiest to see considering magnetic eddies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Due to fast turbulent reconnection the eddies aligned with the magnetic field direction in their vicinity can reconnect and perform a turnover within one eddy turnover time (LV99).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This happens on the eddy turnover scale ∼ 𝑙⊥/𝑣𝑙, where 𝑙⊥, 𝑣𝑙 are the size of eddy perpendicular to the local magnetic field direction and the eddy’s velocity at the scale l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Incidentally, this mixing results in inducing an Alfven perturbation with the same period, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑙⊥/𝑣𝑙 ∼ 𝑙∥/𝑉𝐴, where 𝑉𝐴 is the Alfven velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The latter corresponds to the condition termed "critical balance" in GS95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, unlike the origianal GS95 claim, the critical balance is only in the system of reference aligned with the local direction of the magnetic field, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' with the direction of the magnetic field in the direct vicinity of the eddy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The local system of reference is absolutely critical for the GT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It is only because of the localized alignment that the gradients of velocity and magnetic field can trace 3D magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The numerical study in Cho & Vishniac 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Maron & Goldreich 2000 established numerically the vital importance of the local system of reference for the description of MHD turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The subsequent studies in Lithwick & Goldreich (2001) as well as Cho & Lazarian (2002, 2003);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Kowal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2009), extended the the theory to the compressible case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This theory of MHD compressible turbulence (see the monograph by Beresnyak & Lazarian (2019)) is at the basis of the GT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It is important to note that the motions perpendicular to the lo- cal magnetic field have the form of Alfvenic eddies and they ex- hibit Komlogorov scaling 𝑣𝑙 ∼ 𝑙1/3 ⊥ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore the gradients scale as 𝑣𝑙/𝑙⊥ ∼ 𝑙−2/3 ⊥ , meaning that the gradients at the smallest re- solved scales are the most important (see Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2020) for the analytical theory of gradient measurements).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' These gradients are perpendicular to the magnetic field and their direction should be turned 90 degrees to get the magnetic field tracing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It is important that the amplitude of the gradients increases with the decrease of the scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore, the gradients measured at the smallest scales are the most prominent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' These gradients, similar to aligned grains (see (Andersson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2015)), sample the 3D magnetic field along the line of sight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Due to this effect, the large scale gradients, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' arising from galactic shear, are not important for the analysis of the high resolution data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 Velocity and magnetic gradients 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 General outlook The 3D velocity fluctuation are not directly available from the obser- vations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Instead, the gradients of velocity centroids and the gradients of intensity fluctuations measured within thin channel maps 1 can be used as proxies of the velocity gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In both cases, the gradients are measured for turbulent volume extended by L > 𝐿𝑖𝑛 𝑗 along the LOS, and this entails additional complications, where L, 𝐿𝑖𝑛 𝑗is the LOS depth and the injection scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' While eddies stay aligned with respect to the local magnetic field, the direction of the local magnetic field is expected to change along the LOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Thus, the contribution of 3D velocity gradient are also summed up along the line of sight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The spectrum of observed fluctuations changes due to the averag- ing effect along the LOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It is easy to show that the 2D spectrum of the turbulence obtained by projecting the fluctuations from 3D has the same spectral index of -11/3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The relation between the spectral slope of the correlation function and the slope of the turbu- lence power spectrum in 2D in this situation is −11/3 + 2 = −5/3, where 2 is the dimensionality of the space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore, the 2D velocity fluctuations arise from the 3D Kolmogorove-type turbulence scale as 𝑙5/6 2𝐷 with the gradient anisotropy scaling as 𝑙−1/3 2𝐷 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It is important that the amplitude of the gradients increases with the decrease of the 1 For a channel maps with channel width Δ𝑣, the thin channel map means its Δ𝑣 ≤ √︃ 𝛿𝑣2 𝑅, where 𝛿𝑣𝑅 is the velocity dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2 Starting from 1D spectrum 𝑃1𝐷 with spectral index -5/3, we can get back 3D spectral index of −11/3 by considering the dimensional analysis of 𝑃3𝐷 = 𝑃1𝐷𝑘−2 MNRAS 000, 000–000 (0000) 3 scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore, the gradients measured at the smallest scales are the most prominent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' These gradients, similar to aligned grains (see (Andersson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2015)), sample the 3D magnetic field along the line of sight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Due to this effect, the large scale gradients, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' arising from galactic shear, are not important for the analysis of the high resolution data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The slow modes follow the scaling of the Alfven modes (Goldreich & Sridhar 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Lithwick & Goldreich 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Cho & Lazarian 2002, 2003) and therefore induce the same type of gradients as Alfvenic modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' while fast modes are different (Cho & Lazarian 2002, 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Kowal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Ho & Lazarian 2021)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It follows from the the- ory in (Lazarian & Pogosyan (2012), hereafter LP12) that gradients of synchrotron emission arising from fast modes are also aligned perpendicular magnetic field direction, while the anisotropies of the gradients of velocity caustics and velocity centroids are different (Kandel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It is possible to show (Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2018) that the corresponding gradients are perpendicular to those created by Alfven and slow modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore, the contribution of the fast modes can decrease the accuracy of the GT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We are dealing with their contribution in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 VGT for molecular clouds and diffuse HI The magnetic field tracing with velocity gradients in molecular clouds can be tested successfully with isothermal numerical sim- ulations (see Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2019)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This is due to efficient cooling of the molecular clouds, which is different from HI gas (See Field et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (1969);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Wolfire et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (1995, 2003)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The HI gas is stabilized by the thermal equilibrium between the heating and cooling and forms two stable phases: the warm and cold phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Other than the two phases, the thermally unstable phase also plays a vital role in the atomic hydrogen environment due to the consequence of strong tur- bulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Due to the presence of magnetized turbulence in the atomic hydrogen it is a promising medium of applying the VGT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In such an environment, the VGT has already demonstrated the reliable tracing of the magnetic field (Yuen & Lazarian 2017a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The turbulence is subsonic in most volume of galactic HI, which corresponds to the warm phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (Saury et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Marchal, Mar- tin & Gong 2021) The Velocity Decomposition Algorithm (VDA) developed in Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2021) allows to identify velocity caustics produced in this phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='3 Velocity caustics The concept of velocity caustics is first proposed by Lazarian & Pogosyan (2000) and further facilitated by Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Veloc- ity caustics describes the effect of pure turbulent velocity fluctuation and how they come into the thin channel map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' One ideal picture would be, even though considering a incompressible magnetized turbulent fluid with no density fluctuation, we can still observe a channel map with anisotropic fluctuation arising from the turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Those fluc- tuations are often referred to as the velocity contribution and different statistical tools (for example, VGT) could utilize the information to trace magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, the fluid contains compressibility and density contamination caused by thermal broadening effect, making the fluctuation of channel map contains the contribution from both density and velocity part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Nonetheless, the density effect on sub-sonic media is sub-dominate and can be removed by using the algorithm proposed by Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 Synchrotron emission Measurements of polarized synchrotron radiation and Faraday ro- tation (see Beck & Wielebinski (2013);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Oppermann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2015);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Fletcher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2011);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Lenc et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Van Eck et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2017) ) provide an important insight into the magnetic structure of the Milky Way and the neighboring galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Synchrotron radiation fluctuation carries the statistical information of MHD turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Serial studies discussed how to apply gradient onto measurable quantities, such as synchrotron intensity and synchrotron polarization (See Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Lazarian & Yuen (2018a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In this paper we focus on the gradient on synchrotron intensity map as it is a observable that we deal with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For the power-law distribution of electrons 𝑁(𝐸)𝐸 ∼ 𝐸 𝛼𝑑𝐸, the synchrotron emissivity is 𝐼𝑠𝑦𝑛𝑐(X) ∝ ∫ 𝑑𝑧𝐵𝛾 𝑃𝑂𝑆(X, z) (1) where 𝐵𝛾 𝑃𝑂𝑆 = √︃ 𝐵2𝑥 + 𝐵2𝑦 corresponds to the magnetic field com- ponent perpendicular to the line of sight, X is the plane of sky vector defined in x and y direction, z the line of sight axis and, 𝐵𝑥, 𝐵𝑦 the 3D magnetic field in x and y direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The fractional power of the index 𝛾 = (𝛼 + 1)/2 was a impediment for quantitative synchrotorn statistical studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, LP12 showed that the correlation func- tions and spectra of the 𝐵𝛾 ⊥ could express as 𝛼 = 3, which gives 𝛾 and therefore the dependence of synchrotron intensity on the squared magnetic field strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 Application of Gradient in Sub-Sonic Environment Below we will discuss two important examples to which we will apply the GT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Those are the centroid map and the synchrotron intensity map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We will perform a systematic study of the GT by changing the magnetization of the numerical data used to produce synthetic observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Other than that, we would also like to study the behavior of GT in the HI spectroscopic velocity channel maps due to the recent debate of the velocity caustics effect in the channel map (See section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='3 and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 for more information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 3 NUMERICAL SIMULATION AND MEASURES EMPLOYED 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 Simulation Setup The numerical data that we analyzed in this work are obtained by 3D MHD simulations using the single-fluid, operator-split, staggered- grid MHD Eulerian code ZEUS-MP/ 3D (Hayes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2006) to set up a 3D, uniform, and isothermal turbulent medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Periodic boundary conditions are applied to emulate a part of the interstellar cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Solenoidal turbulence injections are employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' To extend our study from super sonic regime to sub sonic regime, we simulate two sets of ensemble in each regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Two sets of simulations employ various Alfvenic Mach numbers 𝑀𝐴 = 𝑉𝐿/𝑉𝐴 with Sonic Mach Number 𝑀𝑆 = 𝑉𝐿/𝑉𝑆 at about 6 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='5 where 𝑉𝐿 represents the injection velocity, 𝑉𝐴 the Alfven velocities, 𝑉𝑠 the sonic velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For the generation of turbulence, the turbulence is injected solenoidally for all the simulations using the Fourier-space method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Turbulent energy is injected at the large scale ( k=2 ) and dissipated by the viscosity at small scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We adjust the strength of the injection such that the cubes reach desired 𝑀𝑠 value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' All of the cubes are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, limited by the turbulence scaling (Please see LV99), we MNRAS 000, 000–000 (0000) 4 Ho & Lazarian Subsonic Supersonic Model 𝑀𝑆 𝑀𝐴 Model 𝑀𝑆 𝑀𝐴 H1S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='13 H1 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='22 H2S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='38 H2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='42 H3S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='64 H3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='61 H4S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='90 H4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='82 H5S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='61 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='17 H5 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='01 H6 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='21 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Simulation parameters where 𝑀𝑆, 𝑀𝐴 represents the sonic Mach number and Alfvenic Mach number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For all simulations, the resolution is set to 7923.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑀𝑆, 𝑀𝐴 are the sonic Mach number and the Alfvenic Mach number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' devote most of our research to the sub-Alfvenic and trans-Alfvenic case in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 Plane of sky magnetic field We trace the plane of sky (POS) magnetic field orientation with polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We shall assume a constant-emissivity dust grain align- ment process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a comparison to gradient, we generate polarization maps by projecting our data cubes along the z-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We construct an synthetic Stokes parameters Q, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' By assuming that the constant emissivity and the dust followed the gas,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' which the dust uniformly aligned with respect to the magnetic field,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' the Stokes parameter 𝑄(X),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='𝑈(X) can than be expressed as a function of angle 𝜃 at plane of sky magnetic field by tan(𝑥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑦) = 𝐵𝑦(𝑥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑦)/𝐵𝑥(𝑥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑦) : 𝑄(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑧) ∝ ∫ 𝑑𝑧 𝜌(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑧)𝑐𝑜𝑠(2𝜃(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑧)) 𝑈(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑧) ∝ ∫ 𝑑𝑧 𝜌(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑧)𝑠𝑖𝑛(2𝜃(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝑧)),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2) where 𝜌 is the density,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' X is the plane of sky vector defined in x and y direction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' z the line of sight axis and,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝐵𝑥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 𝐵𝑦 the 3D magnetic field in x and y direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The dust polarized intensity 𝐼𝑃 = √︁ 𝑄2 + 𝑈2and angle 𝜃 𝑝 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='5𝑎𝑡𝑎𝑛2(𝑈/𝑄) are then defined correspondingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='3 Synchrotron intensity map For our present paper, we follow the approach in LP12 that amplitudes of Stokes parameters are scaled up with respect to the cosmic-ray index and the spatial variations of the Stokes parameters are similar to the case of cosmic-ray index 𝛾 = 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 Alignment Measure (AM) and sub-block averaging To quantify how good two vector fields are aligned, we employ the alignment measure that is introduced in analogy with the grain alignment studies (see Lazarian 2002): 𝐴𝑀 = 2⟨cos2 𝜃𝑟⟩ − 1, (3) as discussed for the VGT in González-Casanova & Lazarian 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Yuen & Lazarian 2017a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The range of AM is [−1, 1] measuring the relative alignment between the 90𝑜-rotated gradients and mag- netic fields, where 𝜃𝑟 is the relative angle between the two vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' A perfect alignment gives 𝐴𝑀 = 1, whereas random orientations generate 𝐴𝑀 = 0 and a perfect perpendicular alignment case refers to 𝐴𝑀 = −1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In what follows we use 𝐴𝑀 to quantify the alignments of VGT in respect to magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We adopt the sub-block averaging introduced in Yuen & Lazarian (2017a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The use of sub-block averaging comes from the fact that the orientation of turbulent eddies with respect to the local magnetic field is a statistical concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In real space the individual gradient vectors are not necessarily required to have any relation to the local magnetic field direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Yuen & Lazarian (2017a) reported that the velocity gradient orientations in a sub-region–or sub-block–would form a Gaussian distribution in which the peak of the Gaussian fit reflects the statistical most probable magnetic field orientation in this sub–block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As the area of the sampled region increases, the precision of the magnetic field traced through the use of Gaussian block fit becomes more and more accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We will discuss it more in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 4 RESULTS For observational tracing of the magnetic field, it is essential to know what to expect in terms of AM dependence on magnetization when we employ the gradient method in the ideal synthetic environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We investigate how the change in Alfvenic Mach number 𝑀𝐴 would alter the tracing power of Gradient Technique (GT) with two types of data: spectroscopic maps and synchrotron intensity map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 Gradients of Synchrotron Intensity The synchrotron intensity gradient (SIG) results are presented in the left panel of Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We adopt the sub-block averaging approach, and the results are computed using the block size of 722.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' To compare the change of tracing power of GT in different hydro-dynamical regimes, we include the result of supersonic simulation(𝑀𝑆 ∼ 6) with similar coverage of 𝑀𝐴 as a reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The setting of block size is the same as the sub-sonic regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Throughout the change of 𝑀𝐴, the tracing power of SIG shows a different trend in different hydro-dynamical regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The result of sub-sonic environments (Blue curve) shows that the tracing power of SIG is insensitive to the change of magnetization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The AM maintains at about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 with a mild drop in 𝑀𝐴 ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For the case of supersonic, we observe a steady downtrend of 𝐴𝑀 in the sub- Alfvenic regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The 𝐴𝑀 starts at ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='58 at 𝑀𝐴 ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 and drops gradually to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='38 at 𝑀𝐴 ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The declining trend disappears at the trans-Alfvenic and super-Alfvenic regime, which the AM steady at around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Besides, we notice that the AM of SIG in sub-sonic ensembles always higher than supersonic ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 Result of Gradient in Centroid For the benchmark of Velocity centroid gradient (VCG) in the sub- sonic environment, Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1 showed the change of AM of centroid as a function of 𝑀𝐴 in the right panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The sub-block setting is the same as SIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a reference, we also add the change of AM for the supersonic environment in orange color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We observe that the AM of VGT behaves as a monotonic function of 𝑀𝐴 in the sub-Alfvenic regime for both hydro-dynamical regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The 𝐴𝑀 declines when 𝑀𝐴 increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The 𝐴𝑀 continues the declining trend throughout from sub-Alfvenic to trans-Alfvenic regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, similar to the SIG result for supersonic ensembles, the 𝐴𝑀 of VGT for supersonic ensembles becomes stable at about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 at the transition from trans- Alfvenic to the super-Alfvenic regime, A tendency of well alignment between VGT and magnetic field in the sub-sonic case is observed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The AM of sub-sonic set always better than supersonic case with the AM improvement of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 throughout the change of 𝑀𝐴 from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' MNRAS 000, 000–000 (0000) 5 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Left panel: Result of Synchrotron intensity gradient .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Right panel: Result of Centroid Gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Both block size used = 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' X-axis: Alfvenic Mach Number 𝑀𝐴, y-axis: AM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The blue lines represent the AM of sub-sonic ensembles and orange lines represent the change of AM of super-sonic ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The Comparison of intensity structure under the influence of thermal broadening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Simulation used in the figure: H4S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Warmer color means denser pixels and coolers means pixels with lower density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The blue and red arrow represents the magnetic field direction and gradient direction within the sub-block (block size = 662).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The bottom right shows the alignment measure value between magnetic field and gradient for each maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='3 Velocity Channel gradient in the multi-phase Interstellar medium The Velocity Channel Gradients provide another way to study the magnetic field’s morphology in the interstellar medium Lazarian & Yuen (2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The intensity fluctuation is strongly affected by its width and the thermal properties of the medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2019) demonstrated the reliable performance of VChGs in tracing the mag- netic field directions in super-sonic molecular clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, con- cerns of the thermal broadening effect were raised in a sub-sonic environment, which the effect could smooth out the velocity caustics in the channel maps (Clark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In the extreme case, when the thermal width larger than the velocity dispersion width, the fine structure of the channel map would be washed out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In addition, this can makes it similar to the intensity map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, the physics of the interstellar medium is complicated and involves external physical processes, especially for the HI medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Thermal instability plays a crucial role in shaping the proprieties of the HI medium, resulting in the multi-phase interstellar medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In multi-phase media, the numerical study found that the warm phase gas occupies most of the medium with about 5000K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' On the other hand, the cold phase medium cools down to about 100K and occupied about 10% space ( Heiles & Troland 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Kritsuk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Ho , Yuen & Lazarian 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Since two-phase media has a dramatic difference in temperature, MNRAS 000, 000–000 (0000) Synchrotron Intensity Centroid 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 Sub-Sonic Super-Sonic 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6- AM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 MA MABroadening with warm gas only No Broadening Broadening with cold & warm gas M = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='68 AM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='94 Broadening like Velocity castics like6 Ho & Lazarian the influence of broadening effect on the intensity structure in the channel map behaves entirely differently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The velocity profile of warm phase gas will greatly be extended because of its tempera- ture and its fine structure in the channel map being affected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a result, when we look at the transition of fine structure in channel map when switching different velocity channel, the caustics created in channel maps by turbulence in the warm phase gas will lose their contrast due to thermal broadening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' A new technique, namely, the Velocity Decomposition Technique (VDA) can deal with the effect of thermal broadening and focus on the velocity caustics (Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In what follows, we another way of how the dynamics of warm gas can be revealed in the multi-phase medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' If the multi-phase media is a unified turbulent system, dynamics between cold gas and warm gas are coupled (Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The cold phase gas forms clumps that moving with the surrounding warm gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It suggests the dynamical information of warm phase gas will imprint in the cold phase that is not much affected by thermal broadening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We expect this effect to be important in multi-phase galactic HI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' To explore and verify this effect, we adopt a post-processing analy- sis to make synthetic observation of a multi-phase environment with broadening based on our sub-sonic ensembles simulation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In our synthetic observation , we randomly select 15% of pixels and label them as a cold phase gas tracer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We label the rest of the pixels as warm phase gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We then transform the Position Position Position data cube (PPP) to Position Position Velocity (PPV) cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We cal- culate a PPV cube accounting for a broadening effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' To do so, we convolved each pixel with its temperature profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' To simplify our set up, we set the temperature of warm gas as 5000K and 100K for cold gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The idea of the post-processing synthetic observation is inspired by Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As noticed in Lazarian & Pogosyan (2000), the fluctuation of channel maps can be divided into those arising from density and velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It is demonstrated in Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2021) that, without changing the density value, one can vary the sound speed to change the fraction of density and velocity contributions in a channel map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We should stress that the isothermal simulation could not cap- ture the full physics in multiphase ISM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2021) demonstrated that the contribution of CNM and WNM in channel map could also be separated into the density and velocity part with the difference of different thermal profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a result, we can apply two thermal profiles to the gas to try to simulate the behaviour of CNM and WNM in a channel map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Figure 2 demonstrates the center channel Map of synthetic obser- vation from one of our simulation cubes(Right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a reference, the figure also includes two comparison plots of the same Channel Map but one with a broadening effect with only warm phase (Left) and another one without broadening(Mid).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This two picture represents two different regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In the sub-sonic regime, the morphology of the channel map without broadening shows a reference of intensity fluctuations caused by velocity caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Because of the existence of the velocity caustics effect, the channel map structure without broad- ening effect would demonstrate an intensity structure, which filling with thin and long filaments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Those intensity filaments caused by caustics within the thin channel map are elongated along the mag- netic field, as described in LY18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' On the contrary, the morphology of the channel map dominated by the broadening effect is different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In particular, the intensity fluctuation in the channel map is washed out because of the wide thermal velocity profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore, the intensity structure in the channel map has a high similarity with the intensity maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The similarity of the effects of thermal broadening and the increase of the thickness of the channel maps is discussed in LP00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The situation is changed if we observe the intensity of emission in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Result of Channel Gradient considering the effect of thermal broad- ening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Block size used = 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' X-axis: Alfvenic Mach Number 𝑀𝐴, y-axis: AM thin channel maps arising from the mixture of warm and cold gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' There, the thin and long filamentary structures are clearly seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This suggests that the main structure of velocity caustics is preserved in the the presence of multi-phase media with cold and warm gas mixed together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Figure 3 shows a scatter and line plot of AM of VGChT using channel map of multi-phase synthetic simulation with respect to 𝑀𝐴 using the gradient recipe same as the Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The plot includes the 𝐴𝑀 obtained in the channel maps with and without broadening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The AM for multi-phase simulation starting with 𝐴𝑀 ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 in 𝑀𝐴 ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 with slowly decline to 𝐴𝑀 ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='88 in 𝑀𝐴 ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In contrast to the broadening regime, the AM curve for multi-phase simulation is very close to the velocity caustics regime in the sub-Alfvenic simulation with a small difference of AM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This discrepancy becomes broader as we transfer to the trans-Alfvenic environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 5 IMPROVING AM IN SUB-SONIC MAP USING GGA TECHNIQUE Ho & Lazarian (2021) identified the effect of intermittency of fast mode in low-plasma 𝛽 media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore, the concentration of fast modes in selected regions would alter the anisotropy of the distri- bution of velocity centroids compared to the neighboring regions dominated by Alfvenic modes (see Kandel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2018)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This effect would be reflected in the observed centroid gradients to abruptly change 90 degrees in the fast mode dominated regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We refer those gradients as orthogonal gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Ho & Lazarian (2021) introduced new data sets, namely, gradient amplitude map, and demonstrated that using these data sets one could suppress the orthogonal gradient effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a result, the new gradient technique, Gradient of Gradient Amplitudes (hereafter GGA), could improve the alignment measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The performance of GGA in ideal case (En- MNRAS 000, 000–000 (0000) Channel map with the thermal broadening effect 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='85 AM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='75 No broadening Cold gas included 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='70 Warm gas only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 MA7 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The AM of GGA versus the block size using synchrotron intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The line with different colors represent the performance of GGA with certain strength of white noise added.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a reference, the dotted line with red color illustrate the performance of gradient with the noise amplitude of 1𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The x-axis showed in log scale for demonstrating the performance of technique in small block size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Simulation used: H1S Block size covered: [11,18,22,33,36,44,66,72,99,132,198,396] vironment without noise) could provide prefect alignment (AM∼ 1) with the use of block size larger than 502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, we noticed that the performance of GGA could strongly depends on the level of noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The performance of GGA will declin rapidly with the increase of noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' To demonstrate the effect of GGA in the presence of noise, we add white noise with the amplitude relative to the standard deviation of the observable measures and see how the 𝐴𝑀 of GGA is varied as a function of noise amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Figure 4 shows the 𝐴𝑀 of GGA in centoid maps versus block size with white noise added of the amplitude 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='05 𝜎 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a reference, we also added the AM of GGA without noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Also, we include the AM of gradient with noise of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 𝜎 for a comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For the computation of GGA, we first define the gradient amplitude map (GA), which mechanistically defined as 𝐺𝐴 = � 𝑖 𝐴2 𝑖 , where 𝐴𝑖 is gradient component in direction i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For the gradient technique, 𝐴𝑖 can be computed though the Sobel kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The GGA would then be the output of the Sobel kernel of GA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' One can see from the figure, the performance of GGA drops rapidly with mild noise added.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Compare to ideal case, the AM of GGA falls from ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='9 to ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6 in the small block size For noise amplitude of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='05𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The performance gap narrows down with the larger block size but block size of ≥ 1202 is required to match the performance of ideal case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The advantage of GGA over ordinary gradient decreases for the case of noise amplitude 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We can see that the performance of GGA is very sensitive to the noise level if we use a smaller block size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' To restore the performance of GGA, we employ the Gaussian smoothing of 𝜎 = 2 pixel as proposed in Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2017) and tested in Lazarian & Yuen (2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' According to Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The comparison of GGA before and after the smoothing technique using the synchrotron intensity map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As a reference, a blue line is added for representing the idea case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Simulation used: H1S Block size covered: [11,18,22,33,36,44,66,72,99,132,198,396] (2017), the kernel size we picked here would preserve most of the small-scale structures while efficiently suppressing the noise in the synthetic map globally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' By adding the noise and also the smoothing kernel, we can then test whether in noisy observations we can still use the GGA as a tool to trace magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Figure 5 shows the result of GGA verus block size with noise added of amplitude 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1𝜎 and smoothing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The setup is the same as Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We can see that the application of the smoothing technique shows that the performance of GGA can be improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The drop of AM from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='5 decrease to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 in the small block size while the performance gap between smoothing and ideal case become negligible in the block size of 602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The smoothing technique could relax the noise level requirement of the GGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 6 CFA IN GRADIENT AMPLITUDE MAP Other than gradient, Correlation Function Analysis(CFA) is another technique of tracing magnetic field direction by utilizing observable measure information (Esquivel & Lazarian 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Kandel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Hernández-Padilla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' CFA was suggested to study magnetic field statistically and it is based on the theoretical understanding of properties of observed fluctuations (see LP12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For the (2 order) correlation function 𝐶𝐹𝐶 of a velocity centroid map 𝐶, it is defined as 𝐶𝐹𝐶 (R) =< 𝐶(r)𝐶(r + R) >, (4) where 𝑟, 𝑅 are the vector quantities on 2D maps and separation distance from r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The output of 2D correlation map 𝐶𝐹𝐶 (R) can be interpreted as the fluctuations between different distance R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' If the fluctuations are isotropic, the shape of contour line will be cir- cular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In opposite, the shape turns to elliptical when the fluctuation MNRAS 000, 000–000 (0000) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 AM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6- GGAwithout noise GGA,noise=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='05o 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='5 GGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='noise = O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 o Gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='noise=O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='lo 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 101 102 BlocksizeSynchrotron intensity with noise = o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 - AM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6 no noise 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='5 - noisewithoutsmoothing noisewithsmoothing 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 101 102 Blocksize8 Ho & Lazarian is anisotropic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Therefore, the magnetic field direction could be ob- tained from the elongated direction of elliptical shape structure after the observational map processed by the CFA analysis (Esquivel & Lazarian 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The elongation depends on the relative importance of the three basic MHD modes in turbulence (Kandel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' It was applied to both observation and simulation data in Yuen et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, the study showed that the tracing power of the CFA is weaker and the technique is less stable than the gradient technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In this section, we explore the behavior of CFA with the gradient amplitude maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' A detailed study was conducted to compare the performance be- tween gradient and other magnetic field tracing method, including CFA (Yuen et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' One of the issues of CFA showed from Yuen et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al (2019) is that the performance of CFA is not stable for the ve- locity centroid map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The anisotropy is changed when one selects a different block size (For example, figure 15 in Yuen et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al (2019)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This change of anisotropy could change 90 degrees by switching the block size while the mean field’s direction stays the same throughout the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We repeated this study and extended it to the comparison between observable map and gradient amplitude processed map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Figure 6 shows how the shape of anisotropy of both maps is changed when one selects a different size of a averaging block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For sub-Alfvenic simulations like H3S, the mean magnetic field strength and direction remain the same throughout the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For CFA, showed from the top side of the figure, we get the same conclu- sion as in Yuen et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' While switching to the small size block region, the resolution problem can not only distort the shape of the anisotropies in different scales but also destroy the prominent ellipti- cal shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The shape of the elliptical structure is being destroyed for the block size is smaller than 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Also, the direction of anisotropy changes when the block size changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, the situation improves dramatically with the application of the GA technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For the procedure of processing GA-CFA, it is same as the computation of the CFA from Yuen et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al (2019) but switching the input map to the gradient amplitude map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The bottom side of the figure shows the elliptical shape of CFA can be recovered after the GA technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Nonetheless, the anisotropy stays towards horizontal direction throughout different block size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' From the figure, We noticed that there are differences between anisotropy direction and magnetic field in block size of 302 but the anisotropy aligns with the magnetic field once increase the block size to 602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' On the other hand, one should mention that the size of the elliptical structure is smaller and more elongated compared to the normal CFA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The ellipse’s shape exists on a small scale, about 20 to 60 pixels for GA- CFA, while it is about 40 to 60 pixels for the CFA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This is due to the map process after the gradient amplitude, the morphology of the map becomes more filamentary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The size of the filamentary structure is more prominent on a small scale in the CFA analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' So, to improve the tracing power of GA-CFA, we have to measure the direction of anisotropy on a smaller scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' As the performance of CFA improved after combining with the GA technique, we then test the improvement of the new GA-CFA technique compared to gradient and GGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We repeat the test showed in Figure 1 and extend it to both GGA and GA-CFA technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Inspired by the result from figure 4 and figure 6, we observed a block size of 722 would be a common "sweet spot" for both technique between the resolution required and the alignment improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We then pick the sub-block size of 722 for the comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The algorithm of determining the anisotropy direction of the CFA technique is the same as mentioned in the Yuen et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For direct comparison with Yuen et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al (2019), we also adopt the same pixel distance of 10 pixels from the center of the elliptical structure for anisotropy contour detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Figure 7 shows the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' One can see a significant advan- tage of GGA compared to the other two in the figure in terms of the AM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' For the performance of GGA in both synthetic obser- vation maps, the AM decreases according to the Alfvenic Mach number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The performance drop is mild for GGA for the amount of Δ𝐴𝑀 = 𝐴𝑀𝑀𝐴=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='13 − 𝐴𝑀𝑀𝐴=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='17 ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 when 𝑀𝐴 change from sub-Alfvenic to super-Alfvenic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The performance of the GA-CFA line between the gradient and GGA but closer to GGA in most of the cases but with a small effect of fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Compared to the gradient, GA-CFA has a noticeable better performance, which AM improves by about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 for most cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This shows the performance of CFA can be improved by unitizing the Gradient amplitude tech- nique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The synergy of the gradients and the GA-CFA approach will be explored elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 7 DISCUSSIONS 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 Connection to earlier gradient studies The gradient research opens a new avenue of studying magnetic fields and turbulence properties and it is based on of the modern un- derstanding of MHD turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Starting from the velocity centroids gradient in González-Casanova & Lazarian (2017), studies employed later the gradient to different observable maps, such as synchrotron intensity/polarization (Lazarian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017), channel maps (Lazarian & Yuen 2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This enabled to trace the magnetic field in different media from the molecular cloud on the scale of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='1 pc to the galaxy clusters in the scale of 10kpc (see Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2020, 2021)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The appli- cability of gradient techniques covers two different hydrodynamics regimes to both sub-sonic to supersonic regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Meanwhile, the relationship between gradient and fundamental properties(such as 𝑀𝑆, 𝑀𝐴, and MHD modes) of MHD turbulence is being discovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The gradient behavior could change 90 degrees in the particular re- gion, for instance, shock or fast mode dominated region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In those regions, the direction of rotated gradient vectors would change from parallel to perpendicular to the magnetic field, which identifies as an orthogonal gradient region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Those orthogonal gradients could lower the tracing performance of gradient techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This paper revisits the performance of gradient techniques in the sub-sonic turbulent environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We study the change of perfor- mance of different gradient techniques in sub-sonic medium regard- ing Alfvenic number systematically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In addition, we extend the study of gradient amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This new technique showed a good perfor- mance in removing the distortion in the VGT-produced magnetic field maps arising from the effects of the intermittent regions dom- inated by fast MHD mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This GGA technique was demonstrated to be capable of removing distortions caused by the fast mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We noticed that GGA amplifies the small scale fluctuation that aligned with magnetic field, which suppresses the dominance of fast mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, its performance is influenced by the noise and the relia- bility of GGA could drop rapidly in the presence of the noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We showed in section 5 that the GGA performance in the presence of noise could be improved by employing suitable Gaussian filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This enables the new technique to be applied to realistic observation data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Furthermore, we explore a new way of combing the gradient am- plitude maps with the CFA technique in section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The classical CFA technique has its limitations while applied to the small block size region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This results in the requirement of block size > 1002 and MNRAS 000, 000–000 (0000) 9 [t] Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Variation of correlation function anisotropy shapes with respect to block size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The subplot located at the right panel is the magnified view of the centre part of the plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The blue arrow at the upper left plot shows the direction of the plane of sky magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Top panel: CFA Bottom panel: GA-CFA [t] Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Left panel: Result of Synchrotron intensity map betwen the gradient, GGA and GA-CFA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Right panel: Result of Centroid map betwen the gradient, GGA and GA-CFA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' X-axis: Alfvenic Mach Number 𝑀𝐴, y-axis: AM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' MNRAS 000, 000–000 (0000) Block size = 30 Block size = 60 Block size = 120 Block size = 480 BposSynchrotron Intensity Centroid 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6 AM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 - Gradient GA-CFA GGA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 MA MA10 Ho & Lazarian limits the abilities of the CFA in tracing magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The new combined GA-CFA technique minimizes the block size e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' to 302 without decreasing the performance of the technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This extends the applicability of the CFA technique and makes it competitive to the gradient technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2 Intensity structure and velocity caustics in Channel Map The theory of describing the fluctuations of intensity within spectro- scopic data that arise from turbulence was formulated in (Lazarian & Pogosyan 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' There the concept of velocity caustics has been proposed to describe the effect of turbulent velocities eddies made to the channel map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This provided the basis for the technique of tracing magnetic fields using velocity channel gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' However, the density also affect fluctuations in channel map fluc- tuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Several HI studies have been discussed on the influence of thermal broadening of warm phase made to channel map and the importance of cold phase media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The applicability of Lazarian & Pogosyan (2000) to galactic HI was questioned in (Clark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' A rebuttal to these arguments was given by Yuen et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al (2019) and the applicability of the LP00-based approach was demonstrated in Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2021) where the Velocity Decomposition Algorithm was introduced to deal with density fluctuations in subsonic flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The later observational study by Yuen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (2022) reported the velocity caustics could be fully restored after applying the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Our study in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='3 showed provides another argument in favor of the applicability of the LP00 theory to multi-phase media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We showed that if the phases of the media move together in the galactic disk, they can be viewed as a unified turbulent system, and our result from figure 3 suggests that most of the information of velocity anisotropy can be preserved without the VDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 8 SUMMARY This paper extends our studies the Gradient Technique (GT) in the sub-sonic environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Our main results are: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The alignment between gradient and POS magnetic field is better in the subsonic regimes compared to the supersonic one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In the multi-phase media, the morphology of filamentary struc- ture in the channel map and the statistical anisotropy of thin channel intensity fluctuations is preserved in the presence of thermal broad- ening if the phases are moving together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We extended the study of GGA introduced in the Ho & Lazar- ian (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We examined the applicability of GGA in the synthetic observation map with noise added.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' The performance of GGA is sen- sitive to noise, but the employment of the Gaussian kernel alleviates the noise effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We demonstrated that the gradient amplitude maps can be suc- cessfully combined with Correlation Function Analysis (CFA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' In this case the anisotropy can is prominent in small block of the order of 302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' This makes the new technique competitive with the gradient technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' MNRAS 000, 000–000 (0000) 11 ACKNOWLEDGEMENTS We acknowledge Ka Ho Yuen and Yue Hu for the fruit- ful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' We acknowledge the support the NASA ATP AAH7546 and NASA TCAN 144AAG1967 grants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' SOFTWARE Julia-v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='0/Julia-v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='2, Jupyter/miniconda3, LazTech-VGT (Yuen & Lazarian 2017a) : https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='com/kyuen2/LazTech-VGT DATA AVAILABILITY The data underlying this article will be shared on reasonable request to the corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' REFERENCES Andersson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' & Vaillancourt, John E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 2015, Annual Review of Astronomy and Astrophysics, 53, 501-539 Armstrong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Rickett, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Spangler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1995,The Astrophysical Journal, 443, 209 Beck, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Wielebinski, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2013, Planets, Stars and Stellar Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Volume 5: Galactic Structure and Stellar Populations, 5, 641 Beresnyak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=') 2019, Turbulence in Magnetohydrody- namics (Berlin: De Gruyter) Burkhart, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Ossenkopf, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Stutzki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2013, ApJ, 771, 123 Caldwell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Dvali, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Majorovits, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017, Physical Review Letters, 118, 091801 Chepurnov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2009, ApJ, 693, 1074 Chepurnov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2010, The Astrophysical Journal, Volume 710, Issue 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 853-858 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 710, 853 Cho, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Vishniac, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2000, ApJ, 539, 1, 273 Cho, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2002, PhRvL, 88, 245001 Cho, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2003, MNRAS, 345, 325 Clark, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Hill, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Peek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Putman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Babler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2015, Physical Review Letters, 115, 241302 Clark, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Peek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Miville-Deschenes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019, ApJ, 874, 2 Draine, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2009, Cosmic Dust - Near and Far, 414, 453 Esquivel, A, Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 2005, ApJ, 631, 320 Federrath, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Roman-Duval, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Klessen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Schmidt, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Mac Low, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2010, A&A, 512, A81 Field, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Goldsmith, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Habing, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 1969, ApJ, 155, L149 Fletcher, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Beck, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Shukurov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Berkhuijsen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Horellou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2011, MNRAS, 412, 2396 Goldreich, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Sridhar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1995, ApJ, 438, 763 González-Casanova, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017, ApJ, 835, 41 Galtier, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Nazarenko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Newel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Pouquet, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Plasma Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 63, 447 Hayes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' , Norman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Fiedler, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', ApJS, 165, 188 Haud, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2000, A&A, 364, 83 Hernández-Padilla, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Esquivel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2020, ApJ, 901, 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='3847/1538-4357/abad9e Heiles, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Troland, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 2003, ApJ, 586, 1067 Hill, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Benjamin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Kowal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2008, ApJ, 686, 363 Ho, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' & Lazarian, A, 2021, ApJ, accepted Ho, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A, 2022, MNRAS, submitted, arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='06845 Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' , Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019, Nature Astronomy, 3, 8, 776-782 Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' & Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2020, ApJ, 901 , 2, 162 Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2020, MNRAS, 502 , 2, 1768-1784 Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' & Wang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 2021, MNRAS, 511 , 1, 829 - 842 Jokipii, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1966, ApJ, 146, 480 Kalberla, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Haud, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019, A&A, 627, A112 Kandel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Pogosyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017, MNRAS, 464, 3617 Kandel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Pogosyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2018, MNRAS, 478, 530K Kleiner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Dickman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1985, ApJ, 295, 466 Kritsuk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Ustyugov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Norman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017, New Journal of Physics, 19, 065003 Kritsuk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Flauger, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Ustyugov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2018, Physical Review Letters, 121, 021104 Kowal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Beresnyak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2007, ApJ, 658, 423 Kowal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Vishniac, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' al 2007, ApJ, 700, 63 Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Vishniac, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1999, ApJ, 517, 700 Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2007, Journal of Quantitative Spectroscopy and Radiative Trans- fer, 106, 225 Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2009, Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 143, 357 Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Pogosyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2000, ApJ, 537, 720 Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Pogosyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2004, ApJ, 616, 943 Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Pogosyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2012, ApJ, 747, 5L Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Hyeseung L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' , Cho, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 2017 ApJ, 842, 30 Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2018, ApJ, 853, 96 Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Ho, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2018, ApJ, 865, 46 Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=',& Pogosyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 2022, ApJ, 935, 77 arXiv preprint arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='07996 Lenc, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Gaensler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Sun, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2016, ApJ, 830, 38 Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Burkert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2016, MNRAS, 461, 3027 Lithwick, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' , & Goldreich, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2001, ApJ, 562, 279 Maron, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' & Goldreich, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2000, ApJ, 554,1175 Mac Low, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Klessen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2004, Reviews of Modern Physics, 76, 125 Marchal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Martin, Peter G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' , & Gong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2021, ApJ, 921, 11 McKee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Ostriker, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2007, ARA&A, 45, 565 Miesch, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Scalo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1999, ApJ, 524, 895 Münch, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Wheelon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1958, Physics of Fluids, 1, 462 Oppermann, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Junklewitz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Greiner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2015, A&A, 575, A118 O’dell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Castaneda, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1987, ApJ, 317, 686 Planck collaboration, 2020, A& A, A3, 50 Saury, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Miville-Deschênes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Hennebelle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2014, A&A, 567, A16 Stanimirović, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2001, ApJ, 551, L53 Van Eck, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Haverkorn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Alves, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017, A&A, 597, A98 Wolfire, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Hollenbach, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', McKee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Tielens, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Bakes, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1995, ApJ, 443, 152 Wolfire, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', McKee, Hollenbach, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' & Tielens, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', 2003 , ApJ, 587, 278 Yan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2008, ApJ, 673, 942-953 Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2017, ApJ, 837, L24 Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' et al 2018, ApJ, 865, 54 Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Pogosyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2019, arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='03173 Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', HO, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', W, & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2021, ApJ, 887 (2), 258 Yuen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', HO, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' W, & Law, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 2022, , submitted to nature communications, arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content='13760 Zaldarriaga, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=', & Seljak, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' 1997, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} +page_content=' D, 55, 1830 MNRAS 000, 000–000 (0000)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf'} diff --git a/C9FRT4oBgHgl3EQfwjj-/vector_store/index.faiss b/C9FRT4oBgHgl3EQfwjj-/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..c50e8ad07bee690e0d771d1dc87edec445734ab0 --- /dev/null +++ b/C9FRT4oBgHgl3EQfwjj-/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d2740d7d53ffe8b3d1f01b4995526f0481143296a23b1e856b48db2fa26672aa +size 5308461 diff --git a/D9AyT4oBgHgl3EQf4vqB/content/2301.00792v1.pdf b/D9AyT4oBgHgl3EQf4vqB/content/2301.00792v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..1218ecad368896a209567c10f3852ba3c2b42f73 --- /dev/null +++ b/D9AyT4oBgHgl3EQf4vqB/content/2301.00792v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1a19841495a473518ce568e1604b23e761af31f955895a2f438f3c1ef5f0c095 +size 985013 diff --git a/D9AyT4oBgHgl3EQf4vqB/vector_store/index.faiss b/D9AyT4oBgHgl3EQf4vqB/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..8f995650716de937d1884ad699e95a3c5ef5cc91 --- /dev/null +++ b/D9AyT4oBgHgl3EQf4vqB/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f735552d9709cd3aee78eb231e4f76d4149614d9c235d3773c94624cbf48bd3a +size 1572909 diff --git a/D9AyT4oBgHgl3EQf4vqB/vector_store/index.pkl b/D9AyT4oBgHgl3EQf4vqB/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..99a84f7b37af7624df69671d69c76aa018a25e47 --- /dev/null +++ b/D9AyT4oBgHgl3EQf4vqB/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:90ae4609fc3646a47daa7e8ab433755f90d05d173004a7b9b981bd14ef0b51b0 +size 59620 diff --git a/DdE2T4oBgHgl3EQf9gki/content/2301.04228v1.pdf b/DdE2T4oBgHgl3EQf9gki/content/2301.04228v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..29aecc33493dee85048ae0394e2dfc720bfe7084 --- /dev/null +++ b/DdE2T4oBgHgl3EQf9gki/content/2301.04228v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f835b33bd1abd1a051836d60b724388570df1acc0af4cd52cefc82886d723b06 +size 1892656 diff --git a/DdE2T4oBgHgl3EQf9gki/vector_store/index.faiss b/DdE2T4oBgHgl3EQf9gki/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..75c2bea5eed1322e2accb49eafdee13864ad8ea4 --- /dev/null +++ b/DdE2T4oBgHgl3EQf9gki/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1af7f92cbc6925d57f80a9d787dca4db743c343493908781137fd5bda18a6959 +size 4653101 diff --git a/EtE5T4oBgHgl3EQfUw_x/content/tmp_files/2301.05547v1.pdf.txt b/EtE5T4oBgHgl3EQfUw_x/content/tmp_files/2301.05547v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..664f28051cf6e0c488c6978167f5290cd8de9784 --- /dev/null +++ b/EtE5T4oBgHgl3EQfUw_x/content/tmp_files/2301.05547v1.pdf.txt @@ -0,0 +1,2479 @@ +Springer Nature 2021 LATEX template +Resilient Model Predictive Control of +Distributed Systems Under Attack Using +Local Attack Identification +Sarah Braun1*, Sebastian Albrecht1 and Sergio Lucia2 +1*Siemens AG, Otto-Hahn-Ring 6, 81739 M¨unchen, Germany. +2TU Dortmund University, August-Schmidt-Straße, 44227 +Dortmund, State. +*Corresponding author(s). E-mail(s): sarah.braun@siemens.com; +Contributing authors: sebastian.albrecht@siemens.com; +sergio.lucia@tu-dortmund.de; +Abstract +With the growing share of renewable energy sources, the uncertainty +in power supply is increasing. In addition to the inherent fluctuations +in the renewables, this is due to the threat of deliberate malicious +attacks, which may become more prevalent with a growing number +of distributed generation units. Also in other safety-critical technology +sectors, control systems are becoming more and more decentralized, +causing the targets for attackers and thus the risk of attacks to +increase. It is thus essential that distributed controllers are robust +toward these uncertainties and able to react quickly to disturbances +of any kind. To this end, we present novel methods for model-based +identification of attacks and combine them with distributed model pre- +dictive control to obtain a resilient framework for adaptively robust +control. The methodology is specially designed for distributed setups +with limited local information due to privacy and security reasons. To +demonstrate the efficiency of the method, we introduce a mathematical +model for physically coupled microgrids under the uncertain influence +of renewable generation and adversarial attacks, and perform numeri- +cal experiments, applying the proposed method for microgrid control. +Keywords: Attack Identification, Robust Nonlinear Control, Distributed +Model Predictive Control, Microgrids Under Attack +1 +arXiv:2301.05547v1 [cs.SY] 13 Jan 2023 + +Springer Nature 2021 LATEX template +2 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +1 Introduction +Due to the energy transition, power generation is facing a technological +change toward increasingly distributed generation, primarily from renewable +energy sources. Also in other technology areas such as industrial production +or the transport sector, advancing automation and digitization are creating +an increasing need for distributed control methods that can be applied to +safety-critical systems in real time. When designing such methods, it is impor- +tant to take into account that distributed systems with many components can +increase flexibility, but at the same time provide many targets for malicious +attacks. Therefore, distributed control methods should be designed robustly +and securely, and complemented with appropriate tools to increase the sys- +tem’s resilience to any type of disruption, which is particularly challenging in +the event of unpredictable, adversarial attacks. +Model predictive control (MPC) is one of the most popular control methods +for dynamic systems in various fields of application as it applies to multivari- +able systems and allows to include constraints and cost functions in a natural +way. Based on updated measurements, it repeatedly computes optimal inputs +to the system at each sampling time. Distributed MPC (DMPC) methods, see +[1] for an overview and [2] for security-related DMPC, are designed for large +systems of coupled subsystems and locally apply MPC in each subsystem. In +contrast to fully decentralized approaches where the neighbors’ dynamic evo- +lution is unknown to every subsystem, DMPC schemes involve some exchange +of information among neighbors. In [3], e.g., subsystems provide each other +with corridors in which future values of their coupling variables lie. Given +such information about the uncertainty range, robust MPC can be applied +to explicitly take uncertain influences into account when computing optimal +inputs. Robust MPC schemes typically build upon tube-based ideas as in [4] or +multi-stage approaches [5]. It has been demonstrated in several works [6, 7, 8] +that robust (D)MPC cannot only be applied for robustness against uncertain +parameters or neighboring couplings, but also against adversarial attacks. +While robust MPC can reduce the impact of disruptions if the uncertainty +ranges are known, appropriate security measures for unknown attacks require +that their presence and points of attack are recognized in the first place. In +this context, Pasqualetti et al. [9] introduce attack detection and identification +(ADI) as the tasks of revealing the presence of an attack and localizing all +attacked system components. For both linear and nonlinear dynamics, there +are many methods to detect and identify attacks or, closely related, unin- +tentional system faults. For a broad overview of physics- and control-based +approaches we refer to the survey in [10]. Some works like [9, 11, 12] design +unknown-input observers and employ one observer per attack scenario for iden- +tification, resulting in a combinatorial complexity. Moreover, works on fault +identification [11] often assume that all possible faults are known, which is an +invalid assumption for adversarial attacks. In distributed ADI, each subsys- +tem employs its own estimator to detect and identify local perturbations, be +it based on observer systems as in [11, 12, 13] or sparse optimization problems + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +3 +as in [14]. To represent the influence of other subsystems, the local problems +typically involve measurements of the neighboring couplings transmitted by +the neighbors [11] or approximated by adaptive local estimators [13]. +In recent years, several approaches that intertwine the handling of attacks +with (robust) DMPC have been published. In [6], e.g., a DMPC-based strategy +is presented by which systems reach resilient consensus even if some agents are +malicious and transmit disturbed state values to their neighbors. An attack +identification method using Bayesian inference is introduced in [15] and com- +bined with DMPC to solve robust chance-constrained problems. The approach +involves testing a series of hypotheses about the attack set and requires full enu- +meration of all possible attack scenarios. To avoid the resulting combinatorial +complexity, we combined a DMPC scheme from [3] with our optimization- +based global ADI method from [16] and proposed an adaptively robust DMPC +method in [17] for targeted robust control against previously identified attack. +The contribution of this work, which is an extension of [18], consists in two +novel approaches for distributed attack identification, a DMPC scheme embed- +ding these ADI methods for adaptively robust control, and a numerical case +study to illustrate the proposed resilient control framework using an example +of interconnected microgrids under attack. The new methods for model-based +distributed ADI are derived in Section 3 (significantly more detailed compared +to [18] and including one completely new method). They involve a targeted +exchange of information between neighbors and solve sparse optimization prob- +lems to locally identify an attack. The identified insights are used by the DMPC +framework for adaptively robust control presented in Section 4 (considerably +exceeding the summarized version in [18]) to initiate suitable preparatory +measures against previously identified attacks. Unlike the related technique +introduced in [17], it involves one of the new distributed ADI techniques pre- +sented in this paper. Finally, we introduce here a more detailed numerical case +study (in comparison to [18]) with a nonlinear dynamic model for tertiary +control of interconnected microgrids under attack in Section 5 and perform +numerical experiments with several attack scenarios in Section 6, illustrating +the great potential of our resilient control framework for attacked microgrids +with uncertain renewable generation. +2 Problem Formulation +We consider nonlinear dynamic systems with states x ∈ X ⊆ Rnx, inputs +u ∈ U ⊆ Rnu, outputs y ∈ Y ⊆ Rny, and uncertain parameters w ∈ W ⊆ Rnw +that behave according to discrete-time dynamics of the form +xk+1 = f +� +xk, uk + ak, wk� +, +yk+1 = c +� +xk+1� +, +(1) +with nonlinear functions f : X×Rnu ×W → X and c : X → Y that are assumed +to be sufficiently smooth. The system is exposed to the threat of potential + +Springer Nature 2021 LATEX template +4 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +attacks, which are modeled by attack inputs a ∈ A(u) ⊆ Rnu unknown to the +controller. We consider arbitrary attack vectors a and make no assumptions +about the set A(u) of possible attacks. While the attack model is additive +in the input, an attack a affects the states and outputs of the system in a +nonlinear, nonadditive way. +The system is partitioned into a set D of subsystems I with local states +xI ∈ XI ⊆ RnxI , local control inputs uI ∈ UI ⊆ RnuI , local attack inputs +aI ∈ AI(u) ⊆ RnaI , local outputs yI ∈ YI ⊆ RnyI , and uncertain parameters +wI ∈ WI ⊆ RnwI . A distributed version of the dynamic system in (1) with +local dynamic functions fI and local output functions cI is formulated as +xk+1 +I += fI +� +xk +I, uk +I + ak +I, �zk +NI, wk +I +� +, +zk+1 +I += hI +� +xk+1 +I +� +, +yk+1 +I += cI +� +xk+1 +I +� +, +(2) +where the physical interconnection of subsystems is modeled through coupling +variables zI ∈ ZI ⊆ RnzI that are related to the local states xI through local +coupling functions hI : XI → ZI. Since the dynamic evolution of the neigh- +boring coupling variables zNI(t) during some time interval t ∈ [tk, tk+1] is not +determined by subsystem I, distributed models typically approximate zNI(t) +using some information provided by the neighbors. Here, we apply a parame- +terization scheme proposed in [19] and represent zI(t) on [tk, tk+1] as the linear +combination +zI(t) = +�n +� +j=1 +zk,j +I βk +j (t) +of �n basis functions βk +1, . . . , βk +�n +: +[tk, tk+1) +→ +R. The coupling coeffi- +cients zk,j +I +are exchanged among neighbors and �zk +I denotes the coefficient +matrix �zk +I := (zk,1 +I +, . . . , zk,�n +I +) ∈ �ZI ⊆ RnzI ×�n. For a simplified notation, we +introduce the chained local coupling function ζI := hI◦fI and the chained local +output function ηI := cI ◦ fI. Similarly, the dense output coupling function +�ζI : XI × Rnu × �ZNI × WI → �ZI maps to the space �ZI of coupling coefficients. +Based on the local coupling functions ζI, so-called nominal coupling +values ¯zk +I can be determined for the undisturbed case of no attack: +¯zk+1 +I +:= ζI +� +xk +I, uk +I,�¯z +k +NI, 0 +� +. +(3) +This nominal value is attained if no local attack is applied to the system, i.e., +ak +I = 0, no model uncertainty is present, i.e., wk +I = 0, and all neighboring +subsystems also behave according to their nominal values, i.e., �zk +NI = �¯z +k +NI. For +all methods presented in this paper we assume: + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +5 +Assumption 1 At each time k, each subsystems I ∈ D transmits the predicted +nominal values �¯zk +I , . . . ,�¯zk+Np−1 +I +of its coupling coefficients with prediction horizon +Np ∈ N to its neighbors. +Given this exchange of information among neighbors, the above definition +in (3) allows for a distributed calculation of the nominal values in a receding +horizon fashion, where the local values computed and transmitted by subsys- +tem I at time k are used by its neighbors to update their predictions one time +step later. The definition further requires suitable initial values �¯z +0 +I to be avail- +able. For simplicity, we assume the system to be in a steady state x0 at time 0 +and take ¯z0,j +I += hI(x0 +I) for all j ∈ {1, . . . , �n}. +Finally, each subsystem is subject to a set of local constraints +gI +� +xk +I, uk +I + ak +I, �zk +NI, wk +I +� +≤ 0 +(4) +for some nonlinear function gI : XI × RnuI × �ZNI × WI → RngI that must be +satisfied at all times. +3 Distributed Attack Identification Based on +Sparse Optimization +The goal of this section is to propose a distributed ADI method that, in con- +trast to global methods, does not involve a central authority which has access +to a global model of the system. Instead, we formulate a bank of local problems +that allow each subsystem to identify a suspicion a∗ +I about a potential local +attack aI based on locally available model knowledge and, possibly, interaction +with its neighboring subsystems. In contrast to the centralized ADI method +we presented in [16], no local model knowledge is published globally. +Before that, we briefly recall the distributed method for the detection of +attacks that has already been presented in [16]. It is based on each subsystem I +monitoring the deviations ∆zk+1 +I +:= zk+1 +I +− ¯zk+1 +I +in its local coupling variables +from the respective nominal values ¯zk+1 +I +. As the nominal values ¯zk+1 +I +defined +in (3) are attained in the undisturbed case, a deviation from them indicates +a disturbance at time k. Using a detection threshold τD ∈ R>0, the method +detects an attack if ∥∆zk+1 +I +∥∞ > τD for any I, i.e., if a distinct deviation is +observed in any subsystem. To ensure that only significant attacks are revealed +rather than small model inaccuracies or measurement noise, one can assume +a probability distribution of the uncertainty and define τD accordingly as in, +e.g., [11]. Even if subsystem I detects an attack by observing a clear deviation +∥∆zk+1 +I +∥∞ > τD, it does not necessarily have to be caused by an attack ak +I ̸= 0 +in I, but can just as well be caused by neighboring subsystems deviating from +their nominal couplings �¯z +k +NI. Identifying the root of the disturbance and thus +locating the attack is the task of attack identification. + +Springer Nature 2021 LATEX template +6 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +I +L +K +Local ADI +Local ADI +Local ADI +involving +problem (5) +�¯z +k +I, ∆�zk +I +�¯z +k +K, ∆�zk +K +�¯z +k +K, ∆�zk +K +�¯z +k +L, ∆�zk +L +Fig. 1: If neighboring subsystems in a distributed system exchange suitable +information about their local coupling variables, each subsystem can employ +a local ADI method to identify suspicions about unknown local attack inputs. +In this paper, also the identification of attacks is addressed in a distributed +manner. Depending on the amount and type of information that neighbors +are willing to share, we derive two different versions of local identification +problems. Clearly, the more specific the transmitted information describes +the neighbors’ behavior, the more precisely a local attack or even an attack +on neighboring subsystems can be identified. Therefore, the design of a local +identification problem needs to suitably balance the required amount of infor- +mation and the significance of the obtained suspicions. For the first local +identification problem that we establish, we propose that in addition to the +exchange of nominal values �¯z +k +I according to Assumption 1, also the deviations +∆�zk +I in the coupling coefficients are repeatedly transmitted to neighboring sub- +systems. This exchange is performed at each step k when an attack is detected +and is illustrated in Figure 1. Assuming that each subsystem can locally mea- +sure the impact onto its output variables yk+1 +I +∈ YI ⊆ RnyI , we formulate a +local attack identification problem to identify local attacks ak +I as +min +aI +∥aI∥1 +s.t. +���yk+1 +I +− ηI +� +xk +I, uk +I + aI,�¯z +k +NI + ∆�zk +NI, 0 +���� +2 ≤ εI. +(5) +A solution of problem (5), which has already been proposed in [18], identifies +a local suspicion a∗ +I for some subsystem I, which is ℓ1-norm sparsest among all +possible attack vectors in RnuI that explain the observed output yk+1 +I +accord- +ing to the local model with output function ηI up to a predefined tolerance +εI ∈ R≥0, neglecting possible parametric uncertainties wk +I . While the opti- +mization variable aI ∈ RnuI represents the unknown attack to be identified, +the local state xk +I, input uk +I, and output yk+1 +I +are measured or known from + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +7 +local control computations, and the values �¯z +k +NI and ∆�zk +NI, and thus the actual +neighboring coupling values �zk +NI = �¯z +k +NI + ∆�zk +NI, are transmitted by neighbors. +Computing a sparse suspicion to identify the attack is common in related work +on attack identification, e.g., [9, 14] and is justified by the observation that +attackers typically have limited resources and are thus confined to impairing +only few control components. Some approaches formulate related optimization +problems using an ℓ0-“norm” cost term ∥aI∥0 to count the number of attacked +inputs, but solving them requires solution methods from mixed integer pro- +gramming and is NP-hard [9]. To reduce the computational complexity and +to obtain a numerically more tractable problem, the ℓ0-“norm” is typically +relaxed by the ℓ1-norm, see also [16, 20]. +If the neighboring subsystems in NI agree to provide I with even more +information, subsystem I can apply another version of local identification +problem, which allows to draw not only conclusions about a potential local +attack ak +I, but even about attack inputs ak +NI in the neighborhood of I. Since +distributed methods are often applied when sensitive local information must +not be made publicly available, we assume that neighbors still seek to keep +their analytical model knowledge private and are only willing to reveal suitable +numerical derivative information evaluated at the current iterate. We pursued +a similar approach for the centralized ADI method presented in [16], involv- +ing the exchange of locally computed sensitivity matrices. To motivate which +kind of sensitivity information about the dynamic behavior of its neighbors +subsystem I requires, we approximate the neighboring influence onto the local +output yI by a first-order Taylor expansion of ηI(xk +I, uk +I + ak +I, �zk +NI, 0) in the +�zNI-argument around the nominal value �¯z +k +NI. To this end, we define a local +sensitivity function Sz +INI : RnuI → RnyI ×nzNI , which maps each given attack +input aI ∈ RnuI to the Jacobian +Sz +INI (aI) := ∂ηI +∂�zNI +� +xk +I, uk +I + aI,�¯z +k +NI, 0 +� +, +that expresses the first-order dependence of the local output function ηI on +the neighboring coupling variables �zNI. It can be evaluated locally by I and +allows to approximate the local output variables yk+1 +I +according to Taylor’s +theorem, e.g., [21, §7] as +yk+1 +I += ηI +� +xk +I, uk +I + ak +I,�¯z +k +NI, 0 +� ++ Sz +INI +� +ak +I +� +∆�zk +NI + Rlin +I ++ Rw +I . +(6) +Here, the remainder term of the Taylor expansion is denoted by Rlin +I +and can be +estimated similar to the upper bound proven in [16]. The term Rw +I represents +a model error which occurs as all uncertain parameters wk +I are considered zero +in (6) and due to the fact that the distributed model in (2) only approximates +the global dynamics in (1). + +Springer Nature 2021 LATEX template +8 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +At this point, the additional sensitivity information provided by the neigh- +bors NI of I comes into play. Denoting the coupling coefficients of the +neighbors’ neighbors by �zNNI , we introduce two types of sensitivity matrices as +�Sa +NI := ∂�ζNI +∂aNI +� +xk +NI, uk +NI,�¯z +k +NNI , 0 +� +and +�Sz +NI := ∂�ζNI +∂�zNNI +� +xk +NI, uk +NI,�¯z +k +NNI , 0 +� +. +The function �ζNI denotes the dense coupling function of all neighbors in NI, +which maps to the space �ZNI of coupling coefficients �zNI and is obtained +by combining the local dense coupling functions �ζL for all L ∈ NI. Hence, +the sensitivity matrices �Sa +NI and �Sz +NI represent first-order approximations of +how disturbances in uNI and �zNNI affect the coupling coefficients �zNI. If the +neighbors in NI provide subsystems I with this information, the deviation +∆�zk +NI of neighboring couplings �zk +NI from their transmitted nominal values �¯z +k +NI +can be expressed as +∆�zk +NI = �Sa +NIak +NI + �Sz +NI∆�zk +NNI + Rlin +NI + Rw +NI. +(7) +The model error Rw +NI is caused by the uncertain influence of the parameters +wk +NI and the linearization error Rlin +NI denotes the Taylor remainder term when +expanding the neighbors’ coupling function �ζNI around �¯z +k +NNI . The represen- +tation in (7) gives subsystem I more detailed insights into why its neighbors’ +coupling values �zk +NI differ from the nominal values �¯z +k +NI. More precisely, it +allows subsystem I to distinguish whether the deviation is caused by an attack +ak +NI that the neighbors are exposed to or whether they pass on the disturbing +effect of any of their neighbors. In order to figure out which source of distur- +bance applies, subsystem I solves the following local identification problem +with optimization variables aI, aNI, and ∆�zNNI : +min +aI,aNI ,∆�zNNI +∥aI∥1 + ∥aNI∥1 + +���∆�zNNI +��� +1 +s.t. +���yk+1 +I +− ηI +� +xk +I, uk +I + aI,�¯z +k +NI, 0 +� ++ Sz +INI(aI) +� +�Sa +NIaNI + �Sz +NI∆�zNNI +� ��� +2 ≤ εI. +(8) +An optimal solution (a∗ +I, a∗ +NI, ∆�z∗ +NNI ) of problem (8) is sparsest with respect +to the ℓ1-norm among all feasible points satisfying the constraints, which are +obtained by combining (6) and (7) and neglecting all error terms. Similar +to problem (5), the constraints are relaxed by some tolerance εI ∈ R≥0 to +account for model inaccuracies. Besides the local quantities uk +I, yk+1 +I +, and +xk +I, which are known, measured, or estimated by the local control scheme, +problem (8) also involves the nominal coefficients �¯z +k +NI, which are assumed +to be exchanged among neighboring subsystems according to Assumption 1. +Instead of the coupling deviations ∆�zk +NI, the exchange of which is illustrated +in Figure 1 and taken for granted by the first local identification problem + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +9 +Algorithm 1 Distributed Attack Detection and Identification Based on Sparse +Optimization +Input: local dynamic model for each subsystem I ∈ D as in (2), +version ∈ {1, 2} +1: detected = false, a∗ +I = 0 for all I +▷ initialization +2: for I ∈ D do +▷ distributed attack detection +3: +measure zI, determine ∆zI +4: +if ∥∆zI∥∞ > τD then +5: +detected = true +6: +break +7: +end if +8: end for +9: if detected then +▷ distributed attack identification +10: +for I ∈ D do +11: +if version == 1 then +12: +obtain coupling deviation ∆�zNI from neighbors +13: +solve local identification problem (5) to obtain a∗ +I +14: +else +15: +obtain sensitivity information �Sa +NI, �Sz +NI from neighbors +16: +solve local identification problem (8) to obtain a∗ +I +17: +end if +18: +end for +19: end if +20: return detected, a∗ +I for all I +(5), the new distributed ADI approach requires all neighbors to provide the +sensitivity matrices �Sa +NI and �Sz +NI. The third sensitivity matrix Sz +INI (aI) that +is contained in the constraints of problem (8), in contrast, is computed locally +by subsystem I in dependence on the optimization variable aI. +Now that two different formulations of local identification problems have +been presented, we briefly explain how a complete distributed ADI method is +obtained from the local optimizations problem (5) or (8), respectively, summa- +rized as Algorithm 1. The distributed detection scheme is based on monitoring +the coupling variables and raises an alarm if an abnormal deviation ∆zI > τD +is observed in any subsystem I. Then, the identification procedure is initiated +and neighboring subsystems exchange the necessary information to set up the +identification problem (5) or (8), depending on which version is applied, and +compute a solution to obtain a suspicion a∗ +I of the local attack. If problem (8) +is considered, the solution also suggests suspicions a∗ +NI and ∆�z∗ +NNI about the +disturbing activities in the neighborhood. +Since the problem formulations in (5) and (8) show some similarities to the +global identification problem of our publication [16], some of the theoretical +considerations in [16] can be adopted with only minor changes. E.g., an upper +bound on the remainder term of the Taylor expansion can be obtained for the + +Springer Nature 2021 LATEX template +10 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +linearization error Rlin +I +in (6), when adapting the reasoning of [16] to the fact +that here the expansion is only applied in the �zNI-argument but not the input. +The major difference between the identification problems for global versus +distributed ADI is, however, that the constraints in problem (5) and (8) are +nonlinear, whereas a linear problem is considered in [16]. As a consequence, the +theoretical results from [20] on relaxing the ℓ0-“norm” cost term in compressed +sensing problems by the ℓ1-norm are not applicable here since Candes and Tao +restrict their considerations to linear constraints. In fact, there is a body of +research on nonlinear compressed sensing, e.g., [22, 23], the results of which +can be useful to prove rigorous guarantees for the distributed ADI method +presented in this section. However, a precise elaboration of such proofs is out +of scope for this paper and a promising direction for future work. +4 Resilient Distributed MPC +While methods for attack identification are a very powerful tool to localize +a priori unknown attacks and thus improve the resilience of control systems +under malicious disturbances, they cannot prevent future attacks or reduce +their impact. On the other hand, robust control schemes can limit the impact +of a perturbation by ensuring that no constraints are violated, but require +information about the value range in which possible disturbances will lie, which +is typically not available for unknown adversarial attacks. We combine the +advantages of both approaches by embedding the proposed ADI method into +a DMPC setup, thus utilizing the identified insights about the attacker toward +targeted robust DMPC. To this end, we first describe an existing approach for +robust DMPC in Section 4.1, and enhance it with Algorithm 1 to obtain an +adaptively robust DMPC scheme in Section 4.2 that computes robust control +inputs against previously identified attacks in a distributed manner. +4.1 Contract-Based Robust Distributed MPC +By robust control, we refer to computing control inputs that ensure all con- +straints to a system with uncertain influences being met in all possible cases. +In [5], Lucia et al. introduce a multi-stage scheme for robust nonlinear MPC +(NMPC), which considers discrete sets of scenarios and represents the possible +evolution of the system state in a scenario tree like the one shown in Figure 2. +In a distributed dynamic system, the neighbors’ couplings zNI behave in an +uncertain way to the eyes of subsystem I, and, therefore, robust MPC can +also be used to design distributed MPC methods as long as each subsystem +is provided with information about the range of possible neighboring coupling +values. In [3], this idea is implemented by Lucia et al. introducing so-called +contracts ZI, which are corridors containing predicted reachable values of the +coupling variables zI and are exchanged among neighbors. At time k, the +reachable state set X l+1,[k] +I +of all values that the local state xl+1 +I +may attain + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +11 +� +X 1,[0] +I +� +X 2,[0] +I +� +X 3,[0] +I +� +X 4,[0] +I +x0 +I +x1,s7 +I +x2,s9 +I +x3,s9 +I +x4,s9 +I +x2,s8 +I +x3,s8 +I +x4,s8 +I +x2,s7 +I +x3,s7 +I +x4,s7 +I +x1,s4 +I +x2,s6 +I +x3,s6 +I +x4,s6 +I +x2,s5 +I +x3,s5 +I +x4,s5 +I +x2,s4 +I +x3,s4 +I +x4,s4 +I +x1,s1 +I +x2,s3 +I +x3,s3 +I +x4,s3 +I +x2,s2 +I +x3,s2 +I +x4,s2 +I +x2,s1 +I +x3,s1 +I +x4,s1 +I +Fig. 2: A scenario tree as in the multi-stage approach to robust MPC [5], here +shown for time k = 0 and Np = 4, provides a natural and computationally +efficient way to approximate the reachable sets X l,[k] +I +(indicated in gray) by +discrete node sets � +X l,[k] +I +(blue) explored by the tree. +at time l + 1 under all possible uncertainty realizations, is computed as +X l+1,[k] +I +:= +� +fI +� +xl +I, ul +I + al +I, �zl +NI, wl +I +� +: +xl +I ∈ X l,[k] +I +, al +I ∈ Al,[k−1] +I +, �zl +NI ∈ � +Zl,[k−1] +NI +, wl +I ∈ Wl,[k−1] +I +� +with X k,[k] +I +:= {xk +I}. From this, the contract Zl,[k] +I +for zl +I at time k is derived as +Zl,[k] +I +:= +� +hI +� +xl +I +� +: xl +I ∈ X l,[k] +I +� +. +Similarly, contracts � +Zl,[k] +I +for the coupling coefficients �zl +I are obtained using +the dense coupling function �ζ. These sets are computed locally at time k, +provided that each subsystem knows attack and parameter uncertainty sets +Al,[k−1] +I +and Wl,[k−1] +I +and additionally receives its neighbors’ contracts � +Zl,[k−1] +I +. +If all these uncertainty sets are discrete or subsystem I chooses finite subsets +as sample scenarios, it can locally build a scenario tree as in Figure 2. The +tree contains one node xl,s +I +for each time l ∈ {k, . . . , k + Np} with prediction +horizon Np and each scenario s ∈ Σ[k−1] +I +, where Σ[k−1] +I +is the finite local index +set of scenario indices s. The local scenario trees allow to efficiently compute +finite approximations � +X l,[k] +I +of the reachable sets X l,[k] +I +as the set of tree nodes +xl,s +I +that are reached by subsystem I at stage l in any scenario s ∈ Σ[k−1] +I +. +This is indicated by blue shapes in Figure 2 and explained in detail in [8]. + +Springer Nature 2021 LATEX template +12 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +Corresponding approximated contracts � +Zl,[k] +I +are obtained as +� +Zl,[k] +I +:= +� +�ζI +� +xl,s +I , ul,s +I + al,s +I , �zl,s +NI, wl,s +I +� +: s ∈ Σ[k−1] +I +� +⊆ � +Zl,[k] +I +and have been proven to work well in practice [8, 17]. Considering every pos- +sible evolution of the uncertain system for the future time steps k, . . . , k + Np +according to the finite scenario set Σ[k−1] +I +, contract-based DMPC using multi- +stage NMPC computes robust control inputs uk +I, . . . , uk+Np−1 +I +according to the +following optimal control problem based on the work of Lucia et al. in [3, 5] +min +xl,s +I ,ul,s +I +� +s∈Σ[k−1] +I +αs +I +k+Np−1 +� +l=k +ℓI +� +xl,s +I , ul,s +I + al,s +I , �zl,s +NI, wl,s +I +� +s.t. +xk,s +I += xk +I, +xl+1,s +I += fI +� +xl,s +I , ul,s +I + al,s +I , �zl,s +NI, wl,s +I +� +, +gI +� +xl,s +I , ul,s +I + al,s +I , �zl,s +NI, wl,s +I +� +≤ 0, +(9) +xl+1,s +I +∈ XI, ul,s +I +∈ UI, +xl,s +I += xl,s′ +I +⇒ ul,s +I += ul,s′ +I +, +min +� +� +Zl,[k−1] +I +� +≤ �ζI +� +xl,s +I , ul,s +I + al,s +I , �zl,s +NI, wl,s +I +� +≤ max +� +� +Zl,[k−1] +I +� +, +for all +s ∈ Σ[k−1] +I +, s′ ∈ Σ[k−1] +I +, l ∈ {k, . . . , k + Np − 1} . +An optimal solution of problem (9) provides a set of state trajectories starting +at xk +I for all scenarios, behaving according to the local discrete-time dynamics +as in (2), and taking only feasible states xl+1,s +I +∈ XI. The optimal inputs are +chosen to be feasible, to satisfy the constraints in (4) in all scenarios s ∈ Σ[k−1] +I +and at all times l, and to minimize the local costs ℓI weighted over all scenarios +with weights αs +I ∈ R≥0. The problem formulation takes into account that +future control inputs can be adapted when new measurements are available, +while input values ul,s +I , ul,s′ +I +that are applied to the same tree node have to +coincide because a real-time controller cannot anticipate the future. Finally, +for consistency, we require each element �zl,s +I +of the updated contract � +Zl,[k] +I +to be within the bounds of the previous contract � +Zl,[k−1] +I +. For details on the +purpose and the theoretical consequences of the last two groups of constraints +we refer to the original works [3, 5] and our own work [8]. +4.2 Adaptively Robust Distributed MPC +While we have explained in Section 4.1 how updated contracts � +Zl,[k] +I +are +calculated at each time k from a solution of problem (9), we have not yet com- +mented on how to obtain similar scenario sets � +Al,[k] +I +and � +Wl,[k] +I +for unknown + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +13 +attacks al +I and uncertain parameters wl +I. For the latter, suitable samples are +usually provided by forecasts, historical data, or technical properties of the +system components. For unknown attacks, however, it would be very restric- +tive to assume that appropriate scenario sets � +Al,[k] +I +are provided. Choosing +few random attacks as samples as in [8] cannot be expected to achieve sat- +isfied constraints in all cases, while choosing a very large number of samples +may cover the set AI of possible attacks sufficiently well, but leads to com- +putationally intractable problems since the size of the scenario tree grows +exponentially in the number of scenarios. To address this issue, we proposed a +more general, adaptively robust MPC approach in [17] that utilizes available +knowledge about the attackers gained from attack identification to design the +sets � +Al,[k] +I +and is repeated in this section. Unlike in [17], here the distributed +ADI approaches from Section 3 are embedded in a DMPC setup, resulting in a +fully distributed control framework that does not require any central instance. +The approach has already been described in [18] and is presented here in +further depth. +The method is designed for local attacks aI that follow a probability distri- +bution with unknown, time-invariant expected value µI ∈ RnuI and standard +deviation σI ∈ R +nuI +≥0 . The basic idea is to repeatedly estimate these parame- +ters at each time k based on the solutions a∗,l +I +of the local attack identification +problem at previous times l ≤ k, and to adapt the uncertainty sets � +Al,[k] for +possible attacks al accordingly. More precisely, at time k the mean µ[k] +I +and +sample standard deviation σ[k] +I +of all previously identified values a∗,l +I +given as +µ[k] +I +:= +1 +k + 1 +k +� +l=0 +a∗,l +I +and +σ[k] +I +:= +� +1 +k +k +� +l=0 +� +a∗,l +I +− µ[k] +I +�2 +� 1 +2 +(10) +serve as estimates for µI and σI. According to the local identification results +until time k, the uncertainty of possible attacks al +I for future time steps l is +represented by three scenarios for each component (ak +I)i for i ∈ {1, . . . , nuI} +� +Al,[k] +I += +� +i∈I +� +µ[k] +i , µ[k] +i ++ σ[k] +i , µ[k] +i +− σ[k] +i +� +. +(11) +The combination of contract-based robust DMPC from Section 4.1 and the dis- +tributed ADI method from Section 3 results in an adaptively robust distributed +MPC method that is summarized in Algorithm 2. +We formulate Algorithm 2 involving the local identification problem (5) +and thus the first version of Algorithm 1 since this is what we apply in the +numerical experiments presented in Section 6. Clearly, Algorithm 2 can also +be defined based on the second version of Algorithm 1 solving problem (8). +In this case, subsystem I can additionally modify the transmitted contracts +� +ZNI in such a way that the locally identified suspicions a∗ +NI, ∆�z∗ +NI about +neighboring attacks and coupling deviations are taken into account. While this + +Springer Nature 2021 LATEX template +14 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +Algorithm 2 Adaptively robust distributed MPC +Input: local dynamic model for each subsystem I ∈ D, +initial contracts � +Zl,[0] +I +for all I, l, e.g., � +Zl,[0] +I += {hI(x0 +I)}, +finite parameter scenario sets � +Wl,[k] +I +for all l, k +1: set � +Al,[0] +I +:= {} for all I, l +2: for time step k do +3: +for I ∈ D do +4: +build scenario tree by branching on � +Al,[k−1] +I +, � +Zl,[k−1] +NI +, and � +Wl,[k−1] +I +5: +solve problem (9) to compute inputs ul +I +6: +derive new contracts � +Zl,[k] +I +▷ update contracts +7: +transmit � +Zl,[k] +I +to neighbors +8: +end for +9: +apply first control input uk = (uk +I)I∈D +10: +for I ∈ D do +11: +solve problem (5) to obtain a suspicion a∗,k +I +▷ local ADI +12: +update estimates µ[k] +I , σ[k] +I +as in (10) +13: +adapt uncertainty set � +Al,[k] +I +as in (11) +▷ update attack scenarios +14: +end for +15: end for +is not reasonable if the neighbors and thus their transmitted sensitivities �Sa +NI +and �Sz +NI are generally deemed untrustworthy, it is useful if the communication +channel to the neighbors is considered secure, but the neighbors themselves do +not apply ADI and therefore do not adapt their contracts to attacks. +By enhancing distributed MPC with local attack identification in each +subsystem, we obtain a distributed adaptively robust control framework, in +which only locally available model knowledge and some information exchange +among neighbors is involved. Unlike the related method introduced in [17], +Algorithm 2 requires no central authority and, in particular, no confidential +model knowledge is published globally. Such a procedure has the advantages +that all local identification problems can be solved in parallel, that it can be +employed even if the subsystems fail to agree on a central authority, and that +no private model knowledge has to be shared with the entire network. Further- +more, all distributed ADI approaches have in common that it is challenging to +agree on system-wide countermeasures based on multiple, possibly contradic- +tory local identification results. Our approach provides an answer to this issue +as it transfers the insights from distributed ADI into local countermeasures by +adjusting the local control inputs in a suitable robust way. +5 Dynamic Model for Microgrids Under Attack +Distributed microgrids that include local generation, demands, and often stor- +age units, increase the security of supply within the microgrid area but create + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +15 +new challenges: Several optimal control tasks have to be addressed under the +uncertainty of renewables and possibly even adversarial attacks, e.g., economic +generator dispatch, efficient battery use, or optimal power import and export +strategies to benefit from fluctuating energy prices [24, 25]. Therefore, we aim +to apply the resilient control framework proposed in Section 4 to the task of +microgrid control and derive a suitable dynamic model in this section. +The main characteristics of the model are nonlinear battery dynam- +ics, physical coupling of neighboring microgrids through dispatchable power +exchange, and the threat of possible attacks. Each microgrid contains an aggre- +gated load pl +I ≤ 0 and a set of dispatchable generation units that generate a +total power output pg +I ≥ 0. How uncertain load and nondispatchable generation +from renewable energy sources are modeled is discussed below. As illustrated +in Figure 3, each microgrid is connected to the main grid, to or from which it +can export or import power pm +I ∈ R. While power import is modeled by posi- +tive values pm +I > 0, negative values pm +I < 0 indicate power export to the main +grid. In addition, power transfers are possible between two neighboring micro- +grids I, L with L ∈ NI. The power that microgrid I provides to L is denoted +as ptr +IL and the resulting directed power flow from I to L is given as +pflow +IL := ptr +IL − ptr +LI. +Finally, each microgrid has a storage unit that provides or consumes storage +power pst +I ∈ R and the state variable sI ∈ [0.0, 1.0] indicates its state of charge +(SoC). Power values pst +I > 0 indicate discharging and pst +I < 0 charging. Unlike +other works investigating economic dispatch problems in microgrid settings, +for example Ananduta et al. in [15], we take into account that power cannot +change instantaneously. Instead, the dynamic evolution of pg +I, pm +I , and ptr +IL is +controlled by inputs ug +I, um +I , and utr +IL and behaves according to +˙pg +I = 1 +T g +I +(ug +I + ag +I − pg +I) , +(12) +˙pm +I = +1 +T m +I +(um +I + am +I − pm +I ) , +(13) +˙ptr +IL = +1 +T tr +IL +� +utr +IL + atr +IL − ptr +IL +� +. +(14) +The various delay parameters T g +I , T m +I , T tr +IL ∈ R>0 depending on technical char- +acteristics capture how quickly a change in the respective input affects the +corresponding state. Compared to the generation delay T g +I , typically smaller +delay times T m +I and T tr +IL apply for power transfers with the main grid or neigh- +boring microgrids. In line with the generic description of distributed systems +under attack introduced in Section 2, we model attacks as additional, unknown +inputs that impair the dynamic behavior of the microgrid systems as in (12) +to (14). In each microgrid I ∈ D, we consider generator attacks ag +I ∈ R, grid +attacks am +I ∈ R affecting the power exchange with the main grid, and transfer + +Springer Nature 2021 LATEX template +16 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +pst +I = -ΣpI +pg +I +pl +I +pm +I +ptr +IK +ptr +IL +I +L +K +zLI +zKI +Main grid +Fig. 3: Schematic overview of the model for interconnected microgrids taken +from [18, Fig. 1], showing the local model components for microgrid I. Apart +from internal states, each microgrid only requires knowledge of its neighboring +couplings (zLI)J∈NI. For power balance, storage units are used as a buffer. +attacks atr +IL ∈ R on power transfers to or from any neighbor L ∈ NI. While the +inputs are computed by the local controller in I, the attack values are unknown +to the control system. Thus, we deliberately make no difference in modeling +attacks and renewable generation but consider both as uncertain influences +resolved by the resilient control framework presented in Section 4.2. Similarly, +uncertain load can be considered an attack al +I modifying the load pl +I = ul +I that +is modeled as a noncontrollable input with equal upper and lower bounds. +The storage is used as a buffer providing the required power reserves at +all times and thus assuring that the power balance in microgrid I is always +satisfied, even when an attack occurs. Therefore, the storage power pst +I is a +dependent variable according to +pst +I = −pg +I − pm +I − pl +I − +� +L∈NI +� +ptr +LI − ptr +IL +� +. +It is important to distinguish that for microgrid I, the local state ptr +IL can +be controlled via utr +IL as in (14), whereas the neighboring state ptr +LI is neither +controllable nor is its dynamic behavior known by microgrid I. The physical +interconnection of neighboring microgrids is instead modeled by a coupling +variable zLI = ptr +LI and is treated locally as an uncertain parameter as we +discussed in detail in Section 4.1. Figure 3 illustrates that the local knowledge +is limited to local power variables and neighboring couplings. +According to the storage power pst +I , the storage is charged or discharged +and the resulting change in the SoC sI is modeled as +˙sI = bI +� +sI, pst +I +� +with some function bI : [0.0, 1.0] × R → R modeling the battery dynamics. +While a linear approximation of this charging behavior is usually sufficient in +the middle range of [0.0, 1.0], it is not accurate for marginal values of the SoC + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +17 +which become extremely relevant in case of an attack. Following the line of +[26, 27], the dynamics of the SoC are given as +˙sI = − Ist +I +Qst +I +, +(15) +with Qst +I denoting the maximum capacity of the battery and Ist +I +being the +battery current. Denoting the battery voltage by U st +I , the storage power pst +I +and the voltage U st +I are given as +pst +I = U st +I Ist +I +and U st +I = U OCV +I +(sI) + Rst +I Ist +I . +(16) +in line with [26]. The term U OCV +I +denotes the open circuit voltage (OCV), that +depends on the SoC sI, and the second summand determining U st +I +models +the ohmic effect with resistance Rst +I . Rewriting (16) results in the following +relation for the storage power pst +I : +pst +I = U OCV +I +(sI)Ist +I + Rst +I +� +Ist +I +�2 . +Solving this equation for Ist +I , the battery current Ist +I = nI (sI, pst +I ) is obtained +from sI and pst +I for some nonlinear function nI : [0.0, 1.0] × R → R. Together +with (15), this results in a nonlinear function +bI(sI, pst +I ) := −nI(sI, pst +I ) +Qst +I +that describes the dynamic behavior of the battery. +It remains open to specify the open circuit voltage U OCV +I +(sI) using the +model in [27], that is accurate also for low and high SOCs: With parameters +αI, βI, γI, δI, µI, and νI depending on the type of battery, the OCV is given by +U OCV +I +(sI) := αI + βI(−ln(sI))µI + γIsI + δIeνI(sI−1). +(17) +Bringing all of the above together, we have characterized a distributed +dynamic system of interconnected microgrids, which results in a model of the +form as in (2) when discretizing. Each microgrid is described by a local state +xI = +� +sI, pg +I, pm +I , ptr +I +�⊤ ∈ R3+|NI| +(18) +with ptr +I := (ptr +IL)L∈NI and controlled by a local input +uI = +� +ug +I, um +I , utr +I +�⊤ ∈ R2+|NI|, +(19) +that may be disturbed by an attack input +aI = +� +ag +I, am +I , atr +I +�⊤ ∈ R2+|NI| +(20) + +Springer Nature 2021 LATEX template +18 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +with utr +I := (utr +IL)L∈NI and atr +I := (atr +IL)L∈NI. Power transfers to other micro- +grids physically couple neighboring microgrids to each other, which is modeled +by local coupling variables +zI = +� +ptr +IL +�⊤ +L∈NI +with zNI = +� +ptr +LI +�⊤ +L∈NI . +(21) +Each microgrid I ∈ D is operated locally to meet the respective load pl +I at +the lowest possible cost according to some objective function JI : R>0 → R, +which specifies the costs incurred during some time window [0, T] of length +T ∈ R>0 and is defined as +JI(T) := +� T +0 +qI +� +pg +I, ptr +I , pst +I +� ++ ℓI +� +pflow +I +, pm +I +� +dt + mI (sI (T)) . +(22) +It consists of quadratic stage costs qI, piecewise linear stage costs ℓI, and +terminal costs mI. The quadratic costs qI : R≥0 × RnzI × R → R≥0 with cost +parameters Cg +I , Ctr +I , Cst +I ∈ R≥0 are given as +qI +� +pg +I, ptr +I , pst +I +� := Cg +I (pg +I)2 + +� +L∈NI +Ctr +I +� +ptr +IL +�2 + Cst +I +� +pst +I +�2 . +They capture the per-unit costs of using the units for power generation, power +transfers to neighbors, and the respective storage operations. In contrast, the +piecewise linear costs ℓI model the economic profit or loss from selling or +buying energy in trade with neighbors or the main grid. Defining the positive +and negative part functions +(v)+ := +� +0 if v < 0, +v if v ≥ 0, +and (v)− := +� +v if v < 0, +0 if v ≥ 0, +the piecewise linear cost function ℓI : RnzI × R → R is given as +ℓI +� +pflow +I +, pm +I +� := +� +L∈NI +Cflow,ex +LI +� +pflow +LI +� +− + +� +L∈NI +Cflow,im +LI +� +pflow +LI +� ++ ++ Cm,ex +I +(pm +I )− + Cm,im +I +(pm +I )+ +for each microgrid I ∈ D, with local export and import per-unit prices Cflow,ex +LI +, +Cflow,im +LI +, Cm,ex +I +, Cm,im +I +∈ R≥0, which may fluctuate throughout the day. In +the numerical example in Section 6, we will consider import prices that are +considerably higher than the export prices and thus focus on small producers, +for which in practice it is often more profitable to generate power for their +own demand than to buy electricity from the main grid, and for which power +exports to the grid are only worthwhile at times of high demand. The terminal + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +19 +costs mI : [0.0, 1.0] → R≥0 account for degradation costs of the battery as +mI(sI) := Cdis +I +(sI(0) − sI(T))+ Qst +I . +If the state of charge sI(T) at the end of the considered horizon is smaller than +sI(0) at the beginning, each unit of power discharge is penalized by some cost +Cdis +I +∈ R≥0. +6 Numerical Experiments with Microgrids +Under Attack +In this section, we present a numerical case study to analyze the performance +of adaptively robust DMPC from Section 4 in the context of interconnected +microgrids under attack using the model from Section 5. In contrast to our +earlier work [17], we apply distributed ADI based on the local identification +problem (5). In the experiments, we address the question of how to achieve +an economic operation of microgrids at minimum costs despite uncertainties. +Whether these emerge in form of disturbances with rather small impact, fluc- +tuating generation from renewables, or malicious attacks; all represent critical +yet all the more relevant threats to energy supply. +To this end, we consider three microgrids I, II, and III with renewable gen- +eration that are each connected to the main grid and the other two microgrids +as in Figure 3. The initial values and bounds for all variables of the microgrid +model are given in Table 1 and the parameters are chosen as in Table 2, using +those for lithium-titanate (Li4Ti5O12) batteries from [27] in (17). +For a timespan of two days, robust NMPC is applied locally with step size +∆t = 0.25 h by each microgrid. At time t ∈ [0.0, 48.0] h, the local cost func- +tion JI in (22) takes into account the upcoming time window [t, t + Np] with +prediction horizon Np = 6.0 h and uses the cost parameters from Table 2. The +values Cm,im +I +and Cm,ex +I +, that describe the cost or revenue of power imports +from or exports to the main grid, vary in the course of the day. In our example, +we focus on microgrids that represent small local prosumers and use the fol- +lowing fictitious values for all microgrids, which are based on real prices on the +Table 1: This table lists lower and upper bounds as well as initial values at +time t = 0 for all state and input variables of the microgrid model. For the state +of charge, three distinct initial values sI(0) for the three microgrids I, II, and +III are given. In all other cases, the indicated values apply for all subsystems. +Variable +Lower Bound +Upper Bound +Initial Value +Unit +sI +0.0 +0.1 +0.9, 0.5, 0.6 +- +pg +I +0.0 +1000.0 +0.0 +kW +pm +I +-1000.0 +2000.0 +0.0 +kW +ptr +IL +-100.0 +100.0 +0.0 +kW +ug +I +0.0 +1000.0 +- +kW +um +I +-1000.0 +2000.0 +- +kW +utr +IL +-100.0 +100.0 +- +kW + +Springer Nature 2021 LATEX template +20 +Resilient MPC of Distributed Systems Under Attack Using Local ADI +Table 2: This table lists all model and cost parameters that are used in +the numerical experiments presented in this section. All values apply to all +subsystems I ∈ {I, II, III}, except for Qst +I , Rst +I , and Cg +I , where individual values +for the respective subsystems are specified. +(a) Model Parameters +Param. +Value +Unit +pl +I +-2.0 +kW +T g +I +0.1 +h +T m +I +0.001 +h +T tr +IL +0.001 +h +Qst +I +100, 200, 100 +kAh +Rst +I +1.5, 2.0, 3.0 +mΩ +(b) OCV Parameters +Param. +Value +Unit +αI +2.23 +V +βI +-0.001 +V +γI +-0.35 +V +δI +0.6851 +V +µI +3.0 +- +νI +1.6 +- +(c) Cost Parameters +Param. +Value +Cg +I +0.2, 3.0, 2.0 +Ctr +I +4.0 +Cst +I +1.0 +Cdis +I +2000 +Cflow,im +IL +4.0 +Cflow,ex +IL +0.04 +German electricity market in 2021 [28] and reflect typical market fluctuations +with rising prices in the morning and evening hours: +Cm,im +I +(t) = +� +� +� +� +� +� +� +� +� +275 if (t mod 24 h) ∈ [15, 20) h, +200 if (t mod 24 h) ∈ [6, 9) ∪ [20, 22) h, +150 if (t mod 24 h) ∈ [9, 15) ∪ [22, 24) h, +100 otherwise, +Cm,ex +I +(t) = +� +� +� +� +� +15 if (t mod 24 h) ∈ [15, 20) h, +10 if (t mod 24 h) ∈ [6, 9) ∪ [20, 22) h, +0 otherwise. +Here, mod is the modulo operator and (t mod 24 h) denotes the time of day. +To achieve a resilient operation, the system is controlled using the adap- +tively robust distributed NMPC scheme from Section 4.2. Based on the local +control problem (9), at each sampling time k every microgrid computes con- +tracts +� +X l,[k] +I +to confine the behavior of its future coupling values zl +I for +l ∈ {k, . . . , k + Np − 1} and shares them with its neighbors. In contrast to the +experiments in [17], which involve a centralized ADI method, each microgrid +consults locally identified solutions a∗,k +I +of problem (5) to update its estimates +µ[k] +I +and σ[k] +I +of the expected value and standard deviation of the unknown +random attack aI as in (10). In our numerical experiments, the nonlinear +identification problem (5) is solved to an accuracy of εI = 10−3 using the +interior-point solver Ipopt [29]. The states xI are assumed to be only partially +observable with linear output function cI : XI → YI that is defined as +cI (xI) := diag(1, 1, 1, 0, 0)xI. +This means that for each microgrid I, the outputs yI = (sI, pg +I, pm +I )⊤ are con- +sidered by the local identification process, but not the transfer variables ptr +IL +for all L ∈ NI. Based on the suspected attacks a∗,k +I +and the derived estimates + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +21 + + + + + + + +sI robust +sI non-robust +SoC in % +100 +96 +92 +88 +(a) State of Charge + + + + + + + +Generation in kW +25 +20 +15 +10 +5 +0 +ug +I +pg +I +(b) Power Generation + + + + + + + +Time in hours +0.0 +12.0 +24.0 +36.0 +48.0 +Imports / exports in kW +0 +-5 +-10 +-15 +-20 +-25 +-30 +pm +I +(c) Power exchange with main grid + + + + + + + +Time in hours +0.0 +12.0 +24.0 +36.0 +48.0 +Transfers in kW +2.0 +1.5 +1.0 +0.5 +0.0 +ptr +I,II +ptr +I,III +(d) Power exchange with neighbors +Fig. 4: Selected state and input trajectories for microgrid I, showing all powers +in kW. The microgrid is exposed to a generator attack, causing the generation +pg +I to be considerably larger than planned by ug +I . The different SoC trajectories, +computed by adaptively robust versus nonrobust NMPC, show the benefit of +the proposed resilient control framework. +µ[k] +I +and σ[k] +I , the uncertainty sets � +Al,[k] +I +are approximated as in (11). The local +control problem (9) is repeatedly adapted to new contracts and identification +results that become available. As a consequence, the inputs ul +I computed at +time k+1 for l ∈ {k+1, . . . , k+Np} are robust toward deviations in neighboring +couplings within � +Zl,[k] +NI +and identified attacks in � +Al,[k] +I +. +We examine the behavior of the system, controlled with Algorithm 2, in +two attack scenarios. For comparison, we repeat each experiment with nonro- +bust DMPC, where neither contracts are exchanged nor attack identification +is considered. First, we assume that all generation units are dispatchable and +a constant attack ag +I = 10.0 kW disrupts the generator dynamics in micro- +grid I according to (12). The attacker is active over the entire time window +[0.0, 48.0] h and causes a severe deviation of the generated power pg +I in micro- +grid I from the control input ug +I as Figure 4 reveals. The distributed ADI +method based on the local identification problem (5) successfully identifies +the unknown attack input with very high precision in every time step as +pointed out by Figure 5, which shows the mean of the suspected attack values +ag,∗ +I +≈ 9.9989 kW at all times. This allows the local robust NMPC scheme to +adapts its prediction very accurately and adjust the control inputs accordingly. +As a result, the microgrid takes advantage of the additional power generation + +Springer Nature 2021 LATEX template +22 +Resilient MPC of Distributed Systems Under Attack Using Local ADI + + +Actual attack ag +I +Identified mean µ[k] +I +Time in hours +0.0 +12.0 +24.0 +36.0 +48.0 +Attack ag +I in kW +10.015 +10.010 +10.005 +10.000 +9.995 +Fig. 5: Actual attack value ag +I and average identified value µ[k] +I +in the first +attack scenario examined, in which only dispatchable generation units are in +use and microgrid I is exposed to a generator attack. +by charging the battery and exporting the power to the main grid during times +with high profit. In the solution computed with nonrobust NMPC, on the con- +trary, the battery reaches and violates its maximum state of charge of 1.0 after +about 5.0 h as the red SoC trajectory in Figure 4a reveals. Due to bound vio- +lations, the nonrobust scheme fails in 171 of 192 time steps when more power +than planned is generated and the storage is charged to maintain power bal- +ance. Since SoC values larger than 1.0 are physically invalid, the next MPC +step in our study continues at sI = 1.0. +It should be noted that power balance can be ensured in other ways than +using the storage as a buffer. For instance, if power imports from and exports +to the main grid are allowed at all times, using the grid as a buffer would not +lead to bound violations as above. However, this can cause very high costs, for +example, if electricity has to be imported in the evening at expensive prices. In +contrast, the battery allows power to be stored until exports to the main grid +become profitable. Indeed, over the entire period of two days, the adaptively +robust NMPC scheme achieves total costs of −5.2·103 in microgrid I and thus +makes profit despite the attack. On the contrary, nonrobust NMPC causes +total local costs of 2.3 · 104, which is orders of magnitudes larger. Considering +that we aim for a strategy to increase the resilience of the system, which takes +into account not only robustness but also performance in terms of induced +costs, the battery as a buffer is therefore a reasonable choice that enables and +favors high resilience. +In the second experiment, we consider a modified generator attack +ag +I = 10.0 kW + rg +I , where rg +I ∼ N(0.0, 8.0) kW represents the uncertainty in +renewable generation and is randomly drawn from a normal distribution with +mean 0.0 kW and standard deviation 8.0 kW, independently at each time step. +Together, the malicious attack of 10.0 kW and the renewable fluctuations rg +I + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +23 + + + +Actual attack ag +I +Identified mean µ[k] +I +Sample std. dev. σ[k] +I +Time in hours +0.0 +12.0 +24.0 +36.0 +48.0 +Disturbance ag +I in kW +40.0 +30.0 +20.0 +10.0 +0.0 +-10.0 +Fig. 6: Course of the mean µ[k] +I +of identified values a∗,k +I +over time, with sample +standard deviation σ[k] +I . The actual disturbance ag,k +I +at each time k is shown +in orange. The figure is taken from [18, Fig. 3]. +may cause more power than planned to be generated (i. e., ag +I > 0) or less (i. e., +ag +I < 0), but are chosen such that the total generator input ug +I + ag +I is nonneg- +ative. Due to the fluctuating generation, the actual value ag +I of the unknown +disturbance in the generator dynamics ranges from −11.3 kW to 42.9 kW as +can be seen in Figure 6. For the examined generator with parameters as in +Table 2, this is a very broad range, which also becomes clear in comparison +with Figure 4b. As an apparent consequence of the continually changing val- +ues, the local identification problem (5) yields a different suspicion ag,∗ +I +in each +time step. Nevertheless, Figure 6 shows that the mean µ[k] +I +of identified values +quickly settles at about 10.0 kW, which underlines that the distributed ADI +method is able to cope also with highly fluctuating and widely dispersed dis- +turbances, since a new optimization problem is solved at each time step. This +proves once again the great potential of the proposed class of optimization- +based ADI methods and emphasizes that they are not tailored to a specific +type of attack, but are also very well suited for challenging scenarios where +attacks and other sources of significant uncertainty congregate. +The sample standard deviation σ[k] +I +is considerably larger than before and +the three scenarios µ[k] +I , µ[k] +I ++ σ[k] +I , and µ[k] +I +− σ[k] +I +are further apart than in +the first experiment. Figure 7 shows the obtained solution for the attacked +microgrid I. While adaptively robust DMPC achieves total local costs of 3.1·103 +in microgrid I, the nonrobust approach causes more than ten times higher total +costs of 3.2·104. Once again, classical nonrobust MPC proves to be unsuitable + +Springer Nature 2021 LATEX template +24 +Resilient MPC of Distributed Systems Under Attack Using Local ADI + + + + + + + +sI robust +sI non-robust +SoC in % +100 +95 +90 +85 +80 +(a) State of Charge + + + + + + + +Generation in kW +60 +40 +20 +0 +ug +I +pg +I +(b) Power Generation + + + + + + + +Time in hours +0.0 +12.0 +24.0 +36.0 +48.0 +Imports / exports in kW +0 +-10 +-20 +-30 +-40 +pm +I +(c) Power exchange with main grid + + + + + + + +Time in hours +0.0 +12.0 +24.0 +36.0 +48.0 +Transfers in kW +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +ptr +I,II +ptr +I,III +(d) Power exchange with neighbors +Fig. 7: States and inputs in microgrid I, which now contains renewable +generation as another source of uncertainty in addition to the generator attack. +to control the disturbed system as it computes a solution that violates the +upper bound of the state of charge in 113 of 192 time steps. +At this point, we would like to point out that the adaptively robust DMPC +scheme is not guaranteed to yield admissible trajectories in all cases. In fact, +proving rigorous guarantees of this kind is challenging for nonlinear dynam- +ics. Moreover, in contrast to the multi-stage approach [30], adaptively robust +NMPC lacks the recursive feasibility property when the attack uncertainty sets +Al,[k] +I +are adjusted to sudden attacks. Furthermore, Figure 6 illustrates that +in our second attack scenario involving uncertain renewable generation, even +disturbances ag +I occur that are not within the interval [µ[k] +I +− σ[k] +I , µ[k] +I ++ σ[k] +I ]. +Despite these unforeseen disruptions and the lack of theoretical guarantees, +however, all state bounds are satisfied and the solution in Figure 7 is not overly +conservative judging from the fact that considerably lower costs are obtained +than with nonrobust DMPC. This underlines that adaptively robust NMPC, +using ADI results as estimates for an unknown attack, is a very powerful tool +even under challenging circumstances with broadly dispersed disturbances. +7 Conclusion and Future Directions +We introduced a comprehensive distributed MPC framework for nonlinear +control systems under attack, which is based on local multi-stage control and +novel distributed attack identification methods in each subsystem. To enable + +Springer Nature 2021 LATEX template +Resilient MPC of Distributed Systems Under Attack Using Local ADI +25 +the system to respond autonomously and robustly to identified perturbations, +each control scheme represents the uncertain influence of neighboring cou- +plings and attack inputs by scenario sets that are continuously updated based +on newly gained knowledge. For this purpose, each subsystem applies local +attack identification and repeatedly transmits new contract information to its +neighbors. Using the example of microgrids interconnected by power transfers, +the methodology was demonstrated to robustly control a distributed system +and achieve constraint satisfaction at all times despite unknown attacks and +uncertain renewable generation. +We have identified two promising directions with great potential for future +research. The first would be to derive theoretical conditions under which Algo- +rithm 1 can be rigorously proven to successfully identify the correct inputs, +similar to the guarantees for our centralized ADI method [16]. While some +ideas from [16] can be transferred with few changes, further required theoreti- +cal arguments could be based on the research results on nonlinear compressed +sensing. For example, in [22] the restricted isometry property from [20], a cen- +tral component of linear compressed sensing, is generalized and the iterative +hard thresholding algorithm involving a form of gradient projection is extended +to nonlinear systems. Furthermore, in [23] two coordinate descent methods +are introduced that build upon the simplex algorithm for linear programming +and are of a greedy type in the sense that they add nonzero variables one by +one. When suitable success guarantees for the new distributed ADI approaches +provably hold, a combination with the robustness and stability analysis of +multi-stage NMPC and contract-based DMPC described in [3, 30, 31] could be +the next step to strengthen the excellent numerical performance of adaptively +robust DMPC by theoretical arguments. +The second research direction consists in investigating a hierarchical com- +bination of several ADI approaches that complement each other and provide +system operators with different options suiting their needs. There is, on the +one hand, the centralized ADI method from [16], which is based on an approx- +imation of the dynamics and provides quick insights into the network-wide +attack situation, but requires all subsystems to make specific sensitivity infor- +mation publicly available and agree on a central instance to solve the global +identification problem. On the other hand, there are distributed ADI methods +like Algorithm 1 involving problems (5) and (8), which use local models to +analyze possible attacks on one subsystems or its neighborhood locally. Sev- +eral gradations or variants of these approaches may be applied, depending on +the available model knowledge and the willingness of individual subsystems to +cooperate or agree on a common decision instance. +8 Statement on Conflict of Interests +On behalf of all authors, the corresponding author states that there is no +conflict of interest. + +Springer Nature 2021 LATEX template +26 +REFERENCES +References +[1] Christofides, P., Scattolini, R., de la Pena, D., Liu, J.: Distributed +model predictive control: A tutorial review and future research directions. +Computers & Chemical Engineering 51, 21–41 (2013) +[2] Arauz, T., Chanfreut, P., Maestre, J.: Cyber-security in networked and +distributed model predictive control. Annual Reviews in Control 53, 338– +355 (2022) +[3] Lucia, S., K¨ogel, M., Findeisen, R.: Contract-based predictive control of +distributed systems with plug and play capabilities. IFAC-PapersOnLine +48, 205–211 (2015) +[4] Mayne, D., Seron, M., Rakovi´c, S.: Robust model predictive control of +constrained linear systems with bounded disturbances. Automatica 41, +219–224 (2005) +[5] Lucia, S., Finkler, T., Engell, S.: Multi-stage nonlinear model predictive +control applied to a semi-batch polymerization reactor under uncertainty. +Journal of Process Control 23, 1306–1319 (2013) +[6] Wang, Y., Ishii, H.: A distributed model predictive scheme for resilient +consensus with input constraints. In: IEEE Conference on Control Tech- +nology and Applications, pp. 349–354 (2019) +[7] Braun, S., Albrecht, S., Lucia, S.: Identifying attacks on nonlinear cyber- +physical systems in a robust model predictive control setup. In: European +Control Conference, pp. 513–520 (2020). IEEE +[8] Braun, S., Albrecht, S., Lucia, S.: Hierarchical attack identification for +distributed robust nonlinear control. In: 21st IFAC World Congress, pp. +6191–6198 (2020) +[9] Pasqualetti, F., D¨orfler, F., Bullo, F.: Attack detection and identification +in cyber-physical systems. IEEE Transactions on Automatic Control 58, +2715–2729 (2013) +[10] Giraldo, J., Urbina, D., Cardenas, A., Valente, J., Faisal, M., Ruths, J., +Tippenhauer, N., Sandberg, H., Candell, R.: A survey of physics-based +attack detection in cyber-physical systems. ACM Computing Surveys 51, +1–36 (2018) +[11] Boem, F., Riverso, S., Ferrari-Trecate, G., Parisini, T.: Plug-and-play +fault detection and isolation for large-scale nonlinear systems with +stochastic uncertainties. IEEE Transactions on Automatic Control 64, +4–19 (2018) +[12] Gallo, A., Turan, M., Boem, F., Parisini, T., Ferrari-Trecate, G.: A +distributed cyber-attack detection scheme with application to DC micro- +grids. IEEE Transactions on Automatic Control 65, 3800–3815 (2020) +[13] Boem, F., Ferrari, R., Parisini, T.: Distributed fault detection and isola- +tion of continuous-time non-linear systems. European Journal of Control +17, 603–620 (2011) +[14] Pan, W., Yuan, Y., Sandberg, H., Gon¸calves, J., Stan, G.: Online fault +diagnosis for nonlinear power systems. Automatica 55, 27–36 (2015) +[15] Ananduta, W., Maestre, J., Ocampo-Martinez, C., Ishii, H.: Resilient + +Springer Nature 2021 LATEX template +REFERENCES +27 +distributed model predictive control for energy management of inter- +connected microgrids. Optimal Control Applications and Methods 41, +146–169 (2020) +[16] Braun, S., Albrecht, S., Lucia, S.: Attack identification for nonlinear sys- +tems based on sparse optimization. IEEE Transactions on Automatic +Control, early access (2021) +[17] Braun, S., Albrecht, S., Lucia, S.: Adaptively robust nonlinear model pre- +dictive control based on attack identification. at-Automatisierungstechnik +70, 367–377 (2022) +[18] Braun, S., Albrecht, S., Lucia, S.: Resilient Control of Interconnected +Microgrids Under Attack by Robust Nonlinear MPC. In: Conference +on Informatics in Control, Automation and Robotics, pp. 58–66 (2022). +INSTICC +[19] Kozma, A., Savorgnan, C., Diehl, M.: Distributed multiple shooting for +large scale nonlinear systems. In: Distributed Model Predictive Control +Made Easy, pp. 327–340. Springer +[20] Cand`es, E., Tao, T.: Decoding by linear programming. IEEE Transactions +on Information Theory 51, 4203–4215 (2005) +[21] Forster, O.: Analysis 2 - Differentialrechnung im Rn, Gew¨ohnliche Differ- +entialgleichungen. 11 edn. Springer (2010) +[22] Blumensath, T.: Compressed sensing with nonlinear observations and +related nonlinear optimization problems. IEEE Transactions on Informa- +tion Theory 59, 3466–3474 (2013) +[23] Beck, A., Eldar, Y.: Sparsity constrained nonlinear optimization: Opti- +mality conditions and algorithms. SIAM Journal on Optimization 23, +1480–1509 (2013) +[24] Olivares, D., Mehrizi-Sani, A., Etemadi, A., Ca˜nizares, C., Iravani, R., +et al.: Trends in microgrid control. IEEE Transactions on Smart Grid 5, +1905–1919 (2014) +[25] Mohammed, A., Refaat, S., Bayhan, S., Abu-Rub, H.: AC microgrid +control and management strategies: evaluation and review. IEEE Power +Electronics Magazine 6, 18–31 (2019) +[26] Mathieu, J., Taylor, J.: Controlling nonlinear batteries for power sys- +tems: Trading off performance and battery life. In: IEEE Power Systems +Computation Conference, pp. 1–7 (2016) +[27] Zhang, C., Jiang, J., Zhang, L., Liu, S., Wang, L., Loh, P.C.: A generalized +SOC-OCV model for lithium-ion batteries and the SOC estimation for +LNMCO battery. Energies 9, 1–16 (2016) +[28] Bundesnetzagentur Deutschland: SMARD Strommarktdaten for Ger- +many in November 2021. https://www.smard.de/home/downloadcenter/ +download-marktdaten. Online, last accessed: November 15th, 2022 +[29] W¨achter, A., Biegler, L.: On the Implementation of an Interior-Point +Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. +Mathematical Programming 106, 25–57 (2006) +[30] Lucia, S., Subramanian, S., Limon, D., Engell, S.: Stability properties of + +Springer Nature 2021 LATEX template +28 +REFERENCES +multi-stage nonlinear model predictive control. Systems & Control Letters +143, 104743 (2020) +[31] Lucia, S., Paulen, R., Engell, S.: Multi-stage nonlinear model predic- +tive control with verified robust constraint satisfaction. In: Conference on +Decision and Control, pp. 2816–2821 (2014). IEEE + diff --git a/EtE5T4oBgHgl3EQfUw_x/content/tmp_files/load_file.txt b/EtE5T4oBgHgl3EQfUw_x/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ddbaebe38d6788f6212eb8487656f6da985377c1 --- /dev/null +++ b/EtE5T4oBgHgl3EQfUw_x/content/tmp_files/load_file.txt @@ -0,0 +1,759 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf,len=758 +page_content='Springer Nature 2021 LATEX template Resilient Model Predictive Control of Distributed Systems Under Attack Using Local Attack Identification Sarah Braun1*, Sebastian Albrecht1 and Sergio Lucia2 1*Siemens AG, Otto-Hahn-Ring 6, 81739 M¨unchen, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 2TU Dortmund University, August-Schmidt-Straße, 44227 Dortmund, State.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Corresponding author(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' E-mail(s): sarah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='braun@siemens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='com;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Contributing authors: sebastian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='albrecht@siemens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='com;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' sergio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='lucia@tu-dortmund.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='de;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Abstract With the growing share of renewable energy sources, the uncertainty in power supply is increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In addition to the inherent fluctuations in the renewables, this is due to the threat of deliberate malicious attacks, which may become more prevalent with a growing number of distributed generation units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Also in other safety-critical technology sectors, control systems are becoming more and more decentralized, causing the targets for attackers and thus the risk of attacks to increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' It is thus essential that distributed controllers are robust toward these uncertainties and able to react quickly to disturbances of any kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To this end, we present novel methods for model-based identification of attacks and combine them with distributed model pre- dictive control to obtain a resilient framework for adaptively robust control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The methodology is specially designed for distributed setups with limited local information due to privacy and security reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To demonstrate the efficiency of the method, we introduce a mathematical model for physically coupled microgrids under the uncertain influence of renewable generation and adversarial attacks, and perform numeri- cal experiments, applying the proposed method for microgrid control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Keywords: Attack Identification, Robust Nonlinear Control, Distributed Model Predictive Control, Microgrids Under Attack 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='05547v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='SY] 13 Jan 2023 Springer Nature 2021 LATEX template 2 Resilient MPC of Distributed Systems Under Attack Using Local ADI 1 Introduction Due to the energy transition, power generation is facing a technological change toward increasingly distributed generation, primarily from renewable energy sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Also in other technology areas such as industrial production or the transport sector, advancing automation and digitization are creating an increasing need for distributed control methods that can be applied to safety-critical systems in real time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' When designing such methods, it is impor- tant to take into account that distributed systems with many components can increase flexibility, but at the same time provide many targets for malicious attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Therefore, distributed control methods should be designed robustly and securely, and complemented with appropriate tools to increase the sys- tem’s resilience to any type of disruption, which is particularly challenging in the event of unpredictable, adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Model predictive control (MPC) is one of the most popular control methods for dynamic systems in various fields of application as it applies to multivari- able systems and allows to include constraints and cost functions in a natural way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Based on updated measurements, it repeatedly computes optimal inputs to the system at each sampling time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Distributed MPC (DMPC) methods, see [1] for an overview and [2] for security-related DMPC, are designed for large systems of coupled subsystems and locally apply MPC in each subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In contrast to fully decentralized approaches where the neighbors’ dynamic evo- lution is unknown to every subsystem, DMPC schemes involve some exchange of information among neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In [3], e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', subsystems provide each other with corridors in which future values of their coupling variables lie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Given such information about the uncertainty range, robust MPC can be applied to explicitly take uncertain influences into account when computing optimal inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Robust MPC schemes typically build upon tube-based ideas as in [4] or multi-stage approaches [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' It has been demonstrated in several works [6, 7, 8] that robust (D)MPC cannot only be applied for robustness against uncertain parameters or neighboring couplings, but also against adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' While robust MPC can reduce the impact of disruptions if the uncertainty ranges are known, appropriate security measures for unknown attacks require that their presence and points of attack are recognized in the first place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In this context, Pasqualetti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' [9] introduce attack detection and identification (ADI) as the tasks of revealing the presence of an attack and localizing all attacked system components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For both linear and nonlinear dynamics, there are many methods to detect and identify attacks or, closely related, unin- tentional system faults.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For a broad overview of physics- and control-based approaches we refer to the survey in [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Some works like [9, 11, 12] design unknown-input observers and employ one observer per attack scenario for iden- tification, resulting in a combinatorial complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Moreover, works on fault identification [11] often assume that all possible faults are known, which is an invalid assumption for adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In distributed ADI, each subsys- tem employs its own estimator to detect and identify local perturbations, be it based on observer systems as in [11, 12, 13] or sparse optimization problems Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 3 as in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To represent the influence of other subsystems, the local problems typically involve measurements of the neighboring couplings transmitted by the neighbors [11] or approximated by adaptive local estimators [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In recent years, several approaches that intertwine the handling of attacks with (robust) DMPC have been published.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In [6], e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', a DMPC-based strategy is presented by which systems reach resilient consensus even if some agents are malicious and transmit disturbed state values to their neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' An attack identification method using Bayesian inference is introduced in [15] and com- bined with DMPC to solve robust chance-constrained problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The approach involves testing a series of hypotheses about the attack set and requires full enu- meration of all possible attack scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To avoid the resulting combinatorial complexity, we combined a DMPC scheme from [3] with our optimization- based global ADI method from [16] and proposed an adaptively robust DMPC method in [17] for targeted robust control against previously identified attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The contribution of this work, which is an extension of [18], consists in two novel approaches for distributed attack identification, a DMPC scheme embed- ding these ADI methods for adaptively robust control, and a numerical case study to illustrate the proposed resilient control framework using an example of interconnected microgrids under attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The new methods for model-based distributed ADI are derived in Section 3 (significantly more detailed compared to [18] and including one completely new method).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' They involve a targeted exchange of information between neighbors and solve sparse optimization prob- lems to locally identify an attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The identified insights are used by the DMPC framework for adaptively robust control presented in Section 4 (considerably exceeding the summarized version in [18]) to initiate suitable preparatory measures against previously identified attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Unlike the related technique introduced in [17], it involves one of the new distributed ADI techniques pre- sented in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Finally, we introduce here a more detailed numerical case study (in comparison to [18]) with a nonlinear dynamic model for tertiary control of interconnected microgrids under attack in Section 5 and perform numerical experiments with several attack scenarios in Section 6, illustrating the great potential of our resilient control framework for attacked microgrids with uncertain renewable generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 2 Problem Formulation We consider nonlinear dynamic systems with states x ∈ X ⊆ Rnx, inputs u ∈ U ⊆ Rnu, outputs y ∈ Y ⊆ Rny, and uncertain parameters w ∈ W ⊆ Rnw that behave according to discrete-time dynamics of the form xk+1 = f � xk, uk + ak, wk� , yk+1 = c � xk+1� , (1) with nonlinear functions f : X×Rnu ×W → X and c : X → Y that are assumed to be sufficiently smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The system is exposed to the threat of potential Springer Nature 2021 LATEX template 4 Resilient MPC of Distributed Systems Under Attack Using Local ADI attacks, which are modeled by attack inputs a ∈ A(u) ⊆ Rnu unknown to the controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' We consider arbitrary attack vectors a and make no assumptions about the set A(u) of possible attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' While the attack model is additive in the input, an attack a affects the states and outputs of the system in a nonlinear, nonadditive way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The system is partitioned into a set D of subsystems I with local states xI ∈ XI ⊆ RnxI , local control inputs uI ∈ UI ⊆ RnuI , local attack inputs aI ∈ AI(u) ⊆ RnaI , local outputs yI ∈ YI ⊆ RnyI , and uncertain parameters wI ∈ WI ⊆ RnwI .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' A distributed version of the dynamic system in (1) with local dynamic functions fI and local output functions cI is formulated as xk+1 I = fI � xk I, uk I + ak I, �zk NI, wk I � , zk+1 I = hI � xk+1 I � , yk+1 I = cI � xk+1 I � , (2) where the physical interconnection of subsystems is modeled through coupling variables zI ∈ ZI ⊆ RnzI that are related to the local states xI through local coupling functions hI : XI → ZI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Since the dynamic evolution of the neigh- boring coupling variables zNI(t) during some time interval t ∈ [tk, tk+1] is not determined by subsystem I, distributed models typically approximate zNI(t) using some information provided by the neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Here, we apply a parame- terization scheme proposed in [19] and represent zI(t) on [tk, tk+1] as the linear combination zI(t) = �n � j=1 zk,j I βk j (t) of �n basis functions βk 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , βk �n : [tk, tk+1) → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The coupling coeffi- cients zk,j I are exchanged among neighbors and �zk I denotes the coefficient matrix �zk I := (zk,1 I , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , zk,�n I ) ∈ �ZI ⊆ RnzI ×�n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For a simplified notation, we introduce the chained local coupling function ζI := hI◦fI and the chained local output function ηI := cI ◦ fI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Similarly, the dense output coupling function �ζI : XI × Rnu × �ZNI × WI → �ZI maps to the space �ZI of coupling coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Based on the local coupling functions ζI, so-called nominal coupling values ¯zk I can be determined for the undisturbed case of no attack: ¯zk+1 I := ζI � xk I, uk I,�¯z k NI, 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (3) This nominal value is attained if no local attack is applied to the system, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', ak I = 0, no model uncertainty is present, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', wk I = 0, and all neighboring subsystems also behave according to their nominal values, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', �zk NI = �¯z k NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For all methods presented in this paper we assume: Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 5 Assumption 1 At each time k, each subsystems I ∈ D transmits the predicted nominal values �¯zk I , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' ,�¯zk+Np−1 I of its coupling coefficients with prediction horizon Np ∈ N to its neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Given this exchange of information among neighbors, the above definition in (3) allows for a distributed calculation of the nominal values in a receding horizon fashion, where the local values computed and transmitted by subsys- tem I at time k are used by its neighbors to update their predictions one time step later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The definition further requires suitable initial values �¯z 0 I to be avail- able.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For simplicity, we assume the system to be in a steady state x0 at time 0 and take ¯z0,j I = hI(x0 I) for all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , �n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Finally, each subsystem is subject to a set of local constraints gI � xk I, uk I + ak I, �zk NI, wk I � ≤ 0 (4) for some nonlinear function gI : XI × RnuI × �ZNI × WI → RngI that must be satisfied at all times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 3 Distributed Attack Identification Based on Sparse Optimization The goal of this section is to propose a distributed ADI method that, in con- trast to global methods, does not involve a central authority which has access to a global model of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Instead, we formulate a bank of local problems that allow each subsystem to identify a suspicion a∗ I about a potential local attack aI based on locally available model knowledge and, possibly, interaction with its neighboring subsystems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In contrast to the centralized ADI method we presented in [16], no local model knowledge is published globally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Before that, we briefly recall the distributed method for the detection of attacks that has already been presented in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' It is based on each subsystem I monitoring the deviations ∆zk+1 I := zk+1 I − ¯zk+1 I in its local coupling variables from the respective nominal values ¯zk+1 I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' As the nominal values ¯zk+1 I defined in (3) are attained in the undisturbed case, a deviation from them indicates a disturbance at time k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Using a detection threshold τD ∈ R>0, the method detects an attack if ∥∆zk+1 I ∥∞ > τD for any I, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', if a distinct deviation is observed in any subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To ensure that only significant attacks are revealed rather than small model inaccuracies or measurement noise, one can assume a probability distribution of the uncertainty and define τD accordingly as in, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Even if subsystem I detects an attack by observing a clear deviation ∥∆zk+1 I ∥∞ > τD, it does not necessarily have to be caused by an attack ak I ̸= 0 in I, but can just as well be caused by neighboring subsystems deviating from their nominal couplings �¯z k NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Identifying the root of the disturbance and thus locating the attack is the task of attack identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 6 Resilient MPC of Distributed Systems Under Attack Using Local ADI I L K Local ADI Local ADI Local ADI involving problem (5) �¯z k I, ∆�zk I �¯z k K, ∆�zk K �¯z k K, ∆�zk K �¯z k L, ∆�zk L Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 1: If neighboring subsystems in a distributed system exchange suitable information about their local coupling variables, each subsystem can employ a local ADI method to identify suspicions about unknown local attack inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In this paper, also the identification of attacks is addressed in a distributed manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Depending on the amount and type of information that neighbors are willing to share, we derive two different versions of local identification problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Clearly, the more specific the transmitted information describes the neighbors’ behavior, the more precisely a local attack or even an attack on neighboring subsystems can be identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Therefore, the design of a local identification problem needs to suitably balance the required amount of infor- mation and the significance of the obtained suspicions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For the first local identification problem that we establish, we propose that in addition to the exchange of nominal values �¯z k I according to Assumption 1, also the deviations ∆�zk I in the coupling coefficients are repeatedly transmitted to neighboring sub- systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' This exchange is performed at each step k when an attack is detected and is illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Assuming that each subsystem can locally mea- sure the impact onto its output variables yk+1 I ∈ YI ⊆ RnyI , we formulate a local attack identification problem to identify local attacks ak I as min aI ∥aI∥1 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' ���yk+1 I − ηI � xk I, uk I + aI,�¯z k NI + ∆�zk NI, 0 ���� 2 ≤ εI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (5) A solution of problem (5), which has already been proposed in [18], identifies a local suspicion a∗ I for some subsystem I, which is ℓ1-norm sparsest among all possible attack vectors in RnuI that explain the observed output yk+1 I accord- ing to the local model with output function ηI up to a predefined tolerance εI ∈ R≥0, neglecting possible parametric uncertainties wk I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' While the opti- mization variable aI ∈ RnuI represents the unknown attack to be identified, the local state xk I, input uk I, and output yk+1 I are measured or known from Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 7 local control computations, and the values �¯z k NI and ∆�zk NI, and thus the actual neighboring coupling values �zk NI = �¯z k NI + ∆�zk NI, are transmitted by neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Computing a sparse suspicion to identify the attack is common in related work on attack identification, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', [9, 14] and is justified by the observation that attackers typically have limited resources and are thus confined to impairing only few control components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Some approaches formulate related optimization problems using an ℓ0-“norm” cost term ∥aI∥0 to count the number of attacked inputs, but solving them requires solution methods from mixed integer pro- gramming and is NP-hard [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To reduce the computational complexity and to obtain a numerically more tractable problem, the ℓ0-“norm” is typically relaxed by the ℓ1-norm, see also [16, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' If the neighboring subsystems in NI agree to provide I with even more information, subsystem I can apply another version of local identification problem, which allows to draw not only conclusions about a potential local attack ak I, but even about attack inputs ak NI in the neighborhood of I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Since distributed methods are often applied when sensitive local information must not be made publicly available, we assume that neighbors still seek to keep their analytical model knowledge private and are only willing to reveal suitable numerical derivative information evaluated at the current iterate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' We pursued a similar approach for the centralized ADI method presented in [16], involv- ing the exchange of locally computed sensitivity matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To motivate which kind of sensitivity information about the dynamic behavior of its neighbors subsystem I requires, we approximate the neighboring influence onto the local output yI by a first-order Taylor expansion of ηI(xk I, uk I + ak I, �zk NI, 0) in the �zNI-argument around the nominal value �¯z k NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To this end, we define a local sensitivity function Sz INI : RnuI → RnyI ×nzNI , which maps each given attack input aI ∈ RnuI to the Jacobian Sz INI (aI) := ∂ηI ∂�zNI � xk I, uk I + aI,�¯z k NI, 0 � , that expresses the first-order dependence of the local output function ηI on the neighboring coupling variables �zNI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' It can be evaluated locally by I and allows to approximate the local output variables yk+1 I according to Taylor’s theorem, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', [21, §7] as yk+1 I = ηI � xk I, uk I + ak I,�¯z k NI, 0 � + Sz INI � ak I � ∆�zk NI + Rlin I + Rw I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (6) Here, the remainder term of the Taylor expansion is denoted by Rlin I and can be estimated similar to the upper bound proven in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The term Rw I represents a model error which occurs as all uncertain parameters wk I are considered zero in (6) and due to the fact that the distributed model in (2) only approximates the global dynamics in (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 8 Resilient MPC of Distributed Systems Under Attack Using Local ADI At this point, the additional sensitivity information provided by the neigh- bors NI of I comes into play.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Denoting the coupling coefficients of the neighbors’ neighbors by �zNNI , we introduce two types of sensitivity matrices as �Sa NI := ∂�ζNI ∂aNI � xk NI, uk NI,�¯z k NNI , 0 � and �Sz NI := ∂�ζNI ∂�zNNI � xk NI, uk NI,�¯z k NNI , 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The function �ζNI denotes the dense coupling function of all neighbors in NI, which maps to the space �ZNI of coupling coefficients �zNI and is obtained by combining the local dense coupling functions �ζL for all L ∈ NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Hence, the sensitivity matrices �Sa NI and �Sz NI represent first-order approximations of how disturbances in uNI and �zNNI affect the coupling coefficients �zNI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' If the neighbors in NI provide subsystems I with this information, the deviation ∆�zk NI of neighboring couplings �zk NI from their transmitted nominal values �¯z k NI can be expressed as ∆�zk NI = �Sa NIak NI + �Sz NI∆�zk NNI + Rlin NI + Rw NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (7) The model error Rw NI is caused by the uncertain influence of the parameters wk NI and the linearization error Rlin NI denotes the Taylor remainder term when expanding the neighbors’ coupling function �ζNI around �¯z k NNI .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The represen- tation in (7) gives subsystem I more detailed insights into why its neighbors’ coupling values �zk NI differ from the nominal values �¯z k NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' More precisely, it allows subsystem I to distinguish whether the deviation is caused by an attack ak NI that the neighbors are exposed to or whether they pass on the disturbing effect of any of their neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In order to figure out which source of distur- bance applies, subsystem I solves the following local identification problem with optimization variables aI, aNI, and ∆�zNNI : min aI,aNI ,∆�zNNI ∥aI∥1 + ∥aNI∥1 + ���∆�zNNI ��� 1 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' ���yk+1 I − ηI � xk I, uk I + aI,�¯z k NI, 0 � + Sz INI(aI) � �Sa NIaNI + �Sz NI∆�zNNI � ��� 2 ≤ εI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (8) An optimal solution (a∗ I, a∗ NI, ∆�z∗ NNI ) of problem (8) is sparsest with respect to the ℓ1-norm among all feasible points satisfying the constraints, which are obtained by combining (6) and (7) and neglecting all error terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Similar to problem (5), the constraints are relaxed by some tolerance εI ∈ R≥0 to account for model inaccuracies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Besides the local quantities uk I, yk+1 I , and xk I, which are known, measured, or estimated by the local control scheme, problem (8) also involves the nominal coefficients �¯z k NI, which are assumed to be exchanged among neighboring subsystems according to Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Instead of the coupling deviations ∆�zk NI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' the exchange of which is illustrated in Figure 1 and taken for granted by the first local identification problem Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 9 Algorithm 1 Distributed Attack Detection and Identification Based on Sparse Optimization Input: local dynamic model for each subsystem I ∈ D as in (2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' version ∈ {1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 2} 1: detected = false,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' a∗ I = 0 for all I ▷ initialization 2: for I ∈ D do ▷ distributed attack detection 3: measure zI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' determine ∆zI 4: if ∥∆zI∥∞ > τD then 5: detected = true 6: break 7: end if 8: end for 9: if detected then ▷ distributed attack identification 10: for I ∈ D do 11: if version == 1 then 12: obtain coupling deviation ∆�zNI from neighbors 13: solve local identification problem (5) to obtain a∗ I 14: else 15: obtain sensitivity information �Sa NI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' �Sz NI from neighbors 16: solve local identification problem (8) to obtain a∗ I 17: end if 18: end for 19: end if 20: return detected,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' a∗ I for all I (5),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' the new distributed ADI approach requires all neighbors to provide the sensitivity matrices �Sa NI and �Sz NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The third sensitivity matrix Sz INI (aI) that is contained in the constraints of problem (8), in contrast, is computed locally by subsystem I in dependence on the optimization variable aI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Now that two different formulations of local identification problems have been presented, we briefly explain how a complete distributed ADI method is obtained from the local optimizations problem (5) or (8), respectively, summa- rized as Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The distributed detection scheme is based on monitoring the coupling variables and raises an alarm if an abnormal deviation ∆zI > τD is observed in any subsystem I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Then, the identification procedure is initiated and neighboring subsystems exchange the necessary information to set up the identification problem (5) or (8), depending on which version is applied, and compute a solution to obtain a suspicion a∗ I of the local attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' If problem (8) is considered, the solution also suggests suspicions a∗ NI and ∆�z∗ NNI about the disturbing activities in the neighborhood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Since the problem formulations in (5) and (8) show some similarities to the global identification problem of our publication [16], some of the theoretical considerations in [16] can be adopted with only minor changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', an upper bound on the remainder term of the Taylor expansion can be obtained for the Springer Nature 2021 LATEX template 10 Resilient MPC of Distributed Systems Under Attack Using Local ADI linearization error Rlin I in (6), when adapting the reasoning of [16] to the fact that here the expansion is only applied in the �zNI-argument but not the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The major difference between the identification problems for global versus distributed ADI is, however, that the constraints in problem (5) and (8) are nonlinear, whereas a linear problem is considered in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' As a consequence, the theoretical results from [20] on relaxing the ℓ0-“norm” cost term in compressed sensing problems by the ℓ1-norm are not applicable here since Candes and Tao restrict their considerations to linear constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In fact, there is a body of research on nonlinear compressed sensing, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', [22, 23], the results of which can be useful to prove rigorous guarantees for the distributed ADI method presented in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' However, a precise elaboration of such proofs is out of scope for this paper and a promising direction for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 4 Resilient Distributed MPC While methods for attack identification are a very powerful tool to localize a priori unknown attacks and thus improve the resilience of control systems under malicious disturbances, they cannot prevent future attacks or reduce their impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' On the other hand, robust control schemes can limit the impact of a perturbation by ensuring that no constraints are violated, but require information about the value range in which possible disturbances will lie, which is typically not available for unknown adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' We combine the advantages of both approaches by embedding the proposed ADI method into a DMPC setup, thus utilizing the identified insights about the attacker toward targeted robust DMPC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To this end, we first describe an existing approach for robust DMPC in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='1, and enhance it with Algorithm 1 to obtain an adaptively robust DMPC scheme in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='2 that computes robust control inputs against previously identified attacks in a distributed manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='1 Contract-Based Robust Distributed MPC By robust control, we refer to computing control inputs that ensure all con- straints to a system with uncertain influences being met in all possible cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In [5], Lucia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' introduce a multi-stage scheme for robust nonlinear MPC (NMPC), which considers discrete sets of scenarios and represents the possible evolution of the system state in a scenario tree like the one shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In a distributed dynamic system, the neighbors’ couplings zNI behave in an uncertain way to the eyes of subsystem I, and, therefore, robust MPC can also be used to design distributed MPC methods as long as each subsystem is provided with information about the range of possible neighboring coupling values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In [3], this idea is implemented by Lucia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' introducing so-called contracts ZI, which are corridors containing predicted reachable values of the coupling variables zI and are exchanged among neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' At time k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' the reachable state set X l+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[k] I of all values that the local state xl+1 I may attain Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 11 � X 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[0] I � X 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[0] I � X 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[0] I � X 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[0] I x0 I x1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s7 I x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s9 I x3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s9 I x4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s9 I x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s8 I x3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s8 I x4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s8 I x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s7 I x3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s7 I x4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s7 I x1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s4 I x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s6 I x3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s6 I x4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s6 I x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s5 I x3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s5 I x4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s5 I x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s4 I x3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s4 I x4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s4 I x1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s1 I x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s3 I x3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s3 I x4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s3 I x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s2 I x3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s2 I x4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s2 I x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s1 I x3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s1 I x4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='s1 I Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 2: A scenario tree as in the multi-stage approach to robust MPC [5], here shown for time k = 0 and Np = 4, provides a natural and computationally efficient way to approximate the reachable sets X l,[k] I (indicated in gray) by discrete node sets � X l,[k] I (blue) explored by the tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' at time l + 1 under all possible uncertainty realizations, is computed as X l+1,[k] I := � fI � xl I, ul I + al I, �zl NI, wl I � : xl I ∈ X l,[k] I , al I ∈ Al,[k−1] I , �zl NI ∈ � Zl,[k−1] NI , wl I ∈ Wl,[k−1] I � with X k,[k] I := {xk I}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' From this, the contract Zl,[k] I for zl I at time k is derived as Zl,[k] I := � hI � xl I � : xl I ∈ X l,[k] I � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Similarly, contracts � Zl,[k] I for the coupling coefficients �zl I are obtained using the dense coupling function �ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' These sets are computed locally at time k, provided that each subsystem knows attack and parameter uncertainty sets Al,[k−1] I and Wl,[k−1] I and additionally receives its neighbors’ contracts � Zl,[k−1] I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' If all these uncertainty sets are discrete or subsystem I chooses finite subsets as sample scenarios, it can locally build a scenario tree as in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The tree contains one node xl,s I for each time l ∈ {k, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , k + Np} with prediction horizon Np and each scenario s ∈ Σ[k−1] I , where Σ[k−1] I is the finite local index set of scenario indices s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The local scenario trees allow to efficiently compute finite approximations � X l,[k] I of the reachable sets X l,[k] I as the set of tree nodes xl,s I that are reached by subsystem I at stage l in any scenario s ∈ Σ[k−1] I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' This is indicated by blue shapes in Figure 2 and explained in detail in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 12 Resilient MPC of Distributed Systems Under Attack Using Local ADI Corresponding approximated contracts � Zl,[k] I are obtained as � Zl,[k] I := � �ζI � xl,s I , ul,s I + al,s I , �zl,s NI, wl,s I � : s ∈ Σ[k−1] I � ⊆ � Zl,[k] I and have been proven to work well in practice [8, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Considering every pos- sible evolution of the uncertain system for the future time steps k, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , k + Np according to the finite scenario set Σ[k−1] I , contract-based DMPC using multi- stage NMPC computes robust control inputs uk I, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , uk+Np−1 I according to the following optimal control problem based on the work of Lucia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' in [3, 5] min xl,s I ,ul,s I � s∈Σ[k−1] I αs I k+Np−1 � l=k ℓI � xl,s I , ul,s I + al,s I , �zl,s NI, wl,s I � s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' xk,s I = xk I, xl+1,s I = fI � xl,s I , ul,s I + al,s I , �zl,s NI, wl,s I � , gI � xl,s I , ul,s I + al,s I , �zl,s NI, wl,s I � ≤ 0, (9) xl+1,s I ∈ XI, ul,s I ∈ UI, xl,s I = xl,s′ I ⇒ ul,s I = ul,s′ I , min � � Zl,[k−1] I � ≤ �ζI � xl,s I , ul,s I + al,s I , �zl,s NI, wl,s I � ≤ max � � Zl,[k−1] I � , for all s ∈ Σ[k−1] I , s′ ∈ Σ[k−1] I , l ∈ {k, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , k + Np − 1} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' An optimal solution of problem (9) provides a set of state trajectories starting at xk I for all scenarios, behaving according to the local discrete-time dynamics as in (2), and taking only feasible states xl+1,s I ∈ XI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The optimal inputs are chosen to be feasible, to satisfy the constraints in (4) in all scenarios s ∈ Σ[k−1] I and at all times l, and to minimize the local costs ℓI weighted over all scenarios with weights αs I ∈ R≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The problem formulation takes into account that future control inputs can be adapted when new measurements are available, while input values ul,s I , ul,s′ I that are applied to the same tree node have to coincide because a real-time controller cannot anticipate the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Finally, for consistency, we require each element �zl,s I of the updated contract � Zl,[k] I to be within the bounds of the previous contract � Zl,[k−1] I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For details on the purpose and the theoretical consequences of the last two groups of constraints we refer to the original works [3, 5] and our own work [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='2 Adaptively Robust Distributed MPC While we have explained in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='1 how updated contracts � Zl,[k] I are calculated at each time k from a solution of problem (9), we have not yet com- mented on how to obtain similar scenario sets � Al,[k] I and � Wl,[k] I for unknown Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 13 attacks al I and uncertain parameters wl I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For the latter, suitable samples are usually provided by forecasts, historical data, or technical properties of the system components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For unknown attacks, however, it would be very restric- tive to assume that appropriate scenario sets � Al,[k] I are provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Choosing few random attacks as samples as in [8] cannot be expected to achieve sat- isfied constraints in all cases, while choosing a very large number of samples may cover the set AI of possible attacks sufficiently well, but leads to com- putationally intractable problems since the size of the scenario tree grows exponentially in the number of scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To address this issue, we proposed a more general, adaptively robust MPC approach in [17] that utilizes available knowledge about the attackers gained from attack identification to design the sets � Al,[k] I and is repeated in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Unlike in [17], here the distributed ADI approaches from Section 3 are embedded in a DMPC setup, resulting in a fully distributed control framework that does not require any central instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The approach has already been described in [18] and is presented here in further depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The method is designed for local attacks aI that follow a probability distri- bution with unknown, time-invariant expected value µI ∈ RnuI and standard deviation σI ∈ R nuI ≥0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The basic idea is to repeatedly estimate these parame- ters at each time k based on the solutions a∗,l I of the local attack identification problem at previous times l ≤ k, and to adapt the uncertainty sets � Al,[k] for possible attacks al accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' More precisely, at time k the mean µ[k] I and sample standard deviation σ[k] I of all previously identified values a∗,l I given as µ[k] I := 1 k + 1 k � l=0 a∗,l I and σ[k] I := � 1 k k � l=0 � a∗,l I − µ[k] I �2 � 1 2 (10) serve as estimates for µI and σI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' According to the local identification results until time k, the uncertainty of possible attacks al I for future time steps l is represented by three scenarios for each component (ak I)i for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , nuI} � Al,[k] I = � i∈I � µ[k] i , µ[k] i + σ[k] i , µ[k] i − σ[k] i � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (11) The combination of contract-based robust DMPC from Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='1 and the dis- tributed ADI method from Section 3 results in an adaptively robust distributed MPC method that is summarized in Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' We formulate Algorithm 2 involving the local identification problem (5) and thus the first version of Algorithm 1 since this is what we apply in the numerical experiments presented in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Clearly, Algorithm 2 can also be defined based on the second version of Algorithm 1 solving problem (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In this case, subsystem I can additionally modify the transmitted contracts � ZNI in such a way that the locally identified suspicions a∗ NI, ∆�z∗ NI about neighboring attacks and coupling deviations are taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' While this Springer Nature 2021 LATEX template 14 Resilient MPC of Distributed Systems Under Attack Using Local ADI Algorithm 2 Adaptively robust distributed MPC Input: local dynamic model for each subsystem I ∈ D, initial contracts � Zl,[0] I for all I, l, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=',' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' � Zl,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[0] I = {hI(x0 I)},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' finite parameter scenario sets � Wl,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[k] I for all l,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' k 1: set � Al,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[0] I := {} for all I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' l 2: for time step k do 3: for I ∈ D do 4: build scenario tree by branching on � Al,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[k−1] I ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' � Zl,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[k−1] NI ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' and � Wl,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[k−1] I 5: solve problem (9) to compute inputs ul I 6: derive new contracts � Zl,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[k] I ▷ update contracts 7: transmit � Zl,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[k] I to neighbors 8: end for 9: apply first control input uk = (uk I)I∈D 10: for I ∈ D do 11: solve problem (5) to obtain a suspicion a∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='k I ▷ local ADI 12: update estimates µ[k] I ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' σ[k] I as in (10) 13: adapt uncertainty set � Al,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='[k] I as in (11) ▷ update attack scenarios 14: end for 15: end for is not reasonable if the neighbors and thus their transmitted sensitivities �Sa NI and �Sz NI are generally deemed untrustworthy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' it is useful if the communication channel to the neighbors is considered secure,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' but the neighbors themselves do not apply ADI and therefore do not adapt their contracts to attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' By enhancing distributed MPC with local attack identification in each subsystem, we obtain a distributed adaptively robust control framework, in which only locally available model knowledge and some information exchange among neighbors is involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Unlike the related method introduced in [17], Algorithm 2 requires no central authority and, in particular, no confidential model knowledge is published globally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Such a procedure has the advantages that all local identification problems can be solved in parallel, that it can be employed even if the subsystems fail to agree on a central authority, and that no private model knowledge has to be shared with the entire network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Further- more, all distributed ADI approaches have in common that it is challenging to agree on system-wide countermeasures based on multiple, possibly contradic- tory local identification results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Our approach provides an answer to this issue as it transfers the insights from distributed ADI into local countermeasures by adjusting the local control inputs in a suitable robust way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 5 Dynamic Model for Microgrids Under Attack Distributed microgrids that include local generation, demands, and often stor- age units, increase the security of supply within the microgrid area but create Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 15 new challenges: Several optimal control tasks have to be addressed under the uncertainty of renewables and possibly even adversarial attacks, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', economic generator dispatch, efficient battery use, or optimal power import and export strategies to benefit from fluctuating energy prices [24, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Therefore, we aim to apply the resilient control framework proposed in Section 4 to the task of microgrid control and derive a suitable dynamic model in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The main characteristics of the model are nonlinear battery dynam- ics, physical coupling of neighboring microgrids through dispatchable power exchange, and the threat of possible attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Each microgrid contains an aggre- gated load pl I ≤ 0 and a set of dispatchable generation units that generate a total power output pg I ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' How uncertain load and nondispatchable generation from renewable energy sources are modeled is discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' As illustrated in Figure 3, each microgrid is connected to the main grid, to or from which it can export or import power pm I ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' While power import is modeled by posi- tive values pm I > 0, negative values pm I < 0 indicate power export to the main grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In addition, power transfers are possible between two neighboring micro- grids I, L with L ∈ NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The power that microgrid I provides to L is denoted as ptr IL and the resulting directed power flow from I to L is given as pflow IL := ptr IL − ptr LI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Finally, each microgrid has a storage unit that provides or consumes storage power pst I ∈ R and the state variable sI ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0] indicates its state of charge (SoC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Power values pst I > 0 indicate discharging and pst I < 0 charging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Unlike other works investigating economic dispatch problems in microgrid settings, for example Ananduta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' in [15], we take into account that power cannot change instantaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Instead, the dynamic evolution of pg I, pm I , and ptr IL is controlled by inputs ug I, um I , and utr IL and behaves according to ˙pg I = 1 T g I (ug I + ag I − pg I) , (12) ˙pm I = 1 T m I (um I + am I − pm I ) , (13) ˙ptr IL = 1 T tr IL � utr IL + atr IL − ptr IL � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (14) The various delay parameters T g I , T m I , T tr IL ∈ R>0 depending on technical char- acteristics capture how quickly a change in the respective input affects the corresponding state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Compared to the generation delay T g I , typically smaller delay times T m I and T tr IL apply for power transfers with the main grid or neigh- boring microgrids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In line with the generic description of distributed systems under attack introduced in Section 2, we model attacks as additional, unknown inputs that impair the dynamic behavior of the microgrid systems as in (12) to (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In each microgrid I ∈ D, we consider generator attacks ag I ∈ R, grid attacks am I ∈ R affecting the power exchange with the main grid, and transfer Springer Nature 2021 LATEX template 16 Resilient MPC of Distributed Systems Under Attack Using Local ADI pst I = -ΣpI pg I pl I pm I ptr IK ptr IL I L K zLI zKI Main grid Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 3: Schematic overview of the model for interconnected microgrids taken from [18, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 1], showing the local model components for microgrid I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Apart from internal states, each microgrid only requires knowledge of its neighboring couplings (zLI)J∈NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For power balance, storage units are used as a buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' attacks atr IL ∈ R on power transfers to or from any neighbor L ∈ NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' While the inputs are computed by the local controller in I, the attack values are unknown to the control system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Thus, we deliberately make no difference in modeling attacks and renewable generation but consider both as uncertain influences resolved by the resilient control framework presented in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Similarly, uncertain load can be considered an attack al I modifying the load pl I = ul I that is modeled as a noncontrollable input with equal upper and lower bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The storage is used as a buffer providing the required power reserves at all times and thus assuring that the power balance in microgrid I is always satisfied, even when an attack occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Therefore, the storage power pst I is a dependent variable according to pst I = −pg I − pm I − pl I − � L∈NI � ptr LI − ptr IL � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' It is important to distinguish that for microgrid I, the local state ptr IL can be controlled via utr IL as in (14), whereas the neighboring state ptr LI is neither controllable nor is its dynamic behavior known by microgrid I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The physical interconnection of neighboring microgrids is instead modeled by a coupling variable zLI = ptr LI and is treated locally as an uncertain parameter as we discussed in detail in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Figure 3 illustrates that the local knowledge is limited to local power variables and neighboring couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' According to the storage power pst I , the storage is charged or discharged and the resulting change in the SoC sI is modeled as ˙sI = bI � sI, pst I � with some function bI : [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0] × R → R modeling the battery dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' While a linear approximation of this charging behavior is usually sufficient in the middle range of [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0], it is not accurate for marginal values of the SoC Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 17 which become extremely relevant in case of an attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Following the line of [26, 27], the dynamics of the SoC are given as ˙sI = − Ist I Qst I , (15) with Qst I denoting the maximum capacity of the battery and Ist I being the battery current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Denoting the battery voltage by U st I , the storage power pst I and the voltage U st I are given as pst I = U st I Ist I and U st I = U OCV I (sI) + Rst I Ist I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (16) in line with [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The term U OCV I denotes the open circuit voltage (OCV), that depends on the SoC sI, and the second summand determining U st I models the ohmic effect with resistance Rst I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Rewriting (16) results in the following relation for the storage power pst I : pst I = U OCV I (sI)Ist I + Rst I � Ist I �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Solving this equation for Ist I , the battery current Ist I = nI (sI, pst I ) is obtained from sI and pst I for some nonlinear function nI : [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0] × R → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Together with (15), this results in a nonlinear function bI(sI, pst I ) := −nI(sI, pst I ) Qst I that describes the dynamic behavior of the battery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' It remains open to specify the open circuit voltage U OCV I (sI) using the model in [27], that is accurate also for low and high SOCs: With parameters αI, βI, γI, δI, µI, and νI depending on the type of battery, the OCV is given by U OCV I (sI) := αI + βI(−ln(sI))µI + γIsI + δIeνI(sI−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (17) Bringing all of the above together, we have characterized a distributed dynamic system of interconnected microgrids, which results in a model of the form as in (2) when discretizing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Each microgrid is described by a local state xI = � sI, pg I, pm I , ptr I �⊤ ∈ R3+|NI| (18) with ptr I := (ptr IL)L∈NI and controlled by a local input uI = � ug I, um I , utr I �⊤ ∈ R2+|NI|, (19) that may be disturbed by an attack input aI = � ag I, am I , atr I �⊤ ∈ R2+|NI| (20) Springer Nature 2021 LATEX template 18 Resilient MPC of Distributed Systems Under Attack Using Local ADI with utr I := (utr IL)L∈NI and atr I := (atr IL)L∈NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Power transfers to other micro- grids physically couple neighboring microgrids to each other, which is modeled by local coupling variables zI = � ptr IL �⊤ L∈NI with zNI = � ptr LI �⊤ L∈NI .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (21) Each microgrid I ∈ D is operated locally to meet the respective load pl I at the lowest possible cost according to some objective function JI : R>0 → R, which specifies the costs incurred during some time window [0, T] of length T ∈ R>0 and is defined as JI(T) := � T 0 qI � pg I, ptr I , pst I � + ℓI � pflow I , pm I � dt + mI (sI (T)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (22) It consists of quadratic stage costs qI, piecewise linear stage costs ℓI, and terminal costs mI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The quadratic costs qI : R≥0 × RnzI × R → R≥0 with cost parameters Cg I , Ctr I , Cst I ∈ R≥0 are given as qI � pg I, ptr I , pst I � := Cg I (pg I)2 + � L∈NI Ctr I � ptr IL �2 + Cst I � pst I �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' They capture the per-unit costs of using the units for power generation, power transfers to neighbors, and the respective storage operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In contrast, the piecewise linear costs ℓI model the economic profit or loss from selling or buying energy in trade with neighbors or the main grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Defining the positive and negative part functions (v)+ := � 0 if v < 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' v if v ≥ 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' and (v)− := � v if v < 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 0 if v ≥ 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' the piecewise linear cost function ℓI : RnzI × R → R is given as ℓI � pflow I ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' pm I � := � L∈NI Cflow,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='ex LI � pflow LI � − + � L∈NI Cflow,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='im LI � pflow LI � + + Cm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='ex I (pm I )− + Cm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='im I (pm I )+ for each microgrid I ∈ D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' with local export and import per-unit prices Cflow,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='ex LI ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Cflow,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='im LI ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Cm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='ex I ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Cm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='im I ∈ R≥0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' which may fluctuate throughout the day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In the numerical example in Section 6, we will consider import prices that are considerably higher than the export prices and thus focus on small producers, for which in practice it is often more profitable to generate power for their own demand than to buy electricity from the main grid, and for which power exports to the grid are only worthwhile at times of high demand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The terminal Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 19 costs mI : [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0] → R≥0 account for degradation costs of the battery as mI(sI) := Cdis I (sI(0) − sI(T))+ Qst I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' If the state of charge sI(T) at the end of the considered horizon is smaller than sI(0) at the beginning, each unit of power discharge is penalized by some cost Cdis I ∈ R≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 6 Numerical Experiments with Microgrids Under Attack In this section, we present a numerical case study to analyze the performance of adaptively robust DMPC from Section 4 in the context of interconnected microgrids under attack using the model from Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In contrast to our earlier work [17], we apply distributed ADI based on the local identification problem (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In the experiments, we address the question of how to achieve an economic operation of microgrids at minimum costs despite uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Whether these emerge in form of disturbances with rather small impact, fluc- tuating generation from renewables, or malicious attacks;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' all represent critical yet all the more relevant threats to energy supply.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To this end, we consider three microgrids I, II, and III with renewable gen- eration that are each connected to the main grid and the other two microgrids as in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The initial values and bounds for all variables of the microgrid model are given in Table 1 and the parameters are chosen as in Table 2, using those for lithium-titanate (Li4Ti5O12) batteries from [27] in (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For a timespan of two days, robust NMPC is applied locally with step size ∆t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='25 h by each microgrid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' At time t ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0] h, the local cost func- tion JI in (22) takes into account the upcoming time window [t, t + Np] with prediction horizon Np = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 h and uses the cost parameters from Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The values Cm,im I and Cm,ex I , that describe the cost or revenue of power imports from or exports to the main grid, vary in the course of the day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In our example, we focus on microgrids that represent small local prosumers and use the fol- lowing fictitious values for all microgrids, which are based on real prices on the Table 1: This table lists lower and upper bounds as well as initial values at time t = 0 for all state and input variables of the microgrid model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For the state of charge, three distinct initial values sI(0) for the three microgrids I, II, and III are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In all other cases, the indicated values apply for all subsystems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Variable Lower Bound Upper Bound Initial Value Unit sI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='9, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='6 pg I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW pm I 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW ptr IL 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW ug I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW um I 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW utr IL 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW Springer Nature 2021 LATEX template 20 Resilient MPC of Distributed Systems Under Attack Using Local ADI Table 2: This table lists all model and cost parameters that are used in the numerical experiments presented in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' All values apply to all subsystems I ∈ {I, II, III}, except for Qst I , Rst I , and Cg I , where individual values for the respective subsystems are specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' (a) Model Parameters Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Value Unit pl I 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW T g I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='1 h T m I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='001 h T tr IL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='001 h Qst I 100, 200, 100 kAh Rst I 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 mΩ (b) OCV Parameters Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Value Unit αI 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='23 V βI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='001 V γI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='35 V δI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='6851 V µI 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 νI 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='6 (c) Cost Parameters Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Value Cg I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Ctr I 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Cst I 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Cdis I 2000 Cflow,im IL 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Cflow,ex IL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='04 German electricity market in 2021 [28] and reflect typical market fluctuations with rising prices in the morning and evening hours: Cm,im I (t) = � � � � � � � � � 275 if (t mod 24 h) ∈ [15, 20) h, 200 if (t mod 24 h) ∈ [6, 9) ∪ [20, 22) h, 150 if (t mod 24 h) ∈ [9, 15) ∪ [22, 24) h, 100 otherwise, Cm,ex I (t) = � � � � � 15 if (t mod 24 h) ∈ [15, 20) h, 10 if (t mod 24 h) ∈ [6, 9) ∪ [20, 22) h, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Here, mod is the modulo operator and (t mod 24 h) denotes the time of day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To achieve a resilient operation, the system is controlled using the adap- tively robust distributed NMPC scheme from Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Based on the local control problem (9), at each sampling time k every microgrid computes con- tracts � X l,[k] I to confine the behavior of its future coupling values zl I for l ∈ {k, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , k + Np − 1} and shares them with its neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In contrast to the experiments in [17], which involve a centralized ADI method, each microgrid consults locally identified solutions a∗,k I of problem (5) to update its estimates µ[k] I and σ[k] I of the expected value and standard deviation of the unknown random attack aI as in (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In our numerical experiments, the nonlinear identification problem (5) is solved to an accuracy of εI = 10−3 using the interior-point solver Ipopt [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The states xI are assumed to be only partially observable with linear output function cI : XI → YI that is defined as cI (xI) := diag(1, 1, 1, 0, 0)xI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' This means that for each microgrid I, the outputs yI = (sI, pg I, pm I )⊤ are con- sidered by the local identification process, but not the transfer variables ptr IL for all L ∈ NI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Based on the suspected attacks a∗,k I and the derived estimates Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 21 sI robust sI non-robust SoC in % 100 96 92 88 (a) State of Charge Generation in kW 25 20 15 10 5 0 ug I pg I (b) Power Generation Time in hours 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Imports / exports in kW 0 5 10 15 20 25 30 pm I (c) Power exchange with main grid Time in hours 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Transfers in kW 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 ptr I,II ptr I,III (d) Power exchange with neighbors Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 4: Selected state and input trajectories for microgrid I, showing all powers in kW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The microgrid is exposed to a generator attack, causing the generation pg I to be considerably larger than planned by ug I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The different SoC trajectories, computed by adaptively robust versus nonrobust NMPC, show the benefit of the proposed resilient control framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' µ[k] I and σ[k] I , the uncertainty sets � Al,[k] I are approximated as in (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The local control problem (9) is repeatedly adapted to new contracts and identification results that become available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' As a consequence, the inputs ul I computed at time k+1 for l ∈ {k+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' , k+Np} are robust toward deviations in neighboring couplings within � Zl,[k] NI and identified attacks in � Al,[k] I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' We examine the behavior of the system, controlled with Algorithm 2, in two attack scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For comparison, we repeat each experiment with nonro- bust DMPC, where neither contracts are exchanged nor attack identification is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' First, we assume that all generation units are dispatchable and a constant attack ag I = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW disrupts the generator dynamics in micro- grid I according to (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The attacker is active over the entire time window [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0] h and causes a severe deviation of the generated power pg I in micro- grid I from the control input ug I as Figure 4 reveals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The distributed ADI method based on the local identification problem (5) successfully identifies the unknown attack input with very high precision in every time step as pointed out by Figure 5, which shows the mean of the suspected attack values ag,∗ I ≈ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='9989 kW at all times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' This allows the local robust NMPC scheme to adapts its prediction very accurately and adjust the control inputs accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' As a result, the microgrid takes advantage of the additional power generation Springer Nature 2021 LATEX template 22 Resilient MPC of Distributed Systems Under Attack Using Local ADI Actual attack ag I Identified mean µ[k] I Time in hours 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Attack ag I in kW 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='015 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='010 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='005 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='000 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='995 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 5: Actual attack value ag I and average identified value µ[k] I in the first attack scenario examined, in which only dispatchable generation units are in use and microgrid I is exposed to a generator attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' by charging the battery and exporting the power to the main grid during times with high profit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In the solution computed with nonrobust NMPC, on the con- trary, the battery reaches and violates its maximum state of charge of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 after about 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 h as the red SoC trajectory in Figure 4a reveals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Due to bound vio- lations, the nonrobust scheme fails in 171 of 192 time steps when more power than planned is generated and the storage is charged to maintain power bal- ance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Since SoC values larger than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 are physically invalid, the next MPC step in our study continues at sI = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' It should be noted that power balance can be ensured in other ways than using the storage as a buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For instance, if power imports from and exports to the main grid are allowed at all times, using the grid as a buffer would not lead to bound violations as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' However, this can cause very high costs, for example, if electricity has to be imported in the evening at expensive prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In contrast, the battery allows power to be stored until exports to the main grid become profitable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Indeed, over the entire period of two days, the adaptively robust NMPC scheme achieves total costs of −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='2·103 in microgrid I and thus makes profit despite the attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' On the contrary, nonrobust NMPC causes total local costs of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='3 · 104, which is orders of magnitudes larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Considering that we aim for a strategy to increase the resilience of the system, which takes into account not only robustness but also performance in terms of induced costs, the battery as a buffer is therefore a reasonable choice that enables and favors high resilience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In the second experiment, we consider a modified generator attack ag I = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW + rg I , where rg I ∼ N(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0) kW represents the uncertainty in renewable generation and is randomly drawn from a normal distribution with mean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW and standard deviation 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW, independently at each time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Together, the malicious attack of 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW and the renewable fluctuations rg I Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 23 Actual attack ag I Identified mean µ[k] I Sample std.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' dev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' σ[k] I Time in hours 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Disturbance ag I in kW 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 6: Course of the mean µ[k] I of identified values a∗,k I over time, with sample standard deviation σ[k] I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The actual disturbance ag,k I at each time k is shown in orange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The figure is taken from [18, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' may cause more power than planned to be generated (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', ag I > 0) or less (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', ag I < 0), but are chosen such that the total generator input ug I + ag I is nonneg- ative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Due to the fluctuating generation, the actual value ag I of the unknown disturbance in the generator dynamics ranges from −11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='3 kW to 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='9 kW as can be seen in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For the examined generator with parameters as in Table 2, this is a very broad range, which also becomes clear in comparison with Figure 4b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' As an apparent consequence of the continually changing val- ues, the local identification problem (5) yields a different suspicion ag,∗ I in each time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Nevertheless, Figure 6 shows that the mean µ[k] I of identified values quickly settles at about 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 kW, which underlines that the distributed ADI method is able to cope also with highly fluctuating and widely dispersed dis- turbances, since a new optimization problem is solved at each time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' This proves once again the great potential of the proposed class of optimization- based ADI methods and emphasizes that they are not tailored to a specific type of attack, but are also very well suited for challenging scenarios where attacks and other sources of significant uncertainty congregate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The sample standard deviation σ[k] I is considerably larger than before and the three scenarios µ[k] I , µ[k] I + σ[k] I , and µ[k] I − σ[k] I are further apart than in the first experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Figure 7 shows the obtained solution for the attacked microgrid I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' While adaptively robust DMPC achieves total local costs of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='1·103 in microgrid I, the nonrobust approach causes more than ten times higher total costs of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='2·104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Once again, classical nonrobust MPC proves to be unsuitable Springer Nature 2021 LATEX template 24 Resilient MPC of Distributed Systems Under Attack Using Local ADI sI robust sI non-robust SoC in % 100 95 90 85 80 (a) State of Charge Generation in kW 60 40 20 0 ug I pg I (b) Power Generation Time in hours 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Imports / exports in kW 0 10 20 30 40 pm I (c) Power exchange with main grid Time in hours 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 Transfers in kW 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='0 ptr I,II ptr I,III (d) Power exchange with neighbors Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 7: States and inputs in microgrid I, which now contains renewable generation as another source of uncertainty in addition to the generator attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' to control the disturbed system as it computes a solution that violates the upper bound of the state of charge in 113 of 192 time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' At this point, we would like to point out that the adaptively robust DMPC scheme is not guaranteed to yield admissible trajectories in all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In fact, proving rigorous guarantees of this kind is challenging for nonlinear dynam- ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Moreover, in contrast to the multi-stage approach [30], adaptively robust NMPC lacks the recursive feasibility property when the attack uncertainty sets Al,[k] I are adjusted to sudden attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Furthermore, Figure 6 illustrates that in our second attack scenario involving uncertain renewable generation, even disturbances ag I occur that are not within the interval [µ[k] I − σ[k] I , µ[k] I + σ[k] I ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Despite these unforeseen disruptions and the lack of theoretical guarantees, however, all state bounds are satisfied and the solution in Figure 7 is not overly conservative judging from the fact that considerably lower costs are obtained than with nonrobust DMPC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' This underlines that adaptively robust NMPC, using ADI results as estimates for an unknown attack, is a very powerful tool even under challenging circumstances with broadly dispersed disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 7 Conclusion and Future Directions We introduced a comprehensive distributed MPC framework for nonlinear control systems under attack, which is based on local multi-stage control and novel distributed attack identification methods in each subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' To enable Springer Nature 2021 LATEX template Resilient MPC of Distributed Systems Under Attack Using Local ADI 25 the system to respond autonomously and robustly to identified perturbations, each control scheme represents the uncertain influence of neighboring cou- plings and attack inputs by scenario sets that are continuously updated based on newly gained knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For this purpose, each subsystem applies local attack identification and repeatedly transmits new contract information to its neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Using the example of microgrids interconnected by power transfers, the methodology was demonstrated to robustly control a distributed system and achieve constraint satisfaction at all times despite unknown attacks and uncertain renewable generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' We have identified two promising directions with great potential for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The first would be to derive theoretical conditions under which Algo- rithm 1 can be rigorously proven to successfully identify the correct inputs, similar to the guarantees for our centralized ADI method [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' While some ideas from [16] can be transferred with few changes, further required theoreti- cal arguments could be based on the research results on nonlinear compressed sensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' For example, in [22] the restricted isometry property from [20], a cen- tral component of linear compressed sensing, is generalized and the iterative hard thresholding algorithm involving a form of gradient projection is extended to nonlinear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Furthermore, in [23] two coordinate descent methods are introduced that build upon the simplex algorithm for linear programming and are of a greedy type in the sense that they add nonzero variables one by one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' When suitable success guarantees for the new distributed ADI approaches provably hold, a combination with the robustness and stability analysis of multi-stage NMPC and contract-based DMPC described in [3, 30, 31] could be the next step to strengthen the excellent numerical performance of adaptively robust DMPC by theoretical arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' The second research direction consists in investigating a hierarchical com- bination of several ADI approaches that complement each other and provide system operators with different options suiting their needs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' There is, on the one hand, the centralized ADI method from [16], which is based on an approx- imation of the dynamics and provides quick insights into the network-wide attack situation, but requires all subsystems to make specific sensitivity infor- mation publicly available and agree on a central instance to solve the global identification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' On the other hand, there are distributed ADI methods like Algorithm 1 involving problems (5) and (8), which use local models to analyze possible attacks on one subsystems or its neighborhood locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Sev- eral gradations or variants of these approaches may be applied, depending on the available model knowledge and the willingness of individual subsystems to cooperate or agree on a common decision instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 8 Statement on Conflict of Interests On behalf of all authors, the corresponding author states that there is no conflict of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 26 REFERENCES References [1] Christofides, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Scattolini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', de la Pena, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Distributed model predictive control: A tutorial review and future research directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Computers & Chemical Engineering 51, 21–41 (2013) [2] Arauz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Chanfreut, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Maestre, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Cyber-security in networked and distributed model predictive control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Annual Reviews in Control 53, 338– 355 (2022) [3] Lucia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', K¨ogel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Findeisen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Contract-based predictive control of distributed systems with plug and play capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IFAC-PapersOnLine 48, 205–211 (2015) [4] Mayne, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Seron, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Rakovi´c, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Robust model predictive control of constrained linear systems with bounded disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Automatica 41, 219–224 (2005) [5] Lucia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Finkler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Engell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Journal of Process Control 23, 1306–1319 (2013) [6] Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Ishii, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': A distributed model predictive scheme for resilient consensus with input constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In: IEEE Conference on Control Tech- nology and Applications, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 349–354 (2019) [7] Braun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Albrecht, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Lucia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Identifying attacks on nonlinear cyber- physical systems in a robust model predictive control setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In: European Control Conference, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 513–520 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE [8] Braun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Albrecht, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Lucia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Hierarchical attack identification for distributed robust nonlinear control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In: 21st IFAC World Congress, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 6191–6198 (2020) [9] Pasqualetti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', D¨orfler, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Bullo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Attack detection and identification in cyber-physical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE Transactions on Automatic Control 58, 2715–2729 (2013) [10] Giraldo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Urbina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Cardenas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Valente, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Faisal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Ruths, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Tippenhauer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Sandberg, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Candell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': A survey of physics-based attack detection in cyber-physical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' ACM Computing Surveys 51, 1–36 (2018) [11] Boem, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Riverso, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Ferrari-Trecate, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Parisini, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Plug-and-play fault detection and isolation for large-scale nonlinear systems with stochastic uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE Transactions on Automatic Control 64, 4–19 (2018) [12] Gallo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Turan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Boem, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Parisini, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Ferrari-Trecate, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': A distributed cyber-attack detection scheme with application to DC micro- grids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE Transactions on Automatic Control 65, 3800–3815 (2020) [13] Boem, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Ferrari, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Parisini, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Distributed fault detection and isola- tion of continuous-time non-linear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' European Journal of Control 17, 603–620 (2011) [14] Pan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Yuan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Sandberg, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Gon¸calves, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Stan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Online fault diagnosis for nonlinear power systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Automatica 55, 27–36 (2015) [15] Ananduta, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Maestre, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Ocampo-Martinez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Ishii, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Resilient Springer Nature 2021 LATEX template REFERENCES 27 distributed model predictive control for energy management of inter- connected microgrids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Optimal Control Applications and Methods 41, 146–169 (2020) [16] Braun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Albrecht, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Lucia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Attack identification for nonlinear sys- tems based on sparse optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE Transactions on Automatic Control, early access (2021) [17] Braun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Albrecht, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Lucia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Adaptively robust nonlinear model pre- dictive control based on attack identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' at-Automatisierungstechnik 70, 367–377 (2022) [18] Braun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Albrecht, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Lucia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Resilient Control of Interconnected Microgrids Under Attack by Robust Nonlinear MPC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In: Conference on Informatics in Control, Automation and Robotics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 58–66 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' INSTICC [19] Kozma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Savorgnan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Diehl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Distributed multiple shooting for large scale nonlinear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In: Distributed Model Predictive Control Made Easy, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 327–340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Springer [20] Cand`es, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Tao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Decoding by linear programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE Transactions on Information Theory 51, 4203–4215 (2005) [21] Forster, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Analysis 2 - Differentialrechnung im Rn, Gew¨ohnliche Differ- entialgleichungen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 11 edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Springer (2010) [22] Blumensath, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Compressed sensing with nonlinear observations and related nonlinear optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE Transactions on Informa- tion Theory 59, 3466–3474 (2013) [23] Beck, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Eldar, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Sparsity constrained nonlinear optimization: Opti- mality conditions and algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' SIAM Journal on Optimization 23, 1480–1509 (2013) [24] Olivares, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Mehrizi-Sani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Etemadi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Ca˜nizares, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Iravani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' : Trends in microgrid control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE Transactions on Smart Grid 5, 1905–1919 (2014) [25] Mohammed, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Refaat, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Bayhan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Abu-Rub, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': AC microgrid control and management strategies: evaluation and review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE Power Electronics Magazine 6, 18–31 (2019) [26] Mathieu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Taylor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Controlling nonlinear batteries for power sys- tems: Trading off performance and battery life.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In: IEEE Power Systems Computation Conference, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 1–7 (2016) [27] Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Loh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' : A generalized SOC-OCV model for lithium-ion batteries and the SOC estimation for LNMCO battery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Energies 9, 1–16 (2016) [28] Bundesnetzagentur Deutschland: SMARD Strommarktdaten for Ger- many in November 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='smard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content='de/home/downloadcenter/ download-marktdaten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Online, last accessed: November 15th, 2022 [29] W¨achter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Biegler, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Mathematical Programming 106, 25–57 (2006) [30] Lucia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Subramanian, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Limon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Engell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Stability properties of Springer Nature 2021 LATEX template 28 REFERENCES multi-stage nonlinear model predictive control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' Systems & Control Letters 143, 104743 (2020) [31] Lucia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Paulen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=', Engell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=': Multi-stage nonlinear model predic- tive control with verified robust constraint satisfaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' In: Conference on Decision and Control, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' 2816–2821 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} +page_content=' IEEE' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf'} diff --git a/HNE1T4oBgHgl3EQf_Qa5/vector_store/index.faiss b/HNE1T4oBgHgl3EQf_Qa5/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..c7c68f43ef18209d9c6db083bbd0e7bc68c727e1 --- /dev/null +++ b/HNE1T4oBgHgl3EQf_Qa5/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3e26b0a71249592f3e91b80313418e8f5fb941f6c17a028a91479d594938dd2b +size 3145773 diff --git a/HNE1T4oBgHgl3EQf_Qa5/vector_store/index.pkl b/HNE1T4oBgHgl3EQf_Qa5/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..a8cf9e23a3b1830f8dad84f82d401887d92a8e03 --- /dev/null +++ b/HNE1T4oBgHgl3EQf_Qa5/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fe0560bc07d074c12cfd5487033be6a64175826106d3b582eb1c4a31a46878ac +size 137971 diff --git a/ItFAT4oBgHgl3EQfux4k/content/2301.08671v1.pdf b/ItFAT4oBgHgl3EQfux4k/content/2301.08671v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0832d89f1dae4f75391bbea99e5646ff5529898b --- /dev/null +++ b/ItFAT4oBgHgl3EQfux4k/content/2301.08671v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7d651f70a5e2825466ab41a8736c160deaaf44679af2ced1d6928a14f013bf44 +size 3107432 diff --git a/J9E3T4oBgHgl3EQfvQsy/content/tmp_files/2301.04691v1.pdf.txt b/J9E3T4oBgHgl3EQfvQsy/content/tmp_files/2301.04691v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b86e61ed70d10104363a2257bc0a469ca20fc6b5 --- /dev/null +++ b/J9E3T4oBgHgl3EQfvQsy/content/tmp_files/2301.04691v1.pdf.txt @@ -0,0 +1,2333 @@ +QoS Based Contract Design for Profit Maximization +in IoT-Enabled Data Markets +Juntao Chen, Member, IEEE, Junaid Farooq, Member, IEEE and Quanyan Zhu, Senior Member, IEEE +Abstract—The massive deployment of Internet of Things (IoT) +devices, including sensors and actuators, is ushering in smart and +connected communities of the future. The massive deployment of +Internet of Things (IoT) devices, including sensors and actuators, +is ushering in smart and connected communities of the future. +The availability of real-time and high-quality sensor data is +crucial for various IoT applications, particularly in healthcare, +energy, transportation, etc. However, data collection may have +to be outsourced to external service providers (SPs) due to +cost considerations or lack of specialized equipment. Hence, +the data market plays a critical role in such scenarios where +SPs have different quality levels of available data, and IoT +users have different application-specific data needs. The pairing +between data available to the SP and users in the data market +requires an effective mechanism design that considers the SPs’ +profitability and the quality-of-service (QoS) needs of the users. +We develop a generic framework to analyze and enable such +interactions efficiently, leveraging tools from contract theory and +mechanism design theory. It can enable and empower emerging +data sharing paradigms such as Sensing-as-a-Service (SaaS). The +contract design creates a pricing structure for on-demand sensing +data for IoT users. By considering a continuum of user types, +we capture a diverse range of application requirements and +propose optimal pricing and allocation rules that ensure QoS +provisioning and maximum profitability for the SP. Furthermore, +we provide analytical solutions for fixed distributions of user +types to analyze the developed approach. For comparison, we +consider the benchmark case assuming complete information of +the user types and obtain optimal contract solutions. Finally, a +case study based on the example of virtual reality application +delivered using unmanned aerial vehicles (UAVs) is presented +to demonstrate the efficacy of the proposed contract design +framework. +Index Terms—Contract design, data pricing, Internet of things, +Maximum principle, quality-of-service, sensing-as-a-service. +I. INTRODUCTION +The Internet of things (IoT) applications rely heavily on +sensed data from a multitude of sources resulting in power- +ful and intelligent applications based on sensor fusion and +machine learning. For instance, smart and connected commu- +nities, industrial automation, smart grid all rely on reliable +and high quality data for automated decision-making [1]. To +This work was supported in part by the National Science Foundation (NSF) +under Grants ECCS-1847056, CNS-2027884, and BCS-2122060. +Juntao Chen is with the Department of Computer and Information +Sciences, +Fordham +University, +New +York, +NY +10023 +USA. +E-mail: +jchen504@fordham.edu. +Junaid Farooq is with the Department of Electrical & Computer Engineer- +ing, College of Engineering and Computer Science, University of Michigan- +Dearborn, Dearborn, MI 48128 USA. E-mail: mjfarooq@umich.edu. +Quanyan Zhu is with the Department of Electrical and Computer Engi- +neering, Tandon School of Engineering, New York University, Brooklyn, NY, +11201 USA. E-mail: qz494@nyu.edu. +UAVs +VR users +VR SP +VR +services +Service +fee +Sensing +data +Fig. 1. +In the UAV-enabled VR applications, the UAVs capture views +of the areas of interest. The collected data are aggregated in the cloud, +which is managed by the VR SP, and then sent to the remote users. The +real-time 3D information delivery is useful in applications such as remote +monitoring, navigation, and entertainment. Based on the application, VR users +have different QoS requirements and pay different service fees. +fulfil the data needs of intelligence-based IoT applications, +the sensing and data acquisition tasks can be outsourced to +professional service providers (SPs) in the data market [2]. +It results in cost effective data collection for IoT applica- +tions, wider choice of sensing data, and on-demand service +delivery to users. For example, in an intelligent transportation +network, vehicles can choose the services to communicate +with roadside infrastructures that belong to sensing SP for +exchanging various types of data related to applications such +as GPS navigation, parking, and highway tolls inquiries. etc. +Another potential scenario is UAV-enabled virtual reality (VR) +experiences [3]. As shown in Fig. 1, the UAVs managed by +the SP capture 3D images of areas that users are interested +in, and send them to the remote users via cloud servers and +communication networks. These images can be of varying +quality and resolution suited for a range of different user +types. Therefore, the service interactions between the users +and the sensing SP requires a formal contract design, in +which IoT users make subscription contracts with the SP to +obtain (real-time) sensor data according to specific mission +requirements [4]. +Depending on the particular application, IoT users have +different requirements on the quality of data provided by the +sensing SP. Note that provisioning of high-quality sensing +data demands high-level of investment in terms of equipment +deployment, maintenance, technical support, and data process- +ing from the SP. In the UAV-enabled VR, users may require +different levels of quality-of-service (QoS) in terms of the +transmission delay and resolution of the images. Therefore, +users with different QoS needs can be classified into different +arXiv:2301.04691v1 [eess.SY] 11 Jan 2023 + +HAKIOABtypes1. The sensing SP aims to maximize its revenue and +minimize the service costs jointly by delivering on-demand +sensing services. In contrast, the user’s goal is to choose +a service that maximizes its utility. Therefore, there is a +need to design efficient contracting strategies between the SP +and the users so that sensing technologies can be effectively +monetized. In the proposed contract design framework, the SP +needs to design a menu of contracts that specify the sensing +price and the QoS offered to each type of user. The optimal +contracts yield a matching between the available sensing data +and users in the IoT ecosystem that is suitable for both SP +and the users. +Due to the large-population feature of users in the massive +IoT [5], the SP may not be aware of the exact type of +each user and may only have high level information on +the distribution of user’s types (e.g., inferred from historical +demand data)2. Thus, the challenge of contract design lies +in the development of an incentive compatible and optimal +mechanism for the sensing SP to maximize its payoff by +serving IoT users inspite of the incomplete information. To +overcome this obstacle, we propose a market-based pricing +contract mechanism for the SaaS model that takes into account +incentive compatibility and individual rationality of the users. +Specifically, we consider a continuum of user types with a +generic probability distribution and design optimal contracts +leveraging the Pontryagin maximum principle [6]. +Under a wide class of probability distributions of user’s +type, we obtain analytical expression of optimal contracts in +which the pricing scheme and the QoS mapping are mono- +tonically increasing with user’s types, creating a complete +sensing service market with all possible QoS levels. When the +probability density function of user’s type distribution has a +large or sudden decrease around some points, then nondis- +criminative pricing phenomenon occurs, which reduces the +diversity of service provisions to the IoT users. Specifically, +some users choose the same service contract in spite of their +heterogeneous types. In addition, nondiscriminative pricing for +all customers can occur when the user’s types are nested in +the lower regime. Hence, in this scenario, the SP should target +at the majority in the market to optimize the revenue. For +comparison, we study the optimal contracts under complete +information and characterize the solution differences. +We illustrate the optimal SaaS mechanism design principles +with an application to the UAV-enabled VR. Simulation results +show that the SP earns more profit by serving users with rela- +tively stringent service requirements (higher types). However, +since the users of lower types constitute most of the market, +the SP gains a large proportion of revenue from serving low +type users even though their unit benefit is smaller. +The main contributions of this paper are summarized as +follows: +1) We propose a two-sided market-based SaaS contract +design for QoS driven data trading between the service +1The user types can also be interpreted as the importance of tasks to the +users respectively, ranging from non mission-critical to mission-critical ones. +2This asymmetric information assumption also aligns with the fact that the +users aim to preserve privacy of their true types. +provider and users in the IoT ecosystem under asym- +metric information. +2) We characterize the solutions of optimal contracts for +arbitrary distributions of user types, that yield the best +matching between the sensing services and the users +leveraging the Pontryagin maximum principle. +3) We show that under the efficient data pricing mecha- +nism, the optimal contracts either capture the diversity +of user types (discriminative pricing) or focus on the +majority of user types (nondiscriminative pricing) de- +pending on the users’ preferences. +4) We provide an illustrative example of UAV-enabled VR +application to validate and test our proposed contract +design. We further provide a comparison between the +hidden and full information scenarios in terms of the +payoff of the SP. +A. Related Work +Contract design [7] has typically been used in operations +research with applications to retail, financial markets [8], +insurances [9], supply chains [10], etc. With the emergence +of IoT and the data markets [11], new service models such +as the SaaS are being developed enabling new possibilities +such as resource trading [12], [13], opportunistic IoT [14], +task offloading and outsourcing [15], and performance oriented +resource provisioning [16], [17]. Therefore, there is a need for +developing effective contracts [18] and pricing schemes [19], +[20] that incentivize the interactions between users and service +providers of data in the IoT ecosystem. The data markets +and contract solutions can be implemented using blockchain +infrastructure over IoT networks [21]–[23]. +A variety of literature is available on using contract theory +for incentive mechanism design in wireless communication +systems [24], tailored for scenarios such as traffic offloading +[25], [26], relay selection [27], spectrum trading [28], [29], +etc. In [30], the authors have studied the resource trading pro- +cess between a mobile virtual wireless network operator and +infrastructure providers using a contract. Similar approaches +have also been used to facilitate Wi-Fi sharing in crowdsourced +wireless community networks [31]. Incentive mechanism de- +sign has also been received a lot of attention in the next- +generation crowdsensing applications. For example, a two- +stage Stackelberg game approach has been proposed in [32] +to design incentive mechanism for the crowdsensing service +provider by capturing the participation level of the mobile +users. In [33], the authors have investigated the sequential dy- +namic pricing scheme of a monopoly mobile network operator +in the social data market by considering the congestion effects +in wireless networks. In [34], a distributed computing approach +is used in crowdsourcing using contracts by focusing on +designing a reward-based collaboration mechanism. Contract +theory is also leveraged to price the sponsored content in mo- +bile service [35], where the authors developed a hierarchical +game framework to capture the service relationships between +the network operator acting as the leader and the content +provider and the end users acting as followers. +Our work focuses on establishing a sensing data trading +platform enabled by the IoT by considering the user’s ratio- + +nality and market reputation in a holistic manner. Different +from [36] where the authors have focused on designing a +pricing mechanism for data delivery in massive IoT from +a routing perspective, we address the data pricing problem +based on a contract-theoretic approach. Regarding SaaS in +the IoT, [37] has established a public sensing framework +for service-based applications in smart cities where the data +is provided by a cloud platform. The authors in [38] have +investigated smart phone-based crowdsensing to enhance the +public safety via the collected sensing data. In this paper, we +use an analytical approach to create an implementable policy +framework, focusing on a large-population regime through +contract design, which facilitates the realisation of the SaaS +paradigm. +We highlight several differences of this work with the +literature that uses contracts in various service provisioning +applications related to IoT and (wireless) communications. +Different from the majority of works (e.g., [25], [26], [28]– +[35]) that have considered finite number of user ‘types’ in +the contract formulation, our framework focuses on a large- +population regime of IoT users and uses a density function +to describe the heterogeneous types of users. The second +difference is that our framework considers the reputation of +service provisioning through an average QoS constraint. This +constraint implicitly improves the inclusion of distinct types +of users in the service market. The third difference is on the +solution approach used. Instead of solving the problem from an +classical optimization angle, this work addresses the problem +from an optimal control perspective. +B. Organization of the Paper +The rest of the paper is organized as follows. Section II +introduces the SaaS framework and formulates the contracting +problem. Contract analysis under a class of user’s type distri- +butions is presented in Section III. We provide the detailed +optimal contract solutions for two special cases in Section +IV. Section V investigates the contract design under complete +information. Extensions of the contract design to general user’s +type distributions are presented in Section VI. Section VII +illustrates the obtained results with an application to UAV- +based VR, and Section VIII concludes the paper. +II. SYSTEM MODEL AND PROBLEM FORMULATION +We consider a pool of IoT users with varying QoS require- +ments, that are connected to an SP for obtaining sensing data. +We assume that the SP has similar sensing data available in +a variety of different quality levels. For instance, the same +video data can be available in many different pixel resolutions. +Each user obtains a particular quality of data from the SP for +its specific mission needs. Depending on the application and +quality of data required, the IoT users can be characterized by +their ‘type’, denoted by δ. In the following subsections, we +provide a description of the different model parameters and +an analytical formulation of the optimal contract between an +SP and IoT users. + +55% +28% +12% +3% +1% +0% +10% +20% +30% +40% +50% +60% +Less than $250 +$250 to $400 +$400 to $600 +$600 to $1000 +More than $1000 +Percentage of customers +Spending preferences +Types of Customers in VR +Data Points +Exponential Fitting +Fig. 2. Customers’ spending preferences in the VR headset. Note that a higher +price of VR equipment can be interpreted as the customer preferring higher +quality of VR experiences. Then, the data yields an empirically exponential +distribution of the customers’ types in our contract design for VR services. +A. User Type and Data Quality +Considering a large number of users in a massive IoT +setting, each user is characterized by its type δ ∈ ∆ := [δ, ¯δ], +which is hidden to the SP, where δ ≥ 0 and ¯δ ≥ 0 denote the +lower and upper bounds of the parameter, respectively. Here, δ +signifies the importance level of user’s task depending on the +application needs. Furthermore, considering a large number of +possible user types, we assume a continuum of δ admitting a +value from the set ∆. The incomplete information of the IoT +users to SP implies that the SP does not know the individual +attributes of the users. However, the SP may have a broad +understanding of the probability distribution of the users. This +preserves user’s privacy to a certain degree. Hence, instead +of knowing the explicit information of δ, we assume that the +sensing SP has knowledge only about the probability density +function of the users’ type, denoted by f(δ). +Example 1. Empirical Estimation of User Type Distribution +To design practical contracts for VR services in the IoT, we +plot the data of customers’ spending preferences on the VR +equipment in Fig. 2. The data is adapted from [39]. Since a +higher price of VR equipment generally yields a better quality +of VR experience, the data can be used to approximate the +distribution of customers’ types in our VR contract design. +Fig. 2 depicts five levels of customers’ types. Without loss of +generality, we can consider their types as type 0, type 1, type +2, type 3, and type 4, respectively, from left to right. In the +proposed SaaS framework, we consider an on-demand sensing +service provision in a large-population regime. Thus, the cus- +tomer’s type parameter is continuous over a bounded support. +Motivated by Fig. 2, we consider the type parameter δ taking +a value from the interval ∆ := [δ, ¯δ], where δ = 0, ¯δ = 4, +and a larger δ indicates a higher requirement of VR data +quality. This modeling is consistent with the statistics shown in +Fig. 2. Furthermore, based on Fig. 2, δ empirically admits an +exponential distribution. Using statistical inference techniques, +we can obtain f(δ) = 0.952e−0.952δ, and F(δ) = 1−e−0.952δ. +Note that these probability density and distribution functions +are aligned with the market data in Fig. 2. + +The sensed data available to the SP is characterized by its +QoS level, denoted by q ∈ R, and the corresponding price +(payment by the user), denoted by p ∈ R. The QoS level can +be related to a number of specific metrics, such as the pixel +density, latency, and jitter in the transmission of sensing data, +etc. Note that we consider a continuum of quality levels since +a large number of different versions of data are assumed to be +available to the SP. In general, we can consider a vectorized q, +where each element denotes the quality of the corresponding +metric. The set Q denotes the available QoS levels provided +by the SP. +B. QoS Provisioning and Profit of SP +The service relationships between users and SP described +above can be naturally captured by a contract-theoretic frame- +work. Specifically, due to the asymmetric information induced +by users’ hidden type, the SP needs to design a menu of +contracts, i.e., {q(δ), p(δ)} and present it to the users. Each +user will then choose one contract that maximizes its payoff. +The payoff of the user with type δ, which claims to be of type +δ′ (thus receiving contact {q(δ′), p(δ′)}) can be computed as +V (δ, δ′) = Φ (δ, q(δ′)) − p(δ′), +(1) +where V : ∆ × ∆ → R, and Φ : ∆ × Q → R. Note that the +function Φ is a measure of the utility of the user. A natural +assumption of Φ is described as follows: +Assumption 1. The function Φ is continuously differentiable +and increasing in variables δ and q, i.e., ∂Φ(δ,q(δ)) +∂δ +> 0 and +∂Φ(δ,q(δ)) +∂q(δ) +> 0. Also, it satisfies ∂Φ2(δ,q(δ)) +∂q(δ)∂δ +> 0. +Assumption 1 indicates that with a better QoS level, the +payoff of user increases. Also, for a given QoS level, the +users with a larger type parameter δ have a higher payoff +since their tasks are more mission-critical. Furthermore, for a +same amount enhancement of QoS level, the resulting payoff +increases for higher type users exceeds the one associated with +lower types users. +The function describing the SP’s profit obtained by provid- +ing a QoS level q to a user of type δ, is defined as +U(δ) = p(δ) − C(q(δ)), +(2) +where C : Q → R+ is the cost of the SP for providing the +sensor data. Then, the expected total payoff of the SP can be +expressed as +� ¯δ +δ (p(δ) − C(q(δ)))f(δ)dδ, where f(δ) denotes +the density of type δ users. We consider that f(δ) is strictly +greater than 0, i.e., f(δ) > 0, ∀δ ∈ [δ, ¯δ], which holds in the +case of massive IoT. +C. Profit Maximizing Contract Problem +Based on the direct revelation principle [40], it is sufficient +for the SP to design/consider contracts in which the users can +truthfully select the one that is consistent with their true types; +in other words, the users will reveal their types in the selection +and do not have incentives to misrepresent their true types. +Hence, we characterize the incentive compatibility (IC) and +individual rationality (IR) constraints of the users defined as +follows. +Definition 1 (Incentive Compatibility). A menu of contracts +{q(δ), p(δ)}, ∀δ, designed by the sensing SP is incentive +compatible if the user of type δ selects the contract (q(δ), p(δ)) +that maximizes its payoff, i.e., +Φ(δ, q(δ)) − p(δ) ≥ Φ(δ, q(δ′)) − p(δ′), ∀(δ, δ′) ∈ ∆2. (3) +Definition 2 (Individual Rationality). The individual rational- +ity constraint of each user is captured by +Φ(δ, q(δ)) − p(δ) ≥ 0, ∀δ ∈ ∆. +(4) +To investigate the impact of average sensing QoS level on +the optimal contracts, the SP has an additional constraint on +the provided QoS to the IoT users as follows: +� ¯δ +δ +q(δ)f(δ)dδ ≥ q, +(5) +where the positive constant q is the mean/average QoS. The +constraint (5) can be interpreted as the reputation that the +SP aims to build in the sensing service market. Note that +the average QoS has been leveraged to guide the optimal +decision-making in various applications in literature, such as +bandwidth allocation in broadband service provisioning [41], +admission control of services in edge computing [42], and +transmit powers minimization in small cell base stations [43]. +The goal of the SP is to jointly determine the pricing scheme +p(δ) and the corresponding service quality q(δ) that yields +the best return. To this end, the SP is required to solve the +following optimization problem: +(OP) : +max +{q(δ),p(δ)} +� ¯δ +δ +� +p(δ) − C(q(δ)) +� +f(δ)dδ +s.t. Φ(δ, q(δ)) − p(δ) ≥ Φ(δ, q(δ′)) − p(δ′), +∀(δ, δ′) ∈ ∆2, (IC) +Φ(δ, q(δ)) − p(δ) ≥ 0, ∀δ ∈ ∆, (IR) +� ¯δ +δ +q(δ)f(δ)dδ ≥ q. (Reputation) +III. ANALYSIS AND DESIGN OF OPTIMAL CONTRACTS +In this section, we first analyze the formulated problem (OP) +in Section II. Then we design the optimal contracts for SaaS +by using Pontryagin maximum principle [44]. +A. Problem Analysis +To solve problem (OP), one challenge lies in the infinite +number of IC and IR constraints in (3) and (4), respectively. +To simplify (OP), we first present the following lemma. +Lemma 1. Under the condition that p(δ) and q(δ) are +differentiable, the set of IC constraints (3) is equivalent to +the local incentive constraints +dp(δ) +dδ += ∂Φ(δ, q(δ)) +∂q(δ) +dq(δ) +dδ , ∀δ ∈ ∆, +(6) + +and a monotonicity constraint +dq(δ) +dδ +≥ 0. +(7) +Proof. See Appendix A. +■ +To facilitate the optimal contract design in Section III-B, we +specify some structures of the payoff, Φ and cost, C. The user +with mission-critical tasks (higher δ) gains more by receiving +better quality of sensor data (higher q). Therefore, a reasonable +payoff function for type δ user can be chosen as follows. +Assumption 2. The payoff function for type δ user is consid- +ered as +Φ(δ, q(δ)) = δq(δ). +(8) +Then, (6) can be simplified as +dp(δ) +dδ += δ dq(δ) +dδ . Note that +the payoff function (8) is not necessary linear. The only +requirement of Φ is to satisfy Assumption 1. The analysis +of optimal contract design in the following still holds for a +general Φ. Similarly, to obtain analytical results of optimal +contracts, one of the cost functions of sensing SP is chosen +as follows. +Assumption 3. The cost function of sensing SP is +C(q(δ)) = σ (exp(aq(δ)) − 1) , +(9) +where σ > 0 is a normalizing constant trading off between +the sensing service costs and the revenue, and a > 0 is a +sensitivity constant, indicating that the marginal cost of the +sensor data is increasing with its quality. +Corollary 1. Based on Lemma 1 and (8), the IC constraints +in (OP) can be represented as +dV +dδ = q(δ), +(10) +together with the monotonicity constraint (7). +Proof. Based on (1), we have dV +dδ = dΦ +dδ − dp(δ) +dδ . Then, using +dΦ +dδ = δ dq(δ) +dδ ++ q(δ) and dp(δ) +dδ += δ dq(δ) +dδ +yield the result. +■ +Note that Corollary 1 indicates that the payoff of the user +is monotonically increasing with the type δ. Therefore, the IR +constraint can be simplified as Φ(δ, q(δ)) − p(δ) ≥ 0. Indeed, +the IR constraint is binding under the optimal contracts for +type δ users, i.e., +Φ(δ, q(δ)) − p(δ) = 0. +(11) +Otherwise, the sensing SP can earn more profits by increasing +the price p(δ) for serving the type δ users. +The reputation constraint (5) essentially divides the problem +analysis in two regimes: whether the constraint is binding +at the optimal solution or not. Denote by {p∗(δ), q∗(δ)} the +optimal solution to (OP). When q is relatively large, then it is +possible that +� ¯δ +δ q∗(δ)f(δ)dδ = q, since the SP has no incen- +tive to provide a QoS q(δ) with q(δ) > q∗(δ) which decreases +the objective value. The inequality +� ¯δ +δ q∗(δ)f(δ)dδ > q could +happen when q is relatively small. Thus, there exists a thresh- +old of q above which (5) is binding and below which is non- +binding at the optimum. In the case of +� ¯δ +δ q∗(δ)f(δ)dδ > q +which indicates that (5) is inactive, the optimal solution +{p∗(δ), q∗(δ)} to (OP) will be the same as the one to (OP) +without considering the reputation constraint. To this end, we +have the following approach to address (OP) for given q. First, +we solve (OP) without considering the reputation constraint. +If the obtained solution satisfies the reputation constraint, then +it is optimal to (OP). Otherwise, we replace the constraint (5) +in (OP) by +� ¯δ +δ +q(δ)f(δ)dδ = q, +(12) +as the reputation constraint holds as an equality at the op- +timal contract design in this regime. Solving (OP) without +incorporating the reputation constraint is a classical optimal +contract design problem. In this work, we focus on developing +a systematic approach to address the second case where (12) +is considered in the constraints. +Remark: The reputation constraint implicitly penalizes the +SP for not serving IoT users with low valuation (the users of +lower types). The reason is that not serving users is equivalent +to providing zero quality service with zero cost which indeed +decreases the average QoS. This is different from the setup +in the classical contract design in which the SP only serves +the consumers with positive valuations (e.g., based on the +metric called virtual valuation δ − 1−F (δ) +f(δ) ). Our model aims +to serve all users including those of low types that might not +contribute to the SP’s profit. Hence, the proposed framework +with the reputation constraint has the capability to enhance the +accessibility and affordability of the service to all users. +B. Optimal Contract Solution +Based on (1), we obtain p(δ) = Φ(δ, q(δ)) − V (δ), where +we suppress the notations q and p in V . This is reasonable +since the payoff of an IoT user depends on its type when the +contract is designed. Then, by regarding V (δ) as a decision +variable instead of p(δ), the problem can be rewritten as +(OP′) : +max +{q(δ),V (δ)} +� ¯δ +δ +� +Φ(δ, q(δ)) − V (δ) − C(q(δ)) +� +f(δ)dδ +s.t. dV +dδ = q(δ), dq(δ) +dδ +≥ 0, V (δ) = 0, +� ¯δ +δ +q(δ)f(δ)dδ = q. +(OP′) can be regarded as an optimal control problem. +Specifically, by following the notations in control theory, we +denote u(δ) = q(δ) by the control variable and x1(δ) = V (δ) +by the state variable. Then, we obtain ˙x1 = u(δ) with the +initial value x1(δ) = 0. The control input admits an increasing +property with the type parameter δ, i.e., ˙u(δ) ≥ 0. +The remaining difficulty in solving (OP′) lies in the reputa- +tion constraint. To facilitate the design of the optimal control +strategy, we introduce a new state variable x2(δ) satisfying +˙x2(δ) = u(δ)f(δ). Therefore, the reputation constraint can be +replaced by +˙x2(δ) = u(δ)f(δ), +(13) + +with boundary values: x2(¯δ) = q and x2(δ) = 0. +For clarity, we present the problem (OP′) with new nota- +tions as follows: +(OP′′) : +max +{u(δ),x(δ)} +� ¯δ +δ +� +Φ(δ, u(δ)) − x1(δ) − C(u(δ)) +� +f(δ)dδ +s.t. +˙x1(δ) = u(δ), x1(δ) = 0, +˙x2(δ) = u(δ)f(δ), x2(¯δ) = q, x2(δ) = 0, +˙u(δ) ≥ 0. +where x = [x1, x2]T . Next, by defining λ = [λ1, λ2]T , the +Hamiltonian of (OP′′) can be expressed as +H(x(δ), u(δ), λ(δ), δ) = +� +Φ(δ, u(δ)) − x1(δ) +− C(u(δ)) +� +f(δ) + λ1(δ)u(δ) + λ2(δ)u(δ)f(δ), +(14) +where λ1 and λ2 are costate variables corresponding to (10) +and (13), respectively. +By using the Pontryagin maximum principle [44], we can +obtain the optimal solution (x∗(δ), u∗(δ)) by solving the +following Hamilton system: +H(x∗(δ), u∗(δ), λ∗(δ), δ) ≥ H(x∗(δ), u(δ), λ∗(δ), δ), (15) +˙x∗ +1 = ∂H(x∗(δ), u∗(δ), λ∗(δ), δ) +∂λ1(δ) += u∗(δ), +(16) +˙x∗ +2 = ∂H(x∗(δ), u∗(δ), λ∗(δ), δ) +∂λ2(δ) += u∗(δ)f(δ), +(17) +˙λ∗ +1 = −∂H(x∗(δ), u∗(δ), λ∗(δ), δ) +∂x1(δ) += f(δ), +(18) +˙λ∗ +2 = −∂H(x∗(δ), u∗(δ), λ∗(δ), δ) +∂x2(δ) += 0, +(19) +λ1(¯δ) = 0, +(20) +λ2(¯δ) is a constant. +(21) +Note that (20) and (21) are boundary conditions. Specifically, +the initial state of x1 is fixed, and we only have freedom in +specifying boundary condition at the terminal time. Then, the +corresponding costate variable λ1 at the time ¯δ should equal to +the derivative of the terminal payoff with respect to the state +x1 at ¯δ based on the maximum principle. Since the objective +function in (OP′′) does not include the terminal payoff, then +we obtain λ1(¯δ) = 0. Similarly, the initial and terminal states +of x2 are fixed, and we can specify the boundary condition +(21) from (19) in which λ2 admits a constant value. +Furthermore, (15) ensures the optimality of control u∗(δ). +Thus, using the first-order condition, (15) can be simplified as +∂H(x∗(δ), u(δ), λ∗(δ), δ) +∂u(δ) += +�∂Φ(δ, u(δ)) +∂u(δ) +− dC(u(δ)) +du(δ) +� +·f(δ) + λ∗ +1(δ) + λ∗ +2(δ)f(δ) = 0. +(22) +In addition, (18) and (20) indicate that +λ∗ +1(δ) = F(δ) − 1. +(23) +Note that the end-point of x2 is fixed, and hence λ2(¯δ) needs +to be determined rather than simply being 0. Based on (19), +we obtain +λ∗ +2(δ) = β, ∀δ ∈ ∆, +(24) +where β is a constant to be determined. +We have obtained the optimal solutions for λ∗ +1(δ) and λ∗ +2(δ). +To design the optimal u∗(δ), we next focus on the optimality +condition (22). The distribution of user’s type can be general, +e.g., normal, exponential, or learnt from the historical data. +We first solve (OP′′) without considering the monotonicity +constraint ˙u(δ) ≥ 0. Then, the obtained control uco(δ) from +(22) is a candidate optimal solution. By plugging (23) and +(24) into (22) and using the defined functions (8) and (9), we +obtain dC(uco(δ)) +du(δ) +− ∂Φ(δ,u(δ)) +∂u(δ) += F (δ)−1 +f(δ) ++ β which leads to +uco(δ) = 1 +a ln +� 1 +aσ +�F(δ) − 1 +f(δ) ++ δ + β +�� +. +(25) +The second-order condition gives +∂2H(x∗(δ),u(δ),λ∗(δ),δ) +∂u(δ)2 += +−σa2eau(δ)f(δ) < 0, and hence uco(δ) is a maximizer +of the Hamiltonian. The maximum principle is a necessary +condition for the optimal solution of (OP′′). Then, we further +check the sufficient condition for optimality on the maximized +Hamiltonian. Specifically, by verifying that the Hamiltonian +H(x(δ), u(δ), λ(δ), δ) is concave in both x and u, the so- +lution uco(δ) is optimal to (OP′′) without considering the +monotonicity constraint. Indeed, based on the Mangasarian +sufficiency theorem [45], a stronger conclusion is that the +obtained control uco(δ) is the unique optimal solution as the +Hamiltonian is strictly concave in u. Based on the dynamics +in (OP′′), the optimal state trajectory is also unique. +We next verify whether uco(δ) satisfying the monotonicity +constraint ˙u(δ) ≥ 0. In (25), the CDF F(δ) is increasing with +δ, but the presence of f(δ) makes the monotonicity of u(δ) +unclear. We present the following lemma which can be proved +using optimality condition to (25). +Lemma 2. If 2f 2(δ)+(1−F(δ))f ′(δ) > 0, then the obtained +solution uco(δ) is optimal. In addition, a decreasing 1−F (δ) +f(δ) +leads to an optimal uco(δ). +Proof. We +need +to +ensure +that +(25) +is +increasing +with +δ. +The +first-order +condition +of +(25) +gives +� +F (δ)−1 +f(δ) ++ δ + β +�−1 � +f 2(δ)−(F (δ)−1)f ′(δ) +f 2(δ) ++ 1 +� +> +0. +In the first part, β is a constant determined based on +� ¯δ +δ uco(δ)f(δ)dδ = +� ¯δ +δ +1 +a ln( 1 +aσ[ F (δ)−1 +f(δ) ++ δ + β])f(δ)dδ = q. +The integrand should be well-defined to make the equation +satisfied. +The +existence +of +such +β +is +guaranteed +as +� ¯δ +δ ln( 1 +aσ[ F (δ)−1 +f(δ) ++ δ + β])f(δ)dδ is monotonically increasing +in β. Thus, F (δ)−1 +f(δ) +δ+β > 0 which is ensured by the choice +of β. Then, we need to have +f 2(δ)−(F (δ)−1)f ′(δ) +f 2(δ) ++ 1 > 0 +which gives the result. We can also verify that if 1−F (δ) +f(δ) +is +decreasing in δ, then 2f 2(δ) + (1 − F(δ))f ′(δ) > 0 holds +which yields the result. +■ +Remark: The distributions of IoT user’s type satisfying the +condition in Lemma 2 are quite general, including the uni- +form, normal and exponential ones. Note that the distributions +without a large and sudden decrease in the probability density +function (PDF) f(δ) generally satisfy the condition in Lemma +2, and hence (25) gives the optimal solution. + +Back to (24), the constant β can be obtained by solving +the reputation constraint (12), i.e., +� ¯δ +δ +1 +a ln( 1 +aσ[ F (δ)−1 +f(δ) ++ δ + +β])f(δ)dδ = q. The expression u∗(δ) characterizes the pro- +vided sensing QoS in terms of the user’s type. We next focus +on obtaining the pricing scheme of the sensing services. To +this end, the expression of x∗ +1(δ) becomes critical. Based on +(16), we obtain +˙x∗ +1(δ) = 1 +a ln +� 1 +aσ +�F(δ) − 1 +f(δ) ++ δ + β +�� +. +(26) +Then, x∗ +1(δ) can be determined by (26) and x∗ +1(δ) = 0. +The following Theorem 1 explicitly characterizes the optimal +contracts in the considered scenario. +Theorem 1. Under the condition 2f 2(δ)+(1−F(δ))f ′(δ) > 0 +in Lemma 2, the optimal contracts {q∗(δ), p∗(δ)} designed by +the SP are as follows: +q∗(δ) = 1 +a ln +� 1 +aσ +�F(δ) − 1 +f(δ) ++ δ + β +�� +, +p∗(δ) = Φ(δ, q∗(δ)) − φ(δ) = δq∗(δ) − φ(δ), +(27) +where β is determined from +� ¯δ +δ q∗(δ)f(δ)dδ = q, and ˙φ(δ) := +1 +a ln( 1 +aσ[ F (δ)−1 +f(δ) ++ δ + β]) with φ(δ) = 0. +Structure of the optimal contracts: The q∗(δ) in (27) can be +naturally decomposed into three parts, and each one includes +a term F (δ)−1 +f(δ) , δ, and β, corresponding to the incentives of +IoT users, the utility of SP, and the reputation of service +provision, respectively. Recall that λ∗ +1(δ) = F(δ) − 1. Thus, +the first term quantifying the impact of IC constraint on +q∗(δ) captures the statistics of the IoT user types. The second +term including δ arises from the maximization of objective +function of SP which yields him the largest revenue. The third +constant term β indicates that the sensitivity of reputation +constraint is the same for every type of users. This finding +is consistent with the fact that the reputation constraint takes +the aggregated service provision over all users into account, +i.e., the mean QoS. The service pricing function p∗(δ) is +characterized based on q∗(δ) through relation (1) and hence +has a similar decomposition interpretation as q∗(δ). In sum, +the structure of optimal contracts in Theorem 1 incorporates +a service payoff maximization term and two adjusting terms +for user incentives. +IV. ANALYTICAL RESULTS OF SPECIAL CASES +In this section, we present analytical results of optimal +contracts for two typical distributions of the user’s type. +A. +Uniform User Type Distribution +When δ is uniformly distributed, its PDF and cumulative +density function (CDF) admit the forms: f(δ) = +1 +¯δ−δ and +F(δ) = +δ−δ +¯δ−δ, δ ∈ ∆. Based on Theorem 1, the sensing +QoS function is q∗(δ) = +1 +a ln( 1 +aσ[2δ − ¯δ + β]). Due to the +logarithm function, q∗(δ) is nonlinear with δ. In addition, the +marginal sensing QoS is decreasing with the IoT user’s type. +One reason is that increasing sensing QoS is harder in large q +regime than its counterpart for the SP. Further, the unknown +constant β in (24) can be solved from +� +β−¯δ +2 ++ ¯δ +� +ln(β + ¯δ)− +� +β−¯δ +2 ++ δ +� +ln(β − ¯δ + 2δ) = (aq + ln(aσ) + 1)(¯δ − δ). +The optimal sensing pricing scheme in the contract is +characterized in the following corollary. +Corollary 2. Under the uniform distribution of the IoT user’s +type δ, the price of sensing service is equal to p∗(δ) = +δq∗(δ) + +δ−δ +a(¯δ−δ)(ln(aσ) + 1) − +1 +a(¯δ−δ) +� � +β−¯δ +2 ++ δ +� +ln(β − ¯δ + +2δ) − +� +β−¯δ +2 ++ δ +� +ln(β − ¯δ + 2δ) +� +. +B. Exponential User Type Distribution +When the user’s type δ admits the exponential distribution, +then the number of IoT users with mission-critical tasks is less +than the ones with nonmission-critical tasks. Specifically, the +PDF and CDF of δ with rate ρ are equal to f(δ) = ρe−ρδ and +F(δ) = 1−e−ρδ, respectively. Then, the optimal sensing QoS +function has the form q∗(δ) = 1 +a ln( 1 +aσ[δ − 1 +ρ + β]), where β +can be computed from +� ¯δ +δ ln( 1 +aσ[δ − 1 +ρ + β])ρe−ρδdδ = aq. +Similar to the uniform distribution scenario, we can char- +acterize the optimal pricing as follows. +Corollary 3. Under the exponential distribution of the user’s +type δ, the optimal pricing of the sensing service in the +contract is p∗(δ) = δq∗(δ) − 1 +a(δ + β − 1 +ρ) ln(δ + β − +1 +ρ) + δ +a (1 + ln(aσ)) − γ, where the constant γ is equal to +γ = δ +a(1 + ln(aσ)) − 1 +a(δ + β − 1 +ρ) ln(δ + β − 1 +ρ). +We elaborate more on exponential distribution scenario in +case studies in Section VII. In other cases with more general +distributions of the IoT user’s type, we can directly apply +Theorem 1 to obtain the optimal SaaS contracts. However, +note that the support of f(δ) needs to be consistent with the +range of δ. Hence, if a normal distribution is used, it needs to +be truncated in order to be compatible with the framework. +V. COMPARISON TO THE BENCHMARK SCENARIO +Under the full information scenario, the sensing SP knows +the type of each IoT user. Thus, the IC constraint (3) becomes +no longer necessary. Then, the optimal contract design prob- +lem for SaaS becomes: +(OP − B) : +max +{q(δ),V (δ)} +� ¯δ +δ +� +p(δ) − C(q(δ)) +� +f(δ)dδ +s.t. V (δ) ≥ 0, ∀δ, +� ¯δ +δ +q(δ)f(δ)dδ = q. +Next, we solve (OP − B) from an optimal control perspec- +tive again, and the results are summarized in Theorem 2. For +clarity, we denote by qb(δ), V b(δ) the optimal solutions to +(OP − B). Further analysis indicates that V b(δ) = 0, ∀δ, and +the pricing scheme is charaterized by pb(δ) = Φ(δ, qb(δ)). +By regarding q(δ) as a control variable, i.e., q(δ) = u(δ), +and introducing a state ˙x(δ) = u1(δ)f(δ) with boundary + +constraints x(¯δ) = q and x(δ) = 0, we can reformulate +(OP − B) as +(OP − B′) : max +{u(δ)} +� ¯δ +δ +� +Φ(δ, u(δ)) − C(u(δ)) +� +f(δ)dδ +s.t. ˙x(δ) = u(δ)f(δ), x(¯δ) = q, x(δ) = 0. +Note that (OP − B′) is an optimal control problem with +fixed initial and terminal state constraints. The Hamiltonian +of (OP − B′) is +H(x(δ), u(δ), λ(δ), δ) = +� +Φ(δ, u(δ)) − C(u(δ)) +� +·f(δ) + λ(δ)u(δ)f(δ), +(28) +where +λ +is +the +costate +variable +associated +with +the +state +dynamics. +The +maximum +principle +yields +the +following Hamilton system: H(xb(δ), ub(δ), λb(δ), δ) +≥ +H(xb(δ), u(δ), λb(δ), δ), ˙xb = ub(δ)f(δ), ˙λb = 0, λ(¯δ) = β, +where β is a real constant. +The +first-order +condition +of +(28) +with +respect +to +u +is +∂H(xb(δ),u(δ),λb(δ),δ) +∂u += +( ∂Φ(δ,u(δ)) +∂u +− +dC(u(δ)) +du +)f(δ) + +λb(δ)f(δ) = 0. Further, the second-order conditions of Hamil- +tonian (28) with respective to x and u are nonpositive, and +hence the obtained ub(δ) is optimal. Then, the optimal control +ub(δ) satisfies (δ − aσeaub(δ) + β)f(δ) = 0, which further +yields ub(δ) = 1 +a ln δ+β +aσ . The constant β can be solved from +� ¯δ +δ ub(δ)f(δ)dδ = q. +We summarize the optimal contract for SaaS under the +complete information in the following theorem. +Theorem 2. When the SP has the complete incentive infor- +mation of the IoT users, the optimal contracts {qb(δ), pb(δ)} +are designed as follows: +qb(δ) = 1 +a ln +�δ + β +aσ +� +, +pb(δ) = Φ(δ, qb(δ)) = δqb(δ), +(29) +where β is determined from +� ¯δ +δ ln δ+β +aσ f(δ)dδ = aq. +Remark: Theorem 2 helps to identify the fundamental dif- +ferences of optimal contracts designed under complete and in- +complete information structures. Comparing with the designed +optimal contracts {q∗(δ), p∗(δ)} in Theorem 1, the sensing +QoS mapping qb(δ) and pricing function pb(δ) in Theorem 2 +do not contain terms F (δ)−1 +f(δ) +≤ 0 and φ(δ) ≥ 0, respectively. +The different values of β in q∗(δ) and qb(δ) prohibit the +conclusion that q∗(δ) ≤ qb(δ) and p∗(δ) ≤ pb(δ). Note that +the constraint +� ¯δ +δ q(δ)f(δ)dδ = q indicates the same mean +QoS in two scenarios without/with asymmetric information +between SP and users. Therefore, when q∗(δ) ̸= qb(δ), +∀δ ∈ [δ, ¯δ], we can conclude that there exists at least one ˜δ +where q∗(˜δ) = qb(˜δ), and the IoT users in the benchmark case +pay more for the service due to φ(δ) ≥ 0, i.e., p∗(˜δ) < pb(˜δ). +Another remark is that the total profit of sensing SP by +providing the optimal contracts resulting from (OP − B) is +no less than the one from (OP) due to the removal of IC +constraint which enlarges the feasible decision space. The +profit difference can be interpreted as the private user’s type +information cost which we will quantify in Section VII. +VI. OPTIMAL CONTRACTS FOR GENERAL USER’S TYPE +DISTRIBUTIONS +In this section, we investigate the scenarios when the density +condition in Lemma 2 does not hold. We provide an alternative +maximum principle and a full characterization of optimal +contracts for SaaS in this general case. +A. Maximum Principle and Optimality Analysis +Following the notations in (OP′′) except replacing u with +x3 and introducing a new control variable µ, we formulate the +following problem: +(OP − E) : +max +{µ(δ),x1(δ), +x2(δ),x3(δ)} +� ¯δ +δ +� +Φ(δ, x3(δ)) − x1(δ) − C(x3(δ)) +� +f(δ)dδ +s.t. +˙x1(δ) = x3(δ), x1(δ) = 0, +˙x2(δ) = x3(δ)f(δ), x2(¯δ) = q, x2(δ) = 0, +˙x3(δ) = µ(δ), µ(δ) ≥ 0. +Note that (OP − E) is an optimal control problem with +three state variables x1, x2, x3 and a control variable µ, where +the initial points of x1 and x2, and the boundary points of x2 +are fixed. +The +Hamiltonian +of +(OP − E) +can +be +written +as +H(x(δ), µ(δ), λ(δ), δ) = [Φ(δ, x3(δ)) − x1(δ) − C(x3(δ))] · +f(δ) + λ1(δ)x3(δ) + λ2(δ)x3(δ)f(δ) + λ3(δ)µ(δ), where +x = [x1, x2, x3]T and λ = [λ1, λ2, λ3]T . To differentiate +with the optimal solution (x∗(δ), u∗(δ)) in Theorem 1, we +denote by (xo(δ), µo(δ)) the optimal solution to the cases +with general user’s type distribution. Using the Pontryagin +maximum principle, we obtain (xo(δ), µo(δ)) by solving the +Hamilton system: +H(xo(δ), µo(δ), λo(δ), δ) ≥ H(xo(δ), µ(δ), λo(δ), δ), (30) +˙xo +1 = ∂H(xo(δ), µo(δ), λo(δ), δ) +∂λ1(δ) += xo +3(δ), +(31) +˙xo +2 = ∂H(xo(δ), µo(δ), λo(δ), δ) +∂λ2(δ) += xo +3(δ)f(δ), +(32) +˙xo +3 = ∂H(xo(δ), µo(δ), λo(δ), δ) +∂λ3(δ) += µo(δ), +(33) +˙λo +1 = −∂H(xo(δ), µo(δ), λo(δ), δ) +∂x1(δ) += f(δ), +(34) +˙λo +2 = −∂H(xo(δ), µo(δ), λo(δ), δ) +∂x2(δ) += 0, +(35) +˙λo +3 = −∂H(xo(δ), µo(δ), λo(δ), δ) +∂x3(δ) += − +�∂Φ(δ, x3(δ)) +∂x3(δ) +− dC(x3(δ)) +dx3(δ) +� +f(δ) +− λo +1(δ) − λo +2(δ)f(δ), +(36) +λ1(¯δ) = 0, +(37) +λ2(¯δ) is a constant, +(38) +λ3(δ) = λ3(¯δ) = 0. +(39) +Note that (37) and (38) are boundary conditions which are +similar to the ones in (20) and (21). In (OP − E), we include + +another state variable x3 which does not have initial and +terminal constraints. Then, based on the maximum principle +[44], the corresponding costate variable λ3 at time δ and +¯δ should equal to the derivative of the initial and terminal +payoff with respect to the state x3, respectively. In (OP − E), +the objective function does not contain individual initial and +terminal utilities, and thus we obtain condition (39). +First, similar to (23) and (24), we observe that +λo +1(δ) = F(δ) − 1, +(40) +λo +2(δ) = β, +(41) +where the constant β can be determined using(12) after the +QoS mapping qo(δ) is characterized. +In addition, by integrating (36), we obtain +λo +3(δ) = − +� δ +δ +�∂Φ(δ, x3(δ)) +∂x3(δ) +− dC(x3(δ)) +dx3(δ) +� +f(δ) ++λo +1(δ) + λo +2(δ)f(δ)dδ. +(42) +Using the transversality conditions λ3(δ) = λ3(¯δ) = 0 +yields λ3(¯δ) = − +� ¯δ +δ ( ∂Φ(δ,x3(δ)) +∂x3(δ) +− dC(x3(δ)) +dx3(δ) )f(δ) + λo +1(δ) + +λo +2(δ)f(δ)dδ = 0. Furthermore, (30) indicates that µo(δ) +maximizes H with µo(δ) ≥ 0. Note that in the Hamil- +tonian H, the last term λ3(δ)µ(δ) imposes a non-positive +value constraint on λ3(δ). Otherwise, H is unbounded from +above due to µ(δ) ≥ 0. Then, to ensure the feasibility of +maximization, we have λ3(δ) ≤ 0 which is equivalent to +� δ +δ ( ∂Φ(δ,x3(δ)) +∂x3(δ) +−C′(x3(δ)))f(δ) +λo +1(δ)+λo +2(δ)f(δ)dδ ≥ 0. +Thus, when λ3(δ) < 0, ˙xo +3(δ) = µo(δ) = 0. Therefore, the +complementary slackness condition can be written as follows, +∀δ ∈ [δ, ¯δ], +˙xo +3(δ) +� δ +δ +�∂Φ(δ, xo +3(δ)) +∂xo +3(δ) +− dC(x3(δ)) +dx3(δ) +� +f(δ) ++λo +1(δ) + λo +2(δ)f(δ)dδ = 0. +(43) +We can verify that the maximum principle (30)–(39) is also +sufficient for optimality as the associated Hamiltonian equation +is concave in both x and µ. Furthermore, the Hamiltonian is +strictly concave in x3 and other states are uniquely determined +by x3. Thus, the optimal control and optimal state trajectory +are unique [45]. We next explicitly characterize this optimal +solution. +B. Characterization of Optimal Contracts +We next analyze the optimal contracts in two regimes +regarding ˙xo +3(δ), i.e., ˙xo +3(δ) > 0 and ˙xo +3(δ) = 0. Based on +(43), in the interval of δ that ˙xo +3(δ) > 0, then λo +3(δ) = 0 +for all δ in this interval, which further indicates ˙λo +3 = 0. +Hence, from (36), the following equation holds: ( ∂Φ(δ,x3(δ)) +∂x3(δ) +− +dC(x3(δ)) +dx3(δ) )f(δ) + λo +1(δ) + λo +2(δ)f(δ) = 0, which is exactly +the same maximality condition presented in (22), where x3(δ) +plays the role as u(δ). Following the same analysis in Section +III-B, the optimal solutions to xo +1, xo +2, xo +3, λo +1 and λo +2 in +Hamilton system (30)–(39) coincide with x∗ +1, x∗ +2, u∗, λ∗ +1 and +λ∗ +2 in Hamilton system (15)–(21). Thus, we can conclude that +if xo +3(δ) is strictly increasing over some interval and recall +the notation x3(δ) = q(δ), the solution qo(δ) in this section +should be the same as the one q∗(δ) in Theorem 1. +In the other regime of ˙xo +3(δ) = 0, xo +3(δ) is unchanged. +Then, the remaining task is to determine the intervals of δ in +which qo(δ) admits a constant, and hence the service price is +nondiscriminative. Note that these intervals definitely include +the ones when q∗(δ) is decreasing, i.e., the monotonicity con- +straint of sensing QoS is violated. For notational convenience, +let [δ1, δ2] be the interval when qo(δ) is a constant, δ ∈ [δ1, δ2]. +We know that for δ < δ1 and δ > δ2, qo(δ) is increasing, and +thus ˙xo +3(δ) > 0. Based on (43), we obtain condition λo +3(δ) = 0. +Since the costate variable λo +3 is continuous, then at the critical +points δ1 and δ2, λo +3(δ1) = λo +3(δ2) = 0, and using (42) yields +� δ2 +δ1 +�∂Φ(δ, q(δ)) +∂q(δ) +− dC(q(δ)) +dq(δ) +� +f(δ) ++λo +1(δ) + λo +2(δ)f(δ)dδ = 0. +(44) +To this end, we discuss three possible cases that qo(δ) +is nondiscriminative over δ ∈ [δ1, δ2] subsequently. When +analyzing qo(δ), we constantly refer to the optimal solution +q∗(δ) in Theorem 1. Besides, we assume that both λo +1 and λo +2 +are known through (40) and (41) with an exception of β to be +specified later. +Case I: (δ1 = δ). In this case, (44) is reduced to +� δ2 +δ +�∂Φ(δ, q1) +∂q(δ) +− dC(q1) +dq(δ) +� +f(δ) ++λo +1(δ) + λo +2(δ)f(δ)dδ = 0, +q1 = q∗(δ2). +(45) +One illustrative example for this scenario is shown in Fig. +3(a), where for δ ∈ [δ2, ¯δ], qo(δ) = q∗(δ). In addition, the +constant value q1 is no greater than q∗(δ), i.e., q1 ≤ q∗(δ). +We prove this result by contradiction. If q1 > q∗(δ), then +q1 > q∗(˜δ) for any ˜δ close enough to δ. Along with the entire +trajectory q∗(δ), we introduce a virtual variable λ∗ +3(δ) which +is a counterpart of λo +3(δ), and thus we have λ∗ +3(δ) = 0. Recall +the notation x3 = q, and then the partial integrand ∂Φ(δ,q(δ)) +∂q(δ) +− +dC(q(δ)) +dq(δ) +in (42) decreases when the value of q increases due +to the convexity of cost function C. Thus, the entire λo +3(δ) +increases if q becomes larger. Therefore, for ˜δ close enough to +δ and based on the assumption q1 > q∗(δ), we obtain λo +3(˜δ) > +λ∗ +3(˜δ) = 0, contradicting the condition λo +3(δ) ≤ 0, ∀δ ∈ [δ, ¯δ]. +Therefore, we can obtain δ2 and the corresponding value q1 +by solving two equations in (45). +Case II: (δ < δ1 < δ2 < ¯δ). When the interval [δ1, δ2] lies +in the interior of the entire regime δ, (44) becomes +� δ2 +δ1 +�∂Φ(δ, q2) +∂q(δ) +− dC(q2) +dq(δ) +� +f(δ) ++λo +1(δ) + λo +2(δ)f(δ)dδ = 0, +q2 = q∗(δ1) = q∗(δ2). +(46) +We can solve for two unknowns δ1 and δ2 based on (46), and +subsequently we obtain q2. Case II is depicted in Fig. 3(b). + +𝛿 +𝑞∗(𝛿) +𝑞𝑜(𝛿) +𝛿 +𝛿=𝛿1 +𝛿2 +𝑞1 +𝑞𝑜 𝛿 , 𝑞∗(𝛿) +𝑞𝑜(𝛿) +Case I: 𝛿=𝛿1 +(a) Case I: δ1 = δ +𝛿 +𝑞∗(𝛿) +𝑞𝑜(𝛿) +𝛿 +𝛿 +𝛿2 +𝑞2 +𝑞𝑜 𝛿 , 𝑞∗(𝛿) +𝑞𝑜(𝛿) +𝛿1 +𝑞𝑜 𝛿 , 𝑞∗(𝛿) +Case II: 𝛿<𝛿1<𝛿2<𝛿 +(b) Case II: δ < δ1 < δ2 < ¯δ +𝛿 +𝑞∗(𝛿) +𝑞𝑜(𝛿) +𝛿=𝛿2 +𝛿 +𝛿1 +𝑞3 +𝑞𝑜 𝛿 , 𝑞∗(𝛿) +𝑞𝑜(𝛿) +Case III: 𝛿=𝛿2 +(c) Case III: δ2 = ¯δ +Fig. 3. In all three figures, qo(δ) and q∗(δ) represent the QoS of SaaS with and without considering the monotonicity constraint, respectively. In addition, +the optimal solution qo(δ) coincides with q∗(δ) over some interval except δ ∈ [δ1, δ2] in three cases. For δ ∈ [δ1, δ2], qo(δ) is nondiscriminative and admits +constant values q1 q2 and q3 in (a), (b) and (c), respectively. +Case III: (δ2 = ¯δ). When δ2 coincides with the end-point +¯δ, (44) can be written as +� ¯δ +δ1 +�∂Φ(δ, q3) +∂q(δ) +− dC(q3) +dq(δ) +� +f(δ) ++λo +1(δ) + λo +2(δ)f(δ)dδ = 0, +q3 = q∗(δ1). +(47) +Fig. 3(c) presents an example of case III. Similar to the +analysis in Case I, the value of q3 satisfies q3 ≥ q∗(¯δ). +Furthermore, δ1 and q3 can be obtained by solving (47). +Note that in the optimal contracts, the intervals over which +qo(δ) admitting a constant value can be a combination of the +three cases, and there could exist multiple interior intervals +as the one shown in Fig. 3(b). Another essential point is to +determine λo +2 = β in (45)–(47). As the analysis in Section +III-B, the unknown constant β can be derived using the +constraint (12). However, (12) needs a full expression of +optimal qo beforehand. Therefore, two procedures including +the derivation of optimal solution qo from (45)–(47) and the +obtaining λ2(δ) = β by (12) are intertwined. To design the +optimal qo(δ), we thus should solve the equations (45)–(47) +together with (12) in a holistic manner. With derived qo(δ), +the service pricing function po(δ) then can be characterized +with similar steps in Section III-B. +We summarize the optimal contracts for SaaS under general +user’s type distribution in the following theorem. +Theorem 3. For a general user’s type distribution f(δ) where +2f 2(δ) + (1 − F(δ))f ′(δ) > 0 does not hold, the optimal +contracts {qo(δ), po(δ)} designed by the SP are detailed as +follows. The QoS mapping qo(δ) is piecewise continuous and +weakly increasing over δ ∈ [δ, ¯δ]. +1) qo(δ) and po(δ) coincide with q∗(δ) and p∗(δ) in +Theorem 1 except on a finite number N of disjoint +intervals In = (δn +1 , δn +2 ), for n = 1, ..., N, and δn +1 and +δn +2 increase with n. Furthermore,, qo(δ) = qn, ∀δ ∈ In. +2) For the interior interval In where δn +1 ̸= δ and δn +2 ̸= ¯δ, +the optimal qo(δ) satisfies +� δn +2 +δn +1 +�∂Φ(δ, qn) +∂q +− dC(qn) +dq +� +f(δ) ++λo +1(δ) + λo +2(δ)f(δ)dδ = 0, +qn = q∗(δn +1 ) = q∗(δn +2 ). +(48) +3) If δ1 +1 = δ, i.e., the interval I1 starts with δ, then the +optimal qo(δ) satisfies +� δ1 +2 +δ +�∂Φ(δ, q1) +∂q +− dC(q1) +dq +� +f(δ) ++λo +1(δ) + λo +2(δ)f(δ)dδ = 0, +q1 = q∗(δ1 +2) ≤ q∗(δ). +(49) +4) If δN +2 += ¯δ, i.e., the interval IN ends with ¯δ, then the +optimal qo(δ) satisfies +� ¯δ +δN +1 +�∂Φ(δ, qN) +∂q +− dC(qN) +dq +� +f(δ) ++λo +1(δ) + λo +2(δ)f(δ)dδ = 0, +qN = q∗(δN +1 ) ≥ q∗(¯δ). +(50) +5) Based on (48)–(50) and together with (12), (40), (41), +qn, δn +1 and δn +2 , n = 1, ..., N, can be computed. After +obtaining the sensing QoS function qo(δ), the optimal +pricing po(δ) can be derived via the relation +po(δ) = Φ(δ, qo(δ)) − φ(δ), +(51) +where ˙φ(δ) = qo(δ) with φ(δ) = 0. +Remark: For the intervals where qo(δ) = q∗(δ), po(δ) is +monotonically increasing. For δ ∈ In, n = 1..., N, qo(δ) is a +constant and then ˙qo(δ) = 0. Based on (51) and Φ(δ, qo(δ)) = +δqo(δ), we obtain ˙po(δ) = δ ˙qo(δ) + qo(δ) − ˙φ(δ) = 0. +Therefore, IoT users with a type lying in the same interval +In, n = 1, ..., N, are provided with a menu of contracts with +the same quality of sensing data as well as the service price. +C. Some Analytical Results +We end up this section by presenting analytical results on +the pricing of sensing services. These results give insights on + +the obtained solutions, and they also contribute to the design +of practical market-based contracts. +(1) Structure of the optimal contracts: Comparing with the +optimal contracts in Theorem 1, the ones in Theorem 3 have +an additional feature of nondiscriminative service intervals. +Specifically, in addition to the profit maximization and service +reputation construction of SP, the IC constraints of users are +completely considered in the contracts, where the additional +monotonicity part is reflected by (48)–(50). Note that the +nondiscriminative pricing reduces the diversity of service +provisions to the IoT users which has an interpretation that +the SP treats heterogeneous users equally. Different with the +contracts in Theorem 1 of full separation, the pooling behavior +(users of different types are offered with the same contract) in +Theorem 3 due to irregular type distribution is to ensure the +incentive compatibility of designed optimal contracts. +(2) Number of intervals with nondiscriminative pricing: Fig. +3 shows that the intervals with a decreasing q∗(δ) are included +in In, n = 1, ..., N. Then, N is equal to the number of peaks +(local maximum) of q∗(δ). Based on Theorem 1, we analyze +the monotonicity of F (δ)−1 +f(δ) ++ δ, indicating that the number +of nondiscriminative pricing regimes N coincides with the +number of intervals where 2f 2(δ) + (1 − F(δ))f ′(δ) takes +a negative value. +(3) Nondiscriminative pricing for all users: When q∗(δ) is +decreasing over δ ∈ [δ, ¯δ], then based on Theorem 3, the opti- +mal service pricing qo(δ) is nondiscriminative for all types of +users. In this scenario, we obtain 2f 2(δ)+(1−F(δ))f ′(δ) < 0 +for all δ. From Lemma 2, an equivalent condition is that +1−F (δ) +f(δ) +increases over δ. We summarize the results in the +following lemma. +Lemma 3. The optimal contracts {qo(δ), po(δ)} are nondis- +criminative for all δ if 1−F (δ) +f(δ) +increases over δ ∈ [δ, ¯δ]. An +alternative equivalent condition leading to the results is that +function log[1 − F(δ)] is strictly convex. +Some typical distributions satisfying Lemma 3 are worth +highlighting. One example is when f(δ) is a gamma distri- +bution for parameter α < 1, i.e., f(δ) = +ψαδα−1 exp(−ψδ) +Γ(α) +, +where δ ≥ 0 and Γ(δ) is a complete Gamma function. +Another example is when f(δ) admits a Weibull distribution +under α < 1, i.e., f(δ) = ψαδα−1 exp(−ψδα), δ ≥ 0. +In both types of distributions, most of the IoT users are +with type δ = 0 or close to δ, and its number decreases +exponentially as the parameter δ increases. Therefore, the SP +designs nondiscriminative contracts for all users, extracting +the profits from the majority of customers in the market. +Moreover, this nondiscriminative service provision mechanism +aligns with the phenomenon of focusing on the majority, where +the small group of users with larger types are treated in a +homogeneous manner as the major population nested in lower +types. +(4) Invariant nondiscriminative service pricing: One natural +question is the impact of convexity of log[1 − F(δ)] on the +service price. For various type distributions f(δ) satisfying the +condition in Lemma 3, we show that the convexity of F(δ) +has no influence on the neutral service pricing. Specifically, +based on the constraint +� ¯δ +δ qo(δ)f(δ)dδ = q, where qo(δ) = +qc, ∀δ, we obtain qc � ¯δ +δ f(δ)dδ = q. Therefore, under the the +nondiscriminative pricing of sensing services, the QoS is qc = +q for all users. Furthermore, the IR constraint V (δ) = 0 leads +to the optimal constant pricing pc = δq. Hence, whenever the +SP offers a nondiscriminative price scheme to all IoT users, +the price must be invariant equaling to δq in spite of the user’s +type distributions. +VII. CASE STUDIES: UAV-ENABLED VIRTUAL REALITY +In this section, we apply the SaaS paradigm to UAV-enabled +virtual reality as depicted in Fig. 1 to illustrate the optimal +contract design principles. We envision a large VR service +market in the future, and thus a huge number of users will +purchase the VR services. This SaaS paradigm can be also +applied to other personalized data related service provision +scenarios, such as virtual tourism. This virtual service modality +becomes popular under the current disruptions caused by +COVID-19 pandemic worldwide. +A. UAV-Enabled VR Setting +The VR quality can be quantified by user experience related +metrics, including the resolution of the captured scene of +UAV (˜q1), the delay in sensing data transmission (˜q2), and +the reliability of UAV communicating with the tower (˜q3). +Specifically, for the resolution quality ˜q1, it can be in the +general classes of 240p, 360p, 480p, 720p, 1080p (commonly +available options such as in the streaming services), and the +qualities between these classes. The delay ˜q2 is composed of +factors including processing delay, queuing delay, transmission +delay, and propagation delay of sensing data. The delay can +be reduced by using a dedicated network that streamlines the +network path, which is more costly for the sensing service +provider. The tolerable end-to-end delay of modern VR ap- +plications is of an order of milliseconds, and a desired QoS +has it less than 1 or 2 milliseconds [46]. The communication +reliability ˜q3 between UAV and tower can be measured by +the success rate that data packets are transmitted. According +to a video QoS tutorial by Cisco [47], the reliability should +be above 99% for a high QoS, and it is between 99.5% and +95% depending on the specific type of services. The reliability +above is quantified by the packet loss rate. +We can aggregate these major metrics into a single measure +q taking values in the real space. More specifically, the QoS +q can be determined by a linear combination in a form of +κ1˜q1 + κ2˜q2 + κ3˜q3, where κi, i = 1, 2, 3, are positive +weighting factors. Equal weighting refers to the scenario with +κ1 = κ2 = κ3 = 1/3. To differentiate the delivered services +and pricing in terms of metrics considered, we consider that, +comparing with a small q, a larger q has all higher values in +˜q1, ˜q2, and ˜q3. This modeling also fits the real-world scenario +well, as the customers choose a higher QoS should receive +better service in every factor considered (resolution, delay, +reliability) by paying more service fee. We anticipate a large +VR service market in the future, and thus a huge number of +users will purchase the VR services. We further specify the +mean QoS q = 5. As the sensing QoS is a mapping considering + +various metrics, we set the mean QoS q = 5 corresponding +to the service with 720p resolution, 0.15sec delay, and 97% +UAV transmission reliability. After obtaining the QoS in the +optimal contract later on, we can reversely map q to the three +specific metrics considered. Based on the current technologies +in communication and VR, we consider the resolution, delay, +and reliability admit a value from 240p to 1080p, 0.5 ms to 5 +ms, and 0.95% to 0.99%, respectively. Note that in the optimal +mechanism design, higher types of users receive better quality +of VR service from the SP. +As depicted in Fig. 2, the user’s type distribution admits +f(δ) = 0.952e−0.952δ, and thus F(δ) = 1 − e−0.952δ. These +distribution functions are aligned with the market data as +discussed in Example 1 in Section II-A. +B. Optimal Contracts under Hidden Information +Based on Corollary 3, we depict the optimal contracts +of VR services in Fig. 4 with various values of a. The +weighting factor σ admits a value of 0.16, which gives a +reasonable comparison between the service charging fee and +the cost of providing the service. In the cases with parameter +a = 0.47, 0.49, 0.51, and using the results in Section IV-B, +we obtain β = 1.14, 1.215, 1.315, respectively. With these +selected parameters, the obtained service pricing also matches +with the data market. One observation is that both the VR pric- +ing and the QoS mappings are monotonically increasing with +the user’s type, leading to an incentive compatible contract. +Another phenomenon is that as a increases, the VR QoS is +decreasing for a given user’s type under the regime δ > 0.47 +as shown in Fig. 4(b). The reason is that a larger a indicates +a higher service cost of the SP which leads to a degraded VR +QoS. Thus, the VR pricing decreases as well for a given δ as +illustrated in Fig. 4(a). Different with the findings in regime +δ > 0.47, the VR QoS increases with the parameter a when +δ < 0.47, showing that a larger cost of the SP provides a +better VR service for the customers of type δ < 0.47 while +the customers paying less. Note that the mean VR QoS q +stays the same for all investigated cases. Then, to maintain a +constant reputation that the VR SP builds in the market, the +received QoS for customers of type δ < 0.47 should increase +with a comparing with those of δ > 0.47. This phenomenon +also aligns with the fact that at the early stage of VR services +promotion (a is large), the SP focuses more on the types of +customers with a large population in the market (small δ in +the exponential distribution), by providing a relatively better +VR service. Based on the VR application modeling in Section +VII-A, Fig. 4(c) presents the specific sensing QoS in terms of +the considered resolution, delay, and reliability metrics. Under +the the designed optimal contracts {p∗(δ), q∗(δ)}, Fig. 5 shows +the corresponding utility of SP. As a increases which yields +a larger service cost, the SP’s aggregate revenue decreases +accordingly. In addition, for some small types δ close to δ, +U(δ) can be negative. This phenomenon indicates that the SP +makes most of the profits from the users who demand a high +VR QoS. +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +VR user's type +0 +2 +4 +6 +8 +10 +12 +14 +VR pricing scheme p*( ) ($) +a=0.47 +a=0.49 +a=0.51 +(a) VR pricing p∗(δ) +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +VR user's type +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +VR QoS q*( ) +a=0.47 +a=0.49 +a=0.51 +(b) VR QoS q∗(δ) +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +VR user's type +400 +600 +800 +1000 +Resolution (p) +a=0.47 +a=0.49 +a=0.51 +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +VR user's type +0 +0.1 +0.2 +0.3 +Delay (sec) +a=0.47 +a=0.49 +a=0.51 +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +VR user's type +0.94 +0.96 +0.98 +1 +Reliability (%) +a=0.47 +a=0.49 +a=0.51 +(c) VR QoS in terms of resolution, delay, and reliability +Fig. 4. (a) and (b) illustrate the optimal pricing scheme and the corresponding +QoS of VR, respectively. (c) depicts the specific sensing QoS in terms of +resolution, delay, and reliability metrics. +C. Optimal Contracts under Full Information +For comparison, we present the optimal contracts under +the full information based on Theorem 2 and quantify the +information cost associated with the user’s private types. Fig. +6 shows the optimal pricing pb(δ) and the QoS mapping qb(δ). +Specifically, pb(δ) is larger than the counterpart p∗(δ) under +asymmetric information. Due to the reputation constraint, +the VR QoS qb(δ) has a similar trajectory as q∗(δ). The +corresponding SP’s revenue is shown in Fig. 7. Similarly, a +larger a reduces the payoff of the VR SP. Furthermore, we +can conclude that the SP earns more by knowing the private +user’s type information. For example, when a = 0.47, the +average utility of serving a user is 4.4$ which is more than 4 +times larger than the one under hidden information depicted +in Fig. 5. +VIII. CONCLUSION +In this paper, we have established a Sensing-as-Service +(SaaS) framework for QoS-based data trading in the IoT +markets using contract theory. The proposed framework is de- +signed for massive IoT scenarios where users are characterized +by their service requirements and sensing data available to the +service provider (SP) is characterized by quality. Depending +on the probability distribution of user’s QoS needs, the profit + +0 +1 +2 +3 +4 +VR user's type +-1 +0 +1 +2 +3 +4 +5 +6 +Utility U( ) ($) +a=0.47 +a=0.49 +a=0.51 +a=0.47 +a=0.49 +a=0.51 +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +Average Utility of SP ($) +Fig. 5. +Utility of the SP under hidden information. The SP earns profits +from the users who demand a better VR service. +0 +1 +2 +3 +4 +VR user's type +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +VR QoS qb( ) +a=0.47 +a=0.49 +a=0.51 +0 +1 +2 +3 +4 +VR user's type +0 +5 +10 +15 +20 +25 +30 +35 +VR pricing scheme pb( ) ($) +a=0.47 +a=0.49 +a=0.51 +Benchmark Scenario +Fig. 6. +Optimal contracts in the benchmark scenario. The VR service pricing +pb(δ) is larger than the counterpart p∗(δ). +maximizing contract solutions are proposed between the SP +and users, which admit different structures. Specifically, under +a wide class of user’s type distributions without a large or +sudden decrease, the data pricing scheme and QoS mapping +are monotonically increasing with the user types. Otherwise, +nondiscriminative pricing phenomenon is observed which re- +duces the diversity of service provisions to the IoT users. +Moreover, invariant pricing phenomenon can occur when the +user’s type distribution decreases exponentially, and thus the +service provider targets the majority of users in the market to +maximize the profits. We have also validated our results using +a case study based on the application of the SaaS framework to +UAV-enabled virtual reality, where the SP makes more profit +by providing data services to higher type users. Future work +can expand the SaaS contract design to cases when bounded +rationality is considered in the user’s behavior, i.e., users have +uncertainty on their type parameters, and subsequently design +robust contract mechanisms. Another direction is to develop +0 +1 +2 +3 +4 +VR user's type +-5 +0 +5 +10 +15 +20 +25 +30 +Utility U( ) ($) +a=0.47 +a=0.49 +a=0.51 +a=0.47 +a=0.49 +a=0.51 +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +Average Utility of SP ($) +Benchmark Scenario +Fig. 7. +Utility of the SP in the benchmark scenario. The SP’s revenue under +full information is more than 4 times larger than the corresponding one under +asymmetric information. +an online learning approach to designing optimal contract +solutions when the user’s type distribution is unknown to the +SP. +APPENDIX A +PROOF OF LEMMA 1 +The first-order optimality condition (FOC) on (1) with +respect to δ′ can be expressed as ∂Φ(δ,q(δ′)) +∂q(δ′) +dq(δ′) +dδ′ − dp(δ′) +dδ′ += 0. +The IC constraint in (3) indicates that the user of type δ +achieves the largest payoff when claiming its true type δ. Thus, +under δ′ = δ, the FOC becomes ∂Φ(δ,q(δ)) +∂q(δ) +dq(δ) +dδ +− dp(δ) +dδ += 0, +which yields the local incentive constraint (6). Similarly, +the second-order optimality condition (SOC) can be written +as: +∂2Φ(δ,q(δ′)) +∂q(δ′)2 +( dq(δ′) +dδ′ )2 + ∂Φ(δ,q(δ′)) +∂q(δ′) +d2q(δ′) +dδ′2 +− d2p(δ′) +dδ′2 +≤ 0. +Differentiating (6) with respect to δ further gives +d2p(δ) +dδ2 += +∂Φ2(δ,q(δ)) +∂q(δ)2 +( dq(δ) +dδ )2 + ∂Φ2(δ,q(δ)) +∂q(δ)∂δ +dq(δ) +dδ ++ ∂Φ(δ,q(δ)) +∂q(δ) +d2q(δ) +dδ2 , and +comparing it with the SOC, we obtain ∂Φ2(δ,q(δ)) +∂q(δ)∂δ +dq(δ) +dδ +≥ 0. +Together with Assumption 1, we obtain the monotonicity +constraint (7). The next step is to show that (6) and (7) together +imply the IC constraint (3). Assume that the IC constraint does +not hold for at least one type of users, e.g., δ. Then, there +exists a ˜δ ̸= δ such that Φ(δ, q(δ))−p(δ) < Φ(δ, q(˜δ))−p(˜δ), +and hence +� ˜δ +δ ( ∂Φ(δ,q(τ)) +∂q(τ) +dq(τ) +dτ +− dp(τ) +dτ )dτ > 0, where we can +check that the derivative of Φ(δ, q(τ)) − p(τ) with respect +to τ is exactly the integrand. Then when ˜δ > δ which gives +τ > δ, we obtain ∂Φ(δ,q(τ)) +∂q(τ) +< ∂Φ(τ,q(τ)) +∂q(τ) +by Assumption 1. In +addition, (6) indicates that +� ˜δ +δ ( ∂Φ(τ,q(τ)) +∂q(τ) +dq(τ) +dτ +− dp(τ) +dτ )dτ = 0. +Replacing +∂Φ(τ,q(τ)) +∂q(τ) +in the integrand by +∂Φ(δ,q(τ)) +∂q(τ) +yields +� ˜δ +δ ( ∂Φ(δ,q(τ)) +∂q(τ) +dq(τ) +dτ +− +dp(τ) +dτ )dτ +< +0 since +∂Φ(δ,q(τ)) +∂q(τ) +< +∂Φ(τ,q(τ)) +∂q(τ) +and dq(τ) +dτ +> 0, and this inequality contradicts with +the previous integral inequality. Similar analysis follows for +the case when ˜δ < δ, and we can conclude that (6) and (7) +imply the IC constraint (3). + +REFERENCES +[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet +of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1, +pp. 22–32, 2014. +[2] S. Xiong, Q. Ni, X. Wang, and Y. Su, “A connectivity enhancement +scheme based on link transformation in IoT sensing networks,” IEEE +Internet of Things Journal, vol. 4, no. 6, pp. 2297–2308, 2017. +[3] Y. Zhou, C. Pan, P. L. Yeoh, K. Wang, M. Elkashlan, B. Vucetic, +and Y. Li, “Communication-and-computing latency minimization for +UAV-enabled virtual reality delivery systems,” IEEE Transactions on +Communications, vol. 69, no. 3, pp. 1723–1735, 2021. +[4] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing +as a service model for smart cities supported by Internet of things,” +Transactions on Emerging Telecommunications Technologies, vol. 25, +no. 1, pp. 81–93, 2014. +[5] P. Semasinghe, S. Maghsudi, and E. Hossain, “Game theoretic mecha- +nisms for resource management in massive wireless IoT systems,” IEEE +Communications Magazine, vol. 55, no. 2, pp. 121–127, 2017. +[6] R. +E. +Kopp, +“Pontryagin +maximum +principle,” +in +Optimization +Techniques, ser. Mathematics in Science and Engineering, G. Leitmann, +Ed. +Elsevier, +1962, +vol. +5, +pp. +255–279. +[Online]. +Available: +https://www.sciencedirect.com/science/article/pii/S0076539208620950 +[7] J.-J. Laffont and D. Martimort, The Theory of Incentives: The Principal- +Agent Model. +Princeton university press, 2009. +[8] E. Fehr, A. Klein, and K. M. Schmidt, “Fairness and contract design,” +Econometrica, vol. 75, no. 1, pp. 121–154, 2007. +[9] N. A. Doherty and G. Dionne, “Insurance with undiversifiable risk: +Contract structure and organizational form of insurance firms,” Journal +of Risk and Uncertainty, vol. 6, no. 2, pp. 187–203, 1993. +[10] C. J. Corbett and X. De Groote, “A supplier’s optimal quantity discount +policy under asymmetric information,” Management Science, vol. 46, +no. 3, pp. 444–450, 2000. +[11] S. W. Driessen, G. Monsieur, and W.-J. Van Den Heuvel, “Data market +design: A systematic literature review,” IEEE Access, vol. 10, pp. +33 123–33 153, 2022. +[12] S. Sheng, R. Chen, P. Chen, X. Wang, and L. Wu, “Futures-based +resource trading and fair pricing in real-time IoT networks,” IEEE +Wireless Communications Letters, vol. 9, no. 1, pp. 125–128, 2020. +[13] C. Su, F. Ye, Y. Zha, T. Liu, Y. Zhang, and Z. Han, “Matching with +contracts-based resource trading and price negotiation in multi-access +edge computing,” IEEE Wireless Communications Letters, vol. 10, no. 4, +pp. 892–896, 2021. +[14] N. Gupta, J. Singh, S. K. Dhurandher, and Z. Han, “Contract theory +based incentive design mechanism for opportunistic IoT networks,” +IEEE Internet of Things Journal, pp. 1–1, 2021. +[15] C. Yi, J. Cai, and Z. Su, “A multi-user mobile computation offloading +and transmission scheduling mechanism for delay-sensitive applica- +tions,” IEEE Transactions on Mobile Computing, vol. 19, no. 1, pp. +29–43, 2020. +[16] M. Diamanti, P. Charatsaris, E. E. Tsiropoulou, and S. Papavassiliou, +“Incentive mechanism and resource allocation for edge-fog networks +driven by multi-dimensional contract and game theories,” IEEE Open +Journal of the Communications Society, vol. 3, pp. 435–452, 2022. +[17] X. Zhou, W. Wang, N. U. Hassan, C. Yuen, and D. Niyato, “Towards +small aoi and low latency via operator content platform: A contract +theory-based pricing,” IEEE Transactions on Communications, vol. 70, +no. 1, pp. 366–378, 2022. +[18] T. N. Dang, K. Kim, L. U. Khan, S. M. A. Kazmi, Z. Han, and C. S. +Hong, “On-device computational caching-enabled augmented reality for +5g and beyond: A contract-theory-based incentive mechanism,” IEEE +Internet of Things Journal, vol. 8, no. 24, pp. 17 382–17 394, 2021. +[19] K. Liu, X. Qiu, W. Chen, X. Chen, and Z. Zheng, “Optimal pricing +mechanism for data market in blockchain-enhanced Internet of things,” +IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9748–9761, 2019. +[20] Y. Lu, Y. Qi, S. Qi, Y. Li, H. Song, and Y. Liu, “Say no to price dis- +crimination: Decentralized and automated incentives for price auditing in +ride-hailing services,” IEEE Transactions on Mobile Computing, vol. 21, +no. 2, pp. 663–680, 2022. +[21] N. Weerasinghe, T. Hewa, M. Liyanage, S. S. Kanhere, and M. Ylianttila, +“A novel Blockchain-as-a-service (BaaS) platform for local 5g opera- +tors,” IEEE Open Journal of the Communications Society, vol. 2, pp. +575–601, 2021. +[22] L. D. Nguyen, I. Leyva-Mayorga, A. N. Lewis, and P. Popovski, +“Modeling and analysis of data trading on blockchain-based market in +IoT networks,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6487– +6497, 2021. +[23] J. Li, T. Liu, D. Niyato, P. Wang, J. Li, and Z. Han, “Contract-theoretic +pricing for security deposits in sharded blockchain with Internet of things +(IoT),” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 10 052– +10 070, 2021. +[24] Y. Zhang, M. Pan, L. Song, Z. Dawy, and Z. Han, “A survey of contract +theory-based incentive mechanism design in wireless networks,” IEEE +Wireless Communications, vol. 24, no. 3, pp. 80–85, 2017. +[25] Y. Zhang, L. Song, W. Saad, Z. Dawy, and Z. Han, “Contract-based +incentive mechanisms for device-to-device communications in cellular +networks,” IEEE Journal on Selected Areas in Communications, vol. 33, +no. 10, pp. 2144–2155, 2015. +[26] Y. Chen, S. He, F. Hou, Z. Shi, and J. Chen, “Promoting device-to- +device communication in cellular networks by contract-based incentive +mechanisms,” IEEE Network, vol. 31, no. 3, pp. 14–20, 2017. +[27] Z. Hasan and V. K. Bhargava, “Relay selection for OFDM wireless sys- +tems under asymmetric information: A contract-theory based approach,” +IEEE Transactions on Wireless Communications, vol. 12, no. 8, pp. +3824–3837, 2013. +[28] L. Duan, L. Gao, and J. Huang, “Cooperative spectrum sharing: A +contract-based approach,” IEEE Transactions on Mobile Computing, +vol. 13, no. 1, pp. 174–187, 2014. +[29] L. Gao, X. Wang, Y. Xu, and Q. Zhang, “Spectrum trading in cognitive +radio networks: A contract-theoretic modeling approach,” IEEE Journal +on Selected Areas in Communications, vol. 29, no. 4, pp. 843–855, 2011. +[30] Z. Chang, D. Zhang, T. H¨am¨al¨ainen, Z. Han, and T. Ristaniemi, +“Incentive mechanism for resource allocation in wireless virtualized +networks with multiple infrastructure providers,” IEEE Transactions on +Mobile Computing, vol. 19, no. 1, pp. 103–115, 2018. +[31] Q. Ma, L. Gao, Y.-F. Liu, and J. Huang, “A contract-based incen- +tive mechanism for crowdsourced wireless community networks,” in +Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks +(WiOpt), 2016, pp. 1–8. +[32] J. Nie, J. Luo, Z. Xiong, D. Niyato, and P. Wang, “A Stackelberg +game approach toward socially-aware incentive mechanisms for mobile +crowdsensing,” IEEE Transactions on Wireless Communications, vol. 18, +no. 1, pp. 724–738, 2018. +[33] Z. Xiong, D. Niyato, P. Wang, Z. Han, and Y. Zhang, “Dynamic pricing +for revenue maximization in mobile social data market with network +effects,” IEEE Transactions on Wireless Communications, vol. 19, no. 3, +pp. 1722–1737, 2020. +[34] L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa, and J. Walrand, +“Motivating smartphone collaboration in data acquisition and distributed +computing,” IEEE Transactions on Mobile Computing, vol. 13, no. 10, +pp. 2320–2333, 2014. +[35] Z. Xiong, J. Zhao, Y. Zhang, D. Niyato, and J. Zhang, “Contract +design in hierarchical game for sponsored content service market,” IEEE +Transactions on Mobile Computing, vol. 20, no. 9, pp. 2763–2778, 2020. +[36] F. Al-Turjman, “Price-based data delivery framework for dynamic and +pervasive IoT,” Pervasive and Mobile Computing, vol. 42, pp. 299–316, +2017. +[37] A. E. Al-Fagih, F. M. Al-Turjman, W. M. Alsalih, and H. S. Hassanein, +“A priced public sensing framework for heterogeneous IoT architec- +tures,” IEEE Transactions on Emerging Topics in Computing, vol. 1, +no. 1, pp. 133–147, 2013. +[38] B. Kantarci and H. T. Mouftah, “Trustworthy sensing for public safety +in cloud-centric Internet of things,” IEEE Internet of Things Journal, +vol. 1, no. 4, pp. 360–368, 2014. +[39] “How much would you spend on a virtual reality headset?” Statista, +2015, +[Online] +Available:https://www.statista.com/statistics/457117/ +virtual-reality-headset-amount-willing-to-pay-in-the-united-states/. +[40] R. B. Myerson, “Incentive compatibility and the bargaining problem,” +Econometrica, pp. 61–73, 1979. +[41] D. Roy, A. S. Rao, T. Alpcan, G. Das, and M. Palaniswami, “Achieving +qos for bursty urllc applications over passive optical networks,” Journal +of Optical Communications and Networking, vol. 14, no. 5, pp. 411–425, +2022. +[42] S. Chen, L. Wang, and F. Liu, “Optimal admission control mechanism +design for time-sensitive services in edge computing,” in IEEE Confer- +ence on Computer Communications (INFOCOM), 2022, pp. 1169–1178. +[43] S. Lakshminarayana, M. Assaad, and M. Debbah, “Transmit power +minimization in small cell networks under time average qos constraints,” +IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. +2087–2103, 2015. +[44] D. E. Kirk, Optimal Control Theory: An Introduction. +Courier +Corporation, 2012. + +[45] O. L. Mangasarian, “Sufficient conditions for the optimal control of +nonlinear systems,” SIAM Journal on Control, vol. 4, no. 1, pp. 139– +152, 1966. +[46] G. Fettweis and et al, “The Tactile Internet: ITU-T Technology +Watch Report,” 2014, [Online] Available:https://www.itu.int/dms pub/ +itu-t/opb/gen/T-GEN-TWATCH-2014-1-PDF-E.pdf. +[47] Cisco, “Video Quality of Service (QOS) Tutorial,” 2017, [Online] Avail- +able:https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/ +qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.html. + diff --git a/J9E3T4oBgHgl3EQfvQsy/content/tmp_files/load_file.txt b/J9E3T4oBgHgl3EQfvQsy/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c4d7a6cb9b93f605902251ed9b8605d01e9be0f --- /dev/null +++ b/J9E3T4oBgHgl3EQfvQsy/content/tmp_files/load_file.txt @@ -0,0 +1,1151 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf,len=1150 +page_content='QoS Based Contract Design for Profit Maximization in IoT-Enabled Data Markets Juntao Chen, Member, IEEE, Junaid Farooq, Member, IEEE and Quanyan Zhu, Senior Member, IEEE Abstract—The massive deployment of Internet of Things (IoT) devices, including sensors and actuators, is ushering in smart and connected communities of the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The massive deployment of Internet of Things (IoT) devices, including sensors and actuators, is ushering in smart and connected communities of the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The availability of real-time and high-quality sensor data is crucial for various IoT applications, particularly in healthcare, energy, transportation, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' However, data collection may have to be outsourced to external service providers (SPs) due to cost considerations or lack of specialized equipment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hence, the data market plays a critical role in such scenarios where SPs have different quality levels of available data, and IoT users have different application-specific data needs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The pairing between data available to the SP and users in the data market requires an effective mechanism design that considers the SPs’ profitability and the quality-of-service (QoS) needs of the users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We develop a generic framework to analyze and enable such interactions efficiently, leveraging tools from contract theory and mechanism design theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' It can enable and empower emerging data sharing paradigms such as Sensing-as-a-Service (SaaS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The contract design creates a pricing structure for on-demand sensing data for IoT users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' By considering a continuum of user types, we capture a diverse range of application requirements and propose optimal pricing and allocation rules that ensure QoS provisioning and maximum profitability for the SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, we provide analytical solutions for fixed distributions of user types to analyze the developed approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For comparison, we consider the benchmark case assuming complete information of the user types and obtain optimal contract solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Finally, a case study based on the example of virtual reality application delivered using unmanned aerial vehicles (UAVs) is presented to demonstrate the efficacy of the proposed contract design framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Index Terms—Contract design, data pricing, Internet of things, Maximum principle, quality-of-service, sensing-as-a-service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' INTRODUCTION The Internet of things (IoT) applications rely heavily on sensed data from a multitude of sources resulting in power- ful and intelligent applications based on sensor fusion and machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For instance, smart and connected commu- nities, industrial automation, smart grid all rely on reliable and high quality data for automated decision-making [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To This work was supported in part by the National Science Foundation (NSF) under Grants ECCS-1847056, CNS-2027884, and BCS-2122060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Juntao Chen is with the Department of Computer and Information Sciences, Fordham University, New York, NY 10023 USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' E-mail: jchen504@fordham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Junaid Farooq is with the Department of Electrical & Computer Engineer- ing, College of Engineering and Computer Science, University of Michigan- Dearborn, Dearborn, MI 48128 USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' E-mail: mjfarooq@umich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Quanyan Zhu is with the Department of Electrical and Computer Engi- neering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201 USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' E-mail: qz494@nyu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' UAVs VR users VR SP VR services Service fee Sensing data Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In the UAV-enabled VR applications, the UAVs capture views of the areas of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The collected data are aggregated in the cloud, which is managed by the VR SP, and then sent to the remote users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The real-time 3D information delivery is useful in applications such as remote monitoring, navigation, and entertainment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on the application, VR users have different QoS requirements and pay different service fees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' fulfil the data needs of intelligence-based IoT applications, the sensing and data acquisition tasks can be outsourced to professional service providers (SPs) in the data market [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' It results in cost effective data collection for IoT applica- tions, wider choice of sensing data, and on-demand service delivery to users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For example, in an intelligent transportation network, vehicles can choose the services to communicate with roadside infrastructures that belong to sensing SP for exchanging various types of data related to applications such as GPS navigation, parking, and highway tolls inquiries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Another potential scenario is UAV-enabled virtual reality (VR) experiences [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, the UAVs managed by the SP capture 3D images of areas that users are interested in, and send them to the remote users via cloud servers and communication networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' These images can be of varying quality and resolution suited for a range of different user types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, the service interactions between the users and the sensing SP requires a formal contract design, in which IoT users make subscription contracts with the SP to obtain (real-time) sensor data according to specific mission requirements [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Depending on the particular application, IoT users have different requirements on the quality of data provided by the sensing SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that provisioning of high-quality sensing data demands high-level of investment in terms of equipment deployment, maintenance, technical support, and data process- ing from the SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In the UAV-enabled VR, users may require different levels of quality-of-service (QoS) in terms of the transmission delay and resolution of the images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, users with different QoS needs can be classified into different arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='04691v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='SY] 11 Jan 2023 HAKIOABtypes1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The sensing SP aims to maximize its revenue and minimize the service costs jointly by delivering on-demand sensing services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In contrast, the user’s goal is to choose a service that maximizes its utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, there is a need to design efficient contracting strategies between the SP and the users so that sensing technologies can be effectively monetized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In the proposed contract design framework, the SP needs to design a menu of contracts that specify the sensing price and the QoS offered to each type of user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The optimal contracts yield a matching between the available sensing data and users in the IoT ecosystem that is suitable for both SP and the users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Due to the large-population feature of users in the massive IoT [5], the SP may not be aware of the exact type of each user and may only have high level information on the distribution of user’s types (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', inferred from historical demand data)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, the challenge of contract design lies in the development of an incentive compatible and optimal mechanism for the sensing SP to maximize its payoff by serving IoT users inspite of the incomplete information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To overcome this obstacle, we propose a market-based pricing contract mechanism for the SaaS model that takes into account incentive compatibility and individual rationality of the users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, we consider a continuum of user types with a generic probability distribution and design optimal contracts leveraging the Pontryagin maximum principle [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Under a wide class of probability distributions of user’s type, we obtain analytical expression of optimal contracts in which the pricing scheme and the QoS mapping are mono- tonically increasing with user’s types, creating a complete sensing service market with all possible QoS levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' When the probability density function of user’s type distribution has a large or sudden decrease around some points, then nondis- criminative pricing phenomenon occurs, which reduces the diversity of service provisions to the IoT users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, some users choose the same service contract in spite of their heterogeneous types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In addition, nondiscriminative pricing for all customers can occur when the user’s types are nested in the lower regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hence, in this scenario, the SP should target at the majority in the market to optimize the revenue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For comparison, we study the optimal contracts under complete information and characterize the solution differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We illustrate the optimal SaaS mechanism design principles with an application to the UAV-enabled VR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Simulation results show that the SP earns more profit by serving users with rela- tively stringent service requirements (higher types).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' However, since the users of lower types constitute most of the market, the SP gains a large proportion of revenue from serving low type users even though their unit benefit is smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The main contributions of this paper are summarized as follows: 1) We propose a two-sided market-based SaaS contract design for QoS driven data trading between the service 1The user types can also be interpreted as the importance of tasks to the users respectively, ranging from non mission-critical to mission-critical ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2This asymmetric information assumption also aligns with the fact that the users aim to preserve privacy of their true types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' provider and users in the IoT ecosystem under asym- metric information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2) We characterize the solutions of optimal contracts for arbitrary distributions of user types, that yield the best matching between the sensing services and the users leveraging the Pontryagin maximum principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3) We show that under the efficient data pricing mecha- nism, the optimal contracts either capture the diversity of user types (discriminative pricing) or focus on the majority of user types (nondiscriminative pricing) de- pending on the users’ preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4) We provide an illustrative example of UAV-enabled VR application to validate and test our proposed contract design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We further provide a comparison between the hidden and full information scenarios in terms of the payoff of the SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Related Work Contract design [7] has typically been used in operations research with applications to retail, financial markets [8], insurances [9], supply chains [10], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' With the emergence of IoT and the data markets [11], new service models such as the SaaS are being developed enabling new possibilities such as resource trading [12], [13], opportunistic IoT [14], task offloading and outsourcing [15], and performance oriented resource provisioning [16], [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, there is a need for developing effective contracts [18] and pricing schemes [19], [20] that incentivize the interactions between users and service providers of data in the IoT ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The data markets and contract solutions can be implemented using blockchain infrastructure over IoT networks [21]–[23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A variety of literature is available on using contract theory for incentive mechanism design in wireless communication systems [24], tailored for scenarios such as traffic offloading [25], [26], relay selection [27], spectrum trading [28], [29], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In [30], the authors have studied the resource trading pro- cess between a mobile virtual wireless network operator and infrastructure providers using a contract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Similar approaches have also been used to facilitate Wi-Fi sharing in crowdsourced wireless community networks [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Incentive mechanism de- sign has also been received a lot of attention in the next- generation crowdsensing applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For example, a two- stage Stackelberg game approach has been proposed in [32] to design incentive mechanism for the crowdsensing service provider by capturing the participation level of the mobile users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In [33], the authors have investigated the sequential dy- namic pricing scheme of a monopoly mobile network operator in the social data market by considering the congestion effects in wireless networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In [34], a distributed computing approach is used in crowdsourcing using contracts by focusing on designing a reward-based collaboration mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Contract theory is also leveraged to price the sponsored content in mo- bile service [35], where the authors developed a hierarchical game framework to capture the service relationships between the network operator acting as the leader and the content provider and the end users acting as followers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Our work focuses on establishing a sensing data trading platform enabled by the IoT by considering the user’s ratio- nality and market reputation in a holistic manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Different from [36] where the authors have focused on designing a pricing mechanism for data delivery in massive IoT from a routing perspective, we address the data pricing problem based on a contract-theoretic approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Regarding SaaS in the IoT, [37] has established a public sensing framework for service-based applications in smart cities where the data is provided by a cloud platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The authors in [38] have investigated smart phone-based crowdsensing to enhance the public safety via the collected sensing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In this paper, we use an analytical approach to create an implementable policy framework, focusing on a large-population regime through contract design, which facilitates the realisation of the SaaS paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We highlight several differences of this work with the literature that uses contracts in various service provisioning applications related to IoT and (wireless) communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Different from the majority of works (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', [25], [26], [28]– [35]) that have considered finite number of user ‘types’ in the contract formulation, our framework focuses on a large- population regime of IoT users and uses a density function to describe the heterogeneous types of users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The second difference is that our framework considers the reputation of service provisioning through an average QoS constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This constraint implicitly improves the inclusion of distinct types of users in the service market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The third difference is on the solution approach used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Instead of solving the problem from an classical optimization angle, this work addresses the problem from an optimal control perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Organization of the Paper The rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Section II introduces the SaaS framework and formulates the contracting problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Contract analysis under a class of user’s type distri- butions is presented in Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We provide the detailed optimal contract solutions for two special cases in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Section V investigates the contract design under complete information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Extensions of the contract design to general user’s type distributions are presented in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Section VII illustrates the obtained results with an application to UAV- based VR, and Section VIII concludes the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' SYSTEM MODEL AND PROBLEM FORMULATION We consider a pool of IoT users with varying QoS require- ments, that are connected to an SP for obtaining sensing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We assume that the SP has similar sensing data available in a variety of different quality levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For instance, the same video data can be available in many different pixel resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Each user obtains a particular quality of data from the SP for its specific mission needs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Depending on the application and quality of data required, the IoT users can be characterized by their ‘type’, denoted by δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In the following subsections, we provide a description of the different model parameters and an analytical formulation of the optimal contract between an SP and IoT users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 55% 28% 12% 3% 1% 0% 10% 20% 30% 40% 50% 60% Less than $250 $250 to $400 $400 to $600 $600 to $1000 More than $1000 Percentage of customers Spending preferences Types of Customers in VR Data Points Exponential Fitting Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Customers’ spending preferences in the VR headset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that a higher price of VR equipment can be interpreted as the customer preferring higher quality of VR experiences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, the data yields an empirically exponential distribution of the customers’ types in our contract design for VR services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' User Type and Data Quality Considering a large number of users in a massive IoT setting, each user is characterized by its type δ ∈ ∆ := [δ, ¯δ], which is hidden to the SP, where δ ≥ 0 and ¯δ ≥ 0 denote the lower and upper bounds of the parameter, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Here, δ signifies the importance level of user’s task depending on the application needs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, considering a large number of possible user types, we assume a continuum of δ admitting a value from the set ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The incomplete information of the IoT users to SP implies that the SP does not know the individual attributes of the users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' However, the SP may have a broad understanding of the probability distribution of the users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This preserves user’s privacy to a certain degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hence, instead of knowing the explicit information of δ, we assume that the sensing SP has knowledge only about the probability density function of the users’ type, denoted by f(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Empirical Estimation of User Type Distribution To design practical contracts for VR services in the IoT, we plot the data of customers’ spending preferences on the VR equipment in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The data is adapted from [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Since a higher price of VR equipment generally yields a better quality of VR experience, the data can be used to approximate the distribution of customers’ types in our VR contract design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2 depicts five levels of customers’ types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Without loss of generality, we can consider their types as type 0, type 1, type 2, type 3, and type 4, respectively, from left to right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In the proposed SaaS framework, we consider an on-demand sensing service provision in a large-population regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, the cus- tomer’s type parameter is continuous over a bounded support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Motivated by Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2, we consider the type parameter δ taking a value from the interval ∆ := [δ, ¯δ], where δ = 0, ¯δ = 4, and a larger δ indicates a higher requirement of VR data quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This modeling is consistent with the statistics shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, based on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2, δ empirically admits an exponential distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Using statistical inference techniques, we can obtain f(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='952e−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='952δ, and F(δ) = 1−e−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='952δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that these probability density and distribution functions are aligned with the market data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The sensed data available to the SP is characterized by its QoS level, denoted by q ∈ R, and the corresponding price (payment by the user), denoted by p ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The QoS level can be related to a number of specific metrics, such as the pixel density, latency, and jitter in the transmission of sensing data, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that we consider a continuum of quality levels since a large number of different versions of data are assumed to be available to the SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In general, we can consider a vectorized q, where each element denotes the quality of the corresponding metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The set Q denotes the available QoS levels provided by the SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' QoS Provisioning and Profit of SP The service relationships between users and SP described above can be naturally captured by a contract-theoretic frame- work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, due to the asymmetric information induced by users’ hidden type, the SP needs to design a menu of contracts, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', {q(δ), p(δ)} and present it to the users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Each user will then choose one contract that maximizes its payoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The payoff of the user with type δ, which claims to be of type δ′ (thus receiving contact {q(δ′), p(δ′)}) can be computed as V (δ, δ′) = Φ (δ, q(δ′)) − p(δ′), (1) where V : ∆ × ∆ → R, and Φ : ∆ × Q → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that the function Φ is a measure of the utility of the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A natural assumption of Φ is described as follows: Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The function Φ is continuously differentiable and increasing in variables δ and q, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', ∂Φ(δ,q(δ)) ∂δ > 0 and ∂Φ(δ,q(δ)) ∂q(δ) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Also, it satisfies ∂Φ2(δ,q(δ)) ∂q(δ)∂δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Assumption 1 indicates that with a better QoS level, the payoff of user increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Also, for a given QoS level, the users with a larger type parameter δ have a higher payoff since their tasks are more mission-critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, for a same amount enhancement of QoS level, the resulting payoff increases for higher type users exceeds the one associated with lower types users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The function describing the SP’s profit obtained by provid- ing a QoS level q to a user of type δ, is defined as U(δ) = p(δ) − C(q(δ)), (2) where C : Q → R+ is the cost of the SP for providing the sensor data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, the expected total payoff of the SP can be expressed as � ¯δ δ (p(δ) − C(q(δ)))f(δ)dδ, where f(δ) denotes the density of type δ users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We consider that f(δ) is strictly greater than 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', f(δ) > 0, ∀δ ∈ [δ, ¯δ], which holds in the case of massive IoT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Profit Maximizing Contract Problem Based on the direct revelation principle [40], it is sufficient for the SP to design/consider contracts in which the users can truthfully select the one that is consistent with their true types;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' in other words, the users will reveal their types in the selection and do not have incentives to misrepresent their true types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hence, we characterize the incentive compatibility (IC) and individual rationality (IR) constraints of the users defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Definition 1 (Incentive Compatibility).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A menu of contracts {q(δ), p(δ)}, ∀δ, designed by the sensing SP is incentive compatible if the user of type δ selects the contract (q(δ), p(δ)) that maximizes its payoff, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', Φ(δ, q(δ)) − p(δ) ≥ Φ(δ, q(δ′)) − p(δ′), ∀(δ, δ′) ∈ ∆2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (3) Definition 2 (Individual Rationality).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The individual rational- ity constraint of each user is captured by Φ(δ, q(δ)) − p(δ) ≥ 0, ∀δ ∈ ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (4) To investigate the impact of average sensing QoS level on the optimal contracts, the SP has an additional constraint on the provided QoS to the IoT users as follows: � ¯δ δ q(δ)f(δ)dδ ≥ q, (5) where the positive constant q is the mean/average QoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The constraint (5) can be interpreted as the reputation that the SP aims to build in the sensing service market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that the average QoS has been leveraged to guide the optimal decision-making in various applications in literature, such as bandwidth allocation in broadband service provisioning [41], admission control of services in edge computing [42], and transmit powers minimization in small cell base stations [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The goal of the SP is to jointly determine the pricing scheme p(δ) and the corresponding service quality q(δ) that yields the best return.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To this end, the SP is required to solve the following optimization problem: (OP) : max {q(δ),p(δ)} � ¯δ δ � p(δ) − C(q(δ)) � f(δ)dδ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Φ(δ, q(δ)) − p(δ) ≥ Φ(δ, q(δ′)) − p(δ′), ∀(δ, δ′) ∈ ∆2, (IC) Φ(δ, q(δ)) − p(δ) ≥ 0, ∀δ ∈ ∆, (IR) � ¯δ δ q(δ)f(δ)dδ ≥ q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (Reputation) III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' ANALYSIS AND DESIGN OF OPTIMAL CONTRACTS In this section, we first analyze the formulated problem (OP) in Section II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then we design the optimal contracts for SaaS by using Pontryagin maximum principle [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Problem Analysis To solve problem (OP), one challenge lies in the infinite number of IC and IR constraints in (3) and (4), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To simplify (OP), we first present the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Under the condition that p(δ) and q(δ) are differentiable, the set of IC constraints (3) is equivalent to the local incentive constraints dp(δ) dδ = ∂Φ(δ, q(δ)) ∂q(δ) dq(δ) dδ , ∀δ ∈ ∆, (6) and a monotonicity constraint dq(δ) dδ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (7) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' See Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' ■ To facilitate the optimal contract design in Section III-B, we specify some structures of the payoff, Φ and cost, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The user with mission-critical tasks (higher δ) gains more by receiving better quality of sensor data (higher q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, a reasonable payoff function for type δ user can be chosen as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Assumption 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The payoff function for type δ user is consid- ered as Φ(δ, q(δ)) = δq(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (8) Then, (6) can be simplified as dp(δ) dδ = δ dq(δ) dδ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that the payoff function (8) is not necessary linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The only requirement of Φ is to satisfy Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The analysis of optimal contract design in the following still holds for a general Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Similarly, to obtain analytical results of optimal contracts, one of the cost functions of sensing SP is chosen as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The cost function of sensing SP is C(q(δ)) = σ (exp(aq(δ)) − 1) , (9) where σ > 0 is a normalizing constant trading off between the sensing service costs and the revenue, and a > 0 is a sensitivity constant, indicating that the marginal cost of the sensor data is increasing with its quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on Lemma 1 and (8), the IC constraints in (OP) can be represented as dV dδ = q(δ), (10) together with the monotonicity constraint (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on (1), we have dV dδ = dΦ dδ − dp(δ) dδ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, using dΦ dδ = δ dq(δ) dδ + q(δ) and dp(δ) dδ = δ dq(δ) dδ yield the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' ■ Note that Corollary 1 indicates that the payoff of the user is monotonically increasing with the type δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, the IR constraint can be simplified as Φ(δ, q(δ)) − p(δ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Indeed, the IR constraint is binding under the optimal contracts for type δ users, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', Φ(δ, q(δ)) − p(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (11) Otherwise, the sensing SP can earn more profits by increasing the price p(δ) for serving the type δ users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The reputation constraint (5) essentially divides the problem analysis in two regimes: whether the constraint is binding at the optimal solution or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Denote by {p∗(δ), q∗(δ)} the optimal solution to (OP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' When q is relatively large, then it is possible that � ¯δ δ q∗(δ)f(δ)dδ = q, since the SP has no incen- tive to provide a QoS q(δ) with q(δ) > q∗(δ) which decreases the objective value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The inequality � ¯δ δ q∗(δ)f(δ)dδ > q could happen when q is relatively small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, there exists a thresh- old of q above which (5) is binding and below which is non- binding at the optimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In the case of � ¯δ δ q∗(δ)f(δ)dδ > q which indicates that (5) is inactive, the optimal solution {p∗(δ), q∗(δ)} to (OP) will be the same as the one to (OP) without considering the reputation constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To this end, we have the following approach to address (OP) for given q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' First, we solve (OP) without considering the reputation constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' If the obtained solution satisfies the reputation constraint, then it is optimal to (OP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Otherwise, we replace the constraint (5) in (OP) by � ¯δ δ q(δ)f(δ)dδ = q, (12) as the reputation constraint holds as an equality at the op- timal contract design in this regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Solving (OP) without incorporating the reputation constraint is a classical optimal contract design problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In this work, we focus on developing a systematic approach to address the second case where (12) is considered in the constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Remark: The reputation constraint implicitly penalizes the SP for not serving IoT users with low valuation (the users of lower types).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The reason is that not serving users is equivalent to providing zero quality service with zero cost which indeed decreases the average QoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This is different from the setup in the classical contract design in which the SP only serves the consumers with positive valuations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', based on the metric called virtual valuation δ − 1−F (δ) f(δ) ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Our model aims to serve all users including those of low types that might not contribute to the SP’s profit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hence, the proposed framework with the reputation constraint has the capability to enhance the accessibility and affordability of the service to all users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Optimal Contract Solution Based on (1), we obtain p(δ) = Φ(δ, q(δ)) − V (δ), where we suppress the notations q and p in V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This is reasonable since the payoff of an IoT user depends on its type when the contract is designed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, by regarding V (δ) as a decision variable instead of p(δ), the problem can be rewritten as (OP′) : max {q(δ),V (δ)} � ¯δ δ � Φ(δ, q(δ)) − V (δ) − C(q(δ)) � f(δ)dδ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' dV dδ = q(δ), dq(δ) dδ ≥ 0, V (δ) = 0, � ¯δ δ q(δ)f(δ)dδ = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (OP′) can be regarded as an optimal control problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, by following the notations in control theory, we denote u(δ) = q(δ) by the control variable and x1(δ) = V (δ) by the state variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, we obtain ˙x1 = u(δ) with the initial value x1(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The control input admits an increasing property with the type parameter δ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', ˙u(δ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The remaining difficulty in solving (OP′) lies in the reputa- tion constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To facilitate the design of the optimal control strategy, we introduce a new state variable x2(δ) satisfying ˙x2(δ) = u(δ)f(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, the reputation constraint can be replaced by ˙x2(δ) = u(δ)f(δ), (13) with boundary values: x2(¯δ) = q and x2(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For clarity, we present the problem (OP′) with new nota- tions as follows: (OP′′) : max {u(δ),x(δ)} � ¯δ δ � Φ(δ, u(δ)) − x1(δ) − C(u(δ)) � f(δ)dδ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' ˙x1(δ) = u(δ), x1(δ) = 0, ˙x2(δ) = u(δ)f(δ), x2(¯δ) = q, x2(δ) = 0, ˙u(δ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' where x = [x1, x2]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Next, by defining λ = [λ1, λ2]T , the Hamiltonian of (OP′′) can be expressed as H(x(δ), u(δ), λ(δ), δ) = � Φ(δ, u(δ)) − x1(δ) − C(u(δ)) � f(δ) + λ1(δ)u(δ) + λ2(δ)u(δ)f(δ), (14) where λ1 and λ2 are costate variables corresponding to (10) and (13), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' By using the Pontryagin maximum principle [44], we can obtain the optimal solution (x∗(δ), u∗(δ)) by solving the following Hamilton system: H(x∗(δ), u∗(δ), λ∗(δ), δ) ≥ H(x∗(δ), u(δ), λ∗(δ), δ), (15) ˙x∗ 1 = ∂H(x∗(δ), u∗(δ), λ∗(δ), δ) ∂λ1(δ) = u∗(δ), (16) ˙x∗ 2 = ∂H(x∗(δ), u∗(δ), λ∗(δ), δ) ∂λ2(δ) = u∗(δ)f(δ), (17) ˙λ∗ 1 = −∂H(x∗(δ), u∗(δ), λ∗(δ), δ) ∂x1(δ) = f(δ), (18) ˙λ∗ 2 = −∂H(x∗(δ), u∗(δ), λ∗(δ), δ) ∂x2(δ) = 0, (19) λ1(¯δ) = 0, (20) λ2(¯δ) is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (21) Note that (20) and (21) are boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, the initial state of x1 is fixed, and we only have freedom in specifying boundary condition at the terminal time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, the corresponding costate variable λ1 at the time ¯δ should equal to the derivative of the terminal payoff with respect to the state x1 at ¯δ based on the maximum principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Since the objective function in (OP′′) does not include the terminal payoff, then we obtain λ1(¯δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Similarly, the initial and terminal states of x2 are fixed, and we can specify the boundary condition (21) from (19) in which λ2 admits a constant value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, (15) ensures the optimality of control u∗(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, using the first-order condition, (15) can be simplified as ∂H(x∗(δ), u(δ), λ∗(δ), δ) ∂u(δ) = �∂Φ(δ, u(δ)) ∂u(δ) − dC(u(δ)) du(δ) � f(δ) + λ∗ 1(δ) + λ∗ 2(δ)f(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (22) In addition, (18) and (20) indicate that λ∗ 1(δ) = F(δ) − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (23) Note that the end-point of x2 is fixed, and hence λ2(¯δ) needs to be determined rather than simply being 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on (19), we obtain λ∗ 2(δ) = β, ∀δ ∈ ∆, (24) where β is a constant to be determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We have obtained the optimal solutions for λ∗ 1(δ) and λ∗ 2(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To design the optimal u∗(δ), we next focus on the optimality condition (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The distribution of user’s type can be general, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', normal, exponential, or learnt from the historical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We first solve (OP′′) without considering the monotonicity constraint ˙u(δ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, the obtained control uco(δ) from (22) is a candidate optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' By plugging (23) and (24) into (22) and using the defined functions (8) and (9), we obtain dC(uco(δ)) du(δ) − ∂Φ(δ,u(δ)) ∂u(δ) = F (δ)−1 f(δ) + β which leads to uco(δ) = 1 a ln � 1 aσ �F(δ) − 1 f(δ) + δ + β �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (25) The second-order condition gives ∂2H(x∗(δ),u(δ),λ∗(δ),δ) ∂u(δ)2 = −σa2eau(δ)f(δ) < 0, and hence uco(δ) is a maximizer of the Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The maximum principle is a necessary condition for the optimal solution of (OP′′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, we further check the sufficient condition for optimality on the maximized Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, by verifying that the Hamiltonian H(x(δ), u(δ), λ(δ), δ) is concave in both x and u, the so- lution uco(δ) is optimal to (OP′′) without considering the monotonicity constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Indeed, based on the Mangasarian sufficiency theorem [45], a stronger conclusion is that the obtained control uco(δ) is the unique optimal solution as the Hamiltonian is strictly concave in u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on the dynamics in (OP′′), the optimal state trajectory is also unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We next verify whether uco(δ) satisfying the monotonicity constraint ˙u(δ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In (25), the CDF F(δ) is increasing with δ, but the presence of f(δ) makes the monotonicity of u(δ) unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We present the following lemma which can be proved using optimality condition to (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' If 2f 2(δ)+(1−F(δ))f ′(δ) > 0, then the obtained solution uco(δ) is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In addition, a decreasing 1−F (δ) f(δ) leads to an optimal uco(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We need to ensure that (25) is increasing with δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The first-order condition of (25) gives � F (δ)−1 f(δ) + δ + β �−1 � f 2(δ)−(F (δ)−1)f ′(δ) f 2(δ) + 1 � > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In the first part, β is a constant determined based on � ¯δ δ uco(δ)f(δ)dδ = � ¯δ δ 1 a ln( 1 aσ[ F (δ)−1 f(δ) + δ + β])f(δ)dδ = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The integrand should be well-defined to make the equation satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The existence of such β is guaranteed as � ¯δ δ ln( 1 aσ[ F (δ)−1 f(δ) + δ + β])f(δ)dδ is monotonically increasing in β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, F (δ)−1 f(δ) +δ+β > 0 which is ensured by the choice of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, we need to have f 2(δ)−(F (δ)−1)f ′(δ) f 2(δ) + 1 > 0 which gives the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We can also verify that if 1−F (δ) f(δ) is decreasing in δ, then 2f 2(δ) + (1 − F(δ))f ′(δ) > 0 holds which yields the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' ■ Remark: The distributions of IoT user’s type satisfying the condition in Lemma 2 are quite general, including the uni- form, normal and exponential ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that the distributions without a large and sudden decrease in the probability density function (PDF) f(δ) generally satisfy the condition in Lemma 2, and hence (25) gives the optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Back to (24), the constant β can be obtained by solving the reputation constraint (12), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', � ¯δ δ 1 a ln( 1 aσ[ F (δ)−1 f(δ) + δ + β])f(δ)dδ = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The expression u∗(δ) characterizes the pro- vided sensing QoS in terms of the user’s type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We next focus on obtaining the pricing scheme of the sensing services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To this end, the expression of x∗ 1(δ) becomes critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on (16), we obtain ˙x∗ 1(δ) = 1 a ln � 1 aσ �F(δ) − 1 f(δ) + δ + β �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (26) Then, x∗ 1(δ) can be determined by (26) and x∗ 1(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The following Theorem 1 explicitly characterizes the optimal contracts in the considered scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Under the condition 2f 2(δ)+(1−F(δ))f ′(δ) > 0 in Lemma 2, the optimal contracts {q∗(δ), p∗(δ)} designed by the SP are as follows: q∗(δ) = 1 a ln � 1 aσ �F(δ) − 1 f(δ) + δ + β �� , p∗(δ) = Φ(δ, q∗(δ)) − φ(δ) = δq∗(δ) − φ(δ), (27) where β is determined from � ¯δ δ q∗(δ)f(δ)dδ = q, and ˙φ(δ) := 1 a ln( 1 aσ[ F (δ)−1 f(δ) + δ + β]) with φ(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Structure of the optimal contracts: The q∗(δ) in (27) can be naturally decomposed into three parts, and each one includes a term F (δ)−1 f(δ) , δ, and β, corresponding to the incentives of IoT users, the utility of SP, and the reputation of service provision, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Recall that λ∗ 1(δ) = F(δ) − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, the first term quantifying the impact of IC constraint on q∗(δ) captures the statistics of the IoT user types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The second term including δ arises from the maximization of objective function of SP which yields him the largest revenue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The third constant term β indicates that the sensitivity of reputation constraint is the same for every type of users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This finding is consistent with the fact that the reputation constraint takes the aggregated service provision over all users into account, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', the mean QoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The service pricing function p∗(δ) is characterized based on q∗(δ) through relation (1) and hence has a similar decomposition interpretation as q∗(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In sum, the structure of optimal contracts in Theorem 1 incorporates a service payoff maximization term and two adjusting terms for user incentives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' ANALYTICAL RESULTS OF SPECIAL CASES In this section, we present analytical results of optimal contracts for two typical distributions of the user’s type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Uniform User Type Distribution When δ is uniformly distributed, its PDF and cumulative density function (CDF) admit the forms: f(δ) = 1 ¯δ−δ and F(δ) = δ−δ ¯δ−δ, δ ∈ ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on Theorem 1, the sensing QoS function is q∗(δ) = 1 a ln( 1 aσ[2δ − ¯δ + β]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Due to the logarithm function, q∗(δ) is nonlinear with δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In addition, the marginal sensing QoS is decreasing with the IoT user’s type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' One reason is that increasing sensing QoS is harder in large q regime than its counterpart for the SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Further, the unknown constant β in (24) can be solved from � β−¯δ 2 + ¯δ � ln(β + ¯δ)− � β−¯δ 2 + δ � ln(β − ¯δ + 2δ) = (aq + ln(aσ) + 1)(¯δ − δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The optimal sensing pricing scheme in the contract is characterized in the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Under the uniform distribution of the IoT user’s type δ, the price of sensing service is equal to p∗(δ) = δq∗(δ) + δ−δ a(¯δ−δ)(ln(aσ) + 1) − 1 a(¯δ−δ) � � β−¯δ 2 + δ � ln(β − ¯δ + 2δ) − � β−¯δ 2 + δ � ln(β − ¯δ + 2δ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Exponential User Type Distribution When the user’s type δ admits the exponential distribution, then the number of IoT users with mission-critical tasks is less than the ones with nonmission-critical tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, the PDF and CDF of δ with rate ρ are equal to f(δ) = ρe−ρδ and F(δ) = 1−e−ρδ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, the optimal sensing QoS function has the form q∗(δ) = 1 a ln( 1 aσ[δ − 1 ρ + β]), where β can be computed from � ¯δ δ ln( 1 aσ[δ − 1 ρ + β])ρe−ρδdδ = aq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Similar to the uniform distribution scenario, we can char- acterize the optimal pricing as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Under the exponential distribution of the user’s type δ, the optimal pricing of the sensing service in the contract is p∗(δ) = δq∗(δ) − 1 a(δ + β − 1 ρ) ln(δ + β − 1 ρ) + δ a (1 + ln(aσ)) − γ, where the constant γ is equal to γ = δ a(1 + ln(aσ)) − 1 a(δ + β − 1 ρ) ln(δ + β − 1 ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We elaborate more on exponential distribution scenario in case studies in Section VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In other cases with more general distributions of the IoT user’s type, we can directly apply Theorem 1 to obtain the optimal SaaS contracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' However, note that the support of f(δ) needs to be consistent with the range of δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hence, if a normal distribution is used, it needs to be truncated in order to be compatible with the framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' COMPARISON TO THE BENCHMARK SCENARIO Under the full information scenario, the sensing SP knows the type of each IoT user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, the IC constraint (3) becomes no longer necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, the optimal contract design prob- lem for SaaS becomes: (OP − B) : max {q(δ),V (δ)} � ¯δ δ � p(δ) − C(q(δ)) � f(δ)dδ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' V (δ) ≥ 0, ∀δ, � ¯δ δ q(δ)f(δ)dδ = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Next, we solve (OP − B) from an optimal control perspec- tive again, and the results are summarized in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For clarity, we denote by qb(δ), V b(δ) the optimal solutions to (OP − B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Further analysis indicates that V b(δ) = 0, ∀δ, and the pricing scheme is charaterized by pb(δ) = Φ(δ, qb(δ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' By regarding q(δ) as a control variable, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', q(δ) = u(δ), and introducing a state ˙x(δ) = u1(δ)f(δ) with boundary constraints x(¯δ) = q and x(δ) = 0, we can reformulate (OP − B) as (OP − B′) : max {u(δ)} � ¯δ δ � Φ(δ, u(δ)) − C(u(δ)) � f(δ)dδ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' ˙x(δ) = u(δ)f(δ), x(¯δ) = q, x(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that (OP − B′) is an optimal control problem with fixed initial and terminal state constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The Hamiltonian of (OP − B′) is H(x(δ), u(δ), λ(δ), δ) = � Φ(δ, u(δ)) − C(u(δ)) � f(δ) + λ(δ)u(δ)f(δ), (28) where λ is the costate variable associated with the state dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The maximum principle yields the following Hamilton system: H(xb(δ), ub(δ), λb(δ), δ) ≥ H(xb(δ), u(δ), λb(δ), δ), ˙xb = ub(δ)f(δ), ˙λb = 0, λ(¯δ) = β, where β is a real constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The first-order condition of (28) with respect to u is ∂H(xb(δ),u(δ),λb(δ),δ) ∂u = ( ∂Φ(δ,u(δ)) ∂u − dC(u(δ)) du )f(δ) + λb(δ)f(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Further, the second-order conditions of Hamil- tonian (28) with respective to x and u are nonpositive, and hence the obtained ub(δ) is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, the optimal control ub(δ) satisfies (δ − aσeaub(δ) + β)f(δ) = 0, which further yields ub(δ) = 1 a ln δ+β aσ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The constant β can be solved from � ¯δ δ ub(δ)f(δ)dδ = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We summarize the optimal contract for SaaS under the complete information in the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' When the SP has the complete incentive infor- mation of the IoT users, the optimal contracts {qb(δ), pb(δ)} are designed as follows: qb(δ) = 1 a ln �δ + β aσ � , pb(δ) = Φ(δ, qb(δ)) = δqb(δ), (29) where β is determined from � ¯δ δ ln δ+β aσ f(δ)dδ = aq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Remark: Theorem 2 helps to identify the fundamental dif- ferences of optimal contracts designed under complete and in- complete information structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Comparing with the designed optimal contracts {q∗(δ), p∗(δ)} in Theorem 1, the sensing QoS mapping qb(δ) and pricing function pb(δ) in Theorem 2 do not contain terms F (δ)−1 f(δ) ≤ 0 and φ(δ) ≥ 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The different values of β in q∗(δ) and qb(δ) prohibit the conclusion that q∗(δ) ≤ qb(δ) and p∗(δ) ≤ pb(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that the constraint � ¯δ δ q(δ)f(δ)dδ = q indicates the same mean QoS in two scenarios without/with asymmetric information between SP and users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, when q∗(δ) ̸= qb(δ), ∀δ ∈ [δ, ¯δ], we can conclude that there exists at least one ˜δ where q∗(˜δ) = qb(˜δ), and the IoT users in the benchmark case pay more for the service due to φ(δ) ≥ 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', p∗(˜δ) < pb(˜δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Another remark is that the total profit of sensing SP by providing the optimal contracts resulting from (OP − B) is no less than the one from (OP) due to the removal of IC constraint which enlarges the feasible decision space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The profit difference can be interpreted as the private user’s type information cost which we will quantify in Section VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' OPTIMAL CONTRACTS FOR GENERAL USER’S TYPE DISTRIBUTIONS In this section, we investigate the scenarios when the density condition in Lemma 2 does not hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We provide an alternative maximum principle and a full characterization of optimal contracts for SaaS in this general case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Maximum Principle and Optimality Analysis Following the notations in (OP′′) except replacing u with x3 and introducing a new control variable µ, we formulate the following problem: (OP − E) : max {µ(δ),x1(δ), x2(δ),x3(δ)} � ¯δ δ � Φ(δ, x3(δ)) − x1(δ) − C(x3(δ)) � f(δ)dδ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' ˙x1(δ) = x3(δ), x1(δ) = 0, ˙x2(δ) = x3(δ)f(δ), x2(¯δ) = q, x2(δ) = 0, ˙x3(δ) = µ(δ), µ(δ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that (OP − E) is an optimal control problem with three state variables x1, x2, x3 and a control variable µ, where the initial points of x1 and x2, and the boundary points of x2 are fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The Hamiltonian of (OP − E) can be written as H(x(δ), µ(δ), λ(δ), δ) = [Φ(δ, x3(δ)) − x1(δ) − C(x3(δ))] · f(δ) + λ1(δ)x3(δ) + λ2(δ)x3(δ)f(δ) + λ3(δ)µ(δ), where x = [x1, x2, x3]T and λ = [λ1, λ2, λ3]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To differentiate with the optimal solution (x∗(δ), u∗(δ)) in Theorem 1, we denote by (xo(δ), µo(δ)) the optimal solution to the cases with general user’s type distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Using the Pontryagin maximum principle,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' we obtain (xo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' µo(δ)) by solving the Hamilton system: H(xo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' µo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' λo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' δ) ≥ H(xo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' µ(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' λo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (30) ˙xo 1 = ∂H(xo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' µo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' λo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' δ) ∂λ1(δ) = xo 3(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (31) ˙xo 2 = ∂H(xo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' µo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' λo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' δ) ∂λ2(δ) = xo 3(δ)f(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (32) ˙xo 3 = ∂H(xo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' µo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' λo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' δ) ∂λ3(δ) = µo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (33) ˙λo 1 = −∂H(xo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' µo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' λo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' δ) ∂x1(δ) = f(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (34) ˙λo 2 = −∂H(xo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' µo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' λo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' δ) ∂x2(δ) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (35) ˙λo 3 = −∂H(xo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' µo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' λo(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' δ) ∂x3(δ) = − �∂Φ(δ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' x3(δ)) ∂x3(δ) − dC(x3(δ)) dx3(δ) � f(δ) − λo 1(δ) − λo 2(δ)f(δ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (36) λ1(¯δ) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (37) λ2(¯δ) is a constant,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (38) λ3(δ) = λ3(¯δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (39) Note that (37) and (38) are boundary conditions which are similar to the ones in (20) and (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In (OP − E), we include another state variable x3 which does not have initial and terminal constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, based on the maximum principle [44], the corresponding costate variable λ3 at time δ and ¯δ should equal to the derivative of the initial and terminal payoff with respect to the state x3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In (OP − E), the objective function does not contain individual initial and terminal utilities, and thus we obtain condition (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' First, similar to (23) and (24), we observe that λo 1(δ) = F(δ) − 1, (40) λo 2(δ) = β, (41) where the constant β can be determined using(12) after the QoS mapping qo(δ) is characterized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In addition, by integrating (36), we obtain λo 3(δ) = − � δ δ �∂Φ(δ, x3(δ)) ∂x3(δ) − dC(x3(δ)) dx3(δ) � f(δ) +λo 1(δ) + λo 2(δ)f(δ)dδ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (42) Using the transversality conditions λ3(δ) = λ3(¯δ) = 0 yields λ3(¯δ) = − � ¯δ δ ( ∂Φ(δ,x3(δ)) ∂x3(δ) − dC(x3(δ)) dx3(δ) )f(δ) + λo 1(δ) + λo 2(δ)f(δ)dδ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, (30) indicates that µo(δ) maximizes H with µo(δ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that in the Hamil- tonian H, the last term λ3(δ)µ(δ) imposes a non-positive value constraint on λ3(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Otherwise, H is unbounded from above due to µ(δ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, to ensure the feasibility of maximization, we have λ3(δ) ≤ 0 which is equivalent to � δ δ ( ∂Φ(δ,x3(δ)) ∂x3(δ) −C′(x3(δ)))f(δ) +λo 1(δ)+λo 2(δ)f(δ)dδ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, when λ3(δ) < 0, ˙xo 3(δ) = µo(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, the complementary slackness condition can be written as follows, ∀δ ∈ [δ, ¯δ], ˙xo 3(δ) � δ δ �∂Φ(δ, xo 3(δ)) ∂xo 3(δ) − dC(x3(δ)) dx3(δ) � f(δ) +λo 1(δ) + λo 2(δ)f(δ)dδ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (43) We can verify that the maximum principle (30)–(39) is also sufficient for optimality as the associated Hamiltonian equation is concave in both x and µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, the Hamiltonian is strictly concave in x3 and other states are uniquely determined by x3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, the optimal control and optimal state trajectory are unique [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We next explicitly characterize this optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Characterization of Optimal Contracts We next analyze the optimal contracts in two regimes regarding ˙xo 3(δ), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', ˙xo 3(δ) > 0 and ˙xo 3(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on (43), in the interval of δ that ˙xo 3(δ) > 0, then λo 3(δ) = 0 for all δ in this interval, which further indicates ˙λo 3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hence, from (36), the following equation holds: ( ∂Φ(δ,x3(δ)) ∂x3(δ) − dC(x3(δ)) dx3(δ) )f(δ) + λo 1(δ) + λo 2(δ)f(δ) = 0, which is exactly the same maximality condition presented in (22), where x3(δ) plays the role as u(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Following the same analysis in Section III-B, the optimal solutions to xo 1, xo 2, xo 3, λo 1 and λo 2 in Hamilton system (30)–(39) coincide with x∗ 1, x∗ 2, u∗, λ∗ 1 and λ∗ 2 in Hamilton system (15)–(21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, we can conclude that if xo 3(δ) is strictly increasing over some interval and recall the notation x3(δ) = q(δ), the solution qo(δ) in this section should be the same as the one q∗(δ) in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In the other regime of ˙xo 3(δ) = 0, xo 3(δ) is unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, the remaining task is to determine the intervals of δ in which qo(δ) admits a constant, and hence the service price is nondiscriminative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that these intervals definitely include the ones when q∗(δ) is decreasing, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', the monotonicity con- straint of sensing QoS is violated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For notational convenience, let [δ1, δ2] be the interval when qo(δ) is a constant, δ ∈ [δ1, δ2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We know that for δ < δ1 and δ > δ2, qo(δ) is increasing, and thus ˙xo 3(δ) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on (43), we obtain condition λo 3(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Since the costate variable λo 3 is continuous, then at the critical points δ1 and δ2, λo 3(δ1) = λo 3(δ2) = 0, and using (42) yields � δ2 δ1 �∂Φ(δ, q(δ)) ∂q(δ) − dC(q(δ)) dq(δ) � f(δ) +λo 1(δ) + λo 2(δ)f(δ)dδ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (44) To this end, we discuss three possible cases that qo(δ) is nondiscriminative over δ ∈ [δ1, δ2] subsequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' When analyzing qo(δ), we constantly refer to the optimal solution q∗(δ) in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Besides, we assume that both λo 1 and λo 2 are known through (40) and (41) with an exception of β to be specified later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Case I: (δ1 = δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In this case, (44) is reduced to � δ2 δ �∂Φ(δ, q1) ∂q(δ) − dC(q1) dq(δ) � f(δ) +λo 1(δ) + λo 2(δ)f(δ)dδ = 0, q1 = q∗(δ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (45) One illustrative example for this scenario is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3(a), where for δ ∈ [δ2, ¯δ], qo(δ) = q∗(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In addition, the constant value q1 is no greater than q∗(δ), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', q1 ≤ q∗(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We prove this result by contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' If q1 > q∗(δ), then q1 > q∗(˜δ) for any ˜δ close enough to δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Along with the entire trajectory q∗(δ), we introduce a virtual variable λ∗ 3(δ) which is a counterpart of λo 3(δ), and thus we have λ∗ 3(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Recall the notation x3 = q, and then the partial integrand ∂Φ(δ,q(δ)) ∂q(δ) − dC(q(δ)) dq(δ) in (42) decreases when the value of q increases due to the convexity of cost function C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, the entire λo 3(δ) increases if q becomes larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, for ˜δ close enough to δ and based on the assumption q1 > q∗(δ), we obtain λo 3(˜δ) > λ∗ 3(˜δ) = 0, contradicting the condition λo 3(δ) ≤ 0, ∀δ ∈ [δ, ¯δ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, we can obtain δ2 and the corresponding value q1 by solving two equations in (45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Case II: (δ < δ1 < δ2 < ¯δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' When the interval [δ1, δ2] lies in the interior of the entire regime δ, (44) becomes � δ2 δ1 �∂Φ(δ, q2) ∂q(δ) − dC(q2) dq(δ) � f(δ) +λo 1(δ) + λo 2(δ)f(δ)dδ = 0, q2 = q∗(δ1) = q∗(δ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (46) We can solve for two unknowns δ1 and δ2 based on (46), and subsequently we obtain q2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Case II is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 𝛿 𝑞∗(𝛿) 𝑞𝑜(𝛿) 𝛿 𝛿=𝛿1 𝛿2 𝑞1 𝑞𝑜 𝛿 , 𝑞∗(𝛿) 𝑞𝑜(𝛿) Case I: 𝛿=𝛿1 (a) Case I: δ1 = δ 𝛿 𝑞∗(𝛿) 𝑞𝑜(𝛿) 𝛿 𝛿 𝛿2 𝑞2 𝑞𝑜 𝛿 , 𝑞∗(𝛿) 𝑞𝑜(𝛿) 𝛿1 𝑞𝑜 𝛿 , 𝑞∗(𝛿) Case II: 𝛿<𝛿1<𝛿2<𝛿 (b) Case II: δ < δ1 < δ2 < ¯δ 𝛿 𝑞∗(𝛿) 𝑞𝑜(𝛿) 𝛿=𝛿2 𝛿 𝛿1 𝑞3 𝑞𝑜 𝛿 , 𝑞∗(𝛿) 𝑞𝑜(𝛿) Case III: 𝛿=𝛿2 (c) Case III: δ2 = ¯δ Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In all three figures, qo(δ) and q∗(δ) represent the QoS of SaaS with and without considering the monotonicity constraint, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In addition, the optimal solution qo(δ) coincides with q∗(δ) over some interval except δ ∈ [δ1, δ2] in three cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For δ ∈ [δ1, δ2], qo(δ) is nondiscriminative and admits constant values q1 q2 and q3 in (a), (b) and (c), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Case III: (δ2 = ¯δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' When δ2 coincides with the end-point ¯δ, (44) can be written as � ¯δ δ1 �∂Φ(δ, q3) ∂q(δ) − dC(q3) dq(δ) � f(δ) +λo 1(δ) + λo 2(δ)f(δ)dδ = 0, q3 = q∗(δ1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (47) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3(c) presents an example of case III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Similar to the analysis in Case I, the value of q3 satisfies q3 ≥ q∗(¯δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, δ1 and q3 can be obtained by solving (47).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that in the optimal contracts, the intervals over which qo(δ) admitting a constant value can be a combination of the three cases, and there could exist multiple interior intervals as the one shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Another essential point is to determine λo 2 = β in (45)–(47).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' As the analysis in Section III-B, the unknown constant β can be derived using the constraint (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' However, (12) needs a full expression of optimal qo beforehand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, two procedures including the derivation of optimal solution qo from (45)–(47) and the obtaining λ2(δ) = β by (12) are intertwined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To design the optimal qo(δ), we thus should solve the equations (45)–(47) together with (12) in a holistic manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' With derived qo(δ), the service pricing function po(δ) then can be characterized with similar steps in Section III-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We summarize the optimal contracts for SaaS under general user’s type distribution in the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For a general user’s type distribution f(δ) where 2f 2(δ) + (1 − F(δ))f ′(δ) > 0 does not hold, the optimal contracts {qo(δ), po(δ)} designed by the SP are detailed as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The QoS mapping qo(δ) is piecewise continuous and weakly increasing over δ ∈ [δ, ¯δ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1) qo(δ) and po(δ) coincide with q∗(δ) and p∗(δ) in Theorem 1 except on a finite number N of disjoint intervals In = (δn 1 , δn 2 ), for n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', N, and δn 1 and δn 2 increase with n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore,, qo(δ) = qn, ∀δ ∈ In.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2) For the interior interval In where δn 1 ̸= δ and δn 2 ̸= ¯δ, the optimal qo(δ) satisfies � δn 2 δn 1 �∂Φ(δ, qn) ∂q − dC(qn) dq � f(δ) +λo 1(δ) + λo 2(δ)f(δ)dδ = 0, qn = q∗(δn 1 ) = q∗(δn 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (48) 3) If δ1 1 = δ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', the interval I1 starts with δ, then the optimal qo(δ) satisfies � δ1 2 δ �∂Φ(δ, q1) ∂q − dC(q1) dq � f(δ) +λo 1(δ) + λo 2(δ)f(δ)dδ = 0, q1 = q∗(δ1 2) ≤ q∗(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (49) 4) If δN 2 = ¯δ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', the interval IN ends with ¯δ, then the optimal qo(δ) satisfies � ¯δ δN 1 �∂Φ(δ, qN) ∂q − dC(qN) dq � f(δ) +λo 1(δ) + λo 2(δ)f(δ)dδ = 0, qN = q∗(δN 1 ) ≥ q∗(¯δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (50) 5) Based on (48)–(50) and together with (12), (40), (41), qn, δn 1 and δn 2 , n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', N, can be computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' After obtaining the sensing QoS function qo(δ), the optimal pricing po(δ) can be derived via the relation po(δ) = Φ(δ, qo(δ)) − φ(δ), (51) where ˙φ(δ) = qo(δ) with φ(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Remark: For the intervals where qo(δ) = q∗(δ), po(δ) is monotonically increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For δ ∈ In, n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', N, qo(δ) is a constant and then ˙qo(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on (51) and Φ(δ, qo(δ)) = δqo(δ), we obtain ˙po(δ) = δ ˙qo(δ) + qo(δ) − ˙φ(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, IoT users with a type lying in the same interval In, n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', N, are provided with a menu of contracts with the same quality of sensing data as well as the service price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Some Analytical Results We end up this section by presenting analytical results on the pricing of sensing services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' These results give insights on the obtained solutions, and they also contribute to the design of practical market-based contracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (1) Structure of the optimal contracts: Comparing with the optimal contracts in Theorem 1, the ones in Theorem 3 have an additional feature of nondiscriminative service intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, in addition to the profit maximization and service reputation construction of SP, the IC constraints of users are completely considered in the contracts, where the additional monotonicity part is reflected by (48)–(50).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that the nondiscriminative pricing reduces the diversity of service provisions to the IoT users which has an interpretation that the SP treats heterogeneous users equally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Different with the contracts in Theorem 1 of full separation, the pooling behavior (users of different types are offered with the same contract) in Theorem 3 due to irregular type distribution is to ensure the incentive compatibility of designed optimal contracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (2) Number of intervals with nondiscriminative pricing: Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3 shows that the intervals with a decreasing q∗(δ) are included in In, n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, N is equal to the number of peaks (local maximum) of q∗(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on Theorem 1, we analyze the monotonicity of F (δ)−1 f(δ) + δ, indicating that the number of nondiscriminative pricing regimes N coincides with the number of intervals where 2f 2(δ) + (1 − F(δ))f ′(δ) takes a negative value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (3) Nondiscriminative pricing for all users: When q∗(δ) is decreasing over δ ∈ [δ, ¯δ], then based on Theorem 3, the opti- mal service pricing qo(δ) is nondiscriminative for all types of users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In this scenario, we obtain 2f 2(δ)+(1−F(δ))f ′(δ) < 0 for all δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' From Lemma 2, an equivalent condition is that 1−F (δ) f(δ) increases over δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We summarize the results in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The optimal contracts {qo(δ), po(δ)} are nondis- criminative for all δ if 1−F (δ) f(δ) increases over δ ∈ [δ, ¯δ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' An alternative equivalent condition leading to the results is that function log[1 − F(δ)] is strictly convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Some typical distributions satisfying Lemma 3 are worth highlighting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' One example is when f(δ) is a gamma distri- bution for parameter α < 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', f(δ) = ψαδα−1 exp(−ψδ) Γ(α) , where δ ≥ 0 and Γ(δ) is a complete Gamma function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Another example is when f(δ) admits a Weibull distribution under α < 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', f(δ) = ψαδα−1 exp(−ψδα), δ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In both types of distributions, most of the IoT users are with type δ = 0 or close to δ, and its number decreases exponentially as the parameter δ increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, the SP designs nondiscriminative contracts for all users, extracting the profits from the majority of customers in the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Moreover, this nondiscriminative service provision mechanism aligns with the phenomenon of focusing on the majority, where the small group of users with larger types are treated in a homogeneous manner as the major population nested in lower types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (4) Invariant nondiscriminative service pricing: One natural question is the impact of convexity of log[1 − F(δ)] on the service price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For various type distributions f(δ) satisfying the condition in Lemma 3, we show that the convexity of F(δ) has no influence on the neutral service pricing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, based on the constraint � ¯δ δ qo(δ)f(δ)dδ = q, where qo(δ) = qc, ∀δ, we obtain qc � ¯δ δ f(δ)dδ = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Therefore, under the the nondiscriminative pricing of sensing services, the QoS is qc = q for all users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, the IR constraint V (δ) = 0 leads to the optimal constant pricing pc = δq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hence, whenever the SP offers a nondiscriminative price scheme to all IoT users, the price must be invariant equaling to δq in spite of the user’s type distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' CASE STUDIES: UAV-ENABLED VIRTUAL REALITY In this section, we apply the SaaS paradigm to UAV-enabled virtual reality as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1 to illustrate the optimal contract design principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We envision a large VR service market in the future, and thus a huge number of users will purchase the VR services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This SaaS paradigm can be also applied to other personalized data related service provision scenarios, such as virtual tourism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This virtual service modality becomes popular under the current disruptions caused by COVID-19 pandemic worldwide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' UAV-Enabled VR Setting The VR quality can be quantified by user experience related metrics, including the resolution of the captured scene of UAV (˜q1), the delay in sensing data transmission (˜q2), and the reliability of UAV communicating with the tower (˜q3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, for the resolution quality ˜q1, it can be in the general classes of 240p, 360p, 480p, 720p, 1080p (commonly available options such as in the streaming services), and the qualities between these classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The delay ˜q2 is composed of factors including processing delay, queuing delay, transmission delay, and propagation delay of sensing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The delay can be reduced by using a dedicated network that streamlines the network path, which is more costly for the sensing service provider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The tolerable end-to-end delay of modern VR ap- plications is of an order of milliseconds, and a desired QoS has it less than 1 or 2 milliseconds [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The communication reliability ˜q3 between UAV and tower can be measured by the success rate that data packets are transmitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' According to a video QoS tutorial by Cisco [47], the reliability should be above 99% for a high QoS, and it is between 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5% and 95% depending on the specific type of services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The reliability above is quantified by the packet loss rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We can aggregate these major metrics into a single measure q taking values in the real space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' More specifically, the QoS q can be determined by a linear combination in a form of κ1˜q1 + κ2˜q2 + κ3˜q3, where κi, i = 1, 2, 3, are positive weighting factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Equal weighting refers to the scenario with κ1 = κ2 = κ3 = 1/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' To differentiate the delivered services and pricing in terms of metrics considered, we consider that, comparing with a small q, a larger q has all higher values in ˜q1, ˜q2, and ˜q3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This modeling also fits the real-world scenario well, as the customers choose a higher QoS should receive better service in every factor considered (resolution, delay, reliability) by paying more service fee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We anticipate a large VR service market in the future, and thus a huge number of users will purchase the VR services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We further specify the mean QoS q = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' As the sensing QoS is a mapping considering various metrics, we set the mean QoS q = 5 corresponding to the service with 720p resolution, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='15sec delay, and 97% UAV transmission reliability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' After obtaining the QoS in the optimal contract later on, we can reversely map q to the three specific metrics considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on the current technologies in communication and VR, we consider the resolution, delay, and reliability admit a value from 240p to 1080p, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 ms to 5 ms, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='95% to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='99%, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that in the optimal mechanism design, higher types of users receive better quality of VR service from the SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' As depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2, the user’s type distribution admits f(δ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='952e−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='952δ, and thus F(δ) = 1 − e−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='952δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' These distribution functions are aligned with the market data as discussed in Example 1 in Section II-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Optimal Contracts under Hidden Information Based on Corollary 3, we depict the optimal contracts of VR services in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4 with various values of a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The weighting factor σ admits a value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='16, which gives a reasonable comparison between the service charging fee and the cost of providing the service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In the cases with parameter a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51, and using the results in Section IV-B, we obtain β = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='14, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='215, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='315, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' With these selected parameters, the obtained service pricing also matches with the data market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' One observation is that both the VR pric- ing and the QoS mappings are monotonically increasing with the user’s type, leading to an incentive compatible contract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Another phenomenon is that as a increases, the VR QoS is decreasing for a given user’s type under the regime δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The reason is that a larger a indicates a higher service cost of the SP which leads to a degraded VR QoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, the VR pricing decreases as well for a given δ as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Different with the findings in regime δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47, the VR QoS increases with the parameter a when δ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47, showing that a larger cost of the SP provides a better VR service for the customers of type δ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 while the customers paying less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Note that the mean VR QoS q stays the same for all investigated cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, to maintain a constant reputation that the VR SP builds in the market, the received QoS for customers of type δ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 should increase with a comparing with those of δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This phenomenon also aligns with the fact that at the early stage of VR services promotion (a is large), the SP focuses more on the types of customers with a large population in the market (small δ in the exponential distribution), by providing a relatively better VR service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Based on the VR application modeling in Section VII-A, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4(c) presents the specific sensing QoS in terms of the considered resolution, delay, and reliability metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Under the the designed optimal contracts {p∗(δ), q∗(δ)}, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 5 shows the corresponding utility of SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' As a increases which yields a larger service cost, the SP’s aggregate revenue decreases accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In addition, for some small types δ close to δ, U(δ) can be negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' This phenomenon indicates that the SP makes most of the profits from the users who demand a high VR QoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content="5 4 VR user's type 0 2 4 6 8 10 12 14 VR pricing scheme p*( ) ($) a=0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 (a) VR pricing p∗(δ) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content="5 4 VR user's type 0 1 2 3 4 5 6 7 8 9 VR QoS q*( ) a=0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 (b) VR QoS q∗(δ) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content="5 4 VR user's type 400 600 800 1000 Resolution (p) a=0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content="5 4 VR user's type 0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='3 Delay (sec) a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content="5 4 VR user's type 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='98 1 Reliability (%) a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 (c) VR QoS in terms of resolution, delay, and reliability Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (a) and (b) illustrate the optimal pricing scheme and the corresponding QoS of VR, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' (c) depicts the specific sensing QoS in terms of resolution, delay, and reliability metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Optimal Contracts under Full Information For comparison, we present the optimal contracts under the full information based on Theorem 2 and quantify the information cost associated with the user’s private types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 6 shows the optimal pricing pb(δ) and the QoS mapping qb(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, pb(δ) is larger than the counterpart p∗(δ) under asymmetric information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Due to the reputation constraint, the VR QoS qb(δ) has a similar trajectory as q∗(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The corresponding SP’s revenue is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Similarly, a larger a reduces the payoff of the VR SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Furthermore, we can conclude that the SP earns more by knowing the private user’s type information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' For example, when a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47, the average utility of serving a user is 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='4$ which is more than 4 times larger than the one under hidden information depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' CONCLUSION In this paper, we have established a Sensing-as-Service (SaaS) framework for QoS-based data trading in the IoT markets using contract theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The proposed framework is de- signed for massive IoT scenarios where users are characterized by their service requirements and sensing data available to the service provider (SP) is characterized by quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=" Depending on the probability distribution of user’s QoS needs, the profit 0 1 2 3 4 VR user's type 1 0 1 2 3 4 5 6 Utility U( ) ($) a=0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='9 1 Average Utility of SP ($) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Utility of the SP under hidden information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The SP earns profits from the users who demand a better VR service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=" 0 1 2 3 4 VR user's type 0 1 2 3 4 5 6 7 8 9 VR QoS qb( ) a=0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content="51 0 1 2 3 4 VR user's type 0 5 10 15 20 25 30 35 VR pricing scheme pb( ) ($) a=0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 Benchmark Scenario Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Optimal contracts in the benchmark scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The VR service pricing pb(δ) is larger than the counterpart p∗(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' maximizing contract solutions are proposed between the SP and users, which admit different structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Specifically, under a wide class of user’s type distributions without a large or sudden decrease, the data pricing scheme and QoS mapping are monotonically increasing with the user types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Otherwise, nondiscriminative pricing phenomenon is observed which re- duces the diversity of service provisions to the IoT users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Moreover, invariant pricing phenomenon can occur when the user’s type distribution decreases exponentially, and thus the service provider targets the majority of users in the market to maximize the profits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' We have also validated our results using a case study based on the application of the SaaS framework to UAV-enabled virtual reality, where the SP makes more profit by providing data services to higher type users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Future work can expand the SaaS contract design to cases when bounded rationality is considered in the user’s behavior, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', users have uncertainty on their type parameters, and subsequently design robust contract mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=" Another direction is to develop 0 1 2 3 4 VR user's type 5 0 5 10 15 20 25 30 Utility U( ) ($) a=0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='47 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='49 a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='51 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='5 4 Average Utility of SP ($) Benchmark Scenario Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Utility of the SP in the benchmark scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The SP’s revenue under full information is more than 4 times larger than the corresponding one under asymmetric information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' an online learning approach to designing optimal contract solutions when the user’s type distribution is unknown to the SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' APPENDIX A PROOF OF LEMMA 1 The first-order optimality condition (FOC) on (1) with respect to δ′ can be expressed as ∂Φ(δ,q(δ′)) ∂q(δ′) dq(δ′) dδ′ − dp(δ′) dδ′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The IC constraint in (3) indicates that the user of type δ achieves the largest payoff when claiming its true type δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Thus, under δ′ = δ, the FOC becomes ∂Φ(δ,q(δ)) ∂q(δ) dq(δ) dδ − dp(δ) dδ = 0, which yields the local incentive constraint (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Similarly, the second-order optimality condition (SOC) can be written as: ∂2Φ(δ,q(δ′)) ∂q(δ′)2 ( dq(δ′) dδ′ )2 + ∂Φ(δ,q(δ′)) ∂q(δ′) d2q(δ′) dδ′2 − d2p(δ′) dδ′2 ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Differentiating (6) with respect to δ further gives d2p(δ) dδ2 = ∂Φ2(δ,q(δ)) ∂q(δ)2 ( dq(δ) dδ )2 + ∂Φ2(δ,q(δ)) ∂q(δ)∂δ dq(δ) dδ + ∂Φ(δ,q(δ)) ∂q(δ) d2q(δ) dδ2 , and comparing it with the SOC, we obtain ∂Φ2(δ,q(δ)) ∂q(δ)∂δ dq(δ) dδ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Together with Assumption 1, we obtain the monotonicity constraint (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' The next step is to show that (6) and (7) together imply the IC constraint (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Assume that the IC constraint does not hold for at least one type of users, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=', δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then, there exists a ˜δ ̸= δ such that Φ(δ, q(δ))−p(δ) < Φ(δ, q(˜δ))−p(˜δ), and hence � ˜δ δ ( ∂Φ(δ,q(τ)) ∂q(τ) dq(τ) dτ − dp(τ) dτ )dτ > 0, where we can check that the derivative of Φ(δ, q(τ)) − p(τ) with respect to τ is exactly the integrand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Then when ˜δ > δ which gives τ > δ, we obtain ∂Φ(δ,q(τ)) ∂q(τ) < ∂Φ(τ,q(τ)) ∂q(τ) by Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' In addition, (6) indicates that � ˜δ δ ( ∂Φ(τ,q(τ)) ∂q(τ) dq(τ) dτ − dp(τ) dτ )dτ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Replacing ∂Φ(τ,q(τ)) ∂q(τ) in the integrand by ∂Φ(δ,q(τ)) ∂q(τ) yields � ˜δ δ ( ∂Φ(δ,q(τ)) ∂q(τ) dq(τ) dτ − dp(τ) dτ )dτ < 0 since ∂Φ(δ,q(τ)) ∂q(τ) < ∂Φ(τ,q(τ)) ∂q(τ) and dq(τ) dτ > 0, and this inequality contradicts with the previous integral inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Similar analysis follows for the case when ˜δ < δ, and we can conclude that (6) and (7) imply the IC constraint (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' REFERENCES [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zanella, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Bui, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Castellani, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Vangelista, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zorzi, “Internet of things for smart cities,” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 22–32, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Xiong, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Ni, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wang, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Su, “A connectivity enhancement scheme based on link transformation in IoT sensing networks,” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2297–2308, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [3] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Pan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Yeoh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Elkashlan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Vucetic, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Li, “Communication-and-computing latency minimization for UAV-enabled virtual reality delivery systems,” IEEE Transactions on Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1723–1735, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Perera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zaslavsky, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Christen, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Georgakopoulos, “Sensing as a service model for smart cities supported by Internet of things,” Transactions on Emerging Telecommunications Technologies, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 81–93, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Semasinghe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Maghsudi, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hossain, “Game theoretic mecha- nisms for resource management in massive wireless IoT systems,” IEEE Communications Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 55, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 121–127, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Kopp, “Pontryagin maximum principle,” in Optimization Techniques, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Mathematics in Science and Engineering, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Leitmann, Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Elsevier, 1962, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 255–279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='com/science/article/pii/S0076539208620950 [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Laffont and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Martimort, The Theory of Incentives: The Principal- Agent Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Princeton university press, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [8] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Fehr, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Klein, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Schmidt, “Fairness and contract design,” Econometrica, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 75, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 121–154, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [9] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Doherty and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Dionne, “Insurance with undiversifiable risk: Contract structure and organizational form of insurance firms,” Journal of Risk and Uncertainty, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 187–203, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Corbett and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' De Groote, “A supplier’s optimal quantity discount policy under asymmetric information,” Management Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 46, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 444–450, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Driessen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Monsieur, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Van Den Heuvel, “Data market design: A systematic literature review,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 33 123–33 153, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Sheng, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Chen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wu, “Futures-based resource trading and fair pricing in real-time IoT networks,” IEEE Wireless Communications Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 125–128, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [13] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Su, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Ye, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zha, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Han, “Matching with contracts-based resource trading and price negotiation in multi-access edge computing,” IEEE Wireless Communications Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 892–896, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [14] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Gupta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Singh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Dhurandher, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Han, “Contract theory based incentive design mechanism for opportunistic IoT networks,” IEEE Internet of Things Journal, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1–1, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [15] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Yi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Cai, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Su, “A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive applica- tions,” IEEE Transactions on Mobile Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 29–43, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Diamanti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Charatsaris, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Tsiropoulou, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Papavassiliou, “Incentive mechanism and resource allocation for edge-fog networks driven by multi-dimensional contract and game theories,” IEEE Open Journal of the Communications Society, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 435–452, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [17] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hassan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Yuen, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Niyato, “Towards small aoi and low latency via operator content platform: A contract theory-based pricing,” IEEE Transactions on Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 366–378, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [18] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Dang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Kim, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Khan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Kazmi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Han, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hong, “On-device computational caching-enabled augmented reality for 5g and beyond: A contract-theory-based incentive mechanism,” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 24, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 17 382–17 394, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [19] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Qiu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Chen, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zheng, “Optimal pricing mechanism for data market in blockchain-enhanced Internet of things,” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 9748–9761, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Lu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Qi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Qi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Song, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Liu, “Say no to price dis- crimination: Decentralized and automated incentives for price auditing in ride-hailing services,” IEEE Transactions on Mobile Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 663–680, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [21] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Weerasinghe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hewa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Liyanage, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Kanhere, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Ylianttila, “A novel Blockchain-as-a-service (BaaS) platform for local 5g opera- tors,” IEEE Open Journal of the Communications Society, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 575–601, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [22] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Nguyen, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Leyva-Mayorga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Lewis, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Popovski, “Modeling and analysis of data trading on blockchain-based market in IoT networks,” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 6487– 6497, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Niyato, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Li, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Han, “Contract-theoretic pricing for security deposits in sharded blockchain with Internet of things (IoT),” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 10 052– 10 070, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [24] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Pan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Song, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Dawy, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Han, “A survey of contract theory-based incentive mechanism design in wireless networks,” IEEE Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 24, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 80–85, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [25] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Song, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Saad, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Dawy, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Han, “Contract-based incentive mechanisms for device-to-device communications in cellular networks,” IEEE Journal on Selected Areas in Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2144–2155, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [26] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' He, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Shi, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Chen, “Promoting device-to- device communication in cellular networks by contract-based incentive mechanisms,” IEEE Network, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 14–20, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [27] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hasan and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Bhargava, “Relay selection for OFDM wireless sys- tems under asymmetric information: A contract-theory based approach,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3824–3837, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [28] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Duan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Gao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Huang, “Cooperative spectrum sharing: A contract-based approach,” IEEE Transactions on Mobile Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 174–187, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [29] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Gao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Xu, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhang, “Spectrum trading in cognitive radio networks: A contract-theoretic modeling approach,” IEEE Journal on Selected Areas in Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 843–855, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [30] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Chang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' H¨am¨al¨ainen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Han, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Ristaniemi, “Incentive mechanism for resource allocation in wireless virtualized networks with multiple infrastructure providers,” IEEE Transactions on Mobile Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 103–115, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [31] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Ma, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Gao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Liu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Huang, “A contract-based incen- tive mechanism for crowdsourced wireless community networks,” in Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [32] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Nie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Luo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Xiong, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Niyato, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wang, “A Stackelberg game approach toward socially-aware incentive mechanisms for mobile crowdsensing,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 724–738, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [33] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Xiong, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Niyato, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Han, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhang, “Dynamic pricing for revenue maximization in mobile social data market with network effects,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1722–1737, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [34] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Duan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Kubo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Sugiyama, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Huang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hasegawa, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Walrand, “Motivating smartphone collaboration in data acquisition and distributed computing,” IEEE Transactions on Mobile Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2320–2333, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [35] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Xiong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Niyato, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Zhang, “Contract design in hierarchical game for sponsored content service market,” IEEE Transactions on Mobile Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2763–2778, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [36] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Al-Turjman, “Price-based data delivery framework for dynamic and pervasive IoT,” Pervasive and Mobile Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 42, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 299–316, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [37] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Al-Fagih, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Al-Turjman, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Alsalih, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Hassanein, “A priced public sensing framework for heterogeneous IoT architec- tures,” IEEE Transactions on Emerging Topics in Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 133–147, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [38] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Kantarci and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Mouftah, “Trustworthy sensing for public safety in cloud-centric Internet of things,” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 360–368, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [39] “How much would you spend on a virtual reality headset?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Statista, 2015, [Online] Available:https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='statista.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='com/statistics/457117/ virtual-reality-headset-amount-willing-to-pay-in-the-united-states/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [40] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Myerson, “Incentive compatibility and the bargaining problem,” Econometrica, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 61–73, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [41] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Roy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Rao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Alpcan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Das, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Palaniswami, “Achieving qos for bursty urllc applications over passive optical networks,” Journal of Optical Communications and Networking, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 411–425, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [42] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Wang, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Liu, “Optimal admission control mechanism design for time-sensitive services in edge computing,” in IEEE Confer- ence on Computer Communications (INFOCOM), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1169–1178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [43] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Lakshminarayana, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Assaad, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Debbah, “Transmit power minimization in small cell networks under time average qos constraints,” IEEE Journal on Selected Areas in Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 2087–2103, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [44] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Kirk, Optimal Control Theory: An Introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Courier Corporation, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [45] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Mangasarian, “Sufficient conditions for the optimal control of nonlinear systems,” SIAM Journal on Control, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' 139– 152, 1966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [46] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' Fettweis and et al, “The Tactile Internet: ITU-T Technology Watch Report,” 2014, [Online] Available:https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='itu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='int/dms pub/ itu-t/opb/gen/T-GEN-TWATCH-2014-1-PDF-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content=' [47] Cisco, “Video Quality of Service (QOS) Tutorial,” 2017, [Online] Avail- able:https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='cisco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='com/c/en/us/support/docs/quality-of-service-qos/ qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/J9E3T4oBgHgl3EQfvQsy/content/2301.04691v1.pdf'} diff --git a/JtE1T4oBgHgl3EQfGQNW/content/tmp_files/2301.02911v1.pdf.txt b/JtE1T4oBgHgl3EQfGQNW/content/tmp_files/2301.02911v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9a7a8f74e4e9406cd68c6a78bd689bbf797678b1 --- /dev/null +++ b/JtE1T4oBgHgl3EQfGQNW/content/tmp_files/2301.02911v1.pdf.txt @@ -0,0 +1,821 @@ +TOWARDS EARLY PREDICTION OF NEURODEVELOPMENTAL +DISORDERS: COMPUTATIONAL MODEL FOR FACE TOUCH AND +SELF-ADAPTORS IN INFANTS +Bruno Tafur +University of Cambridge +United Kingdom +bt403@cantab.ac.uk +Marwa Mahmoud +University of Glasgow +United Kingdom +marwa.mahmoud@glasgow.ac.uk +Staci Weiss +University of Cambridge +United Kingdom +smw95@cam.ac.uk +ABSTRACT +Infants’ neurological development is heavily influenced by their motor skills. Evaluating a baby’s +movements is key to understanding possible risks of developmental disorders in their growth. Previous +research in psychology has shown that measuring specific movements or gestures such as face touches +in babies is essential to analyse how babies understand themselves and their context. This research +proposes the first automatic approach that detects face touches from video recordings by tracking +infants’ movements and gestures. The study uses a multimodal feature fusion approach mixing spatial +and temporal features and exploits skeleton tracking information to generate more than 170 aggregated +features of hand, face and body. This research proposes data-driven machine learning models for +the detection and classification of face touch in infants. We used cross dataset testing to evaluate +our proposed models. The models achieved 87.0% accuracy in detecting face touches and 71.4% +macro-average accuracy in detecting specific face touch locations with significant improvements over +Zero Rule and uniform random chance baselines. Moreover, we show that when we run our model to +extract face touch frequencies of a larger dataset, we can predict the development of fine motor skills +during the first 5 months after birth. +Keywords Computer Vision · Autoencoders · Neurodevelopment factors +1 +Introduction +Figure 1: An overview of our proposed framework. Spatial, temporal and appearance features are extracted, then they +are concatenated with a feature integration layer and a classification approach is used to detect and classify the infant’s +face touch, which is subsequently used to predict the neurodevelopmental scores. +Analysing body movements in early childhood gives insights into the infant’s neurological development, and it can play +an essential role in determining if a baby is suffering from injuries in the nervous system or a hereditary disease [1]. +arXiv:2301.02911v1 [cs.CV] 7 Jan 2023 + +777 +Video +Features +Fusion Model +Output +Raw frames +Skeleton coordinates +Face touch +Geome- +Appea- +Wrists / Neck / Hips +trical +rance +Mouth / Cheek / Ears / Eyes / +ral + Features +features +Nose +No face touch +Face coordinates +Feature Integration +Ears / Eyes / Mouth / Nose +Classification +Temporal +Velocity Wrist +Neurodevelopmental + Velocity / Displacement +scores +- Feature interpolationTowards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +Also, specific movements such as face touches have been found to be crucial in the development of babies since their +fetal age [2]. For example, face touches to sensitive areas of the face such as the mouth are frequent in gestational age +as babies get prepared to feed. Different cultures have also shown differences in self-touch in babies, and age has also +been established as a determinant factor [2]. +Various methods are utilised to track and measure movements in babies, including 3D motion capture, sensors and +video cameras [3]. 3D motion capture and sensors are mostly used in laboratory settings instead of a more natural +setting for the infant as it requires specific equipment and tools [4]. There have been few studies that utilised computer +vision with video cameras. This method has the advantages of being highly flexible to different environments, giving +high contextual information and being easier to interpret [3]. However, it requires more complex computations, depends +on the camera quality, angle and movement, and is difficult to generalise to untrained cases. +Various studies have explored the fidgety movements of babies by analysing pixel displacement in video frames [5, 6, 7]. +Recently, some studies have begun to examine more robust tracking algorithms for body parts based on methods such +as OpenPose [4, 8]. Despite being an important measure for neurodevelopment, no previous research has looked at +specific gesture detection in much detail, such as detecting specific hand movements. Most research is centred on +general fidgety movements or general statistics descriptors. Also, these approaches have primarily focused on a general +classification for high-risk infants or cerebral palsy [4, 9] or classification of movement types [5, 8, 10]. In the case of +face touches, research is limited and has centred on hand-over face gestures in adults [11] or touches from the mother to +a child [12, 13]. +This research proposes a machine learning model for automatic detection and classification of face touches in newborn +infants and their location around key areas of the face using features extracted from raw videos. It proposes using +feature selection and fusion models based on temporal and spatial features, using geometric and appearance features of +the infant’s face and body. The proposed models are validated and evaluated on a couple of datasets and then applied to +a large video dataset to extract gesture descriptors of video of one-month-old infants automatically. Using regression, +we demonstrate the effectiveness of extracting these gestures in predicting Mullen neurodevelopmental scores [14] for +the same infants. To the best of our knowledge, this research represents the first study to analyse specific gestures in +infants at this level of granularity and the first to analyse self-touch. The main contributions can be described as follows: +• Proposing a data-driven machine learning model for detection and classification of face touch in infants +exploiting spatial and temporal features. +• Evaluating and validating the proposed method in a cross-dataset manner using challenging naturally collected +datasets on infants. +• Presenting preliminary results on using our proposed computational model to detect face touch features in +infants on a larger labelled dataset and demonstrating the ability to predict neurodevelopmental scores of the +infants using automatic face touch dynamics. +• Our proposed trained validated model is available on Github as an open source tool for the community. We +believe this work will enable future research in infant behaviour modelling and provide a tool for future +neurodevelopmental studies. +2 +Related Work +The most relevant studies that use computer vision in the context of neurodevelopment analysis in infants have centered +on tracking general movement indicators; such as aggregated data from pose coordinates [4, 8] or displacement +information from overall images [5, 6, 7]. In the analysis of touch, a couple of studies have centred on an analysis of a +controlled environment where a mother touches her child [12, 13]. +Infants have different proportions in their limbs than adults, making them more complex for general tracking mechanisms +to work with the same accuracy. Therefore, the study carried out by Chambers et al. adapted tracking methods based on +computer vision on babies [4]. Their study focused on developing a tracking method for infants’ skeleton coordinates, +and they used these statistics to compare the risk of developing neuromotor impairment in healthy and at-risk infants. +Their study expanded on OpenPose [15] implementation for humans by tuning the model to be used on infant videos. +Regarding more specific movement patterns related to neurological disorders, a study by Das et al. [10] focused on +analysing the kicking patterns of at-risk infants. Their method tracked their movements using OpenPose and extracted +additional KAZE features [16] as image descriptors. In their experiments, the authors used an SVM classifier to +differentiate the kicking pattern types as simultaneous movement (SM), non-simultaneous movement (NSM) and no +movement (NM). +2 + +Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +In the case of touch, Chen et al. performed a couple of studies focused on the detection of interactions between a +caregiver and a child in a controlled environment [12, 13]. Specifically, their research focused on detecting touch from +the caregiver to the child in particular locations: head, arms, legs, hand, torso and feet. Their latest study applied two +main methods; firstly, they extracted tracking information by detecting the skeleton locations. Secondly, they extracted +the infant’s location in the image by applying image segmentation using the GrabCut algorithm. +Therefore, although some studies have attempted to tackle some of these issues in infants, most of them have focused +on the analysis of general movements instead of specific gestures. This study analyses hand to face gestures in infants +in larger detail and granularity and proposes novel machine learning models for automatic detection. +The relationship between face and body touch in infants and how they correlate with cognitive development has not +been studied quantitatively and systematically before in previous literature. The Mullen Scales of Early Learning is +used to measure the cognitive development of infants in five different categories: gross motor (GM), fine motor (FM), +visual reception (VR), receptive language (RL) and expressive language (EL) [14, 17]. They are a key measure of the +development of the child during the first years after birth. Previous studies have not tackled the relationship of detected +features with MSEL scores. We aim to analyse this relationship based on gesture and movement data extracted from the +infant. +3 +Datasets +For our data-driven models, we used two main datasets: BRIGHT [18] and Chambers [4]. A subset of the two datasets +was labelled and validated by a psychology expert to be later used for our models. Then, the videos from the BRIGHT +dataset were used to evaluate the correlations between face touch dynamics and neurodevelopmental scores. +3.1 +BRIGHT dataset +This dataset was provided by the ’removed for anonymous submission’ and is part of the studies carried out in the +Brain Imaging for Global Health (BRIGHT) Project [18] in which they study infants from Gambia and UK during their +first 24 months of life. The initial sample provided included 29 videos of UK infants. From the 29 videos, 23 videos +were selected as some of the babies were occluded during most of the video runtime. Each video shows the behaviour +of one infant of fewer than 2 months of age, actively responding to the input given by their mother. The videos were +recorded in different rooms, with the infant lying down with a mirror positioned on the wall behind the head of the baby. +The camera is static, and the infants generally cover a small portion of the frame but can be located in different parts +of the frame. Another complex factor that characterises this dataset includes the mother’s presence during the video, +sometimes occupying a significant part of the frame with a bigger skeleton and limbs. Also, the fact that the infants are +lying down while the camera is facing the front means that the camera generally captures the babies’ faces from a side +or the bottom, making them difficult to detect for traditional algorithms. The babies are shown rotated in the frames at +different angles between 90° and -90°. +3.2 +Chambers dataset +This is an open dataset compiled and generated by Chambers et al [4]. 25 videos were selected based on the age of the +infants in the video by filtering and selecting only the videos with babies less than 2 months to ensure better consistency +with the BRIGHT dataset. The videos show babies lying down on their own and interacting in a natural environment. +They could be dancing, playing or rolling over in their crib. The camera is sometimes moving while filming the baby, +and the babies generally cover most of the frame. The videos do not feature other people in the frame, but the babies +sometimes can move at different angles. Also, the resolutions are very varied between videos, with some of them being +more blurry and with smaller frames. The babies are shown rotated in the frames at different angles between 90° and +-90°. +4 +Labelling +The labelling process was carried out using a tagging system developed for this research which allowed efficient tagging +of the image frames. Also, the tagging was carried out with the support of a psychology expert, who helped by labelling +part of the dataset and providing her judgement about the different labelling categories. +As this study aims to detect hand over face gestures in infants automatically, the main labelling category to tag needed +to differentiate between face touch or no touch in each frame. Therefore, it was defined as follows: +3 + +Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +Table 1: Database sizes and labels +Dataset +Sizes +# Videos +25 +Total Frames +1769 +Chambers +Mean Frames per video +70.76 +% On Head +29.2% +% Outside Head +70.8% +# Videos +23 +Total Frames +2039 +BRIGHT +Mean Frames per video +88.6 +% On Head +29.7% +% Outside Head +70.3% +Total Number of Frames +3808 +• On Head: From a human perspective, it can be seen that the hand could be touching the head area. In this +study, the head area considers any of the following locations or any area enclosed by the those locations: eyes, +ears, nose, mouth, cheeks, forehead and neck. +• Outside Head: From a human perspective, it can be seen that the hand is not on the head area as defined. +Additionally, we labelled our dataset with the following non-exclusive categories: eyes, ears, nose, mouth and cheeks, +as they are the main differentiable parts of the face. The categories were also discussed and agreed upon with the +psychology expert to validate their significance and usefulness from the neurodevelopment perspective. +The final labelled datasets sizes and distributions can be seen in Table I. The final proportion of “on head” versus +“outside head” was of 29.5% to 70.5%, which is expected for this kind of natural dataset. +5 +METHOD +Because of the small size of the labelled dataset, we could not use an end-to-end deep learning model. In this section +we present the feature extraction and selection steps and the proposed feature fusion machine learning model. +5.1 +Feature extraction of face and body +Our proposed models required spatial and temporal features related to the infants’ face touch gestures. The features +extracted were selected considering the relationship between the hands of the baby and the face. +5.1.1 +Extraction of face and body landmarks +We first extracted basic face and body landmarks. +- Pose coordinates: Positions of the skeleton parts were extracted for every baby and every frame by using the fine-tuned +OpenPose [15] model trained by Chambers et al. [4]. Following the implementation of Chambers et al., the raw pose +locations were normalised, smoothed and interpolated per video. +- Face Region: Based on the extracted pose features and estimated orientation, an accurate estimate of the baby’s face +location was carried out and the image was cropped in the face region. If no possible face was found in a given frame, +the locations of the face of the nearest frames were used as guidance. Where possible, the face region was further +aligned based on the locations of the eyes and nose. +- Face coordinates: OpenPose provides general locations of the eyes, nose and ears, but its purpose is centred on getting +the whole skeleton and not on specific facial landmarks. Therefore, information about the location of facial features +based on 3D-FAN [19] was also used. The faces were extracted from the aligned cropped face regions. +5.1.2 +Extraction of geometric, appearance and temporal features +After basic landmarks features were extracted, we extracted a set of geometric and temporal feature descriptors. +Based on the initial features, the following features were calculated: +4 + +Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +Figure 2: Example body skeleton extracted using OpenPose and face keypoints extracted using 3D-FAN +- Face and body geometrical features (Distance and Angular): Based on the coordinates of the skeleton of the baby, the +normalised distances between the wrists and the ears, eyes, neck and nose were extracted. For each case, the distances +considered included differences in the X direction, differences in the Y direction and euclidean distances. Additionally, +based on the coordinates of the skeleton of the baby, the angles of the elbows and shoulders were extracted. +- Hands geometrical features (Distance): As the adapted OpenPose model by Chambers et al. [4] only generated the +skeleton up to the wrists, additional information was obtained by extending the skeleton to the hands. The MediaPipe +detection algorithm [20] was used in the area surrounding the wrists to obtain the hand coordinates. Based on the +coordinates, the normalised distances between the fingers and the eyes and nose were calculated. The distances included +differences in the X direction, differences in the Y direction and euclidean distances. Also, confidence scores were +considered as additional features based on the confidence of the MediaPipe algorithm detecting each hand. +- Temporal features: The temporal features were centred on aggregated information over various frames. We calculated +features including displacement, speed and acceleration obtained based on the coordinates of the skeleton of the baby +for the wrists and elbows. +- Appearance Features: Histogram of Oriented Gradients (HOG) [21] is a method for feature extraction based on +the directionality of the gradients in different locations in an image. This method has shown significant success +rate in different image detection tasks including detecting faces and expressions [22, 23, 24] and detecting gestures +[25, 26, 27]. These features were extracted only for the main region of interest, which is the face area. Consequently, +these features were extracted from the cropped images of the face. Additionally, we wanted to extract more localised +spatial information inside the face. Therefore, more granular HOG features were extracted in two specific face areas: +one related to the upper region of the face based on the eyes location and another related to the lower region based on +the mouth location. Also, confidence scores were considered as additional features based on the average confidence of +the landmarks in each region as calculated by 3D-FAN. +Figure 3: Examples of HOG features obtained for the face region, the upper head and the lower head. Note the +challenging nature of the dataset with extreme head poses and viewpoints. +5.1.3 +Features smoothing and data augmentation +As a final step in the feature extraction process, we smoothed and augmented the calculated features to be able to train +the classification models on the data. The outliers of the geometrical and temporal features per video were replaced by +blank values, and the data was interpolated per video to cover any deleted or missing values. If data was still missing, it +was replaced by mean values from the training data during the training stage. +Finally, to compensate for the small size of the dataset, the training data was augmented by flipping the images +horizontally, flipping all the features accordingly and considering the directionality of these features. +5.2 +Face touch detection and classification +After feature extraction and smoothing, we handled face touch detection and classification as two different classification +problems. The first is to detect when the hand touches the face as a binary classification problem; then, we classify +different touch location areas as a multi-label classification problem. The architectures proposed for both problems are +5 + +100 +200 +300 +400 +100 +200 +300 +400Input image +Input image +Input image +Histogram of Oriented Gradients +10 +20 +20 +40 +60 +20 +100 +120 +20 +80 +100 +120 +40 +80 +60 +Histogram of Oriented Gradients +Histogram of Oriented Gradients +00 +20 +60 +20 +80 +100 +120 +20 +40 +60 +80 +100 +120 +20 +40 +60 +80 +100 +120 +20 +40 +60 +80 +100 +120Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +very similar. The main difference lies in the method used for the classification component in the final layer. The models +can be divided into the following: +5.2.1 +Feature selection and dimensionality reduction +Our first proposed method used feature selection and dimensionality reduction and a Support Vector Machine (SVM) +classifier for solving the face touch detection problem. +There were four main categories of geometrical and temporal features: body distance features, hand distance features, +angular features and temporal features. Many of the features in the same categories correlated with each other as they +measured similar characteristics. Therefore, to ensure proper representation of the features, this method proposed +reducing these features before training a classifier. +Firstly, the features were filtered based on an automatic feature selection process. Random Forest was used to select +the most representative features and prevent skewing the classifier with features that were not that significant. The +feature selection was carried out by cross-validating with 5-folds in the training set to ensure independence. Then, +Principal Component Analysis (PCA) was used for dimensionality reduction. PCA has shown effective results in +detection problems when facing a large number of features [28, 29, 30]. PCA was used to filter a percentage of the +explained variance. The threshold of this explained variance was established as a hyperparameter that was also learned +by cross-validating with 5-folds in the training set. +After applying PCA, the classification algorithm used SVM using an RBF kernel. The model was cross-validated +with 5-folds in the training set to choose the best hyperparameters for SVM. The search for the best hyperparameters +for SVM was done in combination with the search for the threshold for PCA, as the hyperparameters were possibly +dependent on each other using a grid search method [31]. +In the case of multi-class classification for the face areas, the Label Powerset model was used with underlying SVMs +to predict the multiple overlapping labels. Label Powerset transforms the labels by creating a class for each possible +combination of labels and creates a classifier for each combination [32]. Consequently, it has the advantage of +considering the possible relationships between the labels. This model was configured by tuning the hyperparameters in +the same way as in the SVM binary classifier. +5.2.2 +Feature optimisation using deep learned features +Our second proposed method used autoencoders as a feature optimisation and dimensionality reduction technique. +This method has been used in various studies as an effective way of reducing dimensionality while maintaining the +representation of the data, and it has been successfully used before with repetitive and correlated features [33]. In this +case, autoencoders were used to generate a latent representation of the input features. +Firstly, the dimensions of the features were reduced based on the autoencoder model. The model uses a neural network +architecture that learns how to represent the data in lower dimensions and reconstruct it [33]. It then minimises the error +between the reconstruction and the original input. The aim of the autoencoder is to exploit the correlations in the input +features to reduce the final dimensions without losing relevant information. +This method was used with two alternatives of input features. The first one used only geometrical and temporal features. +The second alternative also used the HOG features. The main hyperparameters that were learned for this model included +the latent dimensions and the number of epochs. These hyperparameters were selected based on the results of a 5-fold +cross-validation in the training set. +After encoding the data, the classification process was done using SVM with an RBF kernel. The input features for the +SVM classification process were the output of encoding the features with the trained encoder. The classification layer +was also cross-validated with 5-folds in the training set to choose the best hyperparameters for SVM. Finally, in the +case of the multi-label classification problem, the Label Powerset model was used with underlying SVMs to be able to +predict the multiple face touch locations. +6 +EVALUATION +We evaluated the accuracy of the detection of face touches by using a mixture of spatial and temporal features +and analysed models based on dimensionality reduction and optimisation techniques. The models were evaluated +cross-dataset to validate their effectiveness and generalisation. The approaches were evaluated with three different +configurations of the datasets to ensure the consistency of the models. Also, all segmentations of the data were grouped +by video to ensure having different videos in each set. The three configurations used were the following: +6 + +Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +• Train and Cross Validate on BRIGHT dataset - Test on Chambers dataset +• Train and Cross Validate on Chambers dataset - Test on BRIGHT dataset +• Train and Cross Validate on Chambers and on 50% of BRIGHT dataset - Test on the other 50% of BRIGHT +dataset +As there was no existing baseline for these models, the models were evaluated against Zero Rule (ZeroR) baseline and +random uniform chance. In the case of the ZeroR baseline, it is calculated by assigning the value of the majority class +to every data point [34, 35, 36] while random chance assigns a class based on random uniform probabilities. Statistical +McNemar’s tests were carried out to ensure the results were significantly different. The McNemar test was used as the +compared distributions were binary targets instead of continuous variables. All the best performing models were found +significantly different with p < 0.01 in comparison to Random Chance and Zero Rule. +6.1 +Detection of face touches +The main target was to determine if there was a face touch. This problem was treated as a binary classification task +based on the classes: “on head” and “outside head”. +The models that were analysed were the following: +• Feature selection and dimensionality reduction based on geometrical and temporal features (RF-PCA-SVM): +This model followed the components described in Section 5.2.1. It performed feature selection with Random +Forest (RF) and dimensionality reduction with PCA. Finally, it performed the classification of the labels using +SVM in the case of this binary problem. It used the geometrical distance and angular features and aggregated +temporal features. +• Feature optimisation using deep learned features based on geometrical and temporal features (AUTO ENC- +SVM-I): This model was structured as described in Section 5.2.2. It used an autoencoder neural architecture to +reduce the dimensions of the input features. Finally, it performed the classification of the labels using SVM. It +used the geometrical features (distance and angular) and the temporal features. +• Feature optimisation using deep learned features based on geometrical, temporal and HOG features +(AUTOENC-SVM-II): The model was structured as described in Section 5.2.2. Similar to the previous +model, it used an autoencoder neural architecture to reduce the dimensions of the input features and SVM for +the binary classification problem. It used the geometrical features, temporal features and HOG features. +The results for predicting between “on head” and “outside head” can be seen in Table 2, 3 and 4. All the models had +significantly higher accuracy than uniform random chance and ZeroR baselines. The best performing model reached +87% accuracy when trained in a mixture of both datasets. +Overall the results of the three models were promising with high accuracy in comparison to the baselines. Also, +the results were relatively similar between the three models. Some performed better on different datasets, but the +performance was very competitive between them. All three models obtained better results than ZeroR or Random +Chance in accuracy, precision and recall. Therefore, the results demonstrated that these models can perform well in the +detection of face touch. +Even though the autoencoder models (AUTOENC-SVM) outperformed the random forest and PCA model (RF-PCA- +SVM) in two of the three dataset configurations, the difference in accuracy performance was limited. These results +demonstrate that the RF-PCA-SVM configuration was also very effective. Possibly in larger datasets, the autoencoder +based models could extract more representative features that could better outperform the RF-PCA-SVM model. +Similarly, the inclusion of the HOG features in the AUTOENC-SVM-II model did not show a noticeable increase in +performance. In the case of the BRIGHT dataset, it did show an improvement over the other models and a higher +improvement over AUTOENC-SVM-I. However, the improvement could have been greater. This could be caused +by the limited amount of data with very varied head poses and rotations. Therefore, the AUTOENC-SVM-II model +might perform better if trained in larger datasets where the HOG features can be learned with more generalisable +representations. +Finally, even though there were various challenges in the datasets that could have a negative impact on the models’ +ability to generalise between datasets, the results demonstrated that the proposed methods had high performance in the +detection of face touches. +7 + +Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +Table 2: Results -binary classification “on head” vs “outside head”. +Training and CV dataset: Chambers. Testing dataset: Bright. +Model +Accuracy +Precision +Recall +Test +On Head +On Head +Random Chance +50% +29.7% +50% +Zero Rule +70.3% +0% +0% +RF-PCA-SVM +80.3% +68.7% +62.2% +AUTOENC-SVM-I +80.7% +70.8% +59.6% +AUTOENC-SVM-II +80.6% +74.4% +53.1% +Table 3: Results -binary classification “on head” vs “outside head”. +Training and CV dataset: Bright. Testing dataset: Chambers. +Model +Accuracy +Precision +Recall +Test +On Head +On Head +Random Chance +50% +29.2% +50% +Zero Rule +70.8% +0% +0% +RF-PCA-SVM +77.8% +58.8% +80.2% +AUTOENC-SVM-I +75.2% +57.9% +54.8% +AUTOENC-SVM-II +79.6% +65.4% +63.8% +6.2 +Classification of face touch descriptors +These experiments evaluate the face touch on specific locations of the face. These locations were evaluated based on the +universe of images where there is a face touch. The key locations to predict included the following: ears, nose, cheeks, +mouth, and eyes. The problem mas evaluated as a multi-label problem because the different classes could overlap and +the infant could touch more than one location at the same time. +The proposed models for this problem are the same as the ones described in Section 6.1, so we will use the same naming +abbreviations. The main difference was the change in the classification method from SVM to Label Powerset with SVM +[32] to tackle the problem as a multi-label classification problem. Therefore, the models that were analysed were the +following: +• Feature selection and dimensionality reduction based on geometrical and temporal features (RF-PCA-SVM) +• Feature optimisation using deep learned features based on geometrical and temporal features (AUTOENC- +SVM-I) +• Feature optimisation using deep learned features based on geometrical, temporal and HOG features +(AUTOENC-SVM-II) +The experiments were carried out only on the portion of images labelled as “on head” so that it could be sufficiently +balanced; therefore the dataset was even more limited in size than the original. +The obtained results can be seen in Table 5, 6 and 7. The results show the macro-average accuracy, precision and recall +of the multiple key locations per model. The highest performing model reached 71.4% average accuracy when testing +on the Chamber’s dataset. +Table 4: Results -binary classification “on head” vs “outside head”. +Training and CV dataset: Chambers + 50% Bright. Testing dataset: 50% Bright. +Model +Accuracy +Precision +Recall +Test +On Head +On Head +Random Chance +50% +28.3% +50% +Zero Rule +71.7% +0% +0% +RF-PCA-SVM +87.0% +77.2% +76.8% +AUTOENC-SVM-I +86.9% +76.9% +77.1% +AUTOENC-SVM-II +85.7% +71.6% +82.2% +8 + +Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +Table 5: Results of predicting key areasTraining and CV dataset: Chambers. Testing dataset: Bright. +Model +Accuracy +Precision +Recall +Test +Key Area +Key Area +Random Chance +50.0% +31.1% +50.0% +Zero Rule +24.5% +13% +0% +RF-PCA-SVM +66.6% +33.5% +43.8% +AUTOENC-SVM-I +63.2% +49.6% +16.7% +AUTOENC-SVM-II +63.0% +60.9% +13.2% +Table 6: Results of predicting key areasTraining and CV dataset: Bright. Testing dataset: Chambers. +Model +Accuracy +Precision +Recall +Test +Key Area +Key Area +Random Chance +50.0% +20.8% +50% +Zero Rule +37.8% +15% +0% +RF-PCA-SVM +62.5% +36.3% +18.8% +AUTOENC-SVM-I +63.8% +29.7% +34.3% +AUTOENC-SVM-II +71.4% +35.7% +24.9% +The main metric established to select the best models during cross-validation was the average macro-accuracy of the +locations; so this was used as the main indicator of the models performance. The results demonstrated that the models +performed effectively better than the baselines. +As expected, the accuracies were lower than for the face touch problem as this was a complex multi-label problem +where multiple locations can overlap on the face, and it can be difficult even for a human to determine the exact location. +Likewise to the previous task, the results were similar between models, but these results show some indication that +HOG features might be useful in some instances. The AUTOENCODER-SVM-II model outperformed the accuracies +of the other models in two cases and demonstrated a considerable difference in accuracy when it was trained in the +BRIGHT dataset. Possibly training with HOG features in more extensive and more varied datasets could make their +representations more stable and significant in the end results. +6.3 +Predicting neurodevelopment scores +The next step was to evaluate our proposed model results - detected face touch dynamics of infants less than 2 months +old - on predicting their neurodevelopmental rates collected at ages 3 and 5 months. We chose the best-performing +model for the binary classification task (RF-PCA-SVM) and ran it on a larger dataset. Since we had the Mullen scores +only for the BRIGHT dataset, we ran our model on an average of 490 frames per video (19 videos), a total of 9298 +frames. We then extracted the face touch frequency for each infant and evaluated it versus the Mullen Scales of Early +Learning (MSEL) related to gross motor (GM) skills and fine motor (FM) skills. In this case, the data was limited +because the provided metrics were evaluated per infant, and only 19 infants of the BRIGHT dataset had their information +available. +In the case of the MSEL metrics, the data consisted of raw scores per visit of the infant related to the different MSEL +categories. A rate of development was calculated per infant per category based on the rate of increase during their first +five months. The data used for this case were the gross motor (GM) skills and the fine motor (FM) skills, as they are +related to the infant’s motor development and could be related to face touch behaviour. After calculating the rate of +Table 7: Results of predicting key areas +Training and cross-validation dataset: Chambers + 50% Bright. Testing dataset: 50% Bright. +Model +Accuracy +Precision +Recall +Test +Key Area +Key Area +Random Chance +50.0% +29.1% +50.0% +Zero Rule +21.8% +17.0% +0% +RF-PCA-SVM +60.3% +56.0% +34.3% +AUTOENC-SVM-I +58.1% +48.2% +19.2% +AUTOENC-SVM-II +60.7% +44.3% +16.7% +9 + +Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +development of the GM and FM skills, a correlation was calculated between the ratio of face touches per frame and +these rates of development of each child. +The results showed a low to moderate positive correlation between the ratio of face touches and the rate of development +during the first months. The correlation coefficient obtained for FM was 0.599 with a significant p-value of 0.0067. The +correlation coefficient for GM was 0.186, but the p-value was not found to be significant. It is possible that face touches +are more related to fine motor skills as they are more specific and localised movements. +The results indicate that measuring infants’ face touch frequencies and dynamics in their first month or two can +be a predictive measure of their neurodevelopmental scores. It also demonstrates the effectiveness of our proposed +computational model as a tool for the early prediction of neurodevelopmental factors. We make the trained model +available to the research community at ’removed for anonymous submission’ as a baseline for infant’s face touch +detection and to facilitate future research in this area on more extensive datasets. +A dataset of 19 infants is limited, so it was not possible to test more complex prediction algorithms. However, these +results show that, in more extensive datasets, the face touch frequency could be used as one independent variable to help +predict infant neurodevelopment scores such as MSEL. Also, the models proposed during this research could support +the automation of the extraction of these face touches. +7 +Conclusion +Our research proposed a machine learning model for automatic detection of face touches in infants using features +extracted from videos. This is the first study to provide a computational model for detection and classification of these +types of gestures in infants. Our proposed models using a mix of spatial and temporal features with deep learning +features demonstrated significantly high accuracies in predicting face touch and their locations around keypoints in the +face establishing a promising step for future research in this area. We also showed the effectiveness of the proposed +model in predicting MSEL scores related to fine motor (FM) skills , demonstrating that our proposed model can be used +as en early prediction tool for neurodevelopmental disorders in infants and it is considered a baseline for future work in +this domain. We believe this research will open the door for future research in this area both on the technical as well as +neurodevelopmetanl psychology fronts. +Despite the promising results, there are several limitations to our model. The datasets used were recorded in almost +uncontrolled environments, with varied camera angles and the mum’s presence in most videos. These characteristics +made the labelling as well as the classification tasks very challenging. We are also aware of the small size of the datasets +used in this work. Obtaining datasets, especially for infants, is a challenging task due to the privacy and ethical factors +that need to be considered. However, we believe this research serves as a baseline for infant face touch detection and +classification and will open the door for further research on more extensive datasets in this area. +References +[1] Nihan Hande Akcakaya, Turgay Altunalan, Tuba Derya Do˘gan, Arzu Yılmaz, and Zuhal Yapıcı. Correlation of +Prechtl Qualitative Assessment of General Movement Analysis with Neurological Evaluation: The Importance of +Inspection in Infants. Turkish Journal Of Neurology, 25(2):63–70, June 2019. +[2] Nadja Reissland and Joe Austen. Goal directed behaviours : the development of pre-natal touch behaviours. In +Daniela Corbetta and Marco Santello, editors, Reach-to-grasp behavior: brain, behavior, and modelling across +the life span., pages 3–17. Routledge, Abingdon, Oxon, August 2018. +[3] Claire Marcroft, Aftab Khan, Nicholas D. Embleton, Michael Trenell, and Thomas Plötz. Movement Recognition +Technology as a Method of Assessing Spontaneous General Movements in High Risk Infants. Frontiers in +Neurology, 5:284, January 2015. +[4] Claire Chambers, Nidhi Seethapathi, Rachit Saluja, Helen Loeb, Samuel R. Pierce, Daniel K. Bogen, Laura +Prosser, Michelle J. Johnson, and Konrad P. Kording. Computer Vision to Automatically Assess Infant Neuromotor +Risk. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering +in Medicine and Biology Society, 28(11):2431–2442, November 2020. +[5] Lars Adde, Jorunn L. Helbostad, Alexander Refsum Jensenius, Gunnar Taraldsen, and Ragnhild Støen. Using +computer-based video analysis in the study of fidgety movements. Early Human Development, 85(9):541–547, +September 2009. +10 + +Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +[6] Lars Adde, Jorunn Helbostad, Alexander R. Jensenius, Mette Langaas, and Ragnhild Støen. Identification of +fidgety movements and prediction of CP by the use of computer-based video analysis is more accurate when based +on two video recordings. Physiotherapy Theory and Practice, 29(6):469–475, August 2013. +[7] Lars Adde, Jorunn L Helbostad, Alexander R Jensenius, Gunnar Taraldsen, Kristine H Grunewaldt, and Ragnhild +Støen. Early prediction of cerebral palsy by computer-based video analysis of general movements: a feasibility +study. Developmental Medicine & Child Neurology, 52(8):773–778, 2010. +[8] Simon Reich, Dajie Zhang, Tomas Kulvicius, Sven Bölte, Karin Nielsen-Saines, Florian B. Pokorny, Robert +Peharz, Luise Poustka, Florentin Wörgötter, Christa Einspieler, and Peter B. Marschik. Novel AI driven approach +to classify infant motor functions. Scientific Reports, 11(1):9888, May 2021. +[9] Ragnhild Støen, Nils Thomas Songstad, Inger Elisabeth Silberg, Toril Fjørtoft, Alexander Refsum Jensenius, +and Lars Adde. Computer-based video analysis identifies infants with absence of fidgety movements. Pediatric +Research, 82(4):665–670, October 2017. +[10] Devleena Das, Katelyn Fry, and Ayanna M Howard. Vision-Based Detection of Simultaneous Kicking for +Identifying Movement Characteristics of Infants At-Risk for Neuro-Disorders. In 2018 17th IEEE International +Conference on Machine Learning and Applications (ICMLA), pages 1413–1418, December 2018. +[11] Marwa Mahmoud and Peter Robinson. Interpreting Hand-Over-Face Gestures. In Sidney D’Mello, Arthur +Graesser, Björn Schuller, and Jean-Claude Martin, editors, Affective Computing and Intelligent Interaction, +Lecture Notes in Computer Science, pages 248–255, Berlin, Heidelberg, 2011. Springer. +[12] Qingshuang Chen, Rana Abu-Zhaya, Amanda Seidl, and Fengqing Zhu. CNN Based Touch Interaction Detection +for Infant Speech Development. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval +(MIPR), pages 20–25, March 2019. +[13] Qingshuang Chen, He Li, Rana Abu-Zhaya, Amanda Seidl, Fengqing Zhu, and Edward J Delp. Touch Event +Recognition For Human Interaction. Electronic Imaging, 2016(11):1–6, February 2016. +[14] Eileen M Mullen and American Guidance Service. Mullen Scales of Early Learning. AGS, Circle Pines, Minnesota, +1995. OCLC: 860820407. +[15] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. OpenPose: Realtime Multi-Person 2D Pose +Estimation using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. +[16] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J. Davison. KAZE Features. In Andrew Fitzgibbon, +Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors, Computer Vision – ECCV 2012, +Lecture Notes in Computer Science, pages 214–227, Berlin, Heidelberg, 2012. Springer. +[17] Bosiljka Milosavljevic, Perijne Vellekoop, Helen Maris, Drew Halliday, Saikou Drammeh, Lamin Sanyang, +Momodou K. Darboe, Clare Elwell, Sophie E. Moore, and Sarah Lloyd-Fox. Adaptation of the Mullen Scales of +Early Learning for use among infants aged 5- to 24-months in rural Gambia. Developmental Science, 22(5):e12808, +2019. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/desc.12808. +[18] Global fNIRS. The bright project. https://www.globalfnirs.org/the-bright-project/. +[19] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face alignment problem? +(and a dataset of 230,000 3d facial landmarks). In International Conference on Computer Vision, 2017. +[20] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George Sung, Chuo-Ling Chang, +and Matthias Grundmann. +MediaPipe Hands: On-device Real-time Hand Tracking. +Technical Report +arXiv:2006.10214, arXiv, June 2020. arXiv:2006.10214 [cs] type: article. +[21] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE Computer Society +Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 886–893 vol. 1, June 2005. +ISSN: 1063-6919. +[22] Derry Alamsyah and Muhammad Fachrurrozi. Happy and Sad Classification using HOG Feature Descriptor in +SVM Model Selection. In 2021 International Conference on Informatics, Multimedia, Cyber and Information +System (ICIMCIS, pages 74–79, October 2021. +[23] Mustafa Keman Binli, Burak Can Demiryilmaz, Pinar O˘guz Ekim, and Faezeh Yeganli. Face Detection via HOG +and GA Feature Selection with Support Vector Machines. In 2019 11th International Conference on Electrical +and Electronics Engineering (ELECO), pages 610–613, November 2019. +[24] J.A. Mahajan and A. N. Paithane. Face detection on distorted images by using quality HOG features. In 2017 +International Conference on Inventive Communication and Computational Technologies (ICICCT), pages 439–444, +March 2017. +11 + +Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in +Infants +[25] Lukas Prasuhn, Yuji Oyamada, Yoshihiko Mochizuki, and Hiroshi Ishikawa. A HOG-based hand gesture +recognition system on a mobile device. In 2014 IEEE International Conference on Image Processing (ICIP), +pages 3973–3977, October 2014. ISSN: 2381-8549. +[26] Kevin Nathanael Krisandria, Bima Sena Bayu Dewantara, and Dadet Pramadihanto. HOG-based Hand Gesture +Recognition Using Kinect. In 2019 International Electronics Symposium (IES), pages 254–259, September 2019. +[27] Kai-ping Feng and Fang Yuan. Static hand gesture recognition based on HOG characters and support vector +machines. In 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and +Automation (IMSNA), pages 936–938, December 2013. +[28] Nasser H. Dardas and Emil M. Petriu. Hand gesture detection and recognition using principal component analysis. +In 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications +(CIMSA) Proceedings, pages 1–6, September 2011. ISSN: 2159-1555. +[29] Johanna Degen, Jan Modersitzki, and Mattias P. Heinrich. Dimensionality reduction of medical image descriptors +for multimodal image registration. Current Directions in Biomedical Engineering, 1(1):201–205, September 2015. +Publisher: De Gruyter. +[30] Jinxian Qi, Guozhang Jiang, Gongfa Li, Ying Sun, and Bo Tao. Surface EMG hand gesture recognition system +based on PCA and GRNN. Neural Computing and Applications, 32(10):6343–6351, May 2020. +[31] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, +Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David +Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning in +Python. The Journal of Machine Learning Research, 12(null):2825–2830, November 2011. +[32] Jesse Read, Antti Puurula, and Albert Bifet. +Multi-label Classification with Meta-Labels. +In 2014 IEEE +International Conference on Data Mining, pages 941–946, December 2014. ISSN: 2374-8486. +[33] Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. Neurocomputing, +184:232–242, April 2016. +[34] Alex G. C. de Sá, Cristiano G. Pimenta, Gisele L. Pappa, and Alex A. Freitas. A robust experimental evaluation of +automated multi-label classification methods. In Proceedings of the 2020 Genetic and Evolutionary Computation +Conference, GECCO ’20, pages 175–183, New York, NY, USA, June 2020. Association for Computing Machinery. +[35] Marwa Mahmoud, Louis-Philippe Morency, and Peter Robinson. Automatic multimodal descriptors of rhythmic +body movement. In Proceedings of the 15th ACM on International conference on multimodal interaction, ICMI +’13, pages 429–436, New York, NY, USA, December 2013. Association for Computing Machinery. +[36] Mert Bal, M. Fatih Amasyali, Hayri Sever, Guven Kose, and Ayse Demirhan. Performance Evaluation of the +Machine Learning Algorithms Used in Inference Mechanism of a Medical Decision Support System. The Scientific +World Journal, 2014:137896, 2014. +12 + diff --git a/JtE1T4oBgHgl3EQfGQNW/content/tmp_files/load_file.txt b/JtE1T4oBgHgl3EQfGQNW/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..6306e6f22bb832b8d7214aae32db515355f4c573 --- /dev/null +++ b/JtE1T4oBgHgl3EQfGQNW/content/tmp_files/load_file.txt @@ -0,0 +1,655 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf,len=654 +page_content='TOWARDS EARLY PREDICTION OF NEURODEVELOPMENTAL DISORDERS: COMPUTATIONAL MODEL FOR FACE TOUCH AND SELF-ADAPTORS IN INFANTS Bruno Tafur University of Cambridge United Kingdom bt403@cantab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='uk Marwa Mahmoud University of Glasgow United Kingdom marwa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='mahmoud@glasgow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='uk Staci Weiss University of Cambridge United Kingdom smw95@cam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='uk ABSTRACT Infants’ neurological development is heavily influenced by their motor skills.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Evaluating a baby’s movements is key to understanding possible risks of developmental disorders in their growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Previous research in psychology has shown that measuring specific movements or gestures such as face touches in babies is essential to analyse how babies understand themselves and their context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This research proposes the first automatic approach that detects face touches from video recordings by tracking infants’ movements and gestures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The study uses a multimodal feature fusion approach mixing spatial and temporal features and exploits skeleton tracking information to generate more than 170 aggregated features of hand, face and body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This research proposes data-driven machine learning models for the detection and classification of face touch in infants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We used cross dataset testing to evaluate our proposed models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The models achieved 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% accuracy in detecting face touches and 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='4% macro-average accuracy in detecting specific face touch locations with significant improvements over Zero Rule and uniform random chance baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Moreover, we show that when we run our model to extract face touch frequencies of a larger dataset, we can predict the development of fine motor skills during the first 5 months after birth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Keywords Computer Vision · Autoencoders · Neurodevelopment factors 1 Introduction Figure 1: An overview of our proposed framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Spatial, temporal and appearance features are extracted, then they are concatenated with a feature integration layer and a classification approach is used to detect and classify the infant’s face touch, which is subsequently used to predict the neurodevelopmental scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Analysing body movements in early childhood gives insights into the infant’s neurological development, and it can play an essential role in determining if a baby is suffering from injuries in the nervous system or a hereditary disease [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='02911v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='CV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7 Jan 2023 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='777 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Video ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Features ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Fusion Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Output ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Raw frames ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Skeleton coordinates ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Face touch ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Geome- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Appea- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Wrists / Neck / Hips ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='trical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='rance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Mouth / Cheek / Ears / Eyes / ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='ral ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Features ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='features ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Nose ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='No face touch ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Face coordinates ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Feature Integration ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Ears / Eyes / Mouth / Nose ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Classification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Temporal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Velocity Wrist ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Neurodevelopmental ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Velocity / Displacement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='scores ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Feature interpolationTowards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Infants ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Also,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' specific movements such as face touches have been found to be crucial in the development of babies since their fetal age [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' For example, face touches to sensitive areas of the face such as the mouth are frequent in gestational age as babies get prepared to feed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Different cultures have also shown differences in self-touch in babies, and age has also been established as a determinant factor [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Various methods are utilised to track and measure movements in babies, including 3D motion capture, sensors and video cameras [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 3D motion capture and sensors are mostly used in laboratory settings instead of a more natural setting for the infant as it requires specific equipment and tools [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' There have been few studies that utilised computer vision with video cameras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This method has the advantages of being highly flexible to different environments, giving high contextual information and being easier to interpret [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' However, it requires more complex computations, depends on the camera quality, angle and movement, and is difficult to generalise to untrained cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Various studies have explored the fidgety movements of babies by analysing pixel displacement in video frames [5, 6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Recently, some studies have begun to examine more robust tracking algorithms for body parts based on methods such as OpenPose [4, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Despite being an important measure for neurodevelopment, no previous research has looked at specific gesture detection in much detail, such as detecting specific hand movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Most research is centred on general fidgety movements or general statistics descriptors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Also, these approaches have primarily focused on a general classification for high-risk infants or cerebral palsy [4, 9] or classification of movement types [5, 8, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In the case of face touches, research is limited and has centred on hand-over face gestures in adults [11] or touches from the mother to a child [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This research proposes a machine learning model for automatic detection and classification of face touches in newborn infants and their location around key areas of the face using features extracted from raw videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' It proposes using feature selection and fusion models based on temporal and spatial features, using geometric and appearance features of the infant’s face and body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The proposed models are validated and evaluated on a couple of datasets and then applied to a large video dataset to extract gesture descriptors of video of one-month-old infants automatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Using regression, we demonstrate the effectiveness of extracting these gestures in predicting Mullen neurodevelopmental scores [14] for the same infants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' To the best of our knowledge, this research represents the first study to analyse specific gestures in infants at this level of granularity and the first to analyse self-touch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The main contributions can be described as follows: Proposing a data-driven machine learning model for detection and classification of face touch in infants exploiting spatial and temporal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Evaluating and validating the proposed method in a cross-dataset manner using challenging naturally collected datasets on infants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Presenting preliminary results on using our proposed computational model to detect face touch features in infants on a larger labelled dataset and demonstrating the ability to predict neurodevelopmental scores of the infants using automatic face touch dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Our proposed trained validated model is available on Github as an open source tool for the community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We believe this work will enable future research in infant behaviour modelling and provide a tool for future neurodevelopmental studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 2 Related Work The most relevant studies that use computer vision in the context of neurodevelopment analysis in infants have centered on tracking general movement indicators;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' such as aggregated data from pose coordinates [4, 8] or displacement information from overall images [5, 6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In the analysis of touch, a couple of studies have centred on an analysis of a controlled environment where a mother touches her child [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Infants have different proportions in their limbs than adults, making them more complex for general tracking mechanisms to work with the same accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Therefore, the study carried out by Chambers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' adapted tracking methods based on computer vision on babies [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Their study focused on developing a tracking method for infants’ skeleton coordinates, and they used these statistics to compare the risk of developing neuromotor impairment in healthy and at-risk infants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Their study expanded on OpenPose [15] implementation for humans by tuning the model to be used on infant videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Regarding more specific movement patterns related to neurological disorders, a study by Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [10] focused on analysing the kicking patterns of at-risk infants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Their method tracked their movements using OpenPose and extracted additional KAZE features [16] as image descriptors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In their experiments, the authors used an SVM classifier to differentiate the kicking pattern types as simultaneous movement (SM), non-simultaneous movement (NSM) and no movement (NM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 2 Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in Infants In the case of touch, Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' performed a couple of studies focused on the detection of interactions between a caregiver and a child in a controlled environment [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Specifically, their research focused on detecting touch from the caregiver to the child in particular locations: head, arms, legs, hand, torso and feet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Their latest study applied two main methods;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' firstly, they extracted tracking information by detecting the skeleton locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Secondly, they extracted the infant’s location in the image by applying image segmentation using the GrabCut algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Therefore, although some studies have attempted to tackle some of these issues in infants, most of them have focused on the analysis of general movements instead of specific gestures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This study analyses hand to face gestures in infants in larger detail and granularity and proposes novel machine learning models for automatic detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The relationship between face and body touch in infants and how they correlate with cognitive development has not been studied quantitatively and systematically before in previous literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The Mullen Scales of Early Learning is used to measure the cognitive development of infants in five different categories: gross motor (GM), fine motor (FM), visual reception (VR), receptive language (RL) and expressive language (EL) [14, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' They are a key measure of the development of the child during the first years after birth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Previous studies have not tackled the relationship of detected features with MSEL scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We aim to analyse this relationship based on gesture and movement data extracted from the infant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 3 Datasets For our data-driven models, we used two main datasets: BRIGHT [18] and Chambers [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' A subset of the two datasets was labelled and validated by a psychology expert to be later used for our models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Then, the videos from the BRIGHT dataset were used to evaluate the correlations between face touch dynamics and neurodevelopmental scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1 BRIGHT dataset This dataset was provided by the ’removed for anonymous submission’ and is part of the studies carried out in the Brain Imaging for Global Health (BRIGHT) Project [18] in which they study infants from Gambia and UK during their first 24 months of life.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The initial sample provided included 29 videos of UK infants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' From the 29 videos, 23 videos were selected as some of the babies were occluded during most of the video runtime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Each video shows the behaviour of one infant of fewer than 2 months of age, actively responding to the input given by their mother.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The videos were recorded in different rooms, with the infant lying down with a mirror positioned on the wall behind the head of the baby.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The camera is static, and the infants generally cover a small portion of the frame but can be located in different parts of the frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Another complex factor that characterises this dataset includes the mother’s presence during the video, sometimes occupying a significant part of the frame with a bigger skeleton and limbs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Also, the fact that the infants are lying down while the camera is facing the front means that the camera generally captures the babies’ faces from a side or the bottom, making them difficult to detect for traditional algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The babies are shown rotated in the frames at different angles between 90° and -90°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2 Chambers dataset This is an open dataset compiled and generated by Chambers et al [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 25 videos were selected based on the age of the infants in the video by filtering and selecting only the videos with babies less than 2 months to ensure better consistency with the BRIGHT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The videos show babies lying down on their own and interacting in a natural environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' They could be dancing, playing or rolling over in their crib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The camera is sometimes moving while filming the baby, and the babies generally cover most of the frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The videos do not feature other people in the frame, but the babies sometimes can move at different angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Also, the resolutions are very varied between videos, with some of them being more blurry and with smaller frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The babies are shown rotated in the frames at different angles between 90° and 90°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 4 Labelling The labelling process was carried out using a tagging system developed for this research which allowed efficient tagging of the image frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Also, the tagging was carried out with the support of a psychology expert, who helped by labelling part of the dataset and providing her judgement about the different labelling categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' As this study aims to detect hand over face gestures in infants automatically, the main labelling category to tag needed to differentiate between face touch or no touch in each frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Therefore, it was defined as follows: 3 Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in Infants Table 1: Database sizes and labels Dataset Sizes # Videos 25 Total Frames 1769 Chambers Mean Frames per video 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='76 % On Head 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% % Outside Head 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% # Videos 23 Total Frames 2039 BRIGHT Mean Frames per video 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='6 % On Head 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% % Outside Head 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3% Total Number of Frames 3808 On Head: From a human perspective, it can be seen that the hand could be touching the head area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In this study, the head area considers any of the following locations or any area enclosed by the those locations: eyes, ears, nose, mouth, cheeks, forehead and neck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Outside Head: From a human perspective, it can be seen that the hand is not on the head area as defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Additionally, we labelled our dataset with the following non-exclusive categories: eyes, ears, nose, mouth and cheeks, as they are the main differentiable parts of the face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The categories were also discussed and agreed upon with the psychology expert to validate their significance and usefulness from the neurodevelopment perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The final labelled datasets sizes and distributions can be seen in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The final proportion of “on head” versus “outside head” was of 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='5% to 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='5%, which is expected for this kind of natural dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 5 METHOD Because of the small size of the labelled dataset, we could not use an end-to-end deep learning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In this section we present the feature extraction and selection steps and the proposed feature fusion machine learning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1 Feature extraction of face and body Our proposed models required spatial and temporal features related to the infants’ face touch gestures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The features extracted were selected considering the relationship between the hands of the baby and the face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1 Extraction of face and body landmarks We first extracted basic face and body landmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Pose coordinates: Positions of the skeleton parts were extracted for every baby and every frame by using the fine-tuned OpenPose [15] model trained by Chambers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Following the implementation of Chambers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=', the raw pose locations were normalised, smoothed and interpolated per video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Face Region: Based on the extracted pose features and estimated orientation, an accurate estimate of the baby’s face location was carried out and the image was cropped in the face region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' If no possible face was found in a given frame, the locations of the face of the nearest frames were used as guidance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Where possible, the face region was further aligned based on the locations of the eyes and nose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Face coordinates: OpenPose provides general locations of the eyes, nose and ears, but its purpose is centred on getting the whole skeleton and not on specific facial landmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Therefore, information about the location of facial features based on 3D-FAN [19] was also used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The faces were extracted from the aligned cropped face regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2 Extraction of geometric, appearance and temporal features After basic landmarks features were extracted, we extracted a set of geometric and temporal feature descriptors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Based on the initial features,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' the following features were calculated: 4 Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in Infants Figure 2: Example body skeleton extracted using OpenPose and face keypoints extracted using 3D-FAN Face and body geometrical features (Distance and Angular): Based on the coordinates of the skeleton of the baby,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' the normalised distances between the wrists and the ears,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' eyes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' neck and nose were extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' For each case, the distances considered included differences in the X direction, differences in the Y direction and euclidean distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Additionally, based on the coordinates of the skeleton of the baby, the angles of the elbows and shoulders were extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Hands geometrical features (Distance): As the adapted OpenPose model by Chambers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [4] only generated the skeleton up to the wrists, additional information was obtained by extending the skeleton to the hands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The MediaPipe detection algorithm [20] was used in the area surrounding the wrists to obtain the hand coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Based on the coordinates, the normalised distances between the fingers and the eyes and nose were calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The distances included differences in the X direction, differences in the Y direction and euclidean distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Also, confidence scores were considered as additional features based on the confidence of the MediaPipe algorithm detecting each hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Temporal features: The temporal features were centred on aggregated information over various frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We calculated features including displacement, speed and acceleration obtained based on the coordinates of the skeleton of the baby for the wrists and elbows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Appearance Features: Histogram of Oriented Gradients (HOG) [21] is a method for feature extraction based on the directionality of the gradients in different locations in an image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This method has shown significant success rate in different image detection tasks including detecting faces and expressions [22, 23, 24] and detecting gestures [25, 26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' These features were extracted only for the main region of interest, which is the face area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Consequently, these features were extracted from the cropped images of the face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Additionally, we wanted to extract more localised spatial information inside the face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Therefore, more granular HOG features were extracted in two specific face areas: one related to the upper region of the face based on the eyes location and another related to the lower region based on the mouth location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Also, confidence scores were considered as additional features based on the average confidence of the landmarks in each region as calculated by 3D-FAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Figure 3: Examples of HOG features obtained for the face region, the upper head and the lower head.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Note the challenging nature of the dataset with extreme head poses and viewpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3 Features smoothing and data augmentation As a final step in the feature extraction process, we smoothed and augmented the calculated features to be able to train the classification models on the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The outliers of the geometrical and temporal features per video were replaced by blank values, and the data was interpolated per video to cover any deleted or missing values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' If data was still missing, it was replaced by mean values from the training data during the training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Finally, to compensate for the small size of the dataset, the training data was augmented by flipping the images horizontally, flipping all the features accordingly and considering the directionality of these features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2 Face touch detection and classification After feature extraction and smoothing, we handled face touch detection and classification as two different classification problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The first is to detect when the hand touches the face as a binary classification problem;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' then, we classify different touch location areas as a multi-label classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The architectures proposed for both problems are ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='400Input image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Input image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Input image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Histogram of Oriented Gradients ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Histogram of Oriented Gradients ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Histogram of Oriented Gradients ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='00 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='120Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='Infants ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='very similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The main difference lies in the method used for the classification component in the final layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The models can be divided into the following: 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1 Feature selection and dimensionality reduction Our first proposed method used feature selection and dimensionality reduction and a Support Vector Machine (SVM) classifier for solving the face touch detection problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' There were four main categories of geometrical and temporal features: body distance features, hand distance features, angular features and temporal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Many of the features in the same categories correlated with each other as they measured similar characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Therefore, to ensure proper representation of the features, this method proposed reducing these features before training a classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Firstly, the features were filtered based on an automatic feature selection process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Random Forest was used to select the most representative features and prevent skewing the classifier with features that were not that significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The feature selection was carried out by cross-validating with 5-folds in the training set to ensure independence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Then, Principal Component Analysis (PCA) was used for dimensionality reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' PCA has shown effective results in detection problems when facing a large number of features [28, 29, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' PCA was used to filter a percentage of the explained variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The threshold of this explained variance was established as a hyperparameter that was also learned by cross-validating with 5-folds in the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' After applying PCA, the classification algorithm used SVM using an RBF kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The model was cross-validated with 5-folds in the training set to choose the best hyperparameters for SVM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The search for the best hyperparameters for SVM was done in combination with the search for the threshold for PCA, as the hyperparameters were possibly dependent on each other using a grid search method [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In the case of multi-class classification for the face areas, the Label Powerset model was used with underlying SVMs to predict the multiple overlapping labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Label Powerset transforms the labels by creating a class for each possible combination of labels and creates a classifier for each combination [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Consequently, it has the advantage of considering the possible relationships between the labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This model was configured by tuning the hyperparameters in the same way as in the SVM binary classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2 Feature optimisation using deep learned features Our second proposed method used autoencoders as a feature optimisation and dimensionality reduction technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This method has been used in various studies as an effective way of reducing dimensionality while maintaining the representation of the data, and it has been successfully used before with repetitive and correlated features [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In this case, autoencoders were used to generate a latent representation of the input features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Firstly, the dimensions of the features were reduced based on the autoencoder model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The model uses a neural network architecture that learns how to represent the data in lower dimensions and reconstruct it [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' It then minimises the error between the reconstruction and the original input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The aim of the autoencoder is to exploit the correlations in the input features to reduce the final dimensions without losing relevant information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This method was used with two alternatives of input features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The first one used only geometrical and temporal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The second alternative also used the HOG features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The main hyperparameters that were learned for this model included the latent dimensions and the number of epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' These hyperparameters were selected based on the results of a 5-fold cross-validation in the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' After encoding the data, the classification process was done using SVM with an RBF kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The input features for the SVM classification process were the output of encoding the features with the trained encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The classification layer was also cross-validated with 5-folds in the training set to choose the best hyperparameters for SVM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Finally, in the case of the multi-label classification problem, the Label Powerset model was used with underlying SVMs to be able to predict the multiple face touch locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 6 EVALUATION We evaluated the accuracy of the detection of face touches by using a mixture of spatial and temporal features and analysed models based on dimensionality reduction and optimisation techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The models were evaluated cross-dataset to validate their effectiveness and generalisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The approaches were evaluated with three different configurations of the datasets to ensure the consistency of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Also, all segmentations of the data were grouped by video to ensure having different videos in each set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The three configurations used were the following: 6 Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in Infants Train and Cross Validate on BRIGHT dataset - Test on Chambers dataset Train and Cross Validate on Chambers dataset - Test on BRIGHT dataset Train and Cross Validate on Chambers and on 50% of BRIGHT dataset - Test on the other 50% of BRIGHT dataset As there was no existing baseline for these models,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' the models were evaluated against Zero Rule (ZeroR) baseline and random uniform chance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In the case of the ZeroR baseline, it is calculated by assigning the value of the majority class to every data point [34, 35, 36] while random chance assigns a class based on random uniform probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Statistical McNemar’s tests were carried out to ensure the results were significantly different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The McNemar test was used as the compared distributions were binary targets instead of continuous variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' All the best performing models were found significantly different with p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='01 in comparison to Random Chance and Zero Rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1 Detection of face touches The main target was to determine if there was a face touch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This problem was treated as a binary classification task based on the classes: “on head” and “outside head”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The models that were analysed were the following: Feature selection and dimensionality reduction based on geometrical and temporal features (RF-PCA-SVM): This model followed the components described in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' It performed feature selection with Random Forest (RF) and dimensionality reduction with PCA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Finally, it performed the classification of the labels using SVM in the case of this binary problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' It used the geometrical distance and angular features and aggregated temporal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Feature optimisation using deep learned features based on geometrical and temporal features (AUTO ENC- SVM-I): This model was structured as described in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' It used an autoencoder neural architecture to reduce the dimensions of the input features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Finally, it performed the classification of the labels using SVM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' It used the geometrical features (distance and angular) and the temporal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Feature optimisation using deep learned features based on geometrical, temporal and HOG features (AUTOENC-SVM-II): The model was structured as described in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Similar to the previous model, it used an autoencoder neural architecture to reduce the dimensions of the input features and SVM for the binary classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' It used the geometrical features, temporal features and HOG features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The results for predicting between “on head” and “outside head” can be seen in Table 2, 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' All the models had significantly higher accuracy than uniform random chance and ZeroR baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The best performing model reached 87% accuracy when trained in a mixture of both datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Overall the results of the three models were promising with high accuracy in comparison to the baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Also, the results were relatively similar between the three models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Some performed better on different datasets, but the performance was very competitive between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' All three models obtained better results than ZeroR or Random Chance in accuracy, precision and recall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Therefore, the results demonstrated that these models can perform well in the detection of face touch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Even though the autoencoder models (AUTOENC-SVM) outperformed the random forest and PCA model (RF-PCA- SVM) in two of the three dataset configurations, the difference in accuracy performance was limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' These results demonstrate that the RF-PCA-SVM configuration was also very effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Possibly in larger datasets, the autoencoder based models could extract more representative features that could better outperform the RF-PCA-SVM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Similarly, the inclusion of the HOG features in the AUTOENC-SVM-II model did not show a noticeable increase in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In the case of the BRIGHT dataset, it did show an improvement over the other models and a higher improvement over AUTOENC-SVM-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' However, the improvement could have been greater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This could be caused by the limited amount of data with very varied head poses and rotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Therefore, the AUTOENC-SVM-II model might perform better if trained in larger datasets where the HOG features can be learned with more generalisable representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Finally, even though there were various challenges in the datasets that could have a negative impact on the models’ ability to generalise between datasets, the results demonstrated that the proposed methods had high performance in the detection of face touches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 7 Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in Infants Table 2: Results -binary classification “on head” vs “outside head”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Training and CV dataset: Chambers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Testing dataset: Bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Model Accuracy Precision Recall Test On Head On Head Random Chance 50% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% 50% Zero Rule 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3% 0% 0% RF-PCA-SVM 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3% 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% AUTOENC-SVM-I 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='6% AUTOENC-SVM-II 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='6% 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='4% 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1% Table 3: Results -binary classification “on head” vs “outside head”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Training and CV dataset: Bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Testing dataset: Chambers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Model Accuracy Precision Recall Test On Head On Head Random Chance 50% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% 50% Zero Rule 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% 0% 0% RF-PCA-SVM 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% AUTOENC-SVM-I 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='9% 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% AUTOENC-SVM-II 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='6% 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='4% 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2 Classification of face touch descriptors These experiments evaluate the face touch on specific locations of the face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' These locations were evaluated based on the universe of images where there is a face touch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The key locations to predict included the following: ears, nose, cheeks, mouth, and eyes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The problem mas evaluated as a multi-label problem because the different classes could overlap and the infant could touch more than one location at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The proposed models for this problem are the same as the ones described in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1, so we will use the same naming abbreviations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The main difference was the change in the classification method from SVM to Label Powerset with SVM [32] to tackle the problem as a multi-label classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Therefore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' the models that were analysed were the following: Feature selection and dimensionality reduction based on geometrical and temporal features (RF-PCA-SVM) Feature optimisation using deep learned features based on geometrical and temporal features (AUTOENC- SVM-I) Feature optimisation using deep learned features based on geometrical,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' temporal and HOG features (AUTOENC-SVM-II) The experiments were carried out only on the portion of images labelled as “on head” so that it could be sufficiently balanced;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' therefore the dataset was even more limited in size than the original.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The obtained results can be seen in Table 5, 6 and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The results show the macro-average accuracy, precision and recall of the multiple key locations per model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The highest performing model reached 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='4% average accuracy when testing on the Chamber’s dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Table 4: Results -binary classification “on head” vs “outside head”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Training and CV dataset: Chambers + 50% Bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Testing dataset: 50% Bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Model Accuracy Precision Recall Test On Head On Head Random Chance 50% 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3% 50% Zero Rule 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% 0% 0% RF-PCA-SVM 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% AUTOENC-SVM-I 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='9% 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='9% 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1% AUTOENC-SVM-II 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='6% 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% 8 Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in Infants Table 5: Results of predicting key areasTraining and CV dataset: Chambers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Testing dataset: Bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Model Accuracy Precision Recall Test Key Area Key Area Random Chance 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1% 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% Zero Rule 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='5% 13% 0% RF-PCA-SVM 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='6% 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='5% 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% AUTOENC-SVM-I 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='6% 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% AUTOENC-SVM-II 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='9% 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% Table 6: Results of predicting key areasTraining and CV dataset: Bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Testing dataset: Chambers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Model Accuracy Precision Recall Test Key Area Key Area Random Chance 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% 50% Zero Rule 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% 15% 0% RF-PCA-SVM 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='5% 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3% 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% AUTOENC-SVM-I 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3% AUTOENC-SVM-II 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='4% 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='9% The main metric established to select the best models during cross-validation was the average macro-accuracy of the locations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' so this was used as the main indicator of the models performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The results demonstrated that the models performed effectively better than the baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' As expected, the accuracies were lower than for the face touch problem as this was a complex multi-label problem where multiple locations can overlap on the face, and it can be difficult even for a human to determine the exact location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Likewise to the previous task, the results were similar between models, but these results show some indication that HOG features might be useful in some instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The AUTOENCODER-SVM-II model outperformed the accuracies of the other models in two cases and demonstrated a considerable difference in accuracy when it was trained in the BRIGHT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Possibly training with HOG features in more extensive and more varied datasets could make their representations more stable and significant in the end results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3 Predicting neurodevelopment scores The next step was to evaluate our proposed model results - detected face touch dynamics of infants less than 2 months old - on predicting their neurodevelopmental rates collected at ages 3 and 5 months.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We chose the best-performing model for the binary classification task (RF-PCA-SVM) and ran it on a larger dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Since we had the Mullen scores only for the BRIGHT dataset, we ran our model on an average of 490 frames per video (19 videos), a total of 9298 frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We then extracted the face touch frequency for each infant and evaluated it versus the Mullen Scales of Early Learning (MSEL) related to gross motor (GM) skills and fine motor (FM) skills.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In this case, the data was limited because the provided metrics were evaluated per infant, and only 19 infants of the BRIGHT dataset had their information available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In the case of the MSEL metrics, the data consisted of raw scores per visit of the infant related to the different MSEL categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' A rate of development was calculated per infant per category based on the rate of increase during their first five months.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The data used for this case were the gross motor (GM) skills and the fine motor (FM) skills, as they are related to the infant’s motor development and could be related to face touch behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' After calculating the rate of Table 7: Results of predicting key areas Training and cross-validation dataset: Chambers + 50% Bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Testing dataset: 50% Bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Model Accuracy Precision Recall Test Key Area Key Area Random Chance 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1% 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% Zero Rule 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='8% 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% 0% RF-PCA-SVM 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3% 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0% 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3% AUTOENC-SVM-I 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1% 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='2% AUTOENC-SVM-II 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='3% 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='7% 9 Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in Infants development of the GM and FM skills, a correlation was calculated between the ratio of face touches per frame and these rates of development of each child.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The results showed a low to moderate positive correlation between the ratio of face touches and the rate of development during the first months.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The correlation coefficient obtained for FM was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='599 with a significant p-value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='0067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The correlation coefficient for GM was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='186, but the p-value was not found to be significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' It is possible that face touches are more related to fine motor skills as they are more specific and localised movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The results indicate that measuring infants’ face touch frequencies and dynamics in their first month or two can be a predictive measure of their neurodevelopmental scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' It also demonstrates the effectiveness of our proposed computational model as a tool for the early prediction of neurodevelopmental factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We make the trained model available to the research community at ’removed for anonymous submission’ as a baseline for infant’s face touch detection and to facilitate future research in this area on more extensive datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' A dataset of 19 infants is limited, so it was not possible to test more complex prediction algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' However, these results show that, in more extensive datasets, the face touch frequency could be used as one independent variable to help predict infant neurodevelopment scores such as MSEL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Also, the models proposed during this research could support the automation of the extraction of these face touches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 7 Conclusion Our research proposed a machine learning model for automatic detection of face touches in infants using features extracted from videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' This is the first study to provide a computational model for detection and classification of these types of gestures in infants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Our proposed models using a mix of spatial and temporal features with deep learning features demonstrated significantly high accuracies in predicting face touch and their locations around keypoints in the face establishing a promising step for future research in this area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We also showed the effectiveness of the proposed model in predicting MSEL scores related to fine motor (FM) skills , demonstrating that our proposed model can be used as en early prediction tool for neurodevelopmental disorders in infants and it is considered a baseline for future work in this domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We believe this research will open the door for future research in this area both on the technical as well as neurodevelopmetanl psychology fronts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Despite the promising results, there are several limitations to our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The datasets used were recorded in almost uncontrolled environments, with varied camera angles and the mum’s presence in most videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' These characteristics made the labelling as well as the classification tasks very challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' We are also aware of the small size of the datasets used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Obtaining datasets, especially for infants, is a challenging task due to the privacy and ethical factors that need to be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' However, we believe this research serves as a baseline for infant face touch detection and classification and will open the door for further research on more extensive datasets in this area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' References [1] Nihan Hande Akcakaya, Turgay Altunalan, Tuba Derya Do˘gan, Arzu Yılmaz, and Zuhal Yapıcı.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Correlation of Prechtl Qualitative Assessment of General Movement Analysis with Neurological Evaluation: The Importance of Inspection in Infants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Turkish Journal Of Neurology, 25(2):63–70, June 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [2] Nadja Reissland and Joe Austen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Goal directed behaviours : the development of pre-natal touch behaviours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In Daniela Corbetta and Marco Santello, editors, Reach-to-grasp behavior: brain, behavior, and modelling across the life span.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=', pages 3–17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Routledge, Abingdon, Oxon, August 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [3] Claire Marcroft, Aftab Khan, Nicholas D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Embleton, Michael Trenell, and Thomas Plötz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Movement Recognition Technology as a Method of Assessing Spontaneous General Movements in High Risk Infants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Frontiers in Neurology, 5:284, January 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [4] Claire Chambers, Nidhi Seethapathi, Rachit Saluja, Helen Loeb, Samuel R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Pierce, Daniel K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Bogen, Laura Prosser, Michelle J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Johnson, and Konrad P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Kording.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Computer Vision to Automatically Assess Infant Neuromotor Risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society, 28(11):2431–2442, November 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [5] Lars Adde, Jorunn L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Helbostad, Alexander Refsum Jensenius, Gunnar Taraldsen, and Ragnhild Støen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Using computer-based video analysis in the study of fidgety movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Early Human Development, 85(9):541–547, September 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 10 Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in Infants [6] Lars Adde, Jorunn Helbostad, Alexander R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Jensenius, Mette Langaas, and Ragnhild Støen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Identification of fidgety movements and prediction of CP by the use of computer-based video analysis is more accurate when based on two video recordings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Physiotherapy Theory and Practice, 29(6):469–475, August 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [7] Lars Adde, Jorunn L Helbostad, Alexander R Jensenius, Gunnar Taraldsen, Kristine H Grunewaldt, and Ragnhild Støen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Early prediction of cerebral palsy by computer-based video analysis of general movements: a feasibility study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Developmental Medicine & Child Neurology, 52(8):773–778, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [8] Simon Reich, Dajie Zhang, Tomas Kulvicius, Sven Bölte, Karin Nielsen-Saines, Florian B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Pokorny, Robert Peharz, Luise Poustka, Florentin Wörgötter, Christa Einspieler, and Peter B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Marschik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Novel AI driven approach to classify infant motor functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Scientific Reports, 11(1):9888, May 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [9] Ragnhild Støen, Nils Thomas Songstad, Inger Elisabeth Silberg, Toril Fjørtoft, Alexander Refsum Jensenius, and Lars Adde.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Computer-based video analysis identifies infants with absence of fidgety movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Pediatric Research, 82(4):665–670, October 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [10] Devleena Das, Katelyn Fry, and Ayanna M Howard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Vision-Based Detection of Simultaneous Kicking for Identifying Movement Characteristics of Infants At-Risk for Neuro-Disorders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 1413–1418, December 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [11] Marwa Mahmoud and Peter Robinson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Interpreting Hand-Over-Face Gestures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In Sidney D’Mello, Arthur Graesser, Björn Schuller, and Jean-Claude Martin, editors, Affective Computing and Intelligent Interaction, Lecture Notes in Computer Science, pages 248–255, Berlin, Heidelberg, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [12] Qingshuang Chen, Rana Abu-Zhaya, Amanda Seidl, and Fengqing Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' CNN Based Touch Interaction Detection for Infant Speech Development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pages 20–25, March 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [13] Qingshuang Chen, He Li, Rana Abu-Zhaya, Amanda Seidl, Fengqing Zhu, and Edward J Delp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Touch Event Recognition For Human Interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Electronic Imaging, 2016(11):1–6, February 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [14] Eileen M Mullen and American Guidance Service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Mullen Scales of Early Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' AGS, Circle Pines, Minnesota, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' OCLC: 860820407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [15] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Cao, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Hidalgo Martinez, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Simon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Wei, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Sheikh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [16] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Davison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' KAZE Features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors, Computer Vision – ECCV 2012, Lecture Notes in Computer Science, pages 214–227, Berlin, Heidelberg, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [17] Bosiljka Milosavljevic, Perijne Vellekoop, Helen Maris, Drew Halliday, Saikou Drammeh, Lamin Sanyang, Momodou K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Darboe, Clare Elwell, Sophie E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Moore, and Sarah Lloyd-Fox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Adaptation of the Mullen Scales of Early Learning for use among infants aged 5- to 24-months in rural Gambia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Developmental Science, 22(5):e12808, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' _eprint: https://onlinelibrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='wiley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='com/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='1111/desc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='12808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [18] Global fNIRS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The bright project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='globalfnirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='org/the-bright-project/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [19] Adrian Bulat and Georgios Tzimiropoulos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' How far are we from solving the 2d & 3d face alignment problem?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' (and a dataset of 230,000 3d facial landmarks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In International Conference on Computer Vision, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [20] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George Sung, Chuo-Ling Chang, and Matthias Grundmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' MediaPipe Hands: On-device Real-time Hand Tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Technical Report arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='10214, arXiv, June 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='10214 [cs] type: article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [21] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Dalal and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Triggs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Histograms of oriented gradients for human detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 886–893 vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 1, June 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' ISSN: 1063-6919.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [22] Derry Alamsyah and Muhammad Fachrurrozi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Happy and Sad Classification using HOG Feature Descriptor in SVM Model Selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS, pages 74–79, October 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [23] Mustafa Keman Binli, Burak Can Demiryilmaz, Pinar O˘guz Ekim, and Faezeh Yeganli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Face Detection via HOG and GA Feature Selection with Support Vector Machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), pages 610–613, November 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Mahajan and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Paithane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Face detection on distorted images by using quality HOG features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), pages 439–444, March 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 11 Towards early prediction of neurodevelopmental disorders: Computational model for Face Touch and Self-adaptors in Infants [25] Lukas Prasuhn, Yuji Oyamada, Yoshihiko Mochizuki, and Hiroshi Ishikawa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' A HOG-based hand gesture recognition system on a mobile device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2014 IEEE International Conference on Image Processing (ICIP), pages 3973–3977, October 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' ISSN: 2381-8549.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [26] Kevin Nathanael Krisandria, Bima Sena Bayu Dewantara, and Dadet Pramadihanto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' HOG-based Hand Gesture Recognition Using Kinect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2019 International Electronics Symposium (IES), pages 254–259, September 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [27] Kai-ping Feng and Fang Yuan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Static hand gesture recognition based on HOG characters and support vector machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), pages 936–938, December 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [28] Nasser H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Dardas and Emil M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Petriu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Hand gesture detection and recognition using principal component analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings, pages 1–6, September 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' ISSN: 2159-1555.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [29] Johanna Degen, Jan Modersitzki, and Mattias P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Heinrich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Dimensionality reduction of medical image descriptors for multimodal image registration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Current Directions in Biomedical Engineering, 1(1):201–205, September 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Publisher: De Gruyter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [30] Jinxian Qi, Guozhang Jiang, Gongfa Li, Ying Sun, and Bo Tao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Surface EMG hand gesture recognition system based on PCA and GRNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Neural Computing and Applications, 32(10):6343–6351, May 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [31] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Scikit-learn: Machine Learning in Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The Journal of Machine Learning Research, 12(null):2825–2830, November 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [32] Jesse Read, Antti Puurula, and Albert Bifet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Multi-label Classification with Meta-Labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In 2014 IEEE International Conference on Data Mining, pages 941–946, December 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' ISSN: 2374-8486.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [33] Yasi Wang, Hongxun Yao, and Sicheng Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Auto-encoder based dimensionality reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Neurocomputing, 184:232–242, April 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [34] Alex G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' de Sá, Cristiano G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Pimenta, Gisele L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Pappa, and Alex A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Freitas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' A robust experimental evaluation of automated multi-label classification methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20, pages 175–183, New York, NY, USA, June 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [35] Marwa Mahmoud, Louis-Philippe Morency, and Peter Robinson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Automatic multimodal descriptors of rhythmic body movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' In Proceedings of the 15th ACM on International conference on multimodal interaction, ICMI ’13, pages 429–436, New York, NY, USA, December 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' [36] Mert Bal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Fatih Amasyali, Hayri Sever, Guven Kose, and Ayse Demirhan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' Performance Evaluation of the Machine Learning Algorithms Used in Inference Mechanism of a Medical Decision Support System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' The Scientific World Journal, 2014:137896, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} +page_content=' 12' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf'} diff --git a/K9FRT4oBgHgl3EQf1Th-/content/tmp_files/2301.13656v1.pdf.txt b/K9FRT4oBgHgl3EQf1Th-/content/tmp_files/2301.13656v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..53205191b96830d650123cfbe15c0bafa45ab82b --- /dev/null +++ b/K9FRT4oBgHgl3EQf1Th-/content/tmp_files/2301.13656v1.pdf.txt @@ -0,0 +1,3142 @@ +1 +A Survey and Benchmark of Automatic +Surface Reconstruction from Point Clouds +Raphael Sulzer, Loic Landrieu, Renaud Marlet, and Bruno Vallet +Abstract—We survey and benchmark traditional and novel learning-based algorithms that address the problem of surface +reconstruction from point clouds. Surface reconstruction from point clouds is particularly challenging when applied to real-world +acquisitions, due to noise, outliers, non-uniform sampling and missing data. Traditionally, different handcrafted priors of the input points +or output surface have been proposed to make the problem more tractable. However, hyperparameter tuning for adjusting priors to +different acquisition defects can be a tedious task. To this end, the deep learning community has recently addressed the surface +reconstruction problem. In contrast to traditional approaches, deep surface reconstruction methods can learn priors directly from a +training set of point clouds and corresponding true surfaces. In our survey, we detail how different handcrafted and learned priors affect +the robustness of methods to defect-laden input and their capability to generate geometric and topologically accurate reconstructions. +In our benchmark, we evaluate the reconstructions of several traditional and learning-based methods on the same grounds. We show +that learning-based methods can generalize to unseen shape categories, but their training and test sets must share the same point +cloud characteristics. We also provide the code and data to compete in our benchmark and to further stimulate the development of +learning-based surface reconstruction: https://github.com/raphaelsulzer/dsr-benchmark. +Index Terms—surface reconstruction, point clouds, deep learning, mesh generation, survey, benchmark +! +1 +INTRODUCTION +M +ODERN three-dimensional (3D) acquisition technol- +ogy, such as range scanning or multi-view stereo +(MVS) brought the ability to record the world in the form +of 3D point clouds. However, point clouds are usually not +sufficient to model complex physical processes such as fluid +dynamics. Instead, a variety of applications in science and +engineering require a representation of objects or scenes +in the form of a continuous surface. Therefore, surface +reconstruction from point clouds is a key step between +acquisition and analysis of surface models and is a long- +standing problem in digital geometry processing. In this +paper, we survey and benchmark several traditional and +learning-based methods that address the problem of surface +reconstruction from point clouds. +If no prior information about the sought surface is +known, surface reconstruction from point clouds is an ill- +posed problem, as there are an infinite number of surfaces +with different geometry and topology that can pass through, +or near, the point samples. Furthermore, acquisition defects +in the point cloud, such as non-uniform sampling, noise, +outliers or missing data complicate the reconstruction of +a geometrically and topologically accurate surface [1]. See +Figure 1 for an illustration. Traditionally, surface reconstruc- +tion methods made the problem more tractable by using +handcrafted priors, imposed on the input, such as point +• +R. Sulzer was with LASTIG, Univ Gustave Eiffel, IGN-ENSG, F-94160 +Saint-Mand´e, France during this work and is now with Centre Inria +d’Universit´e Cˆote d’Azur, Sophia Antipolis, France. E-mail: raphael- +sulzer@gmx.de. +• +R. Marlet is with LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, +Marne-la-Vall´ee, France and with valeo.ai, Paris, France. +• +L. Landrieu and B. Vallet are with LASTIG, Univ Gustave Eiffel, IGN- +ENSG, F-94160 Saint-Mand´e, France. E-mail: firstname.lastname@ign.fr. +Corresponding author: R. Sulzer +density, level of noise or outliers, and on the output, such +as smoothness, topological properties or the shape category. +In contrast, recent methods introduced by the deep learning +community can learn point cloud defects or shape patterns +directly from training data and therefore promise to recon- +struct more accurate surfaces without the need for manual +parameter tuning. However, so far deep surface reconstruc- +tion (DSR) methods have mostly been applied on datasets +with a small number of different object categories. Such +datasets are not representative for real-world applications, +where algorithms have to reconstruct surfaces containing a +large variety of shapes unseen during training. +Furthermore, DSR methods are often applied on uni- +formly sampled point clouds. Likewise, such point clouds +are not representative for real-world acquisitions, as they +do not model non-uniformity or missing data stemming +e.g. from occlusions, or transparent and low texture areas. +The ability to reconstruct shapes, either from unseen shape +classes or from point clouds with unseen defects is rarely +studied in a systematic manner for DSR methods. +To this end, we propose several experiments to bench- +mark algorithms for surface reconstruction from point +clouds. We make use of a variety of publicly available shape +datasets with object surfaces of different complexities. The +objects are represented by a true surface S, which is a +boundary-free 2-manifold, i.e. each point on the surface has +a neighborhood that is homeomorphic to an open subset +of the Euclidean plane. We synthetically scan the objects to +produce point clouds with real characteristics. Having ac- +cess to the true surfaces allows us to measure the geometric +and topological reconstruction quality of the benchmarked +methods. We also verify our findings on real-world point +clouds. +We compare novel learning-based algorithms to tradi- +arXiv:2301.13656v1 [cs.CV] 31 Jan 2023 + +2 +tional test-of-time methods to specifically study the influ- +ence of learned priors incorporated into the surface recon- +struction process. We thereby pay special attention to the +generalization capability of methods to unseen domains. +Our main contributions are as follows: +• We review methods for surface reconstruction from +point clouds from over three decades up to recent +learning-based methods. We contrast popular test-of- +time with novel DSR methods. +• We benchmark traditional and learning-based methods +on the same ground across several experiments, using +openly available shape datasets and point clouds gen- +erated with synthetic scanning. +2 +RELATED WORK +2.1 +Surveys +There exists only few works that survey the broad field +of surface reconstruction from point clouds [1], [2], [3], +[4], most of them predating the advance of learning-based +surface reconstruction [1], [2], [4]. Surface reconstruction +methods are often grouped into interpolating or approx- +imating methods [5]. Interpolating methods “connect” all +points of the input point cloud, or a subset thereof, usually +by linearly interpolating between pairs of points. Approx- +imating methods often define one or several smooth func- +tions approximating the point cloud globally or locally. See +Figure 2 for an illustration. Berger et al. [1] and Cazals & +Giesen [2] provide detailed reviews for approximating and +interpolating surface reconstruction methods, respectively. +To the best of our knowledge, only one survey includes +learning-based methods [3]. However, this survey predates +important developments for learning-based methods, such +as the incorporation of local information [6], [7], [8], [9], +[10], [11], [12]. In this work, we review both interpolat- +ing and approximating methods and focus on novel ideas +in learning-based surface reconstruction. While many re- +construction methods can be distinguished by the prior +assumptions they impose [1], we argue that a variety of +successful methods combine different priors. This makes +grouping by priors difficult. We thus organize methods into +two groups: surface-based and volume-based approaches. +This breakdown closely relates to the two main classes of +mathematical representations of a surface: parametric and +implicit. +2.2 +Benchmarks +To date, benchmarks for surface reconstruction from point +clouds are rare. Many methods use custom datasets to +evaluate their approach, usually generated by uniformly +sampling point clouds from ground truth shapes of exist- +ing shape collections [6], [7], [8], [11], [12], [13]. However, +the characteristics of the sampled point clouds often differ +across publications, which hampers the ability to fairly +compare the results of different works. Furthermore, the +point clouds often lack common defects of real acquisitions, +such as missing data or outliers. One notable exception is +the benchmark of Berger et al. [14]. The authors develop +a synthetic range scanning procedure to produce scans +with realistic artifacts, such as noise, non-uniformity and +misaligned scans and create point clouds from shapes with +non-trivial topology and details of various feature sizes. +While providing interesting results, the benchmark predates +learning-based surface reconstruction and only considers +traditional approximating methods. In the benchmarks pro- +posed in this paper, we reuse their synthetic range scanning +procedure and their five test shapes, as they provide realistic +and challenging input for both learning-based and tradi- +tional algorithms. We also implement our own synthetic +scanning procedure for MVS-like point clouds. We use the +synthetic scanning to scan existing large shape datasets to +create training datasets with true surfaces and point clouds +with realistic characteristics. +A problem related to surface reconstruction is the gen- +eration of point clouds from 2D information such as over- +lapping images. There exists a variety of benchmarks using +data captured in a laboratory environment [15], [16] or in +the wild [17], [18], [19]. These benchmarks often use a low +quality image acquisitions as reconstruction input. Simulta- +neously, a higher quality acquisition, e.g. from LiDAR scans, +serves as reference. +One problem with this approach is that, even for high +quality acquisition techniques, it is difficult to produce +complete ground truth point clouds. This issue is sometimes +addressed by decreasing the ground truth domain to specific +evaluation areas, in which reliable information is available +either from recorded points or sightlines between points +and sensors [16], [18]. However, in contrast to true surfaces, +reference point clouds, do not allow to calculate topologic +metrics such as the number of components or differen- +tial metrics such as surface normals. Furthermore, most +learning-based methods require closed reference surfaces +instead of reference point clouds for training. +3 +SURFACE +DEFINITION, +REPRESENTATIONS, +PROPERTIES AND RECONSTRUCTION +In this section, we first provide a definition of a surface and +its mathematical and digital representations. We then dis- +cuss important surface properties. Finally, we establish the +connection between mathematical surface representations, +and the grouping of surface reconstruction algorithms used +in our survey. +3.1 +Definition +A surface can be defined as an orientable, continuous 2- +manifold in R3, with or without boundaries [5], [20], [21]. +These properties are important for surface visualisation +and processing, and we will discuss them further down. +Mathematically, there are two main classes of surface repre- +sentations: parametric and implicit. +3.2 +Representations +Parametric surfaces are defined by a function f : Ω �→ S +that maps a parameter domain Ω ∈ R2 to the surface +S = f(Ω) ∈ R3. However, for complex surfaces it is not +feasible to find a single function that can parameterise S. +Therefore, the parameter domain Ω is usually split into sub- +regions for which an individual function is defined [5]. The +most common way is to segment Ω into triangles, which + +3 +(a) Unknown Topology +(b) Unknown Geometry +(c) Acquisition Defects +Figure 1: Difficulties in surface reconstruction from point clouds: In each plot, we show the real surface +, point +samples +, and possible reconstructions +. The correct topology and geometry of the real surface are not known from +the point samples (a,b). The point samples may also include acquisition defects such as noise (c). The goal of any surface +reconstruction algorithm is finding a good approximation of the real surface, in terms of its geometry and topology. +Learning-based surface reconstruction can learn shape patterns or sampling errors such as the one exemplified here, and +use the learned knowledge during reconstruction for a better approximation. +(a) Open Interpolating +(b) Open Interpolating +(c) Closed Interpolating +(d) Closed Interpolating +(e) Open Approximating +(f) Open Approximating +(g) Closed Approximating +(h) Closed Approximating +Figure 2: Approximating and interpolating surfaces from point clouds: A surface generated from point samples can either +interpolate (top row) or approximate (bottom row) the samples. Theoretically, there exist an infinite number of surfaces +with different geometry and topology that can pass through, or near, the samples. We show eight different surfaces +reconstructed from the same point cloud +in (a) - (h). The point cloud can be seen as a sampling of a part of a real +surface. All reconstructed surfaces are watertight, as they are either closed and boundary-free, or their only boundary is +the intersection with the domain boundary +. The surface in (d) is non-manifold in the center-vertex. All other surfaces are +manifold. Except for (h), all surfaces are comprised of only one component. In contrast to the point cloud depicted here, in +our benchmark, we mainly consider point clouds sampled from closed surfaces. +are planar by definition. A set of triangles approximating S +can be efficiently stored and processed as a triangle surface +mesh M = (V, E, F), with triangle facets F, edges E and +vertices V. +Implicit surfaces are defined by the level-set c of a scalar +valued function F : R3 �→ R: +Sc = {x ∈ R3 | F(x) = c}. +(1) +The most common choice of the implicit function F is +either a signed distance or an occupancy function. A signed +distance function (SDF) gives the distance from a 3D point +x in space to the surface; with points in the interior signed a +negative value, and points on the exterior signed a positive +value. An indicator or occupancy function (OF) usually has +a value of 1 inside the surface and 0 outside. The c-level- +set of F then yields the surface S, where c = 0 in the case +of a signed distance function and c = 0.5 in the case of +an occupancy function. Similar to the parametric case, the +implicit function domain is often split into sub-regions, such +as voxels, octree-nodes or tetrahedra, and constant functions +are defined in each sub-region. +3.3 +Properties +The reconstructed surface Sr should be close in terms of +geometry and topology to the real surface S from which +the point cloud P is sampled. To facilitate subsequent geo- +metric operations on Sr, such as sampling or deforming the +surface, a mesh reconstruction M is also desirable. Sr and +M, respectively, should have the following properties (see +Figure 2 for illustrations): +• Watertight: A geometric surface is closed if it is +boundary-free. A mesh M is closed—or boundary- +free—if no edge is incident to exactly one facet. How- +ever, a reconstructed surface of a real scene necessarily +has a border defined e.g. by the limit of the scan cov- +erage. One may still reconstruct a closed surface by in- +tersecting it with the boundary of the domain in which + +4 +f or F is defined: e.g. the convex hull or bounding box +of P. However, this procedure may not be desirable, +as it can hinder simple geometric analysis such as the +calculation of surface area. Instead, we define a surface +as watertight if it is boundary free, except for a possible +intersection with the domain boundary. +• Manifold: We consider real and geometric surfaces to +be 2-manifolds, i.e. each point on the surface has a +neighborhood that is homeomorphic to an open subset +of the Euclidean plane. A mesh M is manifold if it is +edge- and vertex-manifold, and intersection-free. +– Edge-manifold: For each edge E, the set of facets F +sharing this edge form a topological (half-)disk. This +means that no edge can be incident to more than two +facets. +– Vertex-manifold: For each vertex V, the set of facets +sharing this vertex form a topological (half-)disk. This +means that facets with a common vertex form an +open or closed fan, i.e. there are no dangling facets. +• Intersection-free: M is intersection free if all pairs of +facets not sharing an edge or vertex do not intersect. +• Orientable: M is orientable if one can define a consis- +tent continuous orientation of each facet. This means +that the order of the vertices of all facets is either +clockwise or counter-clockwise and a common edge +of two adjacent facets has opposite orders on the two +sides. +The watertight property is useful for simulations such +as fluid dynamics. Manifoldness and orientability are often +required for mesh storing and processing, in particular be- +cause they are a prerequisite for the widely-used half-edge +data structure [22], [23]. Furthermore, intersection-free and +orientable surfaces lead to a well-defined notion of inside +and outside, which is important for mesh visualization and +a variety of geometric opertations. +3.4 +Reconstruction +Surface reconstruction from point clouds is the process of +constructing a continuous surface of which discrete point +samples have been acquired. In our survey, we group +methods for surface reconstruction from point clouds into +two groups: surface- and volume-based. Surface-based re- +construction methods consists in finding (a set of) param- +eterised surfaces Sr that approximate the point cloud P, +either in the form of triangles or larger two-dimensional +(2D) patches, or by deforming parameterised enclosing +envelops such as meshed spheres. The main challenge for +surface-based methods using a single function f is that the +topology of Ω has to be equivalent to the topology of S, +which is usually unknown. The main challenge for surface- +based methods with individual functions for sub-regions of +S, on the other hand, is to guarantee a consistent transition +between each region. Hence, these methods often struggle +to produce an intersection-free, manifold and watertight +surface. +Volume-based methods, on the other hand, segment a +subset of R3 into interior (inside) and exterior (outside) +subspaces. The surface is implicitly defined as the interface +between the two subspaces. Most, but not all algorithms in +this class formulate the problem as finding an implicit func- +tion. Surfaces from volume-based methods are guaranteed +to be watertight and intersection-free, but not necessarily +manifold [2]. +While surface-based methods can directly yield a mesh, +e.g. by triangulating Ω, volume-based methods usually re- +quire an additional processing step. If the implicit field is +discretized with tetrahedra, one can simply use a process +which is sometimes called triangle-from-tetrahedra (TFT). +TFT builds a triangle mesh from all triangles that are ad- +jacent to one inside- and one outside-tetrahedra. Another +option is the algorithm of Boissonnat and Oudot [24] that +iteratively samples F along lines from inside to outside to +find points that lie on S and builds a triangle mesh from +these points. One of the most popular methods for mesh +extraction from an implicit field is Marching Cubes [25], +which (i) discretizes the implicit function into voxels, (ii) +constructs triangles inside each voxel that have at least one +inside and one outside vertex and (iii) extracts a triangula- +tion as the union of all triangles. Recently, mesh extraction +has also been addressed by the deep learning community. +Neural meshing [26] specifically addresses the case where +an implicit function is represented by a neural network, and +aims to extract meshes with fewer triangles compared to +Marching Cubes from such a function. +In both, surface- and volume-based groups, there are +methods that come with theoretical guarantees about the +topology and geometry of the reconstruction in the absence +of noise and when the point sampling is dense enough [2]. +However, in this paper, we are mostly interested in the +robustness of methods to defect-laden input point clouds +from 3D scanning. +4 +SURVEY +In this section, we review important surface- and volume- +based surface reconstruction methods and discuss their +robustness against different point cloud defects. We also +show that learning-based approaches are often related to +more traditional methods. +4.1 +Surface-based reconstruction +4.1.1 +Interpolating approaches +Advancing-front +techniques.: +Most +traditional +surface-based approaches linearly interpolate between the +point samples P, or a subset thereof. This can be done +efficiently by triangulating triplets of points which respect +the empty ball property i.e. no other point lies within their +circumsphere. Triangulating all triplets of P that have this +property leads to the 3D Delaunay tetrahedralisation (3DT) +of P. The Ball Pivoting algorithm [27] is a greedy approach +to find local triplets of points that form a triangle which +is part of the surface. The first step is to (i) define a ball +with constant radius, related to the density of P and to +(ii) select a seed triplet of points. The ball must touch all +three points and have no other point in its interior. The +points then form the first surface triangle. Then, (iii) the +ball pivots around an edge of the triangle until it touches +a new point, forming a new surface triangle. Once all +possible edges have been processed the algorithm starts + +5 +Table 1: Overview of surface- and volume-based surface +reconstruction methods: We show an overview of surface- +and volume-based surface reconstruction methods, both +non-learning and learning-based, together with their input +requirements (normals, sensor pose) and output type (triangle +mesh or implicit field). Attributes denoted in brackets are +optional. Methods with a local receptive field divide the +point cloud into smaller sub-regions and define individual +functions or surface patches for each sub-region. Methods +with a global receptive field consider the entire point cloud at +once. Methods denoted with both combine local and global +receptive fields. We test methods in bold in our benchmark. +Method +learning +normals +sensor pose +receptive field +output +Surface-based +BPA +[27] +local +triangle mesh +Sharf et al. +[28] +both +triangle mesh +AtlasNet +[29] +✓ +local +triangle mesh +IER +[30] +✓ +both +triangle mesh +PointTriNet +[31] +✓ +local +triangle mesh +DSE +[11] +✓ +local +triangle mesh +P2M +[32] +both +triangle mesh +Volume-based +SPSR +[33] +✓ +both +implicit field +Labatut et al. [34] +✓ +global +triangle mesh +ONet +[35] +✓ +global +implicit field +DeepSDF +[13] +✓ +global +implicit field +IM-Net +[36] +✓ +global +implicit field +ConvONet +[6] +✓ +both +implicit field +IGR +[37] +(✓) +(✓) +global +implicit field +LIG +[8] +✓ +✓ +local +implicit field +DGNN +[10] +✓ +✓ +both +triangle mesh +SAP +[38] +✓ +both +implicit field +P2S +[9] +✓ +both +implicit field +SAP +[38] +(✓) +both +implicit field +POCO +[12] +✓ +(✓) +local +implicit field +with a (iv) new seed triangle until all points of P have +been considered. The algorithm has later been refined to +be more robust to non-uniform sampling [39], [40]. The +Ball Pivoting algorithm and its related variations are often +called advancing-front techniques. Their main drawback is +that they are not robust to point cloud defects such as noise +or point clouds with large missing parts. +Selection-based: +Similar to advancing-front tech- +niques, the idea to iteratively build the triangulation +from initial candidate triangles has also been explored in +learning-based methods [30], [31]. PointTriNet [31] (i) starts +with an initial set of seed triangles from a k-nearest neighbor +graph of P. Then, (ii) a first network takes in neighboring +points and triangles of each seed triangle, and estimates its +probability to be part of the surface. (iii) Triangles with +high probability are selected to be part of the final sur- +face and (iv) a second network proposes new candidate +triangles constructed from two points of already selected +surface triangles and neighboring points. The proposed new +candidates are, again, processed by the first network and the +algorithm continues for n user-defined iterations. The loss +function is based on Chamfer distance between input points +and the reconstructed surface, which allows the method to +be trained without the need for ground truth meshes. IER- +meshing [30] also (i) starts with a large set of seed triangles +from a k-nearest neighbor graph. It then defines a so-called +intrinsic-extrinsic ratio (IER), as the quotient of geodesic +and Euclidean distance between points of a triangle. (ii) +This ratio is estimated by an multilayer perceptron (MLP) +from learned point features per triangle and supervised with +IER’s from a ground truth mesh. (iii) Only triangles with an +IER close to 1 (i.e. Euclidean distance ≈ geodesic distance) +are considered to be part of the surface and (iv) selected +based on handcrafted heuristics. Both aforementioned meth- +ods have shown to be robust against small amounts of +noise in the input point cloud. However, their reconstructed +surfaces are neither manifold nor watertight. +Tangent plane and other projection methods: An- +other class of surface-based interpolating approaches are +tangent plane methods. This class includes the algorithm +of Boissonnat [41], which is according to Cazals and Giesen +[2] probably the first algorithm to address the surface re- +construction problem. The basic idea is to (i) find a tan- +gent plane for each sample point, (ii) project the points +local neighborhood on the tangent plane, (iii) construct 2D +Delaunay triangulations of the projected points and (iv) +merge the local reconstructions. A shortcoming of such an +approach is that tangent planes are difficult to use in areas +with high curvature or thin structures [11]. To this end, the +idea of using local 2D Delaunay triangulations of projected +points has been refined in a recent learning-based approach +[11]. Instead of tangent planes, DSE-meshing [11] uses loga- +rithmic maps, local surface parametrizations around a point +p, based on geodesics emanating from p. This method (i) +classifies geodesic neighbors of each point in P from a set +of k-nearest neighbors. Then, (ii) an MLP approximates a +logarithmic map parametrization to gain a 2D embedding +of the geodesic neighbors. Lastly, (iii) neighboring logarith- +mic maps are mutually aligned and triangulated. This step +allows the method to reconstruct surfaces with fewer non- +manifold edges, compared to methods that process triangles +independently. However, the surface is still not watertight +and the method has not been tested for reconstruction from +noisy point clouds. +4.1.2 +Patch-fitting +Patch-fitting methods are related to tangent plane ap- +proaches. Instead of interpolating the initial point set, a +new triangulation patch is formed. AtlasNet [29] is based +on this idea and was one of the first learning-based surface +reconstruction methods. Small 2D triangulated patches are +transformed to fit P based on transformations predicted by +an MLP. Similar to interpolating approaches, this method +cannot guarantee to fill all gaps between patches, which +results in a non-watertight and potentially self-intersecting +surface. +4.1.3 +Surface deformation +One of the only classes of surface-based approaches that +can guarantee a watertight surface are deformation-based +methods. Sharf et al. [28] introduced a method that (i) iter- +atively expands an intial mesh contained within the input +point cloud along the face normal directions, and (ii) moves +the mesh vertices to fit the input point cloud using moving + +6 +least squares. The method is shown to be robust against +missing data, but requires careful parameter tuning to be +robust against noise or outliers. Point2Mesh (P2M) [32] is +also based on the aforementioned idea, but avoids the need +for tuning parameters by hand. The method takes as input +a convex hull or a low resolution Poisson reconstruction +[33] of P, and shrink-wraps this initial surface to best fit +the point cloud. The process is guided by multiple local +convolutional neural networks (CNNs) that share weights. +The idea is that the weight sharing between the CNNs acts +as a prior that identifies symmetric features in the shape +while being able to ignore unsystematic, random defects in +the point cloud. One problem with this approach is that the +topology of the initial surface stays constant during recon- +struction. If the correct topology of the surface is not known, +it cannot be recovered. For example, if the sought surface +has holes, they cannot be reconstructed from a convex +hull initialisation. This poses a limitation for reconstructing +arbitrary objects in the wild. +4.2 +Volume-based reconstruction +4.2.1 +Interpolating approaches +Volume-based interpolating approaches commonly start by +constructing a 3DT of P. In R3 a Delaunay triangulation +(or tetrahedralization) subdivides the convex hull of P with +tetrahedra. The 3DT is created in such a way that no point +of P is contained in the circumspheres of any tetrahedra. +For well distributed point clouds it can be constructed +in O(n log n) [42]. The Delaunay triangulation does not +directly generate the surface, as it connects points in any +direction. However, if the sampling P of S is dense enough +a subcomplex of the 3DT is guaranteed to include a surface +Sr closely approximating the geometry and topology of S +[2]. One of the simplest ways to recover this subcomplex +from a 3DT is to (i) prune all tetrahedra with circumspheres +larger than a user specified constant radius α and then (ii) +keeping only the boundary triangles. This leads to a so- +called α-shape [43]. Similar to the Ball Pivoting algorithm +the radius of the ball (here α) depends on the point density. +For error free and dense samplings, alpha-shapes and some +other interpolation methods [2], [41], [44] provide provable +guarantees that the reconstructed surface is topologically +correct [2]. Another way to recover a surface from a 3DT +is inside-outside labelling [10], [10], [34], [45], [46], [47], [48], +[49], [50], [51], [52], [53]. Here, all tetrahedra of a 3DT of +P are (i) labelled as either inside or outside with respect to +Sr, and (ii) the surface is defined as the interface between +tetrahedra with different labels. This guarantees to produce +intersecting-free and watertight surfaces. The inside-outside +labelling is usually implemented through a global energy +minimized with graph-cuts. Inside-outside potentials are +computed using visibility information and spatial regular- +ization is achieved through surface smoothness or low area +priors in the energy. This approach has been shown to be +robust against most kinds of acquisition defects of moderate +levels [34], [50], [51] and is capable of reconstructing (very) +large scale scenes [49]. Delaunay-Graph Neural Network +(DGNN) [10] is a learning-based method that replaces the +handcrafted potentials in the aforementioned energy with +a graph neural network (GNN). The GNN takes local ge- +ometric attributes and visibility information as input and +operates locally on small subgraphs of the 3DT. The locality +makes the method scale to large scenes. The method of Luo +et al. [54] proceeds similarly, but without the use of visibility +information and a global energy formulation. Instead, the +GNN processes the 3DT of entire objects at once, which can +hamper scalability. +4.2.2 +Implicit functions +Arguably the largest class of surface reconstruction algo- +rithms represent the surface with an implicit function (cf. +Equation 1). One of the first methods that used implicit +functions for surface reconstruction was presented in Hoppe +et al. [20]. Hoppe et al. (i) calculate tangent planes at each +input point of P, using principal component analysis (PCA) +of the local neighborhood. They then (ii) approximate an +SDF by mapping an arbitrary point x ∈ R3 to its signed +distance to the closest tangent plane. (iii) The surface is +defined as the 0-level-set of the SDF. The local tangent +plane estimation makes the process sensitive to low density +sampling and noise, and computationally expensive. +Poisson surface reconstruction.: The most popular +approach for surface reconstruction based on implicit func- +tions is Poisson Surface Reconstruction (PSR) [55]. The idea +is that the Laplacian of an indicator function χ, whose +c-level-set approximates the unknown surface S, should +equate the divergence of a vector field ⃗N associated with +P: +∆χ = ∇ · ⃗N . +(2) +The vector field ⃗N is defined by the oriented normals of P. +To define χ the algorithm (i) builds an octree on P and (ii) +sets up a system of hierarchical functions, locally supported +in each octree node, and (iii) globally solved by using a +sparse linear system, which makes the method time and +memory efficient. Dirichlet conditions can be imposed on +the bounding box of the surface with χ = 0 to ensure that +the surface is closed. The approach is known to inherently +produce smooth surfaces, but also over-smooth the surface +in parts. The later introduced Screened Poisson Surface +Reconstruction (SPSR) [33] can reconstruct much sharper +surfaces by constraining Equation 2 to pass through P. +Additionally, it introduces the choice of Neumann bound- +ary conditions which allows the surface to intersect the +boundary of the domain in which F is defined. This is +useful for open scene reconstruction. Recently the method +has been revisited again, to impose Dirichlet constraints on +a tight envelope around P, enabling better reconstructions +in areas of missing data [56]. Poisson surface reconstruction +produces watertight meshes and has shown to be robust +against almost all kinds of acquisition defects of moderate +levels. However, all Poisson-based approaches require well +oriented normals as input, which can pose a significant +limitation in practice. +Neural implicit functions: The most common ap- +proach to surface reconstruction with deep networks is to +model F in Equation 1 with a neural network. This was first +done in the pioneering works of Mescheder et al. [35], Park +et al. [13], and Chen & Zhang [36]. + +7 +In the case of Occupancy Networks (ONet) [35], F is +modelled with a simple fully connected network (FCN) +architecture. The network takes as input a point cloud P +and one or several test points x and outputs the occupancy +of the test points in relation to the surface from which P was +sampled. The conditioning on the input point cloud slightly +changes the formulation of Equation 1 to: +S = {x ∈ R3 | Fθ(x, P) = c} . +(3) +To estimate the network weights θ, the network is +trained with batches B of K objects using a simple binary +cross entropy (BCE) loss: +LB (θ) = 1 +|B| +|B| +� +i=1 +K +� +j=1 +BCE (Fθ (xij, Pi) , oij) , +(4) +where oij is the ground truth occupancy of test point xij. +To compute the ground truth occupancy oij, the training +objects have to be available in the form of watertight sur- +faces. A common approach is to use large shape collections, +such as ShapeNet [57] for training. Similar ideas have been +introduced in IM-Net [36] and DeepSDF [13] to model an oc- +cupancy or signed distance function with a neural network. +Instead of an encoder-decoder architecture as in ONet, the +authors of DeepSDF [13] introduce an auto-decoder which +is trained to find a shape code z that best explains an objects +shape. This slightly changes Equation 3 and Equation 4, +where the point cloud input P is replaced by a shape code +z in the form of a 256-dimensional vector. The DeepSDF +architecture then allows to reconstruct a complete signed +distance field (and thus the shape), given a shape code z. +However, to find the shape code for a specific shape during +inference, at least a few ground truth signed distance values +are necessary. This can be a significant limitation in practice. +A common downside of the first DSR networks based on +neural implicit fields is their simple fully connected network +architecture. This architecture does not allow the incorpora- +tion of local point cloud information [6] and often leads to +oversmoothing or inaccuracies of the inferred surface. +To this end, occupancy networks have later been refined +by prepending 2D or 3D U-Nets [58], [59] before the fully +connected occupancy network, to better incorporate local +information. The idea is to (i) extract point features from +local neighborhoods and (ii) aggregate these features in +2D or 3D grid cells. The U-Nets are then used to (iii) +integrate local and global information using multiple down- +and upsamplings. (iv) Finally, the fully connected ONet is +used to compute test point occupancies. The approach is +called Convolutional Occupancy Networks (ConvONet) [6]. +Just as for the fully connected architectures, the network +can be trained with test points x with known occupancy +values o. In the same work, the authors also introduce an +overlapping sliding-window approach in which a single +trained ConvONet can be used to reconstruct entire indoor +scenes. However, this approach requires to carefully scale +the scene, such that the sliding window captures parts of +the scene with comparable surface features during training +and inference. Furthermore, for large-scale scenes, a sliding- +window approach can be very time-consuming. +Local Implicit Grids (LIG) and DeepLS [7] also split +input point clouds into overlapping subregions, and treat +each subregion separately. The methods infer local shape +codes z for parts of objects or scenes. These local shape +codes have the additional benefit that they can represent +parts from several different object classes. For example, a flat +part-surface may belong to a table top or to a TV screen. This +makes the methods less prone to overfit on specific shape +categories used during training. However, the methods are +largely based on IM-Net and DeepSDF. This means they also +require a sort of ground truth test point during inference to +optimize for the shape codes. Additionally, similar to the +sliding window method of ConvONet, the region size (i.e. +part size) has to be tuned. +Using the same encoder architecture as ConvONet, +Shape As Points (SAP) [38] introduces the combination of +neural implicit fields with a differentiable Poisson solver. +The method estimates (i) oriented normals as well as k point +offsets for each input point, to correct and densify the point +cloud P. (ii) The resulting point cloud of size k|P| is fed to a +differentiable Poisson solver [33] that computes an indicator +grid, i.e. ˆχ evaluated on all nodes of a regular voxel grid. +(iii) This indicator grid is supervised with a ground truth +indicator grid χ. The ground truth indicator grid is created +prior to training, from a Poisson reconstruction of a dense +and error free point cloud, sampled from a ground truth +mesh. A simple mean square error (MSE) loss is used for +training the network: +L = |ˆχ − χ|2 +(5) +The entire pipeline is differentiable which allows to +update point offsets, oriented normals and the network +parameters during training (with batches of shapes). Dur- +ing inference, the computed indicator grid can simply be +converted to a mesh using marching cubes. In contrast to +the original Poisson Surface Reconstruction, SAP allows +to incorporate learned priors and does not need P to be +equipped with oriented normals. +In general, all of the methods based on voxel grids in this +paragraph require the size of the initial voxels to be constant +during training, because the resolution of the convolution +layers depends on the voxel grid. This poses problems for +training on point clouds with different densities. A dense +voxel grid can be memory intensive and long to train, while +a coarse voxel grid can oversmooth the input and lead to +loss of information. +Another way to combine local and global information, +that avoids the use of grids was introduced in Points2Surf +(P2S). P2S uses both a local test point neighborhood sam- +pling, and a global point cloud sampling which are both +processed using MLPs and combined to predicted a signed +distance for the test point. The k-nearest neighbor sampling +makes this method less sensitive to point density, at the +cost of increasing computational complexity, since the local +neighborhood sampling has to be performed for each test +point during inference. +Point Convolution for Surface Reconstruction (POCO) +only relies on local neighborhoods and computes a latent +vector per point using a point convolution backbone. The + +8 +occupancy of a test point x is then predicted using attention- +based weighing of neighboring latent vectors. This approach +can focus the parameters of the learned implicit function +to be used close to the surface. However, it also requires +neighborhood sampling during inference. Similar to most +other DSR methods, POCO is trained on object point clouds +with a fixed number of points for easy mini-batching. How- +ever, to make the method more robust to point clouds with +higher density during inference, the authors use a procedure +called test-time augmentation. During inference, the latent +vectors of each input point p are computed several times, +from different local subsamples and then averaged. +Another approach to use neural implicit surface rep- +resentations is to ”train” (or optimize) the weights of a +deep neural network per shape [37], [38]. The idea is to +leverage inherent symmetries of deep neural networks to +act as priors in the reconstruction process, similar to the +surface deformation based Point2Mesh discussed above. To +this end, Gropp et al. [37] designed a simple fully con- +nected network representing a signed distance function. To +encourage the reconstruction of a smooth 0-level-set, given +an input point cloud P, they design a loss function which (i) +should vanish on P and (ii) which gradients ∆PF should +be of unit 2-norm and similar to the normals of P. The +method is called Implicit Geometric Regularisation (IGR). +SAP also has an optimization-based variant where (i) the +indicator grid, computed with the differential Poisson solver +from the input point cloud P is used to compute a mesh. +(ii) The mesh is then sampled, which allows to calculate a +Chamfer loss between the sampled and input point cloud +and, again, update the network weights, point offsets and +oriented normals. (iii) This process is repeated until a user +defined stopping criterion. The optimization-based variants +of SAP and IGR can be trained per shape, without the +need for ground truth meshes for supervision. However, +in this optimization-based setting, they cannot learn and +incorporate shape priors from a training set. +An upside of all DSR methods based on neural implicit +representations is that they can store an implicit function, +potentially conditioned on a point cloud, in the weights +of a neural network. Especially DSR architectures that are +entirely grid-less can directly relate their degrees of free- +dom to represent the surface. This can be more flexible +compared to voxel, octree, or tetrahedral representations. +Being a relatively new discovery, the full potential of neural +network-based surface representations has probably yet to +be explored. +5 +BENCHMARK SETUP +In this section, we describe our set up of a series of exper- +iments for benchmarking several surface reconstruction al- +gorithms discussed in the previous section. We first describe +how we generate realistic point clouds by using synthetic +range and MVS scanning procedures. We then describe the +datasets we used and several experiments to evaluate the +performance of reconstruction methods. Finally, we provide +an overview of the competing methods. +Synthetic scanning for point cloud generation: In an +ideal setting, we would evaluate methods on real point +cloud acquisitions together with their true surfaces. How- +ever, generating true surfaces of real objects requires error +free and dense input point clouds or substantial manual +intervention. Therefore, such a dataset is difficult to pro- +duce. MVS benchmarks [15], [16], [17], [18], [19] commonly +use image acquisitions for the reconstruction input and a +highly complete and precise acquisition, e.g. from multiple +stationary Light Detection and Ranging (LiDAR) scans as +reference. We make use of such datasets for evaluation. +Using such a dataset for training surface reconstruction net- +works requires reconstructing a watertight surface from the +high-quality acquisition. However, even with high-quality +acquisitions, parts of the object or scene may be missing due +to occlusions, for example. These issues ultimately lead to +inconsistencies in the ground truth and make this source of +data unreliable to train DSR networks. Additionally, existing +datasets of point cloud acquisitions and reliable ground +truth surface information only consist of a handful of ob- +jects or scenes. Instead, training and evaluation of learning- +based surface reconstruction is often done on point clouds +sampled from synthetic surfaces stemming from large shape +collections. However, such point clouds are not representa- +tive for real-world acquisitions, as they do not model non- +uniformity or missing data stemming e.g. from occlusions, +or transparent and low texture areas. To this end, we resort +to synthetic scanning to produce point clouds from synthetic +surfaces in our benchmark. In contrast to directly sampling +the surfaces, synthetic scanning can produce point clouds +with realistic defects, such as anisotropy and missing data +from (self-)occlusion, see Figure 3. At the same time, the +synthetic surfaces provide reliable information for training +and evaluation. +Synthetic range scanning: We use the range scanning +procedure from the surface reconstruction benchmark of +Berger et al. [14]. To this end, we modified their provided +code to export the camera positions of the scanning process +along with the point cloud. We also add outliers to the +produced point clouds by uniformly sampling the bounding +box of the object. The scanning procedure produces uniform, +evenly spaced point clouds. We choose five different scanner +settings to scan each test shape: (i) a low resolution setting +replicates point clouds obtained from long range scanning +and (ii) a high resolution setting produces point clouds with +close to no defects. Three further settings produce high +resolution point clouds with challenging defects such as (iii) +noise, (iv) outliers or (v) noise and outlier defects combined. +See the supplementary material for details. Because Berger +et al.’s provided code pipeline is too time and memory +extensive, we cannot generate a dataset sufficiently large for +training DSR methods. Thus, we only use this dataset for +testing. We refer the reader to the original benchmark paper +[14] for further details about the scanning pipeline. +Synthetic MVS: To mimic MVS acquisitions, we syn- +thetically scan objects by placing virtual sensors on two +bounding spheres around an object and shooting rays to the +circumsphere of the object. Sensor positions (ray origin) and +ray target points are uniformly sampled on the surface of +the spheres. A 3D point is then given as the intersection of +the ray and the objects surface. Our goal is not to mimic +an MVS pipeline but rather produce point clouds with +similar characteristics. We depict our scanning procedure in + +9 +(a) High Quality Mesh +(b) MVS +(c) Range scan +(d) Uniform sampling +(e) Synthetic MVS +(f) Synthetic range scan +Figure 3: Synthetic and real point clouds: Surface reconstruction methods are often tested on uniform surface samplings +(d). Instead, we test methods on synthetic MVS (e) and synthetic range scans (f). In contrast to uniform surface sampling, +synthetic scanning can produce realistic point cloud defects, such as missing data from occlusion, often present in real +scans (b,c). +(a) Synthetic scanning setup +(b) Synthetic MVS +(c) Synthetic range scanning +Figure 4: Synthetic scanning procedure: We randomly place sensors on bounding spheres with multiple radii around the +object (a). To produce MVS like point clouds, we consider rays aiming at uniformly sampled points on the circumsphere of +the object (b). This produces non-uniform point clouds with missing data similar to real MVS point clouds. For synthetic +range scanning, we use Berger et al.’s [14] pipeline, which considers ray targets arranged on a uniform grid aiming at the +object (c). This produces uniform point clouds with missing data similar to real range scanning point clouds. + +10 +Figure 4. We produce two different scans with our approach: +(i) sparse point clouds with 3, 000 points per object and +Gaussian noise on the point position with zero mean and +standard deviation 0.005 as in [6], and (ii) dense point +clouds with 10, 000 points per object of which 10% are +outliers and Gaussian noise on the point position with zero +mean and standard deviation 0.005. For both versions we +scan from 10 different sensor positions. +5.1 +Datasets +We consider a variety of datasets to evaluate the versatility +and precision of different reconstruction methods. We use +closed surfaces from ShapeNet, ModelNet and Berger et al., +as they are widely available. ShapeNet and ModelNet are +sufficiently big to train surface reconstruction networks. +Most learning-based methods require reliable inside/out- +side querying of the models for training. To this end, we +make the models watertight using ManifoldPlus [60]. Note +that we also use the train sets to tune the parameters +of learning-free methods. The watertight surfaces of the +test sets allow for a reliable quantitative evaluation of the +reconstructions. For qualitative evaluation, we also test on +real scans [15], [16], [19] which further allows us to evaluate +the reconstruction of open surfaces. All surfaces are scaled to +be contained inside the unit cube. In the following we give +additional details for each dataset used in our benchmark. +See the supplementary material for example shapes. +ShapeNet: As is common practice in related studies, +we use Choy et al.’s [61] 13 class subset of ShapeNet as +well as its train/val/test split. We generate point clouds +with 3, 000 and 10, 000 points using our synthetic MVS-like +scanning. +ModelNet10: We use ModelNet10 shapes as a sec- +ond object shape dataset. Its shapes are less complex than +ShapeNet’s, with more flat surfaces and fewer details. Ad- +ditionally, the number of training shapes is smaller (4k vs +30k objects). We use the full train set and the test sets for the +6 out of 10 classes which are not represented in ShapeNet +(see supplementary material for details). We generate point +clouds with 3, 000 points with our synthetic MVS-like scan- +ning. +Berger et al.: We select five shapes from the bench- +mark of Berger et al.. These shapes include challenging +characteristics such as details of various sizes or a non-trivial +topology, which makes them more difficult to reconstruct +than ModelNet shapes. We generate point clouds between +3, 000 and 10, 000 points using our synthetic MVS and range +scanning procedures. +Real MVS and range scans: We select a range scan +from Tanks and Temples [19], and two MVS point clouds +from DTU [16] and from Middlebury [15]. We subsample +these point clouds to 50, 000 points. +5.2 +Experimental Setup +We show a summary of our experimental setup on Table 2. +In the following, we provide details for each experiment. +In-distribution (E1): First, we train and evaluate +methods on ShapeNet using all 13 categories and sparse +point clouds with 3, 000 points and Gaussian noise with +zero mean and standard deviation 0.005. With this exper- +iment, we evaluate the capacity of learning methods to +complete missing data of sparse point clouds and eliminate +noise. +Out-of-distribution (unseen point cloud characteris- +tics) (E2): We evaluate the models trained in E1 on test +shapes scanned with a different setting than the train +shapes. We use dense point clouds with 10, 000 points of +which 10% are outliers. We add the same noise as in E1. +Here, we investigate whether learning methods are able to +generalize to different point cloud characteristics. +Out-of-distribution (unseen shape categories, less +complex) (E3): We evaluate the models trained in E1 on +shapes from unseen categories but with the same point +cloud characteristics. We use six categories of ModelNet +which are not present in the ShapeNet training set. In +this experiment, we investigate whether learning methods +generalize to unseen categories. +Out-of-distribution (unseen shape categories, similar +complexity) (E4): This experiment is similar to E3, but +the test set is comprised of five shapes from Berger et al. +which do not correspond to ShapeNet’s categories, but have +similar complexity. +Out-of-distribution (unseen shape categories, more +complex (E5): This experiment is similar to E3 and E4, +but we retrain all methods on the simpler shapes from +ModelNet10. Here, we assess whether learning methods +can generalize from simple shapes to more complex ones, +a difficult out-of-distribution setting. +Optimization (E6): We evaluate several recently de- +veloped optimization-based methods, and two traditional +test-of-time optimization-based methods. We use the Berger +et al. dataset for this experiment. +Out-of-category vs. optimization (E7): We compare +learning- and optimization-based methods on the same +dataset. For this we run optimization-based methods on +MVS scans of the Berger et al. shapes and compare the +results to experiment E4. +Out-of-distribution vs. optimization (E8): Finally, we +compare learning- and optimization-based methods on real +MVS and range scanning point clouds. For learning-based +methods we use the models from E1. +5.3 +Surface reconstruction methods +We briefly describe the optimization- and learning-based +methods that we will benchmark below. For a more com- +plete description of these methods and their related con- +cepts we refer the reader to our survey in Section 4. Note +that while some of the optimization-based methods are +based on deep networks, and we call them DSR methods, +they do not learn shape priors from a training set. Instead, +the networks are “trained” (or optimized) for each new +point cloud to reconstruct a surface and rely on novel regu- +larization techniques to increase their robustness to noise, +outliers and missing data. Conversely, while some tradi- +tional methods are not based on a deep network architec- +ture, we tune their (hyper)parameters on the training set by +using a grid search over different parameter combinations. +When we need to extract a surface from an implicit field, we +use marching cubes [62] with a resolution of 1283. + +11 +Table 2: Benchmark setup: Overview of our experimental setup. In E1 to E5, we train surface reconstruction methods on +noisy point clouds of ShapeNet objects. In E1, we test on the ShapeNet test set. In E2, we test on ShapeNet, but from +denser point clouds with noise and outliers. In E3, we test on the simpler ModelNet objects with the same sampling as +in E1. In E4, we test on five Berger et al. shapes with the same sampling as in E1. In E5, we train the methods on the +simpler ModelNet dataset and test on ShapeNet, both with the same sampling as in E1. In E6, we test optimization-based +methods on synthetic range scans of the Berger et al. dataset. Finally, in E7 and E8, we directly compare learning- and +optimization-based methods on synthetic and real scans. +Experiment +Training set +Test set +1 +In-distribution +ShapeNet (synthetic MVS) +ShapeNet (synthetic MVS) +2 +Out-of-distribution +unseen point cloud characteristics +ShapeNet (synthetic MVS) +ShapeNet (synthetic MVS) +3 +Out-of-distribution +unseen shape categories, +less complex +ShapeNet (synthetic MVS) +ModelNet (synthetic MVS) +4 +Out-of-distribution +unseen shape categories, +similar complexity +ShapeNet (synthetic MVS) +Berger et al. (synthetic MVS) +5 +Out-of-distribution +unseen shape categories, +more complex +ModelNet (synthetic MVS) +ShapeNet (synthetic MVS) +6 +Optimization +– +– +Berger et al. (synthetic range scan) +7 +Out-of-distribution vs. optimization +unseen shape categories vs. optimization +ShapeNet (synthetic MVS) +Berger et al. (synthetic MVS) +8 +Out-of-distribution vs. optimization +unseen point cloud characteristics and +shape categories vs. optimization +– +ShapeNet (synthetic MVS) +Middlebury, DTU (MVS), TaT (range scan) + +12 +5.3.1 +Optimization-based methods +IGR [37]: Implicit Geometric Regularisation (IGR) is +a DSR method, operating directly on the point cloud using +a simple fully connected network architecture that estimates +an indicator function from point positions and normals. We +optimize the network weights for 100, 000 iterations for each +scan/shape. +LIG [8]: Local Implicit Grids (LIG) trains an autoen- +coder to encode crops of a signed distance function gained +from ground truth shapes. For inference, only the decoder +part of the autoencoder is retained. Then, crops of the input +point cloud with oriented normals are augmented with 10 +new points along each normal, representing ground truth +signed distance information. An initial latent vector is then +decoded to produce an SDF and iteratively optimized so +that the augmented point cloud crop best matches the SDF. +A post-processing removes falsely-enclosed volumes. As +code for training is unavailable, we only use the optimiza- +tion part, with a pretrained model on ShapeNet (without +noise). We use the sensor position to orient jet-estimated +normals [63]. +P2M [32]: Point2Mesh (P2M) is an optimization- +based method which iteratively moves vertices of an initial +mesh to fit a point cloud. +SAP [38]: Shape As Points (SAP) has a supervised +learning- and an optimization-based variant. In the learning +variant, the method estimates the oriented normals as well +as k point offsets for each input point, to adjust and densify +the point cloud. The resulting point cloud of size k | P | +is then used by a differentiable Poisson solver [33] to com- +pute an indicator grid, which is supervised with a ground +truth indicator grid computed prior to training. The entire +pipeline is differentiable which allows for updating point +offsets, oriented normals and the network parameters. +SPSR [33]: Screened Poisson Surface Reconstruction +(SPSR) is a classic non learning-based method which ap- +proximates the surface as a level-set of an implicit function +estimated from point positions and normal information. We +use the sensor position to orient jet-estimated normals [63]. +We chose an octree of depth 10 and Dirichlet boundary +condition. We also use the provided surface trimming tool +for post-processing, but could not find parameters that +consistently improve the reconstructed surface. +Labatut et al. [34]: Labatut et al. is a graph-cut-based +method for range scans that makes use of visibility infor- +mation. Because there is no official implementation of the +algorithm, we reimplemented it ourselves. To compare with +optimization-based methods, we use the parametrization +suggested by the authors: point weights αvis = 32 and +σ = 0.01; regularization strength λ = 5. +5.3.2 +Learning-based methods +ConvONet [6]: Convolutional Occupancy Networks +(ConvONet) is a DSR method that first extracts point fea- +tures and averages them on cells of three 2D grids, or one +3D grid (variant). 2D or 3D grid convolutions then create +features capturing the local geometry. Last, the occupancy +of a query-point is estimated with a fully connected network +from interpolated features stored on each node of the 2D or +3D grid. +SAP [38]: In the optimization variant, the method +starts as the learning-based variant described above. Then, +the estimated indicator grid is used to compute a mesh and +points are sampled on the mesh to calculate a Chamfer loss +between the mesh and input point cloud. +DGNN [10]: This method uses a graph neural net- +work to estimate the occupancy of Delaunay cells in a point +cloud tetrahedralization from cell geometry and visibility +features. A graph-cut-based optimization then reinforces +global consistency. +POCO [12]: Point Convolution for Surface Recon- +struction (POCO) extracts point features using point cloud +convolution [64], then estimates the occupancy of a query +point with a learning-based interpolation from nearest +neighbors. +SPRS [33]: See method description above. For the +learning-based experiments, we perform a grid search over +octree depth d = {6, 8, 10, 12} and boundary conditions +b = {dirichlet, neumann, free}. We use the parametrization +with the best mean volumetric IoU for reconstructions of the +training set. +Labatut et al. [34]: See method description above. For +the learning-based experiments, we perform a grid search +over regularization strength λ = {1.5, 2.5, 5, 10}, and point +weights α = {16, 32, 48} and σ = {0.001, 0.01, 0.1, 1}. We +use the parametrization with the best mean volumetric IoU +for reconstructions of the training set. +5.4 +Evaluation metrics +We want the reconstructed surface Sr to be as close as +possible to the real (or ground truth) surface S in terms +of geometry and topology. To measure this “closeness” we +use several metrics. +5.4.1 +Geometric metrics +We evaluate the geometric quality of reconstructions with +the volumetric intersection over union (IoU), symmetric +Chamfer distance (CD) and normal consistency (NC). +Volumetric IoU: In the following, let Sg and Sr be +the set of all points that are inside or on the ground truth +and reconstructed surface, respectively. The volumetric IoU +is defined as: +IoU (Sg, Sr) =|Sg ∩ Sr| +|Sg ∪ Sr| . +We approximate volumetric IoU by randomly sampling +100, 000 points in the union of the bounding boxes of Sg +and Sr. +Chamfer distance: To compute the Chamfer distance +and normal consistency, we sample a set of points Pg and +Pr on the facets of the ground truth mesh and the recon- +structed mesh, respectively, with |Pg| = |Pr| = 100, 000. +We approximate the symmetric Chamfer distance between +Sg and Sr as follows: +CD(Sg, Sr) = +1 +2|Pg| +� +x∈Pg +min +y∈Pr ||x − y||2 ++ +1 +2|Pr| +� +y∈Pr +min +x∈Pg ||y − x||2 . + +13 +Normal consistency: Let n(x) be the unit normal of +a point x. We set this normal to be the normal of the facet +from which x was sampled. Let ⟨·,·⟩ the Euclidean scalar +product in R3. Normal consistency is defined as: +NC(Sg, Sr) = +1 +2|Pg| +� +x∈Pg +� +n(x), n +� +argmin +y∈Pr ||x − y||2 +�� ++ +1 +2|Pr| +� +y∈Pr +� +n(y), n +� +argmin +x∈Pg ||y − x||2 +�� +. +5.4.2 +Topological metrics +We evaluate the topological quality of reconstructions +through the number of components, the number of non- +manifold edges and the number of boundary edges. +Number of components: If not stated otherwise, the +ground truth surfaces of our datasets have exactly one com- +ponent. In consequence, the reconstructed surfaces should +also have one component. +Number of boundary edges: The surfaces of all +ground truth objects in our datasets are closed. We verify +this by measuring the number of boundary edges of the +reconstructed meshed surface which should be zero. Note +that if boundary edges only appear on the intersection of +the reconstruction with its bounding box we still classify +the reconstruction as watertight, according to the definition +in Section 3.3. +Number of non-manifold edges: The surfaces of all +ground truth objects in our datasets are 2-manifolds. We +verify this by measuring the number of non-manifold edges +of the reconstructed meshed surface which should be zero. +5.4.3 +Runtimes +To evaluate the scalability of methods, we measure the +average time it takes to reconstruct a surface of ShapeNet +from 3,000 points. +6 +EXPERIMENTS +6.1 +Learning-based surface reconstruction from syn- +thetic MVS point clouds (E1 - E5) +We +examine +the +precision +and +versatility +of +novel +supervised-learning methods and two traditional methods +for which training sets were used for tuning parameters. +All evaluated methods perform well when reconstructing +shapes from known categories and known point cloud +characteristics (E1). The learning-based methods show a +significantly superior performance of at least 5% over SPSR +and Labatut et al. (see Table 3). The methods based on +neural implicit fields (POCO, SAP and ConvONet) produce +visually and quantitatively the best reconstructions (see +Figure 5, first column). DGNN does not perform as well as +most other learning methods in this experiment. The sparse +point clouds used in this experiment do not contain point +samples on all details. However, due to the interpolating +nature of DGNN surface details cannot be reconstructed +without input points. +In E2, domain shifts results in worse performance, +both quantitatively and qualitatively for all methods except +SPSR. SPSR shows robustness against outliers and benefits +from the higher point density. Most learning methods do +not produce satisfying results (see Figure 5, second column). +The reconstruction of SAP is too smooth and lacks details, +but does not show as severe defects as the reconstructions +of other learning-based methods. Labatut et al. suffers from +the low regularization weight tuned for the outlier free +point clouds and could benefit from higher regularization +to remove erroneous floating components from outliers. +When reconstructing out-of-category ModelNet shapes +(E3), the neural implicit field methods exhibit visually the +best reconstructions. SAP and POCO produce quantitatively +the best reconstructions (see Table 3). The interpolating +method DGNN performs better than ConvONet. +In E4, we reconstruct shapes from Berger et al. which +have similar complexity than the shapes from ShapeNet +used for training. The only learning methods able to lever- +age information from the common point cloud characteris- +tics to improve the test results are DGNN and POCO. +In E5, most methods overfit the simpler ModelNet +shapes when retrained and used to reconstruct the more +complex ShapeNet shapes. Even SPSR slightly suffers from +tuning parameters on ModelNet. The best reconstructions +on ModelNet are achieved with an octree depth of d = 8 +(instead of d = 10 on ShapeNet) leading to worse results +on ShapeNet: 77.1 vIoU in E1 vs. 74.6 vIoU in E5. The +parameter tuning of Labatut et al. stays unchanged. DGNN +is the only method that does not overfit on ModelNet and +yields the best results, both quantitatively and qualitatively. +In fact, it performs as well as when trained on ShapeNet +directly. +ConvONet is only able to outperform traditional meth- +ods when the training and test sets share the same point +cloud characteristics and shape categories. SAP produces +much better reconstructions and is the learning-based +method with the highest robustness against outliers. It is +also the only method explicitly predicting normals. As a +result SAP reconstructs surfaces with the highest mean +normal consistency over all experiments. The local learn- +ing and global regularisation approach of DGNN produces +competitive results in all experiments, except for the outlier +setting of E2. DGNN is the learning-based method produc- +ing surfaces with highest mean IoU over all experiments. +The local attention-based learning mechanism of POCO +leads to the best results when the task does not involve +reconstruction from unseen domains. It provides the most +faithful reconstructions in three experiments in which point +cloud characteristics are identical in train and test set (E1, +E3, E4). However, POCO is heavily affected by outliers (E2), +which can be explained by its purely local approach. POCO +also tends to overfit on simple training shapes (E5). The +reconstructions of POCO, as well as the ones of SAP contain +boundary edges only in areas where the reconstructions +intersect the bounding box i.e. they are still watertight. SPSR +proves robust to various defects and shape characteristics, +providing fair results, with the highest mean IoU and Cham- +fer distance across the board. However, its reconstructions +are the least compact, i.e. they have the highest number of +components. Labatut et al.’s parametrization proves slightly +less robust, as the method is affected by outliers. Its mean +IoU is higher than that of any learning method, and its re- +constructions are the most compact surfaces with an average +number of components of 2.7. However, it is also the only + +14 +Input +CONet2D [6] +CONet3D [6] +SAP [38] +DGNN [10] +POCO [12] +SPSR [33] +Labatut et al. [34] +Ground truth +In-distribution (E1) +Out-of-distribution (E2) +Out-of-category (E3) +Out-of-category (E4) +Out-of-category (E5) +Figure 5: Learning-based reconstructions (E1 to E5): In each column we show learning-based reconstructions of +experiments E1 to E5. DGNN [10], SAP [38] and SPSR [33] provide visually the best results with exhibiting dominant +defects. + +15 +Table 3: Numerical results for learning-based experiments (E1 to E5): We show the numerical results of the learning +experiments E1 to E5. SPSR [33] is the only method that produces surfaces with a high volumetric intersection over union +and a low Chamfer distance in each experiment. Therefore, its surfaces have the highest mean volumetric IoU and the +lowest mean CD. However, SPSR also produces the least compact surfaces on average (i.e. surfaces with the highest number +of components). Labatut et al. [34] produces the most compact surfaces. DGNN [10] has the highest mean volumetric IoU +of the tested learning methods. SAP [38] has the lowest mean CD of the tested learning methods and the highest normal +consistency. ConvONet and SPSR are the only methods that produce surfaces without boundary and non-manifold edges. +Volumetric IoU (%) [↑] +Normal consistency (%) [↑] +Method +E1 +E2 +E3 +E4 +E5 +Mean +E1 +E2 +E3 +E4 +E5 +Mean +ConvONet2D +[6] +85 +47.3 +79.3 +65.1 +68.3 +69 +92.7 +76.4 +90 +78 +87.8 +85 +ConvONet3D +[6] +84.8 +15.1 +83.6 +76.4 +51 +62.2 +93 +71.8 +93.1 +87.2 +82.5 +85.5 +SAP +[38] +88.7 +59.8 +89.2 +78.3 +54.9 +74.2 +93.5 +86.7 +94.1 +89 +87.1 +90.1 +DGNN +[10] +84.5 +38.1 +87 +82.9 +84.4 +75.4 +85.4 +68.8 +88.5 +85.2 +85.5 +82.7 +POCO +[12] +89.5 +8.74 +90.6 +83.9 +40.9 +62.7 +93.6 +75.6 +94.2 +89.5 +82.9 +87.1 +SPSR +[33] +77.1 +80.7 +80.7 +77.6 +74.6 +78.1 +87.7 +83.2 +89.1 +86.3 +88 +86.9 +Labatut et al. +[34] +80.3 +60.4 +83.9 +79.4 +80.3 +76.9 +81 +73 +84.6 +80.8 +81 +80.1 +Chamfer distance (per-point ave. %) +[↓] +Number of components +[↓] +Method +E1 +E2 +E3 +E4 +E5 +Mean +E1 +E2 +E3 +E4 +E5 +Mean +ConvONet2D +[6] +0.553 +7.51 +0.997 +1.43 +0.979 +2.29 +1.6 +34.8 +2.55 +3.6 +3.2 +9.16 +ConvONet3D +[6] +0.546 +10.9 +0.76 +0.887 +2.44 +3.1 +1.37 +13.6 +1.6 +2.6 +1.5 +4.13 +SAP +[38] +0.437 +2.09 +0.547 +0.734 +0.924 +0.946 +2.71 +86 +3.45 +5.6 +10.5 +21.7 +DGNN +[10] +0.549 +2.54 +0.635 +0.586 +0.55 +0.973 +1.31 +16.1 +1.13 +1 +1.31 +4.16 +POCO +[12] +0.416 +10.5 +0.516 +0.579 +1.32 +2.67 +2.32 +178 +2.82 +2 +16.3 +40.2 +SPSR +[33] +0.801 +0.659 +0.873 +0.786 +0.886 +0.801 +9.26 +185 +11.1 +8 +3.24 +43.3 +Labatut et al. +[34] +0.665 +6.97 +0.747 +0.671 +0.665 +1.94 +1.22 +9.02 +1.05 +1 +1.22 +2.7 +Number of boundary edges +[↓] +Number of non-manifold edges [↓] +Method +E1 +E2 +E3 +E4 +E5 +Mean +E1 +E2 +E3 +E4 +E5 +Mean +ConvONet2D +[6] +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +ConvONet3D +[6] +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +SAP +[38] +0 +0.00923 +0 +0 +8.44 +1.69 +0 +0 +0 +0 +0 +0 +DGNN +[10] +0 +0 +0 +0 +0 +0 +1.35 +2.24 +0.646 +0.4 +1.69 +1.26 +POCO +[12] +0 +121 +0 +0 +41.7 +32.5 +0 +0.00154 +0 +0 +0 +0.000308 +SPSR +[33] +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +Labatut et al. +[34] +0 +0 +0 +0 +0 +0 +9.35 +28.5 +8.47 +9.6 +9.35 +13.1 +method that produces a significant amount of non-manifold +edges. +6.2 +Optimization-based surface reconstruction from +synthetic range scanning point clouds (E6) +This experiment evaluates the precision and versatility of +non-learning methods. The benchmarked approaches con- +sist in neural network based methods optimizing a function +to fit an input point cloud and rely on novel regularization +techniques to increase their robustness to noise, outliers +and missing data. Furthermore, we benchmark the two +traditional methods SPSR and Labatut et al. with standard +parameter settings. We reconstruct surfaces of Berger et al. +from synthetic range scanning point clouds with various +different defects. We show numerical results in Table 4 and +visualisations in the supplementary material. Almost all +reconstructions provided by the two traditional methods are +much more truthful than the DSR methods, with a mean +volumetric IoU almost 10 points higher across all point +cloud defects. IGR does visually not provide a good result +on the exemplary shape, especially on thin surface parts. +Quantitatively, the method provides the best reconstruction +for the neural networks based methods in the absence of +outliers, and even the best overall reconstruction for the +noisy high resolution scans. LIG does not provide good +reconstructions for any of the settings. This can be explained +by its pretrained model on defect-free uniform high density +point clouds. Furthermore, its post-processing makes the +reconstructions non-watertight. P2M provides geometrically +fair reconstructions and the topologically best reconstruc- +tions with a low number of components, and watertight +and manifold surfaces for all reconstructions. SAP provides +fair reconstructions in the absence of outliers. None of the +neural network based methods is robust against outliers. +As in the learning-based experiments, SPSR generates high +quality reconstructions for all input defects, and achieves +the best mean normal consistency. Labatut et al. achieves the +best mean IoU and mean Chamfer distance while providing +the reconstructions with the lowest number of components. +However, the reconstructions of Labatut et al. are the only +ones with a significant number of non-manifold edges. +6.3 +Learning- and optimization-based surface recon- +struction from synthetic MVS point clouds (E7) +To directly compare learning- and optimization-based re- +constructions on the same dataset, we also reconstruct the +Berger et al. shapes from synthetic MVS scans (cf. E4) with +the optimization-based methods. Thus, for learning-based +methods, we use the models trained on synthetic MVS +scans from ShapeNet (cf. E4) and we optimize non-learning + +16 +Table 4: Numerical results for optimization-based reconstructions (E6): Optimization-based reconstruction of the Berger +et al. shapes from synthetic range scans. LR is a low resolution scan, HR a high resolution scan, HRN a high resolution +scan with noise, HRO a high resolution scan with outliers, and HRNO a high resolution scan with noise and outliers. The +methods are optimized per shape and per scan using standard settings as mentioned in the corresponding publications. +Volumetric IoU (%) [↑] +Normal consistency (%) [↑] +Method +LR +HR +HRN +HRO +HRNO +Mean +LR +HR +HRN +HRO +HRNO +Mean +IGR +[37] +80.8 +92.5 +83.6 +63.7 +62.7 +76.7 +88 +96.3 +83.9 +77.8 +71.5 +83.5 +LIG +[8] +46.9 +50.3 +63.9 +66 +63.8 +58.2 +88.7 +92.2 +89 +77 +75.2 +84.4 +P2M +[32] +75.2 +83.3 +75.5 +71.3 +67.8 +74.6 +86.3 +92.2 +88.1 +84.5 +82.1 +86.6 +SAP +[38] +75.6 +89.1 +72.4 +55.3 +34.9 +65.4 +83.4 +94.8 +61.6 +74.5 +55.3 +73.9 +SPSR +[33] +77.7 +90.2 +82.8 +90.3 +82.1 +84.6 +88.1 +96 +88.1 +96.2 +85.8 +90.9 +Labatut et al. [34] +81.3 +93.4 +80.1 +93.4 +79.1 +85.5 +87.6 +96 +66.3 +94.9 +66.5 +82.3 +Chamfer distance (per-point ave. %) +[↓] +Number of components +[↓] +Method +LR +HR +HRN +HRO +HRNO +Mean +LR +HR +HRN +HRO +HRNO +Mean +IGR +[37] +0.674 +0.322 +0.554 +7.96 +7.72 +3.45 +6.8 +1.2 +35.2 +44 +97.4 +36.9 +LIG +[8] +0.745 +0.581 +0.781 +7.89 +7.8 +3.56 +1 +1 +1 +1.6 +1 +1.12 +P2M +[32] +0.817 +0.473 +0.729 +1.53 +2.13 +1.13 +1.2 +1 +1.2 +1.4 +1.6 +1.28 +SAP +[38] +0.852 +0.32 +0.701 +3.99 +3.93 +1.96 +73.2 +85.6 +937 +1.8e+03 +1.96e+03 +971 +SPSR +[33] +0.794 +0.369 +0.572 +0.362 +0.607 +0.541 +1.2 +1.6 +3.6 +3.8 +20.2 +6.08 +Labatut et al. [34] +0.635 +0.314 +0.608 +0.339 +0.641 +0.507 +1 +1 +1.2 +1.2 +1 +1.08 +Number of boundary edges +[↓] +Number of non-manifold edges [↓] +Method +LR +HR +HRN +HRO +HRNO +Mean +LR +HR +HRN +HRO +HRNO +Mean +IGR +[37] +0 +0 +0 +0 +0 +0 +0 +0.8 +0.8 +5.2 +4.2 +2.2 +LIG +[8] +69 +42.8 +17.2 +0 +0 +25.8 +0 +0 +0 +0 +0 +0 +P2M +[32] +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +SAP +[38] +0 +0 +0 +0 +449 +89.8 +0 +0 +0 +0 +0 +0 +SPSR +[33] +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +Labatut et al. [34] +0 +0 +0 +0 +0 +0 +1 +5.8 +24.4 +3.8 +22 +11.4 +methods per shape using standard settings. We show the +numerical results in Table 5 and visualisations in the supple- +mentary material. The learning-based methods DGNN and +POCO benefit from the training on point clouds with the +same characteristics as in the test set and reconstruct more +truthful surfaces than the optimization-based methods. +Similar to E6, Labatut et al. produces the best results +among the optimization-based methods. +6.4 +Learning- and optimization-based surface recon- +struction from real point clouds (E8) +Finally, we reconstruct surfaces from real MVS and range +scanning point clouds. Again, for learning-based methods, +we use the models trained on synthetic MVS scans from +ShapeNet (cf. E4) and we optimize non-learning methods +per point cloud. We show the reconstructions in Figure 6. +The MVS point cloud from Middlebury (Figure 6a) is con- +taminated with a large amount of varying noise. SAP is the +only learning method which reconstructs a smooth surface +without missing details (Figure 6d). However, it suffers from +small amounts of topological noise in the form of holes. The +optimization-based method P2M provides a visually good +reconstruction with few defects (Figure 6i). In Figures 6m +and 6y, optimization-based methods handle the additional +domain shift to an open scene better compared to learning- +based methods. The two traditional methods SPSR and +Labatut et al. provide the visually best results on average. +This experiment also shows that our findings on syn- +thetic point clouds coincide with those on real-world point +clouds, validating our experimental setup. +6.5 +Runtimes +On Table 6, we report detailed runtimes for the methods +tested in the learning-based experiments. SAP is the fastest +of all reconstruction methods. DGNN also shows fast run- +times, while POCO is slow, due to its extensive use of +neighborhood sampling. We also compare runtimes of P2S. +We were not able to include this method in experiments E1 +to E5 due to its long runtime for training and inference. +6.6 +Summary and analysis +In the right circumstances, learning-based methods can +produce highly detailed surfaces while remaining robust +to noise and missing data. However, this requires training +on large sets (30k shapes in our experiments) of sufficiently +complex surfaces and associated point clouds. Even if learn- +ing methods can generalize to unseen shape categories to +some extent, the training and test sets must share the same +point cloud characteristics. This suggests that these methods +mainly learn priors related to the acquisition characteristics +of the input point clouds, and less on the shapes them- +selves. However, learning-based methods do not produce +satisfying results when the training shapes are too simple, +or when the point clouds include unknown defects, such as +outliers (seeTable 7). Mixing traditional and learning-based +methods, as in SAP or DGNN, results in higher robustness +to domain shifts and leads to short reconstruction times. +Except for IGR, novel optimization-based methods are not +robust to acquisition defects and they rarely provide better +results compared to the two traditional methods SPSR and +Labatut et al.. + +17 +Learning +(a) Input +(b) CONet2D +(c) CONet3D +(d) SAP +(e) POCO +(f) DGNN +Optimization +(g) IGR +(h) LIG +(i) P2M +(j) SAP +(k) SPSR +(l) Labatut et al. +Learning +(m) Input +(n) CONet2D +(o) CONet3D +(p) SAP +(q) POCO +(r) DGNN +Optimization +(s) IGR +(t) LIG +(u) P2M +(v) SAP +(w) SPSR +(x) Labatut et al. +Learning +(y) Input +(z) CONet2D +(aa) CONet3D +(ab) SAP +(ac) POCO +(ad) DGNN +Optimization +(ae) IGR +(af) LIG +(ag) P2M +(ah) SAP +(ai) SPSR +(aj) Labatut et al. +Figure 6: Learning- and optimization-based reconstructions (E8): We show reconstructions of Temple Ring from Middle- +bury ((b) to (l)), Truck from Tanks And Temples ((n) to (x)) and scan1 from the DTU dataset ((z) to (aj)). The learning +methods (top rows) were trained on synthetic MVS scans from ShapeNet. Optimization-based methods (bottom rows) are +optimized per shape using standard settings. The two traditional methods SPSR [33] and Labatut et al. [34] provide visually +the best results. Their reconstructions are only affected by the heavy noise of the Temple Ring MVS point cloud. + +水公子18 +Table 5: Numerical results for learning- vs. optimization-based reconstructions (E7): Learning- and optimization-based +reconstruction of the Berger et al. test shapes from synthetic MVS scans. The learning methods were trained on synthetic +MVS scans from ShapeNet. Optimization-based methods are optimized per shape using standard settings. BE stands for +boundary edges and NME for non-manifold edges. +Method +Vol. IoU +[↑] +Normal consist. +[↑] +Chamfer dist. +[↓] +Components +[↓] +BE +[↓] +NME [↓] +Learning +ConvONet2D +[6] +65.1 +78 +1.43 +3.6 +0 +0 +ConvONet3D +[6] +76.4 +87.2 +0.887 +2.6 +0 +0 +SAP +[38] +78.3 +89 +0.734 +5.6 +0 +0 +DGNN +[10] +82.9 +85.2 +0.586 +1 +0 +0.4 +POCO +[12] +83.9 +89.5 +0.579 +2 +0 +0 +Optimization +IGR +[37] +78.3 +83.8 +0.775 +15.4 +0 +0.4 +LIG +[8] +45.7 +86.6 +0.831 +1 +65.6 +0 +P2M +[32] +74.5 +85 +0.768 +2 +0 +0 +SAP +[38] +71.9 +77 +0.811 +133 +0 +0 +SPSR +[33] +77.6 +86.4 +0.785 +8 +0 +0 +Labatut et al. [34] +79.4 +80.8 +0.671 +1 +0 +9.6 +Table 6: Runtimes of surface reconstruction methods: +Average times (in seconds) for reconstructing one object +from a point cloud of 3,000 points. Times are averaged +over the ShapeNet test set. GC stand for Graph-cut; SE +stands for surface extraction, such as marching cubes or +triangle-from-tetrahedron. Note that different variants and +implementations of marching cubes are used by different +methods, which also influences the runtimes. +Model +Feature extraction +Decoding/GC +SE +Total +ConvONet2D +[6] +0.016 +0.32 +0.17 +0.51 +ConvONet3D +[6] +0.008 +0.21 +0.17 +0.40 +SAP +[38] +0.022 +0.017 +0.047 +0.088 +DGNN +[10] +0.11 +0.28 +0.01 +0.39 +POCO +[12] +0.088 +13.72 +0.33 +15.74 +P2S +[9] +69.06 +11.51 +80.57 +SPSR +[33] +1.25 +Labatut et al. [34] +0.1 +0.07 +0.01 +0.18 +7 +CONCLUSION +Surface reconstruction from point clouds is a well studied +subject in the field of digital geometry processing. However, +constant developments in acquisition techniques and novel +ideas for surface reconstruction and analysis bring forward +new challenges. In this paper, we survey the field of surface +reconstruction from point clouds and benchmark several re- +lated methods. We revisit traditional test-of-time approaches +for surface reconstruction and detail how they inspired +novel approaches. We evaluate traditional and novel opti- +mization and learning-based methods on various tasks and +datasets. We show that novel optimization-based methods +are not as robust against defects as traditional methods. +For in-distribution point clouds with characteristics similar +to the ones of the training set, learning methods provide +more accurate reconstructions than traditional approaches. +However, real-world scenes often include a multitude of +different and highly complex objects, and their acquisitions +may contain a variety of defects. Most learning methods +require shapes of similar complexity in training and test sets +and they are not robust to out-of-distribution acquisition +defects. These limitations of learning-based methods hinder +the reconstruction of point clouds in the wild. Generating or +finding adequate training data that includes a large variety +of complex shapes scanned with realistic defects is a difficult +task. Future work in learning-based surface reconstruction +should focus on training on point clouds with realistic ac- +quisition defects, e.g. from common sensors and acquisition +settings, or on increasing the methods’ robustness to unseen +defects. +ACKNOWLEDGMENTS +This work was partially funded by the ANR-17-CE23-0003 +BIOM grant. +REFERENCES +[1] +M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, G. Guennebaud, +J. Levine, A. Sharf, and C. Silva, “A survey of surface reconstruc- +tion from point clouds,” Computer Graphics Forum, 2016. +[2] +F. Cazals and J. Giesen, “Delaunay triangulation based surface +reconstruction,” in Effective computational geometry for curves and +surfaces. +Springer, 2006, pp. 231–276. +[3] +C. C. You, S. P. Lim, S. C. Lim, J. San Tan, C. K. Lee, and +Y. M. J. Khaw, “A survey on surface reconstruction techniques +for structured and unstructured data,” in 2020 IEEE Conference on +Open Systems (ICOS). +IEEE, 2020, pp. 37–42. +[4] +R. M. Bolle and B. C. Vemuri, “On three-dimensional surface +reconstruction methods,” IEEE Transactions on Pattern Analysis & +Machine Intelligence, vol. 13, no. 01, pp. 1–13, 1991. +[5] +M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. L´evy, Polygon +mesh processing. +CRC press, 2010. +[6] +S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, +“Convolutional occupancy networks,” in European Conference on +Computer Vision (ECCV), 2020, pp. 523–540. +[7] +R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove, +and R. Newcombe, “Deep local shapes: Learning local SDF priors +for detailed 3D reconstruction,” in European Conference on Computer +Vision (ECCV), 2020, pp. 608–625. +[8] +C. M. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, and +T. Funkhouser, “Local implicit grid representations for 3D scenes,” +in Conference on Computer Vision and Pattern Recognition (CVPR), +2020, pp. 6001–6010. +[9] +P. Erler, S. Ohrhallinger, N. Mitra, and M. Wimmer, “Points2Surf: +Learning implicit surfaces from point clouds,” in European Confer- +ence on Computer Vision (ECCV), 2020, pp. 108–124. +[10] R. Sulzer, L. Landrieu, R. Marlet, and B. Vallet, “Scalable surface +reconstruction with delaunay-graph neural networks,” Computer +Graphics Forum, vol. 40, no. 5, pp. 157–167, 2021. + +19 +Table 7: Summary of benchmark results: We summarise the findings of our benchmark. Each method is rated with one to +three stars per attribute, determined by the qualitative and quantitative results of our benchmark. +Robustness to out-of-distribution +Mesh quality +Runtime +Learning +noise +outliers +density +category +watertightness +manifoldness +compactness +w/o training +ConvONet2D +[6] +* +* +* +* +*** +*** +* +*** +ConvONet3D +[6] +* +* +* +* +*** +*** +*** +*** +SAP +[38] +** +** +** +** +*** +*** +* +*** +DGNN +[10] +* +* +* +*** +*** +** +*** +*** +POCO +[12] +** +* +* +** +*** +*** +* +** +Robustness to +Mesh quality +Runtime +Optimization +noise +outliers +low density +category +watertightness +manifoldness +compactness +w/ training +IGR +[37] +*** +** +** +*** +*** +** +* +* +LIG +[8] +* +* +* +*** +** +*** +*** +* +P2M +[32] +* +** +* +*** +*** +*** +*** +* +SAP +[38] +* +* +* +*** +*** +*** +* +* +SPSR +[33] +*** +*** +*** +*** +*** +*** +* +*** +Labatut et al. +[34] +*** +*** +*** +*** +*** +* +*** +*** +[11] M.-J. Rakotosaona, P. Guerrero, N. Aigerman, N. J. Mitra, and +M. Ovsjanikov, “Learning delaunay surface elements for mesh +reconstruction,” in Proceedings of the IEEE/CVF Conference on Com- +puter Vision and Pattern Recognition, 2021, pp. 22–31. +[12] A. Boulch and R. Marlet, “Poco: Point convolution for surface +reconstruction,” in Proceedings of the IEEE/CVF Conference on Com- +puter Vision and Pattern Recognition, 2022, pp. 6302–6314. +[13] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, +“DeepSDF: Learning continuous signed distance functions for +shape representation,” in Conference on Computer Vision and Pattern +Recognition (CVPR), 2019, pp. 165–174. +[14] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva, +“A benchmark for surface reconstruction,” ACM Transaction on +Graphics., 2013. +[15] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A +comparison and evaluation of multi-view stereo reconstruction al- +gorithms,” in Conference on Computer Vision and Pattern Recognition +(CVPR), 2006, pp. 519–528. +[16] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and H. Aanæs, “Large +scale multi-view stereopsis evaluation,” in Conference on Computer +Vision and Pattern Recognition (CVPR), 2014, pp. 406–413. +[17] C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoennessen, +“On benchmarking camera calibration and multi-view stereo for +high resolution imagery,” in Conference on Computer Vision and +Pattern Recognition (CVPR). +IEEE Computer Society, 2008, pp. +1–8. +[18] T. Sch¨ops, J. L. Sch¨onberger, S. Galliani, T. Sattler, K. Schindler, +M. Pollefeys, and A. Geiger, “A multi-view stereo benchmark with +high-resolution images and multi-camera videos,” in Conference on +Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3260– +3269. +[19] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and +Temples,” ACM Transactions on Graphics (TOG), 2017. +[20] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, +“Surface reconstruction from unorganized points,” in Proceedings +of the 19th annual conference on computer graphics and interactive +techniques, 1992, pp. 71–78. +[21] B. O’neill, Elementary differential geometry. +Elsevier, 2006. +[22] L. Kettner, “Using generic programming for designing a data +structure for polyhedral surfaces,” Computational Geometry, vol. 13, +no. 1, pp. 65–90, 1999. +[23] M. M¨antyl¨a, An introduction to solid modeling. +Computer Science +Press, Inc., 1987. +[24] J.-D. Boissonnat and S. Oudot, “Provably good sampling and +meshing of surfaces,” Graphical Models, vol. 67, no. 5, pp. 405–451, +2005. +[25] W. +E. +Lorensen +and +H. +E. +Cline, +“Marching +cubes: +A +high resolution 3d surface construction algorithm,” SIGGRAPH +Comput. Graph., vol. 21, no. 4, p. 163–169, Aug. 1987. [Online]. +Available: https://doi.org/10.1145/37402.37422 +[26] M. Vetsch, S. Lombardi, M. Pollefeys, and M. R. Oswald, “Neu- +ralmeshing: Differentiable meshing of implicit neural representa- +tions,” in Pattern Recognition, B. Andres, F. Bernard, D. Cremers, +S. Frintrop, B. Goldl¨ucke, and I. Ihrke, Eds. +Cham: Springer +International Publishing, 2022, pp. 317–333. +[27] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, +“The ball-pivoting algorithm for surface reconstruction,” IEEE +transactions on visualization and computer graphics, vol. 5, no. 4, pp. +349–359, 1999. +[28] A. Sharf, T. Lewiner, A. Shamir, L. Kobbelt, and D. Cohen-Or, +“Competing fronts for coarse–to–fine surface reconstruction,” in +Computer Graphics Forum, vol. 25. +Wiley Online Library, 2006, pp. +389–398. +[29] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, +“AtlasNet: A papier-mˆach´e approach to learning 3D surface gen- +eration,” in Conference on Computer Vision and Pattern Recognition +(CVPR), 2018, pp. 658–666. +[30] M. Liu, X. Zhang, and H. Su, “Meshing point clouds with pre- +dicted intrinsic-extrinsic ratio guidance,” in European Conference +on Computer Vision. +Springer, 2020, pp. 68–84. +[31] N. Sharp and M. Ovsjanikov, “”pointtrinet: Learned triangulation +of 3d point sets”,” in European Conference on Computer Vision +(ECCV), 2020, pp. 762–778. +[32] R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or, “Point2Mesh: +A self-prior for deformable meshes,” ACM Transaction on Graphics, +2020. +[33] M. Kazhdan and H. Hoppe, “Screened Poisson surface reconstruc- +tion,” ACM Transaction on Graphics., 2013. +[34] P. Labatut, J. P. Pons, and R. Keriven, “Robust and efficient surface +reconstruction from range data,” Computer Graphics Forum (CGF), +2009. +[35] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and +A. Geiger, “Occupancy networks: Learning 3D reconstruction +in function space,” in Conference on Computer Vision and Pattern +Recognition (CVPR), 2019, pp. 4460–4470. +[36] Z. Chen and H. Zhang, “Learning implicit fields for generative +shape modeling,” in Conference on Computer Vision and Pattern +Recognition (CVPR), 2019, pp. 5939–5948. +[37] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit +geometric regularization for learning shapes,” in Proceedings of +Machine Learning and Systems 2020. +JMLR.org, 2020, pp. 3569– +3579. +[38] S. Peng, C. M. Jiang, Y. Liao, M. Niemeyer, M. Pollefeys, and +A. Geiger, “Shape as points: A differentiable poisson solver,” in +Conference on Neural Information Processing Systems (NeurIPS), 2021, +pp. 13 032–13 044. +[39] S. Petitjean and E. Boyer, “Regular and non-regular point sets: +Properties and reconstruction,” Computational Geometry, vol. 19, +no. 2-3, pp. 101–126, 2001. +[40] J. Digne, “An analysis and implementation of a parallel ball +pivoting algorithm,” Image Processing On Line, vol. 4, pp. 149–168, +2014. +[41] J.-D. Boissonnat, “Geometric structures for 3d shape representa- +tion,” ACM Transactions on Graphics, vol. 3, no. 4, 1984. + +20 +[42] D. Attali, J.-D. Boissonnat, and A. Lieutier, “Complexity of the +delaunay triangulation of points on surfaces the smooth case,” +in Proceedings of the nineteenth annual symposium on Computational +Geometry, 2003, pp. 201–210. +[43] F. Bernardini and C. L. Bajaj, “Sampling and reconstructing man- +ifolds using alpha-shapes,” Proc. 9th Canad. Conf. Comput. Geom., +1997. +[44] N. Amenta, M. Bern, and D. Eppstein, “The crust and the β- +skeleton: Combinatorial curve reconstruction,” Graphical models +and image processing, vol. 60, no. 2, pp. 125–135, 1998. +[45] R. Kolluri, J. R. Shewchuk, and J. F. O’Brien, “Spectral surface +reconstruction from noisy point clouds,” in Proceedings of the 2004 +Eurographics/ACM SIGGRAPH symposium on Geometry processing, +2004, pp. 11–21. +[46] S. N. Sinha, P. Mordohai, and M. Pollefeys, “Multi-view stereo via +graph cuts on the dual of an adaptive tetrahedral mesh,” in 2007 +IEEE 11th international conference on computer vision. +IEEE, 2007, +pp. 1–8. +[47] V. H. Hiep, R. Keriven, P. Labatut, and J.-P. Pons, “Towards high- +resolution large-scale multi-view stereo,” in 2009 IEEE Conference +on Computer Vision and Pattern Recognition. +IEEE, 2009, pp. 1430– +1437. +[48] Y. Zhou, S. Shen, and Z. Hu, “Detail preserved surface reconstruc- +tion from point cloud,” Sensors, 2019. +[49] C. Mostegel, R. Prettenthaler, F. Fraundorfer, and H. Bischof, +“Scalable surface reconstruction from point clouds with extreme +scale and density diversity,” in Proceedings of the IEEE Conference +on Computer Vision and Pattern Recognition, 2017, pp. 904–913. +[50] H. H. Vu, P. Labatut, J. P. Pons, and R. Keriven, “High accuracy and +visibility-consistent dense multiview stereo,” IEEE Transactions on +Pattern Analysis and Machine Intelligence (PAMI), 2012. +[51] M. Jancosek and T. Pajdla, “Multi-view reconstruction preserving +weakly-supported surfaces,” in Conference on Computer Vision and +Pattern Recognition (CVPR), 2011, pp. 3121–3128. +[52] ——, “Exploiting visibility information in surface reconstruction +to preserve weakly supported surfaces,” International Scholarly +Research Notices, 2014. +[53] L. Caraffa, M. Br´edif, and B. Vallet, “3D watertight mesh genera- +tion with uncertainties from ubiquitous data,” in Asian Conference +on Computer Vision (ACCV), 2017, pp. 377–391. +[54] Y. Luo, Z. Mi, and W. Tao, “Deepdt: Learning geometry from +delaunay triangulation for surface reconstruction,” in Proceedings +of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. +2277–2285. +[55] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon- +struction,” in Proceedings of the fourth Eurographics symposium on +Geometry processing. +Eurographics Association, 2006, pp. 61–70. +[56] M. Kazhdan, M. Chuang, S. Rusinkiewicz, and H. Hoppe, “Pois- +son Surface Reconstruction with Envelope Constraints,” Computer +Graphics Forum, vol. 39, no. 5, pp. 173–182, 2020. +[57] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, +Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, +“ShapeNet: an information-rich 3D model repository,” Stanford +University, Princeton University, Toyota Technological Institute at +Chicago, Tech. Rep., 2015. +[58] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional +networks for biomedical image segmentation,” in International +Conference on Medical image computing and computer-assisted inter- +vention. +Springer, 2015, pp. 234–241. +[59] +¨O. C¸ ic¸ek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ron- +neberger, “3d u-net: learning dense volumetric segmentation from +sparse annotation,” in International conference on medical image +computing and computer-assisted intervention. +Springer, 2016, pp. +424–432. +[60] J. Huang, Y. Zhou, and L. Guibas, “Manifoldplus: A robust and +scalable watertight manifold surface generation method for trian- +gle soups,” arXiv preprint arXiv:2005.11621, 2020. +[61] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3D- +R2N2: A unified approach for single and multi-view 3D object +reconstruction,” in European Conference on Computer Vision (ECCV), +2016, pp. 628–644. +[62] W. E. Lorensen and H. E. Cline, “Marching cubes: A high res- +olution 3D surface construction algorithm,” ACM SIGGRAPH +Computer Graphics, vol. 21, no. 4, 1987. +[63] F. Cazals and M. Pouget, “Estimating differential quantities using +polynomial fitting of osculating jets,” Computer Aided Geometric +Design, 2005. +[64] A. Boulch, “Convpoint: Continuous convolutions for point cloud +processing,” Computers & Graphics, 2020. +Raphael Sulzer is a postdoctoral researcher in +the TITANE team at INRIA Sophia-Antipolis. He +received his PhD in geometry processing and +deep learning from University Gustave Eiffel in +2022. During his PhD he was affiliated with the +LASTIG lab at IGN, the French mapping agency, +and the IMAGINE lab at ´Ecole des Ponts Paris- +Tech. He is commited to open and reproducible +research that aims to solve real-world problems, +mainly in the areas of 3D scene understanding +and 3D reconstruction. https://raphaelsulzer.de +Loic Landrieu received a PhD in machine learn- +ing from ENS Paris in 2016. He is now a re- +search scientist at IGN, the French mapping +agency, working on 3D point clouds and satellite +time series analysis. He is the main investigator +of the ANR Ready3D on dynamic 3D analysis, +co-chair of the ISPRS working group on tem- +poral data understanding, co-lead of the GRSS +group on image analysis, and was program chair +of the XXIV ISPRS Congress. Committed to +open and reproducible research, he has partic- +ipated in numerous open-source projects and released several large- +scale benchmarks. https://loiclandrieu.com +Renaud Marlet is a Senior Researcher at ´Ecole +des Ponts ParisTech (ENPC) and a Principal Sci- +entist at valeo.ai, France. He has held positions +both in academia (researcher at Inria) and in +the software industry (expert at Simulog, deputy +CTO of Trusted Logic). He was the head of the +IMAGINE group at LIGM/ENPC (2010-2019). He +is currently interested in scene understanding +and semantized 3D reconstruction, with appli- +cations to robotics, autonomous driving and civil +engineering. +Bruno Vallet is a senior researcher at IGN, +the French national mapping agency. He is +the head of the ACTE research team of the +Lastig lab (ENSG/UGE) which specializes on im- +age/Lidar/Radar data acquisition and process- +ing. His research interests include geographic +information science, computer vision, teledetec- +tion, lasergrammetry, change detection, 3D+T +city modeling. + +JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +1 +Supplementary Material: A Survey and +Benchmark of Automatic Surface Reconstruction +from Point Clouds +Raphael Sulzer, Loic Landrieu, Renaud Marlet, +and Bruno Vallet +! +In this supplementary document, we provide additional +information about the datasets we used in our benchmark +and additional results. All the datasets and the evaluation +code for our benchmark are available on GitHub: https:// +github.com/raphaelsulzer/dsr-benchmark +SM.1 +DATASETS +SM.1.1 +Berger et al. +We use the range scanning procedure from the surface +reconstruction benchmark of Berger et al. [?]. To this end, +we modified their provided code to export the camera +positions of the scanning process along with the point cloud. +Our modified version of the code is available on Github: +https://github.com/raphaelsulzer/reconbench-CMake. We +choose five different scanner settings, detailed in Table SM.1 +and visible in the first row of Figure SM.2 to scan each test +shape shown in Figure SM.1a. +SM.1.2 +ModelNet10 and ShapeNet +We show example shapes for all classes of ShapeNet in +Figure SM.1b and example shapes for ModelNet for the 6 +out of 10 classes which are not represented in ShapeNet in +Figure SM.1c. +SM.2 +BENCHMARK SETUP +We show a detailed overview of our benchmark setup on +Table SM.2. +SM.3 +ADDITIONAL RESULTS +We show qualitative results of Experiment 6 in Figure SM.2. +arXiv:2301.13656v1 [cs.CV] 31 Jan 2023 + +JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +2 +Table SM.1: Scanning configurations for Berger et al. benchmark: We show the five different scanner configurations +used in our modified version of the Berger et al.’s scanning procedure. We use the resulting scans to evaluate object-level +reconstruction with varying point-cloud defects and for training data generation. For the low resolution (LR) scans the +scanning process results in 1000 to 3000 points per shape, and for the high resolution (HR), the scanning process yields +around 10 000 to 30 000 points. +Low res. (LR) +High res. (HR) +HR + noise (HRN) +HR + outliers (HRO) +HR + noise + outliers (HRNO) +Camera resolution x, y +50, 50 +100, 100 +100, 100 +100, 100 +100, 100 +Scanner positions +5 +10 +10 +10 +10 +Min/max range +70/300 +70/300 +70/300 +70/300 +70/300 +Additive noise +0 +0 +0.5 +0 +0.5 +Outliers (%) +0 +0 +0 +0.1 +0.1 +(a) Berger et al. +(b) ShapeNet +(c) ModelNet +Figure SM.1: Ground truth shapes of the benchmark datasets: We show an example shape of each class of ModelNet in +(c) and of ShapeNet in (b) and the five shapes of Berger et al. in (a). + +JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +3 +Input +IGR +LIG +P2M +SAP +SPSR +Labatut et al. +Ground truth +LR +HR +HRN +HRO +HRNO +Figure SM.2: Optimization-based experiments: In each column we show the results of different methods of one of the five +learning-based experiments. + +JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +4 +Table SM.2: Benchmark setup: We show an overview of our experimental setup. In E1 to E4, we train surface reconstruction +methods on noisy point clouds of ShapeNet. In E1, we test on the ShapeNet test set. In E2, we test on ShapeNet, but from +denser point clouds with noise and outliers. In E3, we test on the simpler ModelNet objects with the same sampling as in +E1. In E4, we test on five Berger et al. shapes with the same sampling as in E1. In E5, we train the methods on the simpler +ModelNet dataset and test on ShapeNet, both with the same sampling as in E1. In E6, we test optimization-based methods +on synthetic range scans of the Berger et al. dataset. And finally, in E7, we compare learning- and optimization-based +methods on the same dataset (synthetic MVS scans of the Berger et al. dataset). +Training set +Test set +Experiment +Name +# shapes +complexity +# points +σ noise +% outliers +Name +# shapes +complexity +# points +σ noise +% outliers +1 +ShapeNet +30, 661 +⋆⋆ +3, 000 +0.005 +0 +ShapeNet +1, 300 +⋆⋆ +3, 000 +0.005 +0 +2 +ShapeNet +30, 661 +⋆⋆ +3, 000 +0.005 +0 +ShapeNet +1, 300 +⋆⋆ +10k +0.005 +10 +3 +ShapeNet +30, 661 +⋆⋆ +3, 000 +0.005 +0 +ModelNet +506 +⋆ +3, 000 +0.005 +0 +4 +ShapeNet +30, 661 +⋆⋆ +3, 000 +0.005 +0 +Berger et al. +5 +⋆⋆ +3, 000 +0.005 +0 +5 +ModelNet +3, 979 +⋆ +3, 000 +0.005 +0 +ShapeNet +1, 300 +⋆⋆ +3, 000 +0.005 +0 +6 +– +Berger et al. +5 +⋆⋆ +see Table SM.1 +7 +ShapeNet +30, 661 +⋆⋆ +3, 000 +0.005 +0 +Berger et al. +5 +⋆⋆ +3, 000 +0.005 +0 + diff --git a/K9FRT4oBgHgl3EQf1Th-/content/tmp_files/load_file.txt b/K9FRT4oBgHgl3EQf1Th-/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e8d7180a8864c2e13ef16df8f2777c8e8269eb29 --- /dev/null +++ b/K9FRT4oBgHgl3EQf1Th-/content/tmp_files/load_file.txt @@ -0,0 +1,1837 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf,len=1836 +page_content='1 A Survey and Benchmark of Automatic Surface Reconstruction from Point Clouds Raphael Sulzer, Loic Landrieu, Renaud Marlet, and Bruno Vallet Abstract—We survey and benchmark traditional and novel learning-based algorithms that address the problem of surface reconstruction from point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Surface reconstruction from point clouds is particularly challenging when applied to real-world acquisitions, due to noise, outliers, non-uniform sampling and missing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Traditionally, different handcrafted priors of the input points or output surface have been proposed to make the problem more tractable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, hyperparameter tuning for adjusting priors to different acquisition defects can be a tedious task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To this end, the deep learning community has recently addressed the surface reconstruction problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In contrast to traditional approaches, deep surface reconstruction methods can learn priors directly from a training set of point clouds and corresponding true surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In our survey, we detail how different handcrafted and learned priors affect the robustness of methods to defect-laden input and their capability to generate geometric and topologically accurate reconstructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In our benchmark, we evaluate the reconstructions of several traditional and learning-based methods on the same grounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We show that learning-based methods can generalize to unseen shape categories, but their training and test sets must share the same point cloud characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We also provide the code and data to compete in our benchmark and to further stimulate the development of learning-based surface reconstruction: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='com/raphaelsulzer/dsr-benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Index Terms—surface reconstruction, point clouds, deep learning, mesh generation, survey, benchmark !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 1 INTRODUCTION M ODERN three-dimensional (3D) acquisition technol- ogy, such as range scanning or multi-view stereo (MVS) brought the ability to record the world in the form of 3D point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, point clouds are usually not sufficient to model complex physical processes such as fluid dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Instead, a variety of applications in science and engineering require a representation of objects or scenes in the form of a continuous surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Therefore, surface reconstruction from point clouds is a key step between acquisition and analysis of surface models and is a long- standing problem in digital geometry processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In this paper, we survey and benchmark several traditional and learning-based methods that address the problem of surface reconstruction from point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' If no prior information about the sought surface is known, surface reconstruction from point clouds is an ill- posed problem, as there are an infinite number of surfaces with different geometry and topology that can pass through, or near, the point samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Furthermore, acquisition defects in the point cloud, such as non-uniform sampling, noise, outliers or missing data complicate the reconstruction of a geometrically and topologically accurate surface [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' See Figure 1 for an illustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Traditionally, surface reconstruc- tion methods made the problem more tractable by using handcrafted priors, imposed on the input, such as point R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sulzer was with LASTIG, Univ Gustave Eiffel, IGN-ENSG, F-94160 Saint-Mand´e, France during this work and is now with Centre Inria d’Universit´e Cˆote d’Azur, Sophia Antipolis, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E-mail: raphael- sulzer@gmx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='de.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Marlet is with LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vall´ee, France and with valeo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='ai, Paris, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Landrieu and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Vallet are with LASTIG, Univ Gustave Eiffel, IGN- ENSG, F-94160 Saint-Mand´e, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E-mail: firstname.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='lastname@ign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='fr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Corresponding author: R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sulzer density, level of noise or outliers, and on the output, such as smoothness, topological properties or the shape category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In contrast, recent methods introduced by the deep learning community can learn point cloud defects or shape patterns directly from training data and therefore promise to recon- struct more accurate surfaces without the need for manual parameter tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, so far deep surface reconstruc- tion (DSR) methods have mostly been applied on datasets with a small number of different object categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Such datasets are not representative for real-world applications, where algorithms have to reconstruct surfaces containing a large variety of shapes unseen during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Furthermore, DSR methods are often applied on uni- formly sampled point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Likewise, such point clouds are not representative for real-world acquisitions, as they do not model non-uniformity or missing data stemming e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' from occlusions, or transparent and low texture areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The ability to reconstruct shapes, either from unseen shape classes or from point clouds with unseen defects is rarely studied in a systematic manner for DSR methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To this end, we propose several experiments to bench- mark algorithms for surface reconstruction from point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We make use of a variety of publicly available shape datasets with object surfaces of different complexities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The objects are represented by a true surface S, which is a boundary-free 2-manifold, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' each point on the surface has a neighborhood that is homeomorphic to an open subset of the Euclidean plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We synthetically scan the objects to produce point clouds with real characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Having ac- cess to the true surfaces allows us to measure the geometric and topological reconstruction quality of the benchmarked methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We also verify our findings on real-world point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We compare novel learning-based algorithms to tradi- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='13656v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='CV] 31 Jan 2023 2 tional test-of-time methods to specifically study the influ- ence of learned priors incorporated into the surface recon- struction process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We thereby pay special attention to the generalization capability of methods to unseen domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Our main contributions are as follows: We review methods for surface reconstruction from point clouds from over three decades up to recent learning-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We contrast popular test-of- time with novel DSR methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We benchmark traditional and learning-based methods on the same ground across several experiments, using openly available shape datasets and point clouds gen- erated with synthetic scanning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 2 RELATED WORK 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Surveys There exists only few works that survey the broad field of surface reconstruction from point clouds [1], [2], [3], [4], most of them predating the advance of learning-based surface reconstruction [1], [2], [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Surface reconstruction methods are often grouped into interpolating or approx- imating methods [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Interpolating methods “connect” all points of the input point cloud, or a subset thereof, usually by linearly interpolating between pairs of points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Approx- imating methods often define one or several smooth func- tions approximating the point cloud globally or locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' See Figure 2 for an illustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [1] and Cazals & Giesen [2] provide detailed reviews for approximating and interpolating surface reconstruction methods, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To the best of our knowledge, only one survey includes learning-based methods [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, this survey predates important developments for learning-based methods, such as the incorporation of local information [6], [7], [8], [9], [10], [11], [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In this work, we review both interpolat- ing and approximating methods and focus on novel ideas in learning-based surface reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' While many re- construction methods can be distinguished by the prior assumptions they impose [1], we argue that a variety of successful methods combine different priors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This makes grouping by priors difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We thus organize methods into two groups: surface-based and volume-based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This breakdown closely relates to the two main classes of mathematical representations of a surface: parametric and implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 Benchmarks To date, benchmarks for surface reconstruction from point clouds are rare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Many methods use custom datasets to evaluate their approach, usually generated by uniformly sampling point clouds from ground truth shapes of exist- ing shape collections [6], [7], [8], [11], [12], [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, the characteristics of the sampled point clouds often differ across publications, which hampers the ability to fairly compare the results of different works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Furthermore, the point clouds often lack common defects of real acquisitions, such as missing data or outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' One notable exception is the benchmark of Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The authors develop a synthetic range scanning procedure to produce scans with realistic artifacts, such as noise, non-uniformity and misaligned scans and create point clouds from shapes with non-trivial topology and details of various feature sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' While providing interesting results, the benchmark predates learning-based surface reconstruction and only considers traditional approximating methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In the benchmarks pro- posed in this paper, we reuse their synthetic range scanning procedure and their five test shapes, as they provide realistic and challenging input for both learning-based and tradi- tional algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We also implement our own synthetic scanning procedure for MVS-like point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use the synthetic scanning to scan existing large shape datasets to create training datasets with true surfaces and point clouds with realistic characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A problem related to surface reconstruction is the gen- eration of point clouds from 2D information such as over- lapping images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' There exists a variety of benchmarks using data captured in a laboratory environment [15], [16] or in the wild [17], [18], [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' These benchmarks often use a low quality image acquisitions as reconstruction input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Simulta- neously, a higher quality acquisition, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' from LiDAR scans, serves as reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' One problem with this approach is that, even for high quality acquisition techniques, it is difficult to produce complete ground truth point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This issue is sometimes addressed by decreasing the ground truth domain to specific evaluation areas, in which reliable information is available either from recorded points or sightlines between points and sensors [16], [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, in contrast to true surfaces, reference point clouds, do not allow to calculate topologic metrics such as the number of components or differen- tial metrics such as surface normals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Furthermore, most learning-based methods require closed reference surfaces instead of reference point clouds for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 3 SURFACE DEFINITION, REPRESENTATIONS, PROPERTIES AND RECONSTRUCTION In this section, we first provide a definition of a surface and its mathematical and digital representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We then dis- cuss important surface properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Finally, we establish the connection between mathematical surface representations, and the grouping of surface reconstruction algorithms used in our survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Definition A surface can be defined as an orientable, continuous 2- manifold in R3, with or without boundaries [5], [20], [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' These properties are important for surface visualisation and processing, and we will discuss them further down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mathematically, there are two main classes of surface repre- sentations: parametric and implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 Representations Parametric surfaces are defined by a function f : Ω �→ S that maps a parameter domain Ω ∈ R2 to the surface S = f(Ω) ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, for complex surfaces it is not feasible to find a single function that can parameterise S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Therefore, the parameter domain Ω is usually split into sub- regions for which an individual function is defined [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The most common way is to segment Ω into triangles, which 3 (a) Unknown Topology (b) Unknown Geometry (c) Acquisition Defects Figure 1: Difficulties in surface reconstruction from point clouds: In each plot, we show the real surface , point samples , and possible reconstructions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The correct topology and geometry of the real surface are not known from the point samples (a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The point samples may also include acquisition defects such as noise (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The goal of any surface reconstruction algorithm is finding a good approximation of the real surface, in terms of its geometry and topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Learning-based surface reconstruction can learn shape patterns or sampling errors such as the one exemplified here, and use the learned knowledge during reconstruction for a better approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (a) Open Interpolating (b) Open Interpolating (c) Closed Interpolating (d) Closed Interpolating (e) Open Approximating (f) Open Approximating (g) Closed Approximating (h) Closed Approximating Figure 2: Approximating and interpolating surfaces from point clouds: A surface generated from point samples can either interpolate (top row) or approximate (bottom row) the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Theoretically, there exist an infinite number of surfaces with different geometry and topology that can pass through, or near, the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We show eight different surfaces reconstructed from the same point cloud in (a) - (h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The point cloud can be seen as a sampling of a part of a real surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' All reconstructed surfaces are watertight, as they are either closed and boundary-free, or their only boundary is the intersection with the domain boundary .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The surface in (d) is non-manifold in the center-vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' All other surfaces are manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Except for (h), all surfaces are comprised of only one component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In contrast to the point cloud depicted here, in our benchmark, we mainly consider point clouds sampled from closed surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' are planar by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A set of triangles approximating S can be efficiently stored and processed as a triangle surface mesh M = (V, E, F), with triangle facets F, edges E and vertices V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Implicit surfaces are defined by the level-set c of a scalar valued function F : R3 �→ R: Sc = {x ∈ R3 | F(x) = c}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (1) The most common choice of the implicit function F is either a signed distance or an occupancy function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A signed distance function (SDF) gives the distance from a 3D point x in space to the surface;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' with points in the interior signed a negative value, and points on the exterior signed a positive value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' An indicator or occupancy function (OF) usually has a value of 1 inside the surface and 0 outside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The c-level- set of F then yields the surface S, where c = 0 in the case of a signed distance function and c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 in the case of an occupancy function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Similar to the parametric case, the implicit function domain is often split into sub-regions, such as voxels, octree-nodes or tetrahedra, and constant functions are defined in each sub-region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 Properties The reconstructed surface Sr should be close in terms of geometry and topology to the real surface S from which the point cloud P is sampled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To facilitate subsequent geo- metric operations on Sr, such as sampling or deforming the surface, a mesh reconstruction M is also desirable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sr and M, respectively, should have the following properties (see Figure 2 for illustrations): Watertight: A geometric surface is closed if it is boundary-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A mesh M is closed—or boundary- free—if no edge is incident to exactly one facet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' How- ever, a reconstructed surface of a real scene necessarily has a border defined e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' by the limit of the scan cov- erage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' One may still reconstruct a closed surface by in- tersecting it with the boundary of the domain in which 4 f or F is defined: e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' the convex hull or bounding box of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, this procedure may not be desirable, as it can hinder simple geometric analysis such as the calculation of surface area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Instead, we define a surface as watertight if it is boundary free, except for a possible intersection with the domain boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Manifold: We consider real and geometric surfaces to be 2-manifolds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' each point on the surface has a neighborhood that is homeomorphic to an open subset of the Euclidean plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A mesh M is manifold if it is edge- and vertex-manifold, and intersection-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' – Edge-manifold: For each edge E, the set of facets F sharing this edge form a topological (half-)disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This means that no edge can be incident to more than two facets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' – Vertex-manifold: For each vertex V, the set of facets sharing this vertex form a topological (half-)disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This means that facets with a common vertex form an open or closed fan, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' there are no dangling facets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Intersection-free: M is intersection free if all pairs of facets not sharing an edge or vertex do not intersect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Orientable: M is orientable if one can define a consis- tent continuous orientation of each facet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This means that the order of the vertices of all facets is either clockwise or counter-clockwise and a common edge of two adjacent facets has opposite orders on the two sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The watertight property is useful for simulations such as fluid dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Manifoldness and orientability are often required for mesh storing and processing, in particular be- cause they are a prerequisite for the widely-used half-edge data structure [22], [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Furthermore, intersection-free and orientable surfaces lead to a well-defined notion of inside and outside, which is important for mesh visualization and a variety of geometric opertations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 Reconstruction Surface reconstruction from point clouds is the process of constructing a continuous surface of which discrete point samples have been acquired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In our survey, we group methods for surface reconstruction from point clouds into two groups: surface- and volume-based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Surface-based re- construction methods consists in finding (a set of) param- eterised surfaces Sr that approximate the point cloud P, either in the form of triangles or larger two-dimensional (2D) patches, or by deforming parameterised enclosing envelops such as meshed spheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The main challenge for surface-based methods using a single function f is that the topology of Ω has to be equivalent to the topology of S, which is usually unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The main challenge for surface- based methods with individual functions for sub-regions of S, on the other hand, is to guarantee a consistent transition between each region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hence, these methods often struggle to produce an intersection-free, manifold and watertight surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Volume-based methods, on the other hand, segment a subset of R3 into interior (inside) and exterior (outside) subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The surface is implicitly defined as the interface between the two subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Most, but not all algorithms in this class formulate the problem as finding an implicit func- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Surfaces from volume-based methods are guaranteed to be watertight and intersection-free, but not necessarily manifold [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' While surface-based methods can directly yield a mesh, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' by triangulating Ω, volume-based methods usually re- quire an additional processing step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' If the implicit field is discretized with tetrahedra, one can simply use a process which is sometimes called triangle-from-tetrahedra (TFT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' TFT builds a triangle mesh from all triangles that are ad- jacent to one inside- and one outside-tetrahedra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Another option is the algorithm of Boissonnat and Oudot [24] that iteratively samples F along lines from inside to outside to find points that lie on S and builds a triangle mesh from these points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' One of the most popular methods for mesh extraction from an implicit field is Marching Cubes [25], which (i) discretizes the implicit function into voxels, (ii) constructs triangles inside each voxel that have at least one inside and one outside vertex and (iii) extracts a triangula- tion as the union of all triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Recently, mesh extraction has also been addressed by the deep learning community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Neural meshing [26] specifically addresses the case where an implicit function is represented by a neural network, and aims to extract meshes with fewer triangles compared to Marching Cubes from such a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In both, surface- and volume-based groups, there are methods that come with theoretical guarantees about the topology and geometry of the reconstruction in the absence of noise and when the point sampling is dense enough [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, in this paper, we are mostly interested in the robustness of methods to defect-laden input point clouds from 3D scanning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4 SURVEY In this section, we review important surface- and volume- based surface reconstruction methods and discuss their robustness against different point cloud defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We also show that learning-based approaches are often related to more traditional methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Surface-based reconstruction 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Interpolating approaches Advancing-front techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' : Most traditional surface-based approaches linearly interpolate between the point samples P, or a subset thereof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This can be done efficiently by triangulating triplets of points which respect the empty ball property i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' no other point lies within their circumsphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Triangulating all triplets of P that have this property leads to the 3D Delaunay tetrahedralisation (3DT) of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The Ball Pivoting algorithm [27] is a greedy approach to find local triplets of points that form a triangle which is part of the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The first step is to (i) define a ball with constant radius, related to the density of P and to (ii) select a seed triplet of points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The ball must touch all three points and have no other point in its interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The points then form the first surface triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Then, (iii) the ball pivots around an edge of the triangle until it touches a new point, forming a new surface triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Once all possible edges have been processed the algorithm starts 5 Table 1: Overview of surface- and volume-based surface reconstruction methods: We show an overview of surface- and volume-based surface reconstruction methods, both non-learning and learning-based, together with their input requirements (normals, sensor pose) and output type (triangle mesh or implicit field).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Attributes denoted in brackets are optional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Methods with a local receptive field divide the point cloud into smaller sub-regions and define individual functions or surface patches for each sub-region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Methods with a global receptive field consider the entire point cloud at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Methods denoted with both combine local and global receptive fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We test methods in bold in our benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Method learning normals sensor pose receptive field output Surface-based BPA [27] local triangle mesh Sharf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [28] both triangle mesh AtlasNet [29] ✓ local triangle mesh IER [30] ✓ both triangle mesh PointTriNet [31] ✓ local triangle mesh DSE [11] ✓ local triangle mesh P2M [32] both triangle mesh Volume-based SPSR [33] ✓ both implicit field Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='global ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='triangle mesh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='ONet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[35] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='global ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='DeepSDF ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[13] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='global ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='IM-Net ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[36] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='global ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='ConvONet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[6] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='both ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='IGR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[37] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='(✓) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='(✓) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='global ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='LIG ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[8] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='local ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='DGNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[10] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='both ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='triangle mesh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='SAP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[38] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='both ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='P2S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[9] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='both ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='SAP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[38] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='(✓) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='both ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='POCO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[12] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='(✓) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='local ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='implicit field ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='with a (iv) new seed triangle until all points of P have ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='been considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The algorithm has later been refined to be more robust to non-uniform sampling [39], [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The Ball Pivoting algorithm and its related variations are often called advancing-front techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Their main drawback is that they are not robust to point cloud defects such as noise or point clouds with large missing parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Selection-based: Similar to advancing-front tech- niques, the idea to iteratively build the triangulation from initial candidate triangles has also been explored in learning-based methods [30], [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' PointTriNet [31] (i) starts with an initial set of seed triangles from a k-nearest neighbor graph of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Then, (ii) a first network takes in neighboring points and triangles of each seed triangle, and estimates its probability to be part of the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (iii) Triangles with high probability are selected to be part of the final sur- face and (iv) a second network proposes new candidate triangles constructed from two points of already selected surface triangles and neighboring points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The proposed new candidates are, again, processed by the first network and the algorithm continues for n user-defined iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The loss function is based on Chamfer distance between input points and the reconstructed surface, which allows the method to be trained without the need for ground truth meshes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' IER- meshing [30] also (i) starts with a large set of seed triangles from a k-nearest neighbor graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' It then defines a so-called intrinsic-extrinsic ratio (IER), as the quotient of geodesic and Euclidean distance between points of a triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (ii) This ratio is estimated by an multilayer perceptron (MLP) from learned point features per triangle and supervised with IER’s from a ground truth mesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (iii) Only triangles with an IER close to 1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Euclidean distance ≈ geodesic distance) are considered to be part of the surface and (iv) selected based on handcrafted heuristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Both aforementioned meth- ods have shown to be robust against small amounts of noise in the input point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, their reconstructed surfaces are neither manifold nor watertight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Tangent plane and other projection methods: An- other class of surface-based interpolating approaches are tangent plane methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This class includes the algorithm of Boissonnat [41], which is according to Cazals and Giesen [2] probably the first algorithm to address the surface re- construction problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The basic idea is to (i) find a tan- gent plane for each sample point, (ii) project the points local neighborhood on the tangent plane, (iii) construct 2D Delaunay triangulations of the projected points and (iv) merge the local reconstructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A shortcoming of such an approach is that tangent planes are difficult to use in areas with high curvature or thin structures [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To this end, the idea of using local 2D Delaunay triangulations of projected points has been refined in a recent learning-based approach [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Instead of tangent planes, DSE-meshing [11] uses loga- rithmic maps, local surface parametrizations around a point p, based on geodesics emanating from p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This method (i) classifies geodesic neighbors of each point in P from a set of k-nearest neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Then, (ii) an MLP approximates a logarithmic map parametrization to gain a 2D embedding of the geodesic neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lastly, (iii) neighboring logarith- mic maps are mutually aligned and triangulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This step allows the method to reconstruct surfaces with fewer non- manifold edges, compared to methods that process triangles independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, the surface is still not watertight and the method has not been tested for reconstruction from noisy point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 Patch-fitting Patch-fitting methods are related to tangent plane ap- proaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Instead of interpolating the initial point set, a new triangulation patch is formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' AtlasNet [29] is based on this idea and was one of the first learning-based surface reconstruction methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Small 2D triangulated patches are transformed to fit P based on transformations predicted by an MLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Similar to interpolating approaches, this method cannot guarantee to fill all gaps between patches, which results in a non-watertight and potentially self-intersecting surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 Surface deformation One of the only classes of surface-based approaches that can guarantee a watertight surface are deformation-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sharf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [28] introduced a method that (i) iter- atively expands an intial mesh contained within the input point cloud along the face normal directions, and (ii) moves the mesh vertices to fit the input point cloud using moving 6 least squares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The method is shown to be robust against missing data, but requires careful parameter tuning to be robust against noise or outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Point2Mesh (P2M) [32] is also based on the aforementioned idea, but avoids the need for tuning parameters by hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The method takes as input a convex hull or a low resolution Poisson reconstruction [33] of P, and shrink-wraps this initial surface to best fit the point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The process is guided by multiple local convolutional neural networks (CNNs) that share weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The idea is that the weight sharing between the CNNs acts as a prior that identifies symmetric features in the shape while being able to ignore unsystematic, random defects in the point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' One problem with this approach is that the topology of the initial surface stays constant during recon- struction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' If the correct topology of the surface is not known, it cannot be recovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For example, if the sought surface has holes, they cannot be reconstructed from a convex hull initialisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This poses a limitation for reconstructing arbitrary objects in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 Volume-based reconstruction 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Interpolating approaches Volume-based interpolating approaches commonly start by constructing a 3DT of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In R3 a Delaunay triangulation (or tetrahedralization) subdivides the convex hull of P with tetrahedra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The 3DT is created in such a way that no point of P is contained in the circumspheres of any tetrahedra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For well distributed point clouds it can be constructed in O(n log n) [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The Delaunay triangulation does not directly generate the surface, as it connects points in any direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, if the sampling P of S is dense enough a subcomplex of the 3DT is guaranteed to include a surface Sr closely approximating the geometry and topology of S [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' One of the simplest ways to recover this subcomplex from a 3DT is to (i) prune all tetrahedra with circumspheres larger than a user specified constant radius α and then (ii) keeping only the boundary triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This leads to a so- called α-shape [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Similar to the Ball Pivoting algorithm the radius of the ball (here α) depends on the point density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For error free and dense samplings, alpha-shapes and some other interpolation methods [2], [41], [44] provide provable guarantees that the reconstructed surface is topologically correct [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Another way to recover a surface from a 3DT is inside-outside labelling [10], [10], [34], [45], [46], [47], [48], [49], [50], [51], [52], [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Here, all tetrahedra of a 3DT of P are (i) labelled as either inside or outside with respect to Sr, and (ii) the surface is defined as the interface between tetrahedra with different labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This guarantees to produce intersecting-free and watertight surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The inside-outside labelling is usually implemented through a global energy minimized with graph-cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Inside-outside potentials are computed using visibility information and spatial regular- ization is achieved through surface smoothness or low area priors in the energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This approach has been shown to be robust against most kinds of acquisition defects of moderate levels [34], [50], [51] and is capable of reconstructing (very) large scale scenes [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Delaunay-Graph Neural Network (DGNN) [10] is a learning-based method that replaces the handcrafted potentials in the aforementioned energy with a graph neural network (GNN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The GNN takes local ge- ometric attributes and visibility information as input and operates locally on small subgraphs of the 3DT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The locality makes the method scale to large scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The method of Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [54] proceeds similarly, but without the use of visibility information and a global energy formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Instead, the GNN processes the 3DT of entire objects at once, which can hamper scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 Implicit functions Arguably the largest class of surface reconstruction algo- rithms represent the surface with an implicit function (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Equation 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' One of the first methods that used implicit functions for surface reconstruction was presented in Hoppe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hoppe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (i) calculate tangent planes at each input point of P, using principal component analysis (PCA) of the local neighborhood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' They then (ii) approximate an SDF by mapping an arbitrary point x ∈ R3 to its signed distance to the closest tangent plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (iii) The surface is defined as the 0-level-set of the SDF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The local tangent plane estimation makes the process sensitive to low density sampling and noise, and computationally expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Poisson surface reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' : The most popular approach for surface reconstruction based on implicit func- tions is Poisson Surface Reconstruction (PSR) [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The idea is that the Laplacian of an indicator function χ, whose c-level-set approximates the unknown surface S, should equate the divergence of a vector field ⃗N associated with P: ∆χ = ∇ · ⃗N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (2) The vector field ⃗N is defined by the oriented normals of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To define χ the algorithm (i) builds an octree on P and (ii) sets up a system of hierarchical functions, locally supported in each octree node, and (iii) globally solved by using a sparse linear system, which makes the method time and memory efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Dirichlet conditions can be imposed on the bounding box of the surface with χ = 0 to ensure that the surface is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The approach is known to inherently produce smooth surfaces, but also over-smooth the surface in parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The later introduced Screened Poisson Surface Reconstruction (SPSR) [33] can reconstruct much sharper surfaces by constraining Equation 2 to pass through P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Additionally, it introduces the choice of Neumann bound- ary conditions which allows the surface to intersect the boundary of the domain in which F is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This is useful for open scene reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Recently the method has been revisited again, to impose Dirichlet constraints on a tight envelope around P, enabling better reconstructions in areas of missing data [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Poisson surface reconstruction produces watertight meshes and has shown to be robust against almost all kinds of acquisition defects of moderate levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, all Poisson-based approaches require well oriented normals as input, which can pose a significant limitation in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Neural implicit functions: The most common ap- proach to surface reconstruction with deep networks is to model F in Equation 1 with a neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This was first done in the pioneering works of Mescheder et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [35], Park et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [13], and Chen & Zhang [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 7 In the case of Occupancy Networks (ONet) [35], F is modelled with a simple fully connected network (FCN) architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The network takes as input a point cloud P and one or several test points x and outputs the occupancy of the test points in relation to the surface from which P was sampled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The conditioning on the input point cloud slightly changes the formulation of Equation 1 to: S = {x ∈ R3 | Fθ(x, P) = c} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (3) To estimate the network weights θ, the network is trained with batches B of K objects using a simple binary cross entropy (BCE) loss: LB (θ) = 1 |B| |B| � i=1 K � j=1 BCE (Fθ (xij, Pi) , oij) , (4) where oij is the ground truth occupancy of test point xij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To compute the ground truth occupancy oij, the training objects have to be available in the form of watertight sur- faces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A common approach is to use large shape collections, such as ShapeNet [57] for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Similar ideas have been introduced in IM-Net [36] and DeepSDF [13] to model an oc- cupancy or signed distance function with a neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Instead of an encoder-decoder architecture as in ONet, the authors of DeepSDF [13] introduce an auto-decoder which is trained to find a shape code z that best explains an objects shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This slightly changes Equation 3 and Equation 4, where the point cloud input P is replaced by a shape code z in the form of a 256-dimensional vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The DeepSDF architecture then allows to reconstruct a complete signed distance field (and thus the shape), given a shape code z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, to find the shape code for a specific shape during inference, at least a few ground truth signed distance values are necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This can be a significant limitation in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A common downside of the first DSR networks based on neural implicit fields is their simple fully connected network architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This architecture does not allow the incorpora- tion of local point cloud information [6] and often leads to oversmoothing or inaccuracies of the inferred surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To this end, occupancy networks have later been refined by prepending 2D or 3D U-Nets [58], [59] before the fully connected occupancy network, to better incorporate local information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The idea is to (i) extract point features from local neighborhoods and (ii) aggregate these features in 2D or 3D grid cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The U-Nets are then used to (iii) integrate local and global information using multiple down- and upsamplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (iv) Finally, the fully connected ONet is used to compute test point occupancies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The approach is called Convolutional Occupancy Networks (ConvONet) [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Just as for the fully connected architectures, the network can be trained with test points x with known occupancy values o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In the same work, the authors also introduce an overlapping sliding-window approach in which a single trained ConvONet can be used to reconstruct entire indoor scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, this approach requires to carefully scale the scene, such that the sliding window captures parts of the scene with comparable surface features during training and inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Furthermore, for large-scale scenes, a sliding- window approach can be very time-consuming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Local Implicit Grids (LIG) and DeepLS [7] also split input point clouds into overlapping subregions, and treat each subregion separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The methods infer local shape codes z for parts of objects or scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' These local shape codes have the additional benefit that they can represent parts from several different object classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For example, a flat part-surface may belong to a table top or to a TV screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This makes the methods less prone to overfit on specific shape categories used during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, the methods are largely based on IM-Net and DeepSDF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This means they also require a sort of ground truth test point during inference to optimize for the shape codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Additionally, similar to the sliding window method of ConvONet, the region size (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' part size) has to be tuned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Using the same encoder architecture as ConvONet, Shape As Points (SAP) [38] introduces the combination of neural implicit fields with a differentiable Poisson solver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The method estimates (i) oriented normals as well as k point offsets for each input point, to correct and densify the point cloud P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (ii) The resulting point cloud of size k|P| is fed to a differentiable Poisson solver [33] that computes an indicator grid, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' ˆχ evaluated on all nodes of a regular voxel grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (iii) This indicator grid is supervised with a ground truth indicator grid χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The ground truth indicator grid is created prior to training, from a Poisson reconstruction of a dense and error free point cloud, sampled from a ground truth mesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A simple mean square error (MSE) loss is used for training the network: L = |ˆχ − χ|2 (5) The entire pipeline is differentiable which allows to update point offsets, oriented normals and the network parameters during training (with batches of shapes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Dur- ing inference, the computed indicator grid can simply be converted to a mesh using marching cubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In contrast to the original Poisson Surface Reconstruction, SAP allows to incorporate learned priors and does not need P to be equipped with oriented normals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In general, all of the methods based on voxel grids in this paragraph require the size of the initial voxels to be constant during training, because the resolution of the convolution layers depends on the voxel grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This poses problems for training on point clouds with different densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A dense voxel grid can be memory intensive and long to train, while a coarse voxel grid can oversmooth the input and lead to loss of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Another way to combine local and global information, that avoids the use of grids was introduced in Points2Surf (P2S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' P2S uses both a local test point neighborhood sam- pling, and a global point cloud sampling which are both processed using MLPs and combined to predicted a signed distance for the test point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The k-nearest neighbor sampling makes this method less sensitive to point density, at the cost of increasing computational complexity, since the local neighborhood sampling has to be performed for each test point during inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Point Convolution for Surface Reconstruction (POCO) only relies on local neighborhoods and computes a latent vector per point using a point convolution backbone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The 8 occupancy of a test point x is then predicted using attention- based weighing of neighboring latent vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This approach can focus the parameters of the learned implicit function to be used close to the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, it also requires neighborhood sampling during inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Similar to most other DSR methods, POCO is trained on object point clouds with a fixed number of points for easy mini-batching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' How- ever, to make the method more robust to point clouds with higher density during inference, the authors use a procedure called test-time augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' During inference, the latent vectors of each input point p are computed several times, from different local subsamples and then averaged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Another approach to use neural implicit surface rep- resentations is to ”train” (or optimize) the weights of a deep neural network per shape [37], [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The idea is to leverage inherent symmetries of deep neural networks to act as priors in the reconstruction process, similar to the surface deformation based Point2Mesh discussed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To this end, Gropp et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [37] designed a simple fully con- nected network representing a signed distance function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To encourage the reconstruction of a smooth 0-level-set, given an input point cloud P, they design a loss function which (i) should vanish on P and (ii) which gradients ∆PF should be of unit 2-norm and similar to the normals of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The method is called Implicit Geometric Regularisation (IGR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SAP also has an optimization-based variant where (i) the indicator grid, computed with the differential Poisson solver from the input point cloud P is used to compute a mesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (ii) The mesh is then sampled, which allows to calculate a Chamfer loss between the sampled and input point cloud and, again, update the network weights, point offsets and oriented normals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (iii) This process is repeated until a user defined stopping criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The optimization-based variants of SAP and IGR can be trained per shape, without the need for ground truth meshes for supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, in this optimization-based setting, they cannot learn and incorporate shape priors from a training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' An upside of all DSR methods based on neural implicit representations is that they can store an implicit function, potentially conditioned on a point cloud, in the weights of a neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Especially DSR architectures that are entirely grid-less can directly relate their degrees of free- dom to represent the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This can be more flexible compared to voxel, octree, or tetrahedral representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Being a relatively new discovery, the full potential of neural network-based surface representations has probably yet to be explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5 BENCHMARK SETUP In this section, we describe our set up of a series of exper- iments for benchmarking several surface reconstruction al- gorithms discussed in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We first describe how we generate realistic point clouds by using synthetic range and MVS scanning procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We then describe the datasets we used and several experiments to evaluate the performance of reconstruction methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Finally, we provide an overview of the competing methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Synthetic scanning for point cloud generation: In an ideal setting, we would evaluate methods on real point cloud acquisitions together with their true surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' How- ever, generating true surfaces of real objects requires error free and dense input point clouds or substantial manual intervention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Therefore, such a dataset is difficult to pro- duce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' MVS benchmarks [15], [16], [17], [18], [19] commonly use image acquisitions for the reconstruction input and a highly complete and precise acquisition, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' from multiple stationary Light Detection and Ranging (LiDAR) scans as reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We make use of such datasets for evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Using such a dataset for training surface reconstruction net- works requires reconstructing a watertight surface from the high-quality acquisition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, even with high-quality acquisitions, parts of the object or scene may be missing due to occlusions, for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' These issues ultimately lead to inconsistencies in the ground truth and make this source of data unreliable to train DSR networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Additionally, existing datasets of point cloud acquisitions and reliable ground truth surface information only consist of a handful of ob- jects or scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Instead, training and evaluation of learning- based surface reconstruction is often done on point clouds sampled from synthetic surfaces stemming from large shape collections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, such point clouds are not representa- tive for real-world acquisitions, as they do not model non- uniformity or missing data stemming e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' from occlusions, or transparent and low texture areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To this end, we resort to synthetic scanning to produce point clouds from synthetic surfaces in our benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In contrast to directly sampling the surfaces, synthetic scanning can produce point clouds with realistic defects, such as anisotropy and missing data from (self-)occlusion, see Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' At the same time, the synthetic surfaces provide reliable information for training and evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Synthetic range scanning: We use the range scanning procedure from the surface reconstruction benchmark of Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To this end, we modified their provided code to export the camera positions of the scanning process along with the point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We also add outliers to the produced point clouds by uniformly sampling the bounding box of the object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The scanning procedure produces uniform, evenly spaced point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We choose five different scanner settings to scan each test shape: (i) a low resolution setting replicates point clouds obtained from long range scanning and (ii) a high resolution setting produces point clouds with close to no defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Three further settings produce high resolution point clouds with challenging defects such as (iii) noise, (iv) outliers or (v) noise and outlier defects combined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' See the supplementary material for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Because Berger et al.’s provided code pipeline is too time and memory extensive, we cannot generate a dataset sufficiently large for training DSR methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Thus, we only use this dataset for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We refer the reader to the original benchmark paper [14] for further details about the scanning pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Synthetic MVS: To mimic MVS acquisitions, we syn- thetically scan objects by placing virtual sensors on two bounding spheres around an object and shooting rays to the circumsphere of the object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sensor positions (ray origin) and ray target points are uniformly sampled on the surface of the spheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A 3D point is then given as the intersection of the ray and the objects surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Our goal is not to mimic an MVS pipeline but rather produce point clouds with similar characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We depict our scanning procedure in 9 (a) High Quality Mesh (b) MVS (c) Range scan (d) Uniform sampling (e) Synthetic MVS (f) Synthetic range scan Figure 3: Synthetic and real point clouds: Surface reconstruction methods are often tested on uniform surface samplings (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Instead, we test methods on synthetic MVS (e) and synthetic range scans (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In contrast to uniform surface sampling, synthetic scanning can produce realistic point cloud defects, such as missing data from occlusion, often present in real scans (b,c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (a) Synthetic scanning setup (b) Synthetic MVS (c) Synthetic range scanning Figure 4: Synthetic scanning procedure: We randomly place sensors on bounding spheres with multiple radii around the object (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To produce MVS like point clouds, we consider rays aiming at uniformly sampled points on the circumsphere of the object (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This produces non-uniform point clouds with missing data similar to real MVS point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For synthetic range scanning, we use Berger et al.’s [14] pipeline, which considers ray targets arranged on a uniform grid aiming at the object (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This produces uniform point clouds with missing data similar to real range scanning point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 10 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We produce two different scans with our approach: (i) sparse point clouds with 3, 000 points per object and Gaussian noise on the point position with zero mean and standard deviation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 as in [6], and (ii) dense point clouds with 10, 000 points per object of which 10% are outliers and Gaussian noise on the point position with zero mean and standard deviation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For both versions we scan from 10 different sensor positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Datasets We consider a variety of datasets to evaluate the versatility and precision of different reconstruction methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use closed surfaces from ShapeNet, ModelNet and Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=', as they are widely available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' ShapeNet and ModelNet are sufficiently big to train surface reconstruction networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Most learning-based methods require reliable inside/out- side querying of the models for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To this end, we make the models watertight using ManifoldPlus [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Note that we also use the train sets to tune the parameters of learning-free methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The watertight surfaces of the test sets allow for a reliable quantitative evaluation of the reconstructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For qualitative evaluation, we also test on real scans [15], [16], [19] which further allows us to evaluate the reconstruction of open surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' All surfaces are scaled to be contained inside the unit cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In the following we give additional details for each dataset used in our benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' See the supplementary material for example shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' ShapeNet: As is common practice in related studies, we use Choy et al.’s [61] 13 class subset of ShapeNet as well as its train/val/test split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We generate point clouds with 3, 000 and 10, 000 points using our synthetic MVS-like scanning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' ModelNet10: We use ModelNet10 shapes as a sec- ond object shape dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Its shapes are less complex than ShapeNet’s, with more flat surfaces and fewer details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Ad- ditionally, the number of training shapes is smaller (4k vs 30k objects).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use the full train set and the test sets for the 6 out of 10 classes which are not represented in ShapeNet (see supplementary material for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We generate point clouds with 3, 000 points with our synthetic MVS-like scan- ning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' : We select five shapes from the bench- mark of Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='. These shapes include challenging characteristics such as details of various sizes or a non-trivial topology, which makes them more difficult to reconstruct than ModelNet shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We generate point clouds between 3, 000 and 10, 000 points using our synthetic MVS and range scanning procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Real MVS and range scans: We select a range scan from Tanks and Temples [19], and two MVS point clouds from DTU [16] and from Middlebury [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We subsample these point clouds to 50, 000 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 Experimental Setup We show a summary of our experimental setup on Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In the following, we provide details for each experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In-distribution (E1): First, we train and evaluate methods on ShapeNet using all 13 categories and sparse point clouds with 3, 000 points and Gaussian noise with zero mean and standard deviation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' With this exper- iment, we evaluate the capacity of learning methods to complete missing data of sparse point clouds and eliminate noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Out-of-distribution (unseen point cloud characteris- tics) (E2): We evaluate the models trained in E1 on test shapes scanned with a different setting than the train shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use dense point clouds with 10, 000 points of which 10% are outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We add the same noise as in E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Here, we investigate whether learning methods are able to generalize to different point cloud characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Out-of-distribution (unseen shape categories, less complex) (E3): We evaluate the models trained in E1 on shapes from unseen categories but with the same point cloud characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use six categories of ModelNet which are not present in the ShapeNet training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In this experiment, we investigate whether learning methods generalize to unseen categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Out-of-distribution (unseen shape categories, similar complexity) (E4): This experiment is similar to E3, but the test set is comprised of five shapes from Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' which do not correspond to ShapeNet’s categories, but have similar complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Out-of-distribution (unseen shape categories, more complex (E5): This experiment is similar to E3 and E4, but we retrain all methods on the simpler shapes from ModelNet10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Here, we assess whether learning methods can generalize from simple shapes to more complex ones, a difficult out-of-distribution setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Optimization (E6): We evaluate several recently de- veloped optimization-based methods, and two traditional test-of-time optimization-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use the Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' dataset for this experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Out-of-category vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' optimization (E7): We compare learning- and optimization-based methods on the same dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For this we run optimization-based methods on MVS scans of the Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' shapes and compare the results to experiment E4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Out-of-distribution vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' optimization (E8): Finally, we compare learning- and optimization-based methods on real MVS and range scanning point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For learning-based methods we use the models from E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 Surface reconstruction methods We briefly describe the optimization- and learning-based methods that we will benchmark below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For a more com- plete description of these methods and their related con- cepts we refer the reader to our survey in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Note that while some of the optimization-based methods are based on deep networks, and we call them DSR methods, they do not learn shape priors from a training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Instead, the networks are “trained” (or optimized) for each new point cloud to reconstruct a surface and rely on novel regu- larization techniques to increase their robustness to noise, outliers and missing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Conversely, while some tradi- tional methods are not based on a deep network architec- ture, we tune their (hyper)parameters on the training set by using a grid search over different parameter combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' When we need to extract a surface from an implicit field, we use marching cubes [62] with a resolution of 1283.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 11 Table 2: Benchmark setup: Overview of our experimental setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E1 to E5, we train surface reconstruction methods on noisy point clouds of ShapeNet objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E1, we test on the ShapeNet test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E2, we test on ShapeNet, but from denser point clouds with noise and outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E3, we test on the simpler ModelNet objects with the same sampling as in E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E4, we test on five Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' shapes with the same sampling as in E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E5, we train the methods on the simpler ModelNet dataset and test on ShapeNet, both with the same sampling as in E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E6, we test optimization-based methods on synthetic range scans of the Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Finally, in E7 and E8, we directly compare learning- and optimization-based methods on synthetic and real scans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Experiment Training set Test set 1 In-distribution ShapeNet (synthetic MVS) ShapeNet (synthetic MVS) 2 Out-of-distribution unseen point cloud characteristics ShapeNet (synthetic MVS) ShapeNet (synthetic MVS) 3 Out-of-distribution unseen shape categories, less complex ShapeNet (synthetic MVS) ModelNet (synthetic MVS) 4 Out-of-distribution unseen shape categories, similar complexity ShapeNet (synthetic MVS) Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (synthetic MVS) 5 Out-of-distribution unseen shape categories, more complex ModelNet (synthetic MVS) ShapeNet (synthetic MVS) 6 Optimization – – Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (synthetic range scan) 7 Out-of-distribution vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' optimization unseen shape categories vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' optimization ShapeNet (synthetic MVS) Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (synthetic MVS) 8 Out-of-distribution vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' optimization unseen point cloud characteristics and shape categories vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' optimization – ShapeNet (synthetic MVS) Middlebury, DTU (MVS), TaT (range scan) 12 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Optimization-based methods IGR [37]: Implicit Geometric Regularisation (IGR) is a DSR method, operating directly on the point cloud using a simple fully connected network architecture that estimates an indicator function from point positions and normals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We optimize the network weights for 100, 000 iterations for each scan/shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' LIG [8]: Local Implicit Grids (LIG) trains an autoen- coder to encode crops of a signed distance function gained from ground truth shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For inference, only the decoder part of the autoencoder is retained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Then, crops of the input point cloud with oriented normals are augmented with 10 new points along each normal, representing ground truth signed distance information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' An initial latent vector is then decoded to produce an SDF and iteratively optimized so that the augmented point cloud crop best matches the SDF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A post-processing removes falsely-enclosed volumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' As code for training is unavailable, we only use the optimiza- tion part, with a pretrained model on ShapeNet (without noise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use the sensor position to orient jet-estimated normals [63].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' P2M [32]: Point2Mesh (P2M) is an optimization- based method which iteratively moves vertices of an initial mesh to fit a point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SAP [38]: Shape As Points (SAP) has a supervised learning- and an optimization-based variant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In the learning variant, the method estimates the oriented normals as well as k point offsets for each input point, to adjust and densify the point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The resulting point cloud of size k | P | is then used by a differentiable Poisson solver [33] to com- pute an indicator grid, which is supervised with a ground truth indicator grid computed prior to training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The entire pipeline is differentiable which allows for updating point offsets, oriented normals and the network parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SPSR [33]: Screened Poisson Surface Reconstruction (SPSR) is a classic non learning-based method which ap- proximates the surface as a level-set of an implicit function estimated from point positions and normal information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use the sensor position to orient jet-estimated normals [63].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We chose an octree of depth 10 and Dirichlet boundary condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We also use the provided surface trimming tool for post-processing, but could not find parameters that consistently improve the reconstructed surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34]: Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' is a graph-cut-based method for range scans that makes use of visibility infor- mation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Because there is no official implementation of the algorithm, we reimplemented it ourselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To compare with optimization-based methods, we use the parametrization suggested by the authors: point weights αvis = 32 and σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='01;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' regularization strength λ = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 Learning-based methods ConvONet [6]: Convolutional Occupancy Networks (ConvONet) is a DSR method that first extracts point fea- tures and averages them on cells of three 2D grids, or one 3D grid (variant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 2D or 3D grid convolutions then create features capturing the local geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Last, the occupancy of a query-point is estimated with a fully connected network from interpolated features stored on each node of the 2D or 3D grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SAP [38]: In the optimization variant, the method starts as the learning-based variant described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Then, the estimated indicator grid is used to compute a mesh and points are sampled on the mesh to calculate a Chamfer loss between the mesh and input point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' DGNN [10]: This method uses a graph neural net- work to estimate the occupancy of Delaunay cells in a point cloud tetrahedralization from cell geometry and visibility features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A graph-cut-based optimization then reinforces global consistency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' POCO [12]: Point Convolution for Surface Recon- struction (POCO) extracts point features using point cloud convolution [64], then estimates the occupancy of a query point with a learning-based interpolation from nearest neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SPRS [33]: See method description above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For the learning-based experiments, we perform a grid search over octree depth d = {6, 8, 10, 12} and boundary conditions b = {dirichlet, neumann, free}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use the parametrization with the best mean volumetric IoU for reconstructions of the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34]: See method description above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For the learning-based experiments, we perform a grid search over regularization strength λ = {1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5, 5, 10}, and point weights α = {16, 32, 48} and σ = {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use the parametrization with the best mean volumetric IoU for reconstructions of the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 Evaluation metrics We want the reconstructed surface Sr to be as close as possible to the real (or ground truth) surface S in terms of geometry and topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To measure this “closeness” we use several metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Geometric metrics We evaluate the geometric quality of reconstructions with the volumetric intersection over union (IoU), symmetric Chamfer distance (CD) and normal consistency (NC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Volumetric IoU: In the following, let Sg and Sr be the set of all points that are inside or on the ground truth and reconstructed surface, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The volumetric IoU is defined as: IoU (Sg, Sr) =|Sg ∩ Sr| |Sg ∪ Sr| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We approximate volumetric IoU by randomly sampling 100, 000 points in the union of the bounding boxes of Sg and Sr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Chamfer distance: To compute the Chamfer distance and normal consistency, we sample a set of points Pg and Pr on the facets of the ground truth mesh and the recon- structed mesh, respectively, with |Pg| = |Pr| = 100, 000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We approximate the symmetric Chamfer distance between Sg and Sr as follows: CD(Sg, Sr) = 1 2|Pg| � x∈Pg min y∈Pr ||x − y||2 + 1 2|Pr| � y∈Pr min x∈Pg ||y − x||2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 13 Normal consistency: Let n(x) be the unit normal of a point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We set this normal to be the normal of the facet from which x was sampled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Let ⟨·,·⟩ the Euclidean scalar product in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Normal consistency is defined as: NC(Sg, Sr) = 1 2|Pg| � x∈Pg � n(x), n � argmin y∈Pr ||x − y||2 �� + 1 2|Pr| � y∈Pr � n(y), n � argmin x∈Pg ||y − x||2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 Topological metrics We evaluate the topological quality of reconstructions through the number of components, the number of non- manifold edges and the number of boundary edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Number of components: If not stated otherwise, the ground truth surfaces of our datasets have exactly one com- ponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In consequence, the reconstructed surfaces should also have one component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Number of boundary edges: The surfaces of all ground truth objects in our datasets are closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We verify this by measuring the number of boundary edges of the reconstructed meshed surface which should be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Note that if boundary edges only appear on the intersection of the reconstruction with its bounding box we still classify the reconstruction as watertight, according to the definition in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Number of non-manifold edges: The surfaces of all ground truth objects in our datasets are 2-manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We verify this by measuring the number of non-manifold edges of the reconstructed meshed surface which should be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 Runtimes To evaluate the scalability of methods, we measure the average time it takes to reconstruct a surface of ShapeNet from 3,000 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 6 EXPERIMENTS 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Learning-based surface reconstruction from syn- thetic MVS point clouds (E1 - E5) We examine the precision and versatility of novel supervised-learning methods and two traditional methods for which training sets were used for tuning parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' All evaluated methods perform well when reconstructing shapes from known categories and known point cloud characteristics (E1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The learning-based methods show a significantly superior performance of at least 5% over SPSR and Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (see Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The methods based on neural implicit fields (POCO, SAP and ConvONet) produce visually and quantitatively the best reconstructions (see Figure 5, first column).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' DGNN does not perform as well as most other learning methods in this experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The sparse point clouds used in this experiment do not contain point samples on all details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, due to the interpolating nature of DGNN surface details cannot be reconstructed without input points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E2, domain shifts results in worse performance, both quantitatively and qualitatively for all methods except SPSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SPSR shows robustness against outliers and benefits from the higher point density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Most learning methods do not produce satisfying results (see Figure 5, second column).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The reconstruction of SAP is too smooth and lacks details, but does not show as severe defects as the reconstructions of other learning-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' suffers from the low regularization weight tuned for the outlier free point clouds and could benefit from higher regularization to remove erroneous floating components from outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' When reconstructing out-of-category ModelNet shapes (E3), the neural implicit field methods exhibit visually the best reconstructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SAP and POCO produce quantitatively the best reconstructions (see Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The interpolating method DGNN performs better than ConvONet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E4, we reconstruct shapes from Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' which have similar complexity than the shapes from ShapeNet used for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The only learning methods able to lever- age information from the common point cloud characteris- tics to improve the test results are DGNN and POCO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E5, most methods overfit the simpler ModelNet shapes when retrained and used to reconstruct the more complex ShapeNet shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Even SPSR slightly suffers from tuning parameters on ModelNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The best reconstructions on ModelNet are achieved with an octree depth of d = 8 (instead of d = 10 on ShapeNet) leading to worse results on ShapeNet: 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 vIoU in E1 vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 vIoU in E5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The parameter tuning of Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' stays unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' DGNN is the only method that does not overfit on ModelNet and yields the best results, both quantitatively and qualitatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In fact, it performs as well as when trained on ShapeNet directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' ConvONet is only able to outperform traditional meth- ods when the training and test sets share the same point cloud characteristics and shape categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SAP produces much better reconstructions and is the learning-based method with the highest robustness against outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' It is also the only method explicitly predicting normals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' As a result SAP reconstructs surfaces with the highest mean normal consistency over all experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The local learn- ing and global regularisation approach of DGNN produces competitive results in all experiments, except for the outlier setting of E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' DGNN is the learning-based method produc- ing surfaces with highest mean IoU over all experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The local attention-based learning mechanism of POCO leads to the best results when the task does not involve reconstruction from unseen domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' It provides the most faithful reconstructions in three experiments in which point cloud characteristics are identical in train and test set (E1, E3, E4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, POCO is heavily affected by outliers (E2), which can be explained by its purely local approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' POCO also tends to overfit on simple training shapes (E5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The reconstructions of POCO, as well as the ones of SAP contain boundary edges only in areas where the reconstructions intersect the bounding box i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' they are still watertight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SPSR proves robust to various defects and shape characteristics, providing fair results, with the highest mean IoU and Cham- fer distance across the board.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, its reconstructions are the least compact, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' they have the highest number of components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Labatut et al.’s parametrization proves slightly less robust, as the method is affected by outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Its mean IoU is higher than that of any learning method, and its re- constructions are the most compact surfaces with an average number of components of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, it is also the only 14 Input CONet2D [6] CONet3D [6] SAP [38] DGNN [10] POCO [12] SPSR [33] Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] Ground truth In-distribution (E1) Out-of-distribution (E2) Out-of-category (E3) Out-of-category (E4) Out-of-category (E5) Figure 5: Learning-based reconstructions (E1 to E5): In each column we show learning-based reconstructions of experiments E1 to E5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' DGNN [10], SAP [38] and SPSR [33] provide visually the best results with exhibiting dominant defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 15 Table 3: Numerical results for learning-based experiments (E1 to E5): We show the numerical results of the learning experiments E1 to E5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SPSR [33] is the only method that produces surfaces with a high volumetric intersection over union and a low Chamfer distance in each experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Therefore, its surfaces have the highest mean volumetric IoU and the lowest mean CD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, SPSR also produces the least compact surfaces on average (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' surfaces with the highest number of components).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] produces the most compact surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' DGNN [10] has the highest mean volumetric IoU of the tested learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SAP [38] has the lowest mean CD of the tested learning methods and the highest normal consistency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' ConvONet and SPSR are the only methods that produce surfaces without boundary and non-manifold edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Volumetric IoU (%) [↑] Normal consistency (%) [↑] Method E1 E2 E3 E4 E5 Mean E1 E2 E3 E4 E5 Mean ConvONet2D [6] 85 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 69 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 90 78 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 85 ConvONet3D [6] 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 51 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 93 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 SAP [38] 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 89 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 DGNN [10] 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 87 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 POCO [12] 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='74 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 SPSR [33] 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 88 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 81 73 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 81 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Chamfer distance (per-point ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' %) [↓] Number of components [↓] Method E1 E2 E3 E4 E5 Mean E1 E2 E3 E4 E5 Mean ConvONet2D [6] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='553 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='997 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='979 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='29 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='55 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='16 ConvONet3D [6] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='546 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='887 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='44 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='37 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='13 SAP [38] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='437 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='547 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='734 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='924 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='946 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='71 86 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='45 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 DGNN [10] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='549 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='586 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='973 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='31 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='13 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='31 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='16 POCO [12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='416 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='516 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='579 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='32 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='67 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='32 178 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='82 2 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 SPSR [33] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='801 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='659 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='873 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='886 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='801 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='26 185 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='24 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='665 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='747 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='671 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='665 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='94 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='22 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='05 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='22 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 Number of boundary edges [↓] Number of non-manifold edges [↓] Method E1 E2 E3 E4 E5 Mean E1 E2 E3 E4 E5 Mean ConvONet2D [6] 0 0 0 0 0 0 0 0 0 0 0 0 ConvONet3D [6] 0 0 0 0 0 0 0 0 0 0 0 0 SAP [38] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='00923 0 0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='44 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='69 0 0 0 0 0 0 DGNN [10] 0 0 0 0 0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='35 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='646 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='69 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='26 POCO [12] 0 121 0 0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='00154 0 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='000308 SPSR [33] 0 0 0 0 0 0 0 0 0 0 0 0 Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] 0 0 0 0 0 0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='35 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='47 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='35 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 method that produces a significant amount of non-manifold edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 Optimization-based surface reconstruction from synthetic range scanning point clouds (E6) This experiment evaluates the precision and versatility of non-learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The benchmarked approaches con- sist in neural network based methods optimizing a function to fit an input point cloud and rely on novel regularization techniques to increase their robustness to noise, outliers and missing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Furthermore, we benchmark the two traditional methods SPSR and Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' with standard parameter settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We reconstruct surfaces of Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' from synthetic range scanning point clouds with various different defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We show numerical results in Table 4 and visualisations in the supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Almost all reconstructions provided by the two traditional methods are much more truthful than the DSR methods, with a mean volumetric IoU almost 10 points higher across all point cloud defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' IGR does visually not provide a good result on the exemplary shape, especially on thin surface parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Quantitatively, the method provides the best reconstruction for the neural networks based methods in the absence of outliers, and even the best overall reconstruction for the noisy high resolution scans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' LIG does not provide good reconstructions for any of the settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This can be explained by its pretrained model on defect-free uniform high density point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Furthermore, its post-processing makes the reconstructions non-watertight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' P2M provides geometrically fair reconstructions and the topologically best reconstruc- tions with a low number of components, and watertight and manifold surfaces for all reconstructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SAP provides fair reconstructions in the absence of outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' None of the neural network based methods is robust against outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' As in the learning-based experiments, SPSR generates high quality reconstructions for all input defects, and achieves the best mean normal consistency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' achieves the best mean IoU and mean Chamfer distance while providing the reconstructions with the lowest number of components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, the reconstructions of Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' are the only ones with a significant number of non-manifold edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 Learning- and optimization-based surface recon- struction from synthetic MVS point clouds (E7) To directly compare learning- and optimization-based re- constructions on the same dataset, we also reconstruct the Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' shapes from synthetic MVS scans (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E4) with the optimization-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Thus, for learning-based methods, we use the models trained on synthetic MVS scans from ShapeNet (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E4) and we optimize non-learning 16 Table 4: Numerical results for optimization-based reconstructions (E6): Optimization-based reconstruction of the Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' shapes from synthetic range scans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' LR is a low resolution scan, HR a high resolution scan, HRN a high resolution scan with noise, HRO a high resolution scan with outliers, and HRNO a high resolution scan with noise and outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The methods are optimized per shape and per scan using standard settings as mentioned in the corresponding publications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Volumetric IoU (%) [↑] Normal consistency (%) [↑] Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean IGR [37] 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 88 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 LIG [8] 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 66 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 89 77 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 P2M [32] 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 SAP [38] 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 SPSR [33] 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 96 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 96 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 Chamfer distance (per-point ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' %) [↓] Number of components [↓] Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean IGR [37] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='674 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='322 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='554 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='96 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='72 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='45 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 44 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 LIG [8] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='745 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='581 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='781 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='89 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='56 1 1 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='12 P2M [32] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='817 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='473 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='729 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='53 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='28 SAP [38] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='701 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='99 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='93 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='96 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 937 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8e+03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='96e+03 971 SPSR [33] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='794 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='369 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='572 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='607 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='541 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='08 Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='314 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='608 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='339 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='507 1 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='08 Number of boundary edges [↓] Number of non-manifold edges [↓] Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean IGR [37] 0 0 0 0 0 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 LIG [8] 69 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 0 0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 0 0 0 0 0 0 P2M [32] 0 0 0 0 0 0 0 0 0 0 0 0 SAP [38] 0 0 0 0 449 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 0 0 0 0 0 0 SPSR [33] 0 0 0 0 0 0 0 0 0 0 0 0 Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] 0 0 0 0 0 0 1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 22 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 methods per shape using standard settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We show the numerical results in Table 5 and visualisations in the supple- mentary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The learning-based methods DGNN and POCO benefit from the training on point clouds with the same characteristics as in the test set and reconstruct more truthful surfaces than the optimization-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Similar to E6, Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' produces the best results among the optimization-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 Learning- and optimization-based surface recon- struction from real point clouds (E8) Finally, we reconstruct surfaces from real MVS and range scanning point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Again, for learning-based methods, we use the models trained on synthetic MVS scans from ShapeNet (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E4) and we optimize non-learning methods per point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We show the reconstructions in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The MVS point cloud from Middlebury (Figure 6a) is con- taminated with a large amount of varying noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SAP is the only learning method which reconstructs a smooth surface without missing details (Figure 6d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, it suffers from small amounts of topological noise in the form of holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The optimization-based method P2M provides a visually good reconstruction with few defects (Figure 6i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In Figures 6m and 6y, optimization-based methods handle the additional domain shift to an open scene better compared to learning- based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The two traditional methods SPSR and Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' provide the visually best results on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This experiment also shows that our findings on syn- thetic point clouds coincide with those on real-world point clouds, validating our experimental setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 Runtimes On Table 6, we report detailed runtimes for the methods tested in the learning-based experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SAP is the fastest of all reconstruction methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' DGNN also shows fast run- times, while POCO is slow, due to its extensive use of neighborhood sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We also compare runtimes of P2S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We were not able to include this method in experiments E1 to E5 due to its long runtime for training and inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 Summary and analysis In the right circumstances, learning-based methods can produce highly detailed surfaces while remaining robust to noise and missing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, this requires training on large sets (30k shapes in our experiments) of sufficiently complex surfaces and associated point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Even if learn- ing methods can generalize to unseen shape categories to some extent, the training and test sets must share the same point cloud characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' This suggests that these methods mainly learn priors related to the acquisition characteristics of the input point clouds, and less on the shapes them- selves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, learning-based methods do not produce satisfying results when the training shapes are too simple, or when the point clouds include unknown defects, such as outliers (seeTable 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mixing traditional and learning-based methods, as in SAP or DGNN, results in higher robustness to domain shifts and leads to short reconstruction times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Except for IGR, novel optimization-based methods are not robust to acquisition defects and they rarely provide better results compared to the two traditional methods SPSR and Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='. 17 Learning (a) Input (b) CONet2D (c) CONet3D (d) SAP (e) POCO (f) DGNN Optimization (g) IGR (h) LIG (i) P2M (j) SAP (k) SPSR (l) Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Learning (m) Input (n) CONet2D (o) CONet3D (p) SAP (q) POCO (r) DGNN Optimization (s) IGR (t) LIG (u) P2M (v) SAP (w) SPSR (x) Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Learning (y) Input (z) CONet2D (aa) CONet3D (ab) SAP (ac) POCO (ad) DGNN Optimization (ae) IGR (af) LIG (ag) P2M (ah) SAP (ai) SPSR (aj) Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Figure 6: Learning- and optimization-based reconstructions (E8): We show reconstructions of Temple Ring from Middle- bury ((b) to (l)), Truck from Tanks And Temples ((n) to (x)) and scan1 from the DTU dataset ((z) to (aj)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The learning methods (top rows) were trained on synthetic MVS scans from ShapeNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Optimization-based methods (bottom rows) are optimized per shape using standard settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The two traditional methods SPSR [33] and Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] provide visually the best results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Their reconstructions are only affected by the heavy noise of the Temple Ring MVS point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 水公子18 Table 5: Numerical results for learning- vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' optimization-based reconstructions (E7): Learning- and optimization-based reconstruction of the Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' test shapes from synthetic MVS scans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' The learning methods were trained on synthetic MVS scans from ShapeNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Optimization-based methods are optimized per shape using standard settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' BE stands for boundary edges and NME for non-manifold edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Method Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' IoU [↑] Normal consist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [↑] Chamfer dist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [↓] Components [↓] BE [↓] NME [↓] Learning ConvONet2D [6] 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 78 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='43 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 0 0 ConvONet3D [6] 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='887 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 0 0 SAP [38] 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='734 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 0 0 DGNN [10] 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='586 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 POCO [12] 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='579 2 0 0 Optimization IGR [37] 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='775 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 LIG [8] 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='7 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='831 1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 0 P2M [32] 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='768 2 0 0 SAP [38] 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='9 77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='811 133 0 0 SPSR [33] 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='785 8 0 0 Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='671 1 0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='6 Table 6: Runtimes of surface reconstruction methods: Average times (in seconds) for reconstructing one object from a point cloud of 3,000 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Times are averaged over the ShapeNet test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' GC stand for Graph-cut;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SE stands for surface extraction, such as marching cubes or triangle-from-tetrahedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Note that different variants and implementations of marching cubes are used by different methods, which also influences the runtimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Model Feature extraction Decoding/GC SE Total ConvONet2D [6] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='51 ConvONet3D [6] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='40 SAP [38] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='022 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='047 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='088 DGNN [10] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='39 POCO [12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='088 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='33 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='74 P2S [9] 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='06 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='51 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='57 SPSR [33] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='25 Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='18 7 CONCLUSION Surface reconstruction from point clouds is a well studied subject in the field of digital geometry processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, constant developments in acquisition techniques and novel ideas for surface reconstruction and analysis bring forward new challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In this paper, we survey the field of surface reconstruction from point clouds and benchmark several re- lated methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We revisit traditional test-of-time approaches for surface reconstruction and detail how they inspired novel approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We evaluate traditional and novel opti- mization and learning-based methods on various tasks and datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We show that novel optimization-based methods are not as robust against defects as traditional methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For in-distribution point clouds with characteristics similar to the ones of the training set, learning methods provide more accurate reconstructions than traditional approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' However, real-world scenes often include a multitude of different and highly complex objects, and their acquisitions may contain a variety of defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Most learning methods require shapes of similar complexity in training and test sets and they are not robust to out-of-distribution acquisition defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' These limitations of learning-based methods hinder the reconstruction of point clouds in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Generating or finding adequate training data that includes a large variety of complex shapes scanned with realistic defects is a difficult task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Future work in learning-based surface reconstruction should focus on training on point clouds with realistic ac- quisition defects, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' from common sensors and acquisition settings, or on increasing the methods’ robustness to unseen defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' ACKNOWLEDGMENTS This work was partially funded by the ANR-17-CE23-0003 BIOM grant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' REFERENCES [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Berger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Tagliasacchi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Seversky, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Alliez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Guennebaud, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Levine, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sharf, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Silva, “A survey of surface reconstruc- tion from point clouds,” Computer Graphics Forum, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Cazals and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Giesen, “Delaunay triangulation based surface reconstruction,” in Effective computational geometry for curves and surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Springer, 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 231–276.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' You, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' San Tan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lee, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Khaw, “A survey on surface reconstruction techniques for structured and unstructured data,” in 2020 IEEE Conference on Open Systems (ICOS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 37–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Bolle and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Vemuri, “On three-dimensional surface reconstruction methods,” IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 01, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 1–13, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Botsch, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Kobbelt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pauly, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Alliez, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' L´evy, Polygon mesh processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' CRC press, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Peng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Niemeyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mescheder, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pollefeys, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Geiger, “Convolutional occupancy networks,” in European Conference on Computer Vision (ECCV), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 523–540.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Chabra, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lenssen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Ilg, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Schmidt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Straub, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lovegrove, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Newcombe, “Deep local shapes: Learning local SDF priors for detailed 3D reconstruction,” in European Conference on Computer Vision (ECCV), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 608–625.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [8] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Jiang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sud, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Makadia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Huang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Nießner, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Funkhouser, “Local implicit grid representations for 3D scenes,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 6001–6010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Erler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Ohrhallinger, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mitra, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Wimmer, “Points2Surf: Learning implicit surfaces from point clouds,” in European Confer- ence on Computer Vision (ECCV), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 108–124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sulzer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Landrieu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Marlet, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Vallet, “Scalable surface reconstruction with delaunay-graph neural networks,” Computer Graphics Forum, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 157–167, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 19 Table 7: Summary of benchmark results: We summarise the findings of our benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Each method is rated with one to three stars per attribute, determined by the qualitative and quantitative results of our benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='Robustness to out-of-distribution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='Mesh quality ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='Runtime ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='Learning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='noise ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='outliers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='density ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='category ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='watertightness ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='manifoldness ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='compactness ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='w/o training ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='ConvONet2D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[6] *** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** *** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='ConvONet3D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[6] *** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='SAP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[38] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** *** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='DGNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[10] *** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='POCO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[12] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** ** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='Robustness to ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='Mesh quality ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='Runtime ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='Optimization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='noise ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='outliers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='low density ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='category ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='watertightness ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='manifoldness ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='compactness ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='w/ training ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='IGR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[37] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** LIG ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[8] *** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** P2M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[32] ** *** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** SAP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[38] *** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** SPSR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='[33] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='*** *** ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] *** *** *** *** *** *** *** [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Rakotosaona, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Guerrero, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Aigerman, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mitra, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Ovsjanikov, “Learning delaunay surface elements for mesh reconstruction,” in Proceedings of the IEEE/CVF Conference on Com- puter Vision and Pattern Recognition, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 22–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Boulch and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Marlet, “Poco: Point convolution for surface reconstruction,” in Proceedings of the IEEE/CVF Conference on Com- puter Vision and Pattern Recognition, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 6302–6314.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Park, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Florence, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Straub, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Newcombe, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lovegrove, “DeepSDF: Learning continuous signed distance functions for shape representation,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 165–174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Berger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Levine, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Nonato, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Taubin, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Silva, “A benchmark for surface reconstruction,” ACM Transaction on Graphics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=', 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Seitz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Curless, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Diebel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Scharstein, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Szeliski, “A comparison and evaluation of multi-view stereo reconstruction al- gorithms,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 519–528.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Jensen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Dahl, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Vogiatzis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Tola, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Aanæs, “Large scale multi-view stereopsis evaluation,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 406–413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Strecha, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' von Hansen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Gool, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Fua, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Thoennessen, “On benchmarking camera calibration and multi-view stereo for high resolution imagery,” in Conference on Computer Vision and Pattern Recognition (CVPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' IEEE Computer Society, 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [18] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sch¨ops, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sch¨onberger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Galliani, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sattler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Schindler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pollefeys, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Geiger, “A multi-view stereo benchmark with high-resolution images and multi-camera videos,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 3260– 3269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Knapitsch, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Park, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Zhou, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Koltun, “Tanks and Temples,” ACM Transactions on Graphics (TOG), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [20] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hoppe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' DeRose, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Duchamp, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' McDonald, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Stuetzle, “Surface reconstruction from unorganized points,” in Proceedings of the 19th annual conference on computer graphics and interactive techniques, 1992, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 71–78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [21] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' O’neill, Elementary differential geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Elsevier, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [22] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Kettner, “Using generic programming for designing a data structure for polyhedral surfaces,” Computational Geometry, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 65–90, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' M¨antyl¨a, An introduction to solid modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Computer Science Press, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=', 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Boissonnat and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Oudot, “Provably good sampling and meshing of surfaces,” Graphical Models, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 405–451, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [25] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lorensen and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Cline, “Marching cubes: A high resolution 3d surface construction algorithm,” SIGGRAPH Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 163–169, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1145/37402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='37422 [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Vetsch, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lombardi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pollefeys, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Oswald, “Neu- ralmeshing: Differentiable meshing of implicit neural representa- tions,” in Pattern Recognition, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Andres, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Bernard, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Cremers, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Frintrop, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Goldl¨ucke, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Ihrke, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Cham: Springer International Publishing, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 317–333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [27] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Bernardini, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mittleman, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Rushmeier, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Silva, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Taubin, “The ball-pivoting algorithm for surface reconstruction,” IEEE transactions on visualization and computer graphics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 349–359, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sharf, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lewiner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Shamir, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Kobbelt, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Cohen-Or, “Competing fronts for coarse–to–fine surface reconstruction,” in Computer Graphics Forum, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Wiley Online Library, 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 389–398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [29] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Groueix, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Fisher, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Kim, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Russell, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Aubry, “AtlasNet: A papier-mˆach´e approach to learning 3D surface gen- eration,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 658–666.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Zhang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Su, “Meshing point clouds with pre- dicted intrinsic-extrinsic ratio guidance,” in European Conference on Computer Vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Springer, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 68–84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [31] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sharp and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Ovsjanikov, “”pointtrinet: Learned triangulation of 3d point sets”,” in European Conference on Computer Vision (ECCV), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 762–778.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [32] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hanocka, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Metzer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Giryes, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Cohen-Or, “Point2Mesh: A self-prior for deformable meshes,” ACM Transaction on Graphics, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [33] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Kazhdan and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hoppe, “Screened Poisson surface reconstruc- tion,” ACM Transaction on Graphics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=', 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [34] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Labatut, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pons, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Keriven, “Robust and efficient surface reconstruction from range data,” Computer Graphics Forum (CGF), 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [35] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mescheder, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Oechsle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Niemeyer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Nowozin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Geiger, “Occupancy networks: Learning 3D reconstruction in function space,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4460–4470.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [36] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Chen and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Zhang, “Learning implicit fields for generative shape modeling,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5939–5948.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [37] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Gropp, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Yariv, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Haim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Atzmon, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lipman, “Implicit geometric regularization for learning shapes,” in Proceedings of Machine Learning and Systems 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' JMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='org, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 3569– 3579.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Peng, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Jiang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Liao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Niemeyer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pollefeys, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Geiger, “Shape as points: A differentiable poisson solver,” in Conference on Neural Information Processing Systems (NeurIPS), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 13 032–13 044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [39] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Petitjean and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Boyer, “Regular and non-regular point sets: Properties and reconstruction,” Computational Geometry, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 2-3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 101–126, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Digne, “An analysis and implementation of a parallel ball pivoting algorithm,” Image Processing On Line, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 149–168, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [41] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Boissonnat, “Geometric structures for 3d shape representa- tion,” ACM Transactions on Graphics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 20 [42] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Attali, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Boissonnat, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lieutier, “Complexity of the delaunay triangulation of points on surfaces the smooth case,” in Proceedings of the nineteenth annual symposium on Computational Geometry, 2003, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 201–210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [43] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Bernardini and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Bajaj, “Sampling and reconstructing man- ifolds using alpha-shapes,” Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 9th Canad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=', 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [44] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Amenta, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Bern, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Eppstein, “The crust and the β- skeleton: Combinatorial curve reconstruction,” Graphical models and image processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 60, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 125–135, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [45] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Kolluri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Shewchuk, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' O’Brien, “Spectral surface reconstruction from noisy point clouds,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 11–21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [46] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Sinha, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mordohai, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pollefeys, “Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh,” in 2007 IEEE 11th international conference on computer vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' IEEE, 2007, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [47] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hiep, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Keriven, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Labatut, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pons, “Towards high- resolution large-scale multi-view stereo,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' IEEE, 2009, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 1430– 1437.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [48] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Zhou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Shen, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hu, “Detail preserved surface reconstruc- tion from point cloud,” Sensors, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [49] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mostegel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Prettenthaler, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Fraundorfer, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Bischof, “Scalable surface reconstruction from point clouds with extreme scale and density diversity,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 904–913.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [50] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Vu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Labatut, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pons, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Keriven, “High accuracy and visibility-consistent dense multiview stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [51] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Jancosek and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pajdla, “Multi-view reconstruction preserving weakly-supported surfaces,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 3121–3128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [52] ——, “Exploiting visibility information in surface reconstruction to preserve weakly supported surfaces,” International Scholarly Research Notices, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [53] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Caraffa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Br´edif, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Vallet, “3D watertight mesh genera- tion with uncertainties from ubiquitous data,” in Asian Conference on Computer Vision (ACCV), 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 377–391.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [54] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Luo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Mi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Tao, “Deepdt: Learning geometry from delaunay triangulation for surface reconstruction,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 35, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 2277–2285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [55] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Kazhdan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Bolitho, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hoppe, “Poisson surface recon- struction,” in Proceedings of the fourth Eurographics symposium on Geometry processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Eurographics Association, 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 61–70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [56] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Kazhdan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Chuang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Rusinkiewicz, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hoppe, “Pois- son Surface Reconstruction with Envelope Constraints,” Computer Graphics Forum, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 39, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 173–182, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [57] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Chang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Funkhouser, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Guibas, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Hanrahan, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Savarese, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Savva, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Song, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Su, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Xiao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Yi, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Yu, “ShapeNet: an information-rich 3D model repository,” Stanford University, Princeton University, Toyota Technological Institute at Chicago, Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [58] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Ronneberger, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Fischer, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted inter- vention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Springer, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 234–241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [59] ¨O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' C¸ ic¸ek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Abdulkadir, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lienkamp, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Brox, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Ron- neberger, “3d u-net: learning dense volumetric segmentation from sparse annotation,” in International conference on medical image computing and computer-assisted intervention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Springer, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 424–432.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [60] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Zhou, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Guibas, “Manifoldplus: A robust and scalable watertight manifold surface generation method for trian- gle soups,” arXiv preprint arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='11621, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [61] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Choy, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Gwak, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Chen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Savarese, “3D- R2N2: A unified approach for single and multi-view 3D object reconstruction,” in European Conference on Computer Vision (ECCV), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 628–644.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [62] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Lorensen and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Cline, “Marching cubes: A high res- olution 3D surface construction algorithm,” ACM SIGGRAPH Computer Graphics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 4, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [63] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Cazals and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Pouget, “Estimating differential quantities using polynomial fitting of osculating jets,” Computer Aided Geometric Design, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [64] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Boulch, “Convpoint: Continuous convolutions for point cloud processing,” Computers & Graphics, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Raphael Sulzer is a postdoctoral researcher in the TITANE team at INRIA Sophia-Antipolis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' He received his PhD in geometry processing and deep learning from University Gustave Eiffel in 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' During his PhD he was affiliated with the LASTIG lab at IGN, the French mapping agency, and the IMAGINE lab at ´Ecole des Ponts Paris- Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' He is commited to open and reproducible research that aims to solve real-world problems, mainly in the areas of 3D scene understanding and 3D reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' https://raphaelsulzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='de Loic Landrieu received a PhD in machine learn- ing from ENS Paris in 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' He is now a re- search scientist at IGN, the French mapping agency, working on 3D point clouds and satellite time series analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' He is the main investigator of the ANR Ready3D on dynamic 3D analysis, co-chair of the ISPRS working group on tem- poral data understanding, co-lead of the GRSS group on image analysis, and was program chair of the XXIV ISPRS Congress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Committed to open and reproducible research, he has partic- ipated in numerous open-source projects and released several large- scale benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' https://loiclandrieu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='com Renaud Marlet is a Senior Researcher at ´Ecole des Ponts ParisTech (ENPC) and a Principal Sci- entist at valeo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='ai, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' He has held positions both in academia (researcher at Inria) and in the software industry (expert at Simulog, deputy CTO of Trusted Logic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' He was the head of the IMAGINE group at LIGM/ENPC (2010-2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' He is currently interested in scene understanding and semantized 3D reconstruction, with appli- cations to robotics, autonomous driving and civil engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Bruno Vallet is a senior researcher at IGN, the French national mapping agency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' He is the head of the ACTE research team of the Lastig lab (ENSG/UGE) which specializes on im- age/Lidar/Radar data acquisition and process- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' His research interests include geographic information science, computer vision, teledetec- tion, lasergrammetry, change detection, 3D+T city modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' JOURNAL OF LATEX CLASS FILES, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 14, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 8, AUGUST 2015 1 Supplementary Material: A Survey and Benchmark of Automatic Surface Reconstruction from Point Clouds Raphael Sulzer, Loic Landrieu, Renaud Marlet, and Bruno Vallet !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In this supplementary document, we provide additional information about the datasets we used in our benchmark and additional results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' All the datasets and the evaluation code for our benchmark are available on GitHub: https:// github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='com/raphaelsulzer/dsr-benchmark SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 DATASETS SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use the range scanning procedure from the surface reconstruction benchmark of Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' [?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' To this end, we modified their provided code to export the camera positions of the scanning process along with the point cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Our modified version of the code is available on Github: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='com/raphaelsulzer/reconbench-CMake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We choose five different scanner settings, detailed in Table SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 and visible in the first row of Figure SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 to scan each test shape shown in Figure SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 ModelNet10 and ShapeNet We show example shapes for all classes of ShapeNet in Figure SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1b and example shapes for ModelNet for the 6 out of 10 classes which are not represented in ShapeNet in Figure SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2 BENCHMARK SETUP We show a detailed overview of our benchmark setup on Table SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='3 ADDITIONAL RESULTS We show qualitative results of Experiment 6 in Figure SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='13656v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='CV] 31 Jan 2023 JOURNAL OF LATEX CLASS FILES, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 14, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 8, AUGUST 2015 2 Table SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1: Scanning configurations for Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' benchmark: We show the five different scanner configurations used in our modified version of the Berger et al.’s scanning procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' We use the resulting scans to evaluate object-level reconstruction with varying point-cloud defects and for training data generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' For the low resolution (LR) scans the scanning process results in 1000 to 3000 points per shape, and for the high resolution (HR), the scanning process yields around 10 000 to 30 000 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Low res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (LR) High res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (HR) HR + noise (HRN) HR + outliers (HRO) HR + noise + outliers (HRNO) Camera resolution x, y 50, 50 100, 100 100, 100 100, 100 100, 100 Scanner positions 5 10 10 10 10 Min/max range 70/300 70/300 70/300 70/300 70/300 Additive noise 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='5 Outliers (%) 0 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 (a) Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' (b) ShapeNet (c) ModelNet Figure SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1: Ground truth shapes of the benchmark datasets: We show an example shape of each class of ModelNet in (c) and of ShapeNet in (b) and the five shapes of Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' in (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' JOURNAL OF LATEX CLASS FILES, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 14, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 8, AUGUST 2015 3 Input IGR LIG P2M SAP SPSR Labatut et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Ground truth LR HR HRN HRO HRNO Figure SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2: Optimization-based experiments: In each column we show the results of different methods of one of the five learning-based experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' JOURNAL OF LATEX CLASS FILES, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 14, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 8, AUGUST 2015 4 Table SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='2: Benchmark setup: We show an overview of our experimental setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E1 to E4, we train surface reconstruction methods on noisy point clouds of ShapeNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E1, we test on the ShapeNet test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E2, we test on ShapeNet, but from denser point clouds with noise and outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E3, we test on the simpler ModelNet objects with the same sampling as in E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E4, we test on five Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' shapes with the same sampling as in E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E5, we train the methods on the simpler ModelNet dataset and test on ShapeNet, both with the same sampling as in E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' In E6, we test optimization-based methods on synthetic range scans of the Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' And finally, in E7, we compare learning- and optimization-based methods on the same dataset (synthetic MVS scans of the Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' dataset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' Training set Test set Experiment Name # shapes complexity # points σ noise % outliers Name # shapes complexity # points σ noise % outliers 1 ShapeNet 30, 661 ⋆⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 ShapeNet 1, 300 ⋆⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 2 ShapeNet 30, 661 ⋆⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 ShapeNet 1, 300 ⋆⋆ 10k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 10 3 ShapeNet 30, 661 ⋆⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 ModelNet 506 ⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 4 ShapeNet 30, 661 ⋆⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5 ⋆⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 5 ModelNet 3, 979 ⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 ShapeNet 1, 300 ⋆⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 6 – Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5 ⋆⋆ see Table SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='1 7 ShapeNet 30, 661 ⋆⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0 Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content=' 5 ⋆⋆ 3, 000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} +page_content='005 0' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQf1Th-/content/2301.13656v1.pdf'} diff --git a/KtFRT4oBgHgl3EQf1Dhl/content/tmp_files/2301.13655v1.pdf.txt b/KtFRT4oBgHgl3EQf1Dhl/content/tmp_files/2301.13655v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..00ea1504418d8fddf6574586471e455c9f546c29 --- /dev/null +++ b/KtFRT4oBgHgl3EQf1Dhl/content/tmp_files/2301.13655v1.pdf.txt @@ -0,0 +1,4881 @@ +arXiv:2301.13655v1 [math.CA] 31 Jan 2023 +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR +ESTIMATES +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +ABSTRACT. We develop both bilinear theory and commutator estimates in the context of +entangled dilations, specifically Zygmund dilations (x1, x2, x3) �→ (δ1x1, δ2x2, δ1δ2x3) in +R3. We construct bilinear versions of recent dyadic multiresolution methods for Zygmund +dilations and apply them to prove a paraproduct free T 1 theorem for bilinear singular in- +tegrals invariant under Zygmund dilations. Independently, we prove linear commutator +estimates even when the underlying singular integrals do not satisfy weighted estimates +with Zygmund weights. This requires new paraproduct estimates. +1. INTRODUCTION +“Entangled” systems of dilations, see Nagel-Wainger [22], in the m-parameter product +space Rd = �m +i=1 Rdi have the general form +(x1, . . . , xm) �→ (δλ11 +1 +· · · δλ1k +k +x1, . . . , δλm1 +1 +· · · δλmk +k +xm), +δ1, . . . , δk > 0, +and appear naturally throughout analysis. For instance, in R3 the Zygmund dilations +(x1, x2, x3) �→ (δ1x1, δ2x2, δ1δ2x3) are compatible with the group law of the Heisenberg +group, see e.g. Müller–Ricci–Stein [21]. Even these simplest entangled dilations are not +completely understood, especially when it comes to the associated Calderón–Zygmund +type singular integral operators (SIOs). +Until recently, multiresolution methods were still missing in the Zygmund dilations +setting, as pointed out in [5]. This was a big restriction on how to go about developing +singular integral theory. However, the last two authors together with T. Hytönen and +E. Vuorinen recently developed this missing Zygmund multiresolution analysis in [14]. +Such dyadic representation theorems and related multiresolution techniques had been +highly influential in recent advances on SIOs and their applications (see e.g. [12, 13, 20, +23]), but developing them in the entangled situation required new ideas. These tools +then yielded very delicate weighted norm inequalities Lp(w) → Lp(w) for general non- +convolution form Zygmund singular integrals in the optimal generality of Zygmund +weights (introduced by Fefferman–Pipher [6]) +[w]Ap,Z := sup +I∈RZ +� 1 +|I| +ˆ +I +w(x) dx +�� 1 +|I| +ˆ +I +w−1/(p−1)(x) dx +�p−1 +< ∞, +1 < p < ∞, +2010 Mathematics Subject Classification. 42B20. +Key words and phrases. singular integrals, multi-parameter analysis, Zygmund dilations, multiresolution +analysis, weighted estimates. +E.A. was supported by Academy of Finland through Grant No. 321896 “Incidences on Fractals” (PI = +Orponen) and No. 314829 “Frontiers of singular integrals” (PI = Hytönen). +K. L. was supported by the National Natural Science Foundation of China through project number +12222114 and 12001400. +1 + +2 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +where the supremum is over Zygmund rectangles I = I1 × I2 × I3, ℓ(I3) = ℓ(I1)ℓ(I2). +In fact, there is a precise threshold: if the kernel decay in terms of the deviation of +z ∈ R3 from the “Zygmund manifold” |z1z2| = |z3| is not fast enough, singular integrals +invariant under Zygmund dilations fail to be bounded with Zygmund weights. We con- +structed counterexamples and showed the delicate positive result in the optimal range +using the new multiresolution analysis. Previous results include [5,6,11,24]. +This rather striking threshold for weighted estimates means that it is, in particular, +unclear in what generality natural estimates for commutators [b, T] = bT − T(b · ) hold. +Of course, ever since the classical one-parameter result of Coifman–Rochberg–Weiss [2], +stating that ∥[b, T]∥Lp→Lp ∼ ∥b∥BMO, commutator estimates have been a large and fun- +damental part of the theory of SIOs and their applications. Commutator estimates in the +Zygmund dilation setting were previously considered in [5] using the so-called Cauchy +integral trick. That method requires weighted bounds with Zygmund weights – this is +because it uses the fact that natural Zygmund adapted BMO functions generate Zyg- +mund weights. But we now know [14] that such weighted bounds are quite delicate – +and it turns out that the commutator bounds are true even in the regime where weighted +estimates fail. We prove the following. +1.1. Theorem. Let b ∈ L1 +loc and T be a linear paraproduct free Calderón-Zygmund operator +adapted to Zygmund dilations as in [14]. Let θ ∈ (0, 1] be the kernel exponent measuring the +decay in terms of the Zygmund ratio +Dθ(x) := +� +|x1x2| +|x3| ++ +|x3| +|x1x2| +�−θ +. +Then for all such θ we have +∥[b, T]∥Lp→Lp ≲ ∥b∥bmoZ, +1 < p < ∞. +As weighted estimates only hold with θ = 1, this requires a proof based on the mul- +tiresolution decomposition [14] and a new family of “Zygmund paraproducts”. Study- +ing paraproducts is also interesting from the technical viewpoint that, generally, proofs +of T1 theorems display a structural decomposition of SIOs into their cancellative parts +and paraproducts. The new Zygmund theory in [14] is designed for the fully cancellative +case leaving out paraproducts and BMO considerations, so this is the first paper, as far as +we know, where paraproducts are considered in the Zygmund situation. They are tricky +objects in the entangled situation. However, while this is also a step forward towards a +full T1 theorem in the Zygmund setting, the commutator theory that we develop does +not require so-called partial paraproducts, and so the paraproduct tools developed here +are not yet sufficient to prove a T1 theorem in the non-cancellative case. We also men- +tion that during our proof we include some results of independent interest, mainly, a +new, extremely short proof of the A∞ extrapolation theorem [3]. +Moving to a different direction, we push the Zygmund multiresolution methods [14] +to the multilinear setting and study bilinear SIOs invariant under Zygmund dilations. A +classical model of an n-linear SIO T in Rd is obtained by setting +T(f1, . . . , fn)(x) = U(f1 ⊗ · · · ⊗ fn)(x, . . . , x), +x ∈ Rd, fi : Rd → C, +where U is a linear SIO in Rnd. See e.g. Grafakos–Torres [9] for the basic theory. Estimates +for classical multilinear SIOs play a fundamental role in pure and applied analysis – for + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +3 +example, Lp estimates for the homogeneous fractional derivative Dαf = F−1(|ξ|α �f(ξ)) +of a product of two or more functions, the fractional Leibniz rules, are used in the area of +dispersive equations, see e.g. Kato–Ponce [15] and Grafakos–Oh [8]. We do not otherwise +attempt to summarize the massive body of literature here and simply mention that the +closest existing result is perhaps [18], which develops multiresolution methods in the +non-entangled multilinear bi-parameter case. +In this paper we prove the following “paraproduct free” T1 theorem for bilinear Zyg- +mund SIOs. +1.2. Theorem. Let T be a bilinear paraproduct free Calderón-Zygmund operator adapted to Zyg- +mund dilations as in Definition 3.5. Let 1 < p1, p2 < ∞ and 1 +2 < p < ∞ with 1 +p := +1 +p1 + 1 +p2. +Then we have +∥T(f1, f2)∥Lp ≲ ∥f1∥Lp1∥f2∥Lp2. +Notice that we can conclude the full bilinear range, including the quasi-Banach range, +just from the paraproduct free T1 type assumptions. Also relevant is the fact that e.g. the +appearing weak boundedness condition only involves Zygmund rectangles – that is, the +T1 assumptions of Definition 3.5 are Zygmund adapted and in this respect weaker than +the corresponding tri-parameter assumptions. +It would also be very interesting to develop weighted theory with suitable kernel as- +sumptions like in the linear case [14]. That is, to generalize our recent paper [19] from +the standard multi-parameter setting to this entangled Zygmund setting. Recall that it +would be key to deal with “genuine” multilinear weights, i.e., only impose a joint Ap +condition on the associated tuple of weights ⃗w = (w1, . . . , wn). While such multilinear +weighted estimates had been known for one-parameter SIOs for over 10 years by the +influential paper [16], the multi-parameter version was only recently solved in [19]. The +entangled situation is very difficult, though, and we do not achieve such estimates in +this paper. Indeed, we are splitting our operators in a way that is sufficient for the un- +bounded estimates, but not for the weighted estimates. In fact, already the unweighted +estimates are surprisingly delicate and the only way we found to achieve them was with +using this additional decomposition and even some sparse domination tools. +Here is an outline of the paper. In Section 2 we develop the fundamental Zygmund +adapted multiresolution methods in the bilinear setting. Section 3 introduces the sin- +gular integrals and the corresponding testing conditions, and Section 4 uses the kernel +estimates to bound the various coefficients arising in the multiresolution analysis. Sec- +tion 5 contains a further decomposition of our dyadic model operators – this is then +required in Section 6, where the Lp estimates of these model operators are proved. Sec- +tion 6 concludes with the proof of Theorem 1.2. Section 7 contains the proof of the linear +commutator estimates, Theorem 1.1, and the corresponding theory of product and lit- +tle BMO commutators in the Zygmund setting. Appendix A considers bilinear variants +of the multipliers studied by Fefferman-Pipher [6] – this is motivation for the abstract +definitions of Section 3. +2. BILINEAR ZYGMUND MULTIRESOLUTION ANALYSIS +2.A. Dyadic intervals, Zygmund rectangles and basic randomization. Given a dyadic +grid D, I ∈ D and k ∈ Z, k ≥ 0, we use the following notation: +(1) ℓ(I) is the side length of I. + +4 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +(2) I(k) ∈ D is the kth parent of I, i.e., I ⊂ I(k) and ℓ(I(k)) = 2kℓ(I). +(3) ch(I) is the collection of the children of I, i.e., ch(I) = {J ∈ D: J(1) = I}. +(4) EIf = ⟨f⟩I1I is the averaging operator, where ⟨f⟩I = +ffl +I f = +1 +|I| +´ +I f. +(5) ∆If is the martingale difference ∆If = � +J∈ch(I) EJf − EIf. +(6) ∆I,kf or ∆k +If is the martingale difference block +∆I,kf = ∆k +If = +� +J∈D +J(k)=I +∆Jf. +We will have use for randomization soon. While often the grids are fixed and we sup- +press the dependence on the random parameters, it will be important to understand the +definitions underneath. So we go ahead and introduce the related notation and standard +results now. Let D0 be the standard dyadic grid in R. For ω ∈ {0, 1}Z, ω = (ωi)i∈Z, we +define the shifted lattice +D(ω) := +� +L + ω := L + +� +i: 2−i<ℓ(L) +2−iωi: L ∈ D0 +� +. +Let Pω be the product probability measure on {0, 1}Z. We recall the following notion of a +good interval from [10]. We say that G ∈ D(ω, k), k ≥ 2, if G ∈ D(ω) and +(2.1) +d(G, ∂G(k)) ≥ ℓ(G(k)) +4 += 2k−2ℓ(G). +Notice that for all L ∈ D0 and k ≥ 2 we have +(2.2) +Pω({ω: L + ω ∈ D(ω, k)}) = 1 +2. +The key implication (of practical use later) of G ∈ D(ω, k) is that for n ∈ Z with |n| ≤ 2k−2 +we have +(2.3) +(G ∔ n)(k) = G(k), +G ∔ n := G + nℓ(G). +In fact, we will not need much more of randomization – it only remains to move the +notation to our actual setting of R3 = R × R2. We define for +σ = (σ1, σ2, σ3) ∈ {0, 1}Z × {0, 1}Z × {0, 1}Z +that +D(σ) := D(σ1) × D(σ2) × D(σ3). +Let +Pσ := Pσ1 × Pσ2 × Pσ3. +For k = (k1, k2, k3), k1, k2, k3 ≥ 2, we define +D(σ, k) = D(σ1, k1) × D(σ2, k2) × D(σ3, k3). +We also e.g. write +D(σ, (k1, 0, k3)) = D(σ1, k1) × D(σ2) × D(σ3, k3), +that is, a 0 will designate that we do not have goodness in that parameter. + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +5 +As for most of the argument σ is fixed, it makes sense to mainly suppress it from the +notation and abbreviate, whenever possible, that +Dm = D(σm), +D(σm, km) = Dm(km), +m = 1, 2, 3. +Then also +D = D(σ) = +3 +� +m=1 +Dm, +D(k) = +3 +� +m=1 +Dm(km). +We define the Zygmund rectangles DZ ⊂ D by setting +(2.4) +DZ = +� +I = +3 +� +m=1 +Im ∈ D: ℓ(I1)ℓ(I2) = ℓ(I3) +� +. +Obviously, DZ(k) is defined similarly as above but also requires �3 +m=1 Im ∈ D(k). +2.B. Zygmund martingale differences. Given I = �3 +m=1 Im we define the Zygmund +martingale difference operator +∆I,Zf := ∆I1∆I2×I3f. +2.5. Remark. We highlight that the martingale difference ∆I2×I3 is the one-parameter +(and not the bi-parameter) martingale difference on the rectangle I2 × I3: +∆I2×I3 = ∆I2∆I3 + EI2∆I3 + ∆I2EI3 ̸= ∆I2∆I3. +Moreover, the above operators really act on the full product space but only on the given +parameters – for instance, ∆I1f(x1, x2, x3) = ∆1 +I1f(x1, x2, x3) = (∆I1f(·, x2, x3))(x1). +We recall the following facts from [14]. For a dyadic λ > 0 define the dilated lattices +D2,3 +λ += {I2,3 ∈ D2,3 := D2 × D3 : ℓ(I3) = λℓ(I2)}. +The basic Zygmund expansion goes as follows: +f = +� +I1∈D1 +∆I1f = +� +I1∈D1 +� +I2,3∈D2,3 +ℓ(I1) +∆I1∆I2,3f = +� +I∈DZ +∆I,Zf. +(2.6) +However, the way we split our operators will not be this simple. +The following basic results hold for the martingale differences. For I, J ∈ DZ we have +∆I,Z∆J,Zf = +� +∆I,Z +if I = J, +0 +if I ̸= J. +Notice also that the Zygmund martingale differences satisfy +ˆ +R +∆I,Zf dx1 = 0 +and +ˆ +R2 ∆I,Zf dx2 dx3 = 0. +Moreover, we have +ˆ +(∆I,Zf)g = +ˆ +f∆I,Zg. + +6 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +2.C. Haar functions. For an interval J ⊂ R we denote by Jl and Jr the left and right +halves of J, respectively. We define +h0 +J = |J|−1/21J +and +h1 +J = hJ = |J|−1/2(1Jl − 1Jr). +The reader should carefully notice that h0 +I is the non-cancellative Haar function for us +and that in some other papers a different convention is used. +As we mostly work on R3 = R × R2 we require some Haar functions on R2 as well. +For I2 × I3 ⊂ R2 and η = (η2, η3) ∈ {0, 1}2 define +hη +I2×I3 = hη2 +I2 ⊗ hη3 +I3. +Similarly, as hI1 denotes a cancellative Haar function on R, we let hI2×I3 denote a can- +cellative one-parameter Haar function on I2 × I3. This means that +hI2×I3 = hη +I2×I3 +for some η = (η2, η3) ∈ {0, 1}2 \ {(0, 0)}. We only use a 0 to denote a non-cancellative +Haar function: h0 +I2×I3 = h(0,0) +I2×I3. +We suppress this η dependence in all that follows in the sense that a finite η summation +is not written. For example, given I = I1 × I2 × I3 ∈ DZ ⊂ �3 +m=1 Dm decompose +∆I,Zf = ∆I1∆I2×I3f = ⟨f, hI1 ⊗ hI2×I3⟩hI1 ⊗ hI2×I3 =: ⟨f, hI,Z⟩hI,Z. +2.D. Bilinear Zygmund shifts. In preparation for defining the shifts, we define the fol- +lowing notation. Let I1, I2, I3 be rectangles, Ij = I1 +j × I2 +j × I3 +j = I1 +j × I2,3 +j , and f1, f2, f3 be +functions defined on R3. For j1, j2 ∈ {1, 2, 3} define +Aj1,j2 +I1,I2,I3 = Aj1,j2 +I1,I2,I3(f1, f2, f3) := +3 +� +j=1 +⟨fj, vIj⟩, +where +vIj = �hI1 +j ⊗ �hI2,3 +j ; +�hI1 +j1 = hI1 +j1 +and +�hI1 +j = h0 +I1 +j , j ̸= j1; +�hI2,3 +j2 = hI2,3 +j2 +and +�hI2,3 +j += h0 +I2,3 +j , j ̸= j2. +For a dyadic λ > 0 define +Dλ = {K = K1 × K2 × K3 ∈ D: λℓ(K1)ℓ(K2) = ℓ(K3)}. +Moreover, for a rectangle I = I1 × I2 × I3 and k = (k1, k2, k3) define +I(k) = I(k1) +1 +× I(k2) +2 +× I(k3) +3 +. +2.7. Definition. Let k = (k1, k2, k3), ki ∈ {0, 1, 2, . . .}, be fixed. A bilinear Zygmund shift +Q = Qk of complexity k has the form +⟨Qk(f1, f2), f3⟩ += +� +K∈D2−k1−k2+k3 +� +I1,I2,I3∈DZ +I(k) +j +=K +aK,(Ij) +� +Aj1,j2 +I1,I2,I3 − Aj1,j2 +I1 +j1×I2,3 +1 +,I1 +j1×I2,3 +2 +,I1 +j1×I2,3 +3 + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +7 +− Aj1,j2 +I1 +1×I2,3 +j2 ,I1 +2×I2,3 +j2 ,I1 +3×I2,3 +j2 ++ Aj1,j2 +I1 +j1×I2,3 +j2 ,I1 +j1×I2,3 +j2 ,I1 +j1×I2,3 +j2 +� +for some j1, j2 ∈ {1, 2, 3}. The coefficients aK,(Ij) satisfy +|aK,(Ij)| ≤ |I1|1/2|I2|1/2|I3|1/2 +|K|2 += |I1|3/2 +|K|2 . +Now, the game is to represent bilinear singular integrals using the operators Qk and +also – independently – bound the operators Qk suitably. We start with the representa- +tion part and deal with bounding the operators later. We have not defined our singular +integrals carefully yet, however, a lot of the required decomposition can be formally car- +ried out for an arbitrary operator T. The singular integral part is later required to get +sufficient decay for the appearing scalar coefficients and to handle the paraproducts. +2.E. Zygmund decomposition of ⟨T(f1, f2), f3⟩. For now, we focus on the multireso- +lution part and start formally decomposing a general bilinear operator. We begin by +writing ⟨T(f1, f2), f3⟩ as +� +I1 +1,I1 +2,I1 +3∈D1 +⟨T(∆I1 +1f1, ∆I1 +2f2), ∆I1 +3f3⟩ += +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +1),ℓ(I1 +2)>ℓ(I1 +3) +⟨T(∆I1 +1f1, ∆I1 +2f2), ∆I1 +3f3⟩ ++ +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +1),ℓ(I1 +3)>ℓ(I1 +2) +⟨T(∆I1 +1f1, ∆I1 +2f2), ∆I1 +3f3⟩ ++ +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +2),ℓ(I1 +3)>ℓ(I1 +1) +⟨T(∆I1 +1f1, ∆I1 +2f2), ∆I1 +3f3⟩ ++ +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +1)>ℓ(I1 +2)=ℓ(I1 +3) +⟨T(∆I1 +1f1, ∆I1 +2f2), ∆I1 +3f3⟩ ++ +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +2)>ℓ(I1 +1)=ℓ(I1 +3) +⟨T(∆I1 +1f1, ∆I1 +2f2), ∆I1 +3f3⟩ ++ +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +3)>ℓ(I1 +1)=ℓ(I1 +2) +⟨T(∆I1 +1f1, ∆I1 +2f2), ∆I1 +3f3⟩ ++ +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +1)=ℓ(I1 +2)=ℓ(I1 +3) +⟨T(∆I1 +1f1, ∆I1 +2f2), ∆I1 +3f3⟩. +We collapse the first six sums, which are not already diagonal sums, into diagonal sums +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +1)=ℓ(I1 +2)=ℓ(I1 +3) +. + +8 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +This has the effect that whenever we have an inequality ℓ(I1 +i ) > ℓ(I1 +j ), the martingale +difference operator ∆I1 +i corresponding with the larger cube is changed to the averaging +operator EI1 +i . Thus, in the first three sums we now have two averaging operators, and in +the next three we have one averaging operator. The more averaging operators we have, +the less cancellation we have, and thus the main challenge are the first three sums with +the least cancellation. We mainly focus on the first three sums for this reason. +In addition, the first three sums are symmetric, so we may focus on only one of them, +and choose to look at +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +1),ℓ(I1 +2)>ℓ(I1 +3) +⟨T(∆I1 +1f1, ∆I1 +2f2), ∆I1 +3f3⟩ = +� +I1 +1,I1 +2,I1 +3∈D1 +ℓ(I1 +1)=ℓ(I1 +2)=ℓ(I1 +3) +⟨T(EI1 +1f1, EI1 +2f2), ∆I1 +3f3⟩. +Now, we fix I1 +1, I1 +2, I1 +3 ∈ D1 with ℓ(I1 +1) = ℓ(I1 +2) = ℓ(I1 +3) and repeat the argument for +⟨T(EI1 +1f1, EI1 +2f2), ∆I1 +3f3⟩ using the lattice D2,3 +ℓ(I1), where recall that for a dyadic λ > 0 we +have +D2,3 +λ += {I2 × I3 ∈ D2,3 := D2 × D3 : ℓ(I3) = λℓ(I2)}. +This produces seven terms, and we again focus on +� +I2 +1×I3 +1,I2 +2×I3 +2,I2 +3×I3 +3∈D2,3 +ℓ(I1) +ℓ(I2 +1)=ℓ(I2 +2)=ℓ(I2 +3) +⟨T(EI1 +1EI2 +1×I3 +1f1, EI1 +2EI2 +2×I3 +2f2), ∆I1 +3∆I2 +3×I3 +3f3⟩. +Altogether, our focus, for now, is on the key term +(2.8) +� +I1,I2,I3∈DZ +ℓ(I1)=ℓ(I2)=ℓ(I3) +⟨T(EI1f1, EI2f2), ∆I3,Zf3⟩, +where ℓ(I1) = ℓ(I2) = ℓ(I3) means that +ℓ(Im +1 ) = ℓ(Im +2 ) = ℓ(Im +3 ), +m = 1, 2, 3. +This was completely generic – we now go a step further to the direction of Zygmund +shifts and start introducing Haar functions into the mix. +2.F. Further decomposition of (2.8). Write +⟨T(EI1f1, EI2f2), ∆I3,Zf3⟩ = ⟨T(h0 +I1, h0 +I2), hI3,Z⟩⟨f1, h0 +I1⟩⟨f2, h0 +I2⟩⟨f3, hI3,Z⟩. +Now, we perform a rather complicated decomposition of the product ⟨f1, h0 +I1⟩⟨f2, h0 +I2⟩. +To this end, start by writing +⟨f1, h0 +I1⟩⟨f2, h0 +I2⟩ += +� +⟨f1, h0 +I1⟩⟨f2, h0 +I2⟩ − ⟨f1, h0 +I1 +3h0 +I2,3 +1 ⟩⟨f2, h0 +I1 +3h0 +I2,3 +2 ⟩ +� ++ ⟨f1, h0 +I1 +3h0 +I2,3 +1 ⟩⟨f2, h0 +I1 +3 h0 +I2,3 +2 ⟩ +=: A1 + A2. +We then further decompose A1 as follows +A1 = +� +⟨f1, h0 +I1⟩⟨f2, h0 +I2⟩ − ⟨f1, h0 +I1 +3h0 +I2,3 +1 ⟩⟨f2, h0 +I1 +3h0 +I2,3 +2 ⟩ +− ⟨f1, h0 +I1 +1h0 +I2,3 +3 ⟩⟨f2, h0 +I1 +2h0 +I2,3 +3 ⟩ + ⟨f1, h0 +I1 +3h0 +I2,3 +3 ⟩⟨f2, h0 +I1 +3 h0 +I2,3 +3 ⟩ +� + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +9 ++ +� +⟨f1, h0 +I1 +1 h0 +I2,3 +3 ⟩⟨f2, h0 +I1 +2 h0 +I2,3 +3 ⟩ − ⟨f1, h0 +I1 +3h0 +I2,3 +3 ⟩⟨f2, h0 +I1 +3h0 +I2,3 +3 ⟩ +� +. +When we later specialize to singular integrals, we will in particular make the following +assumption. We say that T is a paraproduct free operator, if for all cancellative Haar +functions hI1 and hI2,3 we have +⟨T(1 ⊗ 1J2,3 +1 , 1 ⊗ 1J2,3 +2 ), hI1 ⊗ 1J2,3 +3 ⟩ = ⟨T ∗,j +1 (1 ⊗ 1J2,3 +1 , 1 ⊗ 1J2,3 +2 ), hI1 ⊗ 1J2,3 +3 ⟩ += ⟨T(1I1 +1 ⊗ 1, 1I1 +2 ⊗ 1), 1I1 +3 ⊗ hI2,3⟩ = ⟨T ∗,j +2,3 (1I1 +1 ⊗ 1, 1I1 +2 ⊗ 1), 1I1 +3 ⊗ hI2,3⟩ = 0 +for all the adjoints j ∈ {1, 2}. With this assumption in the full summation (2.8) everything +else vanishes except +� +I1,I2,I3∈DZ +ℓ(I1)=ℓ(I2)=ℓ(I3) +⟨T(h0 +I1, h0 +I2),hI3,Z⟩ +� +⟨f1, h0 +I1⟩⟨f2, h0 +I2⟩ − ⟨f1, h0 +I1 +3×I2,3 +1 ⟩⟨f2, h0 +I1 +3×I2,3 +2 ⟩ +− ⟨f1, h0 +I1 +1 ×I2,3 +3 ⟩⟨f2, h0 +I1 +2×I2,3 +3 ⟩ + ⟨f1, h0 +I3⟩⟨f2, h0 +I3⟩ +� +⟨f3, hI3,Z⟩. +So we eliminated the paraproducts by assumption, and now we have to manipulate this +remaining term to a suitable form involving shifts. +In the above sum we will relabel I3 = I = I1 × I2 × I3 = I1 × I2,3. Then, for n1 = +(n1 +1, n2 +1, n3 +1) = (n1 +1, n2,3 +1 ) we write +I1 = I ∔ n1 = (I1 + n1 +1ℓ(I1)) × (I2 + n2 +1ℓ(I2)) × (I3 + n3 +1ℓ(I3)) = (I1 ∔ n1 +1) × (I2,3 ∔ n2,3 +1 ). +We write I2 similarly as I2 = I ∔ n2. Notice that if n1 +1 = n1 +2 = 0, then the term inside +the summation vanishes. Similarly, if n2,3 +1 += n2,3 +2 += (0, 0), the term inside the summation +vanishes. So we need to study +� +n1,n2∈Z3 +max(|n1 +1|,|n1 +2|)̸=0 +max(|n2 +1|,|n2 +2|)̸=0 or max(|n3 +1|,|n3 +2|)̸=0 +� +I∈DZ +cI,n1,n2, +where +cI,n1,n2 += ⟨T(h0 +I∔n1, h0 +I∔n2), hI,Z⟩ +� +⟨f1, h0 +I∔n1⟩⟨f2, h0 +I∔n2⟩ − ⟨f1, h0 +I1×(I2,3∔n2,3 +1 )⟩⟨f2, h0 +I1×(I2,3∔n2,3 +2 +)⟩ +− ⟨f1, h0 +(I1∔n1 +1)×I2,3⟩⟨f2, h0 +(I1∔n1 +2)×I2,3⟩ + ⟨f1, h0 +I⟩⟨f2, h0 +I⟩ +� +⟨f3, hI,Z⟩. +We write +� +n1,n2∈Z3 +max +j=1,2 |n1 +j|̸=0 +max +j=1,2 |n2 +j|̸=0 or max +j=1,2 |n3 +j|̸=0 +� +I∈DZ +cI,n1,n2 += +∞ +� +k1,k2,k3=2 +� +n1,n2∈Z3 +max +j=1,2 |nm +j |∈(2km−3,2km−2] +m=1,2,3 +� +I∈DZ +cI,n1,n2 + +10 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN ++ +∞ +� +k1,k2=2 +� +n1,n2∈Z3 +max +j=1,2 |nm +j |∈(2km−3,2km−2] +m=1,2 +n3 +1=n3 +2=0 +� +I∈DZ +cI,n1,n2 ++ Σsym, +where Σsym is symmetric to the second term and has n2 +1 = n2 +2 = 0. +Recall how everything implicitly depends on the random parameter σ, so that we can +average over it. By independence, we have by (2.2) that +Eσ +∞ +� +k1,k2,k3=2 +� +n1,n2∈Z3 +max +j=1,2 |nm +j |∈(2km−3,2km−2] +m=1,2,3 +� +I∈DZ +cI,n1,n2 += 8Eσ +∞ +� +k1,k2,k3=2 +� +n1,n2∈Z3 +max +j=1,2 |nm +j |∈(2km−3,2km−2] +m=1,2,3 +� +I∈DZ(k) +cI,n1,n2, +k = (k1, k2, k3). +(2.9) +For the other two terms, where n2 +j = 0 or n3 +j = 0, we perform the above but do not add +goodness to the second and third parameters, respectively. For example, we have +Eσ +∞ +� +k1,k2=2 +� +n1,n2∈Z3 +max +j=1,2 |nm +j |∈(2km−3,2km−2] +m=1,2 +n3 +1=n3 +2=0 +� +I∈DZ +cI,n1,n2 += 4Eσ +∞ +� +k1,k2=2 +� +n1,n2∈Z3 +max +j=1,2 |nm +j |∈(2km−3,2km−2] +m=1,2 +n3 +1=n3 +2=0 +� +I∈DZ(k1,k2,0) +cI,n1,n2. +Continuing with (2.9), we write it as +C8Eσ +∞ +� +k1,k2,k3=2 +(|k| + 1)2ϕ(k) +� +K∈Dλ +� +I∈DZ(k) +I(k)=K +� +n1,n2∈Z3 +maxj=1,2 |nm +j |∈(2km−3,2km−2] +m=1,2,3 +cI,n1,n2 +C(|k| + 1)2ϕ(k), +where +Dλ = {K = K1 × K2 × K3 ∈ D: λℓ(K1)ℓ(K2) = ℓ(K3)}, +λ = 2k3−k1−k2, + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +11 +and C is some suitably large constant depending on T. Recall that by (2.3) we also have +(I ∔ n1)(k) = (I ∔ n2)(k) = I(k) = K. +We have arrived to a point where we cannot go further without talking about singular +integrals. Indeed, we need kernel estimates to control the coefficients. But on a structural +level (with the paraproduct free assumption), we have obtained a reasonable representa- +tion of the main term (2.8) in terms of sums of bilinear Zygmund shifts. +3. BILINEAR ZYGMUND SINGULAR INTEGRALS +We begin by defining the required kernel estimates and cancellation conditions for +bilinear singular integrals T invariant under Zygmund dilations. For motivation for the +form of the kernel estimates, see Appendix A for kernel bounds of bilinear multipliers. +This viewpoint makes the kernel estimates natural – on the other hand, they are also of +the right form so that we will be able to bound the coefficients from the multiresolution +decomposition and obtain reasonable decay. +3.A. Full kernel representation. Our bilinear singular integral T invariant under Zyg- +mund dilations is related to a full kernel K in the following way. The kernel K is a +function +K : (R3 × R3 × R3) \ ∆ → C, +where +∆ = {(x, y, z) ∈ R3 × R3 × R3 : xi = yi = zi for at least one i = 1, 2, 3}. +We look at the action of T on rectangles like I1 × I2 × I3 =: I1 × I2,3 in R3 = R × R × R = +R × R2. So let Ii = I1 +i × I2 +i × I3 +i be rectangles, i = 1, 2, 3. Assume that there exists +i1, i2, j1, j2 ∈ {1, 2, 3} so that I1 +i1 and I1 +i2 are disjoint and also I2,3 +j1 +and I2,3 +j2 +are disjoint. +Then we have the full kernel representation +⟨T(1I1, 1I2), 1I3⟩ = +˚ +K(x, y, z)1I1(x)1I2(y)1I3(z) dx dy dz. +The kernel K satisfies the following estimates. +First, we define the decay factor +Dθ(x, y) = +��2 +i=1(|xi| + |yi|) +|x3| + |y3| ++ +|x3| + |y3| +�2 +i=1(|xi| + |yi|) +�−θ +, +θ ∈ (0, 2], +and the tri-parameter bilinear size factor +S(x, y) = +3 +� +i=1 +1 +� +|xi| + |yi| +�2 . +We demand the following size estimate +(3.1) +|K(x, y, z)| ≲ Dθ(x − z, y − z)S(x − z, y − z). + +12 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +Let now c = (c1, c2, c3) be such that |ci − xi| ≤ max(|xi − zi|, |yi − zi|)/2 for i = 1, 2, 3. +We assume that K satisfies the mixed size and Hölder estimates +|K((c1,x2, x3), y, z) − K(x, y, z)| +≲ +� +|c1 − x1| +|x1 − z1| + |y1 − z1| +�α1Dθ(x − z, y − z)S(x − z, y − z), +(3.2) +and +|K((x1, c2, c3), y, z) − K(x, y, z)| +≲ +� +|c2 − x2| +|x2 − z2| + |y2 − z2| + +|c3 − x3| +|x3 − z3| + |y3 − z3| +�α23Dθ(x − z, y − z)S(x − z, y − z), +(3.3) +where α1, α23 ∈ (0, 1]. Finally, we assume that K satisfies the Hölder estimate +|K(c, y, z) − K((c1, x2, x3), y, z) − K((x1, c2, c3), y, z) + K(x, y, z)| +≲ +� +|c1 − x1| +|x1 − z1| + |y1 − z1| +�α1� +|c2 − x2| +|x2 − z2| + |y2 − z2| + +|c3 − x3| +|x3 − z3| + |y3 − z3| +�α23 +× Dθ(x − z, y − z)S(x − z, y − z). +(3.4) +We also demand the symmetrical mixed size and Hölder estimates and Hölder estimates. +For j = 1, 2, define the adjoint kernels K∗,j, K∗,j +1 +and K∗,j +2,3 via the natural formulas, e.g., +K∗,1(x, y, z) = K(z, y, x), +K∗,2 +1 (x, y, z) = K(x, (z1, y2, y3), (y1, z2, z3)). +We assume that each adjoint kernel satisfies the same estimates as the kernel K. +3.B. Partial kernel representations. Let �θ ∈ (0, 1]. For every interval I1 we assume that +there exists a kernel +KI1 : (R2 × R2 × R2) \ {(x2,3, y2,3, z2,3): xi = yi = zi for i = 2 or i = 3} → C, +so that if I2,3 +j1 and I2,3 +j2 are disjoint for some j1, j2 ∈ {1, 2, 3}, then +⟨T(1I1 ⊗ 1I2,3 +1 , 1I1 ⊗ 1I2,3 +2 ), 1I1 ⊗ 1I2,3 +3 ⟩ += +˚ +KI1(x2,3, y2,3, z2,3)1I2,3 +1 (x2,3)1I2,3 +2 (y2,3)1I2,3 +3 (z2,3) dx2,3 dy2,3 dz2,3. +We demand the following estimates for the kernel KI1 : The size estimate +|KI1(x2,3, y2,3, z2,3)| +≲ +�|I1|(|x2 − z2| + |y2 − z2|) +|x3 − z3| + |y3 − z3| ++ +|x3 − z3| + |y3 − z3| +|I1|(|x2 − z2| + |y2 − z2|) +�−�θ +|I1| +�3 +i=2 +� +|xi − zi| + |yi − zi| +�2 +and the continuity estimate +|KI1(c2,3, y2,3, z2,3) − KI1(x2,3, y2,3, z2,3)| +≲ +� +|c2 − x2| +|x2 − z2| + |y2 − z2| + +|c3 − x3| +|x3 − z3| + |y3 − z3| +�α23 +× +�|I1|(|x2 − z2| + |y2 − z2|) +|x3 − z3| + |y3 − z3| ++ +|x3 − z3| + |y3 − z3| +|I1|(|x2 − z2| + |y2 − z2|) +�−�θ +|I1| +�3 +i=2 +� +|xi − zi| + |yi − zi| +�2 + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +13 +whenever c2,3 = (c2, c3) is such that |ci − xi| ≤ max(|xi − zi|, |yi − zi|)/2 for i = 2, 3. We +also assume the symmetrical continuity estimates. +We assume similar one-parameter conditions for the other partial kernel representa- +tion. That is, for every rectangle I2,3, there exists a standard bilinear Calderón-Zygmund +kernel KI2,3 so that if I1 +j1 and I1 +j2 are disjoint for some j1, j2 ∈ {1, 2, 3}, then +⟨T(1I1 +1 ⊗ 1I2,3, 1I1 +2 ⊗ 1I2,3), 1I1 +3 ⊗ 1I2,3⟩ += +˚ +KI2,3(x1, y1, z1)1I1 +1 (x1)1I1 +2 (y1)1I1 +3(z1) dx1 dy1 dz1. +The kernel KI2,3 satisfies the standard estimates +|KI2,3(x1, y1, z1)| ≤ CKI2,3 +1 +(|x1 − z1| + |y1 − z1|)2 , +|KI2,3(x1, y1, z1) − KI2,3(c1, y1, z1)| ≤ CKI2,3 +|x1 − c1|α1 +(|x1 − z1| + |y1 − z1|)2+α1 +whenever |x1 − c1| ≤ max(|x1 − z1|, |y1 − z1|)/2, and the symmetric continuity estimates. +The smallest possible constant CKI2,3 in these inequalities is denoted by ∥KI2,3∥CZα1. We +then assume that +∥KI2,3∥CZα1 ≲ |I2,3|. +3.C. Cancellation assumptions: paraproduct free operators. We say that T is a para- +product free operator, if for all cancellative Haar functions hI1 and hI2,3 we have +⟨T(1 ⊗ 1J2,3 +1 , 1 ⊗ 1J2,3 +2 ), hI1 ⊗ 1J2,3 +3 ⟩ = ⟨T ∗,j +1 (1 ⊗ 1J2,3 +1 , 1 ⊗ 1J2,3 +2 ), hI1 ⊗ 1J2,3 +3 ⟩ += ⟨T(1I1 +1 ⊗ 1, 1I1 +2 ⊗ 1), 1I1 +3 ⊗ hI2,3⟩ = ⟨T ∗,j +2,3 (1I1 +1 ⊗ 1, 1I1 +2 ⊗ 1), 1I1 +3 ⊗ hI2,3⟩ = 0 +for all the adjoints j ∈ {1, 2}. We always assume that all bilinear Zygmund operators +in this article satisfy this cancellation condition. The intention of this condition is to +guarantee that our operator is representable using cancellative shifts only. +3.D. Weak boundedness property. We say that T satisfies the weak boundedness prop- +erty if +|⟨T(1I, 1I), 1I⟩| ≲ |I| +for all Zygmund rectangles I = I1 × I2 × I3. +3.5. Definition. We say that a bilinear operator T is a paraproduct free Calderón- +Zygmund operator adapted to Zygmund dilations (CZZ operator) if T has the full kernel +representation, the partial kernel representations, is paraproduct free and satisfies the +weak boundedness property. +4. ESTIMATES FOR THE SHIFT COEFFICIENTS +We now move to consider the shift coefficients that appeared in the decomposition +of T in Section 2.F. When T is a CZZ operator, we can estimate them. Without loss of +generality, we estimate +⟨T(h0 +I ˙+n1, h0 +I ˙+n2), hI,Z⟩ +for I ∈ DZ and different values of n1, n2 ∈ Z3, and without loss of generality we assume +θ = ˜θ < 1. The coefficients related to the other terms of the decomposition (other than the +main term (2.8)) may have a different set of Haar functions, but they are treated similarly. + +14 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +We show that +(4.1) +|⟨T(h0 +I ˙+n1, h0 +I ˙+n2), hI,Z⟩| ≲ (|k| + 1)2ϕ(k) |I| +3 +2 +|K|2 , +where +ϕ(k) := 2−k1α1−k2 min{α23,θ}−max{k3−k1−k2,0}θ. +For terms of this particular form, we would not actually need to analyze some of the +diagonal cases (see Section 2.F). However, these diagonal terms would appear in some +other forms, so it makes sense to deal with them here (even though in the real situation +the Haar functions might be permuted differently, this does not matter, and the calcula- +tions we present apply). It is very helpful to study the linear case [14], since the kernel +estimates are relatively involved and we will not repeat every detail when they are simi- +lar. +Let mi := maxj=1,2 |ni +j|. The analysis of the coefficients splits to combinations of + + + + + +|m1| ∈ (2k1−3, 2k1−2], +k1 = 3, 4, . . . , +(Separated) +|m1| = 1, +(Adjacent) +|m1| = 0, +(Identical) +and + + + + + + + + + + + + + + + + + + + +|mi| ∈ (2ki−3, 2ki−2], +i = 2, 3, ki = 3, 4, . . . , +(Separated) +|m2| < 2 and |m3| ∈ (2k3−3, 2k3−2], +k3 = 3, 4, . . . , +(Separated) +|m2| ∈ (2k2−3, 2k2−2] and |m3| < 2 +k2 = 3, 4, . . . , +(Separated) +|m2| = 1 and |m3| ≤ 1 +(Adjacent) +|m2| = 0 and |m3| = 1 +(Adjacent) +m2 = 0 = m3. +(Identical) +It is enough to consider mi = ni +1 since the case mi = ni +2 is symmetrical. We will not go +through explicitly every combination – rather, we choose some illustrative examples. +4..1. Separated/Separated. We begin with the case |ni +1| ≥ 2 for all i = 1, 2, 3. Hence, +|xi − zi| ≥ |ni +1|ℓ(Ii) ≥ 2ki−3ℓ(Ii) +and +|xi − zi| ≤ |ni +1|ℓ(Ii) + 2ℓ(Ii) ≤ 2ki−1ℓ(Ii) +for i = 1, 2, 3. Moreover, |xi − zi| ≥ |yi − zi|/2 ≥ 0 for i = 1, 2, 3. Thus, we have the +estimate +��2 +i=1(|xi − zi| + |yi − zi|) +(|x3 − z3| + |y3 − z3|) ++ +|x3 − z3| + |y3 − z3| +�2 +i=1(|xi − zi| + |yi − zi|) +�−θ +∼ +��2 +i=1 |xi − zi| +|x3 − z3| ++ +|x3 − z3| +�2 +i=1 |xi − zi| +�−θ +∼ +��2 +i=1 2kiℓ(Ii) +2k3ℓ(I3) ++ +2k3ℓ(I3) +�2 +i=1 2kiℓ(Ii) +�−θ += (2k1+k2−k3 + 2k3−k1−k2)−θ. + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +15 +Using the cancellation of the Haar function we then have +��� +˚ +K(x, y, z)h0 +I ˙+n1(x)h0 +I ˙+n2(y)hI,Z(z) dx dy dz +��� += +��� +˚ � +K(x, y, z) − K(x, y, (cI1, z2,3)) − K(x, y, (z1, cI2,3)) + K(x, y, cI) +� +× h0 +I ˙+n1(x)h0 +I ˙+n2(y)hI,Z(z) dx dy dz +��� +≲ +˚ +2−k1α1(2−k2 + 2−k3)α23 (2k1+k2−k3 + 2k3−k1−k2)−θ +|K|2 +h0 +I ˙+n1(x)h0 +I ˙+n2(y)h0 +I(z) dx dy dz += 2−k1α1(2−k2 + 2−k3)α23(2k1+k2−k3 + 2k3−k1−k2)−θ |I| +3 +2 +|K|2 ≤ ϕ(k) |I| +3 +2 +|K|2 . +Let us then consider the case, where we have separation in the parameter 3 but not in +the parameter 2 – that is, |n2 +1| < 2 ≤ |n3 +1|. Then +��2 +i=1(|xi − zi| + |yi − zi|) +|x3 − z3| + |y3 − z3| ++ +|x3 − z3| + |y3 − z3| +�2 +i=1(|xi − zi| + |yi − zi|) +�−θ +(4.2) +∼ +�|x2 − z2| + |y2 − z2| +2k3−k1|I2| ++ +2k3−k1|I2| +|x2 − z2| + |y2 − z2| +�−θ +≲ +� |x2 − z2| +2k3−k1|I2| + 2k3−k1|I2| +|x2 − z2| +�−θ ++ +� |y2 − z2| +2k3−k1|I2| + 2k3−k1|I2| +|y2 − z2| +�−θ +, +and so using the mixed estimates +��� +˚ +K(x, y, z)h0 +I ˙+n1(x)h0 +I ˙+n2(y)hI,Z(z) dx dy dz +��� += +��� +˚ � +K(x, y, z) − K(x, y, (cI1, z2,3)) +� +h0 +I ˙+n1(x)h0 +I ˙+n2(y)hI,Z(z) dx dy dz +��� +≲ +˚ +2−k1α1|K1|−2|K3|−2 +� +|x2−z2|+|y2−z2| +2k3−k1|I2| ++ +2k3−k1|I2| +|x2−z2|+|y2−z2| +�−θ +� +|x2 − z2| + |y2 − z2| +�2 +× h0 +I ˙+n1(x)h0 +I ˙+n2(y)h0 +I(z) dx dy dz += 2−k1α1 |I1| +3 +2|I3| +3 +2 +|K1|2|K3|2 +˚ +� +|x2−z2|+|y2−z2| +2k3−k1|I2| ++ +2k3−k1|I2| +|x2−z2|+|y2−z2| +�−θ +� +|x2 − z2| + |y2 − z2| +�2 +× h0 +I2 ˙+n2 +1(x2)h0 +I2 ˙+n2 +2(y2)h0 +I2(z2) dx2 dy2 dz2 +≲ ϕ(k) |I| +3 +2 +|K|2 . +We note that the last inequality requires a case study (see also [14, Lemma 8.5]) and we +used the standard estimate +ˆ +Rd +du +(r + |u0 − u|)d+α ≲ r−α. +(4.3) +Symmetrical estimates hold if |n2 +1| ≥ 2 > |n3 +1|. + +16 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +4..2. Adjacent/Separated. We look at the example case |n2 +1| ≥ 2 > |n3 +1| and |n1 +1| = 1. By the +size estimate we have +|⟨T(h0 +I ˙+n1, h0 +I ˙+n2), hI,Z⟩| +≲ +|I2|3/2 +|I1,3|3/2|K2|2 +¨ +� +(|x1−z1|+|y1−z1|)2k2ℓ(I2) +|x3−z3|+|y3−z3| ++ +|x3−z3|+|y3−z3| +(|x1−z1|+|y1−z1|)2k2ℓ(I2) +�−θ +� +|x1 − z1| + |y1 − z1| +�2� +|x3 − z3| + |y3 − z3| +�2 +× 1I1,3 ˙+n1,3 +1 (x1,3)1I1,3 ˙+n1,3 +2 (y1,3)1I1,3(z1,3) dx1,3 dy1,3 dz1,3. +Similarly as (4.2), we can split the integral into two terms. Then by (4.3) we reduce the +problem to estimating +¨ +� +(|x1−z1|+|y1−z1|)2k2ℓ(I2) +|x3−z3| ++ +|x3−z3| +(|x1−z1|+|y1−z1|)2k2ℓ(I2) +�−θ +� +|x1 − z1| + |y1 − z1| +�2|x3 − z3| +× 1I1,3 ˙+n1,3 +1 (x1,3)1I1 ˙+n1 +2(y1)1I1,3(z1,3) dx1,3 dy1 dz1,3 ++ +¨ +� +(|x1−z1|+|y1−z1|)2k2ℓ(I2) +|y3−z3| ++ +|y3−z3| +� +|x1−z1|+|y1−z1| +� +2k2ℓ(I2) +�−θ +(|x1 − z1| + |y1 − z1|)2|y3 − z3| +× 1I1,3 ˙+n1,3 +1 (x1,3)1I1,3 ˙+n1,3 +2 (y1,3)1I1(z1) dx1,3 dy1,3 dz1. +Since they are similar, we only bound the first one. Note that +�(|x1 − z1| + |y1 − z1|)2k2ℓ(I2) +|x3 − z3| ++ +|x3 − z3| +(|x1 − z1| + |y1 − z1|)2k2ℓ(I2) +�−θ +× (|x1 − z1| + |y1 − z1|)−2 +≤ +�(|x1 − z1| + |y1 − z1|)2k2ℓ(I2) +|x3 − z3| +�−θ +(|x1 − z1| + |y1 − z1|)−2χ{|x1−z1|2k2ℓ(I2)≥|x3−z3|} ++ +� +|x3 − z3| +(|x1 − z1| + |y1 − z1|)2k2ℓ(I2) +�−θ +(|x1 − z1| + |y1 − z1|)−2χ{|x1−z1|2k2ℓ(I2)<|x3−z3|}. +Then apply (4.3) to the integral over y1, then by following the linear case [14, Lemma +8.11] we get that the above integral is bounded by |I1,3|k22−k2θ. Thus, we get +|⟨T(h0 +I ˙+n1, h0 +I ˙+n2), hI,Z⟩| ≲ +|I2|3/2 +|I1,3|1/2|K2|2 k22−k2θ ≲ k2ϕ(k) |I| +3 +2 +|K|2 . +4..3. Adjacent/Adjacent. We again have no major changes to the linear case but in order +to use the estimate +(4.4) +ˆ +R +� +t +|u| + |u| +t +�−θ +t|u| +|f(u)| du ≲ t−1Mf(0) + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +17 +we need to first use (4.3) repeatedly. For example, consider |n1 +1| = 1 and |n2 +1| = 1, |n3 +1| ≤ 1. +By the size estimate of the kernel, we need to control +� �2 +i=1(|xi−zi|+|yi−zi|) +|x3−z3|+|y3−z3| ++ +|x3−z3|+|y3−z3| +�2 +i=1(|xi−zi|+|yi−zi|) +�−θ +�3 +i=1 +� +|xi − zi| + |yi − zi| +�2 +h0 +I ˙+n1(x)h0 +I ˙+n2(y)h0 +I(z). +As before, we split this into two terms, one of them is +� �2 +i=1(|xi−zi|+|yi−zi|) +|x3−z3| ++ +|x3−z3| +�2 +i=1(|xi−zi|+|yi−zi|) +�−θ +�3 +i=1 +� +|xi − zi| + |yi − zi| +�2 +h0 +I ˙+n1(x)h0 +I ˙+n2(y)h0 +I(z). +We then apply (4.3) to the integral over y3, and then use the previous trick repeatedly. +That is, we write +��2 +i=1(|xi − zi| + |yi − zi|) +|x3 − z3| ++ +|x3 − z3| +�2 +i=1(|xi − zi| + |yi − zi|) +�−θ +≤ +��2 +i=1(|xi − zi| + |yi − zi|) +|x3 − z3| +�−θ +χ{|x1−z1|(|x2−z2|+|y2−z2|)≥|x3−z3|} ++ +� +|x3 − z3| +�2 +i=1(|xi − zi| + |yi − zi|) +�−θ +χ{|x1−z1|(|x2−z2|+|y2−z2|)<|x3−z3|} +and apply (4.3) to the integral over y1. Then, after a similar argument on y2, we finally +arrive at +1 +|I| +1 +2 +¨ +� �2 +i=1 |xi−zi| +|x3−z3| ++ +|x3−z3| +�2 +i=1 |xi−zi| +�−θ +�3 +i=1 |xi − zi| +h0 +I ˙+n1(x)h0 +I(z) dx dz +≲ +1 +|I| +1 +2 +≲ |I| +3 +2 +|K|2 . +4..4. Adjacent/Identical. We consider the case |n1 +1| = 1 and n2 +j = n3 +j = 0, j = 1, 2. We write +� +Q2,3 +1 +,Q2,3 +2 ,Q2,3 +3 ∈ch(I2,3) +⟨T(h0 +I ˙+n11Q2,3 +1 , h0 +I ˙+n21Q2,3 +2 ), hI,Z1Q2,3 +3 ⟩. +It is enough to consider Q2,3 +1 += Q2,3 +2 += Q2,3 +3 +since otherwise we have adjacent intervals, +and we are back in the Adjacent/Adjacent case. Hence, the partial kernel representation +3.B yields that +��� ± |I2,3|− 3 +2 +˚ +KQ2,3 +1 h0 +I1 ˙+n1 +1h0 +I1 ˙+n1 +2hI1 +��� +≲ |I2,3| +3 +2 +|K2,3|2 +˚ +1 +(|x1 − z1| + |y1 − z1|)2 h0 +I1 ˙+n1 +1(x1)h0 +I1 ˙+n1 +2(y1)hI1(z1) dx1 dy1 dz1. +Then, first using (4.3) and then standard integration methods we get the following in- +equality +˚ +1 +(|x1 − z1| + |y1 − z1|)2 h0 +I1 ˙+n1 +1(x1)h0 +I1 ˙+n1 +2(y1)hI1(z1) dx1 dy1 dz1 + +18 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +≲ +1 +|I1| +1 +2 +¨ +1 +|x1 − z1|h0 +I1 ˙+n1 +1(x1)hI1(z1) dx1 dz1 +≲ +1 +|I1| +1 +2 +∼ |I1| +3 +2 +|K1|2 +as desired. +4..5. Identical/Identical. Just like in above we split the pairing to +� +Q1 +1,Q1 +2,Q1 +3∈ch(I1) +� +Q2,3 +1 +,Q2,3 +2 ,Q2,3 +3 ∈ch(I2,3) +⟨T(h0 +I ˙+n1(1Q1 +1 ⊗ 1Q2,3 +1 ), h0 +I ˙+n2(1Q1 +2 ⊗ 1Q2,3 +2 )), hI,Z(1Q1 +3 ⊗ 1Q2,3 +3 )⟩. +The cases when Q1 +i ̸= Q1 +j for some i, j = 1, 2, 3, i ̸= j are essentially included in the cases +of the two previous subsections. Hence, we consider Q1 +1 = Q1 +2 = Q1 +3. Then there are two +cases left, that is, either Q2,3 +i +̸= Q2,3 +j +for some i, j = 1, 2, 3, i ̸= j, or Q2,3 +1 += Q2,3 +2 += Q2,3 +3 . +Beginning from the latter one, we directly see that +|⟨T(1Q1 +1 ⊗ 1Q2,3 +1 , 1Q1 +1 ⊗ 1Q2,3 +1 ), 1Q1 +1 ⊗ 1Q2,3 +1 ⟩| ≲ |Q1 +1||Q2,3 +1 | +by the weak boundedness property 3.D. Hence, we get the desired bound +|⟨T(h0 +I ˙+n1(1Q1 +1 ⊗ 1Q2,3 +1 ), h0 +I ˙+n2(1Q1 +1 ⊗ 1Q2,3 +1 )), hI,Z(1Q1 +1 ⊗ 1Q2,3 +1 )⟩| ≲ |Q1| +|I| +3 +2 +≤ |I| +3 +2 +|K|2 . +We handle the remaining case Q2,3 +i +̸= Q2,3 +j +for some i, j = 1, 2, 3, i ̸= j. By the partial +kernel representation and its size estimate we get +��� ± |I|− 3 +2 +˚ +KQ1 +11Q2,3 +1 1Q2,3 +2 1Q2,3 +3 +��� +≲ +1 +|I1| +1 +2 +1 +|I2,3| +3 +2 +˚ �|I1|(|x2 − z2| + |y2 − z2|) +|x3 − z3| + |y3 − z3| ++ +|x3 − z3| + |y3 − z3| +|I1|(|x2 − z2| + |y2 − z2|) +�−θ +× +3 +� +i=2 +1 +� +|xi − zi| + |yi − zi| +�2 1Q2,3 +1 1Q2,3 +2 1Q2,3 +3 dx2,3 dy2,3 dz2,3. +Then using similar arguments as in the Adjacent/Adjacent case and (4.4) gives us the +desired bound. +5. STRUCTURAL DECOMPOSITION OF ZYGMUND SHIFTS +In this section we decompose the bilinear Zygmund shifts (see Section 2.D) as a sum +of operators with simpler cancellation properties. The decomposition is not optimal (in +the sense that weighted estimates with Zygmund weights cannot be obtained via this) – +however, it is sufficient for unweighted boundedness in the full range that we later obtain +via tri-parameter theory. Recall that k = (k1, k2, k3) is the complexity of the bilinear +Zygmund shift. + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +19 +5.1. Definition. Bilinear operators of the form +(5.2) +S(l1,l2,l3)(f1, f2) = +� +L∈Dλ +� +I +(ℓj) +j +=L +aL,(Ij)⟨f1, hI1 +1 ⊗ h0 +I2,3 +1 ⟩⟨f2, h0 +I1 +2 ⊗ hI2,3 +2 ⟩hI3, +where λ = 2n, n ∈ Z, |n| ≤ 3 max(ki) and +|aL,(Ij)| ≤ |Ij| +3 +2 +|L|2 , +are tri-parameter bilinear shifts of Zygmund nature if at least one rectangle I1 +i1 ×I2,3 +i2 , i1 = +1, 3, i2 = 2, 3 is a Zygmund rectangle and +(1) ℓi +j ≤ ki for all i, j = 1, 2, 3; +(2) (ℓ3 +j − ℓ2 +j)+ ≤ (k3 − k2)+ for all j = 1, 2, 3. +Moreover, any adjoint +S +j∗ +1,j∗ +2,3 +(l1,l2,l3), +j1, j2,3 ∈ {0, 1, 2}, +is also considered to be a tri-parameter bilinear shift of Zygmund nature. Here, the ad- +joint j∗ +2,3 means that, for example, in case j2,3 = 1 functions h0 +I2,3 +1 +and hI2,3 +3 +switch places. +Note that these operators share a ‘weaker’ Zygmund structure. Ideally, we would +want to have I3 ∈ DZ and I1 +1 × I2,3 +2 +∈ DZ. +5.3. Proposition. Let Qk, k = (k1, k2, k3), be a bilinear Zygmund shift operator as defined in +Section 2.D. Then +Qk = C +c +� +u=1 +k1−1 +� +l1=0 +k2,3−1 +� +l2,3=0 +Su, +where Su is a bilinear operator as in Definition 5.1 with complexity depending on l and k,and +k2,3−1 +� +l2,3=0 +:= + + + + + + + + + + + +� +0≤l2=l3≤k2−1 ++ +� +l2=k2 +k2≤l3≤k3−1 +, +if k3 ≥ k2 +� +0≤l2=l3≤k3−1 ++ +� +k3≤l2≤k2−1 +l3=k3 +, +if k3 < k2. +Proof. The argument is similar in spirit to the purely bi-parameter decomposition in [1]. +For notational convenience, we consider a shift Qk of the particular form +⟨Qk(f1, f2), f3⟩ += +� +K∈D2−k1−k2+k3 +� +I1,I2,I3∈DZ +I(k) +j +=K +aK,(Ij) +� +A3,3 +I1,I2,I3 − A3,3 +I1 +3×I2,3 +1 +,I1 +3×I2,3 +2 +,I3 +− A3,3 +I1 +1×I2,3 +3 +,I1 +2×I2,3 +3 +,I3 + A3,3 +I3,I3,I3 +� += +� +K∈D2−k1−k2+k3 +� +I1,I2,I3∈DZ +I(k) +j +=K +aK,(Ij)⟨f3, hI3⟩ +� +⟨f1, h0 +I1⟩⟨f2, h0 +I2⟩ − ⟨f1, h0 +I1 +3h0 +I2,3 +1 ⟩⟨f2, h0 +I1 +3h0 +I2,3 +2 ⟩ + +20 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +− ⟨f1, h0 +I1 +1h0 +I2,3 +3 ⟩⟨f2, h0 +I1 +2h0 +I2,3 +3 ⟩ + ⟨f1, h0 +I3⟩⟨f2, h0 +I3⟩ +� +. +There is no essential difference in the general case. Let us also use the usual abbreviation +D2−k1−k2+k3 = Dλ. +We define +bK,(Ij) = |I1|aK,(Ij) +and +B3,3 +I1,I2,I3 = ⟨f1⟩I1⟨f2⟩I2⟨f3, hI3⟩. +We can write the shift Qk using these by replacing a with b and A with B. +Recall the notation +∆l1 +K1f = +� +L1∈D1 +(L1)(l1)=K1 +∆L1f, +P k1 +K1f = +k1−1 +� +l1=0 +∆l1 +K1f, +EK1f = ⟨f⟩K11K1, +Ek1 +K1f = +� +L1∈D1 +(L1)(k1)=K1 +⟨f⟩L11L1. +Let us define +(5.4) +P k2,3 +K2,3f := +k2,3−1 +� +l2,3=0 +∆(l2,l3) +K2,3 f := + + + + + + + + + +k2−1 +� +l2=0 +∆l2 +K2,3f + +k3−1 +� +l3=k2 Ek2 +K2∆l3 +K3f, +if k3 ≥ k2 +k3−1 +� +l3=0 +∆l3 +K2,3f + +k2−1 +� +l2=k3 ∆l2 +K2Ek3 +K3f, +if k3 < k2, +where we have the standard one-parameter definition +∆li +K2,3f = +� +L2,3∈D2,3 +(L2)(li)×(L3)(li)=K2×K3 +∆L2,3f. +We also use a similar shorthand for the expanded martingale blocks +k2,3−1 +� +l2,3=0 +∆(l2,l3) +K2,3 f = +k2,3−1 +� +l2,3=0 +� +(L2,3)(l2,3)=K2,3 +⟨f, hL2,3⟩hL2,3, +where we allow, for example, that hL2,3 = h0 +L2 ⊗ hL3 when k3 > k2 and l2 = k2. +Using this notation we define the following. For a cube I and integers l, j0 ∈ {1, 2, . . . } +we define +(5.5) +DI,l(j, j0) = + + + + + +EI, +if j ∈ {1, . . . , j0 − 1}, +P l +I, +if j = j0, +id, +if j ∈ {j0 + 1, j0 + 2, . . . }, +where id denotes the identity operator, and if we have a rectangle I2,3 and a tuple l2,3 we +use the modified P l2,3 +I2,3. + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +21 +Let I1, I2, I3 be as in the summation of Qk. We use the above notation in parameter one +DI1,l1(j, j0) and for the other two parameters we use DI2,3,l2,3(j, j0). Thus, expanding to +the martingale blocks leads us to +B3,3 +I1,I2,I3 += +3 +� +m1,m2=1 +2 +� +j=1 +⟨D1 +K1,k1(j, m1)D2,3 +K2,3,k2,3(j, m2)fj⟩Ij⟨f3, hI3⟩. +Hence, we may write +� +K∈Dλ +� +I1,I2,I3∈DZ +I(k) +j +=K +B3,3 +I1,I2,I3 =: +3 +� +m1,m2=1 +Σ1 +m1,m2. +Also, we have that +B3,3 +I1 +3×I2,3 +1 +,I1 +3×I2,3 +2 +,I1 +3×I2,3 +3 += +3 +� +m2=1 +2 +� +j=1 +⟨D2,3 +K2,3,k2,3(j, m2)fj⟩I1 +3×I2,3 +j ⟨f3, hI3⟩ +and +B3,3 +I1 +1×I2,3 +3 +,I1 +2×I2,3 +3 +,I1 +3×I2,3 +3 += +3 +� +m1=1 +2 +� +j=1 +⟨D1 +K1,k1(j, m1)fj⟩I1 +j ×I2,3 +3 ⟨f3, hI3⟩, +which gives that +� +K∈Dλ +� +I1,I2,I3∈DZ +I(k) +j +=K +B3,3 +I1 +3×I2,3 +1 +,I1 +3×I2,3 +2 +,I1 +3×I2,3 +3 +=: +3 +� +m2=1 +Σ2 +m2 +and +� +K∈Dλ +� +I1,I2,I3∈DZ +I(k) +j +=K +B3,3 +I1 +1×I2,3 +3 +,I1 +2×I2,3 +3 +,I1 +3×I2,3 +3 +=: +3 +� +m1=1 +Σ3 +m1. +Finally, we just set +� +K∈Dλ +� +I1,I2,I3∈DZ +I(k) +j +=K +B3,3 +I3,I3,I3 =: Σ4. +Thus, we have the following decomposition +⟨Qk(f1, f2), f3⟩ = +2 +� +m1,m2=1 +Σ1 +m1,m2 + +2 +� +m2=1 +(Σ1 +3,m2 − Σ2 +m2) ++ +2 +� +m1=1 +(Σ1 +m1,3 − Σ3 +m1) + (Σ1 +3,3 − Σ2 +3 − Σ3 +3 + Σ4). + +22 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +First, we take one Σ1 +m1,m2 with m1, m2 ∈ {1, 2}. For notational convenience, we choose +the case m1 = m2 = 2. Recall that +Σ1 +2,2 = +� +K∈Dλ +� +I1,I2,I3∈DZ +I(k) +j +=K +bK,(Ij)⟨f1⟩K⟨P k1 +K1P k2,3 +K2,3f2⟩I2⟨f3, hI3⟩. +We expand +⟨P k1 +K1P k2,3 +K2,3f2⟩I2 = +k1−1 +� +l1=0 +k2,3−1 +� +l2,3=0 +� +(L1)(l1)=K1 +(L2,3)(l2,3)=K2,3 +⟨f2, hL1 ⊗ hL2,3⟩⟨hL1 ⊗ hL2,3⟩I2 +and note that L is not necessarily a Zygmund rectangle. It holds that +Σ1 +2,2 = +k1−1 +� +l1=0 +k2,3−1 +� +l2,3=0 +� +K∈Dλ +� +L(l1,l2,l3)=K +� +I3∈DZ +I(k) +3 +=K +� � +I1 +I(k) +1 +=K +� +I2⊂L +I(k) +2 +=K +bK,(Ij)⟨hL⟩I2 +|K| +1 +2 +� +⟨f1, h0 +K⟩⟨f2, hL⟩⟨f3, hI3⟩. +Now, since we can easily check that +��� +� +I1 +I(k) +1 +=K +� +I2⊂L +I(k) +2 +=K +bK,(Ij)⟨hL⟩I2 +|K| +1 +2 +��� ≤ |K| +1 +2 |L| +1 +2 |I3| +1 +2 +|K|2 +, +we get a sum of operators we wanted +Σ1 +2,2 = +k1−1 +� +l1=0 +k2,3−1 +� +l2,3=0 +⟨S(0,(l1,l2,l3),k)(f1, f2), f3⟩, +where S(0,(l1,l2,l3),k) is a type of the shift (5.2). The general case Σ1 +m1,m2 is analogous. +We turn to the terms Σ1 +3,m2 − Σ2 +m2. Let us take, for example, the case m2 = 1. After +expanding P k2,3 +K2,3 in the first slot, Σ1 +3,1 − Σ2 +1 can be written as +k2,3−1 +� +l2,3=0 +� +K∈Dλ +� +(L2,3)(l2,3)=K2,3 +� +I1,I2,I3 +I(k) +j +=K +bK,(Ij)⟨hL2,3⟩I2,3 +1 +�� +f1, 1K1 +|K1| ⊗ hL2,3 +� +⟨f2⟩K1×I2,3 +2 +− +� +f1, +1I1 +3 +|I1 +3| ⊗ hL2,3 +� +⟨f2⟩I1 +3×I2,3 +2 +� +⟨f3, hI3⟩. +For the moment, we fix one l2,3 and write g1 = ⟨f1, hL2⟩ and g2 = ⟨f2⟩I2,3 +2 . We write inside +the brackets +2 +� +j=1 +⟨gj⟩K1 − +2 +� +j=1 +⟨gj⟩I1 +3 = − +k1−1 +� +l1=0 +� +2 +� +j=1 +⟨gj⟩(I1 +3)(l1) − +2 +� +j=1 +⟨gj⟩(I1 +3)(l1+1) +� + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +23 +and then expand �2 +j=1⟨gj⟩(I1 +3)(l1) − �2 +j=1⟨gj⟩(I1 +3)(l1+1) as +⟨∆(I1 +3)(l1+1)g1⟩I1 +3⟨g2⟩(I1 +3)(l1) + ⟨g1⟩(I1 +3)(l1+1)⟨∆(I1 +3)(l1+1)g2⟩I1 +3. +We get +2 +� +j=1 +⟨gj⟩K1 − +2 +� +j=1 +⟨gj⟩I1 +3 += − +k1−1 +� +l1=0 +� +⟨∆(I1 +3)(l1+1)g1⟩I1 +3⟨g2⟩(I1 +3)(l1) + ⟨g1⟩(I1 +3)(l1+1)⟨∆(I1 +3)(l1+1)g2⟩I1 +3 +� +, +where we can expand +⟨∆(I1 +3)(l1+1)gj⟩I1 +3 = ⟨gj, h(I1 +3)(l1+1)⟩⟨h(I1 +3 )(l1+1)⟩I1 +3. +For fixed l1 and l2,3 the expansion leads to the term +� +K∈Dλ +� +(L2,3)(l2,3)=K2,3 +� +I1,I2,I3 +I(k) +j +=K +bK,(Ij)⟨h(I1 +3)(l1+1) ⊗ hL2,3⟩I1 +3×I2,3 +1 +� +f1, h(I1 +3 )(l1+1) ⊗ hL2,3 +� +⟨f2⟩(I1 +3)(l1)×I2,3 +2 ⟨f3, hI3⟩, +and to the symmetrical one, where the cancellation h(I1 +3)(l1+1) is paired with the second +function and f1 is averaged over (I1 +3)(l1+1). Again, we want to reorganize the summations +and verify the correct normalization for the shifts of the form (5.2). In the first parameter +we will now take (I1 +3)(l1+1) as the new top cube, that is, +� +K1 +� +(L1)(k1−l1)=K1 +� +K2,3∈D2−l1−k2+k3 ℓ(L1) +� +(I1 +3)(l1)=L1 +� +(L2,3)(l2,3)=K2,3 +� +I2,3 +2 +,I2,3 +3 +(Ii +j)(ki)=Ki +cK1,L1,I1 +3,K2,3,L2,3,I2,3 +2 +,I2,3 +3 +� +f1, h(L1)(1) ⊗ hL2,3 +� +⟨f2⟩L1×I2,3 +2 ⟨f3, hI3⟩, +(5.6) +where +cK1,L1,I1 +3,K2,3,L2,3,I2,3 +2 +,I2,3 +3 += +� +I1 +1,I1 +2 +(I1 +j )(k1)=K1 +� +I2,3 +1 +⊂L2,3 +(Ii +1)(ki)=Ki +bK,(Ij)⟨h(L1)(1)×L2,3⟩I1 +3×I2,3 +1 . +Moreover, we have +|cK1,L1,I1 +3,K2,3,L2,3,I2,3 +2 +,I2,3 +3 | ≤ |(L1)(1)| +3 +2|I1 +3| +1 +2 +|(L1)(1)|2 +× |L2,3| +1 +2|I2,3 +2 ||I2,3 +3 | +1 +2 +|K2,3|2 +. +Notice that this is the right normalization for (5.2), since f2 is related to L1 and |(L1)(1)| = +2|L1|, and we can change the averages into pairings against non-cancellative Haar func- +tions. + +24 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +We conclude that for some C ≥ 1 we have +C−1(5.6) = ⟨S((0,l2,3),(1,k2,3),(l1+1,k2,3))(f1, f2), f3⟩, +where S((0,l2,3),(1,k2,3),(l1+1,k2,3)) is an operator of the desired type and of complexity +(0, l2,3), (1, k2,3), (l1 + 1, k2,3). +The other term and the other case of Σ1 +3,2 − Σ2 +2 are analogous. +The cases Σ1 +m1,3 − Σ3 +m1 are handled almost identically, however, we need to treat +2 +� +j=1 +⟨gj⟩K2,3 − +2 +� +j=1 +⟨gj⟩I2,3 +3 +slightly differently. We expand the rectangles I2,3 +3 +in the one-parameter fashion until we +reach the smaller of the cubes K2, K3. Then we continue with one-parameter expansion +with only one of the cubes until we reach the bigger of the cubes K2, K3. For example, if +k3 > k2, we expand as +2 +� +j=1 +⟨gj⟩K2,3 − +2 +� +j=1 +⟨gj⟩I2,3 +3 += − +k2−1 +� +l2=0 +� +⟨∆(I2,3 +3 +)(l2+1,l2+1)g1⟩(I2,3 +3 +)(l2,l2)⟨g2⟩(I2,3 +3 +)(l2,l2) ++ ⟨g1⟩(I2,3 +3 +)(l2+1,l2+1)⟨∆(I2,3 +3 +)(l2+1,l2+1)g2⟩(I2,3 +3 +)(l2,l2) +� +− +k3−1 +� +l3=k2 +� +⟨EK2∆(I3 +3)(l3+1)g1⟩K2×(I3 +3)(l3)⟨g2⟩K2×(I3 +3)(l3) ++ ⟨g1⟩K2×(I3 +3)(l3+1)⟨EK2∆(I3)(l3+1)g2⟩K2×(I3 +3)(l3) +� +, +The case k3 ≤ k2 can be expanded similarly. Similarly as in the previous cases, we can +now write the terms in the particular form (5.2). For example, related to the latter term, +� +K∈Dλ +� +L2,3∈D2,3 +λl,kℓ(K1) +L2=K2 +(L3)(k3−l3)=K3 +� +(L1)(l1)=K1 +� +(I1 +3)(k1)=K1 +� +(I2 +3)(k2)=K2 +(I3 +3)(l3)=L3 +cK,L,I3 +� +f1, 1K1 +|K1| ⊗ h(L2,3)(0,1) +�� +f2, hL1 ⊗ 1L2,3 +|L2,3| +� +⟨f3, hI3⟩, +where l3 ∈ {k2, . . . , k3 − 1}, λl,k = 2−k1−k2+l3 and +|cK,L,I3| = +��� +� +I1,I2 +(Ij)(k)=K +I1 +2⊂L1 +aK,(Ij)|I1|⟨hL1 ⊗ hK2×(L3)(1)⟩I1 +2×K2×L3 +��� + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +25 +≤ +� +I1,I2 +(Ij)(k)=K +I1 +2⊂L1 +|I3| +1 +2|I1||I2| +|K|2 +|K2|− 1 +2|(L3)(1)|− 1 +2 |L1|− 1 +2 += |L1| +1 +2 +|K1| +|I3| +1 +2|K2 × (L3)(1)| +3 +2 +|K2 × (L3)(1)|2 +. +This normalization is an absolute constant away from the correct one since we consider +that K2 × (L3)(1) is the top rectangle in parameters 2 and 3. +Finally, we consider Σ1 +3,3 − Σ2 +3 − Σ3 +3 + Σ4 that equals to +� +K∈Dλ +� +I1,I2,I3∈DZ +I(k) +j +=K +bK,(Ij) +� +2 +� +j=1 +⟨fj⟩K − +2 +� +j=1 +⟨fj⟩I1 +3×K2,3 − +2 +� +j=1 +⟨fj⟩K1×I2,3 +3 ++ +2 +� +j=1 +⟨fj⟩I3 +� +⟨f3, hI3⟩. +(5.7) +As we already showed, we can expand +2 +� +j=1 +⟨fj⟩K − +2 +� +j=1 +⟨fj⟩I1 +3×K2,3 += − +k1−1 +� +l1=0 +� +⟨∆(I1 +3)(l1+1)g1⟩I1 +3⟨g2⟩(I1 +3)(l1) + ⟨g1⟩(I1 +3)(l1+1)⟨∆(I1 +3)(l1+1)g2⟩I1 +3 +� +, +where gj = ⟨fj⟩K2,3, and similarly for +n +� +j=1 +⟨fj⟩I3 − +2 +� +j=1 +⟨fj⟩K1×I2,3 +3 +we get same expansion with the positive sign and gj = ⟨fj⟩I2,3 +3 . +Then we sum the two expansions together and expand in the parameters 2 and 3. That +is, we will expand +k1−1 +� +l1=0 +⟨h(I1 +3 )(l1+1)⟩(I1 +3)(l1) +� +f1, h(I1 +3 )(l1+1) ⊗ 1K2,3 +|K2,3| +� +⟨f2⟩(I1 +3 )(l1)×K2,3 +− +� +f1, h(I1 +3 )(l1+1) ⊗ +1I2,3 +3 +|I2,3 +3 | +� +⟨f2⟩(I1 +3)(l1)×I2,3 +3 . +Thus, we get, for example when k2 < k3, that +k1−1 +� +l1=0 +k2−1 +� +l2=0 +� +K∈Dλ +� +L1∈D1 +(L1)(k1−l1)=K1 +� +L2,3∈D2,3 +2−l1 ℓ(L1) +(L2,3)(k2−l2,k3−l2)=K2,3 +� +I3∈DZ +(I3)(l1,l2,l2)=L +× cK,L,I3 +� +f1, h(L1)(1) ⊗ h0 +(L2,3)(1,1) +�� +f2, h0 +L1 ⊗ h(L2,3)(1,1) +� +⟨f3, hI3⟩ + +26 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN ++ +k1−1 +� +l1=0 +k3−1 +� +l3=k2 +� +K∈Dλ +� +L1∈D1 +(L1)(k1−l1)=K1 +� +L2,3∈D2−l1−k2+l3 ℓ(L1) +L2=K2 +(L3)(k3−l3)=K3 +� +I3∈DZ +(I3)(l1,k2,l3)=L +× cK,L,I3 +� +f1, h(L1)(1) ⊗ h0 +(L2,3)(0,1) +�� +f2, h0 +L1 ⊗ h(L2,3)(0,1) +� +⟨f3, hI3⟩. +Here +|cK,L,I3| = +��� +� +I1,I2∈DZ +Ik +j =K +aK,(Ij)|I1||L1|− 1 +2 |(L2,3)(1)|− 1 +2 ⟨h(L1)(1) ⊗ h(L2,3)(1)⟩L1×L2,3 +��� +≤ |I3| +1 +2|(L1)(1)| +3 +2 +|(L)(1)|2 +|L1|− 1 +2 |(L2,3)(1)|− 1 +2 ∼ |I3| +1 +2 |(L1)(1)| +1 +2 |L1| +1 +2|(L2,3)(1)| +3 +2 +|(L1)(1)|2|(L2,3)(1)|2 +. +We abused notation slightly by (L2,3)(1) meaning both (L2,3)(1,1) and (L2,3)(0,1). The other +terms are handled analogously. +□ +6. BOUNDEDNESS OF ZYGMUND SHIFTS +In this section we prove the boundedness of Zygmund shifts. We first prove the fol- +lowing. A collection S is called γ-sparse if there are pairwise disjoint subsets E(S) ⊂ S, +S ∈ S , with |E(S)| ≥ γ|S|. Often the precise value of γ is not important and we just talk +about sparse collections. +6.1. Proposition. Let λ = 2k for some k ∈ Z and +Λ(f1, f2, f3) = +� +K∈D2,3 +λ +� +(Ij)(ℓj )=K +�3 +j=1 |Ij| +1 +2 +|K|2 +|⟨f1, h0 +I1⟩| · |⟨f2, hI2⟩| · |⟨f3, hI3⟩|. +Then there exists a sparse collection S ⊂ D2,3 +λ +such that +Λ(f1, f2, f3) ≲ max{k2, k3} +� +S∈S +|S| +3 +� +j=1 +⟨|fj|⟩S. +Proof. The proof is an easy adaptation of the sparseness argument in [17, Section 5]. In +fact, we only need to check the validity of +Λ(f1, f2, f3) ≲ ∥f1∥Lp∥f2∥Lq∥f3∥Lr, +where p, q, r ∈ (1, ∞) and 1/p + 1/q + 1/r = 1. This can be done by direct computation: +Λ(f1, f2, f3) ≤ +ˆ +f1 +� +K∈D2,3 +λ +⟨|∆ℓ2 +Kf2|⟩K⟨|∆ℓ3 +Kf3|⟩K1K +≤ ∥f1∥Lp +��� +� +� +K∈D2,3 +λ +� +MD2,3 +λ |∆ℓ2 +Kf2| +�2� 1 +2 ��� +Lq +��� +� +� +K∈D2,3 +λ +� +MD2,3 +λ |∆ℓ3 +Kf3| +�2� 1 +2 ��� +Lr +≲ ∥f1∥Lp∥f2∥Lq∥f3∥Lr. +□ + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +27 +6.2. Proposition. Let Qk, k = (k1, k2, k3), be a bilinear Zygmund shift as in Section 2.D, and +let 1 < p1, p2 < ∞ and 1 +2 < p < ∞ with 1 +p := +1 +p1 + 1 +p2. Let +w1, w2 ∈ Ap(R × R × R), +and +w := w +p +p1 +1 w +p +p2 +2 . +Then, for every η ∈ (0, 1) we have +∥Qk(f1, f2)∥Lp(w) ≲ max +i {ki}22k1η∥f1∥Lp1(w1)∥f2∥Lp2(w2). +Proof. We prove the weighted boundedness L4(w1)×L4(w2) → L2(w), of the tri-parameter +bilinear shifts of Zygmund nature (5.2). We do this with tri-parameter weights wi ∈ A4. +We then extrapolate the result to the full bilinear range using the traditional multilinear +extrapolation by Grafakos–Martell (and Duoandikoetxea) [4,7]. Our result then follows +from Proposition 5.3. +Note that if we have I3 ∈ DZ in (5.2), then the related λ in Proposition 6.1 is +2ℓ3 +3−ℓ2 +3−ℓ1 +3|L1|. +(For other cases, for instance if I1 +1 × I2,3 +2 +∈ DZ, then λ = 2ℓ3 +2−ℓ2 +2−ℓ1 +1|L1|). Assume v ∈ +A4,λ(R2); recall that Ap,λ(R2) is defined similarly as Ap(R2) except that the supremum is +taken over rectangles R = I × J with |J| = λ|I|. Then +� +S∈S +|S| +3 +� +j=1 +⟨|fj|⟩S = +� +S∈S +⟨|f1|⟩S⟨|f2|⟩S⟨|f3|v−1⟩v +Sv(S). +Since for any R ∈ S, +� +S⊂R +S∈S +v(S) = +� +S⊂R +S∈S +v(S) +|S| |S| ≲ +� +S⊂R +S∈S +v(S) +|S| |ES| ≤ +ˆ +R +MD2,3 +λ (v1R) ≲[v]A4,λ(R2) v(R), +by the Carleson embedding theorem we have +(6.3) +� +S∈S +|S| +3 +� +j=1 +⟨|fj|⟩S ≲[v]A4,λ(R2) +ˆ +R2 MD2,3 +λ |f1|MD2,3 +λ |f2|Mv +D2,3 +λ (|f3|v−1)v. +Now, given weights wj ∈ A4(R3), j = 1, 2, we know that w = w1/2 +1 +w1/2 +2 +∈ A4(R3). We +have +|⟨S(f1, f2), f3⟩| = +� +L1 +� +(I1 +j ) +(ℓ1 +j )=L1 +�3 +j=1 |I1 +j | +1 +2 +|L1|2 +Λ(⟨f1, hI1 +1⟩, ⟨f2, h0 +I1 +2⟩, ⟨f3, hI1 +3 ⟩). +Note that ⟨w⟩L1 ∈ A4,λ(R2) with [⟨w⟩L1]A4,λ(R2) ≤ [w]A4 for any λ. Thus, applying (6.3) +with v = ⟨w⟩L1 we have +|⟨S(f1, f2), f3⟩| +≲ max +i +{ki} +� +L1 +� +(I1 +j ) +(ℓ1 +j )=L1 +�3 +j=1 |I1 +j | +1 +2 +|L1|2 +ˆ +R2 MD2,3 +λ ⟨f1, hI1 +1⟩MD2,3 +λ ⟨f2, h0 +I1 +2⟩Mv +D2,3 +λ (⟨f3, hI1 +3⟩v−1)v + +28 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN += max +i +{ki} +� +L1 +ˆ +R3⟨MD|∆ℓ1 +1 +L1f1|⟩L1⟨MD|f2|⟩L1 +� +(I1 +3)(ℓ1 +3)=L1 +|I1 +3| +1 +2 M +⟨w⟩L1 +D2,3 +λ +(⟨f3, hI1 +3⟩⟨w⟩−1 +L1 ) 1L1 +|L1|w +≤ max +i +{ki} +��� +� � +L1 +� +MD1MD|∆ℓ1 +1 +L1f1| +�2� 1 +2 ��� +L4(w1)∥MD1MD|f2|∥L4(w2) +× +��� +� � +L1 +� +� +(I1 +3)(ℓ1 +3)=L1 +|I1 +3| +1 +2 M +⟨w⟩L1 +D2,3 +λ +(⟨f3, hI1 +3⟩⟨w⟩−1 +L1 )|L1|−1�2 +1L1 +� 1 +2 ��� +L2(w). +By the well-know square function and maximal function estimates we have +��� +� � +L1 +� +MD1MD|∆ℓ1 +1 +L1f1| +�2� 1 +2 ��� +L4(w1) ≲ ∥f1∥L4(w1) +and +∥MD1MD|f2|∥L4(w2) ≲ ∥f2∥L4(w2). +The estimate of the last term is a bit tricky. By the (one parameter)vector-valued estimates +of M +⟨w⟩L1 +D2,3 +λ +(see e.g. [19, Proposition 4.3] for a bi-parameter version (the proof easily adapts +to the one-parameter case)), we have +��� +� � +L1 +� +� +(I1 +3)(ℓ1 +3)=L1 +|I1 +3| +1 +2M +⟨w⟩L1 +D2,3 +λ +(⟨f3, hI1 +3⟩⟨w⟩−1 +L1 )|L1|−1�2 +1L1 +� 1 +2 ��� +L2(w) +≤ 2ℓ1 +3η��� +� � +L1 +� +� +(I1 +3)(ℓ1 +3)=L1 +|I1 +3| +s +2M +⟨w⟩L1 +D2,3 +λ +(⟨f3, hI1 +3⟩⟨w⟩−1 +L1 )s|L1|− s +2 +� 2 +s � 1 +2��� +L2(⟨w⟩L1) +≲ 2ℓ1 +3η��� +� � +L1 +� +� +(I1 +3)(ℓ1 +3)=L1 +|I1 +3| +s +2��⟨f3, hI1 +3⟩⟨w⟩−1 +L1 +��s|L1|− s +2 +� 2 +s � 1 +2 ��� +L2(⟨w⟩L1) +≤ 2ℓ1 +3η��� +� � +L1 +� +� +(I1 +3)(ℓ1 +3)=L1 +|I1 +3| +1 +2|⟨f3, hI1 +3⟩|⟨w⟩−1 +L1 |L1|− 1 +2 +�2� 1 +2 ��� +L2(⟨w⟩L1) +≲ 2ℓ1 +3η∥f3∥L2(w−1), +where s = (1/η)′ and in the last step we have used [19, Proposition 5.8]. Thus, +∥S(f1, f2)∥L2(w) ≲ max +i +{ki}2k1η∥f1∥L4(w1)∥f2∥L4(w2). +□ +Now we are able to conclude the proof of Theorem 1.2. +Proof of Theorem 1.2. By the representation formula discussed in Sections 2.E and 2.F, the +coefficient estimates in Section 4 (in particular (4.1)) we get that +⟨T(f1, f2), f3⟩ =CEσ +∞ +� +k1,k2,k3=2 +(|k| + 1)2ϕ(k) +� +I∈DZ(k) +⟨Q(k1,k2,k3)(f1, f2), f3⟩ +C(|k| + 1)2ϕ(k) +. + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +29 +Thus, for p1, p2 ∈ (1, ∞) so that p ∈ (1, ∞), we conclude by Proposition 6.2 that +∥T(f1, f2)∥Lp(w) ≲ +∞ +� +k1,k2,k3=2 +(|k| + 1)2ϕ(k) max +i {ki}22k1η∥f1∥Lp1(w1)∥f2∥Lp2(w2) +≲ ∥f1∥Lp1(w1)∥f2∥Lp2(w2), +where we need to take η < α1. Consequently, we can now pass the result to the full +bilinear range using the traditional multilinear extrapolation [4,7]. +□ +7. LINEAR COMMUTATORS IN THE ZYGMUND DILATION SETTING +In this section we return to the linear theory and complete the following commutator +estimate left open by previous results. This requires new and interesting paraproduct +estimates. For the context, see the explanation below. +7.1. Theorem. Let b ∈ L1 +loc and T be a linear CZZ operator as in [14]. Let θ ∈ (0, 1] be the +kernel exponent measuring the decay in terms of the Zygmund ratio +Dθ(x) := +�|x1x2| +|x3| ++ +|x3| +|x1x2| +�−θ +. +Then +∥[b, T]∥Lp→Lp ≲ ∥b∥bmoZ +whenever p ∈ (1, ∞). +Here the definition of the little BMO is given by +∥b∥bmoZ := sup +DZ +sup +R∈DZ +1 +|R| +ˆ +R +|b(x) − ⟨b⟩R| dx < ∞, +where the supremum is over all different collections of Zygmund rectangles DZ and then +over all R ∈ DZ. +This theorem was previously considered in [5] using the so-called Cauchy trick. That +method requires weighted bounds with Zygmund weights. But we now know [14] how +delicate such weighted bounds are – weighted bounds with Zygmund weights do not +in general hold if θ < 1. However, the commutator bounds are still true – but we need +a different proof, presented here. It suffices to prove the boundedness of commutators +[b, Qk] for any linear shift Qk of the Zygmund dilation type. +For θ = 1 we could use the Cauchy trick and the weighted bounds from [14] – this +would give weighted commutator estimates with Zygmund weights. +We begin by recording lemmas that we need for the main proofs of this section. +7.2. Lemma. Let b be a locally integrable function. Then the following are equivalent +(1) b ∈ bmoDZ, +(2) +max +� +sup +I1∈D1 ∥⟨b⟩I1,1∥BMOD2,3 +ℓ(I1) +, ess sup +(x2,x3)∈R2 ∥b(·, x2, x3)∥BMO +� +< ∞, +(3) +max +� +sup +I2∈D2 ∥⟨b⟩I2,2∥BMOD2,3 +ℓ(I2) +, ess sup +(x1,x3)∈R2 ∥b(x1, ·, x3)∥BMO +� +< ∞. + +30 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +For completeness, we give the proof. +Proof. Let us begin showing that bmoZ =⇒ (2) (and by symmetry also (3)). Clearly, for +all Zygmund rectangles I = I1 × I2 × I3 ∈ DZ we have +∥b∥bmoZ ≥ 1 +|I| +ˆ +I +|b − ⟨b⟩I| ≥ +1 +|I2,3| +ˆ +I2,3 |⟨b⟩I1,1 − ⟨b⟩I|. +(7.3) +So by uniform boundedness we immediately get +∥⟨b⟩I1,1∥BMOD2,3 +ℓ(I1) +:= +sup +I2,3∈D2,3 +ℓ(I1) +1 +|I2,3| +ˆ +I2,3 |⟨b⟩I1,1 − ⟨⟨b⟩I1,1⟩I2,3| ≤ ∥b∥bmoZ < ∞. +We move on to proving the second assertion inside (2). For fixed I1 ∈ D1 we define +fI1(x2, x3) := +´ +I1 |b(x1, x2, x3) − ⟨b⟩I1(x2, x3)| dx1. Then for every I2,3 ∈ D2,3 +ℓ(I1) we have +⟨fI1⟩I2,3 ≤ +1 +|I2,3| +ˆ +I2,3 +ˆ +I1 |b − ⟨b⟩I| + +1 +|I2,3| +ˆ +I2,3 +ˆ +I1 |⟨b⟩I1,1 − ⟨b⟩I| ≤ 2|I1|∥b∥bmoZ, +where last inequality holds by definition and the above estimate (7.3). Now, by the +Lebesgue differentiation theorem we get for (x2, x3) ∈ R2 \ N(I1), where N(I1) is a +null set depending on I1, that +fI1(x2, x3) ≤ 2|I1|∥b∥bmoZ. +It is then easy to conclude that +∥b(·, x2, x3)∥BMO ≤ 2∥b∥bmoZ +for almost every (x2, x3) ∈ R2. +Conversely, +ˆ +I +|b − ⟨b⟩I| ≤ +ˆ +I +|b − ⟨b⟩I1,1| + +ˆ +I +|⟨b⟩I1,1 − ⟨b⟩I| +≤ |I1| +ˆ +I2,3 ∥b(·, x2, x3)∥BMO + |I|∥⟨b⟩I1,1∥BMOℓ(I1) ≤ |I|(C1 + C2), +where C1 := ess sup(x2,x3)∈R2 ∥b(·, x2, x3)∥BMO and C2 := supI1 ∥⟨b⟩I1,1∥BMOℓ(I1). +□ +Then the usual duality results imply the following. +7.4. Corollary. If b ∈ bmoZ and I1 is fixed, then +� +I2,3∈D2,3 +ℓ(I1) +⟨⟨b⟩I1, hI2,3⟩ϕI2,3 ≲ ∥b∥bmoZ +��� +� +� +I2,3∈D2,3 +ℓ(I1) +ϕI2,3 1I2,3 +|I2,3| +� 1 +2��� +L1. +Also, for fixed (x2, x3), we have +� +I1∈D1 +⟨b, hI1⟩1ϕI1 ≲ ∥b∥bmoZ +��� +� � +I1∈D1 +ϕI1 1I1 +|I1| +� 1 +2��� +L1. +Using the duality type estimates we can use the square function lower bounds to prove +the inclusion of product type spaces. + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +31 +7.5. Definition. Given a lattice of Zygmund rectangles DZ and a sequence of scalars +B = (bI)I∈DZ we define +∥B∥BMOprod := sup +Ω +� +1 +|Ω| +� +I∈DZ +I⊂Ω +|bI|2 +� 1 +2 +. +The inclusion of the little BMO space can be easily seen from the duality estimate +(7.6) +∥B∥BMOprod ∼ sup +� � +I∈DZ +|aI||bI|: +��� +� � +I∈DZ +|aI|2 1I +|I| +� 1 +2 ��� +L1 ≤ 1 +� +. +7.A. Paraproduct expansions. Here the correct expansions style is the Zygmund mar- +tingale expansion similar to [14, Equation (5.22)]. This gives +bf = +� +I∈DZ +� +∆I,Zb∆I,Zf + ∆I,Zb∆I1EI2,3f + ∆I1EI2,3b∆I,Zf +(7.7) ++ ∆I,ZbEI1∆I2,3f + ∆I,ZbEI1EI2,3f + ∆I1EI2,3bEI1∆I2,3f ++ EI1∆I2,3b∆I,Zf + EI1∆I2,3b∆I1EI2,3f + EI1EI2,3b∆I,Zf +� +=: +3 +� +i,j=1 +ai,j(b, f), +where, for example, a1,1 = � +I∈DZ ∆I,Zb∆I,Zf and +a1,2 = +� +I∈DZ +∆I,Zb∆I1EI2,3f, +i.e., interpret so that rows correspond to the first index i and columns correspond with +the second index j. +7.8. Lemma. If b ∈ bmoZ, then the paraproducts ai,j such that (i, j) ̸= (3, 3) are bounded. That +is, +∥ai,j(b, f)∥Lp ≲ ∥b∥bmoZ∥f∥Lp, +1 < p < ∞. +Proof. Case 1: product type i ̸= 3 ̸= j. We begin with the paraproducts where it would +suffice to have a product BMO type assumption (but recall that little BMO is a subset). +The symmetry Π = a1,1 is essentially trivial. By (7.6) we have +|⟨Πf, g⟩| ≲ +��� +� � +I∈DZ +|⟨f, hI,Z⟩|2⟨|g|⟩2 +I +1I +|I| +� 1 +2��� +L1 +≤ +��� +� � +I∈DZ +⟨|∆I,Zf|⟩2 +I1I +� 1 +2 ��� +Lp∥MZg∥Lp′ +≲ +��� +� � +I∈DZ +MZ(∆I,Zf)2� 1 +2 ��� +Lp∥g∥Lp′ +≲ ∥SZf∥Lp∥g∥Lp′ ≲ ∥f∥Lp∥g∥Lp′ . + +32 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +The ‘twisted’ case Π = a1,2 (and the symmetrical a2,1) is trickier. Indeed, to decouple +f and g we cannot blindly take maximal functions only in some parameters – this would +break the Zygmund structure. In any case, we begin with the application of (7.6) to get +|⟨Πf, g⟩| ≲ +��� +� � +I∈DZ +��� +� +f, 1I1 +|I1| ⊗ hI2×I3 +�� +g, hI1 ⊗ +1I2×I3 +|I2 × I3| +���� +2 1I +|I| +� 1 +2 ��� +L1. +The above is an L1 norm, while L2 would be nice. This is where A∞ extrapolation +comes in. We fix ν ∈ A∞,Z, and move to estimate +��� +� � +I∈DZ +��� +� +f, 1I1 +|I1| ⊗ hI2×I3 +�� +g, hI1 ⊗ +1I2×I3 +|I2 × I3| +���� +2 1I +|I| +� 1 +2 ��� +L2(ν). +We will soon show that +��� +� � +I∈DZ +��� +� +f, 1I1 +|I1| ⊗ hI2×I3 +�� +g, hI1 ⊗ +1I2×I3 +|I2 × I3| +���� +2 1I +|I| +� 1 +2 ��� +L2(ν) +≲ +���MZf +� � +I1∈D1 +MZ(∆I1g)2�1/2��� +L2(ν). +(7.9) +The A∞ extrapolation, Theorem 7.10, then implies that this inequality holds also in Lp(ν), +p ∈ (0, ∞), ν ∈ A∞,Z. We take p = 1 and ν ≡ 1 to get that +|⟨Πf, g⟩| ≲ +���MZf +� � +I1∈D1 +MZ(∆I1g)2�1/2��� +L1 +≤ ∥MZf∥Lp +��� +� � +I1∈D1 +MZ(∆I1g)2�1/2��� +Lp′ ≲ ∥f∥Lp∥g∥Lp′ . +It remains to prove (7.9). We write +��� +� � +I∈DZ +��� +� +f, 1I1 +|I1| ⊗ hI2×I3 +�� +g, hI1 ⊗ +1I2×I3 +|I2 × I3| +���� +2 1I +|I| +� 1 +2��� +2 +L2(ν) += +� +I1∈D1 +� +I2×I3∈D2,3 +ℓ(I1) +��� +� +f, 1I1 +|I1| ⊗ hI2×I3 +���� +2��� +� +g, hI1 ⊗ +1I2×I3 +|I2 × I3| +���� +2 +⟨ν⟩I. +Fix some I1 ∈ D1. Let I2 +0 × I3 +0 ∈ D2,3 +ℓ(I1) and suppose ϕ1, ϕ2 and ϕ3 are locally inte- +grable functions in R2. Then, there exists a sparse collection S = S(I2 +0 × I3 +0, ϕ1, ϕ2, ϕ3) ⊂ +D2,3 +ℓ(I1)(I2 +0 × I3 +0) so that +� +I2×I3∈D2,3 +ℓ(I1) +I2×I3⊂I2 +0×I3 +0 +|⟨ϕ1, hI2×I3⟩|2|⟨ϕ2⟩I2×I3|2⟨ϕ3⟩I2×I3 ≲ +� +Q∈S +⟨|ϕ1|⟩2 +Q⟨|ϕ2|⟩2 +Q⟨|ϕ3|⟩Q|Q|. + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +33 +We use this with the functions ϕ1 = ⟨f⟩I1, ϕ2 = ⟨g, hI1⟩ and ϕ3 = ⟨ν⟩I1 to have that for +some sparse collection S = S(I1, I2 +0 × I3 +0, f, g, ν) ⊂ D2,3 +ℓ(I1) there holds that +� +I2×I3∈D2,3 +ℓ(I1) +I2×I3⊂I2 +0×I3 +0 +��� +� +f, 1I1 +|I1| ⊗ hI2×I3 +���� +2��� +� +g, hI1 ⊗ +1I2×I3 +|I2 × I3| +���� +2 +⟨ν⟩I +≲ +� +Q∈S +⟨|⟨f⟩I1|⟩2 +Q⟨|⟨g, hI1⟩|⟩2 +Q⟨ν⟩I1(Q) +≤ +� +Q∈S +��� +M2,3 +ℓ(I1)⟨f⟩I1 +�� +M2,3 +ℓ(I1)⟨g, hI1⟩ +��⟨ν⟩I1 +Q +�2 +⟨ν⟩I1(Q) +≲ +ˆ +R2 +� +M2,3 +ℓ(I1)⟨f⟩I1 +�2� +M2,3 +ℓ(I1)⟨g, hI1⟩ +�2⟨ν⟩I1, +where in the last step we used the fact that ⟨ν⟩I1 ∈ A∞,ℓ(I1)(R2) and the Carleson embed- +ding theorem. +Since the last estimate holds uniformly for every I2 +0 × I3 +0 ∈ D2,3 +ℓ(I1), we get that +� +I1∈D1 +� +I2×I3∈D2,3 +ℓ(I1) +��� +� +f, 1I1 +|I1| ⊗ hI2×I3 +���� +2��� +� +g, hI1 ⊗ +1I2×I3 +|I2 × I3| +���� +2 +⟨ν⟩I +≲ +� +I1∈D1 +ˆ +R2 +� +M2,3 +ℓ(I1)⟨f⟩I1 +�2� +M2,3 +ℓ(I1)⟨g, hI1⟩ +�2⟨ν⟩I1 +≤ +� +I1∈D1 +ˆ +R3 +� +M2,3 +ℓ(I1)⟨f⟩I1 +�2� +M2,3 +ℓ(I1)⟨|∆I1g|⟩I1 +�21I1ν +≤ +ˆ +R2[MZf]2 � +I1∈D1 +MZ(∆I1g)2ν. +Thus, (7.9) is proved. +Case 2: little BMO paraproducts (i = 3, j = 1, 2 or i = 1, 2, j = 3). Actually, now we only +have “trivial” type cases with different twist. Symmetries a1,3 and a3,1 are similar as well +as a2,3 and a3,2. Let us choose for example Π = a1,3 first. By Corollary 7.4 we have +|⟨Π(b, f), g⟩| ≲ +��� +� � +I1∈D1 +� +� +I2,3∈D2,3 +ℓ(I1) +|⟨f, hI,Z⟩||⟨g, hI1hI1 ⊗ hI2,3⟩I| 1I2,3 +|I2,3| +�2 1I1 +|I1| +� 1 +2 ��� +L1. +Now we again can use similar sparse method as above and for fixed I1 prove +ˆ +� +I2,3∈Dℓ(I1) +|⟨f, hI,Z⟩||⟨g, hI1hI1 ⊗ hI2,3⟩I| 1I2,3 +|I2,3|⟨ν⟩I1 +≲ +ˆ +M2,3 +ℓ(I1)(⟨|∆I1f|⟩I1)M2,3 +ℓ(I1)⟨g⟩I11I1ν. + +34 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +The above estimate together with vector-valued version of Theorem 7.10 (proven in [3] +for general Muckenhoupt basis) yields +��� +� � +I1∈D1 +� +� +I2,3∈Dℓ(I1) +|⟨f, hI,Z⟩||⟨g, hI1hI1 ⊗ hI2,3⟩I| 1I2,3 +|I2,3| +�2 1I1 +|I1| +� 1 +2��� +L1 +≲ +��� +� � +I1∈D1 +MZ(∆I1f)2 1I1 +|I1| +� 1 +2MZg +��� +L1 +≤ +��� +� � +I1∈D1 +MZ(∆I1f)2�1/2��� +Lp∥MZg∥Lp′ ≲ ∥f∥Lp∥g∥Lp′ . +Moving to the symmetry Π = a3,2 we first get +|⟨Π(b, f), g⟩| += +��� +� +I∈DZ +⟨⟨b⟩I1, hI2,3⟩ +� +f, hI1 ⊗ 1I2,3 +|I2,3| +� +⟨g, hI,Z⟩ +��� +≲ ∥b∥bmoZ +��� +� +I1∈D1 +� +� +I2,3∈Dℓ(I1) +|⟨f, hI1 ⊗ 1I2,3 +|I2,3|⟩|2|⟨g, hI,Z⟩|2 1I2,3 +|I2,3| +� 1 +2 1I1 +|I1| +��� +L1, +where we use the other estimate in Corollary 7.4. Like above, we continue as follows +��� +� +I1∈D1 +� +� +I2,3∈Dℓ(I1) +|⟨f, hI1 ⊗ 1I2,3 +|I2,3|⟩|2|⟨g, hI,Z⟩|2 1I2,3 +|I2,3| +� 1 +2 1I1 +|I1| +��� +L1 +≲ +��� +� +I1∈D1 +M2,3 +ℓ(I1)⟨|∆I1f|⟩I1M2,3 +ℓ(I1)⟨|∆I1g|⟩I11I1 +��� +L1 +≤ +��� +� � +I1∈D1 +MZ(∆I1f)2�1/2��� +Lp +��� +� � +I1∈D1 +MZ(∆I1g)2�1/2��� +Lp′ +≲ ∥f∥Lp∥g∥Lp′ . +□ +In above proof we needed the A∞ extrapolation with Zygmund A∞ weights. In fact, +we give a very simple proof of A∞ extrapolation [3] in general. +7.10. Theorem. Let (f, g) be a pair of non-negative functions. Assume that there is some 0 < +p0 < ∞ such that for all w ∈ A∞,Z there holds +ˆ +f p0w ≤ C([w]A∞,Z) +ˆ +gp0w, +where C is an increasing function. Then for all 0 < p < ∞ and all w ∈ A∞,Z there holds +ˆ +f pw ≤ C([w]A∞,Z) +ˆ +gpw. +Proof. We have for all 1 < r < ∞ and all w ∈ Ar,Z that +ˆ +(f p0/r)rw ≤ C([w]Ar,Z) +ˆ +(gp0/r)rw. + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +35 +Thus, by the classical extrapolation with Ap,Z weights we have +(7.11) +ˆ +(f p0/r)sw ≤ C([w]As,Z) +ˆ +(gp0/r)sw +for all 1 < s < ∞ and w ∈ As,Z. +Finally, let 0 < p < ∞ and w ∈ A∞,Z. Then, there exists some 1 < s0 < ∞ such that +w ∈ As0,Z. Choose some 1 < r < ∞ and s0 ≤ s < ∞ such that +sp0/r = p. +For example, we can take +s = s0p +p0 +�p0 +p + 1 +� += s0 +� p +p0 ++ 1 +� +, +r = s0 +�p0 +p + 1 +� +. +Since As0,Z ⊂ As,Z, we can use (7.11) with the exponents s and r to get the claim. +□ +7.B. Zygmund shift commutators. Let k = (k1, k2), ki ∈ {0, 1, 2, . . .}, be fixed. A Zyg- +mund shift Q = Qk of complexity k, see [14], has the form +⟨Qkf, g⟩ += +� +K∈D2−k1−k2+k3 +� +I,J∈DZ +I(k)=K=J(k) +aIJK⟨f, hI1 ⊗ HI2,3,J2,3⟩⟨g, HI1,J1 ⊗ hJ2,3⟩ +or +⟨Qkf, g⟩ += +� +K∈D2−k1−k2+k3 +� +I,J∈DZ +I(k)=K=J(k) +aIJK⟨f, hI1 ⊗ hI2,3⟩⟨g, HI1,J1 ⊗ HI2,3,J2,3⟩, +where HI,J +(1) is supported on I ∪ J and constant on children: +HI,J = +� +L∈ch(I)∪ch(J) +bL1L +(2) is L2 normalized: |HI,J| ≤ |I|− 1 +2 , and +(3) has zero average: +´ +HI,J = 0. +We will be focusing on the mixed type form since it is the most interesting one. Usually +the other type is much easier and the method is easily recovered from this case. +7.12. Proposition. Let Qk be a Zygmund shift of complexity k = (k1, k2, k3). Let 1 < p < ∞ +and b ∈ bmoZ . Then we have +∥[b, Qk]f∥Lp ≲ max(k1, k2, k3)(|k| + 1)2∥b∥bmoZ∥f∥Lp. +Proof. We consider the commutator [b, Qk]f : bQkf − Qk(bf) that in the dual form equals +to +� +K∈D2−k1−k2+k3 +� +I,J∈DZ +I(k)=K=J(k) +aIJK +� +⟨bf, hI1 ⊗ HI2,3,J2,3⟩⟨g, HI1,J1 ⊗ hJ2,3⟩ +−⟨f, hI1 ⊗ HI2,3,J2,3⟩⟨bg, HI1,J1 ⊗ hJ2,3⟩ +� +. + +36 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +Now, expanding both bf and bg with the expansion (7.7) we get the terms +⟨Qk(ai,j(b, f)), g⟩ +and +⟨Qkf, ai,j(b, g)⟩ +whenever (i, j) ̸= (3, 3). These terms are directly bounded separately, in particular, we +have Qk : Lp → Lp and ai,j : Lp → Lp. Hence, we are left with bounding +� +K∈Dλ +� +I,J∈DZ +I(k)=K=J(k) +aIJK +� � +L∈DZ +⟨b⟩L⟨∆L,Zf, hI1 ⊗ HI2,3,J2,3⟩⟨g, HI1,J1 ⊗ hJ2,3⟩ +− +� +L∈DZ +⟨b⟩L⟨f, hI1 ⊗ HI2,3,J2,3⟩⟨∆L,Zg, HI1,J1 ⊗ hJ2,3⟩ +� += +� +K∈Dλ +� +I,J∈DZ +I(k)=K=J(k) +aIJK +× +� +� +L∈DZ +ℓ(L1)=2−k1ℓ(K1) +ℓ(K2)≤2k2ℓ(L2)≤2max(k2,k3)ℓ(K2) +⟨b⟩L⟨∆L,Zf, hI1 ⊗ HI2,3,J2,3⟩⟨g, HI1,J1 ⊗ hJ2,3⟩ +− +� +Q∈DZ +Q1⊂K1, ℓ(Q1)≥ℓ(I1) +2−k1ℓ(K2)≤2k2ℓ(Q2)≤ℓ(K2) +⟨b⟩Q⟨f, hI1 ⊗ HI2,3,J2,3⟩⟨∆Q,Zg, HI1,J1 ⊗ hJ2,3⟩ +� +, +where we have abbreviated 2−k1−k2+K3 by λ. Now, we write +⟨f, hI1 ⊗ HI2,3,J2,3⟩ = +� +L∈DZ +ℓ(L1)=2−k1ℓ(K1) +ℓ(K2)≤2k2ℓ(L2)≤2max(k2,k3)ℓ(K2) +⟨∆L,Zf, hI1 ⊗ HI2,3,J2,3⟩ +and +⟨g, HI1,J1 ⊗ hJ2,3⟩ = +� +Q∈DZ +Q1⊂K1, ℓ(Q1)≥ℓ(I1) +2−k1ℓ(K2)≤2k2ℓ(Q2)≤ℓ(K2) +⟨∆Q,Zg, HI1,J1 ⊗ hJ2,3⟩ +for the unexpanded terms. Thus, we end up with +� +K∈Dλ +� +I,J∈DZ +I(k)=K=J(k) +aIJK +� +L∈DZ +ℓ(L1)=2−k1ℓ(K1) +ℓ(K2)≤2k2ℓ(L2)≤2max(k2,k3)ℓ(K2) +� +Q∈DZ +Q1⊂K1, ℓ(Q1)≥ℓ(I1) +2−k1ℓ(K2)≤2k2ℓ(Q2)≤ℓ(K2) +× +� +(⟨b⟩L − ⟨b⟩Q)⟨∆L,Zf, hI1 ⊗ HI2,3,J2,3⟩⟨∆Q,Zg, HI1,J1 ⊗ hJ2,3⟩ +� +. +We write explicitly the complexity levels for Q and L. That is, in the above summations +we have (L2)(l2) = (K2)(max(0,k3−k2)) for some l2 ∈ {0, . . . , max(k2, k3)}, (Q1)(q1) = K1, + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +37 +for some q1 ∈ {0, . . . , k1}, and (Q2)(q2) = K2 for some q2 ∈ {k2, . . . , k2 + k1}. We get +� +K∈Dλ +� +I,J∈DZ +I(k)=K=J(k) +aIJK +max(k2,k3) +� +l2=0 +� +q1∈{0,...,k1} +q2∈{k2,...,k2+k1} +� +L∈DZ +ℓ(L1)=2−k1ℓ(K1) +(L2)(l2)=(K2)(max(0,k3−k2)) +� +Q∈DZ +(Q1)(q1)=K1 +(Q2)(q2)=K2 +× +� +(⟨b⟩L − ⟨b⟩Q)⟨∆L,Zf, hI1 ⊗ HI2,3,J2,3⟩⟨∆Q,Zg, HI1,J1 ⊗ hJ2,3⟩ +� +. +Here we need to notice that R = R1 × R2 × R3 ⊃ K, L, Q, where +R = K(k1,max(0,k3−k2),k1+max(k2−k3,0)) and R ∈ DZ. +This is a common “Zygmund ancestor” for all of these rectangles. +Let us expand in the difference ⟨b⟩L − ⟨b⟩Q in the following way +⟨b⟩L = ⟨b⟩L − ⟨b⟩L(0,1,1) ++ ⟨b⟩L(0,1,1) − ⟨b⟩L(0,2,2) +... ++ ⟨b⟩L(0,l2−1,l2−1) − ⟨b⟩L(0,l2,l2) + ⟨b⟩L(0,l2,l2) += +l2−1 +� +r2=0 +� +⟨b⟩L(0,r2,r2) − ⟨b⟩L(0,r2+1,r2+1) +� ++ ⟨b⟩L(0,l2,l2). +Notice that since ℓ(L1)ℓ(L2) = ℓ(L3), we have ℓ(L1)ℓ((L2)(r2)) = ℓ((L3)(r2)), i.e. rectan- +gles (L2)(r2) × (L3)(r2) ∈ Dℓ(L1) which is desirable since we want to use the characteriza- +tion (2) in Lemma 7.2. We continue with the last term +⟨b⟩L(0,l2,l2) = ⟨b⟩L(0,l2,l2) − ⟨b⟩L(1,l2,1+l2) ++ ⟨b⟩L(1,l2,1+l2) − ⟨b⟩L(2,l2,2+l2) +... +⟨b⟩L(k1−1,l2,k1−1+l2) − ⟨b⟩L(k1,l2,k1+l2) + ⟨b⟩G += +k1−1 +� +r1=0 +� +⟨b⟩L(r1,l2,r1+l2) − ⟨b⟩L(r1+1,l2,r1+1+l2) +� ++ ⟨b⟩R. +Recall that (L2)(l2) = (K2)(max(0,k3−k2)) =: R2 and observe that since ℓ((L3)(k1+l2)) = +ℓ((L2)(l2))ℓ((L1)(k1)) = ℓ(R2)ℓ(K1) we get (L3)(k1+l2) = R3. Thus, we end up with a sum +of terms of the forms +⟨b⟩L(0,r2,r2) − ⟨b⟩L(0,r2+1,r2+1) +and +⟨b⟩L(r1,l2,r1+l2) − ⟨b⟩L(r1+1,l2,r1+1+l2), +(7.13) +and we have for fixed r1 and r2 +|(7.13)| ≲ ∥b∥bmoZ +by Lemma 7.2. + +38 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +By the same argument as above we get +⟨b⟩Q = +max(0,k3−k2)+q2−1 +� +ρ2=0 +⟨b⟩Q(0,ρ2,ρ2) − ⟨b⟩Q(0,ρ2+1,ρ2+1) ++ +q1 +� +ρ1=0 +⟨b⟩Q(ρ1,�q2,ρ1+�q2) − ⟨b⟩Q(ρ1+1,�q2,ρ1+1+�q2) ++ ⟨b⟩R, +where �q2 = max(0, k3 − k2) + q2, +(Q2)(�q2) = (K2)(max(0,k3−k2)) +and +(Q3)(q1+�q2) = (K3)(k1+max(k2−k3,0)). +Notice that the last term corresponds to the last term in the previous expansion, and +hence, their difference equals to zero. Again, here we have +|⟨b⟩Q(0,ρ2,ρ2) − ⟨b⟩Q(0,ρ2+1,ρ2+1) + ⟨b⟩Q(ρ1,�q2,ρ1+�q2) − ⟨b⟩Q(ρ1+1,�q2,ρ1+1+�q2)| ≲ ∥b∥bmoZ +for fixed ρ1 and ρ2. +Now, we can split the commutator into the two terms +Wb +K,kf = 1K +� +L∈DZ +ℓ(L1)=2−k1ℓ(K1) +ℓ(K2)≤2k2ℓ(L2)≤2max(k2,k3)ℓ(K2) +bL,K∆L,Zf, +where +|bL,K| ≲ max(k1, k2, k3)∥b∥bmoZ, +and +Vb +K,kg = +� +Q∈DZ +Q1⊂K1, ℓ(Q1)≥ℓ(I1) +2−k1ℓ(K2)≤2k2ℓ(Q2)≤ℓ(K2) +bQ,K∆Q,Zg, +where +|bQ,K| ≲ max(k1, k2, k3)∥b∥bmoZ. +Thus, the last term of the commutator is the sum of +� +K∈Dλ +� +I,J∈DZ +I(k)=K=J(k) +aIJK⟨Wb +K,kf, hI1 ⊗ HI2,3,J2,3⟩⟨VK,kg, HI1,J1 ⊗ hJ2,3⟩ +and +� +K∈Dλ +� +I,J∈DZ +I(k)=K=J(k) +aIJK⟨WK,kf, hI1 ⊗ HI2,3,J2,3⟩⟨Vb +K,kg, HI1,J1 ⊗ hJ2,3⟩. +The boundedness follows via standard methods (adapt proofs of [14, Theorem 6.2 and +Lemma 5.20].) +□ + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +39 +APPENDIX A. BILINEAR FEFFERMAN-PIPHER MULTIPLIERS +In this section we consider bilinear variants of multipliers studied by Fefferman-Pipher [6]. +These considerations motivate the kernel estimates in Section 3. After the presented cal- +culations, the reader can easily check how everything fits with Section 3. In fact, we will +see that the bilinear Fefferman-Pipher multipliers produce kernels which satisfy the the +kernel estimates in Section 3 with +θ = 2, +α1 = 1, +α2,3 = 1, +and an extra logarithm factor. In the partial kernel estimates �θ = 1 and there is also a +harmless logarithm factor. We leave further analysis of these multipliers for future work. +We consider the following multi-parameter dilation on R6 – define +ρs,t(x, y) = (sx1, tx2, stx3, sy1, ty2, sty3), +s, t > 0, +and set +A1 := {(ξ, η) ∈ R6 : 1 +2 < |(ξ1, η1)| ≤ 1, 1 +2 < |(ξ2, ξ3, η2, η3)| ≤ 1}. +In this section we consider the parameter groups {1} and {2, 3} only. The grouping +{{2}, {1, 3}} is similar, for example, we would set +A2 := {(ξ, η) ∈ R6 : 1 +2 < |(ξ2, η2)| ≤ 1, 1 +2 < |(ξ1, ξ3, η1, η3)| ≤ 1}. +For Schwartz functions f1, f2 we define the bilinear multiplier operator +Tm,1(f1, f2)(x) = +ˆ +R3 +ˆ +R3 m(ξ, η) �f1(ξ) �f2(η)e2πix·(ξ+η) dξ dη, +where the symbol m ∈ CN is assumed to satisfy +∥m∥M1 +Z := +sup +|α|∞≤N +|β|∞≤N +sup +s,t>0 +sup +(ξ,η)∈A1 |∂α +ξ ∂β +η (m ◦ ρs,t)(ξ, η)| < ∞. +Thus, if (ξ, η) ∈ A1, then by definition +|(∂α +ξ ∂β +η m)(sξ1, tξ2, stξ3, sη1, tη2, stη3)| ≤ ∥m∥M1 +Zs−α1−β1t−α2−β2(st)−α3−β3 +(A.1) += ∥m∥M1 +Zs−(α1+β1)+(α2+β2)(st)−(α2+β2)−(α3+β3). +Now, for (ζ1, σ1) ̸= 0 and (ζ2, ζ3, σ2, σ3) ̸= 0 denote +s = |(ζ1, σ1)|, +st = |(sζ2, ζ3, sσ2, σ3)|, +(ξ1, ξ2, ξ3) = +�ζ1 +s , ζ2 +t , ζ3 +st +� +, +(η1, η2, η3) = +�σ1 +s , σ2 +t , σ3 +st +� +. +Thus, (ξ, η) ∈ A1 and +|∂α +ζ ∂β +σm(ζ, σ)| ≲ ∥m∥M1 +Z(|ζ1| + |σ1|)−(α1+β1)+(α2+β2) +(A.2) +× +� +|((|ζ1| + |σ1|)ζ2, ζ3)| + |((|ζ1| + |σ1|)σ2, σ3)| +�−(α2+β2)−(α3+β3). +We write, with two standard partition of unity φ1 on R2 \{0} and φ2,3 on R4 \{0}, that +1 = +� +j,k∈Z +φ1(2−jξ1, 2−jη1)φ2,3(2−kξ2, 2−j−kξ3, 2−kη2, 2−j−kη3). + +40 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +Via this identity we obtain +m = +� +j,k +(φ1 ⊗ φ2,3 ◦ ρ2−j,2−k) · m += +� +j,k +(φ1 ⊗ φ2,3 · (m ◦ ρ2j,2k)) ◦ ρ2−j,2−k =: mj,k. +Since φ1 and φ2,3 are supported in ¯B(0, 2) \ B(0, 1 +2) in R2 and R4, respectively, we know +that +spt mj,k ⊂ +ρ2j,2k +� +(ξ, η) : (ξ1, η1) ∈ ¯BR2(0, 2) \ BR2(0, 1 +2), (ξ2,3, η2,3) ∈ ¯BR4(0, 2) \ BR4(0, 1 +2) +� +. +Using this we get +∥∂α∂βmj,k∥L∞ ≲ 2−(j,k,j+k)·(α+β) +and +∥∂α∂βmj,k∥L1 ≲ 2(j,k,j+k)·(2−(α+β)), +where 2 = (2, 2, 2). +Let Kj,k(y, z) = ˇmj,k and K(y, z) = � +j,k Kj,k(y, z) – then K(x − y, x − z) is the corre- +sponding kernel. Using similar analysis as in [14] we have +∥yαz ˜α∂β +y ∂γ +z Kj,k∥L∞ ≲ ∥∂α +ξ ∂ ˜α +η (ξβηγmj,k)∥L1 +≤ +� +l≤α +˜l≤˜α +�α +l +��˜α +˜l +� +∥∂l(ξβ)∂ +˜l(ηγ) · ∂α−l∂ ˜α−˜lmj,k)∥L1 +≲ 2(j,k,j+k)·(2+(β+γ)−(α+˜α)) +for multi-indices α, ˜α, β, γ. Hence, we get +|yβ+1zγ+1∂β +y ∂γ +z Kj,k(y, z)| ≲ 2(j,k,j+k)·(2+(β+γ)−(α+˜α))|yβ+1−α| · |zγ+1−˜α|. +Taking αi, ˜αi ∈ {0, N} we obtain +|yβ+1zγ+1∂β +y ∂γ +z K(y, z)| +≲ +� +j +min{(2j|y1|)β1+1, (2j|y1|)β1+1−N} min{(2j|z1|)γ1+1, (2j|z1|)γ1+1−N} +× +� +k +min{(2k|y2|)β2+1, (2k|y2|)β2+1−N} min{(2k|z2|)γ2+1, (2k|z2|)γ2+1−N} +× min{(2j+k|y3|)β3+1, (2j+k|y3|)β3+1−N} min{(2j+k|z3|)γ3+1, (2j+k|z3|)γ3+1−N}. +We can estimate the inner sum either by +� +k : 2k<1/(|y2|+|z2|) +(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1 ++ +� +k : 2k≥1/(|y2|+|z2|)≥1/(2|y2|) +(2k|y2|)β2+1−N(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1 ++ +� +k : 2k≥1/(|y2|+|z2|)>1/(2|z2|) +(2k|y2|)β2+1(2k|z2|)γ2+1−N(2j+k|y3|)β3+1(2j+k|z3|)γ3+1 + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +41 +≲ +|y2|β2+1 +(|y2| + |z2|)β2+1 · +|z2|γ2+1 +(|y2| + |z2|)γ2+1 · +(2j|y3|)β3+1 +(|y2| + |z2|)β3+1 · +(2j|z3|)γ3+1 +(|y2| + |z2|)γ3+1 =: I1 +or by +� +k : 2k<2−j/(|y3|+|z3|) +(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1 ++ +� +k : 2k≥2−j/(|y3|+|z3|)≥2−j/(2|y3|) +(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1−N(2j+k|z3|)γ3+1 ++ +� +k : 2k≥2−j/(|y3|+|z3|)>2−j/(2|z3|) +(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1−N +≲ +|y2|β2+1 +[2j(|y3| + |z3|)]β2+1 · +|z2|γ2+1 +[2j(|y3| + |z3|)]γ2+1 · +|y3|β3+1 +(|y3| + |z3|)β3+1 · +|z3|γ3+1 +(|y3| + |z3|)γ3+1 =: I2, +in both cases provided that β2 + β3 + γ2 + γ3 < N − 4. +The outer sum can then be estimated either by +� +j : 2j<1/(|y1|+|z1|) +(2j|y1|)β1+1(2j|z1|)γ1+1I1 ++ +� +j : 2j≥1/(|y1|+|z1|)≥1/(2|y1|) +(2j|y1|)β1+1−N(2j|z1|)γ1+1I1 ++ +� +j : 2j≥1/(|y1|+|z1|)>1/(2|z1|) +(2j|y1|)β1+1(2j|z1|)γ1+1−NI1 +≲ +|y1|β1+1|z1|γ1+1 +(|y1| + |z1|)β1+γ1+2 +|y2|β2+1|z2|γ2+1 +(|y2| + |z2|)β2+γ2+2 +|y3|β3+1|z3|γ3+1 +[(|y1| + |z1|)(|y2| + |z2|)]β3+γ3+2 +or, if (|y1| + |z1|)(|y2| + |z2|) ≤ |y3| + |z3|, by +� +j : 2j<(|y2|+|z2|)/(|y3|+|z3|) +(2j|y1|)β1+1(2j|z1|)γ1+1I1 ++ +� +j : |y2|+|z2| +|y3|+|z3| ≤2j≤ +1 +|y1|+|z1| +(2j|y1|)β1+1(2j|z1|)γ1+1I2 ++ +� +j : 2j>1/(|y1|+|z1|)>1/(2|z1|) +(2j|y1|)β1+1(2j|z1|)γ1+1−NI2 ++ +� +j : 2j>1/(|y1|+|z1|)>1/(2|y1|) +(2j|y1|)β1+1−N(2j|z1|)γ1+1I2 =: I + II + III + IV. +It is straightforward that +I ∼ +|y1|β1+1|z1|γ1+1 +(|y1| + |z1|)β1+γ1+2 +|y2|β2+1|z2|γ2+1 +(|y2| + |z2|)β2+γ2+2 +|y3|β3+1|z3|γ3+1 +(|y3| + |z3|)β3+γ3+2 +× +�(|y1| + |z1|)(|y2| + |z2|) +|y3| + |z3| +�β1+γ1+2 +; +III ∼ IV ∼ +|y1|β1+1|z1|γ1+1 +(|y1| + |z1|)β1+γ1+2 +|y2|β2+1|z2|γ2+1 +(|y2| + |z2|)β2+γ2+2 +|y3|β3+1|z3|γ3+1 +(|y3| + |z3|)β3+γ3+2 + +42 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN +× +�(|y1| + |z1|)(|y2| + |z2|) +|y3| + |z3| +�β2+γ2+2 +. +Lastly, we have +II ∼ +|y1|β1+1|z1|γ1+1 +(|y1| + |z1|)β1+γ1+2 +|y2|β2+1|z2|γ2+1 +(|y2| + |z2|)β2+γ2+2 +|y3|β3+1|z3|γ3+1 +(|y3| + |z3|)β3+γ3+2 +× +�(|y1| + |z1|)(|y2| + |z2|) +|y3| + |z3| +�min{β1+γ1,β2+γ2}+2 +Lβ1,β2,γ1,γ2(y, z), +where +Lβ1,β2,γ1,γ2(y, z) := 1 + log+ +� +|y3| + |z3| +(|y1| + |z1|)(|y2| + |z2|) +� +when β1 + γ1 = β2 + γ2 and Lβ1,β2,γ1,γ2(y, z) = 1 otherwise. In conclusion, we get +|∂β +y ∂γ +z K(y, z)| ≲ +1 +[(|y1| + |z1|)(|y2| + |z2|) + |y3| + |z3|]β3+γ3+4 +× +1 +(|y1| + |z1|)β1+γ1(|y2| + |z2|)β2+γ2 +× min +� +1, +�(|y1| + |z1|)(|y2| + |z2|) +|y3| + |z3| +�min{β1+γ1,β2+γ2}� +Lβ1,β2,γ1,γ2(y, z). +1.A. Partial kernel estimates. Let m ∈ M1 +Z. We define truncations of m by setting +mJ := +� +|j|≤J1,|k|≤J2 +mj,k, +J = (J1, J2) ∈ N2. +A.3. Lemma. Suppose that m ∈ M1 +Z. Let mJ be defined as above and let KJ = ˇmJ. Then for +(y2, z2) ̸= 0 ̸= (y3, z3) we have the estimate +��� +˚ +I1×I1×I1 ∂β2 +y2 ∂β3 +y3 ∂γ2 +z2 ∂γ3 +z3 KJ(x1 − y1, y2, y3, x1 − z1, z2, z3) dy1 dz1 dx1 +��� +≲ +1 +(|y2| + |z2|)β2+γ2 · +1 +(|y3| + |z3|)β3+γ3 |I1|(|I1|(|y2| + |z2|) +|y3| + |z3| ++ +|y3| + |z3| +|I1|(|y2| + |z2|))−1 +× +1 +�3 +i=2(|yi| + |zi|)2 · +� +1 + log+ +|y3| + |z3| +|I1|(|y2| + |z2|) +� +, +where I1 is an interval and β2 + β3 + γ2 + γ3 ≤ 1. +Proof. Since mJ(0, ξ2, ξ3, 0, η2, η3) = 0, using the Fourier transform we know that +(A.4) +¨ +R2 ∂β2 +y2 ∂β3 +y3 ∂γ2 +z2 ∂γ3 +z3 KJ(y1, y2, y3, z1, z2, z3) dy1 dz1 = 0. +Suppose first that |I1|(|y2| + |z2|) ≥ |y3| + |z3| – by (A.4) we may equivalently estimate +the integral over I1 × (R2 \ (I1 × I1)) instead of I1 × I1 × I1. By the kernel estimates we +have ��� +˚ +I1×(R2\(I1×I1)) +∂β2 +y2 ∂β3 +y3 ∂γ2 +z2 ∂γ3 +z3 KJ(x1 − y1, y2, y3, x1 − z1, z2, z3) dy1 dz1 dx1 +��� +≲ +ˆ +I1 +¨ +R2\(I1×I1) +1 +(|y2| + |z2|)β2+γ2 + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +43 +× +1 + log+ +|y3|+|z3| +(|x1−y1|+|x1−z1|)(|y2|+|z2|) +[(|x1 − y1| + |x1 − z1|)(|y2| + |z2|) + |y3| + |z3|]β3+γ3+4 dy1 dz1 dx1. +Note that we have either y1 ∈ R\I1 or z1 ∈ R\I1, and we may without loss of generality +assume y1 ∈ R \ I1. Then the integral is dominated by +ˆ +I1 +¨ +(R\I1)×R +1 +(|y2| + |z2|)β2+γ2 +× +1 + log+ +|y3|+|z3| +|x1−y1|(|y2|+|z2|) +[(|x1 − y1| + |x1 − z1|)(|y2| + |z2|) + |y3| + |z3|]β3+γ3+4 dy1 dz1 dx1 +≲ +1 +(|y2| + |z2|)β2+γ2+β3+γ3+4 +ˆ +I1 +ˆ +R\I1 +1 + log+ +|y3|+|z3| +|x1−y1|(|y2|+|z2|) +� +|x1 − y1| + |y3|+|z3| +|y2|+|z2| +�β3+γ3+3 dy1 dx1. +Let t := |y3|+|z3| +|y2|+|z2|. By a change of variables we reduce to +t−β3−γ3−1 +(|y2| + |z2|)β2+γ2+β3+γ3+4 +¨ +t−1I1×(R\t−1I1) +1 + log+ +1 +|x1−y1| +� +|x1 − y1| + 1 +�β3+γ3+3 dy1 dx1 +≲ +t−β3−γ3−1 +(|y2| + |z2|)β2+γ2+β3+γ3+4 +ˆ +t−1I1 +1 +� +d(x1, ∂(t−1I1)) + 1 +�β3+γ3+2 dx1 +≲ +t−β3−γ3−1 +(|y2| + |z2|)β2+γ2+β3+γ3+4 += +1 +(|y2| + |z2|)β2+γ2+3 +1 +(|y3| + |z3|)β3+γ3+1 +∼ +1 +(|y2| + |z2|)β2+γ2 · +1 +(|y3| + |z3|)β3+γ3 |I1|(|I1|(|y2| + |z2|) +|y3| + |z3| ++ +|y3| + |z3| +|I1|(|y2| + |z2|))−1 +× +1 +�3 +i=2(|yi| + |zi|)2 . +Assume then that |I1|(|y2| + |z2|) < |y3| + |z3|. This time we integrate over I1 × I1 × I1. +Proceeding as above we reduce to the integral +˚ +t−1I1×t−1I1×t−1I1 +t−β3−γ3−1 +(|y2| + |z2|)β2+γ2+β3+γ3+4 +1 + log+ +1 +(|x1−y1|+|x1−z1|) +[(|x1 − y1| + |x1 − z1|) + 1]β3+γ3+4 dy1 dz1 dx1 +≤ +¨ +t−1I1×t−1I1 +t−β3−γ3−1 +(|y2| + |z2|)β2+γ2+β3+γ3+4 +1 + log+ +1 +|x1−y1| +(|x1 − y1| + 1)β3+γ3+3 dy1 dx1 +∼ +t−β3−γ3−1 +(|y2| + |z2|)β2+γ2+β3+γ3+4 +¨ +t−1I1×t−1I1 +� +1 + log+ +1 +|x1 − y1| +� +dy1 dx1 +≲ +t−β3−γ3−1 +(|y2| + |z2|)β2+γ2+β3+γ3+4 (t−1|I1|)2(1 + log+(t|I1|−1)) + +44 +EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN += +1 +(|y2| + |z2|)β2+γ2 · +1 +(|y3| + |z3|)β3+γ3 |I1|(|I1|(|y2| + |z2|) +|y3| + |z3| ++ +|y3| + |z3| +|I1|(|y2| + |z2|))−1 +× +1 +�3 +i=2(|yi| + |zi|)2 · +� +1 + log+ +|y3| + |z3| +|I1|(|y2| + |z2|) +� +. +Thus, we are done. +□ +With (A.2) at hand, similarly as in the linear case we can derive the following. +A.5. Lemma. Let m ∈ M1 +Z and denote by Tm the corresponding Fourier multiplier operator. +Let f1, g1 ∈ L4(R), f2,3, g2,3 ∈ L4(R2) and h1 ∈ L2(R), h2,3 ∈ L2(R2). Then +⟨Tm(f1 ⊗ f2,3, g1 ⊗ g2,3), h1 ⊗ h2,3⟩ = ⟨Tmf2,3,g2,3,h2,3(f1, g1), h1⟩, +where mf2,3,g2,3,h2,3 is a standard bilinear Coifman-Meyer multiplier in R satisfying the estimates +|( d/ dξ1)α( d/ dη1)βmf2,3,g2,3,h2,3(ξ1, η1)| +≲ ∥m∥M1 +Z∥f2,3∥L4∥g2,3∥L4∥h2,3∥L2(|ξ1| + |η1|)−α−β. +Thus, Tmf2,3,g2,3,h2,3 is a convolution form bilinear Calderón-Zygmund operator. In particular, +there exists a standard bilinear Calderón-Zygmund kernel Km,f2,3,g2,3,h2,3 such that +∥Km,f2,3,g2,3,h2,3∥CZ1(R2) ≲ ∥f2,3∥L4∥g2,3∥L4∥h2,3∥L2. +Moreover, if spt f1 ∩ spt g1 ∩ spt h1 = ∅, then +⟨Tm(f1 ⊗ f2,3, g1 ⊗ g2,3), h1 ⊗ h2,3⟩ += +˚ +Km,f2,3,g2,3,h2,3(x1, y1, z1)f1(y1)g1(z1)h1(x1) dy1 dz1 dx1. +REFERENCES +[1] E. Airta, H. Martikainen, and E. Vuorinen, Product space singular integrals with mild kernel regularity, J. +Geom. Anal. 32 (2022), article number 24. ↑19 +[2] R. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. +of Math. (2) 103 (1976), no. 3, 611–635. MR412721 ↑2 +[3] D. Cruz-Uribe, J. M. Martell, and C. Pérez, Extrapolation from A∞ weights and applications, J. Funct. Anal. +213 (2004), no. 2, 412–439. MR2078632 ↑2, 34 +[4] J. Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 +(2011), no. 6, 1886–1901. ↑27, 29 +[5] X. T. Duong, J. Li, Y. Ou, J. Pipher, and B. Wick, Weighted estimates of singular integrals and commutators +in the Zygmund dilation setting, preprint, arXiv:1905.00999 (2019). ↑1, 2, 29 +[6] R. Fefferman and J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119 +(1997), no. 2, 337–369. MR1439553 ↑1, 2, 3, 39 +[7] L. Grafakos and J. M. Martell, Extrapolation of weighted norm inequalities for multivariable operators and +applications, J. Geom. Anal. 14 (2004), no. 1, 19–46. MR2030573 ↑27, 29 +[8] L. Grafakos and S. Oh, The Kato-Ponce inequality, Comm. Partial Differential Equations 39 (2014), no. 6, +1128–1157. MR3200091 ↑3 +[9] L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124– +164. MR1880324 ↑2 +[10] A. Grau de la Herrán and T. Hytönen, Dyadic representation and boundedness of nonhomogeneous Calderón- +Zygmund operators with mild kernel regularity, Michigan Math. J. 67 (2018), no. 4, 757–786. MR3877436 +↑4 +[11] Y. Han, J. Li, C.-C. Lin, and C. Tan, Singular Integrals Associated with Zygmund Dilations, J. Geom. Anal. +29 (2019), 2410–2455. ↑2 + +ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES +45 +[12] I. Holmes, S. Petermichl, and B. D. Wick, Weighted little bmo and two-weight inequalities for Journé commu- +tators, Anal. PDE 11 (2018), no. 7, 1693–1740. MR3810470 ↑1 +[13] T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. (2) 175 (2012), +no. 3, 1473–1506. MR2912709 ↑1 +[14] T. Hytönen, K. Li, H. Martikainen, and E. Vuorinen, Multiresolution analysis and Zygmund dilations, +preprint, arXiv:2203.15777 (2022). ↑1, 2, 3, 5, 14, 15, 16, 29, 31, 35, 38, 40 +[15] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. +Math. 41 (1988), no. 7, 891–907. MR951744 ↑3 +[16] A. Lerner, S. Ombrosi, C. Pérez, R. Torres, and R. Trujillo-González, New maximal functions and multiple +weights for the multilinear Calderón–Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222–1264. ↑3 +[17] K. Li, H. Martikainen, Y. Ou, and E. Vuorinen, Bilinear representation theorem, Trans. Amer. Math. Soc. +371 (2019), no. 6, 4193–4214. MR3917220 ↑26 +[18] K. Li, H. Martikainen, and E. Vuorinen, Bilinear Calderón-Zygmund theory on product spaces, J. Math. +Pures Appl. (9) 138 (2020), 356–412. MR4098772 ↑3 +[19] +, Genuinely multilinear weighted estimates for singular integrals in product spaces, Adv. Math. 393 +(2021), 108099. ↑3, 28 +[20] H. Martikainen, Representation of bi-parameter singular integrals by dyadic operators, Adv. Math. 229 (2012), +no. 3, 1734–1761. MR2871155 ↑1 +[21] D. Müller, F. Ricci, and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg +(-type) groups. I, Invent. Math. 119 (1995), no. 2, 199–233. MR1312498 ↑1 +[22] A. Nagel and S. Wainger, L2 boundedness of Hilbert transforms along surfaces and convolution operators +homogeneous with respect to a multiple parameter group, Amer. J. Math. 99 (1977), 761–785. ↑1 +[23] F. Nazarov, S. Treil, and A. Volberg, The T b-theorem on non-homogeneous spaces, Acta Math. 190 (2003), +no. 2, 151–239. MR1998349 ↑1 +[24] F. Ricci and E. M. Stein, Multiparameter singular integrals and maximal functions, Ann. Inst. Fourier +(Grenoble) 42 (1992), no. 3, 637–670. MR1182643 ↑2 +(E.A.) DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF JYVÄSKYLÄ, P.O. BOX 35 +(MAD), FI-40014 UNIVERSITY OF JYVÄKYLÄ, FINLAND +Email address: emil.t.airta@jyu.fi +(K.L.) CENTER FOR APPLIED MATHEMATICS, TIANJIN UNIVERSITY, WEIJIN ROAD 92, 300072 TIANJIN, +CHINA +Email address: kli@tju.edu.cn +(H.M.) DEPARTMENT OF MATHEMATICS AND STATISTICS, WASHINGTON UNIVERSITY IN ST. LOUIS, 1 +BROOKINGS DRIVE, ST. LOUIS, MO 63130, USA +Email address: henri@wustl.edu + diff --git a/KtFRT4oBgHgl3EQf1Dhl/content/tmp_files/load_file.txt b/KtFRT4oBgHgl3EQf1Dhl/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e77b2a3a1ab2ac60ac5b8df9522a60d2af1a2934 --- /dev/null +++ b/KtFRT4oBgHgl3EQf1Dhl/content/tmp_files/load_file.txt @@ -0,0 +1,1328 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf,len=1327 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='13655v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='CA] 31 Jan 2023 ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN ABSTRACT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We develop both bilinear theory and commutator estimates in the context of entangled dilations, specifically Zygmund dilations (x1, x2, x3) �→ (δ1x1, δ2x2, δ1δ2x3) in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We construct bilinear versions of recent dyadic multiresolution methods for Zygmund dilations and apply them to prove a paraproduct free T 1 theorem for bilinear singular in- tegrals invariant under Zygmund dilations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Independently, we prove linear commutator estimates even when the underlying singular integrals do not satisfy weighted estimates with Zygmund weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This requires new paraproduct estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' INTRODUCTION “Entangled” systems of dilations, see Nagel-Wainger [22], in the m-parameter product space Rd = �m i=1 Rdi have the general form (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , xm) �→ (δλ11 1 · · δλ1k k x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , δλm1 1 · · δλmk k xm), δ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , δk > 0, and appear naturally throughout analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For instance, in R3 the Zygmund dilations (x1, x2, x3) �→ (δ1x1, δ2x2, δ1δ2x3) are compatible with the group law of the Heisenberg group, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Müller–Ricci–Stein [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Even these simplest entangled dilations are not completely understood, especially when it comes to the associated Calderón–Zygmund type singular integral operators (SIOs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Until recently, multiresolution methods were still missing in the Zygmund dilations setting, as pointed out in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This was a big restriction on how to go about developing singular integral theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' However, the last two authors together with T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hytönen and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Vuorinen recently developed this missing Zygmund multiresolution analysis in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Such dyadic representation theorems and related multiresolution techniques had been highly influential in recent advances on SIOs and their applications (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' [12, 13, 20, 23]), but developing them in the entangled situation required new ideas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' These tools then yielded very delicate weighted norm inequalities Lp(w) → Lp(w) for general non- convolution form Zygmund singular integrals in the optimal generality of Zygmund weights (introduced by Fefferman–Pipher [6]) [w]Ap,Z := sup I∈RZ � 1 |I| ˆ I w(x) dx �� 1 |I| ˆ I w−1/(p−1)(x) dx �p−1 < ∞, 1 < p < ∞, 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 42B20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' singular integrals, multi-parameter analysis, Zygmund dilations, multiresolution analysis, weighted estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' was supported by Academy of Finland through Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 321896 “Incidences on Fractals” (PI = Orponen) and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 314829 “Frontiers of singular integrals” (PI = Hytönen).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' was supported by the National Natural Science Foundation of China through project number 12222114 and 12001400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 1 2 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN where the supremum is over Zygmund rectangles I = I1 × I2 × I3, ℓ(I3) = ℓ(I1)ℓ(I2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In fact, there is a precise threshold: if the kernel decay in terms of the deviation of z ∈ R3 from the “Zygmund manifold” |z1z2| = |z3| is not fast enough, singular integrals invariant under Zygmund dilations fail to be bounded with Zygmund weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We con- structed counterexamples and showed the delicate positive result in the optimal range using the new multiresolution analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Previous results include [5,6,11,24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This rather striking threshold for weighted estimates means that it is, in particular, unclear in what generality natural estimates for commutators [b, T] = bT − T(b · ) hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Of course, ever since the classical one-parameter result of Coifman–Rochberg–Weiss [2], stating that ∥[b, T]∥Lp→Lp ∼ ∥b∥BMO, commutator estimates have been a large and fun- damental part of the theory of SIOs and their applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Commutator estimates in the Zygmund dilation setting were previously considered in [5] using the so-called Cauchy integral trick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' That method requires weighted bounds with Zygmund weights – this is because it uses the fact that natural Zygmund adapted BMO functions generate Zyg- mund weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' But we now know [14] that such weighted bounds are quite delicate – and it turns out that the commutator bounds are true even in the regime where weighted estimates fail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We prove the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let b ∈ L1 loc and T be a linear paraproduct free Calderón-Zygmund operator adapted to Zygmund dilations as in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let θ ∈ (0, 1] be the kernel exponent measuring the decay in terms of the Zygmund ratio Dθ(x) := � |x1x2| |x3| + |x3| |x1x2| �−θ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then for all such θ we have ∥[b, T]∥Lp→Lp ≲ ∥b∥bmoZ, 1 < p < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' As weighted estimates only hold with θ = 1, this requires a proof based on the mul- tiresolution decomposition [14] and a new family of “Zygmund paraproducts”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Study- ing paraproducts is also interesting from the technical viewpoint that, generally, proofs of T1 theorems display a structural decomposition of SIOs into their cancellative parts and paraproducts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The new Zygmund theory in [14] is designed for the fully cancellative case leaving out paraproducts and BMO considerations, so this is the first paper, as far as we know, where paraproducts are considered in the Zygmund situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' They are tricky objects in the entangled situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' However, while this is also a step forward towards a full T1 theorem in the Zygmund setting, the commutator theory that we develop does not require so-called partial paraproducts, and so the paraproduct tools developed here are not yet sufficient to prove a T1 theorem in the non-cancellative case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We also men- tion that during our proof we include some results of independent interest, mainly, a new, extremely short proof of the A∞ extrapolation theorem [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Moving to a different direction, we push the Zygmund multiresolution methods [14] to the multilinear setting and study bilinear SIOs invariant under Zygmund dilations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' A classical model of an n-linear SIO T in Rd is obtained by setting T(f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , fn)(x) = U(f1 ⊗ · · · ⊗ fn)(x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , x), x ∈ Rd, fi : Rd → C, where U is a linear SIO in Rnd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' See e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Grafakos–Torres [9] for the basic theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Estimates for classical multilinear SIOs play a fundamental role in pure and applied analysis – for ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 3 example, Lp estimates for the homogeneous fractional derivative Dαf = F−1(|ξ|α �f(ξ)) of a product of two or more functions, the fractional Leibniz rules, are used in the area of dispersive equations, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Kato–Ponce [15] and Grafakos–Oh [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We do not otherwise attempt to summarize the massive body of literature here and simply mention that the closest existing result is perhaps [18], which develops multiresolution methods in the non-entangled multilinear bi-parameter case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In this paper we prove the following “paraproduct free” T1 theorem for bilinear Zyg- mund SIOs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let T be a bilinear paraproduct free Calderón-Zygmund operator adapted to Zyg- mund dilations as in Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let 1 < p1, p2 < ∞ and 1 2 < p < ∞ with 1 p := 1 p1 + 1 p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then we have ∥T(f1, f2)∥Lp ≲ ∥f1∥Lp1∥f2∥Lp2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Notice that we can conclude the full bilinear range, including the quasi-Banach range, just from the paraproduct free T1 type assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Also relevant is the fact that e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' the appearing weak boundedness condition only involves Zygmund rectangles – that is, the T1 assumptions of Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='5 are Zygmund adapted and in this respect weaker than the corresponding tri-parameter assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' It would also be very interesting to develop weighted theory with suitable kernel as- sumptions like in the linear case [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' That is, to generalize our recent paper [19] from the standard multi-parameter setting to this entangled Zygmund setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Recall that it would be key to deal with “genuine” multilinear weights, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=', only impose a joint Ap condition on the associated tuple of weights ⃗w = (w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , wn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' While such multilinear weighted estimates had been known for one-parameter SIOs for over 10 years by the influential paper [16], the multi-parameter version was only recently solved in [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The entangled situation is very difficult, though, and we do not achieve such estimates in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Indeed, we are splitting our operators in a way that is sufficient for the un- bounded estimates, but not for the weighted estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In fact, already the unweighted estimates are surprisingly delicate and the only way we found to achieve them was with using this additional decomposition and even some sparse domination tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Here is an outline of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In Section 2 we develop the fundamental Zygmund adapted multiresolution methods in the bilinear setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Section 3 introduces the sin- gular integrals and the corresponding testing conditions, and Section 4 uses the kernel estimates to bound the various coefficients arising in the multiresolution analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Sec- tion 5 contains a further decomposition of our dyadic model operators – this is then required in Section 6, where the Lp estimates of these model operators are proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Sec- tion 6 concludes with the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Section 7 contains the proof of the linear commutator estimates, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1, and the corresponding theory of product and lit- tle BMO commutators in the Zygmund setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Appendix A considers bilinear variants of the multipliers studied by Fefferman-Pipher [6] – this is motivation for the abstract definitions of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' BILINEAR ZYGMUND MULTIRESOLUTION ANALYSIS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Dyadic intervals, Zygmund rectangles and basic randomization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Given a dyadic grid D, I ∈ D and k ∈ Z, k ≥ 0, we use the following notation: (1) ℓ(I) is the side length of I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 4 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN (2) I(k) ∈ D is the kth parent of I, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=', I ⊂ I(k) and ℓ(I(k)) = 2kℓ(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (3) ch(I) is the collection of the children of I, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=', ch(I) = {J ∈ D: J(1) = I}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (4) EIf = ⟨f⟩I1I is the averaging operator, where ⟨f⟩I = ffl I f = 1 |I| ´ I f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (5) ∆If is the martingale difference ∆If = � J∈ch(I) EJf − EIf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (6) ∆I,kf or ∆k If is the martingale difference block ∆I,kf = ∆k If = � J∈D J(k)=I ∆Jf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We will have use for randomization soon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' While often the grids are fixed and we sup- press the dependence on the random parameters, it will be important to understand the definitions underneath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' So we go ahead and introduce the related notation and standard results now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let D0 be the standard dyadic grid in R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For ω ∈ {0, 1}Z, ω = (ωi)i∈Z, we define the shifted lattice D(ω) := � L + ω := L + � i: 2−i<ℓ(L) 2−iωi: L ∈ D0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let Pω be the product probability measure on {0, 1}Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We recall the following notion of a good interval from [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We say that G ∈ D(ω, k), k ≥ 2, if G ∈ D(ω) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1) d(G, ∂G(k)) ≥ ℓ(G(k)) 4 = 2k−2ℓ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Notice that for all L ∈ D0 and k ≥ 2 we have (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2) Pω({ω: L + ω ∈ D(ω, k)}) = 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The key implication (of practical use later) of G ∈ D(ω, k) is that for n ∈ Z with |n| ≤ 2k−2 we have (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) (G ∔ n)(k) = G(k), G ∔ n := G + nℓ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In fact, we will not need much more of randomization – it only remains to move the notation to our actual setting of R3 = R × R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We define for σ = (σ1, σ2, σ3) ∈ {0, 1}Z × {0, 1}Z × {0, 1}Z that D(σ) := D(σ1) × D(σ2) × D(σ3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let Pσ := Pσ1 × Pσ2 × Pσ3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For k = (k1, k2, k3), k1, k2, k3 ≥ 2, we define D(σ, k) = D(σ1, k1) × D(σ2, k2) × D(σ3, k3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We also e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' write D(σ, (k1, 0, k3)) = D(σ1, k1) × D(σ2) × D(σ3, k3), that is, a 0 will designate that we do not have goodness in that parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 5 As for most of the argument σ is fixed, it makes sense to mainly suppress it from the notation and abbreviate, whenever possible, that Dm = D(σm), D(σm, km) = Dm(km), m = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then also D = D(σ) = 3 � m=1 Dm, D(k) = 3 � m=1 Dm(km).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We define the Zygmund rectangles DZ ⊂ D by setting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4) DZ = � I = 3 � m=1 Im ∈ D: ℓ(I1)ℓ(I2) = ℓ(I3) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Obviously, DZ(k) is defined similarly as above but also requires �3 m=1 Im ∈ D(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Zygmund martingale differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Given I = �3 m=1 Im we define the Zygmund martingale difference operator ∆I,Zf := ∆I1∆I2×I3f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We highlight that the martingale difference ∆I2×I3 is the one-parameter (and not the bi-parameter) martingale difference on the rectangle I2 × I3: ∆I2×I3 = ∆I2∆I3 + EI2∆I3 + ∆I2EI3 ̸= ∆I2∆I3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Moreover, the above operators really act on the full product space but only on the given parameters – for instance, ∆I1f(x1, x2, x3) = ∆1 I1f(x1, x2, x3) = (∆I1f(·, x2, x3))(x1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We recall the following facts from [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For a dyadic λ > 0 define the dilated lattices D2,3 λ = {I2,3 ∈ D2,3 := D2 × D3 : ℓ(I3) = λℓ(I2)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The basic Zygmund expansion goes as follows: f = � I1∈D1 ∆I1f = � I1∈D1 � I2,3∈D2,3 ℓ(I1) ∆I1∆I2,3f = � I∈DZ ∆I,Zf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='6) However, the way we split our operators will not be this simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The following basic results hold for the martingale differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For I, J ∈ DZ we have ∆I,Z∆J,Zf = � ∆I,Z if I = J, 0 if I ̸= J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Notice also that the Zygmund martingale differences satisfy ˆ R ∆I,Zf dx1 = 0 and ˆ R2 ∆I,Zf dx2 dx3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Moreover, we have ˆ (∆I,Zf)g = ˆ f∆I,Zg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 6 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Haar functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For an interval J ⊂ R we denote by Jl and Jr the left and right halves of J, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We define h0 J = |J|−1/21J and h1 J = hJ = |J|−1/2(1Jl − 1Jr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The reader should carefully notice that h0 I is the non-cancellative Haar function for us and that in some other papers a different convention is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' As we mostly work on R3 = R × R2 we require some Haar functions on R2 as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For I2 × I3 ⊂ R2 and η = (η2, η3) ∈ {0, 1}2 define hη I2×I3 = hη2 I2 ⊗ hη3 I3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Similarly, as hI1 denotes a cancellative Haar function on R, we let hI2×I3 denote a can- cellative one-parameter Haar function on I2 × I3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This means that hI2×I3 = hη I2×I3 for some η = (η2, η3) ∈ {0, 1}2 \\ {(0, 0)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We only use a 0 to denote a non-cancellative Haar function: h0 I2×I3 = h(0,0) I2×I3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We suppress this η dependence in all that follows in the sense that a finite η summation is not written.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For example, given I = I1 × I2 × I3 ∈ DZ ⊂ �3 m=1 Dm decompose ∆I,Zf = ∆I1∆I2×I3f = ⟨f, hI1 ⊗ hI2×I3⟩hI1 ⊗ hI2×I3 =: ⟨f, hI,Z⟩hI,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Bilinear Zygmund shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In preparation for defining the shifts, we define the fol- lowing notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let I1, I2, I3 be rectangles, Ij = I1 j × I2 j × I3 j = I1 j × I2,3 j , and f1, f2, f3 be functions defined on R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For j1, j2 ∈ {1, 2, 3} define Aj1,j2 I1,I2,I3 = Aj1,j2 I1,I2,I3(f1, f2, f3) := 3 � j=1 ⟨fj, vIj⟩, where vIj = �hI1 j ⊗ �hI2,3 j ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' �hI1 j1 = hI1 j1 and �hI1 j = h0 I1 j , j ̸= j1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' �hI2,3 j2 = hI2,3 j2 and �hI2,3 j = h0 I2,3 j , j ̸= j2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For a dyadic λ > 0 define Dλ = {K = K1 × K2 × K3 ∈ D: λℓ(K1)ℓ(K2) = ℓ(K3)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Moreover, for a rectangle I = I1 × I2 × I3 and k = (k1, k2, k3) define I(k) = I(k1) 1 × I(k2) 2 × I(k3) 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let k = (k1, k2, k3), ki ∈ {0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' }, be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' A bilinear Zygmund shift Q = Qk of complexity k has the form ⟨Qk(f1, f2), f3⟩ = � K∈D2−k1−k2+k3 � I1,I2,I3∈DZ I(k) j =K aK,(Ij) � Aj1,j2 I1,I2,I3 − Aj1,j2 I1 j1×I2,3 1 ,I1 j1×I2,3 2 ,I1 j1×I2,3 3 ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 7 − Aj1,j2 I1 1×I2,3 j2 ,I1 2×I2,3 j2 ,I1 3×I2,3 j2 + Aj1,j2 I1 j1×I2,3 j2 ,I1 j1×I2,3 j2 ,I1 j1×I2,3 j2 � for some j1, j2 ∈ {1, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The coefficients aK,(Ij) satisfy |aK,(Ij)| ≤ |I1|1/2|I2|1/2|I3|1/2 |K|2 = |I1|3/2 |K|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now, the game is to represent bilinear singular integrals using the operators Qk and also – independently – bound the operators Qk suitably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We start with the representa- tion part and deal with bounding the operators later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We have not defined our singular integrals carefully yet, however, a lot of the required decomposition can be formally car- ried out for an arbitrary operator T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The singular integral part is later required to get sufficient decay for the appearing scalar coefficients and to handle the paraproducts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Zygmund decomposition of ⟨T(f1, f2), f3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For now, we focus on the multireso- lution part and start formally decomposing a general bilinear operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We begin by writing ⟨T(f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' f3⟩ as � I1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3∈D1 ⟨T(∆I1 1f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 2f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 3f3⟩ = � I1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3∈D1 ℓ(I1 1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='ℓ(I1 2)>ℓ(I1 3) ⟨T(∆I1 1f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 2f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 3f3⟩ + � I1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3∈D1 ℓ(I1 1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='ℓ(I1 3)>ℓ(I1 2) ⟨T(∆I1 1f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 2f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 3f3⟩ + � I1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3∈D1 ℓ(I1 2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='ℓ(I1 3)>ℓ(I1 1) ⟨T(∆I1 1f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 2f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 3f3⟩ + � I1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3∈D1 ℓ(I1 1)>ℓ(I1 2)=ℓ(I1 3) ⟨T(∆I1 1f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 2f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 3f3⟩ + � I1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3∈D1 ℓ(I1 2)>ℓ(I1 1)=ℓ(I1 3) ⟨T(∆I1 1f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 2f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 3f3⟩ + � I1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3∈D1 ℓ(I1 3)>ℓ(I1 1)=ℓ(I1 2) ⟨T(∆I1 1f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 2f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 3f3⟩ + � I1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3∈D1 ℓ(I1 1)=ℓ(I1 2)=ℓ(I1 3) ⟨T(∆I1 1f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 2f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ∆I1 3f3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We collapse the first six sums, which are not already diagonal sums, into diagonal sums � I1 1,I1 2,I1 3∈D1 ℓ(I1 1)=ℓ(I1 2)=ℓ(I1 3) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 8 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN This has the effect that whenever we have an inequality ℓ(I1 i ) > ℓ(I1 j ), the martingale difference operator ∆I1 i corresponding with the larger cube is changed to the averaging operator EI1 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, in the first three sums we now have two averaging operators, and in the next three we have one averaging operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The more averaging operators we have, the less cancellation we have, and thus the main challenge are the first three sums with the least cancellation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We mainly focus on the first three sums for this reason.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In addition, the first three sums are symmetric, so we may focus on only one of them, and choose to look at � I1 1,I1 2,I1 3∈D1 ℓ(I1 1),ℓ(I1 2)>ℓ(I1 3) ⟨T(∆I1 1f1, ∆I1 2f2), ∆I1 3f3⟩ = � I1 1,I1 2,I1 3∈D1 ℓ(I1 1)=ℓ(I1 2)=ℓ(I1 3) ⟨T(EI1 1f1, EI1 2f2), ∆I1 3f3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now, we fix I1 1, I1 2, I1 3 ∈ D1 with ℓ(I1 1) = ℓ(I1 2) = ℓ(I1 3) and repeat the argument for ⟨T(EI1 1f1, EI1 2f2), ∆I1 3f3⟩ using the lattice D2,3 ℓ(I1), where recall that for a dyadic λ > 0 we have D2,3 λ = {I2 × I3 ∈ D2,3 := D2 × D3 : ℓ(I3) = λℓ(I2)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This produces seven terms, and we again focus on � I2 1×I3 1,I2 2×I3 2,I2 3×I3 3∈D2,3 ℓ(I1) ℓ(I2 1)=ℓ(I2 2)=ℓ(I2 3) ⟨T(EI1 1EI2 1×I3 1f1, EI1 2EI2 2×I3 2f2), ∆I1 3∆I2 3×I3 3f3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Altogether, our focus, for now, is on the key term (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='8) � I1,I2,I3∈DZ ℓ(I1)=ℓ(I2)=ℓ(I3) ⟨T(EI1f1, EI2f2), ∆I3,Zf3⟩, where ℓ(I1) = ℓ(I2) = ℓ(I3) means that ℓ(Im 1 ) = ℓ(Im 2 ) = ℓ(Im 3 ), m = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This was completely generic – we now go a step further to the direction of Zygmund shifts and start introducing Haar functions into the mix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Further decomposition of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Write ⟨T(EI1f1, EI2f2), ∆I3,Zf3⟩ = ⟨T(h0 I1, h0 I2), hI3,Z⟩⟨f1, h0 I1⟩⟨f2, h0 I2⟩⟨f3, hI3,Z⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now, we perform a rather complicated decomposition of the product ⟨f1, h0 I1⟩⟨f2, h0 I2⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' To this end, start by writing ⟨f1, h0 I1⟩⟨f2, h0 I2⟩ = � ⟨f1, h0 I1⟩⟨f2, h0 I2⟩ − ⟨f1, h0 I1 3h0 I2,3 1 ⟩⟨f2, h0 I1 3h0 I2,3 2 ⟩ � + ⟨f1, h0 I1 3h0 I2,3 1 ⟩⟨f2, h0 I1 3 h0 I2,3 2 ⟩ =: A1 + A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We then further decompose A1 as follows A1 = � ⟨f1, h0 I1⟩⟨f2, h0 I2⟩ − ⟨f1, h0 I1 3h0 I2,3 1 ⟩⟨f2, h0 I1 3h0 I2,3 2 ⟩ − ⟨f1, h0 I1 1h0 I2,3 3 ⟩⟨f2, h0 I1 2h0 I2,3 3 ⟩ + ⟨f1, h0 I1 3h0 I2,3 3 ⟩⟨f2, h0 I1 3 h0 I2,3 3 ⟩ � ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 9 + � ⟨f1, h0 I1 1 h0 I2,3 3 ⟩⟨f2, h0 I1 2 h0 I2,3 3 ⟩ − ⟨f1, h0 I1 3h0 I2,3 3 ⟩⟨f2, h0 I1 3h0 I2,3 3 ⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' When we later specialize to singular integrals, we will in particular make the following assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We say that T is a paraproduct free operator, if for all cancellative Haar functions hI1 and hI2,3 we have ⟨T(1 ⊗ 1J2,3 1 , 1 ⊗ 1J2,3 2 ), hI1 ⊗ 1J2,3 3 ⟩ = ⟨T ∗,j 1 (1 ⊗ 1J2,3 1 , 1 ⊗ 1J2,3 2 ), hI1 ⊗ 1J2,3 3 ⟩ = ⟨T(1I1 1 ⊗ 1, 1I1 2 ⊗ 1), 1I1 3 ⊗ hI2,3⟩ = ⟨T ∗,j 2,3 (1I1 1 ⊗ 1, 1I1 2 ⊗ 1), 1I1 3 ⊗ hI2,3⟩ = 0 for all the adjoints j ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' With this assumption in the full summation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='8) everything else vanishes except � I1,I2,I3∈DZ ℓ(I1)=ℓ(I2)=ℓ(I3) ⟨T(h0 I1, h0 I2),hI3,Z⟩ � ⟨f1, h0 I1⟩⟨f2, h0 I2⟩ − ⟨f1, h0 I1 3×I2,3 1 ⟩⟨f2, h0 I1 3×I2,3 2 ⟩ − ⟨f1, h0 I1 1 ×I2,3 3 ⟩⟨f2, h0 I1 2×I2,3 3 ⟩ + ⟨f1, h0 I3⟩⟨f2, h0 I3⟩ � ⟨f3, hI3,Z⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' So we eliminated the paraproducts by assumption, and now we have to manipulate this remaining term to a suitable form involving shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In the above sum we will relabel I3 = I = I1 × I2 × I3 = I1 × I2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then, for n1 = (n1 1, n2 1, n3 1) = (n1 1, n2,3 1 ) we write I1 = I ∔ n1 = (I1 + n1 1ℓ(I1)) × (I2 + n2 1ℓ(I2)) × (I3 + n3 1ℓ(I3)) = (I1 ∔ n1 1) × (I2,3 ∔ n2,3 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We write I2 similarly as I2 = I ∔ n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Notice that if n1 1 = n1 2 = 0, then the term inside the summation vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Similarly, if n2,3 1 = n2,3 2 = (0, 0), the term inside the summation vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' So we need to study � n1,n2∈Z3 max(|n1 1|,|n1 2|)̸=0 max(|n2 1|,|n2 2|)̸=0 or max(|n3 1|,|n3 2|)̸=0 � I∈DZ cI,n1,n2, where cI,n1,n2 = ⟨T(h0 I∔n1, h0 I∔n2), hI,Z⟩ � ⟨f1, h0 I∔n1⟩⟨f2, h0 I∔n2⟩ − ⟨f1, h0 I1×(I2,3∔n2,3 1 )⟩⟨f2, h0 I1×(I2,3∔n2,3 2 )⟩ − ⟨f1, h0 (I1∔n1 1)×I2,3⟩⟨f2, h0 (I1∔n1 2)×I2,3⟩ + ⟨f1, h0 I⟩⟨f2, h0 I⟩ � ⟨f3, hI,Z⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We write � n1,n2∈Z3 max j=1,2 |n1 j|̸=0 max j=1,2 |n2 j|̸=0 or max j=1,2 |n3 j|̸=0 � I∈DZ cI,n1,n2 = ∞ � k1,k2,k3=2 � n1,n2∈Z3 max j=1,2 |nm j |∈(2km−3,2km−2] m=1,2,3 � I∈DZ cI,n1,n2 10 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN + ∞ � k1,k2=2 � n1,n2∈Z3 max j=1,2 |nm j |∈(2km−3,2km−2] m=1,2 n3 1=n3 2=0 � I∈DZ cI,n1,n2 + Σsym, where Σsym is symmetric to the second term and has n2 1 = n2 2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Recall how everything implicitly depends on the random parameter σ, so that we can average over it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By independence, we have by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2) that Eσ ∞ � k1,k2,k3=2 � n1,n2∈Z3 max j=1,2 |nm j |∈(2km−3,2km−2] m=1,2,3 � I∈DZ cI,n1,n2 = 8Eσ ∞ � k1,k2,k3=2 � n1,n2∈Z3 max j=1,2 |nm j |∈(2km−3,2km−2] m=1,2,3 � I∈DZ(k) cI,n1,n2, k = (k1, k2, k3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='9) For the other two terms, where n2 j = 0 or n3 j = 0, we perform the above but do not add goodness to the second and third parameters, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For example, we have Eσ ∞ � k1,k2=2 � n1,n2∈Z3 max j=1,2 |nm j |∈(2km−3,2km−2] m=1,2 n3 1=n3 2=0 � I∈DZ cI,n1,n2 = 4Eσ ∞ � k1,k2=2 � n1,n2∈Z3 max j=1,2 |nm j |∈(2km−3,2km−2] m=1,2 n3 1=n3 2=0 � I∈DZ(k1,k2,0) cI,n1,n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Continuing with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='9), we write it as C8Eσ ∞ � k1,k2,k3=2 (|k| + 1)2ϕ(k) � K∈Dλ � I∈DZ(k) I(k)=K � n1,n2∈Z3 maxj=1,2 |nm j |∈(2km−3,2km−2] m=1,2,3 cI,n1,n2 C(|k| + 1)2ϕ(k), where Dλ = {K = K1 × K2 × K3 ∈ D: λℓ(K1)ℓ(K2) = ℓ(K3)}, λ = 2k3−k1−k2, ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 11 and C is some suitably large constant depending on T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Recall that by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) we also have (I ∔ n1)(k) = (I ∔ n2)(k) = I(k) = K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We have arrived to a point where we cannot go further without talking about singular integrals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Indeed, we need kernel estimates to control the coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' But on a structural level (with the paraproduct free assumption), we have obtained a reasonable representa- tion of the main term (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='8) in terms of sums of bilinear Zygmund shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' BILINEAR ZYGMUND SINGULAR INTEGRALS We begin by defining the required kernel estimates and cancellation conditions for bilinear singular integrals T invariant under Zygmund dilations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For motivation for the form of the kernel estimates, see Appendix A for kernel bounds of bilinear multipliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This viewpoint makes the kernel estimates natural – on the other hand, they are also of the right form so that we will be able to bound the coefficients from the multiresolution decomposition and obtain reasonable decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Full kernel representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Our bilinear singular integral T invariant under Zyg- mund dilations is related to a full kernel K in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The kernel K is a function K : (R3 × R3 × R3) \\ ∆ → C, where ∆ = {(x, y, z) ∈ R3 × R3 × R3 : xi = yi = zi for at least one i = 1, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We look at the action of T on rectangles like I1 × I2 × I3 =: I1 × I2,3 in R3 = R × R × R = R × R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' So let Ii = I1 i × I2 i × I3 i be rectangles, i = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Assume that there exists i1, i2, j1, j2 ∈ {1, 2, 3} so that I1 i1 and I1 i2 are disjoint and also I2,3 j1 and I2,3 j2 are disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then we have the full kernel representation ⟨T(1I1, 1I2), 1I3⟩ = ˚ K(x, y, z)1I1(x)1I2(y)1I3(z) dx dy dz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The kernel K satisfies the following estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' First, we define the decay factor Dθ(x, y) = ��2 i=1(|xi| + |yi|) |x3| + |y3| + |x3| + |y3| �2 i=1(|xi| + |yi|) �−θ , θ ∈ (0, 2], and the tri-parameter bilinear size factor S(x, y) = 3 � i=1 1 � |xi| + |yi| �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We demand the following size estimate (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1) |K(x, y, z)| ≲ Dθ(x − z, y − z)S(x − z, y − z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 12 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN Let now c = (c1, c2, c3) be such that |ci − xi| ≤ max(|xi − zi|, |yi − zi|)/2 for i = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We assume that K satisfies the mixed size and Hölder estimates |K((c1,x2, x3), y, z) − K(x, y, z)| ≲ � |c1 − x1| |x1 − z1| + |y1 − z1| �α1Dθ(x − z, y − z)S(x − z, y − z), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2) and |K((x1, c2, c3), y, z) − K(x, y, z)| ≲ � |c2 − x2| |x2 − z2| + |y2 − z2| + |c3 − x3| |x3 − z3| + |y3 − z3| �α23Dθ(x − z, y − z)S(x − z, y − z), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) where α1, α23 ∈ (0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Finally, we assume that K satisfies the Hölder estimate |K(c, y, z) − K((c1, x2, x3), y, z) − K((x1, c2, c3), y, z) + K(x, y, z)| ≲ � |c1 − x1| |x1 − z1| + |y1 − z1| �α1� |c2 − x2| |x2 − z2| + |y2 − z2| + |c3 − x3| |x3 − z3| + |y3 − z3| �α23 × Dθ(x − z, y − z)S(x − z, y − z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4) We also demand the symmetrical mixed size and Hölder estimates and Hölder estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For j = 1, 2, define the adjoint kernels K∗,j, K∗,j 1 and K∗,j 2,3 via the natural formulas, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=', K∗,1(x, y, z) = K(z, y, x), K∗,2 1 (x, y, z) = K(x, (z1, y2, y3), (y1, z2, z3)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We assume that each adjoint kernel satisfies the same estimates as the kernel K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Partial kernel representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let �θ ∈ (0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For every interval I1 we assume that there exists a kernel KI1 : (R2 × R2 × R2) \\ {(x2,3, y2,3, z2,3): xi = yi = zi for i = 2 or i = 3} → C, so that if I2,3 j1 and I2,3 j2 are disjoint for some j1, j2 ∈ {1, 2, 3}, then ⟨T(1I1 ⊗ 1I2,3 1 , 1I1 ⊗ 1I2,3 2 ), 1I1 ⊗ 1I2,3 3 ⟩ = ˚ KI1(x2,3, y2,3, z2,3)1I2,3 1 (x2,3)1I2,3 2 (y2,3)1I2,3 3 (z2,3) dx2,3 dy2,3 dz2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We demand the following estimates for the kernel KI1 : The size estimate |KI1(x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' z2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)| ≲ �|I1|(|x2 − z2| + |y2 − z2|) |x3 − z3| + |y3 − z3| + |x3 − z3| + |y3 − z3| |I1|(|x2 − z2| + |y2 − z2|) �−�θ |I1| �3 i=2 � |xi − zi| + |yi − zi| �2 and the continuity estimate |KI1(c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' z2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) − KI1(x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' z2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)| ≲ � |c2 − x2| |x2 − z2| + |y2 − z2| + |c3 − x3| |x3 − z3| + |y3 − z3| �α23 × �|I1|(|x2 − z2| + |y2 − z2|) |x3 − z3| + |y3 − z3| + |x3 − z3| + |y3 − z3| |I1|(|x2 − z2| + |y2 − z2|) �−�θ |I1| �3 i=2 � |xi − zi| + |yi − zi| �2 ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 13 whenever c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 = (c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' c3) is such that |ci − xi| ≤ max(|xi − zi|,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' |yi − zi|)/2 for i = 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We also assume the symmetrical continuity estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We assume similar one-parameter conditions for the other partial kernel representa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' That is, for every rectangle I2,3, there exists a standard bilinear Calderón-Zygmund kernel KI2,3 so that if I1 j1 and I1 j2 are disjoint for some j1, j2 ∈ {1, 2, 3}, then ⟨T(1I1 1 ⊗ 1I2,3, 1I1 2 ⊗ 1I2,3), 1I1 3 ⊗ 1I2,3⟩ = ˚ KI2,3(x1, y1, z1)1I1 1 (x1)1I1 2 (y1)1I1 3(z1) dx1 dy1 dz1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The kernel KI2,3 satisfies the standard estimates |KI2,3(x1, y1, z1)| ≤ CKI2,3 1 (|x1 − z1| + |y1 − z1|)2 , |KI2,3(x1, y1, z1) − KI2,3(c1, y1, z1)| ≤ CKI2,3 |x1 − c1|α1 (|x1 − z1| + |y1 − z1|)2+α1 whenever |x1 − c1| ≤ max(|x1 − z1|, |y1 − z1|)/2, and the symmetric continuity estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The smallest possible constant CKI2,3 in these inequalities is denoted by ∥KI2,3∥CZα1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We then assume that ∥KI2,3∥CZα1 ≲ |I2,3|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Cancellation assumptions: paraproduct free operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We say that T is a para- product free operator, if for all cancellative Haar functions hI1 and hI2,3 we have ⟨T(1 ⊗ 1J2,3 1 , 1 ⊗ 1J2,3 2 ), hI1 ⊗ 1J2,3 3 ⟩ = ⟨T ∗,j 1 (1 ⊗ 1J2,3 1 , 1 ⊗ 1J2,3 2 ), hI1 ⊗ 1J2,3 3 ⟩ = ⟨T(1I1 1 ⊗ 1, 1I1 2 ⊗ 1), 1I1 3 ⊗ hI2,3⟩ = ⟨T ∗,j 2,3 (1I1 1 ⊗ 1, 1I1 2 ⊗ 1), 1I1 3 ⊗ hI2,3⟩ = 0 for all the adjoints j ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We always assume that all bilinear Zygmund operators in this article satisfy this cancellation condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The intention of this condition is to guarantee that our operator is representable using cancellative shifts only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Weak boundedness property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We say that T satisfies the weak boundedness prop- erty if |⟨T(1I, 1I), 1I⟩| ≲ |I| for all Zygmund rectangles I = I1 × I2 × I3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We say that a bilinear operator T is a paraproduct free Calderón- Zygmund operator adapted to Zygmund dilations (CZZ operator) if T has the full kernel representation, the partial kernel representations, is paraproduct free and satisfies the weak boundedness property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ESTIMATES FOR THE SHIFT COEFFICIENTS We now move to consider the shift coefficients that appeared in the decomposition of T in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' When T is a CZZ operator, we can estimate them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Without loss of generality, we estimate ⟨T(h0 I ˙+n1, h0 I ˙+n2), hI,Z⟩ for I ∈ DZ and different values of n1, n2 ∈ Z3, and without loss of generality we assume θ = ˜θ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The coefficients related to the other terms of the decomposition (other than the main term (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='8)) may have a different set of Haar functions, but they are treated similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 14 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN We show that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1) |⟨T(h0 I ˙+n1, h0 I ˙+n2), hI,Z⟩| ≲ (|k| + 1)2ϕ(k) |I| 3 2 |K|2 , where ϕ(k) := 2−k1α1−k2 min{α23,θ}−max{k3−k1−k2,0}θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For terms of this particular form, we would not actually need to analyze some of the diagonal cases (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' However, these diagonal terms would appear in some other forms, so it makes sense to deal with them here (even though in the real situation the Haar functions might be permuted differently, this does not matter, and the calcula- tions we present apply).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' It is very helpful to study the linear case [14], since the kernel estimates are relatively involved and we will not repeat every detail when they are simi- lar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let mi := maxj=1,2 |ni j|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The analysis of the coefficients splits to combinations of \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 |m1| ∈ (2k1−3, 2k1−2], k1 = 3, 4, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , (Separated) |m1| = 1, (Adjacent) |m1| = 0, (Identical) and \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 |mi| ∈ (2ki−3, 2ki−2], i = 2, 3, ki = 3, 4, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , (Separated) |m2| < 2 and |m3| ∈ (2k3−3, 2k3−2], k3 = 3, 4, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , (Separated) |m2| ∈ (2k2−3, 2k2−2] and |m3| < 2 k2 = 3, 4, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , (Separated) |m2| = 1 and |m3| ≤ 1 (Adjacent) |m2| = 0 and |m3| = 1 (Adjacent) m2 = 0 = m3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (Identical) It is enough to consider mi = ni 1 since the case mi = ni 2 is symmetrical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We will not go through explicitly every combination – rather, we choose some illustrative examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='.1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Separated/Separated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We begin with the case |ni 1| ≥ 2 for all i = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hence, |xi − zi| ≥ |ni 1|ℓ(Ii) ≥ 2ki−3ℓ(Ii) and |xi − zi| ≤ |ni 1|ℓ(Ii) + 2ℓ(Ii) ≤ 2ki−1ℓ(Ii) for i = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Moreover, |xi − zi| ≥ |yi − zi|/2 ≥ 0 for i = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, we have the estimate ��2 i=1(|xi − zi| + |yi − zi|) (|x3 − z3| + |y3 − z3|) + |x3 − z3| + |y3 − z3| �2 i=1(|xi − zi| + |yi − zi|) �−θ ∼ ��2 i=1 |xi − zi| |x3 − z3| + |x3 − z3| �2 i=1 |xi − zi| �−θ ∼ ��2 i=1 2kiℓ(Ii) 2k3ℓ(I3) + 2k3ℓ(I3) �2 i=1 2kiℓ(Ii) �−θ = (2k1+k2−k3 + 2k3−k1−k2)−θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 15 Using the cancellation of the Haar function we then have ��� ˚ K(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' z)h0 I ˙+n1(x)h0 I ˙+n2(y)hI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='Z(z) dx dy dz ��� = ��� ˚ � K(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' z) − K(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (cI1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' z2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)) − K(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (z1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' cI2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)) + K(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' cI) � × h0 I ˙+n1(x)h0 I ˙+n2(y)hI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='Z(z) dx dy dz ��� ≲ ˚ 2−k1α1(2−k2 + 2−k3)α23 (2k1+k2−k3 + 2k3−k1−k2)−θ |K|2 h0 I ˙+n1(x)h0 I ˙+n2(y)h0 I(z) dx dy dz = 2−k1α1(2−k2 + 2−k3)α23(2k1+k2−k3 + 2k3−k1−k2)−θ |I| 3 2 |K|2 ≤ ϕ(k) |I| 3 2 |K|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let us then consider the case, where we have separation in the parameter 3 but not in the parameter 2 – that is, |n2 1| < 2 ≤ |n3 1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then ��2 i=1(|xi − zi| + |yi − zi|) |x3 − z3| + |y3 − z3| + |x3 − z3| + |y3 − z3| �2 i=1(|xi − zi| + |yi − zi|) �−θ (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2) ∼ �|x2 − z2| + |y2 − z2| 2k3−k1|I2| + 2k3−k1|I2| |x2 − z2| + |y2 − z2| �−θ ≲ � |x2 − z2| 2k3−k1|I2| + 2k3−k1|I2| |x2 − z2| �−θ + � |y2 − z2| 2k3−k1|I2| + 2k3−k1|I2| |y2 − z2| �−θ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' and so using the mixed estimates ��� ˚ K(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' z)h0 I ˙+n1(x)h0 I ˙+n2(y)hI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='Z(z) dx dy dz ��� = ��� ˚ � K(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' z) − K(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (cI1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' z2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)) � h0 I ˙+n1(x)h0 I ˙+n2(y)hI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='Z(z) dx dy dz ��� ≲ ˚ 2−k1α1|K1|−2|K3|−2 � |x2−z2|+|y2−z2| 2k3−k1|I2| + 2k3−k1|I2| |x2−z2|+|y2−z2| �−θ � |x2 − z2| + |y2 − z2| �2 × h0 I ˙+n1(x)h0 I ˙+n2(y)h0 I(z) dx dy dz = 2−k1α1 |I1| 3 2|I3| 3 2 |K1|2|K3|2 ˚ � |x2−z2|+|y2−z2| 2k3−k1|I2| + 2k3−k1|I2| |x2−z2|+|y2−z2| �−θ � |x2 − z2| + |y2 − z2| �2 × h0 I2 ˙+n2 1(x2)h0 I2 ˙+n2 2(y2)h0 I2(z2) dx2 dy2 dz2 ≲ ϕ(k) |I| 3 2 |K|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We note that the last inequality requires a case study (see also [14, Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='5]) and we used the standard estimate ˆ Rd du (r + |u0 − u|)d+α ≲ r−α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) Symmetrical estimates hold if |n2 1| ≥ 2 > |n3 1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 16 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='.2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Adjacent/Separated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We look at the example case |n2 1| ≥ 2 > |n3 1| and |n1 1| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By the size estimate we have |⟨T(h0 I ˙+n1, h0 I ˙+n2), hI,Z⟩| ≲ |I2|3/2 |I1,3|3/2|K2|2 ¨ � (|x1−z1|+|y1−z1|)2k2ℓ(I2) |x3−z3|+|y3−z3| + |x3−z3|+|y3−z3| (|x1−z1|+|y1−z1|)2k2ℓ(I2) �−θ � |x1 − z1| + |y1 − z1| �2� |x3 − z3| + |y3 − z3| �2 × 1I1,3 ˙+n1,3 1 (x1,3)1I1,3 ˙+n1,3 2 (y1,3)1I1,3(z1,3) dx1,3 dy1,3 dz1,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Similarly as (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2), we can split the integral into two terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) we reduce the problem to estimating ¨ � (|x1−z1|+|y1−z1|)2k2ℓ(I2) |x3−z3| + |x3−z3| (|x1−z1|+|y1−z1|)2k2ℓ(I2) �−θ � |x1 − z1| + |y1 − z1| �2|x3 − z3| × 1I1,3 ˙+n1,3 1 (x1,3)1I1 ˙+n1 2(y1)1I1,3(z1,3) dx1,3 dy1 dz1,3 + ¨ � (|x1−z1|+|y1−z1|)2k2ℓ(I2) |y3−z3| + |y3−z3| � |x1−z1|+|y1−z1| � 2k2ℓ(I2) �−θ (|x1 − z1| + |y1 − z1|)2|y3 − z3| × 1I1,3 ˙+n1,3 1 (x1,3)1I1,3 ˙+n1,3 2 (y1,3)1I1(z1) dx1,3 dy1,3 dz1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Since they are similar, we only bound the first one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Note that �(|x1 − z1| + |y1 − z1|)2k2ℓ(I2) |x3 − z3| + |x3 − z3| (|x1 − z1| + |y1 − z1|)2k2ℓ(I2) �−θ × (|x1 − z1| + |y1 − z1|)−2 ≤ �(|x1 − z1| + |y1 − z1|)2k2ℓ(I2) |x3 − z3| �−θ (|x1 − z1| + |y1 − z1|)−2χ{|x1−z1|2k2ℓ(I2)≥|x3−z3|} + � |x3 − z3| (|x1 − z1| + |y1 − z1|)2k2ℓ(I2) �−θ (|x1 − z1| + |y1 − z1|)−2χ{|x1−z1|2k2ℓ(I2)<|x3−z3|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then apply (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) to the integral over y1, then by following the linear case [14, Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='11] we get that the above integral is bounded by |I1,3|k22−k2θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, we get |⟨T(h0 I ˙+n1, h0 I ˙+n2), hI,Z⟩| ≲ |I2|3/2 |I1,3|1/2|K2|2 k22−k2θ ≲ k2ϕ(k) |I| 3 2 |K|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='.3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Adjacent/Adjacent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We again have no major changes to the linear case but in order to use the estimate (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4) ˆ R � t |u| + |u| t �−θ t|u| |f(u)| du ≲ t−1Mf(0) ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 17 we need to first use (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) repeatedly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For example, consider |n1 1| = 1 and |n2 1| = 1, |n3 1| ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By the size estimate of the kernel, we need to control � �2 i=1(|xi−zi|+|yi−zi|) |x3−z3|+|y3−z3| + |x3−z3|+|y3−z3| �2 i=1(|xi−zi|+|yi−zi|) �−θ �3 i=1 � |xi − zi| + |yi − zi| �2 h0 I ˙+n1(x)h0 I ˙+n2(y)h0 I(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' As before, we split this into two terms, one of them is � �2 i=1(|xi−zi|+|yi−zi|) |x3−z3| + |x3−z3| �2 i=1(|xi−zi|+|yi−zi|) �−θ �3 i=1 � |xi − zi| + |yi − zi| �2 h0 I ˙+n1(x)h0 I ˙+n2(y)h0 I(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We then apply (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) to the integral over y3, and then use the previous trick repeatedly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' That is, we write ��2 i=1(|xi − zi| + |yi − zi|) |x3 − z3| + |x3 − z3| �2 i=1(|xi − zi| + |yi − zi|) �−θ ≤ ��2 i=1(|xi − zi| + |yi − zi|) |x3 − z3| �−θ χ{|x1−z1|(|x2−z2|+|y2−z2|)≥|x3−z3|} + � |x3 − z3| �2 i=1(|xi − zi| + |yi − zi|) �−θ χ{|x1−z1|(|x2−z2|+|y2−z2|)<|x3−z3|} and apply (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) to the integral over y1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then, after a similar argument on y2, we finally arrive at 1 |I| 1 2 ¨ � �2 i=1 |xi−zi| |x3−z3| + |x3−z3| �2 i=1 |xi−zi| �−θ �3 i=1 |xi − zi| h0 I ˙+n1(x)h0 I(z) dx dz ≲ 1 |I| 1 2 ≲ |I| 3 2 |K|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='.4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Adjacent/Identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We consider the case |n1 1| = 1 and n2 j = n3 j = 0, j = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We write � Q2,3 1 ,Q2,3 2 ,Q2,3 3 ∈ch(I2,3) ⟨T(h0 I ˙+n11Q2,3 1 , h0 I ˙+n21Q2,3 2 ), hI,Z1Q2,3 3 ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' It is enough to consider Q2,3 1 = Q2,3 2 = Q2,3 3 since otherwise we have adjacent intervals, and we are back in the Adjacent/Adjacent case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hence, the partial kernel representation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='B yields that ��� ± |I2,3|− 3 2 ˚ KQ2,3 1 h0 I1 ˙+n1 1h0 I1 ˙+n1 2hI1 ��� ≲ |I2,3| 3 2 |K2,3|2 ˚ 1 (|x1 − z1| + |y1 − z1|)2 h0 I1 ˙+n1 1(x1)h0 I1 ˙+n1 2(y1)hI1(z1) dx1 dy1 dz1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then, first using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) and then standard integration methods we get the following in- equality ˚ 1 (|x1 − z1| + |y1 − z1|)2 h0 I1 ˙+n1 1(x1)h0 I1 ˙+n1 2(y1)hI1(z1) dx1 dy1 dz1 18 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN ≲ 1 |I1| 1 2 ¨ 1 |x1 − z1|h0 I1 ˙+n1 1(x1)hI1(z1) dx1 dz1 ≲ 1 |I1| 1 2 ∼ |I1| 3 2 |K1|2 as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='.5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Identical/Identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Just like in above we split the pairing to � Q1 1,Q1 2,Q1 3∈ch(I1) � Q2,3 1 ,Q2,3 2 ,Q2,3 3 ∈ch(I2,3) ⟨T(h0 I ˙+n1(1Q1 1 ⊗ 1Q2,3 1 ), h0 I ˙+n2(1Q1 2 ⊗ 1Q2,3 2 )), hI,Z(1Q1 3 ⊗ 1Q2,3 3 )⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The cases when Q1 i ̸= Q1 j for some i, j = 1, 2, 3, i ̸= j are essentially included in the cases of the two previous subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hence, we consider Q1 1 = Q1 2 = Q1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then there are two cases left, that is, either Q2,3 i ̸= Q2,3 j for some i, j = 1, 2, 3, i ̸= j, or Q2,3 1 = Q2,3 2 = Q2,3 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Beginning from the latter one, we directly see that |⟨T(1Q1 1 ⊗ 1Q2,3 1 , 1Q1 1 ⊗ 1Q2,3 1 ), 1Q1 1 ⊗ 1Q2,3 1 ⟩| ≲ |Q1 1||Q2,3 1 | by the weak boundedness property 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hence, we get the desired bound |⟨T(h0 I ˙+n1(1Q1 1 ⊗ 1Q2,3 1 ), h0 I ˙+n2(1Q1 1 ⊗ 1Q2,3 1 )), hI,Z(1Q1 1 ⊗ 1Q2,3 1 )⟩| ≲ |Q1| |I| 3 2 ≤ |I| 3 2 |K|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We handle the remaining case Q2,3 i ̸= Q2,3 j for some i, j = 1, 2, 3, i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By the partial kernel representation and its size estimate we get ��� ± |I|− 3 2 ˚ KQ1 11Q2,3 1 1Q2,3 2 1Q2,3 3 ��� ≲ 1 |I1| 1 2 1 |I2,3| 3 2 ˚ �|I1|(|x2 − z2| + |y2 − z2|) |x3 − z3| + |y3 − z3| + |x3 − z3| + |y3 − z3| |I1|(|x2 − z2| + |y2 − z2|) �−θ × 3 � i=2 1 � |xi − zi| + |yi − zi| �2 1Q2,3 1 1Q2,3 2 1Q2,3 3 dx2,3 dy2,3 dz2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then using similar arguments as in the Adjacent/Adjacent case and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4) gives us the desired bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' STRUCTURAL DECOMPOSITION OF ZYGMUND SHIFTS In this section we decompose the bilinear Zygmund shifts (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='D) as a sum of operators with simpler cancellation properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The decomposition is not optimal (in the sense that weighted estimates with Zygmund weights cannot be obtained via this) – however, it is sufficient for unweighted boundedness in the full range that we later obtain via tri-parameter theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Recall that k = (k1, k2, k3) is the complexity of the bilinear Zygmund shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 19 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Bilinear operators of the form (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2) S(l1,l2,l3)(f1, f2) = � L∈Dλ � I (ℓj) j =L aL,(Ij)⟨f1, hI1 1 ⊗ h0 I2,3 1 ⟩⟨f2, h0 I1 2 ⊗ hI2,3 2 ⟩hI3, where λ = 2n, n ∈ Z, |n| ≤ 3 max(ki) and |aL,(Ij)| ≤ |Ij| 3 2 |L|2 , are tri-parameter bilinear shifts of Zygmund nature if at least one rectangle I1 i1 ×I2,3 i2 , i1 = 1, 3, i2 = 2, 3 is a Zygmund rectangle and (1) ℓi j ≤ ki for all i, j = 1, 2, 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (2) (ℓ3 j − ℓ2 j)+ ≤ (k3 − k2)+ for all j = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Moreover, any adjoint S j∗ 1,j∗ 2,3 (l1,l2,l3), j1, j2,3 ∈ {0, 1, 2}, is also considered to be a tri-parameter bilinear shift of Zygmund nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Here, the ad- joint j∗ 2,3 means that, for example, in case j2,3 = 1 functions h0 I2,3 1 and hI2,3 3 switch places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Note that these operators share a ‘weaker’ Zygmund structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Ideally, we would want to have I3 ∈ DZ and I1 1 × I2,3 2 ∈ DZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let Qk, k = (k1, k2, k3), be a bilinear Zygmund shift operator as defined in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then Qk = C c � u=1 k1−1 � l1=0 k2,3−1 � l2,3=0 Su, where Su is a bilinear operator as in Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1 with complexity depending on l and k,and k2,3−1 � l2,3=0 := \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 � 0≤l2=l3≤k2−1 + � l2=k2 k2≤l3≤k3−1 , if k3 ≥ k2 � 0≤l2=l3≤k3−1 + � k3≤l2≤k2−1 l3=k3 , if k3 < k2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The argument is similar in spirit to the purely bi-parameter decomposition in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For notational convenience,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' we consider a shift Qk of the particular form ⟨Qk(f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' f3⟩ = � K∈D2−k1−k2+k3 � I1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3∈DZ I(k) j =K aK,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(Ij) � A3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 I1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3 − A3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3 − A3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 I1 1×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3 + A3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 I3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3 � = � K∈D2−k1−k2+k3 � I1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3∈DZ I(k) j =K aK,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(Ij)⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI3⟩ � ⟨f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 I1⟩⟨f2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 I2⟩ − ⟨f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 I1 3h0 I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 1 ⟩⟨f2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 I1 3h0 I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 2 ⟩ 20 EMIL AIRTA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' KANGWEI LI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' AND HENRI MARTIKAINEN − ⟨f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 I1 1h0 I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 ⟩⟨f2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 I1 2h0 I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 ⟩ + ⟨f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 I3⟩⟨f2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 I3⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' There is no essential difference in the general case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let us also use the usual abbreviation D2−k1−k2+k3 = Dλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We define bK,(Ij) = |I1|aK,(Ij) and B3,3 I1,I2,I3 = ⟨f1⟩I1⟨f2⟩I2⟨f3, hI3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We can write the shift Qk using these by replacing a with b and A with B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Recall the notation ∆l1 K1f = � L1∈D1 (L1)(l1)=K1 ∆L1f, P k1 K1f = k1−1 � l1=0 ∆l1 K1f, EK1f = ⟨f⟩K11K1, Ek1 K1f = � L1∈D1 (L1)(k1)=K1 ⟨f⟩L11L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let us define (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4) P k2,3 K2,3f := k2,3−1 � l2,3=0 ∆(l2,l3) K2,3 f := \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 k2−1 � l2=0 ∆l2 K2,3f + k3−1 � l3=k2 Ek2 K2∆l3 K3f, if k3 ≥ k2 k3−1 � l3=0 ∆l3 K2,3f + k2−1 � l2=k3 ∆l2 K2Ek3 K3f, if k3 < k2, where we have the standard one-parameter definition ∆li K2,3f = � L2,3∈D2,3 (L2)(li)×(L3)(li)=K2×K3 ∆L2,3f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We also use a similar shorthand for the expanded martingale blocks k2,3−1 � l2,3=0 ∆(l2,l3) K2,3 f = k2,3−1 � l2,3=0 � (L2,3)(l2,3)=K2,3 ⟨f, hL2,3⟩hL2,3, where we allow, for example, that hL2,3 = h0 L2 ⊗ hL3 when k3 > k2 and l2 = k2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Using this notation we define the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For a cube I and integers l, j0 ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' } we define (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='5) DI,l(j, j0) = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 EI, if j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , j0 − 1}, P l I, if j = j0, id, if j ∈ {j0 + 1, j0 + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' }, where id denotes the identity operator, and if we have a rectangle I2,3 and a tuple l2,3 we use the modified P l2,3 I2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 21 Let I1, I2, I3 be as in the summation of Qk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We use the above notation in parameter one DI1,l1(j, j0) and for the other two parameters we use DI2,3,l2,3(j, j0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, expanding to the martingale blocks leads us to B3,3 I1,I2,I3 = 3 � m1,m2=1 2 � j=1 ⟨D1 K1,k1(j, m1)D2,3 K2,3,k2,3(j, m2)fj⟩Ij⟨f3, hI3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hence, we may write � K∈Dλ � I1,I2,I3∈DZ I(k) j =K B3,3 I1,I2,I3 =: 3 � m1,m2=1 Σ1 m1,m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Also,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' we have that B3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 = 3 � m2=1 2 � j=1 ⟨D2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 K2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3(j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' m2)fj⟩I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 j ⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI3⟩ and B3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 I1 1×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 = 3 � m1=1 2 � j=1 ⟨D1 K1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k1(j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' m1)fj⟩I1 j ×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 ⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI3⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' which gives that � K∈Dλ � I1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3∈DZ I(k) j =K B3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 =: 3 � m2=1 Σ2 m2 and � K∈Dλ � I1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3∈DZ I(k) j =K B3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 I1 1×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 2×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I1 3×I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 3 =: 3 � m1=1 Σ3 m1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Finally, we just set � K∈Dλ � I1,I2,I3∈DZ I(k) j =K B3,3 I3,I3,I3 =: Σ4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, we have the following decomposition ⟨Qk(f1, f2), f3⟩ = 2 � m1,m2=1 Σ1 m1,m2 + 2 � m2=1 (Σ1 3,m2 − Σ2 m2) + 2 � m1=1 (Σ1 m1,3 − Σ3 m1) + (Σ1 3,3 − Σ2 3 − Σ3 3 + Σ4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 22 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN First, we take one Σ1 m1,m2 with m1, m2 ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For notational convenience, we choose the case m1 = m2 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Recall that Σ1 2,2 = � K∈Dλ � I1,I2,I3∈DZ I(k) j =K bK,(Ij)⟨f1⟩K⟨P k1 K1P k2,3 K2,3f2⟩I2⟨f3, hI3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We expand ⟨P k1 K1P k2,3 K2,3f2⟩I2 = k1−1 � l1=0 k2,3−1 � l2,3=0 � (L1)(l1)=K1 (L2,3)(l2,3)=K2,3 ⟨f2, hL1 ⊗ hL2,3⟩⟨hL1 ⊗ hL2,3⟩I2 and note that L is not necessarily a Zygmund rectangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' It holds that Σ1 2,2 = k1−1 � l1=0 k2,3−1 � l2,3=0 � K∈Dλ � L(l1,l2,l3)=K � I3∈DZ I(k) 3 =K � � I1 I(k) 1 =K � I2⊂L I(k) 2 =K bK,(Ij)⟨hL⟩I2 |K| 1 2 � ⟨f1, h0 K⟩⟨f2, hL⟩⟨f3, hI3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now, since we can easily check that ��� � I1 I(k) 1 =K � I2⊂L I(k) 2 =K bK,(Ij)⟨hL⟩I2 |K| 1 2 ��� ≤ |K| 1 2 |L| 1 2 |I3| 1 2 |K|2 , we get a sum of operators we wanted Σ1 2,2 = k1−1 � l1=0 k2,3−1 � l2,3=0 ⟨S(0,(l1,l2,l3),k)(f1, f2), f3⟩, where S(0,(l1,l2,l3),k) is a type of the shift (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The general case Σ1 m1,m2 is analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We turn to the terms Σ1 3,m2 − Σ2 m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let us take, for example, the case m2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' After expanding P k2,3 K2,3 in the first slot, Σ1 3,1 − Σ2 1 can be written as k2,3−1 � l2,3=0 � K∈Dλ � (L2,3)(l2,3)=K2,3 � I1,I2,I3 I(k) j =K bK,(Ij)⟨hL2,3⟩I2,3 1 �� f1, 1K1 |K1| ⊗ hL2,3 � ⟨f2⟩K1×I2,3 2 − � f1, 1I1 3 |I1 3| ⊗ hL2,3 � ⟨f2⟩I1 3×I2,3 2 � ⟨f3, hI3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For the moment, we fix one l2,3 and write g1 = ⟨f1, hL2⟩ and g2 = ⟨f2⟩I2,3 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We write inside the brackets 2 � j=1 ⟨gj⟩K1 − 2 � j=1 ⟨gj⟩I1 3 = − k1−1 � l1=0 � 2 � j=1 ⟨gj⟩(I1 3)(l1) − 2 � j=1 ⟨gj⟩(I1 3)(l1+1) � ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 23 and then expand �2 j=1⟨gj⟩(I1 3)(l1) − �2 j=1⟨gj⟩(I1 3)(l1+1) as ⟨∆(I1 3)(l1+1)g1⟩I1 3⟨g2⟩(I1 3)(l1) + ⟨g1⟩(I1 3)(l1+1)⟨∆(I1 3)(l1+1)g2⟩I1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We get 2 � j=1 ⟨gj⟩K1 − 2 � j=1 ⟨gj⟩I1 3 = − k1−1 � l1=0 � ⟨∆(I1 3)(l1+1)g1⟩I1 3⟨g2⟩(I1 3)(l1) + ⟨g1⟩(I1 3)(l1+1)⟨∆(I1 3)(l1+1)g2⟩I1 3 � , where we can expand ⟨∆(I1 3)(l1+1)gj⟩I1 3 = ⟨gj, h(I1 3)(l1+1)⟩⟨h(I1 3 )(l1+1)⟩I1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For fixed l1 and l2,3 the expansion leads to the term � K∈Dλ � (L2,3)(l2,3)=K2,3 � I1,I2,I3 I(k) j =K bK,(Ij)⟨h(I1 3)(l1+1) ⊗ hL2,3⟩I1 3×I2,3 1 � f1, h(I1 3 )(l1+1) ⊗ hL2,3 � ⟨f2⟩(I1 3)(l1)×I2,3 2 ⟨f3, hI3⟩, and to the symmetrical one, where the cancellation h(I1 3)(l1+1) is paired with the second function and f1 is averaged over (I1 3)(l1+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Again, we want to reorganize the summations and verify the correct normalization for the shifts of the form (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In the first parameter we will now take (I1 3)(l1+1) as the new top cube, that is, � K1 � (L1)(k1−l1)=K1 � K2,3∈D2−l1−k2+k3 ℓ(L1) � (I1 3)(l1)=L1 � (L2,3)(l2,3)=K2,3 � I2,3 2 ,I2,3 3 (Ii j)(ki)=Ki cK1,L1,I1 3,K2,3,L2,3,I2,3 2 ,I2,3 3 � f1, h(L1)(1) ⊗ hL2,3 � ⟨f2⟩L1×I2,3 2 ⟨f3, hI3⟩, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='6) where cK1,L1,I1 3,K2,3,L2,3,I2,3 2 ,I2,3 3 = � I1 1,I1 2 (I1 j )(k1)=K1 � I2,3 1 ⊂L2,3 (Ii 1)(ki)=Ki bK,(Ij)⟨h(L1)(1)×L2,3⟩I1 3×I2,3 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Moreover, we have |cK1,L1,I1 3,K2,3,L2,3,I2,3 2 ,I2,3 3 | ≤ |(L1)(1)| 3 2|I1 3| 1 2 |(L1)(1)|2 × |L2,3| 1 2|I2,3 2 ||I2,3 3 | 1 2 |K2,3|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Notice that this is the right normalization for (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2), since f2 is related to L1 and |(L1)(1)| = 2|L1|, and we can change the averages into pairings against non-cancellative Haar func- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 24 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN We conclude that for some C ≥ 1 we have C−1(5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='6) = ⟨S((0,l2,3),(1,k2,3),(l1+1,k2,3))(f1, f2), f3⟩, where S((0,l2,3),(1,k2,3),(l1+1,k2,3)) is an operator of the desired type and of complexity (0, l2,3), (1, k2,3), (l1 + 1, k2,3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The other term and the other case of Σ1 3,2 − Σ2 2 are analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The cases Σ1 m1,3 − Σ3 m1 are handled almost identically, however, we need to treat 2 � j=1 ⟨gj⟩K2,3 − 2 � j=1 ⟨gj⟩I2,3 3 slightly differently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We expand the rectangles I2,3 3 in the one-parameter fashion until we reach the smaller of the cubes K2, K3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then we continue with one-parameter expansion with only one of the cubes until we reach the bigger of the cubes K2, K3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For example, if k3 > k2, we expand as 2 � j=1 ⟨gj⟩K2,3 − 2 � j=1 ⟨gj⟩I2,3 3 = − k2−1 � l2=0 � ⟨∆(I2,3 3 )(l2+1,l2+1)g1⟩(I2,3 3 )(l2,l2)⟨g2⟩(I2,3 3 )(l2,l2) + ⟨g1⟩(I2,3 3 )(l2+1,l2+1)⟨∆(I2,3 3 )(l2+1,l2+1)g2⟩(I2,3 3 )(l2,l2) � − k3−1 � l3=k2 � ⟨EK2∆(I3 3)(l3+1)g1⟩K2×(I3 3)(l3)⟨g2⟩K2×(I3 3)(l3) + ⟨g1⟩K2×(I3 3)(l3+1)⟨EK2∆(I3)(l3+1)g2⟩K2×(I3 3)(l3) � , The case k3 ≤ k2 can be expanded similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Similarly as in the previous cases, we can now write the terms in the particular form (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For example, related to the latter term, � K∈Dλ � L2,3∈D2,3 λl,kℓ(K1) L2=K2 (L3)(k3−l3)=K3 � (L1)(l1)=K1 � (I1 3)(k1)=K1 � (I2 3)(k2)=K2 (I3 3)(l3)=L3 cK,L,I3 � f1, 1K1 |K1| ⊗ h(L2,3)(0,1) �� f2, hL1 ⊗ 1L2,3 |L2,3| � ⟨f3, hI3⟩, where l3 ∈ {k2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , k3 − 1}, λl,k = 2−k1−k2+l3 and |cK,L,I3| = ��� � I1,I2 (Ij)(k)=K I1 2⊂L1 aK,(Ij)|I1|⟨hL1 ⊗ hK2×(L3)(1)⟩I1 2×K2×L3 ��� ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 25 ≤ � I1,I2 (Ij)(k)=K I1 2⊂L1 |I3| 1 2|I1||I2| |K|2 |K2|− 1 2|(L3)(1)|− 1 2 |L1|− 1 2 = |L1| 1 2 |K1| |I3| 1 2|K2 × (L3)(1)| 3 2 |K2 × (L3)(1)|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This normalization is an absolute constant away from the correct one since we consider that K2 × (L3)(1) is the top rectangle in parameters 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Finally, we consider Σ1 3,3 − Σ2 3 − Σ3 3 + Σ4 that equals to � K∈Dλ � I1,I2,I3∈DZ I(k) j =K bK,(Ij) � 2 � j=1 ⟨fj⟩K − 2 � j=1 ⟨fj⟩I1 3×K2,3 − 2 � j=1 ⟨fj⟩K1×I2,3 3 + 2 � j=1 ⟨fj⟩I3 � ⟨f3, hI3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='7) As we already showed, we can expand 2 � j=1 ⟨fj⟩K − 2 � j=1 ⟨fj⟩I1 3×K2,3 = − k1−1 � l1=0 � ⟨∆(I1 3)(l1+1)g1⟩I1 3⟨g2⟩(I1 3)(l1) + ⟨g1⟩(I1 3)(l1+1)⟨∆(I1 3)(l1+1)g2⟩I1 3 � , where gj = ⟨fj⟩K2,3, and similarly for n � j=1 ⟨fj⟩I3 − 2 � j=1 ⟨fj⟩K1×I2,3 3 we get same expansion with the positive sign and gj = ⟨fj⟩I2,3 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then we sum the two expansions together and expand in the parameters 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' That is, we will expand k1−1 � l1=0 ⟨h(I1 3 )(l1+1)⟩(I1 3)(l1) � f1, h(I1 3 )(l1+1) ⊗ 1K2,3 |K2,3| � ⟨f2⟩(I1 3 )(l1)×K2,3 − � f1, h(I1 3 )(l1+1) ⊗ 1I2,3 3 |I2,3 3 | � ⟨f2⟩(I1 3)(l1)×I2,3 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' we get,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' for example when k2 < k3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' that k1−1 � l1=0 k2−1 � l2=0 � K∈Dλ � L1∈D1 (L1)(k1−l1)=K1 � L2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3∈D2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 2−l1 ℓ(L1) (L2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)(k2−l2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k3−l2)=K2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 � I3∈DZ (I3)(l1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='l2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='l2)=L × cK,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3 � f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h(L1)(1) ⊗ h0 (L2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)(1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1) �� f2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 L1 ⊗ h(L2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)(1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1) � ⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI3⟩ 26 EMIL AIRTA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' KANGWEI LI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' AND HENRI MARTIKAINEN + k1−1 � l1=0 k3−1 � l3=k2 � K∈Dλ � L1∈D1 (L1)(k1−l1)=K1 � L2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3∈D2−l1−k2+l3 ℓ(L1) L2=K2 (L3)(k3−l3)=K3 � I3∈DZ (I3)(l1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='l3)=L × cK,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='I3 � f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h(L1)(1) ⊗ h0 (L2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1) �� f2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 L1 ⊗ h(L2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3)(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1) � ⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Here |cK,L,I3| = ��� � I1,I2∈DZ Ik j =K aK,(Ij)|I1||L1|− 1 2 |(L2,3)(1)|− 1 2 ⟨h(L1)(1) ⊗ h(L2,3)(1)⟩L1×L2,3 ��� ≤ |I3| 1 2|(L1)(1)| 3 2 |(L)(1)|2 |L1|− 1 2 |(L2,3)(1)|− 1 2 ∼ |I3| 1 2 |(L1)(1)| 1 2 |L1| 1 2|(L2,3)(1)| 3 2 |(L1)(1)|2|(L2,3)(1)|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We abused notation slightly by (L2,3)(1) meaning both (L2,3)(1,1) and (L2,3)(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The other terms are handled analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' BOUNDEDNESS OF ZYGMUND SHIFTS In this section we prove the boundedness of Zygmund shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We first prove the fol- lowing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' A collection S is called γ-sparse if there are pairwise disjoint subsets E(S) ⊂ S, S ∈ S , with |E(S)| ≥ γ|S|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Often the precise value of γ is not important and we just talk about sparse collections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let λ = 2k for some k ∈ Z and Λ(f1, f2, f3) = � K∈D2,3 λ � (Ij)(ℓj )=K �3 j=1 |Ij| 1 2 |K|2 |⟨f1, h0 I1⟩| · |⟨f2, hI2⟩| · |⟨f3, hI3⟩|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then there exists a sparse collection S ⊂ D2,3 λ such that Λ(f1, f2, f3) ≲ max{k2, k3} � S∈S |S| 3 � j=1 ⟨|fj|⟩S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The proof is an easy adaptation of the sparseness argument in [17, Section 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In fact, we only need to check the validity of Λ(f1, f2, f3) ≲ ∥f1∥Lp∥f2∥Lq∥f3∥Lr, where p, q, r ∈ (1, ∞) and 1/p + 1/q + 1/r = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This can be done by direct computation: Λ(f1, f2, f3) ≤ ˆ f1 � K∈D2,3 λ ⟨|∆ℓ2 Kf2|⟩K⟨|∆ℓ3 Kf3|⟩K1K ≤ ∥f1∥Lp ��� � � K∈D2,3 λ � MD2,3 λ |∆ℓ2 Kf2| �2� 1 2 ��� Lq ��� � � K∈D2,3 λ � MD2,3 λ |∆ℓ3 Kf3| �2� 1 2 ��� Lr ≲ ∥f1∥Lp∥f2∥Lq∥f3∥Lr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' □ ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 27 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let Qk, k = (k1, k2, k3), be a bilinear Zygmund shift as in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='D, and let 1 < p1, p2 < ∞ and 1 2 < p < ∞ with 1 p := 1 p1 + 1 p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let w1, w2 ∈ Ap(R × R × R), and w := w p p1 1 w p p2 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then, for every η ∈ (0, 1) we have ∥Qk(f1, f2)∥Lp(w) ≲ max i {ki}22k1η∥f1∥Lp1(w1)∥f2∥Lp2(w2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We prove the weighted boundedness L4(w1)×L4(w2) → L2(w), of the tri-parameter bilinear shifts of Zygmund nature (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We do this with tri-parameter weights wi ∈ A4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We then extrapolate the result to the full bilinear range using the traditional multilinear extrapolation by Grafakos–Martell (and Duoandikoetxea) [4,7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Our result then follows from Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Note that if we have I3 ∈ DZ in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2), then the related λ in Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1 is 2ℓ3 3−ℓ2 3−ℓ1 3|L1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (For other cases, for instance if I1 1 × I2,3 2 ∈ DZ, then λ = 2ℓ3 2−ℓ2 2−ℓ1 1|L1|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Assume v ∈ A4,λ(R2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' recall that Ap,λ(R2) is defined similarly as Ap(R2) except that the supremum is taken over rectangles R = I × J with |J| = λ|I|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then � S∈S |S| 3 � j=1 ⟨|fj|⟩S = � S∈S ⟨|f1|⟩S⟨|f2|⟩S⟨|f3|v−1⟩v Sv(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Since for any R ∈ S, � S⊂R S∈S v(S) = � S⊂R S∈S v(S) |S| |S| ≲ � S⊂R S∈S v(S) |S| |ES| ≤ ˆ R MD2,3 λ (v1R) ≲[v]A4,λ(R2) v(R), by the Carleson embedding theorem we have (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) � S∈S |S| 3 � j=1 ⟨|fj|⟩S ≲[v]A4,λ(R2) ˆ R2 MD2,3 λ |f1|MD2,3 λ |f2|Mv D2,3 λ (|f3|v−1)v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now, given weights wj ∈ A4(R3), j = 1, 2, we know that w = w1/2 1 w1/2 2 ∈ A4(R3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We have |⟨S(f1, f2), f3⟩| = � L1 � (I1 j ) (ℓ1 j )=L1 �3 j=1 |I1 j | 1 2 |L1|2 Λ(⟨f1, hI1 1⟩, ⟨f2, h0 I1 2⟩, ⟨f3, hI1 3 ⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Note that ⟨w⟩L1 ∈ A4,λ(R2) with [⟨w⟩L1]A4,λ(R2) ≤ [w]A4 for any λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, applying (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) with v = ⟨w⟩L1 we have |⟨S(f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' f2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' f3⟩| ≲ max i {ki} � L1 � (I1 j ) (ℓ1 j )=L1 �3 j=1 |I1 j | 1 2 |L1|2 ˆ R2 MD2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 λ ⟨f1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 1⟩MD2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 λ ⟨f2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' h0 I1 2⟩Mv D2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 λ (⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 3⟩v−1)v 28 EMIL AIRTA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' KANGWEI LI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' AND HENRI MARTIKAINEN = max i {ki} � L1 ˆ R3⟨MD|∆ℓ1 1 L1f1|⟩L1⟨MD|f2|⟩L1 � (I1 3)(ℓ1 3)=L1 |I1 3| 1 2 M ⟨w⟩L1 D2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 λ (⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 3⟩⟨w⟩−1 L1 ) 1L1 |L1|w ≤ max i {ki} ��� � � L1 � MD1MD|∆ℓ1 1 L1f1| �2� 1 2 ��� L4(w1)∥MD1MD|f2|∥L4(w2) × ��� � � L1 � � (I1 3)(ℓ1 3)=L1 |I1 3| 1 2 M ⟨w⟩L1 D2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 λ (⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 3⟩⟨w⟩−1 L1 )|L1|−1�2 1L1 � 1 2 ��� L2(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By the well-know square function and maximal function estimates we have ��� � � L1 � MD1MD|∆ℓ1 1 L1f1| �2� 1 2 ��� L4(w1) ≲ ∥f1∥L4(w1) and ∥MD1MD|f2|∥L4(w2) ≲ ∥f2∥L4(w2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The estimate of the last term is a bit tricky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By the (one parameter)vector-valued estimates of M ⟨w⟩L1 D2,3 λ (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' [19, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3] for a bi-parameter version (the proof easily adapts to the one-parameter case)),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' we have ��� � � L1 � � (I1 3)(ℓ1 3)=L1 |I1 3| 1 2M ⟨w⟩L1 D2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 λ (⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 3⟩⟨w⟩−1 L1 )|L1|−1�2 1L1 � 1 2 ��� L2(w) ≤ 2ℓ1 3η��� � � L1 � � (I1 3)(ℓ1 3)=L1 |I1 3| s 2M ⟨w⟩L1 D2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 λ (⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 3⟩⟨w⟩−1 L1 )s|L1|− s 2 � 2 s � 1 2��� L2(⟨w⟩L1) ≲ 2ℓ1 3η��� � � L1 � � (I1 3)(ℓ1 3)=L1 |I1 3| s 2��⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 3⟩⟨w⟩−1 L1 ��s|L1|− s 2 � 2 s � 1 2 ��� L2(⟨w⟩L1) ≤ 2ℓ1 3η��� � � L1 � � (I1 3)(ℓ1 3)=L1 |I1 3| 1 2|⟨f3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 3⟩|⟨w⟩−1 L1 |L1|− 1 2 �2� 1 2 ��� L2(⟨w⟩L1) ≲ 2ℓ1 3η∥f3∥L2(w−1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' where s = (1/η)′ and in the last step we have used [19,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, ∥S(f1, f2)∥L2(w) ≲ max i {ki}2k1η∥f1∥L4(w1)∥f2∥L4(w2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' □ Now we are able to conclude the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By the representation formula discussed in Sections 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='E and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='F, the coefficient estimates in Section 4 (in particular (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1)) we get that ⟨T(f1, f2), f3⟩ =CEσ ∞ � k1,k2,k3=2 (|k| + 1)2ϕ(k) � I∈DZ(k) ⟨Q(k1,k2,k3)(f1, f2), f3⟩ C(|k| + 1)2ϕ(k) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 29 Thus, for p1, p2 ∈ (1, ∞) so that p ∈ (1, ∞), we conclude by Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2 that ∥T(f1, f2)∥Lp(w) ≲ ∞ � k1,k2,k3=2 (|k| + 1)2ϕ(k) max i {ki}22k1η∥f1∥Lp1(w1)∥f2∥Lp2(w2) ≲ ∥f1∥Lp1(w1)∥f2∥Lp2(w2), where we need to take η < α1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Consequently, we can now pass the result to the full bilinear range using the traditional multilinear extrapolation [4,7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' □ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' LINEAR COMMUTATORS IN THE ZYGMUND DILATION SETTING In this section we return to the linear theory and complete the following commutator estimate left open by previous results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This requires new and interesting paraproduct estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For the context, see the explanation below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let b ∈ L1 loc and T be a linear CZZ operator as in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let θ ∈ (0, 1] be the kernel exponent measuring the decay in terms of the Zygmund ratio Dθ(x) := �|x1x2| |x3| + |x3| |x1x2| �−θ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then ∥[b, T]∥Lp→Lp ≲ ∥b∥bmoZ whenever p ∈ (1, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Here the definition of the little BMO is given by ∥b∥bmoZ := sup DZ sup R∈DZ 1 |R| ˆ R |b(x) − ⟨b⟩R| dx < ∞, where the supremum is over all different collections of Zygmund rectangles DZ and then over all R ∈ DZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This theorem was previously considered in [5] using the so-called Cauchy trick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' That method requires weighted bounds with Zygmund weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' But we now know [14] how delicate such weighted bounds are – weighted bounds with Zygmund weights do not in general hold if θ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' However, the commutator bounds are still true – but we need a different proof, presented here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' It suffices to prove the boundedness of commutators [b, Qk] for any linear shift Qk of the Zygmund dilation type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For θ = 1 we could use the Cauchy trick and the weighted bounds from [14] – this would give weighted commutator estimates with Zygmund weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We begin by recording lemmas that we need for the main proofs of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let b be a locally integrable function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then the following are equivalent (1) b ∈ bmoDZ, (2) max � sup I1∈D1 ∥⟨b⟩I1,1∥BMOD2,3 ℓ(I1) , ess sup (x2,x3)∈R2 ∥b(·, x2, x3)∥BMO � < ∞, (3) max � sup I2∈D2 ∥⟨b⟩I2,2∥BMOD2,3 ℓ(I2) , ess sup (x1,x3)∈R2 ∥b(x1, ·, x3)∥BMO � < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 30 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN For completeness, we give the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let us begin showing that bmoZ =⇒ (2) (and by symmetry also (3)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Clearly, for all Zygmund rectangles I = I1 × I2 × I3 ∈ DZ we have ∥b∥bmoZ ≥ 1 |I| ˆ I |b − ⟨b⟩I| ≥ 1 |I2,3| ˆ I2,3 |⟨b⟩I1,1 − ⟨b⟩I|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3) So by uniform boundedness we immediately get ∥⟨b⟩I1,1∥BMOD2,3 ℓ(I1) := sup I2,3∈D2,3 ℓ(I1) 1 |I2,3| ˆ I2,3 |⟨b⟩I1,1 − ⟨⟨b⟩I1,1⟩I2,3| ≤ ∥b∥bmoZ < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We move on to proving the second assertion inside (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For fixed I1 ∈ D1 we define fI1(x2, x3) := ´ I1 |b(x1, x2, x3) − ⟨b⟩I1(x2, x3)| dx1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then for every I2,3 ∈ D2,3 ℓ(I1) we have ⟨fI1⟩I2,3 ≤ 1 |I2,3| ˆ I2,3 ˆ I1 |b − ⟨b⟩I| + 1 |I2,3| ˆ I2,3 ˆ I1 |⟨b⟩I1,1 − ⟨b⟩I| ≤ 2|I1|∥b∥bmoZ, where last inequality holds by definition and the above estimate (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now, by the Lebesgue differentiation theorem we get for (x2, x3) ∈ R2 \\ N(I1), where N(I1) is a null set depending on I1, that fI1(x2, x3) ≤ 2|I1|∥b∥bmoZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' It is then easy to conclude that ∥b(·, x2, x3)∥BMO ≤ 2∥b∥bmoZ for almost every (x2, x3) ∈ R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Conversely, ˆ I |b − ⟨b⟩I| ≤ ˆ I |b − ⟨b⟩I1,1| + ˆ I |⟨b⟩I1,1 − ⟨b⟩I| ≤ |I1| ˆ I2,3 ∥b(·, x2, x3)∥BMO + |I|∥⟨b⟩I1,1∥BMOℓ(I1) ≤ |I|(C1 + C2), where C1 := ess sup(x2,x3)∈R2 ∥b(·, x2, x3)∥BMO and C2 := supI1 ∥⟨b⟩I1,1∥BMOℓ(I1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' □ Then the usual duality results imply the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' If b ∈ bmoZ and I1 is fixed, then � I2,3∈D2,3 ℓ(I1) ⟨⟨b⟩I1, hI2,3⟩ϕI2,3 ≲ ∥b∥bmoZ ��� � � I2,3∈D2,3 ℓ(I1) ϕI2,3 1I2,3 |I2,3| � 1 2��� L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Also, for fixed (x2, x3), we have � I1∈D1 ⟨b, hI1⟩1ϕI1 ≲ ∥b∥bmoZ ��� � � I1∈D1 ϕI1 1I1 |I1| � 1 2��� L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Using the duality type estimates we can use the square function lower bounds to prove the inclusion of product type spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 31 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Given a lattice of Zygmund rectangles DZ and a sequence of scalars B = (bI)I∈DZ we define ∥B∥BMOprod := sup Ω � 1 |Ω| � I∈DZ I⊂Ω |bI|2 � 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The inclusion of the little BMO space can be easily seen from the duality estimate (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='6) ∥B∥BMOprod ∼ sup � � I∈DZ |aI||bI|: ��� � � I∈DZ |aI|2 1I |I| � 1 2 ��� L1 ≤ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Paraproduct expansions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Here the correct expansions style is the Zygmund mar- tingale expansion similar to [14, Equation (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='22)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This gives bf = � I∈DZ � ∆I,Zb∆I,Zf + ∆I,Zb∆I1EI2,3f + ∆I1EI2,3b∆I,Zf (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='7) + ∆I,ZbEI1∆I2,3f + ∆I,ZbEI1EI2,3f + ∆I1EI2,3bEI1∆I2,3f + EI1∆I2,3b∆I,Zf + EI1∆I2,3b∆I1EI2,3f + EI1EI2,3b∆I,Zf � =: 3 � i,j=1 ai,j(b, f), where, for example, a1,1 = � I∈DZ ∆I,Zb∆I,Zf and a1,2 = � I∈DZ ∆I,Zb∆I1EI2,3f, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=', interpret so that rows correspond to the first index i and columns correspond with the second index j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' If b ∈ bmoZ, then the paraproducts ai,j such that (i, j) ̸= (3, 3) are bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' That is, ∥ai,j(b, f)∥Lp ≲ ∥b∥bmoZ∥f∥Lp, 1 < p < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Case 1: product type i ̸= 3 ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We begin with the paraproducts where it would suffice to have a product BMO type assumption (but recall that little BMO is a subset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The symmetry Π = a1,1 is essentially trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='6) we have |⟨Πf, g⟩| ≲ ��� � � I∈DZ |⟨f, hI,Z⟩|2⟨|g|⟩2 I 1I |I| � 1 2��� L1 ≤ ��� � � I∈DZ ⟨|∆I,Zf|⟩2 I1I � 1 2 ��� Lp∥MZg∥Lp′ ≲ ��� � � I∈DZ MZ(∆I,Zf)2� 1 2 ��� Lp∥g∥Lp′ ≲ ∥SZf∥Lp∥g∥Lp′ ≲ ∥f∥Lp∥g∥Lp′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 32 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN The ‘twisted’ case Π = a1,2 (and the symmetrical a2,1) is trickier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Indeed, to decouple f and g we cannot blindly take maximal functions only in some parameters – this would break the Zygmund structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In any case, we begin with the application of (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='6) to get |⟨Πf, g⟩| ≲ ��� � � I∈DZ ��� � f, 1I1 |I1| ⊗ hI2×I3 �� g, hI1 ⊗ 1I2×I3 |I2 × I3| ���� 2 1I |I| � 1 2 ��� L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The above is an L1 norm, while L2 would be nice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This is where A∞ extrapolation comes in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We fix ν ∈ A∞,Z, and move to estimate ��� � � I∈DZ ��� � f, 1I1 |I1| ⊗ hI2×I3 �� g, hI1 ⊗ 1I2×I3 |I2 × I3| ���� 2 1I |I| � 1 2 ��� L2(ν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We will soon show that ��� � � I∈DZ ��� � f, 1I1 |I1| ⊗ hI2×I3 �� g, hI1 ⊗ 1I2×I3 |I2 × I3| ���� 2 1I |I| � 1 2 ��� L2(ν) ≲ ���MZf � � I1∈D1 MZ(∆I1g)2�1/2��� L2(ν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='9) The A∞ extrapolation, Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='10, then implies that this inequality holds also in Lp(ν), p ∈ (0, ∞), ν ∈ A∞,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We take p = 1 and ν ≡ 1 to get that |⟨Πf, g⟩| ≲ ���MZf � � I1∈D1 MZ(∆I1g)2�1/2��� L1 ≤ ∥MZf∥Lp ��� � � I1∈D1 MZ(∆I1g)2�1/2��� Lp′ ≲ ∥f∥Lp∥g∥Lp′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' It remains to prove (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We write ��� � � I∈DZ ��� � f, 1I1 |I1| ⊗ hI2×I3 �� g, hI1 ⊗ 1I2×I3 |I2 × I3| ���� 2 1I |I| � 1 2��� 2 L2(ν) = � I1∈D1 � I2×I3∈D2,3 ℓ(I1) ��� � f, 1I1 |I1| ⊗ hI2×I3 ���� 2��� � g, hI1 ⊗ 1I2×I3 |I2 × I3| ���� 2 ⟨ν⟩I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Fix some I1 ∈ D1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let I2 0 × I3 0 ∈ D2,3 ℓ(I1) and suppose ϕ1, ϕ2 and ϕ3 are locally inte- grable functions in R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then, there exists a sparse collection S = S(I2 0 × I3 0, ϕ1, ϕ2, ϕ3) ⊂ D2,3 ℓ(I1)(I2 0 × I3 0) so that � I2×I3∈D2,3 ℓ(I1) I2×I3⊂I2 0×I3 0 |⟨ϕ1, hI2×I3⟩|2|⟨ϕ2⟩I2×I3|2⟨ϕ3⟩I2×I3 ≲ � Q∈S ⟨|ϕ1|⟩2 Q⟨|ϕ2|⟩2 Q⟨|ϕ3|⟩Q|Q|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 33 We use this with the functions ϕ1 = ⟨f⟩I1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ϕ2 = ⟨g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1⟩ and ϕ3 = ⟨ν⟩I1 to have that for some sparse collection S = S(I1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' I2 0 × I3 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ν) ⊂ D2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 ℓ(I1) there holds that � I2×I3∈D2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 ℓ(I1) I2×I3⊂I2 0×I3 0 ��� � f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 1I1 |I1| ⊗ hI2×I3 ���� 2��� � g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 ⊗ 1I2×I3 |I2 × I3| ���� 2 ⟨ν⟩I ≲ � Q∈S ⟨|⟨f⟩I1|⟩2 Q⟨|⟨g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1⟩|⟩2 Q⟨ν⟩I1(Q) ≤ � Q∈S ��� M2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 ℓ(I1)⟨f⟩I1 �� M2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 ℓ(I1)⟨g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1⟩ ��⟨ν⟩I1 Q �2 ⟨ν⟩I1(Q) ≲ ˆ R2 � M2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 ℓ(I1)⟨f⟩I1 �2� M2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3 ℓ(I1)⟨g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1⟩ �2⟨ν⟩I1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' where in the last step we used the fact that ⟨ν⟩I1 ∈ A∞,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='ℓ(I1)(R2) and the Carleson embed- ding theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Since the last estimate holds uniformly for every I2 0 × I3 0 ∈ D2,3 ℓ(I1), we get that � I1∈D1 � I2×I3∈D2,3 ℓ(I1) ��� � f, 1I1 |I1| ⊗ hI2×I3 ���� 2��� � g, hI1 ⊗ 1I2×I3 |I2 × I3| ���� 2 ⟨ν⟩I ≲ � I1∈D1 ˆ R2 � M2,3 ℓ(I1)⟨f⟩I1 �2� M2,3 ℓ(I1)⟨g, hI1⟩ �2⟨ν⟩I1 ≤ � I1∈D1 ˆ R3 � M2,3 ℓ(I1)⟨f⟩I1 �2� M2,3 ℓ(I1)⟨|∆I1g|⟩I1 �21I1ν ≤ ˆ R2[MZf]2 � I1∈D1 MZ(∆I1g)2ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='9) is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Case 2: little BMO paraproducts (i = 3, j = 1, 2 or i = 1, 2, j = 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Actually, now we only have “trivial” type cases with different twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Symmetries a1,3 and a3,1 are similar as well as a2,3 and a3,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let us choose for example Π = a1,3 first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By Corollary 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4 we have |⟨Π(b, f), g⟩| ≲ ��� � � I1∈D1 � � I2,3∈D2,3 ℓ(I1) |⟨f, hI,Z⟩||⟨g, hI1hI1 ⊗ hI2,3⟩I| 1I2,3 |I2,3| �2 1I1 |I1| � 1 2 ��� L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now we again can use similar sparse method as above and for fixed I1 prove ˆ � I2,3∈Dℓ(I1) |⟨f, hI,Z⟩||⟨g, hI1hI1 ⊗ hI2,3⟩I| 1I2,3 |I2,3|⟨ν⟩I1 ≲ ˆ M2,3 ℓ(I1)(⟨|∆I1f|⟩I1)M2,3 ℓ(I1)⟨g⟩I11I1ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 34 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN The above estimate together with vector-valued version of Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='10 (proven in [3] for general Muckenhoupt basis) yields ��� � � I1∈D1 � � I2,3∈Dℓ(I1) |⟨f, hI,Z⟩||⟨g, hI1hI1 ⊗ hI2,3⟩I| 1I2,3 |I2,3| �2 1I1 |I1| � 1 2��� L1 ≲ ��� � � I1∈D1 MZ(∆I1f)2 1I1 |I1| � 1 2MZg ��� L1 ≤ ��� � � I1∈D1 MZ(∆I1f)2�1/2��� Lp∥MZg∥Lp′ ≲ ∥f∥Lp∥g∥Lp′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Moving to the symmetry Π = a3,2 we first get |⟨Π(b, f), g⟩| = ��� � I∈DZ ⟨⟨b⟩I1, hI2,3⟩ � f, hI1 ⊗ 1I2,3 |I2,3| � ⟨g, hI,Z⟩ ��� ≲ ∥b∥bmoZ ��� � I1∈D1 � � I2,3∈Dℓ(I1) |⟨f, hI1 ⊗ 1I2,3 |I2,3|⟩|2|⟨g, hI,Z⟩|2 1I2,3 |I2,3| � 1 2 1I1 |I1| ��� L1, where we use the other estimate in Corollary 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Like above, we continue as follows ��� � I1∈D1 � � I2,3∈Dℓ(I1) |⟨f, hI1 ⊗ 1I2,3 |I2,3|⟩|2|⟨g, hI,Z⟩|2 1I2,3 |I2,3| � 1 2 1I1 |I1| ��� L1 ≲ ��� � I1∈D1 M2,3 ℓ(I1)⟨|∆I1f|⟩I1M2,3 ℓ(I1)⟨|∆I1g|⟩I11I1 ��� L1 ≤ ��� � � I1∈D1 MZ(∆I1f)2�1/2��� Lp ��� � � I1∈D1 MZ(∆I1g)2�1/2��� Lp′ ≲ ∥f∥Lp∥g∥Lp′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' □ In above proof we needed the A∞ extrapolation with Zygmund A∞ weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In fact, we give a very simple proof of A∞ extrapolation [3] in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let (f, g) be a pair of non-negative functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Assume that there is some 0 < p0 < ∞ such that for all w ∈ A∞,Z there holds ˆ f p0w ≤ C([w]A∞,Z) ˆ gp0w, where C is an increasing function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then for all 0 < p < ∞ and all w ∈ A∞,Z there holds ˆ f pw ≤ C([w]A∞,Z) ˆ gpw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We have for all 1 < r < ∞ and all w ∈ Ar,Z that ˆ (f p0/r)rw ≤ C([w]Ar,Z) ˆ (gp0/r)rw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 35 Thus, by the classical extrapolation with Ap,Z weights we have (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='11) ˆ (f p0/r)sw ≤ C([w]As,Z) ˆ (gp0/r)sw for all 1 < s < ∞ and w ∈ As,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Finally, let 0 < p < ∞ and w ∈ A∞,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then, there exists some 1 < s0 < ∞ such that w ∈ As0,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Choose some 1 < r < ∞ and s0 ≤ s < ∞ such that sp0/r = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For example, we can take s = s0p p0 �p0 p + 1 � = s0 � p p0 + 1 � , r = s0 �p0 p + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Since As0,Z ⊂ As,Z, we can use (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='11) with the exponents s and r to get the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' □ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Zygmund shift commutators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let k = (k1, k2), ki ∈ {0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' }, be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' A Zyg- mund shift Q = Qk of complexity k, see [14], has the form ⟨Qkf, g⟩ = � K∈D2−k1−k2+k3 � I,J∈DZ I(k)=K=J(k) aIJK⟨f, hI1 ⊗ HI2,3,J2,3⟩⟨g, HI1,J1 ⊗ hJ2,3⟩ or ⟨Qkf, g⟩ = � K∈D2−k1−k2+k3 � I,J∈DZ I(k)=K=J(k) aIJK⟨f, hI1 ⊗ hI2,3⟩⟨g, HI1,J1 ⊗ HI2,3,J2,3⟩, where HI,J (1) is supported on I ∪ J and constant on children: HI,J = � L∈ch(I)∪ch(J) bL1L (2) is L2 normalized: |HI,J| ≤ |I|− 1 2 , and (3) has zero average: ´ HI,J = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We will be focusing on the mixed type form since it is the most interesting one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Usually the other type is much easier and the method is easily recovered from this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let Qk be a Zygmund shift of complexity k = (k1, k2, k3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let 1 < p < ∞ and b ∈ bmoZ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then we have ∥[b, Qk]f∥Lp ≲ max(k1, k2, k3)(|k| + 1)2∥b∥bmoZ∥f∥Lp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We consider the commutator [b, Qk]f : bQkf − Qk(bf) that in the dual form equals to � K∈D2−k1−k2+k3 � I,J∈DZ I(k)=K=J(k) aIJK � ⟨bf, hI1 ⊗ HI2,3,J2,3⟩⟨g, HI1,J1 ⊗ hJ2,3⟩ −⟨f, hI1 ⊗ HI2,3,J2,3⟩⟨bg, HI1,J1 ⊗ hJ2,3⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 36 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN Now, expanding both bf and bg with the expansion (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='7) we get the terms ⟨Qk(ai,j(b, f)), g⟩ and ⟨Qkf, ai,j(b, g)⟩ whenever (i, j) ̸= (3, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' These terms are directly bounded separately, in particular, we have Qk : Lp → Lp and ai,j : Lp → Lp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hence,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' we are left with bounding � K∈Dλ � I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J∈DZ I(k)=K=J(k) aIJK � � L∈DZ ⟨b⟩L⟨∆L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='Zf,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 ⊗ HI2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3⟩⟨g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' HI1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J1 ⊗ hJ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3⟩ − � L∈DZ ⟨b⟩L⟨f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 ⊗ HI2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3⟩⟨∆L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='Zg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' HI1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J1 ⊗ hJ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3⟩ � = � K∈Dλ � I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J∈DZ I(k)=K=J(k) aIJK × � � L∈DZ ℓ(L1)=2−k1ℓ(K1) ℓ(K2)≤2k2ℓ(L2)≤2max(k2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k3)ℓ(K2) ⟨b⟩L⟨∆L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='Zf,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 ⊗ HI2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3⟩⟨g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' HI1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J1 ⊗ hJ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3⟩ − � Q∈DZ Q1⊂K1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ℓ(Q1)≥ℓ(I1) 2−k1ℓ(K2)≤2k2ℓ(Q2)≤ℓ(K2) ⟨b⟩Q⟨f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' hI1 ⊗ HI2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3⟩⟨∆Q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='Zg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' HI1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='J1 ⊗ hJ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3⟩ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' where we have abbreviated 2−k1−k2+K3 by λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now, we write ⟨f, hI1 ⊗ HI2,3,J2,3⟩ = � L∈DZ ℓ(L1)=2−k1ℓ(K1) ℓ(K2)≤2k2ℓ(L2)≤2max(k2,k3)ℓ(K2) ⟨∆L,Zf, hI1 ⊗ HI2,3,J2,3⟩ and ⟨g, HI1,J1 ⊗ hJ2,3⟩ = � Q∈DZ Q1⊂K1, ℓ(Q1)≥ℓ(I1) 2−k1ℓ(K2)≤2k2ℓ(Q2)≤ℓ(K2) ⟨∆Q,Zg, HI1,J1 ⊗ hJ2,3⟩ for the unexpanded terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, we end up with � K∈Dλ � I,J∈DZ I(k)=K=J(k) aIJK � L∈DZ ℓ(L1)=2−k1ℓ(K1) ℓ(K2)≤2k2ℓ(L2)≤2max(k2,k3)ℓ(K2) � Q∈DZ Q1⊂K1, ℓ(Q1)≥ℓ(I1) 2−k1ℓ(K2)≤2k2ℓ(Q2)≤ℓ(K2) × � (⟨b⟩L − ⟨b⟩Q)⟨∆L,Zf, hI1 ⊗ HI2,3,J2,3⟩⟨∆Q,Zg, HI1,J1 ⊗ hJ2,3⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We write explicitly the complexity levels for Q and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' That is, in the above summations we have (L2)(l2) = (K2)(max(0,k3−k2)) for some l2 ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , max(k2, k3)}, (Q1)(q1) = K1, ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 37 for some q1 ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , k1}, and (Q2)(q2) = K2 for some q2 ∈ {k2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' , k2 + k1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We get � K∈Dλ � I,J∈DZ I(k)=K=J(k) aIJK max(k2,k3) � l2=0 � q1∈{0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=',k1} q2∈{k2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=',k2+k1} � L∈DZ ℓ(L1)=2−k1ℓ(K1) (L2)(l2)=(K2)(max(0,k3−k2)) � Q∈DZ (Q1)(q1)=K1 (Q2)(q2)=K2 × � (⟨b⟩L − ⟨b⟩Q)⟨∆L,Zf, hI1 ⊗ HI2,3,J2,3⟩⟨∆Q,Zg, HI1,J1 ⊗ hJ2,3⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Here we need to notice that R = R1 × R2 × R3 ⊃ K, L, Q, where R = K(k1,max(0,k3−k2),k1+max(k2−k3,0)) and R ∈ DZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This is a common “Zygmund ancestor” for all of these rectangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let us expand in the difference ⟨b⟩L − ⟨b⟩Q in the following way ⟨b⟩L = ⟨b⟩L − ⟨b⟩L(0,1,1) + ⟨b⟩L(0,1,1) − ⟨b⟩L(0,2,2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' + ⟨b⟩L(0,l2−1,l2−1) − ⟨b⟩L(0,l2,l2) + ⟨b⟩L(0,l2,l2) = l2−1 � r2=0 � ⟨b⟩L(0,r2,r2) − ⟨b⟩L(0,r2+1,r2+1) � + ⟨b⟩L(0,l2,l2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Notice that since ℓ(L1)ℓ(L2) = ℓ(L3), we have ℓ(L1)ℓ((L2)(r2)) = ℓ((L3)(r2)), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' rectan- gles (L2)(r2) × (L3)(r2) ∈ Dℓ(L1) which is desirable since we want to use the characteriza- tion (2) in Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We continue with the last term ⟨b⟩L(0,l2,l2) = ⟨b⟩L(0,l2,l2) − ⟨b⟩L(1,l2,1+l2) + ⟨b⟩L(1,l2,1+l2) − ⟨b⟩L(2,l2,2+l2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ⟨b⟩L(k1−1,l2,k1−1+l2) − ⟨b⟩L(k1,l2,k1+l2) + ⟨b⟩G = k1−1 � r1=0 � ⟨b⟩L(r1,l2,r1+l2) − ⟨b⟩L(r1+1,l2,r1+1+l2) � + ⟨b⟩R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Recall that (L2)(l2) = (K2)(max(0,k3−k2)) =: R2 and observe that since ℓ((L3)(k1+l2)) = ℓ((L2)(l2))ℓ((L1)(k1)) = ℓ(R2)ℓ(K1) we get (L3)(k1+l2) = R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, we end up with a sum of terms of the forms ⟨b⟩L(0,r2,r2) − ⟨b⟩L(0,r2+1,r2+1) and ⟨b⟩L(r1,l2,r1+l2) − ⟨b⟩L(r1+1,l2,r1+1+l2), (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='13) and we have for fixed r1 and r2 |(7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='13)| ≲ ∥b∥bmoZ by Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 38 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN By the same argument as above we get ⟨b⟩Q = max(0,k3−k2)+q2−1 � ρ2=0 ⟨b⟩Q(0,ρ2,ρ2) − ⟨b⟩Q(0,ρ2+1,ρ2+1) + q1 � ρ1=0 ⟨b⟩Q(ρ1,�q2,ρ1+�q2) − ⟨b⟩Q(ρ1+1,�q2,ρ1+1+�q2) + ⟨b⟩R, where �q2 = max(0, k3 − k2) + q2, (Q2)(�q2) = (K2)(max(0,k3−k2)) and (Q3)(q1+�q2) = (K3)(k1+max(k2−k3,0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Notice that the last term corresponds to the last term in the previous expansion, and hence, their difference equals to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Again, here we have |⟨b⟩Q(0,ρ2,ρ2) − ⟨b⟩Q(0,ρ2+1,ρ2+1) + ⟨b⟩Q(ρ1,�q2,ρ1+�q2) − ⟨b⟩Q(ρ1+1,�q2,ρ1+1+�q2)| ≲ ∥b∥bmoZ for fixed ρ1 and ρ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now, we can split the commutator into the two terms Wb K,kf = 1K � L∈DZ ℓ(L1)=2−k1ℓ(K1) ℓ(K2)≤2k2ℓ(L2)≤2max(k2,k3)ℓ(K2) bL,K∆L,Zf, where |bL,K| ≲ max(k1, k2, k3)∥b∥bmoZ, and Vb K,kg = � Q∈DZ Q1⊂K1, ℓ(Q1)≥ℓ(I1) 2−k1ℓ(K2)≤2k2ℓ(Q2)≤ℓ(K2) bQ,K∆Q,Zg, where |bQ,K| ≲ max(k1, k2, k3)∥b∥bmoZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, the last term of the commutator is the sum of � K∈Dλ � I,J∈DZ I(k)=K=J(k) aIJK⟨Wb K,kf, hI1 ⊗ HI2,3,J2,3⟩⟨VK,kg, HI1,J1 ⊗ hJ2,3⟩ and � K∈Dλ � I,J∈DZ I(k)=K=J(k) aIJK⟨WK,kf, hI1 ⊗ HI2,3,J2,3⟩⟨Vb K,kg, HI1,J1 ⊗ hJ2,3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The boundedness follows via standard methods (adapt proofs of [14, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2 and Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=') □ ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 39 APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' BILINEAR FEFFERMAN-PIPHER MULTIPLIERS In this section we consider bilinear variants of multipliers studied by Fefferman-Pipher [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' These considerations motivate the kernel estimates in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' After the presented cal- culations, the reader can easily check how everything fits with Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In fact, we will see that the bilinear Fefferman-Pipher multipliers produce kernels which satisfy the the kernel estimates in Section 3 with θ = 2, α1 = 1, α2,3 = 1, and an extra logarithm factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In the partial kernel estimates �θ = 1 and there is also a harmless logarithm factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We leave further analysis of these multipliers for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We consider the following multi-parameter dilation on R6 – define ρs,t(x, y) = (sx1, tx2, stx3, sy1, ty2, sty3), s, t > 0, and set A1 := {(ξ, η) ∈ R6 : 1 2 < |(ξ1, η1)| ≤ 1, 1 2 < |(ξ2, ξ3, η2, η3)| ≤ 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In this section we consider the parameter groups {1} and {2, 3} only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The grouping {{2}, {1, 3}} is similar, for example, we would set A2 := {(ξ, η) ∈ R6 : 1 2 < |(ξ2, η2)| ≤ 1, 1 2 < |(ξ1, ξ3, η1, η3)| ≤ 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' For Schwartz functions f1, f2 we define the bilinear multiplier operator Tm,1(f1, f2)(x) = ˆ R3 ˆ R3 m(ξ, η) �f1(ξ) �f2(η)e2πix·(ξ+η) dξ dη, where the symbol m ∈ CN is assumed to satisfy ∥m∥M1 Z := sup |α|∞≤N |β|∞≤N sup s,t>0 sup (ξ,η)∈A1 |∂α ξ ∂β η (m ◦ ρs,t)(ξ, η)| < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, if (ξ, η) ∈ A1, then by definition |(∂α ξ ∂β η m)(sξ1, tξ2, stξ3, sη1, tη2, stη3)| ≤ ∥m∥M1 Zs−α1−β1t−α2−β2(st)−α3−β3 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='1) = ∥m∥M1 Zs−(α1+β1)+(α2+β2)(st)−(α2+β2)−(α3+β3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Now, for (ζ1, σ1) ̸= 0 and (ζ2, ζ3, σ2, σ3) ̸= 0 denote s = |(ζ1, σ1)|, st = |(sζ2, ζ3, sσ2, σ3)|, (ξ1, ξ2, ξ3) = �ζ1 s , ζ2 t , ζ3 st � , (η1, η2, η3) = �σ1 s , σ2 t , σ3 st � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, (ξ, η) ∈ A1 and |∂α ζ ∂β σm(ζ, σ)| ≲ ∥m∥M1 Z(|ζ1| + |σ1|)−(α1+β1)+(α2+β2) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2) × � |((|ζ1| + |σ1|)ζ2, ζ3)| + |((|ζ1| + |σ1|)σ2, σ3)| �−(α2+β2)−(α3+β3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We write, with two standard partition of unity φ1 on R2 \\{0} and φ2,3 on R4 \\{0}, that 1 = � j,k∈Z φ1(2−jξ1, 2−jη1)φ2,3(2−kξ2, 2−j−kξ3, 2−kη2, 2−j−kη3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 40 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN Via this identity we obtain m = � j,k (φ1 ⊗ φ2,3 ◦ ρ2−j,2−k) · m = � j,k (φ1 ⊗ φ2,3 · (m ◦ ρ2j,2k)) ◦ ρ2−j,2−k =: mj,k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Since φ1 and φ2,3 are supported in ¯B(0, 2) \\ B(0, 1 2) in R2 and R4, respectively, we know that spt mj,k ⊂ ρ2j,2k � (ξ, η) : (ξ1, η1) ∈ ¯BR2(0, 2) \\ BR2(0, 1 2), (ξ2,3, η2,3) ∈ ¯BR4(0, 2) \\ BR4(0, 1 2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Using this we get ∥∂α∂βmj,k∥L∞ ≲ 2−(j,k,j+k)·(α+β) and ∥∂α∂βmj,k∥L1 ≲ 2(j,k,j+k)·(2−(α+β)), where 2 = (2, 2, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let Kj,k(y, z) = ˇmj,k and K(y, z) = � j,k Kj,k(y, z) – then K(x − y, x − z) is the corre- sponding kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Using similar analysis as in [14] we have ∥yαz ˜α∂β y ∂γ z Kj,k∥L∞ ≲ ∥∂α ξ ∂ ˜α η (ξβηγmj,k)∥L1 ≤ � l≤α ˜l≤˜α �α l ��˜α ˜l � ∥∂l(ξβ)∂ ˜l(ηγ) · ∂α−l∂ ˜α−˜lmj,k)∥L1 ≲ 2(j,k,j+k)·(2+(β+γ)−(α+˜α)) for multi-indices α, ˜α, β, γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hence, we get |yβ+1zγ+1∂β y ∂γ z Kj,k(y, z)| ≲ 2(j,k,j+k)·(2+(β+γ)−(α+˜α))|yβ+1−α| · |zγ+1−˜α|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Taking αi, ˜αi ∈ {0, N} we obtain |yβ+1zγ+1∂β y ∂γ z K(y, z)| ≲ � j min{(2j|y1|)β1+1, (2j|y1|)β1+1−N} min{(2j|z1|)γ1+1, (2j|z1|)γ1+1−N} × � k min{(2k|y2|)β2+1, (2k|y2|)β2+1−N} min{(2k|z2|)γ2+1, (2k|z2|)γ2+1−N} × min{(2j+k|y3|)β3+1, (2j+k|y3|)β3+1−N} min{(2j+k|z3|)γ3+1, (2j+k|z3|)γ3+1−N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='We can estimate the inner sum either by ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k : 2k<1/(|y2|+|z2|) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k : 2k≥1/(|y2|+|z2|)≥1/(2|y2|) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(2k|y2|)β2+1−N(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k : 2k≥1/(|y2|+|z2|)>1/(2|z2|) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(2k|y2|)β2+1(2k|z2|)γ2+1−N(2j+k|y3|)β3+1(2j+k|z3|)γ3+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='≲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='|y2|β2+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(|y2| + |z2|)β2+1 · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='|z2|γ2+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(|y2| + |z2|)γ2+1 · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(2j|y3|)β3+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(|y2| + |z2|)β3+1 · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(2j|z3|)γ3+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(|y2| + |z2|)γ3+1 =: I1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='or by ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k : 2k<2−j/(|y3|+|z3|) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k : 2k≥2−j/(|y3|+|z3|)≥2−j/(2|y3|) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1−N(2j+k|z3|)γ3+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='k : 2k≥2−j/(|y3|+|z3|)>2−j/(2|z3|) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1−N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='≲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='|y2|β2+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='[2j(|y3| + |z3|)]β2+1 · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='|z2|γ2+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='[2j(|y3| + |z3|)]γ2+1 · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='|y3|β3+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(|y3| + |z3|)β3+1 · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='|z3|γ3+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='(|y3| + |z3|)γ3+1 =: I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' in both cases provided that β2 + β3 + γ2 + γ3 < N − 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' The outer sum can then be estimated either by � j : 2j<1/(|y1|+|z1|) (2j|y1|)β1+1(2j|z1|)γ1+1I1 + � j : 2j≥1/(|y1|+|z1|)≥1/(2|y1|) (2j|y1|)β1+1−N(2j|z1|)γ1+1I1 + � j : 2j≥1/(|y1|+|z1|)>1/(2|z1|) (2j|y1|)β1+1(2j|z1|)γ1+1−NI1 ≲ |y1|β1+1|z1|γ1+1 (|y1| + |z1|)β1+γ1+2 |y2|β2+1|z2|γ2+1 (|y2| + |z2|)β2+γ2+2 |y3|β3+1|z3|γ3+1 [(|y1| + |z1|)(|y2| + |z2|)]β3+γ3+2 or,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' if (|y1| + |z1|)(|y2| + |z2|) ≤ |y3| + |z3|,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' by � j : 2j<(|y2|+|z2|)/(|y3|+|z3|) (2j|y1|)β1+1(2j|z1|)γ1+1I1 + � j : |y2|+|z2| |y3|+|z3| ≤2j≤ 1 |y1|+|z1| (2j|y1|)β1+1(2j|z1|)γ1+1I2 + � j : 2j>1/(|y1|+|z1|)>1/(2|z1|) (2j|y1|)β1+1(2j|z1|)γ1+1−NI2 + � j : 2j>1/(|y1|+|z1|)>1/(2|y1|) (2j|y1|)β1+1−N(2j|z1|)γ1+1I2 =: I + II + III + IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' It is straightforward that I ∼ |y1|β1+1|z1|γ1+1 (|y1| + |z1|)β1+γ1+2 |y2|β2+1|z2|γ2+1 (|y2| + |z2|)β2+γ2+2 |y3|β3+1|z3|γ3+1 (|y3| + |z3|)β3+γ3+2 × �(|y1| + |z1|)(|y2| + |z2|) |y3| + |z3| �β1+γ1+2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' III ∼ IV ∼ |y1|β1+1|z1|γ1+1 (|y1| + |z1|)β1+γ1+2 |y2|β2+1|z2|γ2+1 (|y2| + |z2|)β2+γ2+2 |y3|β3+1|z3|γ3+1 (|y3| + |z3|)β3+γ3+2 42 EMIL AIRTA, KANGWEI LI, AND HENRI MARTIKAINEN × �(|y1| + |z1|)(|y2| + |z2|) |y3| + |z3| �β2+γ2+2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Lastly, we have II ∼ |y1|β1+1|z1|γ1+1 (|y1| + |z1|)β1+γ1+2 |y2|β2+1|z2|γ2+1 (|y2| + |z2|)β2+γ2+2 |y3|β3+1|z3|γ3+1 (|y3| + |z3|)β3+γ3+2 × �(|y1| + |z1|)(|y2| + |z2|) |y3| + |z3| �min{β1+γ1,β2+γ2}+2 Lβ1,β2,γ1,γ2(y, z), where Lβ1,β2,γ1,γ2(y, z) := 1 + log+ � |y3| + |z3| (|y1| + |z1|)(|y2| + |z2|) � when β1 + γ1 = β2 + γ2 and Lβ1,β2,γ1,γ2(y, z) = 1 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In conclusion, we get |∂β y ∂γ z K(y, z)| ≲ 1 [(|y1| + |z1|)(|y2| + |z2|) + |y3| + |z3|]β3+γ3+4 × 1 (|y1| + |z1|)β1+γ1(|y2| + |z2|)β2+γ2 × min � 1, �(|y1| + |z1|)(|y2| + |z2|) |y3| + |z3| �min{β1+γ1,β2+γ2}� Lβ1,β2,γ1,γ2(y, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Partial kernel estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let m ∈ M1 Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' We define truncations of m by setting mJ := � |j|≤J1,|k|≤J2 mj,k, J = (J1, J2) ∈ N2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Suppose that m ∈ M1 Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let mJ be defined as above and let KJ = ˇmJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then for (y2, z2) ̸= 0 ̸= (y3, z3) we have the estimate ��� ˚ I1×I1×I1 ∂β2 y2 ∂β3 y3 ∂γ2 z2 ∂γ3 z3 KJ(x1 − y1, y2, y3, x1 − z1, z2, z3) dy1 dz1 dx1 ��� ≲ 1 (|y2| + |z2|)β2+γ2 · 1 (|y3| + |z3|)β3+γ3 |I1|(|I1|(|y2| + |z2|) |y3| + |z3| + |y3| + |z3| |I1|(|y2| + |z2|))−1 × 1 �3 i=2(|yi| + |zi|)2 · � 1 + log+ |y3| + |z3| |I1|(|y2| + |z2|) � , where I1 is an interval and β2 + β3 + γ2 + γ3 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Since mJ(0, ξ2, ξ3, 0, η2, η3) = 0, using the Fourier transform we know that (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4) ¨ R2 ∂β2 y2 ∂β3 y3 ∂γ2 z2 ∂γ3 z3 KJ(y1, y2, y3, z1, z2, z3) dy1 dz1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Suppose first that |I1|(|y2| + |z2|) ≥ |y3| + |z3| – by (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='4) we may equivalently estimate the integral over I1 × (R2 \\ (I1 × I1)) instead of I1 × I1 × I1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By the kernel estimates we have ��� ˚ I1×(R2\\(I1×I1)) ∂β2 y2 ∂β3 y3 ∂γ2 z2 ∂γ3 z3 KJ(x1 − y1, y2, y3, x1 − z1, z2, z3) dy1 dz1 dx1 ��� ≲ ˆ I1 ¨ R2\\(I1×I1) 1 (|y2| + |z2|)β2+γ2 ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 43 × 1 + log+ |y3|+|z3| (|x1−y1|+|x1−z1|)(|y2|+|z2|) [(|x1 − y1| + |x1 − z1|)(|y2| + |z2|) + |y3| + |z3|]β3+γ3+4 dy1 dz1 dx1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Note that we have either y1 ∈ R\\I1 or z1 ∈ R\\I1, and we may without loss of generality assume y1 ∈ R \\ I1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then the integral is dominated by ˆ I1 ¨ (R\\I1)×R 1 (|y2| + |z2|)β2+γ2 × 1 + log+ |y3|+|z3| |x1−y1|(|y2|+|z2|) [(|x1 − y1| + |x1 − z1|)(|y2| + |z2|) + |y3| + |z3|]β3+γ3+4 dy1 dz1 dx1 ≲ 1 (|y2| + |z2|)β2+γ2+β3+γ3+4 ˆ I1 ˆ R\\I1 1 + log+ |y3|+|z3| |x1−y1|(|y2|+|z2|) � |x1 − y1| + |y3|+|z3| |y2|+|z2| �β3+γ3+3 dy1 dx1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let t := |y3|+|z3| |y2|+|z2|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' By a change of variables we reduce to t−β3−γ3−1 (|y2| + |z2|)β2+γ2+β3+γ3+4 ¨ t−1I1×(R\\t−1I1) 1 + log+ 1 |x1−y1| � |x1 − y1| + 1 �β3+γ3+3 dy1 dx1 ≲ t−β3−γ3−1 (|y2| + |z2|)β2+γ2+β3+γ3+4 ˆ t−1I1 1 � d(x1, ∂(t−1I1)) + 1 �β3+γ3+2 dx1 ≲ t−β3−γ3−1 (|y2| + |z2|)β2+γ2+β3+γ3+4 = 1 (|y2| + |z2|)β2+γ2+3 1 (|y3| + |z3|)β3+γ3+1 ∼ 1 (|y2| + |z2|)β2+γ2 · 1 (|y3| + |z3|)β3+γ3 |I1|(|I1|(|y2| + |z2|) |y3| + |z3| + |y3| + |z3| |I1|(|y2| + |z2|))−1 × 1 �3 i=2(|yi| + |zi|)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Assume then that |I1|(|y2| + |z2|) < |y3| + |z3|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' This time we integrate over I1 × I1 × I1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Proceeding as above we reduce to the integral ˚ t−1I1×t−1I1×t−1I1 t−β3−γ3−1 (|y2| + |z2|)β2+γ2+β3+γ3+4 1 + log+ 1 (|x1−y1|+|x1−z1|) [(|x1 − y1| + |x1 − z1|) + 1]β3+γ3+4 dy1 dz1 dx1 ≤ ¨ t−1I1×t−1I1 t−β3−γ3−1 (|y2| + |z2|)β2+γ2+β3+γ3+4 1 + log+ 1 |x1−y1| (|x1 − y1| + 1)β3+γ3+3 dy1 dx1 ∼ t−β3−γ3−1 (|y2| + |z2|)β2+γ2+β3+γ3+4 ¨ t−1I1×t−1I1 � 1 + log+ 1 |x1 − y1| � dy1 dx1 ≲ t−β3−γ3−1 (|y2| + |z2|)β2+γ2+β3+γ3+4 (t−1|I1|)2(1 + log+(t|I1|−1)) 44 EMIL AIRTA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' KANGWEI LI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' AND HENRI MARTIKAINEN = 1 (|y2| + |z2|)β2+γ2 · 1 (|y3| + |z3|)β3+γ3 |I1|(|I1|(|y2| + |z2|) |y3| + |z3| + |y3| + |z3| |I1|(|y2| + |z2|))−1 × 1 �3 i=2(|yi| + |zi|)2 · � 1 + log+ |y3| + |z3| |I1|(|y2| + |z2|) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' □ With (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='2) at hand, similarly as in the linear case we can derive the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let m ∈ M1 Z and denote by Tm the corresponding Fourier multiplier operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Let f1, g1 ∈ L4(R), f2,3, g2,3 ∈ L4(R2) and h1 ∈ L2(R), h2,3 ∈ L2(R2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Then ⟨Tm(f1 ⊗ f2,3, g1 ⊗ g2,3), h1 ⊗ h2,3⟩ = ⟨Tmf2,3,g2,3,h2,3(f1, g1), h1⟩, where mf2,3,g2,3,h2,3 is a standard bilinear Coifman-Meyer multiplier in R satisfying the estimates |( d/ dξ1)α( d/ dη1)βmf2,3,g2,3,h2,3(ξ1, η1)| ≲ ∥m∥M1 Z∥f2,3∥L4∥g2,3∥L4∥h2,3∥L2(|ξ1| + |η1|)−α−β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Thus, Tmf2,3,g2,3,h2,3 is a convolution form bilinear Calderón-Zygmund operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' In particular, there exists a standard bilinear Calderón-Zygmund kernel Km,f2,3,g2,3,h2,3 such that ∥Km,f2,3,g2,3,h2,3∥CZ1(R2) ≲ ∥f2,3∥L4∥g2,3∥L4∥h2,3∥L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Moreover, if spt f1 ∩ spt g1 ∩ spt h1 = ∅, then ⟨Tm(f1 ⊗ f2,3, g1 ⊗ g2,3), h1 ⊗ h2,3⟩ = ˚ Km,f2,3,g2,3,h2,3(x1, y1, z1)f1(y1)g1(z1)h1(x1) dy1 dz1 dx1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' REFERENCES [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Airta, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Martikainen, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Vuorinen, Product space singular integrals with mild kernel regularity, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 32 (2022), article number 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ↑19 [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Coifman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Rochberg, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Weiss, Factorization theorems for Hardy spaces in several variables, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (2) 103 (1976), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3, 611–635.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR412721 ↑2 [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Cruz-Uribe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Martell, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Pérez, Extrapolation from A∞ weights and applications, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 213 (2004), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2, 412–439.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR2078632 ↑2, 34 [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 260 (2011), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 6, 1886–1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ↑27, 29 [5] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Duong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Ou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Pipher, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Wick, Weighted estimates of singular integrals and commutators in the Zygmund dilation setting, preprint, arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='00999 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ↑1, 2, 29 [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Fefferman and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Pipher, Multiparameter operators and sharp weighted inequalities, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 119 (1997), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2, 337–369.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR1439553 ↑1, 2, 3, 39 [7] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Grafakos and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Martell, Extrapolation of weighted norm inequalities for multivariable operators and applications, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 14 (2004), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 1, 19–46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR2030573 ↑27, 29 [8] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Grafakos and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Oh, The Kato-Ponce inequality, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Partial Differential Equations 39 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 6, 1128–1157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR3200091 ↑3 [9] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Grafakos and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Torres, Multilinear Calderón-Zygmund theory, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 165 (2002), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 1, 124– 164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR1880324 ↑2 [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Grau de la Herrán and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hytönen, Dyadic representation and boundedness of nonhomogeneous Calderón- Zygmund operators with mild kernel regularity, Michigan Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 67 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 4, 757–786.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR3877436 ↑4 [11] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Han, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Lin, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Tan, Singular Integrals Associated with Zygmund Dilations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 29 (2019), 2410–2455.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ↑2 ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 45 [12] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Holmes, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Petermichl, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Wick, Weighted little bmo and two-weight inequalities for Journé commu- tators, Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' PDE 11 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 7, 1693–1740.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR3810470 ↑1 [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (2) 175 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3, 1473–1506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR2912709 ↑1 [14] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Hytönen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Martikainen, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Vuorinen, Multiresolution analysis and Zygmund dilations, preprint, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='15777 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ↑1, 2, 3, 5, 14, 15, 16, 29, 31, 35, 38, 40 [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Kato and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 41 (1988), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 7, 891–907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR951744 ↑3 [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Lerner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Ombrosi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Pérez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Torres, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 220 (2009), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 4, 1222–1264.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ↑3 [17] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Martikainen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Ou, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Vuorinen, Bilinear representation theorem, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 371 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 6, 4193–4214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR3917220 ↑26 [18] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Martikainen, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Vuorinen, Bilinear Calderón-Zygmund theory on product spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Pures Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' (9) 138 (2020), 356–412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR4098772 ↑3 [19] , Genuinely multilinear weighted estimates for singular integrals in product spaces, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 393 (2021), 108099.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ↑3, 28 [20] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Martikainen, Representation of bi-parameter singular integrals by dyadic operators, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 229 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3, 1734–1761.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR2871155 ↑1 [21] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Müller, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Ricci, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' I, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 119 (1995), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2, 199–233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR1312498 ↑1 [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Nagel and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Wainger, L2 boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 99 (1977), 761–785.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' ↑1 [23] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Nazarov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Treil, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Volberg, The T b-theorem on non-homogeneous spaces, Acta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 190 (2003), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 2, 151–239.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR1998349 ↑1 [24] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Ricci and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Stein, Multiparameter singular integrals and maximal functions, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' Fourier (Grenoble) 42 (1992), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' 3, 637–670.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' MR1182643 ↑2 (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=') DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF JYVÄSKYLÄ, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' BOX 35 (MAD), FI-40014 UNIVERSITY OF JYVÄKYLÄ, FINLAND Email address: emil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='airta@jyu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='fi (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=') CENTER FOR APPLIED MATHEMATICS, TIANJIN UNIVERSITY, WEIJIN ROAD 92, 300072 TIANJIN, CHINA Email address: kli@tju.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='cn (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=') DEPARTMENT OF MATHEMATICS AND STATISTICS, WASHINGTON UNIVERSITY IN ST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' LOUIS, 1 BROOKINGS DRIVE, ST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content=' LOUIS, MO 63130, USA Email address: henri@wustl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} +page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf'} diff --git a/LdE0T4oBgHgl3EQfSgCx/content/tmp_files/2301.02224v1.pdf.txt b/LdE0T4oBgHgl3EQfSgCx/content/tmp_files/2301.02224v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..dc506afd9b90254cdcc26d23bbe87f05c8368dc4 --- /dev/null +++ b/LdE0T4oBgHgl3EQfSgCx/content/tmp_files/2301.02224v1.pdf.txt @@ -0,0 +1,1112 @@ + +1 +Controlling the bursting size in the two-dimensional Rulkov +model +Jennifer Lo´pez,1 Mattia Coccolo,1 Rub´en Cape´ans,1 and Miguel A.F. Sanjua´n1,2 +1Nonlinear Dynamics, Chaos and Complex Systems Group, +Departamento de F´ısica, Universidad Rey Juan Carlos, +Tulip´an s/n, 28933 M´ostoles, Madrid, Spain +2Department of Applied Informatics, Kaunas University of Technology, +Studentu 50-415, Kaunas LT-51368, Lithuania +(Dated: December 21, 2022) +Abstract +We propose to control the orbits of the two-dimensional Rulkov model affected by bounded noise. +For the correct parameter choice the phase space presents two chaotic regions separated by a +transient chaotic region in between. One of the chaotic regions is the responsible to give birth to the +neuronal bursting regime. Normally, an orbit in this chaotic region cannot pass through the transient +chaotic one and reach the other chaotic region. As a consequence the burstings are short in time. +Here, we propose a control technique to connect both chaotic regions and allow the neuron to exhibit +very long burstings. This control method defines a region Q covering the transient chaotic region +where it is possible to find an advantageous set S ⊂ Q through which the orbits can be driven with a +minimal control. In addition we show how the set S changes depending on the noise intensity +affecting the map, and how the set S can be used in different scenarios of +control. +I. +INTRODUCTION +Neurons are complex entities that form a highly structured network. In recent decades, it +has been of interest to create mathematical models that mimic their behavior. Due to their +high complexity, these models have to be approximated and simplified while retaining only +certain functionalities of the neurons. The entire structure of the neuron is usually replaced +by a system with a voltage membrane and a connection topology. +Initially, continuous models such as the models of FitzHugh-Nagumo [1], Hindmarsh- +Rose [2], and Hodgkin-Huxley [3] have been used profusely. Recently, discrete models have + + +2 +started to arouse interest for the simulation of neurons [4]. They are easier models to solve +(they avoid the integration of ordinary differential equations), very versatile when creating +neural networks and, in addition, they offer results very attractive in terms of dynamical +behavior. In this context, it is common to use two-dimensional maps of the slow-fast type +variables (fast-slow system). The most relevant are [4]: the Izhikevich’s discrete model, +Courbage’s model, Chialvo’s model, and the Rulkov model. The latter presents three variants +of the +model: non-chaotic, supercritical, and chaotic. +The chaotic Rulkov neuron map [5–11] is used in this work, because it is a simple model +that can exhibit the basic regimes of neuronal activity, as rest, bursts, spikes, with the last +two allowing periodic and chaotic dynamics.In particular, we focus our attention in the +regime where the Rulkov map exhibits chaotic cycles. These cycles alternate periods with +high activity of the neuron exhibiting fast chaotic oscillations (bursting), together with +periods of low activity without chaotic motion. Typically the bursting size is short because +these chaotic oscillations takes place in a narrow chaotic region of the phase space delimited +by the presence of an unstable manifold. Once the chaotic orbit touches this unstable +manifold the bursting rapidly extinguished giving way to a low activity period. +However, we found that it is possible to greatly increase the bursting size of the neuron +exploiting the fact that there is a second chaotic region in the phase space. This second +chaotic region is separated from the main chaotic region, where the bursting of the neuron +takes place. In this work we explore the possibility to built a path in the phase space +connecting both chaotic regions, allowing the chaotic orbits to pass from one to another, and +therefore extending the size of the burstings. To do that, we present a control method +inspired in our previous work of partial control [12–18] that also takes into account noise +affecting the map, as in all real systems. This method defines a region Q in the phase space +located between both chaotic regions. Through a recursive algorithm it can be computed a +special subset called S ⊂ Q through which the orbits can be controlled to go from one chaotic +region to the other, minimizing the need of control. Furthermore we will see that this method +adapts to the intensity of noise affecting the map. Different intensities result +in different sets S. + + +3 +Although this control method resembles the partial control method and they share +similarities in the steps to apply it, we want to emphasize that there is a substantial +difference in the control goal. While partial control is designed to keep the orbits forever in +the region Q of the phase space, this control method is designed to steer the orbits through +the region Q, allowing the orbits to enter or abandon it via a portion of its boundaries, +previously set by the controller, as it is shown schematically in Fig. 1. This control method is +specially +indicated to connect different regions of phase space that otherwise would be isolated . +The manuscript is organized as follows. In Sec. II, we introduce the model system. In Sec. +III, we describe the control technique. Then, in Secs. IV and V, we apply the control technique +to the system in different scenarios, where we also show results for different noise +intensities to illustrate how the set S changes. In Sec VI we discuss the results when one of +the variables is not controlled or affected by the noise. In Sec. VII we discuss how to +generalize the method to other systems. Finally, in Sec. VIII we summarize the main results +of the paper. +II. +THE TWO-DIMENSIONAL RULKOV MAP +The chaotic Rulkov model [5–8] is a two-dimensional map that achieves to exhibit the +basic regimes of neuronal activity with a simple model. +The equations of the system are: + + +(1) +being x the voltage of the neuron membrane (taking the role of the fast variable), and y the +ion concentration (representing the slow variable) where α,σ and β are the system +parameters. Here we are interested in the regime where the system exhibits chaotic +oscillations + + +4 + +Figure 1: Control goal. Q is a region in the phase space previously defined by the controller. In +absence of control, an orbit (red orbit) enters in Q through the right boundary (right dashed line) but +never reaches the left boundary (left dashed line), since it abandons Q through the bottom boundary. +With the suitable application of control it is possible to sustain the orbit (black orbit) in Q until it +reaches the right boundary. In this way, the region Q acts as a pathway for the controlled orbits, +connecting different parts of the phase space. +[19], so we fix the values α = 4.1, σ = β = 0.001, following Rulkov’s original article [5]. +The behaviour of the orbits in the phase space is shown in Fig. 2. At first glance, the figure +looks like a bifurcation diagram but that is not the case. In Eq. 1, both variables x and y are +changing. However the change of the y variable is so slow in comparison with the variable x, +that it behaves almost as a parameter, and that is why the orbits in the phase +space, shown in Fig. 2, resembles a bifurcation diagram. +To build the Fig. 2, we took a grid of initial conditions in the rectangle (y,x) ∈ [−4.5,−2.5] +× [−5,2] and for each initial condition we simulate 100 iterations of the corresponding orbit. +We remove the first 99 iterations and we display the iteration 100. In this way, we can +synthesize and obtain qualitative information about the behavior of the orbits in the phase +space. It is possible to appreciate the diversity in the dynamics that offers this system. We +indicate in the figure four important points (y1,y2,y3,y4). At points y1 and y4, the stable an +unstable manifold (displayed in green) intersects, and therefore the orbits changes their + +transient chaoticdynamics +BOUNDARY +BOUNDARY +controlled +orbit +uncontrolled +orbit +5 +stability. Between the points y2 and y3, transient chaotic dynamics takes place. Orbits in this +region quickly decay below the unstable manifold and reach the bottom stable + +Figure 2: Behavior of the orbits in the Rulkov map. Here, we take an uniform grid of 1623 × 2739 +initial conditions in the rectangle (y,x) ∈ [−4.5,−2.5] × [−5,2]. For each initial condition we compute +100 iterations of the corresponding orbit, computed with Eq.1. The figure represents the positions +of the orbits in the iteration 100th, the previous 99 iterations have been removed to visualize the +qualitative behavior of the orbits in each part of the phase space. Notice that this is not a bifurcation +diagram since the y value also change in every iteration of the orbit. However as y is the slow variable, +it behaves almost like a parameter and that is the reason the figure resembles a bifurcation diagram. +The small arrows displayed, indicate the average motion of the orbits in each region of the phase +space. At the points y1 and y4 the stable and unstable manifolds (draw in green) meet and orbits at +these points change their stability. The points y2 and y3 delimit the region where the map exhibits +transient chaos. Orbits in this region quickly decay below the unstable manifold where they return + +-2 +-3 +-4 +y1 +-5 +-4.5 +-4-3.5 +-3 +-2.5 +y2 +1 +0 +-1 +2ap +transient +chaosOrbitsin +6 +to y4. Sooner or later, the orbits of all initial conditions in the rectangle eventually end in the chaotic +cycle around y3 and y4. + +Figure 3: Chaotic cycle affected by disturbances. (a) The background orbits shown in grey have +been computed in the same way as the Fig. 2 but instead, these orbits correspond with Eq.2 where +an upper bound of disturbance ξ0 = 0.010 has been taken. Eventually all these orbits converges to the +chaotic cycle (red dots) that remains confined around y3 and y4. The orbit displayed consists of 5000 +iterations and the corresponding x (fast variable) and y (slow variable) time series of the red orbit +are shown in (b) and (c) respectively. In (d) the disturbances |ξn| ≤ ξ0 affecting the orbit. +manifold. +To explain how the orbits behave in the phase space (see Fig. 2) , let’s take an orbit +starting in some point on the left chaotic region (y < y2). Here the orbit quickly oscillates in +the vertical axis (x-axis) while it slowly moves to the left (y-axis) towards the periodic region +where, eventually, it reaches the point (y = y1). At this point, the orbits touch the unstable +manifold and fall to the stable manifold at the bottom. Here the orbits starts to move to the +right along the stable manifold until it reaches the value (y = y4), where the orbits meet again +the unstable manifold and jumps to the right chaotic region at the top. In this region the orbit +starts to oscillate chaotically, while it slowly moves to the left. Finally the orbit reaches the +crisis point (y = y3), and it falls again in the bottom stable manifold, + +-2 +-3 +-4 +y2 +y3 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y2.9 +0 +1000 +2000 +3000 +4000 +5000 +(d) +0.01 +=0.010 +0.005 +0 +0 +1000 +2000 +3000 +4000 +5000 +iterations(a) +Chaoticcycle +2 +0 +1(b) +2 +a +2 +0 +1000 +2000 +3000 +4000 +5000 +c +2.7 +AAA +y +2.8 +7 +repeating forever the chaotic cycle around the values y3 and y4. +To model a more real behaviour of the neuron, we consider that Eqs. 1 are affected by + +Figure 4: Scheme of the control goal in the phase space of the Rulkov map. +The +background orbits shown in grey are the same as displayed in Fig. 3. They will also be displayed in +other figures as a background reference to help the visualization of the uncontrolled and controlled +orbits in the phase space. In red color an uncontrolled orbit and in black a controlled one. Both are +draw schematically. The control is applied in Q to sustain the transient chaotic orbit and allow it to +complete a long bursting. Note that the region Q is taken wider than the interval between y3 and y2 +interval. This is because, the orbits affected by disturbances can touch the unstable manifold (green +line) before y3 or after y2 and fall to the stable manifold at the bottom. Also, the right and left sides of +Q are defined as open boundaries (dashed blue lines) to allow the orbit to enter and escape from Q. + +-2 +-3 +-4 +y1 +-5 +-4.5 +-4orbit +y +-3.5 +-3 +-2.5 +yoitioigoa +2 +1 +0 +-1RegionQ +controlled orbit +8 +some additive bounded noise, that we call disturbance. In the literature, we can find authors +that consider the disturbance affecting only the fast variable x [6, 8]. Others consider the +disturbance affecting the slow variable y [20] and others consider a disturbance affecting +both variables [7, 21, 22]. In this work, we consider this last case for being the most general, +and at the end of the paper we analyze the particular cases of the disturbance affecting only +one variable. The Rulkov map affected by a disturbance is given by: + + +(2) +where + and + are the disturbances on each variable. Physically, the disturbance in x can +represent, for example, the synaptic input noise in the neuron membrane voltage, while the +disturbance in y models ion-concentration fluctuations, which may be either from outside +the cell or from inside [23]. The only condition that we impose is that the disturbance is +bounded as p(ξnx)2 + (ξny)2 ≤ ξ0. In this way, we are confident that it does not become too +large compared to the orbits. +The behavior of the noisy orbits in the Rulkov map given by Eq. 2 is displayed in Fig. 3. In +grey we display many orbits in the phase space taking a grid of initial conditions in the +rectangle (y,x) ∈ [−4.5,−2.5] × [−5,2]. The grey orbits have been computed in the same way +as the orbits displayed the Fig. 2 but using instead the Eq. 2 with an upper disturbance bound +ξ0 = 0.010. Eventually all these orbits end in the chaotic cycle displayed by the red dots. In +the same figure, we also display the x and y time series corresponding to the chaotic cycle +and the disturbances |ξn| ≤ ξ0 = 0.010 affecting it. Notice that due to the disturbances, the +orbit can touch the unstable manifold before reaching the points y3 and y4, respectively, and +therefore the bursting sizes are more irregular in comparison with the +deterministic case (ξ0 = 0), but yet short in time. +In this scenario, we propose a control technique to increase the bursting size taking +advantage of the presence of the transient chaotic region between y2 and y3 and the left +chaotic region. Normally, the chaotic cycles trapped in the right chaotic region could never + + +9 +reach the left chaotic region. However, with a suitable application of control it is possible to +sustain the chaotic orbits in the transient chaotic region and allow them to reach the left +chaotic region, extending the bursting size of the neuron as it is schematically draw in +Fig. 4. +III. +CONTROL SCHEME +As shown in the Fig. 4, when an orbit enters in the transient chaotic region, approximately +y2 < y < y3, after a short transient, it touches the unstable manifold (green line) and fall +towards the stable manifold at the bottom. To avoid this escape, we will apply control in the +region Q defined as the rectangle (y,x) ∈ [−3.42,−2.78] × [−1.82,1.92]. This region is y-wide +enough to contain the interval y2 < y < y3, and x-wide enough to allow the chaotic oscillation +of the fast variable x and therefore, preserving the dynamical behavior of the +burstings in this region. +In this control scheme, we consider the general case where the control is applied on both +variables. At the end of the paper we particularize to the case where the control is only +applied on only one variable. The Rulkov map with control in both variables is given by: +(3) +, +, and the +where the disturbance is bounded so that +control applied is also considered bounded so that +. To simplify the +notation, we define the state vector qn = (xn,yn), the disturbance vector +) and the +control vector +) so that the map given by Eq. 3 can be written as: + +qn+1 = f(qn) + ξn + un, +(4) +with |ξn| ≤ ξ0 and |un| ≤ u0. This upper control bound u0 is specified by the controller but +we have to take into account that not any u0 value is possible. There is a minimum value +for which exist points in Q that are controllable. These points constitute a subset + + +10 +of Q that we name the set S. Higher values of + result in a larger set S. +The computation of the set S ⊂ Q can be realized through a recursive algorithm. +Beginning from the set Q0 = Q, the points qn ∈ Q for which the image f(qn) + ξn + un can not be +put it back again in Q with |un| ≤ u0 , are removed. Notice that, for every point qn, all +possible disturbances |ξn| ≤ ξ0 must be evaluated. If for any of these disturbances, the point +can not be controlled, then the point qn is removed from Q0. There is only one exception to +this rule. The points qn ∈ Q0 for which the image f(qn) + ξn abandon Q0 through the right or +left boundary are not removed. This exception is required since we want the controlled +orbits to pass across the region Q and leave it through the right or left boundary. In that +sense we want that Q actuates like a bridge connecting the right (y > y3) and the left (y < y2) +chaotic sides of the phase space and preventing that the orbit escapes through bottom (x = +−1.82) boundary of Q. +After removing all the uncontrollable points qn ∈ Q0 in the first iteration of the algorithm, +the surviving points constitutes a new subset Q1 ⊂ Q0. The second iteration of the algorithm +consists on repeating the process described before, but with the subset Q1 instead of Q0. After +that we obtain the subset Q2 ⊂ Q1 ⊂ Q0. In the next steps, the algorithm is repeated until it +converges, that is when Qi+1 = Qi. This final set will be S. This set guarantees that any point qn +∈ S can be controlled in S applying every iteration a control |un| ≤ u0, unless the orbit +abandons Q across the right or left boundaries. In that instant the applications of +control is stopped. +The computation of the set S as described above, can be greatly speeded up with the +following algorithm based on morphological transformations of Q. Given the initial region Q0 += Q and the upper bounds ξ0 and u0, the ith step of the algorithm is summarized in +Fig. 5. +Notice that if the value u0 selected is too small, the final set S will be the empty set (no +points in Q are controllable with such a small control) and therefore we have to select a +bigger value u0. As controllers, we want to keep the amount of control as low as possible, so +it is reasonable to try to find out the minimum u0, named +, for which the set S exists. To +do that, we compute the set S several times, taking each time a value u0 closer to the +. + + +11 +That is, for a given value u0, if the set S exists, then we compute it again with a smaller value +u0. If the set S is empty, we compute it again with a bigger value u0. In that way we can +approximately find the +. All the sets S shown in this work were computed with a value +u0 very close to the + so the sets S are minimal. Any other set computed with a bigger +value u0 will contain the minimal set S. +In order to compute an example, we choose the upper disturbance bound affecting the +map to be ξ0 = 0.010. For this value we found that the minimum control bound for which the +set S exists is approximately u0 = 0.008. After applying the recursive algorithm, we + +Figure 5: Recursive algorithm to compute the set S ⊂ Q. Beginning with Q0 = Q. + +Step 1. Fatten the set Qi by u0 except the right and left boundaries, obtaining the set denoted +by (Qi + u0). +Step 2. Shrink the set (Qi + u0) by ξ0 except the right and left boundaries, obtaining the set +denoted by (Qi + u0 − ξ0). +Step 3. Let Qi+1 be the points q ∈ Qi, for which f(q) fall inside the set denoted (Qi+u0−ξ0), or the +points q ∈ Qi for which f(q) abandon Q through the right or left boundaries. + +i+uo-Eo +u +EO +Initial +Fatten +Shrinking +Sculpting +2 +4 +12 +Step 4. Return to step 1, unless Qi+1 = Qi. We call this final region, the set S. + +obtain the set S shown in Fig. 6, where we also display the 29 iterations that the algorithm +takes to converge, from Q0 to Q29. In the following subsections we describe three different +scenarios that we consider of interest, where the orbit is controlled in S to extend the chaotic +bursting of the neuron. +IV. +CONTROL IMPLEMENTATION USING THE SET S +In this section we use the set S computed in the previous section to control the orbits. +Although the set S was computed to sustain the chaotic orbit through all the region Q, + +Figure 6: Computation of the set S with ξ0 = 0.010 and u0 = 0.008. The region Q is +taken as the rectangle (y,x) ∈ [−3.42,−2.78]×[−1.82,1.92]. The right and left sides of Q are open +boundaries. The grid resolution taken in Q is 1000 × 1000 points. The computation of the set S, +starting from Q0, takes 29 iterations to converge (see the left small figures). In this case the set S +corresponds to Q29 shown in bigger size on the right. + +Q +Q +Q +Q +20 +22 +23 +24 +Q +Q +Q +Q +25 +27 +28 +29-0.5 +-1 +-1.5 +-3.4 +-3.3 +-3.2 +-3.1 +-3 +-2.9 +-2.8 +yQ +Q +Q +Q +Q +Q +Q +0 +12 +13 +Q +Q +Q +Q +QSet S computed with So = 0.010, uo = 0.008 +1.5 +1 +0.5 +0 +13 +we will show that the set S can be also used to control the bursting size in Q. Here we +distinguish the following three scenarios of control implementation. + +A. +Control through all the region Q (the long bursting) +In this scenario, we control the orbit in Q to allow them to achieve the left side of Q. All we +have to do when the orbit enters in S is to apply every iteration of the map qn+1 = f(qn) + ξn + +un the corresponding control |un| ≤ u0 = 0.008 to keep the orbit inside S until it escapes +through the left boundary. +In Fig. 7, we show the result of controlling the orbit through all the region Q. As shown in +Fig. 7(a), the bursting size is greatly increased as can be seen if we compare the x-time series +shown in Fig. 7(b) and the x-time series corresponding to the uncontrolled orbit shown + + +14 + +Figure 7: Long bursting control. (a) In blue the set S computed for ξ0 = 0.010 and u0 = 0.008. In this +set, the control is applied to the orbit (black dots) allowing it to reach the left chaotic region and thus +completing a long bursting. (b) The x-time series of the controlled orbit. (c) The y-time series of the +controlled orbit. (d) The disturbances |ξn| (orange bars) affecting the orbit and the controls |un| (blue +bars) applied during the 5000 iterations of the orbit. This control never exceeds the value u0 = 0.008. +before in Fig. 3(b). In Figs. 7(c) and 7(d), we also show the y-time series and the disturbance +and the control affecting the 5000 iterations of the orbit. Notice that in this scenario, the +chaotic oscillations (bursting) comes with a final periodic oscillation, so that in the high +activity period of the neuron, both behaviors are present. + +B. +Control until a specific y value in the set S (the y-stop). +In this subsection and the next one, we show how we can use the set S to control the +bursting size of the neuron. In particular, here we analyze the possibility of stop the bursting +when the orbit reaches a certain y value inside Q. +To compute an example, we choose the limiting value ystop = −3.1 (which is inside the set +Q). Once the controlled orbit reaches this value, we just cease the application of control. Next, +after a short chaotic transient, the orbit naturally escapes from Q through the bottom + +-2 +-3 +-4 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y-4 +0 +1000 +2000 +3000 +4000 +5000 +(d) +0.01 +0.010 +0.008 +0.005 +0 +0 +1000 +2000 +3000 +4000 +5000 +iterationsbursting +2 +0(b) +-2 +-4 +0 +1000 +2000 +3000 +4000 +5000 +(c) +3 +-3.5 +15 +boundary and the bursting stops. Then, the +orbit returns through the stable manifold to initiate the next bursting cycle. +This simple method of stopping the bursting works well in this system. However, +depending on the disturbance affecting the transient chaotic orbits, they can take different +times to escape from Q. A good strategy to reduce this time is, when the orbit reaches the +value ystop = −3.1, to continue applying a control |un| ≤ u0, but now with the aim of pushing +the orbit as far as possible from the set S. This approach significantly reduces the escape time +of the orbit. +The result of this control is shown in Fig. 8. In Figs. 8(a) and 8(b), it can be appreciated +that the bursting is abruptly stopped when the controlled orbit reaches the value y = −3.1. +Then, the y variable starts to grow again, see Fig. 8(c). Note that in this case, the control is +only applied in Q, first to keep the orbit in the set S, and then to accelerate the escape from +it. This is clearly shown in Fig. 8(d) where the disturbance and the control applied to +the orbit are also displayed. +In this scenario of control, it is important to stress out that the bursting cycles have +different size (see Fig. 8(a)). This is mainly due to the fact that the slow variable y that leads +the cycle is affected by disturbances, just as the x variable, and therefore every bursting can +take a different number of iterations to reach the stopping value y = −3.1. The higher the +upper disturbance bound, the more different bursting size we found. To achieve more +similar cycles we propose an alternative control strategy in the next subsection. + + +16 + +Figure 8: Control until a specific y value in set S. (a) In blue the set S computed for ξ0 = 0.010 and +u0 = 0.008 . In this set, the control is applied to sustain the orbit (black dots) until it reaches the value +y = −3.1. Then the escape of the orbit from S is forced. (b) The x-time series of the controlled orbit. +(c) The y-time series of the controlled orbit. (d) The disturbances |ξn| (orange bars) affecting the orbit +and the controls |un| (blue bars) applied during the 5000 iterations of the orbit. Note that the control +is only applied inside Q and it never exceeds the upper bound value u0 = 0.008. + +C. +Control to obtain cycles with a similar size +What we pursue here, is to obtain bursting cycles with approximately the same size. To +do that, we stop the bursting regime when it reaches certain number of iterations. The only +requirement is that the orbit has to be in Q. Here, as an example, we choose to stop the +bursting when the bursting reaches 600 iterations. However this condition is not enough to +achieve similar burstings size because the y-variable is affected by the disturbance in all the +chaotic cycle, (i.e., the bursting period in Q and in the low activity period outside Q), and +therefore we need to control the y-variable during all the cycle. +To do that, we assume that we know the behaviour of the map without disturbances. +Taking into account that this deterministic map produces chaotic cycles with similar sizes, + +-2 +-3 +-4 +Ystop +-3.1 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y-3.2 +0 +1000 +2000 +3000 +4000 +5000 +(d) +0.01 +0.010 +0.008 +0.005 +0 +0 +1000 +2000 +3000 +4000 +5000 +iterations(a) +2 +0 +1(b) +2 +0 +1000 +2000 +3000 +4000 +5000 +2.8 +y +17 +we can use the y-variable of this +deterministic map (we call it y∗), to lead the y-variable of our map affected by disturbances. +In that way we can achieve cycles with similar size. +Combining the above control of the variable y along all the cycle, and the control of both +variables x and y in the region Q, and taking into account the constraint |un| ≤ u0) in each +iteration, we propose the following full scheme of control: +• For a given point qn of the orbit, if we want that the image qn+1 = f(qn)+ξn+un maps in S, +among all the possible points qn+1 ∈ S (reachable with |un| ≤ u0) we choose the point +for which |y − y∗| is smaller. +• For a given point qn of the orbit, if we want that the image qn+1 = f(qn) + ξn + un maps +outside S, among all the possible points qn+1 ∈/ S (reachable with |un| ≤ u0) we +choose the point for which |y − y∗| is smaller. +The result of this control scheme is shown in Fig. 9(a). This figure is very similar to Fig. +8(a), nevertheless it should be noticed that in this case, the bursting is stopped when the +bursting duration reaches 600 iterations, instead of stopping when the orbit reaches the +value y = −3.1. Furthermore, as a result of controlling the y-variable all the time, the resulting +cycles have approximately the same size as shown in Fig. 9(b). See also that the y-series of +the controlled orbit, Fig. 9(c), is much more smooth than the y-series presented in Fig. 8(c). +The counterpart of this control scheme is that now, the amount of control used is larger (see +Fig. 9(d)) but always below the upper control bound u0 = 0.008. + + +18 + +Figure 9: Control to obtain cycles with similar size. (a) In blue the set S computed for ξ0 = 0.010 +and u0 = 0.008 . In this set, the control is applied to sustain the orbit (black dots) in the safe set until +it reaches 600 iterations in the bursting regime. Then the escape of the orbit from the safe set is +forced. In this way we can control exactly the duration of the bursting. (b) The x-time series of the +controlled orbit. (c) The y-time series of the controlled orbit. This variable is affected by disturbances +but it looks smooth because of the additional control over it. (d) The disturbances |ξn| (orange bars) +affecting the orbit and the controls |un| (blue bars) applied during the 5000 iterations of the orbit. In +this scenario, the control is applied in both variables when the orbit is in Q, and is only applied in the +y-variable when the orbit is outside Q to achieve chaotic cycles with similar size. As a consequence, +the amount of control applied is bigger than in the two previous scenarios, but it never exceeds the +value u0 = 0.008. +V. +SETS S FOR DIFFERENT VALUES OF THE DISTURBANCE ξ0 +In the previous section we have shown the application of the control in three different +scenarios where we use the upper disturbance bound ξ0 = 0.010 and the upper control bound +u0 = 0.008. However, if the values ξ0 and u0 are different, the set S will be different, as shown +in Fig. 10. In order to show how this change affects the controlled orbits, we compute again +the three scenarios presented before, but for a different disturbance value ξ0 affecting + +-2 +... +-3 +-4 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y-3.2 +0 +1000 +2000 +3000 +4000 +5000 +(d) +0.01 +=0.010 +0.008 +0.005 +0 +0 +1000 +2000 +3000 +4000 +5000 +iterationssezspusoobeohoo +2 +0 +7(b) +-2 +0 +1000 +2000 +3000 +4000 +5000 +(c) +-2.8 +h +-3 +19 +the map. In one case we choose a bigger +disturbance ξ0 = 0.020 and in the other one, a + +Figure 10: Computing the set S for different values ξ0. In both cases the region Q is taken as the +rectangle (y,x) ∈ [−3.42,−2.78] × [−1.82,1.92]. The right and left sides of Q are open boundaries. The +grid resolution taken in Q is 2000 × 2000 points. (a) The set S computed for ξ0 = 0.020 and u0 = 0.016. +It takes 23 iterations to converges. (b) The set S computed for ξ0 = 0.005 and u0 = 0.004. Note the finer +structure for smaller values of ξ0. It takes 37 iterations to converges. +smaller disturbance ξ0 = 0.005. +For the case ξ0 = 0.020, we obtain that the minimum upper control bound for which the +set S exists is u0 = 0.016 (see Fig. 10(a)) . The corresponding controlled orbits for the three +scenarios are shown in Fig. 11. +In the other case, we assume that the upper disturbance bound affecting the map is ξ0 = +0.005. The minimum upper control bound for which the set S exists is u0 = 0.004 (see Fig. +10(b)). The corresponding controlled orbits for the three scenarios are shown in Fig. 12. +These two examples, where different ξ0 have been chosen, reveal the most important +feature of the control method. Not only it takes into account the random disturbance +affecting the system, but also its intensity, obtaining different sets S that minimize the +necessary control in each case. + +-0.5 +-1 +-1.5 +-3.3 +-3.2 +-3.1 +-3 +-2.9 +-2.8 +y-0.5 +-1 +1.5 +-3.3 +-3.2 +-3.1 +-3 +-2.9 +-2.8 +y(p) +1.5 +1 +0.5 +0(D) +1.5 +1 +0.5 +00010(h) +20 + +Figure 11: Big disturbance. Controlling orbits with ξ0 = 0.020 and u0 = 0.016. Controlled orbits +corresponding to the three scenarios presented in the section IV. The only change is the bigger +disturbance ξ0 affecting the map and therefore the bigger control u0 required. (a) Uncontrolled orbit. +(b) Long bursting size. (c) Control until a specific y value in the set S. (d) +Control to obtain cycles with similar size. The bursting size selected is 600 iterations. + +(c) +Controlled orbit (y += -3.1) +stop +2 +1 +0 +-1 +-2 +-3 +5000iterations +-4 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y(d) +Controlledorbit(similarsizes) +2 +1 +0 +-1 +-2 +-3 +5000iterations +-4 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y(a) +Uncontrolled orbit +2 +1 +0 +-1 +-2 +-3 +5000iterations +-4 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y(b) +)Controlledorbit(longbursting) +2 +1 +0 +1 +-2 +-3 +5000iterations +-4 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y +21 + +Figure 12: Small disturbance. Controlling orbits with ξ0 = 0.005 and u0 = 0.004. Controlled orbits +corresponding to the three scenarios presented in the section IV. The only change is the smaller +disturbance ξ0 affecting the map and therefore the smaller control u0 required. (a) Uncontrolled orbit. +(b) Long bursting size. (c) Control until a specific y value in the set S. (d) +Control to obtain cycles with similar size. The bursting size selected is 600 iterations. +VI. +DISTURBANCES AND CONTROL IN ONLY ONE VARIABLE. +Along this work we have used the following Rulkov map model: + +(c) +Controlledorbit(y += -3.1) +stop +2 +1 +0 +-1 +4.1.* +-2 +. +-3 +5000iterations +-4 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y(d) +Controlledorbit(similarsizes +2 +1 +0 +-1 +-2 +-3 +5000iterations +-4 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y(a) +Uncontrolledorbit +2 +1 +0 +-1 +-2 +-3 +5000iterations +-4 +2 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y(b) +Controlled orbit(longbursting) +2 +1 +0 +-1 +-2 +-3 +5000iterations +-4 +-5 +-4.5 +-4 +-3.5 +-3 +-2.5 +y +22 +(5) +, +where we consider that both variables were affected by disturbances and both variables can +be controlled. However, to complete our study we report here a brief analysis when either +one variable is not controlled or is not affected by the disturbances. The results that we +obtain, can be summarized in the following three cases. +Case a) += 0. If we observe the sets S computed before, they +are made of approximately horizontal stripes. Typically, the orbit jumps from one +stripe to another until it falls outside S. In that moment, the control is applied to return +the orbit back to the nearest stripe. Due to the horizontal distribution of the stripes, +the control applied is mainly in the vertical axis (x-axis). For this reason, if we compute +the set S allowing only control in the variable x, the set S that we obtain is very similar +to the ones computed in the previous sections. The only difference is +that the minimum value + for which the set S exists, it is slightly larger than the + obtained when the control is allowed in both variables. For example, in the set S +computed in the section III we obtain a +008, while in the case of += 0, +we have obtain + +Case b) += 0. The sets S that we obtain in this case are very +similar with the sets S shown in this work. The reasons are the same as explained in +the previous case, the control + is active. However there is an important change. Due +to the absence of disturbance in the slow-variable y, the control scheme proposed in +the scenario three to get cycles with similar size is not needed since the y-variable +behaves smoothly. Even though we know that the disturbance affecting the x-variable, +will affects the y-variable in the next iteration of the map, the influence of this +disturbance is very small due to the small coupling value σ = 0.001 in the equations. +As a result, the y-variable behaves almost as deterministic and therefore the bursting +sizes obtained in both, the scenario two and three, are very similar. + + +23 + +Figure 13: Schematic control goal. In blue the region Q defined in the phase space. The open +boundaries are indicated with the dashed lines while close boundaries are draw with solid lines. We +assume that the dynamics in Q can be modelled as qn+1 = f(qn) + ξn + un with |ξn| ≤ ξ0 and +|un| ≤ u0. Given the upper bound of disturbance ξ0 and the upper bound of control u0 the set S (not +displayed) can be computed through a recursive algorithm. Orbits in S can be sustained in it applying +each iteration of the map a control |un| ≤ u0, until the orbit escapes (if it escapes) through an open +boundary. Black line in Q represents a controlled orbit in Q. +Case c) += 0. If we try to compute sets S controlling only +the y-variable, we found that it is necessary to apply a very big control resulting in a +big + value. Since the y-variable is the slow variable, to apply a big control on it will +completely destroy the bursting behaviour of the cycles, and for that reason we +consider this case (for this map) of no interest, since we want to preserve the chaotic +behaviour of the neuron. +VII. +GENERALIZATION OF THE CONTROL METHOD +The control method described in this work has been designed to extend and control the +bursting size of a neuron that behaves according to the Rulkov map, Eq. 2. For this case, we +define a region Q where the orbits are allowed to enter or abandon it across the right or left +boundaries, but not across the top or bottom boundaries. In this way, we were able to +extend the bursting size of the neuron. +open + boundary +open +boundary + +controlled orbit +24 +There might be other systems where the applications of this control scheme can be useful. +In general, given a system, we can design a region Q in the phase space, that actuates like a +bridge (see Fig. 13) for the orbits to connect regions of the phase space that otherwise +would be impossible . +The steps to apply this control technique is summarized as follows: +• Define the region Q in the phase space to connect different regions of phase space. We +assume that the dynamics in Q can be described as qn+1 = f(qn) + ξn + un, with |ξn| ≤ ξ0 +and |un| ≤ u0. +• Define the boundaries behavior (open or close). Orbits are allowed to escape/enter in +Q through the open boundaries. Orbits are not allow to escape/enter in Q through +the closed boundaries. +• Apply the following recursive algorithm. Beginning with Q0 = Q. The ith iteration of the +algorithm is: +1. Fatten the set Qi by u0 except the open boundaries, obtaining the set denoted by +(Qi + u0). +2. Shrink the set Qi+u0 by ξ0 except the open boundaries, obtaining the set denoted +by (Qi + u0 − ξ0). +3. Let Qi+1 be the points q ∈ Qi, for which f(q) falls inside the set denoted (Qi+u0− ξ0), +or the points q ∈ Qi for which f(q) abandon Q through an open boundaries. 4. +Return to step 1, unless Qi+1 = Qi. We call this final set, the set S. +• Control the orbits with the set S. Given a point q ∈ S, we evaluate f(qn) + ξn and then we +apply the corresponding control |un| ≤ u0 to put the orbit back in S unless f(qn) + ξn +escapes from Q through an open boundary. + + +25 +Here we want to point out three important considerations. First, this control scheme only +describes how an orbit is controlled in the set S ∈ Q. The way the orbit enters in S should be +taken into account to design an appropriate region Q in the phase space. For example, in the +case of the Rulkov map (see Fig. 4), if we take a bad region Q′ as the rectangle (y,x) ∈ [−3.5,−3] +× [−1.82,1.92] that does not touch the left chaotic region, most of the orbits, after a short +chaotic transient, will fall towards the stable manifold at the bottom, and never reaches the +right boundary (y = −3) of Q′. In consequence, very few orbits will +enter in Q′. +Second, the condition that we establish for the open boundaries (orbits can enter/escape +through this boundary), is not well defined since we are working with maps (discrete +trajectories) not with flows (continuous trajectories). The criterion that we follow in this +work is the simplest one. For a given orbit such that qn is in Q and qn+1 maps outside Q, we +draw an imaginary straight line between qn and qn+1. If the line crosses the open boundary, +we consider that the orbit is abandon Q through the open boundary. If not, we apply the +corresponding control |un| ≤ u0 to put the orbit back in Q. This is only one criterion among all +the possible choices to define if an orbit crosses an open boundary, and the controller is free +to set his own criterion. The steps of the recursive algorithm to obtain S applies in the same +way. +Third, this control scheme is designed to be minimally invasive. The control is not applied +to guide the orbit from one open boundary to another open boundary. The control scheme +is applied to sustain the orbit in Q until, if it happens, the orbit escapes across one of the open +boundaries. However, as we show in the subsection IV.C this control technique can be +combined with an additional control as long as the controls applied satisfies |un| ≤ u0. +VIII. +CONCLUSIONS +In this work we propose a control technique to extend the bursting size of a neuron +modelled by the two-dimensional Rulkov map affected by bounded disturbances. We +assume that the map can be modelled as qn+1 = f(qn)+ξn+un where the disturbances and +controls are bounded so that |ξn| ≤ ξ0 and |un| ≤ u0. The control method defines a region Q in + + +26 +the phase space between two separated chaotic regions. To connect both chaotic regions an +allow the orbits to exhibits long bursting, we compute an special subset S ⊂ Q where the +orbits can be sustained with minimal control u0. Once the set S is obtained we consider +three scenarios of application. +In the first scenario, the control is applied in all the set S to lead the orbit from one chaotic +region to the other, resulting in a long bursting size. In the second scenario, we stop the +bursting when the orbit reaches a predefined y-value in Q resulting in shorter bursting sizes. +In the third scenario we stop the burting when it reaches a certain number of iterations. In +addition, in this last case, we add an extra control in the y-variable to achieve similar cycles +with approximately the same bursting size. In all the scenarios, we show how the S adapts +for different upper disturbance bound ξ0 to minimize the upper control bound u0 necessary +to sustain the orbits in Q. +After that, we report the case in which only one variable is controlled showing that the +control in the x-variable is necessary to keep the chaotic behaviour of the neuron. Finally, we +have explained the generalization of the method, in case of its potential application to other +systems. +IX. +ACKNOWLEDGMENT +This work has been supported by the Spanish State Research Agency (AEI) and the +European Regional Development Fund (ERDF, EU) under Project No. PID2019-105554GB- +I00. + +[1] Rocsoreanu, C., Georgescu, A., and Giurgiteanu, N. (2000). The FitzHugh-Nagumo model: +bifurcation and dynamics. Springer, Dordrecht, Netherlands. +[2] Gonz´alez-Miranda, J.M. (2007). Complex bifurcation structures in the Hindmarsh–Rose neuron +model. Int. J. Bifurcat. Chaos 17, 3071-3083. +[3] Guckenheimer, J., and Oliva, R.A. (2002). Chaos in the Hodgkin–Huxley model. SIAM J. Appl. Dyn. +Syst. 1, 105-114. + + +27 +[4] Ibarz, B., Casado, J. M., and Sanju´an, M.A.F. (2011). Map-based models in neuronal dynamics. +Phys. Rep. 501, 1-74. +[5] Rulkov, N.F. (2001). Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86, 183. +[6] Bashkirtseva, I., and Ryashko, L. (2017). Analysis of noise-induced chaos-order transitions in +Rulkov model near crisis bifurcations. Int. J. Bifurcat. Chaos 27, 1730014. +[7] Bashkirtseva, I., Nasyrova, V., and Ryashko, L. (2018). Noise-induced bursting and chaos in the +two-dimensional Rulkov model. Chaos Solitons Fract., 110, 76-81. +[8] Bashkirtseva, I. (2015). Stochastic phenomena in one-dimensional Rulkov model of neuronal +dynamics. Discrete Dyn. Nat. Soc., 2015. +[9] Wang, C., and Cao, H. (2014). Parameter space of the Rulkov chaotic neuron model. Commun. +Nonlinear Sci. Numer. Simul., 19, 2060-2070. +[10] Lozano, R., and Sanju´an, M.A.F. (2019). Fourier analysis of a delayed Rulkov neuron network. +Commun. Nonlinear Sci. Numer. Simul., 75, 62-75. +[11] Wang, C., and Cao, H. (2015). Stability and chaos of Rulkov map-based neuron network with +electrical synapse. Commun. Nonlinear Sci. Numer. Simul., 20, 536-545. +[12] Sabuco, J., Zambrano, S., Sanju´an, M.A.F., and Yorke, J.A. (2012). Finding safety in partially +controllable chaotic systems.Commun. Nonlinear Sci. Numer. Simul., 17, 4274-4280. +[13] Cape´ans, R., Sabuco, J., Sanju´an, M.A.F., and Yorke, J.A. (2016). Partially controlling transient +chaos in the Lorenz equations. Philos. Trans. R. Soc. A 375, 20160211. +[14] Cape´ans, R., Sabuco, J., and Sanju´an, M.A.F. (2018). Partial control of chaos: How to avoid +undesirable behaviors with small controls in presence of noise. Discrete Contin. Dyn. Syst. B 23, +3237–3274. +[15] Cape´ans, R., and Sanju´an, M.A.F. (2018). Partial control of delay-coordinate maps. Nonlinear +Dyn. 92, 1419-1429. +[16] Coccolo, M., Seoane, J. M., Zambrano, S., and Sanju´an, M.A.F. (2013). Partial control of escapes +in chaotic scattering. Int. J. Bifurcat. Chaos 23, 1350008. +[17] Cape´ans, R., Sabuco, J., and Sanju´an, M.A.F. (2019). A new approach of the partial control +method in chaotic systems. Nonlinear Dyn. 98, 873–887. + + +28 +[18] Cape´ans, R., and Sanju´an, M.A.F. (2022). Beyond partial control: controlling chaotic transients +with the safety function. Nonlinear Dyn. 107, 2903-2910. +[19] Rulkov, N.F. (2002). Modeling of spiking-bursting neural behavior using two-dimensional map. +Phys. Rev. E 65, 041922. +[20] Lindner, B., Garc´ıa-Ojalvo, J., Neiman, A., and Schimansky-Geier, L. (2004). Effects of noise in +excitable systems. Phys. Rep. 392, 321-424. +[21] Hilborn, R.C. (2004). A simple model for stochastic coherence and stochastic resonance. Am. J. +Phys., 72, 528-533. +[22] Hilborn, R.C., and Erwin, R.J. (2005). Fokker-Planck analysis of stochastic coherence in models +of an excitable neuron with noise in both fast and slow dynamics. Phys. Rev. E, 72, 031112. +[23] Hilborn, R.C., and Erwin, R.J. (2004). Coherence resonance in models of an excitable neuron with +noise in both the fast and slow dynamics. Phys. Lett. A, 322, 19-24. + diff --git a/LdE0T4oBgHgl3EQfSgCx/content/tmp_files/load_file.txt b/LdE0T4oBgHgl3EQfSgCx/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..0dc4ac926b2a9e463ffe440fdebc1f726ca4b391 --- /dev/null +++ b/LdE0T4oBgHgl3EQfSgCx/content/tmp_files/load_file.txt @@ -0,0 +1,803 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf,len=802 +page_content='1 Controlling the bursting size in the two-dimensional Rulkov model Jennifer Lo´pez,1 Mattia Coccolo,1 Rub´en Cape´ans,1 and Miguel A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Sanjua´n1,2 1Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de F´ısica, Universidad Rey Juan Carlos, Tulip´an s/n, 28933 M´ostoles, Madrid, Spain 2Department of Applied Informatics, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania (Dated: December 21, 2022) Abstract We propose to control the orbits of the two-dimensional Rulkov model affected by bounded noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For the correct parameter choice the phase space presents two chaotic regions separated by a transient chaotic region in between.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' One of the chaotic regions is the responsible to give birth to the neuronal bursting regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Normally, an orbit in this chaotic region cannot pass through the transient chaotic one and reach the other chaotic region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' As a consequence the burstings are short in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Here, we propose a control technique to connect both chaotic regions and allow the neuron to exhibit very long burstings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This control method defines a region Q covering the transient chaotic region where it is possible to find an advantageous set S ⊂ Q through which the orbits can be driven with a minimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In addition we show how the set S changes depending on the noise intensity affecting the map, and how the set S can be used in different scenarios of control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' INTRODUCTION Neurons are complex entities that form a highly structured network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In recent decades, it has been of interest to create mathematical models that mimic their behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Due to their high complexity, these models have to be approximated and simplified while retaining only certain functionalities of the neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The entire structure of the neuron is usually replaced by a system with a voltage membrane and a connection topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Initially, continuous models such as the models of FitzHugh-Nagumo [1], Hindmarsh- Rose [2], and Hodgkin-Huxley [3] have been used profusely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Recently, discrete models have 2 started to arouse interest for the simulation of neurons [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' They are easier models to solve (they avoid the integration of ordinary differential equations), very versatile when creating neural networks and, in addition, they offer results very attractive in terms of dynamical behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this context, it is common to use two-dimensional maps of the slow-fast type variables (fast-slow system).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The most relevant are [4]: the Izhikevich’s discrete model, Courbage’s model, Chialvo’s model, and the Rulkov model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The latter presents three variants of the model: non-chaotic, supercritical, and chaotic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The chaotic Rulkov neuron map [5–11] is used in this work, because it is a simple model that can exhibit the basic regimes of neuronal activity, as rest, bursts, spikes, with the last two allowing periodic and chaotic dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='In particular, we focus our attention in the regime where the Rulkov map exhibits chaotic cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' These cycles alternate periods with high activity of the neuron exhibiting fast chaotic oscillations (bursting), together with periods of low activity without chaotic motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Typically the bursting size is short because these chaotic oscillations takes place in a narrow chaotic region of the phase space delimited by the presence of an unstable manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Once the chaotic orbit touches this unstable manifold the bursting rapidly extinguished giving way to a low activity period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However, we found that it is possible to greatly increase the bursting size of the neuron exploiting the fact that there is a second chaotic region in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This second chaotic region is separated from the main chaotic region, where the bursting of the neuron takes place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this work we explore the possibility to built a path in the phase space connecting both chaotic regions, allowing the chaotic orbits to pass from one to another, and therefore extending the size of the burstings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To do that, we present a control method inspired in our previous work of partial control [12–18] that also takes into account noise affecting the map, as in all real systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This method defines a region Q in the phase space located between both chaotic regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Through a recursive algorithm it can be computed a special subset called S ⊂ Q through which the orbits can be controlled to go from one chaotic region to the other, minimizing the need of control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Furthermore we will see that this method adapts to the intensity of noise affecting the map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Different intensities result in different sets S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 3 Although this control method resembles the partial control method and they share similarities in the steps to apply it, we want to emphasize that there is a substantial difference in the control goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' While partial control is designed to keep the orbits forever in the region Q of the phase space, this control method is designed to steer the orbits through the region Q, allowing the orbits to enter or abandon it via a portion of its boundaries, previously set by the controller, as it is shown schematically in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This control method is specially indicated to connect different regions of phase space that otherwise would be isolated .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The manuscript is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' II, we introduce the model system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' III, we describe the control technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Then, in Secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' IV and V, we apply the control technique to the system in different scenarios, where we also show results for different noise intensities to illustrate how the set S changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In Sec VI we discuss the results when one of the variables is not controlled or affected by the noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' VII we discuss how to generalize the method to other systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Finally, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' VIII we summarize the main results of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' THE TWO-DIMENSIONAL RULKOV MAP The chaotic Rulkov model [5–8] is a two-dimensional map that achieves to exhibit the basic regimes of neuronal activity with a simple model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The equations of the system are: (1) being x the voltage of the neuron membrane (taking the role of the fast variable), and y the ion concentration (representing the slow variable) where α,σ and β are the system parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Here we are interested in the regime where the system exhibits chaotic oscillations 4 Figure 1: Control goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Q is a region in the phase space previously defined by the controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In absence of control, an orbit (red orbit) enters in Q through the right boundary (right dashed line) but never reaches the left boundary (left dashed line), since it abandons Q through the bottom boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' With the suitable application of control it is possible to sustain the orbit (black orbit) in Q until it reaches the right boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this way, the region Q acts as a pathway for the controlled orbits, connecting different parts of the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [19], so we fix the values α = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1, σ = β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='001, following Rulkov’s original article [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The behaviour of the orbits in the phase space is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' At first glance, the figure looks like a bifurcation diagram but that is not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 1, both variables x and y are changing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However the change of the y variable is so slow in comparison with the variable x, that it behaves almost as a parameter, and that is why the orbits in the phase space, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2, resembles a bifurcation diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To build the Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2, we took a grid of initial conditions in the rectangle (y,x) ∈ [−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5,−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5] × [−5,2] and for each initial condition we simulate 100 iterations of the corresponding orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' We remove the first 99 iterations and we display the iteration 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this way, we can synthesize and obtain qualitative information about the behavior of the orbits in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' It is possible to appreciate the diversity in the dynamics that offers this system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' We indicate in the figure four important points (y1,y2,y3,y4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' At points y1 and y4, the stable an unstable manifold (displayed in green) intersects, and therefore the orbits changes their transient chaoticdynamics BOUNDARY BOUNDARY controlled orbit uncontrolled orbit 5 stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Between the points y2 and y3, transient chaotic dynamics takes place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Orbits in this region quickly decay below the unstable manifold and reach the bottom stable Figure 2: Behavior of the orbits in the Rulkov map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Here, we take an uniform grid of 1623 × 2739 initial conditions in the rectangle (y,x) ∈ [−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5,−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5] × [−5,2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For each initial condition we compute 100 iterations of the corresponding orbit, computed with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The figure represents the positions of the orbits in the iteration 100th, the previous 99 iterations have been removed to visualize the qualitative behavior of the orbits in each part of the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Notice that this is not a bifurcation diagram since the y value also change in every iteration of the orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However as y is the slow variable, it behaves almost like a parameter and that is the reason the figure resembles a bifurcation diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The small arrows displayed, indicate the average motion of the orbits in each region of the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' At the points y1 and y4 the stable and unstable manifolds (draw in green) meet and orbits at these points change their stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The points y2 and y3 delimit the region where the map exhibits transient chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Orbits in this region quickly decay below the unstable manifold where they return 2 3 4 y1 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y2 1 0 1 2ap transient chaosOrbitsin 6 to y4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Sooner or later, the orbits of all initial conditions in the rectangle eventually end in the chaotic cycle around y3 and y4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Figure 3: Chaotic cycle affected by disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (a) The background orbits shown in grey have been computed in the same way as the Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2 but instead, these orbits correspond with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='2 where an upper bound of disturbance ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 has been taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Eventually all these orbits converges to the chaotic cycle (red dots) that remains confined around y3 and y4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The orbit displayed consists of 5000 iterations and the corresponding x (fast variable) and y (slow variable) time series of the red orbit are shown in (b) and (c) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In (d) the disturbances |ξn| ≤ ξ0 affecting the orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To explain how the orbits behave in the phase space (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2) , let’s take an orbit starting in some point on the left chaotic region (y < y2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Here the orbit quickly oscillates in the vertical axis (x-axis) while it slowly moves to the left (y-axis) towards the periodic region where, eventually, it reaches the point (y = y1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' At this point, the orbits touch the unstable manifold and fall to the stable manifold at the bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Here the orbits starts to move to the right along the stable manifold until it reaches the value (y = y4), where the orbits meet again the unstable manifold and jumps to the right chaotic region at the top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this region the orbit starts to oscillate chaotically, while it slowly moves to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Finally the orbit reaches the crisis point (y = y3), and it falls again in the bottom stable manifold, 2 3 4 y2 y3 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='9 0 1000 2000 3000 4000 5000 (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='01 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='005 0 0 1000 2000 3000 4000 5000 iterations(a) Chaoticcycle 2 0 1(b) 2 a 2 0 1000 2000 3000 4000 5000 c 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='7 AAA y 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='8 7 repeating forever the chaotic cycle around the values y3 and y4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To model a more real behaviour of the neuron, we consider that Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 1 are affected by Figure 4: Scheme of the control goal in the phase space of the Rulkov map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The background orbits shown in grey are the same as displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' They will also be displayed in other figures as a background reference to help the visualization of the uncontrolled and controlled orbits in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In red color an uncontrolled orbit and in black a controlled one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Both are draw schematically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The control is applied in Q to sustain the transient chaotic orbit and allow it to complete a long bursting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Note that the region Q is taken wider than the interval between y3 and y2 interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This is because, the orbits affected by disturbances can touch the unstable manifold (green line) before y3 or after y2 and fall to the stable manifold at the bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Also, the right and left sides of Q are defined as open boundaries (dashed blue lines) to allow the orbit to enter and escape from Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2 3 4 y1 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4orbit y 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 yoitioigoa 2 1 0 1RegionQ controlled orbit 8 some additive bounded noise, that we call disturbance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In the literature, we can find authors that consider the disturbance affecting only the fast variable x [6, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Others consider the disturbance affecting the slow variable y [20] and others consider a disturbance affecting both variables [7, 21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this work, we consider this last case for being the most general, and at the end of the paper we analyze the particular cases of the disturbance affecting only one variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The Rulkov map affected by a disturbance is given by: (2) where and are the disturbances on each variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Physically, the disturbance in x can represent, for example, the synaptic input noise in the neuron membrane voltage, while the disturbance in y models ion-concentration fluctuations, which may be either from outside the cell or from inside [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The only condition that we impose is that the disturbance is bounded as p(ξnx)2 + (ξny)2 ≤ ξ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this way, we are confident that it does not become too large compared to the orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The behavior of the noisy orbits in the Rulkov map given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2 is displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In grey we display many orbits in the phase space taking a grid of initial conditions in the rectangle (y,x) ∈ [−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5,−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5] × [−5,2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The grey orbits have been computed in the same way as the orbits displayed the Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2 but using instead the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2 with an upper disturbance bound ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Eventually all these orbits end in the chaotic cycle displayed by the red dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In the same figure, we also display the x and y time series corresponding to the chaotic cycle and the disturbances |ξn| ≤ ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 affecting it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Notice that due to the disturbances, the orbit can touch the unstable manifold before reaching the points y3 and y4, respectively, and therefore the bursting sizes are more irregular in comparison with the deterministic case (ξ0 = 0), but yet short in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this scenario, we propose a control technique to increase the bursting size taking advantage of the presence of the transient chaotic region between y2 and y3 and the left chaotic region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Normally, the chaotic cycles trapped in the right chaotic region could never 9 reach the left chaotic region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However, with a suitable application of control it is possible to sustain the chaotic orbits in the transient chaotic region and allow them to reach the left chaotic region, extending the bursting size of the neuron as it is schematically draw in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' CONTROL SCHEME As shown in the Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 4, when an orbit enters in the transient chaotic region, approximately y2 < y < y3, after a short transient, it touches the unstable manifold (green line) and fall towards the stable manifold at the bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To avoid this escape, we will apply control in the region Q defined as the rectangle (y,x) ∈ [−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='42,−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='78] × [−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='82,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This region is y-wide enough to contain the interval y2 < y < y3, and x-wide enough to allow the chaotic oscillation of the fast variable x and therefore, preserving the dynamical behavior of the burstings in this region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this control scheme, we consider the general case where the control is applied on both variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' At the end of the paper we particularize to the case where the control is only applied on only one variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The Rulkov map with control in both variables is given by: (3) , , and the where the disturbance is bounded so that control applied is also considered bounded so that .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To simplify the notation, we define the state vector qn = (xn,yn), the disturbance vector ) and the control vector ) so that the map given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 3 can be written as: qn+1 = f(qn) + ξn + un, (4) with |ξn| ≤ ξ0 and |un| ≤ u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This upper control bound u0 is specified by the controller but we have to take into account that not any u0 value is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' There is a minimum value for which exist points in Q that are controllable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' These points constitute a subset 10 of Q that we name the set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Higher values of result in a larger set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The computation of the set S ⊂ Q can be realized through a recursive algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Beginning from the set Q0 = Q, the points qn ∈ Q for which the image f(qn) + ξn + un can not be put it back again in Q with |un| ≤ u0 , are removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Notice that, for every point qn, all possible disturbances |ξn| ≤ ξ0 must be evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' If for any of these disturbances, the point can not be controlled, then the point qn is removed from Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' There is only one exception to this rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The points qn ∈ Q0 for which the image f(qn) + ξn abandon Q0 through the right or left boundary are not removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This exception is required since we want the controlled orbits to pass across the region Q and leave it through the right or left boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In that sense we want that Q actuates like a bridge connecting the right (y > y3) and the left (y < y2) chaotic sides of the phase space and preventing that the orbit escapes through bottom (x = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='82) boundary of Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' After removing all the uncontrollable points qn ∈ Q0 in the first iteration of the algorithm, the surviving points constitutes a new subset Q1 ⊂ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The second iteration of the algorithm consists on repeating the process described before, but with the subset Q1 instead of Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' After that we obtain the subset Q2 ⊂ Q1 ⊂ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In the next steps, the algorithm is repeated until it converges, that is when Qi+1 = Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This final set will be S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This set guarantees that any point qn ∈ S can be controlled in S applying every iteration a control |un| ≤ u0, unless the orbit abandons Q across the right or left boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In that instant the applications of control is stopped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The computation of the set S as described above, can be greatly speeded up with the following algorithm based on morphological transformations of Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Given the initial region Q0 = Q and the upper bounds ξ0 and u0, the ith step of the algorithm is summarized in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Notice that if the value u0 selected is too small, the final set S will be the empty set (no points in Q are controllable with such a small control) and therefore we have to select a bigger value u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' As controllers, we want to keep the amount of control as low as possible, so it is reasonable to try to find out the minimum u0, named , for which the set S exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To do that, we compute the set S several times, taking each time a value u0 closer to the .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 11 That is, for a given value u0, if the set S exists, then we compute it again with a smaller value u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' If the set S is empty, we compute it again with a bigger value u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In that way we can approximately find the .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' All the sets S shown in this work were computed with a value u0 very close to the so the sets S are minimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Any other set computed with a bigger value u0 will contain the minimal set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In order to compute an example, we choose the upper disturbance bound affecting the map to be ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For this value we found that the minimum control bound for which the set S exists is approximately u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' After applying the recursive algorithm, we Figure 5: Recursive algorithm to compute the set S ⊂ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Beginning with Q0 = Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Fatten the set Qi by u0 except the right and left boundaries, obtaining the set denoted by (Qi + u0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Shrink the set (Qi + u0) by ξ0 except the right and left boundaries, obtaining the set denoted by (Qi + u0 − ξ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Let Qi+1 be the points q ∈ Qi, for which f(q) fall inside the set denoted (Qi+u0−ξ0), or the points q ∈ Qi for which f(q) abandon Q through the right or left boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' i+uo-Eo u EO Initial Fatten Shrinking Sculpting 2 4 12 Step 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Return to step 1, unless Qi+1 = Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' We call this final region, the set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' obtain the set S shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 6, where we also display the 29 iterations that the algorithm takes to converge, from Q0 to Q29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In the following subsections we describe three different scenarios that we consider of interest, where the orbit is controlled in S to extend the chaotic bursting of the neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' CONTROL IMPLEMENTATION USING THE SET S In this section we use the set S computed in the previous section to control the orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Although the set S was computed to sustain the chaotic orbit through all the region Q, Figure 6: Computation of the set S with ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 and u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The region Q is taken as the rectangle (y,x) ∈ [−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='42,−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='78]×[−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='82,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The right and left sides of Q are open boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The grid resolution taken in Q is 1000 × 1000 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The computation of the set S, starting from Q0, takes 29 iterations to converge (see the left small figures).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this case the set S corresponds to Q29 shown in bigger size on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Q Q Q Q 20 22 23 24 Q Q Q Q 25 27 28 29-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='8 yQ Q Q Q Q Q Q 0 12 13 Q Q Q Q QSet S computed with So = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010, uo = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 0 13 we will show that the set S can be also used to control the bursting size in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Here we distinguish the following three scenarios of control implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Control through all the region Q (the long bursting) In this scenario, we control the orbit in Q to allow them to achieve the left side of Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' All we have to do when the orbit enters in S is to apply every iteration of the map qn+1 = f(qn) + ξn + un the corresponding control |un| ≤ u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008 to keep the orbit inside S until it escapes through the left boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 7, we show the result of controlling the orbit through all the region Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 7(a), the bursting size is greatly increased as can be seen if we compare the x-time series shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 7(b) and the x-time series corresponding to the uncontrolled orbit shown 14 Figure 7: Long bursting control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (a) In blue the set S computed for ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 and u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this set, the control is applied to the orbit (black dots) allowing it to reach the left chaotic region and thus completing a long bursting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (b) The x-time series of the controlled orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (c) The y-time series of the controlled orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (d) The disturbances |ξn| (orange bars) affecting the orbit and the controls |un| (blue bars) applied during the 5000 iterations of the orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This control never exceeds the value u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' before in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 3(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 7(c) and 7(d), we also show the y-time series and the disturbance and the control affecting the 5000 iterations of the orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Notice that in this scenario, the chaotic oscillations (bursting) comes with a final periodic oscillation, so that in the high activity period of the neuron, both behaviors are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Control until a specific y value in the set S (the y-stop).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this subsection and the next one, we show how we can use the set S to control the bursting size of the neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In particular, here we analyze the possibility of stop the bursting when the orbit reaches a certain y value inside Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To compute an example, we choose the limiting value ystop = −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1 (which is inside the set Q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Once the controlled orbit reaches this value, we just cease the application of control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Next, after a short chaotic transient, the orbit naturally escapes from Q through the bottom 2 3 4 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y-4 0 1000 2000 3000 4000 5000 (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='005 0 0 1000 2000 3000 4000 5000 iterationsbursting 2 0(b) 2 4 0 1000 2000 3000 4000 5000 (c) 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 15 boundary and the bursting stops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Then, the orbit returns through the stable manifold to initiate the next bursting cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This simple method of stopping the bursting works well in this system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However, depending on the disturbance affecting the transient chaotic orbits, they can take different times to escape from Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' A good strategy to reduce this time is, when the orbit reaches the value ystop = −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1, to continue applying a control |un| ≤ u0, but now with the aim of pushing the orbit as far as possible from the set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This approach significantly reduces the escape time of the orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The result of this control is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 8(a) and 8(b), it can be appreciated that the bursting is abruptly stopped when the controlled orbit reaches the value y = −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Then, the y variable starts to grow again, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 8(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Note that in this case, the control is only applied in Q, first to keep the orbit in the set S, and then to accelerate the escape from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This is clearly shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 8(d) where the disturbance and the control applied to the orbit are also displayed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this scenario of control, it is important to stress out that the bursting cycles have different size (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 8(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This is mainly due to the fact that the slow variable y that leads the cycle is affected by disturbances, just as the x variable, and therefore every bursting can take a different number of iterations to reach the stopping value y = −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The higher the upper disturbance bound, the more different bursting size we found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To achieve more similar cycles we propose an alternative control strategy in the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 16 Figure 8: Control until a specific y value in set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (a) In blue the set S computed for ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 and u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this set, the control is applied to sustain the orbit (black dots) until it reaches the value y = −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Then the escape of the orbit from S is forced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (b) The x-time series of the controlled orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (c) The y-time series of the controlled orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (d) The disturbances |ξn| (orange bars) affecting the orbit and the controls |un| (blue bars) applied during the 5000 iterations of the orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Note that the control is only applied inside Q and it never exceeds the upper bound value u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Control to obtain cycles with a similar size What we pursue here, is to obtain bursting cycles with approximately the same size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To do that, we stop the bursting regime when it reaches certain number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The only requirement is that the orbit has to be in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Here, as an example, we choose to stop the bursting when the bursting reaches 600 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However this condition is not enough to achieve similar burstings size because the y-variable is affected by the disturbance in all the chaotic cycle, (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', the bursting period in Q and in the low activity period outside Q), and therefore we need to control the y-variable during all the cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To do that, we assume that we know the behaviour of the map without disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Taking into account that this deterministic map produces chaotic cycles with similar sizes, 2 3 4 Ystop 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='2 0 1000 2000 3000 4000 5000 (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='005 0 0 1000 2000 3000 4000 5000 iterations(a) 2 0 1(b) 2 0 1000 2000 3000 4000 5000 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='8 y 17 we can use the y-variable of this deterministic map (we call it y∗), to lead the y-variable of our map affected by disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In that way we can achieve cycles with similar size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Combining the above control of the variable y along all the cycle, and the control of both variables x and y in the region Q, and taking into account the constraint |un| ≤ u0) in each iteration, we propose the following full scheme of control: For a given point qn of the orbit, if we want that the image qn+1 = f(qn)+ξn+un maps in S, among all the possible points qn+1 ∈ S (reachable with |un| ≤ u0) we choose the point for which |y − y∗| is smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For a given point qn of the orbit, if we want that the image qn+1 = f(qn) + ξn + un maps outside S, among all the possible points qn+1 ∈/ S (reachable with |un| ≤ u0) we choose the point for which |y − y∗| is smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The result of this control scheme is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 9(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This figure is very similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 8(a), nevertheless it should be noticed that in this case, the bursting is stopped when the bursting duration reaches 600 iterations, instead of stopping when the orbit reaches the value y = −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Furthermore, as a result of controlling the y-variable all the time, the resulting cycles have approximately the same size as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 9(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' See also that the y-series of the controlled orbit, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 9(c), is much more smooth than the y-series presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 8(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The counterpart of this control scheme is that now, the amount of control used is larger (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 9(d)) but always below the upper control bound u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 18 Figure 9: Control to obtain cycles with similar size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (a) In blue the set S computed for ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 and u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this set, the control is applied to sustain the orbit (black dots) in the safe set until it reaches 600 iterations in the bursting regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Then the escape of the orbit from the safe set is forced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this way we can control exactly the duration of the bursting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (b) The x-time series of the controlled orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (c) The y-time series of the controlled orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This variable is affected by disturbances but it looks smooth because of the additional control over it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (d) The disturbances |ξn| (orange bars) affecting the orbit and the controls |un| (blue bars) applied during the 5000 iterations of the orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this scenario, the control is applied in both variables when the orbit is in Q, and is only applied in the y-variable when the orbit is outside Q to achieve chaotic cycles with similar size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' As a consequence, the amount of control applied is bigger than in the two previous scenarios, but it never exceeds the value u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' SETS S FOR DIFFERENT VALUES OF THE DISTURBANCE ξ0 In the previous section we have shown the application of the control in three different scenarios where we use the upper disturbance bound ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 and the upper control bound u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However, if the values ξ0 and u0 are different, the set S will be different, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In order to show how this change affects the controlled orbits, we compute again the three scenarios presented before, but for a different disturbance value ξ0 affecting 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 3 4 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='2 0 1000 2000 3000 4000 5000 (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='01 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='005 0 0 1000 2000 3000 4000 5000 iterationssezspusoobeohoo 2 0 7(b) 2 0 1000 2000 3000 4000 5000 (c) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='8 h 3 19 the map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In one case we choose a bigger disturbance ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='020 and in the other one, a Figure 10: Computing the set S for different values ξ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In both cases the region Q is taken as the rectangle (y,x) ∈ [−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='42,−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='78] × [−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='82,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The right and left sides of Q are open boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The grid resolution taken in Q is 2000 × 2000 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (a) The set S computed for ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='020 and u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' It takes 23 iterations to converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (b) The set S computed for ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='005 and u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Note the finer structure for smaller values of ξ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' It takes 37 iterations to converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' smaller disturbance ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For the case ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='020, we obtain that the minimum upper control bound for which the set S exists is u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='016 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 10(a)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The corresponding controlled orbits for the three scenarios are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In the other case, we assume that the upper disturbance bound affecting the map is ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The minimum upper control bound for which the set S exists is u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='004 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 10(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The corresponding controlled orbits for the three scenarios are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' These two examples, where different ξ0 have been chosen, reveal the most important feature of the control method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Not only it takes into account the random disturbance affecting the system, but also its intensity, obtaining different sets S that minimize the necessary control in each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='8 y-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='8 y(p) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 0(D) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 00010(h) 20 Figure 11: Big disturbance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Controlling orbits with ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='020 and u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Controlled orbits corresponding to the three scenarios presented in the section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The only change is the bigger disturbance ξ0 affecting the map and therefore the bigger control u0 required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (a) Uncontrolled orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (b) Long bursting size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (c) Control until a specific y value in the set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (d) Control to obtain cycles with similar size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The bursting size selected is 600 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (c) Controlled orbit (y = -3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1) stop 2 1 0 1 2 3 5000iterations 4 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y(d) Controlledorbit(similarsizes) 2 1 0 1 2 3 5000iterations 4 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y(a) Uncontrolled orbit 2 1 0 1 2 3 5000iterations 4 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y(b) )Controlledorbit(longbursting) 2 1 0 1 2 3 5000iterations 4 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y 21 Figure 12: Small disturbance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Controlling orbits with ξ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='005 and u0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Controlled orbits corresponding to the three scenarios presented in the section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The only change is the smaller disturbance ξ0 affecting the map and therefore the smaller control u0 required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (a) Uncontrolled orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (b) Long bursting size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (c) Control until a specific y value in the set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (d) Control to obtain cycles with similar size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The bursting size selected is 600 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' DISTURBANCES AND CONTROL IN ONLY ONE VARIABLE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Along this work we have used the following Rulkov map model: (c) Controlledorbit(y = -3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1) stop 2 1 0 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' * 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 3 5000iterations 4 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y(d) Controlledorbit(similarsizes 2 1 0 1 2 3 5000iterations 4 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y(a) Uncontrolledorbit 2 1 0 1 2 3 5000iterations 4 2 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y(b) Controlled orbit(longbursting) 2 1 0 1 2 3 5000iterations 4 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5 y 22 (5) , where we consider that both variables were affected by disturbances and both variables can be controlled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However, to complete our study we report here a brief analysis when either one variable is not controlled or is not affected by the disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The results that we obtain, can be summarized in the following three cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Case a) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' If we observe the sets S computed before, they are made of approximately horizontal stripes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Typically, the orbit jumps from one stripe to another until it falls outside S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In that moment, the control is applied to return the orbit back to the nearest stripe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Due to the horizontal distribution of the stripes, the control applied is mainly in the vertical axis (x-axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For this reason, if we compute the set S allowing only control in the variable x, the set S that we obtain is very similar to the ones computed in the previous sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The only difference is that the minimum value for which the set S exists, it is slightly larger than the obtained when the control is allowed in both variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For example, in the set S computed in the section III we obtain a 008, while in the case of = 0, we have obtain Case b) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The sets S that we obtain in this case are very similar with the sets S shown in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The reasons are the same as explained in the previous case, the control is active.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However there is an important change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Due to the absence of disturbance in the slow-variable y, the control scheme proposed in the scenario three to get cycles with similar size is not needed since the y-variable behaves smoothly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Even though we know that the disturbance affecting the x-variable, will affects the y-variable in the next iteration of the map, the influence of this disturbance is very small due to the small coupling value σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='001 in the equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' As a result, the y-variable behaves almost as deterministic and therefore the bursting sizes obtained in both, the scenario two and three, are very similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 23 Figure 13: Schematic control goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In blue the region Q defined in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The open boundaries are indicated with the dashed lines while close boundaries are draw with solid lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' We assume that the dynamics in Q can be modelled as qn+1 = f(qn) + ξn + un with |ξn| ≤ ξ0 and |un| ≤ u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Given the upper bound of disturbance ξ0 and the upper bound of control u0 the set S (not displayed) can be computed through a recursive algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Orbits in S can be sustained in it applying each iteration of the map a control |un| ≤ u0, until the orbit escapes (if it escapes) through an open boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Black line in Q represents a controlled orbit in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Case c) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' If we try to compute sets S controlling only the y-variable, we found that it is necessary to apply a very big control resulting in a big value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Since the y-variable is the slow variable, to apply a big control on it will completely destroy the bursting behaviour of the cycles, and for that reason we consider this case (for this map) of no interest, since we want to preserve the chaotic behaviour of the neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' GENERALIZATION OF THE CONTROL METHOD The control method described in this work has been designed to extend and control the bursting size of a neuron that behaves according to the Rulkov map, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For this case, we define a region Q where the orbits are allowed to enter or abandon it across the right or left boundaries, but not across the top or bottom boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In this way, we were able to extend the bursting size of the neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' open boundary open boundary controlled orbit 24 There might be other systems where the applications of this control scheme can be useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In general, given a system, we can design a region Q in the phase space, that actuates like a bridge (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 13) for the orbits to connect regions of the phase space that otherwise would be impossible .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The steps to apply this control technique is summarized as follows: Define the region Q in the phase space to connect different regions of phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' We assume that the dynamics in Q can be described as qn+1 = f(qn) + ξn + un, with |ξn| ≤ ξ0 and |un| ≤ u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Define the boundaries behavior (open or close).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Orbits are allowed to escape/enter in Q through the open boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Orbits are not allow to escape/enter in Q through the closed boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Apply the following recursive algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Beginning with Q0 = Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The ith iteration of the algorithm is: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Fatten the set Qi by u0 except the open boundaries, obtaining the set denoted by (Qi + u0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Shrink the set Qi+u0 by ξ0 except the open boundaries, obtaining the set denoted by (Qi + u0 − ξ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Let Qi+1 be the points q ∈ Qi, for which f(q) falls inside the set denoted (Qi+u0− ξ0), or the points q ∈ Qi for which f(q) abandon Q through an open boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Return to step 1, unless Qi+1 = Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' We call this final set, the set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Control the orbits with the set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Given a point q ∈ S, we evaluate f(qn) + ξn and then we apply the corresponding control |un| ≤ u0 to put the orbit back in S unless f(qn) + ξn escapes from Q through an open boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 25 Here we want to point out three important considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' First, this control scheme only describes how an orbit is controlled in the set S ∈ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The way the orbit enters in S should be taken into account to design an appropriate region Q in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For example, in the case of the Rulkov map (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 4), if we take a bad region Q′ as the rectangle (y,x) ∈ [−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='5,−3] × [−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='82,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='92] that does not touch the left chaotic region, most of the orbits, after a short chaotic transient, will fall towards the stable manifold at the bottom, and never reaches the right boundary (y = −3) of Q′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In consequence, very few orbits will enter in Q′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Second, the condition that we establish for the open boundaries (orbits can enter/escape through this boundary), is not well defined since we are working with maps (discrete trajectories) not with flows (continuous trajectories).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The criterion that we follow in this work is the simplest one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' For a given orbit such that qn is in Q and qn+1 maps outside Q, we draw an imaginary straight line between qn and qn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' If the line crosses the open boundary, we consider that the orbit is abandon Q through the open boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' If not, we apply the corresponding control |un| ≤ u0 to put the orbit back in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' This is only one criterion among all the possible choices to define if an orbit crosses an open boundary, and the controller is free to set his own criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The steps of the recursive algorithm to obtain S applies in the same way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Third, this control scheme is designed to be minimally invasive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The control is not applied to guide the orbit from one open boundary to another open boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The control scheme is applied to sustain the orbit in Q until, if it happens, the orbit escapes across one of the open boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' However, as we show in the subsection IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='C this control technique can be combined with an additional control as long as the controls applied satisfies |un| ≤ u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' CONCLUSIONS In this work we propose a control technique to extend the bursting size of a neuron modelled by the two-dimensional Rulkov map affected by bounded disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' We assume that the map can be modelled as qn+1 = f(qn)+ξn+un where the disturbances and controls are bounded so that |ξn| ≤ ξ0 and |un| ≤ u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The control method defines a region Q in 26 the phase space between two separated chaotic regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' To connect both chaotic regions an allow the orbits to exhibits long bursting, we compute an special subset S ⊂ Q where the orbits can be sustained with minimal control u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Once the set S is obtained we consider three scenarios of application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In the first scenario, the control is applied in all the set S to lead the orbit from one chaotic region to the other, resulting in a long bursting size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In the second scenario, we stop the bursting when the orbit reaches a predefined y-value in Q resulting in shorter bursting sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In the third scenario we stop the burting when it reaches a certain number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In addition, in this last case, we add an extra control in the y-variable to achieve similar cycles with approximately the same bursting size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' In all the scenarios, we show how the S adapts for different upper disturbance bound ξ0 to minimize the upper control bound u0 necessary to sustain the orbits in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' After that, we report the case in which only one variable is controlled showing that the control in the x-variable is necessary to keep the chaotic behaviour of the neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Finally, we have explained the generalization of the method, in case of its potential application to other systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' IX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' ACKNOWLEDGMENT This work has been supported by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERDF, EU) under Project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' PID2019-105554GB- I00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [1] Rocsoreanu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Georgescu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Giurgiteanu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' The FitzHugh-Nagumo model: bifurcation and dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Springer, Dordrecht, Netherlands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [2] Gonz´alez-Miranda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Complex bifurcation structures in the Hindmarsh–Rose neuron model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Bifurcat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Chaos 17, 3071-3083.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [3] Guckenheimer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Oliva, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Chaos in the Hodgkin–Huxley model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 1, 105-114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 27 [4] Ibarz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Casado, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Sanju´an, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Map-based models in neuronal dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 501, 1-74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [5] Rulkov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Regularization of synchronized chaotic bursts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 86, 183.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [6] Bashkirtseva, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Ryashko, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Analysis of noise-induced chaos-order transitions in Rulkov model near crisis bifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Bifurcat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Chaos 27, 1730014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [7] Bashkirtseva, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Nasyrova, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Ryashko, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Noise-induced bursting and chaos in the two-dimensional Rulkov model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Chaos Solitons Fract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', 110, 76-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [8] Bashkirtseva, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Stochastic phenomena in one-dimensional Rulkov model of neuronal dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Discrete Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [9] Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Cao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Parameter space of the Rulkov chaotic neuron model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Nonlinear Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Simul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', 19, 2060-2070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [10] Lozano, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Sanju´an, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Fourier analysis of a delayed Rulkov neuron network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Nonlinear Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Simul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', 75, 62-75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [11] Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Cao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Stability and chaos of Rulkov map-based neuron network with electrical synapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Nonlinear Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Simul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', 20, 536-545.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [12] Sabuco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Zambrano, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Sanju´an, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Yorke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Finding safety in partially controllable chaotic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Nonlinear Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Simul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', 17, 4274-4280.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [13] Cape´ans, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Sabuco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Sanju´an, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Yorke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Partially controlling transient chaos in the Lorenz equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' A 375, 20160211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [14] Cape´ans, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Sabuco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Sanju´an, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Partial control of chaos: How to avoid undesirable behaviors with small controls in presence of noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Discrete Contin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' B 23, 3237–3274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [15] Cape´ans, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Sanju´an, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Partial control of delay-coordinate maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Nonlinear Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 92, 1419-1429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [16] Coccolo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Seoane, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Zambrano, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Sanju´an, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Partial control of escapes in chaotic scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Bifurcat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Chaos 23, 1350008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [17] Cape´ans, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Sabuco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Sanju´an, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' A new approach of the partial control method in chaotic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Nonlinear Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 98, 873–887.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 28 [18] Cape´ans, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Sanju´an, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Beyond partial control: controlling chaotic transients with the safety function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Nonlinear Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 107, 2903-2910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [19] Rulkov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Modeling of spiking-bursting neural behavior using two-dimensional map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' E 65, 041922.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [20] Lindner, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Garc´ıa-Ojalvo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', Neiman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Schimansky-Geier, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Effects of noise in excitable systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' 392, 321-424.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [21] Hilborn, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' A simple model for stochastic coherence and stochastic resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', 72, 528-533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [22] Hilborn, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Erwin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Fokker-Planck analysis of stochastic coherence in models of an excitable neuron with noise in both fast and slow dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' E, 72, 031112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' [23] Hilborn, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=', and Erwin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Coherence resonance in models of an excitable neuron with noise in both the fast and slow dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} +page_content=' A, 322, 19-24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf'} diff --git a/NdFJT4oBgHgl3EQfzy31/content/2301.11645v1.pdf b/NdFJT4oBgHgl3EQfzy31/content/2301.11645v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9e855f08a4a8dcffe3fbdbea6b8a9f150d89d42e --- /dev/null +++ b/NdFJT4oBgHgl3EQfzy31/content/2301.11645v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d574a51c99bf770706a77a69c5fc2e0f17e789a9024377786a70cfaeed962d16 +size 1263518 diff --git a/NdFJT4oBgHgl3EQfzy31/vector_store/index.faiss b/NdFJT4oBgHgl3EQfzy31/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..8b2aad4ea2ae59ddaf658b71e9fb2c5b9e8b0d1e --- /dev/null +++ b/NdFJT4oBgHgl3EQfzy31/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e61b88c787dd08e566156bfbb8061a1c0e551f140a325c3ab2a5e15c3df1037 +size 7864365 diff --git a/NdFJT4oBgHgl3EQfzy31/vector_store/index.pkl b/NdFJT4oBgHgl3EQfzy31/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..347c3735aeef2956cdabf2ce206e1edcf11ea8ad --- /dev/null +++ b/NdFJT4oBgHgl3EQfzy31/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4a45a11c6f55aeb97da75ad127359d59b62a0a3c19a88e35ecb2f7e5ff8f62d8 +size 227514 diff --git a/OtAzT4oBgHgl3EQflP1e/content/tmp_files/2301.01544v1.pdf.txt b/OtAzT4oBgHgl3EQflP1e/content/tmp_files/2301.01544v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..714f99cf1cb951d945b9a5594ceeb1b3749fdfda --- /dev/null +++ b/OtAzT4oBgHgl3EQflP1e/content/tmp_files/2301.01544v1.pdf.txt @@ -0,0 +1,1509 @@ +Condensed Matter Physics, 2022, Vol. 25, No. 4, 43711: 1–14 +DOI: 10.5488/CMP.25.43711 +http://www.icmp.lviv.ua/journal +Electrocaloric and barocaloric effects in CsH2PO4 +ferroelectric +A. S. Vdovych +1∗, R. R. Levitskii 1, I. R. Zachek2 +1 Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, +1 Svientsitskii St., 79011 Lviv, Ukraine +2 Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine +Received June 30, 2022, in final form August 23, 2022 +To investigate the caloric effects in the CsH2PO4 ferroelectric, a modified pseudospin model of this crystal is +used, which takes into account the dependence of the parameters of interaction between pseudospins on lattice +strains. The model also takes into account the dependence of the effective dipole moment of a pseudospin on +the order parameter. In the two-particle cluster approximation, the influence of the longitudinal electric field +and hydrostatic pressure on the molar entropy of the crystal was studied. The electrocaloric and barocaloric +effects were studied. The calculated electrocaloric temperature change is about 1 K; it can change its sign under +the influence of hydrostatic pressure. Barocaloric temperature change is about −0.5 K; lattice anharmonicities +were not taken into account in its calculations. +Key words: ferroelectricity, phase transitions, dielectric permittivity, mechanical deformation, hydrostatic +pressure effect +1. Introduction +Currently, the greatest electrocaloric (EC) effect, as the change in temperature of dielectric with an +adiabatic change of electric field, is observed in thin films of perovskite ferroelectrics and relaxors. In +particular, there was achieved a change in temperature Δ𝑇ec = 12 K in the presence of strong electric +field (𝐸 = 480 kV/cm) in crystal PbZr0.95Ti0.05O3 [1], 45.3 K at field strength 𝐸 = 598 kV/cm in +Pb0.8Ba0.2ZrO3 [2], −42.5 K at 𝐸 = 1632 kV/cm in 0.5(Ba0.8Ca0.2)TiO3–0.5Bi(Mg0.5Ti0.5)O3 [3], 40 K +at 𝐸 = 1200 kV/cm in Pb0.88La0.08Zr0.65Ti0.35O3 [4]. +In bulk samples, the EC effect is an order of magnitude weaker due to a less dielectric strength. In par- +ticular, there was achieved a temperature change Δ𝑇ec += +4.5 K at 𝐸 += +90 kV/cm in +Pb0.88La0.12(Zr0.65Ti0.35)0.97O3 [5], 3.5 K at 𝐸 = 197 kV/cm in lead scandium tantalate [6], 11 K +at 𝐸 = 29.7 kV/cm in [(CH3)2CHCH2NH3]2PbCl4 [7]. +In cheaper and more accessible KH2PO4 (KDP) type ferroelectrics with hydrogen bonds, the EC +effect has been investigated in relatively weak fields or not at all. In particular, in the KDP crystal there +was achieved Δ𝑇ec ≈ 0.04 K at the field strength 𝐸 ≈ 4 kV/cm [8], Δ𝑇ec ≈ 1K at 𝐸 ≈ 12 kV/cm [9] and +Δ𝑇 ≈ 0.25 K at temperature 𝑇𝑐 at 𝐸 ≈ 1.2 kV/cm [10]. Calculations carried out in [11] based on the +pseudospin model of a deformed KDP crystal show that the Δ𝑇ec in this crystal can exceed 5 K. +Ferroelectrics, in which Δ𝑇ec is smaller than those mentioned above, are also promising for elec- +trocaloric cooling since, in order to obtaine a given Δ𝑇ec, electrocaloric devices can be combined into a +cascade of several links, in which the heater for the previous link is at the same time the cooler for the +next link [12]. +In ferroelectric materials, the phase transition temperature depends on the pressure. Therefore, they +also exhibit a significant barocaloric (BC) effect, which is a change in the crystal temperature during an +∗Corresponding author: vas@icmp.lviv.ua. +This work is licensed under a Creative Commons Attribution 4.0 International License. Further distribution +of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. +43711-1 +arXiv:2301.01544v1 [cond-mat.mtrl-sci] 4 Jan 2023 + +A. S. Vdovych, R. R. Levitskii , I. R. Zachek +1 +2 +1 +2 +A +B +a +b +c +I +II +a +c +a +b +Figure 1. (Colour online) Primitive cell of CDP crystal in the ferroelectric phase [15]. +adiabatic change in hydrostatic pressure. The strongest BC effect was achieved in crystals with hydrogen +bonds NH4HSO4 [13] (Δ𝑇bc = −10 K at pressure 𝑝 = 0.15 GPa) and (NH4)2SO4 [14] (Δ𝑇bc = −8 K at +pressure 𝑝 = 0.1 GPa). +Crystal CsH2PO4 (CDP) is another example of a hydrogen-bonded ferroelectric of the KDP family. +Neither EC nor BC effects in this crystal have been studied at all. In the CDP crystal, there are two +structurally non-equivalent types of hydrogen bonds of different lengths (figure 1b). Longer bonds have +one equilibrium position for protons, while shorter bonds have two equilibrium positions. They connect +PO4 groups in chains along the 𝑏-axis (figure 1a); therefore, the crystal is quasi-one-dimensional. +At room temperature in the absence of pressure, the crystal is in the paraelectric phase and has +monoclinic symmetry (space group P21/m) [16, 17]. At the same time, protons on short bonds are +in two equilibrium positions with the same probability. Below 𝑇𝑐 = 153 K, the crystal passes to the +ferroelectric phase (space group P21) [18, 19] with spontaneous polarization along the crystallographic +𝑏-axis, and protons with a higher probability occupy the upper position (figure 1a). On the basis of +dielectric studies [20, 21] it was established that at pressures 𝑝 = 𝑝𝑐 = 0.33 GPa and 𝑇cr +𝑐 = 124.6 K, +double hysteresis loops appear, that is, a transition to the antiferroelectric phase occurs. With the help +of neutron diffraction studies [22], it was established that in the antiferroelectric phase, the unit cell of +the CDP crystal doubles along the a-axis, as two sublattices in the form of bc planes arise, which are +polarized antiparallel along 𝑏-axis and alternate along the a-axis. The symmetry remains monoclinic +(space group P21). Protons on hydrogen bonds are arranged in neighboring sublattices in an antiparallel +manner. At very high pressures, an antiferroelectric phase of the second type (AF2) occurs, in which two +sublattices have the form of chains along the b-axis, and they are polarized antiparallel along the 𝑏-axis +and alternate in a checkerboard pattern. The AF2 phase was predicted on the basis of NMR studies [23] +and confirmed in [24] on the basis of X-ray diffraction measurements and dielectric measurements [25]. +The effect of hydrostatic pressure on the phase transition temperature and dielectric properties of +Cs(H1−𝑥D𝑥)2PO4 ferroelectrics was studied in [20, 21, 24–28]. The molar heat capacity of CDP was +measured in [29], and was also calculated based on the lattice dynamics simulations in [30, 31]. Later, +based on the ab-initio calculations [32] and using calculations based on the quasi-one-dimensional model +[33], the important role of proton tunneling on the bonds was established. Piezoelectric coefficients, elastic +constants, and molar heat capacity of CDP [34, 35] were also calculated on the basis of first-principle +calculations. +A theoretical description of the dielectric properties of CDP at different values of hydrostatic pressure +was carried out in [36, 37] based on the pseudospin model. However, in these works, the interaction +parameters do not depend on the lattice strains. As a result, it is impossible to obtain piezoelectric and +elastic characteristics of the crystal, and the critical pressure does not depend on temperature. +In [38], temperature dependences of lattice strains 𝑢1, 𝑢2, 𝑢3, 𝑢5 were measured. A quasi-one- +dimensional Ising model for the CDP crystal is also proposed there, in which the interaction parameters +are linear functions of these strains. Based on this model, the temperature behavior of 𝑢 𝑗 (𝑇) was explained. +However, this model does not consider the crystal as two sublattices and does not allow describing the +ferro-antiferroelectric transition at high pressures. +43711-2 + +C5CS +CS +CS +CSElectrocaloric and barocaloric effects +In the papers [15, 39–41], a two-sublattice pseudospin model of a deformed CDP crystal is proposed, +in which the interactions between the nearest pseudospins in the chain are taken into account in the +two-particle cluster approximation, and the long-range (including interchain) interactions are taken +into account in the mean field approximation. At the same time, the interaction parameters are linear +functions of 𝑢 𝑗 strains. As a result, the temperature dependences of spontaneous polarization, dielectric +constant, piezoelectric coefficients and elastic constants were calculated, and the influence of hydrostatic +and uniaxial pressures and longitudinal electric field on these characteristics was studied. In [41], the +behavior of the thermodynamic characteristics of the CDP crystal under the action of hydrostatic and +uniaxial pressures and a longitudinal electric field, as well as under the simultaneous action of pressures +and the electric field, was investigated. +In the present paper, the electrocaloric and barocaloric effects in CDP crystal are calculated based on +the model proposed in [15]. +2. Model of CDP crystal +The [15] model was used to calculate the thermodynamic characteristics of CDP, which considers +the system of protons on O-H...O bonds with a two-minimum potential as a system of pseudospins. +The primitive cell contains one chain, marked in figure 1 as “A”. To describe the transition to the +antiferroelectric phase at high pressures, in [15] an extended primitive cell formed by two chains (“A” +and “B”) is considered. All “A” chains form the “A” sublattice, and all “B” chains form the “B” sublattice. +Each chain in the primitive cell contains two neighboring PO4 tetrahedra (of type “I” and “II”) together +with two short hydrogen bonds (“1” and “2”, respectively). The dipole moments �𝑑 𝐴 +𝑞1, �𝑑 𝐴 +𝑞2, �𝑑𝐵 +𝑞1, �𝑑𝐵 +𝑞2 +are attributed to the protons on the bonds. Pseudospin variables 𝜎𝐴 +𝑞1/2, 𝜎𝐴 +𝑞2/2, 𝜎𝐵 +𝑞1/2, 𝜎𝐵 +𝑞2/2 describe +changes associated with the rearrangement of the corresponding dipole moments of structural units: +�𝑑 𝐴,𝐵 +𝑞1,2 = �𝜇𝐴,𝐵 +𝑞1,2 +𝜎𝐴,𝐵 +𝑞1,2 +2 +. +Further, we use the notation “2” instead of “y” for the components of vectors and tensors, for +convenience. In the presence of mechanical stresses that do not change the symmetry of the crystal +𝜎1 = 𝜎𝑥𝑥, 𝜎2 = 𝜎𝑦𝑦, 𝜎3 = 𝜎𝑧𝑧, 𝜎5 = 𝜎𝑥𝑧 (X ⊥ (b,c), Y ∥ b, Z ∥ c), as well as of the electric field 𝐸2 = 𝐸𝑦, +the Hamiltonian of the CDP model has the form [15]: +ˆ𝐻 = 𝑁𝑈seed + ˆ𝐻short + ˆ𝐻long + ˆ𝐻𝐸 + ˆ𝐻′ +𝐸, +(2.1) +where 𝑁 is the total number of extended primitive cells. +The first term in (2.1) is the “seed” energy, which corresponds to the lattice of heavy ions and does +not explicitly depend on the configuration of the proton subsystem. It includes elastic, piezoelectric and +dielectric parts expressed through electric field 𝐸2 and strains that do not change the lattice symmetry, +𝑢1 = 𝑢𝑥𝑥, 𝑢2 = 𝑢𝑦𝑦, 𝑢3 = 𝑢𝑧𝑧, 𝑢5 = 2𝑢𝑥𝑧: +𝑈seed = 𝑣 +� +1 +2 +∑︁ +𝑗, 𝑗′ +𝑐𝐸0 +𝑗 𝑗′𝑢 𝑗𝑢′ +𝑗 − +∑︁ +𝑗 +𝑒0 +2𝑗𝐸2𝑢 𝑗 − 1 +2𝜀0𝜒𝑢0 +22 𝐸2 +2 +� +, +𝑗, 𝑗 ′ = 1, 2, 3, 5, +(2.2) +where 𝜀0 = 8.8542·10−12 F/m is electric constant, 𝑐𝐸0 +𝑗 𝑗′, 𝑒0 +2𝑗, 𝜒𝑢0 +22 are “seed” elastic constants, piezoelectric +stress coefficients and dielectric susceptibility of a mechanically clamped crystal. 𝑣 is the volume of the +extended primitive cell. In the paraelectric phase, all coefficients 𝑒0 +2𝑗 ≡ 0. +The other terms in (2.1) describe the pseudospin part of the Hamiltonian. In particular, the second +term in (2.1) is the Hamiltonian of short-range interactions +ˆ𝐻short = −2𝑤 +∑︁ +𝑞𝑞′ +�𝜎𝐴 +𝑞1 +2 +𝜎𝐴 +𝑞′2 +2 ++ +𝜎𝐵 +𝑞1 +2 +𝜎𝐵 +𝑞′2 +2 +� +�𝛿R𝑞R𝑞′ + 𝛿R𝑞+R𝑏,R𝑞′ +�. +(2.3) +In (2.3), 𝜎𝐴,𝐵 +𝑞1,2 are 𝑧-components of pseudospin operator, that describe the state of the bond “1” or “2” of +the chain “A” or “B”, in the 𝑞-th cell, �𝑅𝑏 is the lattice vector along 𝑂𝑌-axis. The first Kronecker delta +43711-3 + +A. S. Vdovych, R. R. Levitskii , I. R. Zachek +corresponds to the interaction between neighboring pseudospins in the chains near the tetrahedra PO4 +of type “I”, where the second Kronecker delta is near the tetrahedra PO4 of type “II”. Contributions to +the energy of interactions between pseudospins near tetrahedra of different types are identical. Parameter +𝑤, which describes the short-range interactions within the chains, is expanded linearly into a series with +respect to strains 𝑢 𝑗: +𝑤 = 𝑤0 + +∑︁ +𝑗 +𝛿 𝑗𝑢 𝑗, ( 𝑗 = 1, 2, 3, 5). +(2.4) +The term ˆ𝐻long in (2.1) describes long-range dipole-dipole interactions and indirect (through the +lattice vibrations) interactions between pseudospins which are taken into account in the mean field +approximation: +ˆ𝐻long = 𝑁𝐻0 + ˆ𝐻2, +(2.5) +where such notations are used: +ˆ𝐻0 = 𝜈1(𝜂2 +1 + 𝜂2 +2) + 2𝜈2𝜂1𝜂2, +(2.6) +ˆ𝐻2 = +∑︁ +𝑞 +� +−(2𝜈1𝜂1 + 2𝜈2𝜂2) +�𝜎𝐴 +𝑞1 +2 ++ +𝜎𝐴 +𝑞2 +2 +� +− (2𝜈2𝜂1 + 2𝜈1𝜂2) +�𝜎𝐵 +𝑞1 +2 ++ +𝜎𝐵 +𝑞2 +2 +�� +. +(2.7) +𝜈1 = 𝜈0 +1 + +∑︁ +𝑗 +𝜓 𝑗1𝑢 𝑗, 𝜈2 = 𝜈0 +2 + +∑︁ +𝑗 +𝜓 𝑗2𝑢 𝑗, +⟨𝜎𝐴 +𝑞1⟩ = ⟨𝜎𝐴 +𝑞2⟩ = 𝜂1, +⟨𝜎𝐵 +𝑞1⟩ = ⟨𝜎𝐵 +𝑞2⟩ = 𝜂2. +(2.8) +The parameter 𝜈1 describes the effective long-range interaction of the pseudospin with the pseudospins +within the same sublattice, and 𝜈2 — with the pseudospins of the other sublattice. +The fourth term in (2.1) describes the interactions of pseudospins with the external electric field: +ˆ𝐻𝐸 = − +∑︁ +𝑞 +𝜇𝑦𝐸2 +�𝜎𝐴 +𝑞1 +2 ++ +𝜎𝐴 +𝑞2 +2 ++ +𝜎𝐵 +𝑞1 +2 ++ +𝜎𝐵 +𝑞2 +2 +� +, +(2.9) +where 𝜇𝑦 is y-component of effective dipole moments per one pseudospin. +The term ˆ𝐻′ +𝐸 in Hamiltonian (2.1) takes into account the dependence of the effective dipole moment +on the mean value of pseudospin 𝑠 𝑓 : +ˆ𝐻′ +𝐸 = − +∑︁ +𝑞 𝑓 +𝑠2 +𝑓 𝜇′𝐸2 +𝜎𝑞 𝑓 +2 += − +∑︁ +𝑞 𝑓 +� +1 +𝑁 +∑︁ +𝑞′ +𝜎𝑞′ 𝑓 +�2 +𝜇′𝐸2 +𝜎𝑞 𝑓 +2 , +(2.10) +where 𝜎𝑞 𝑓 (f=1, 2, 3, 4) are a brief notation of pseudospins 𝜎𝐴 +𝑞1, 𝜎𝐴 +𝑞2, 𝜎𝐵 +𝑞1, 𝜎𝐵 +𝑞2, respectively. Here, we +use corrections to dipole moments 𝑠2 +𝑓 𝜇′ instead of 𝑠 𝑓 𝜇′ because of the symmetry considerations and the +energy should not change when the field and all pseudospins change their sign. +The term ˆ𝐻′ +𝐸, as well as long-range interactions, is taken into account in the mean field approximation: +ˆ𝐻′ +𝐸 = −3 +∑︁ +𝑞 +𝜇′𝐸2 +�𝜂2 +1𝜎𝐴 +𝑞1 +2 ++ +𝜂2 +1𝜎𝐴 +𝑞2 +2 ++ +𝜂2 +2𝜎𝐵 +𝑞1 +2 ++ +𝜂2 +2𝜎𝐵 +𝑞2 +2 +� ++ 2𝑁(𝜂3 +1 + 𝜂3 +2)𝜇′𝐸2. +(2.11) +In the two-particle cluster approximation for short-range interactions, the thermodynamic potential +per one extended primitive cell is as follows: +𝑔 += +𝑈seed + 𝐻0 + 2(𝜂3 +1 + 𝜂3 +2)𝜇′𝐸2 + 2𝑘B𝑇 ln 2 − 2𝑤 − 𝑣 +∑︁ +𝑗 +𝜎𝑗𝑢 𝑗 +− +𝑘B𝑇 ln(1 − 𝜂2 +1) − 𝑘B𝑇 ln(1 − 𝜂2 +2) − 2𝑘B𝑇 ln 𝐷. +(2.12) +43711-4 + +Electrocaloric and barocaloric effects +Here, the following notations are used: +𝐷 = cosh(𝑦1 + 𝑦2) + cosh(𝑦1 − 𝑦2) + 2𝑎 cosh 𝑦1 + 2𝑎 cosh 𝑦2 + 2𝑎2, +𝑎 = e−𝛽𝑤. +𝑦1 = 1 +2 ln 1 + 𝜂1 +1 − 𝜂1 ++ 𝛽𝜈1𝜂1 + 𝛽𝜈2𝜂2 + 1 +2 𝛽(𝜇𝑦𝐸2 + 3𝜂2 +1𝜇′𝐸2), +𝑦2 = 1 +2 ln 1 + 𝜂2 +1 − 𝜂2 ++ 𝛽𝜈2𝜂1 + 𝛽𝜈1𝜂2 + 1 +2 𝛽(𝜇𝑦𝐸2 + 3𝜂2 +2𝜇′𝐸2), +where 𝛽 = +1 +𝑘B𝑇 , 𝑘B is Boltzmann constant. +Minimizing the thermodynamic potential with respect to the order parameters 𝜂 𝑓 and strains 𝑢 𝑗 +in [15], we obtain a system of equations for 𝜂 𝑓 and 𝑢 𝑗: +𝜂1 = 1 +𝐷 [sinh(𝑦1 + 𝑦2) + sinh(𝑦1 − 𝑦2) + 2𝑎 sinh 𝑦1] , +(2.13) +𝜂2 = 1 +𝐷 [sinh(𝑦1 + 𝑦2) − sinh(𝑦1 − 𝑦2) + 2𝑎 sinh 𝑦2] , +𝜎𝑗 = 𝑐𝐸0 +𝑗1 𝑢1 + 𝑐𝐸0 +𝑗2 𝑢2 + 𝑐𝐸0 +𝑗3 𝑢3 + 𝑐𝐸0 +𝑗5 𝑢5 − 𝑒0 +2𝑗𝐸2 − 2𝛿 𝑗 +𝑣 ++ 4𝛿 𝑗 +𝑣𝐷 𝑀 − 1 +𝑣 𝜓 𝑗1(𝜂2 +1 + 𝜂2 +2) − 2 +𝑣 𝜓 𝑗2𝜂1𝜂2, +where +𝑀 = +� +𝑎 cosh 𝑦1 + 𝑎 cosh 𝑦2 + 2𝑎2� +. +In the presence of hydrostatic pressure 𝜎1 = 𝜎2 = 𝜎3 = −𝑝, 𝜎4 = 𝜎5 = 𝜎6 = 0. +In [15], the expression for the longitudinal component of polarization 𝑃2 was also obtained: +𝑃2 = − +� 𝜕𝑔 +𝜕𝐸2 +� +𝜎𝑗 += +∑︁ +𝑗 +𝑒0 +2𝑗𝑢 𝑗 + 𝜒𝑢0 +22 𝐸2 + 𝜇𝑦 +𝑣 +�𝜂1 + 𝜂2 +� + 𝜇′ +𝑣 +�𝜂3 +1 + 𝜂3 +2 +�. +(2.14) +Based on the thermodynamic potential (2.12), we obtain an expression for the entropy of the pseu- +dospin subsystem: +𝑆 = +− +𝑁𝐴 +𝑁𝑚 +� 𝜕𝑔 +𝜕𝑇 +� +𝜂,𝜀𝑖 += 𝑅 +𝑁𝑚 +�� +�� +−2 ln 2 + +2 +∑︁ +𝑓 =1 +ln�1 − 𝜂2 +𝑓 +� + 2 ln 𝐷 +− +2𝜂1𝛽 +� +𝜈1𝜂1 + 𝜈2𝜂2 + 1 +2 +� +𝜇𝑦𝐸2 + 3𝜂2 +1𝜇′𝐸2 +�� +− +2𝜂2𝛽 +� +𝜈2𝜂1 + 𝜈1𝜂2 + 1 +2 +� +𝜇𝑦𝐸2 + 3𝜂2 +2𝜇′𝐸2 +�� ++ 4𝑀𝛽𝑤 +𝐷 +� +. +(2.15) +Here, 𝑁A is Avogadro constant, 𝑅 is the universal gas constant, 𝑁𝑚 = 4 is the number of CsH2PO4 +molecules in the extended primitive cell. +The molar heat capacity of the pseudospin subsystem of the CDP crystal: +𝐶 = 𝑇 +� d𝑆 +d𝑇 +� +𝐸2,𝜎𝑗 += 𝑇 �� +� +𝑆′ +𝑇 + +2 +∑︁ +𝑓 =1 +𝑆′ +𝜂 𝑓 𝜂′ +𝑇 𝑓 + +∑︁ +𝑗=1,2,3,5 +𝑆′ +𝑢𝑗𝑢′ +𝑇 𝑗 +�� +� +. +(2.16) +The explicit expressions for derivatives 𝑆′ +𝑇 , 𝑆′ +𝜂 𝑓 , 𝑆′ +𝑢𝑗, 𝜂′ +𝑇 𝑓 , 𝑢′ +𝑇 𝑗 are given in the appendix. +We consider the total heat capacity to be the sum of the pseudospin and lattice components: +𝐶total = 𝐶 + 𝐶lattice. +(2.17) +The heat capacity of the lattice subsystem is considered to be the CDP heat capacity, calculated on the +basis of first-principle calculations [34]. Its temperature dependence in the range of 80–350 K, in which +the calculations were carried out, is well approximated by a polynomial +𝐶lattice = +4 +∑︁ +𝑙=0 +𝑘𝑙𝑇𝑙, +(2.18) +43711-5 + +A. S. Vdovych, R. R. Levitskii , I. R. Zachek +where the coefficients 𝑘𝑙: 𝑘0 = 17.62 J/(mol K), 𝑘1 = 0.5955 J/(mol K2), 𝑘2 = −0.001885 J/(mol K3), +𝑘3 = 4.376· 10−6 J/(mol K4), 𝑘4 = −4.034· 10−9 J/(mol K5). The entropy of the lattice subsystem near +𝑇𝑐: +𝑆lattice = +∫ 𝐶lattice +𝑇 +d𝑇 = 𝑘0 ln(𝑇) + +4 +∑︁ +𝑙=1 +𝑘𝑙𝑇𝑙 +𝑙 ++ const. +(2.19) +Total entropy as a function of temperature, field component 𝐸2 and hydrostatic pressure 𝑝: +𝑆total(𝑇, 𝐸2, 𝑝) = 𝑆 + 𝑆lattice. +(2.20) +Solving (2.20) with respect to the temperature at 𝑆total(𝑇, 𝐸2, 𝑝) = const and two magnitudes of the field, +it is possible to calculate the electrocaloric temperature change (as shown in figure 3b): +Δ𝑇ec = 𝑇 [𝑆total, 𝐸2(2), 𝑝] − 𝑇 [𝑆total, 𝐸2(1), 𝑝]. +(2.21) +The change in temperature during the adiabatic change in the field 𝐸2 can also be calculated by the +well-known formula +Δ𝑇ec = − +𝐸2 +∫ +0 +𝑇𝑉 +𝐶total +� 𝜕𝑃2 +𝜕𝑇 +� +𝐸2 +d𝐸2, +(2.22) +where pyroelectric coefficient +� 𝜕𝑃2 +𝜕𝑇 +� +𝐸2 += +∑︁ +𝑗 +𝑒0 +2𝑗𝑢′ +𝑗𝑇 + 𝜇𝑦 +𝑣 +�𝜂′ +1𝑇 + 𝜂′ +2𝑇 +� + 3𝜇′ +𝑣 +�𝜂2 +1𝜂′ +1𝑇 + 𝜂2 +2𝜂′ +2𝑇 +�, +(2.23) +and 𝑉 = 𝑣𝑁𝐴/𝑁𝑚 is molar volume. +Similarly, solving (2.20) with respect to temperature at 𝑆total(𝑇, 𝐸2, 𝑝) = const and two pressure +values, it is possible to calculate the barocaloric temperature change (as shown in figure 3b): +Δ𝑇bc = 𝑇 [𝑆total, 𝐸2, 𝑝(2)] − 𝑇 [𝑆total, 𝐸2, 𝑝(1)]. +(2.24) +The change in temperature under the adiabatic change in pressure 𝑝 can also be calculated by the +known formula +Δ𝑇bc = +𝑝∫ +0 +𝑇 +𝐶total +� 𝜕𝑉 +𝜕𝑇 +� +𝑝 +d𝑝 = +𝑝∫ +0 +𝑁𝐴𝑇 +𝑁𝑚𝐶total +(𝑢′ +1𝑇 + 𝑢′ +2𝑇 + 𝑢′ +3𝑇 )d𝑝. +(2.25) +3. Discussion of the obtained results +The theory parameters are determined in [15] from the condition of agreement of calculated char- +acteristics with experimental data for temperature dependences of spontaneous polarization 𝑃2(𝑇) and +dielectric permittivity 𝜀22(𝑇) at different values of hydrostatic pressure [21], spontaneous strains 𝑢 𝑗 [38], +molar heat capacity [29] and elastic constants [42]; as well as agreement with ab-initio calculations of the +lattice contributions into molar heat capacity [34] and dielectric permittivity at zero temperature [35]. +It should be noted that the temperature dependences of the dielectric constant 𝜀22 at different values of +hydrostatic pressure were also measured in [25]. However, they do not agree with experimental data [21]. +It is possible that another crystal sample was used there, which was grown under different conditions. +In addition, in [25] there are no data for the temperature dependences of spontaneous polarization at +different pressures, as well as no data for dielectric characteristics at zero pressure. Therefore, we used +experimental data [21] to determine the model parameters. +Parameters of short-range interactions 𝑤0 and long-range interactions 𝜈0 +1 (“intra-sublattice”), 𝜈0 +2 +(“inter-sublattice”) mainly fix the phase transition temperature from paraelectric to ferroelectric phase at +the absence of external pressure and field, the order of phase transition and the shape of curve 𝑃2(𝑇). +Their optimal values are: 𝑤0/𝑘B = 650 K, 𝜈0 +1/𝑘B = 1.50 K, 𝜈0 +2/𝑘B = 0.23 K. +43711-6 + +Electrocaloric and barocaloric effects +In order to determine the deformational potentials 𝛿 𝑗 [see (2.4)] and 𝜓 𝑗1, 𝜓 𝑗2 [see (2.8)], it is +necessary to use experimental data for the shift of the phase transition temperature under hydrostatic and +uniaxial pressures as well as the data for temperature dependences of spontaneous strains 𝑢 𝑗, piezoelectric +coefficients and elastic constants. Unfortunately, only the data for the spontaneous strains and hydrostatic +pressure effect on the dielectric characteristics are available. As a result, the experimental data for strains +and dielectric characteristics can be described using a great number of combinations of parameters 𝜓 𝑗1, +𝜓 𝑗2. Therefore, for the sake of simplicity, we chose 𝜓 𝑗2 to be proportional to 𝜓 𝑗1. Optimal values of +deformational potentials are: 𝛿1/𝑘B = 1214 K, 𝛿2/𝑘B = 454 K, 𝛿3/𝑘B = 1728 K, 𝛿5/𝑘B = −131 K; +𝜓11/𝑘B = 92.2 K, 𝜓21/𝑘B = 23.2 K, 𝜓31/𝑘B = 139.7 K, 𝜓51/𝑘B = 5.5 K; 𝜓 𝑗2 = 1 +3𝜓 𝑗1. +The effective dipole moment in the paraelectric phase is found from the condition of agreement of +the calculated curve 𝜀22(𝑇) with experimental data. We consider it to be dependent on the value of +hydrostatic pressure 𝑝, that is 𝜇𝑦 = 𝜇0 +𝑦(1 − 𝑘 𝑝𝑝), where 𝜇0 +𝑦 = 8.77 · 10−30 C·m, 𝑘 𝑝 = 0.4 · 10−9 Pa−1. +The correction to the effective dipole moment 𝜇′ = −1.43 · 10−30 C·m is found from the condition of +agreement of the calculated saturation polarization with experimental data. +The “seed” dielectric susceptibility 𝜒𝑢0 +22 , coefficients of piezoelectric stress 𝑒0 +2𝑗 and elastic constants +𝑐𝐸0 +𝑖 𝑗 are found from the condition of agreement of theory with experimental data in the temperature +regions far from the phase transition temperature 𝑇𝑐. Their values are obtained as follows: 𝜒𝑢0 +22 = 5.57; +𝑒0 +2𝑗 = 0 C/m2; 𝑐𝐸0 +𝑗 𝑗′ (109N/m2): 𝑐𝐸0 +11 = 28.83, 𝑐𝐸0 +12 = 11.4, 𝑐𝐸0 +13 = 42.87, 𝑐𝐸0 +22 = 26.67, 𝑐𝐸0 +23 = 14.5, +𝑐𝐸0 +33 = 65.45, 𝑐𝐸0 +15 = 5.13, 𝑐𝐸0 +25 = 8.4, 𝑐𝐸0 +35 = 7.50, 𝑐𝐸0 +55 = 5.20. +The volume of the extended primitive cell is 𝜐 = 0.467 · 10−27 m3 [22]. +In the paper [15], a phase diagram (figure 2) was calculated, which explains the effect of hydrostatic +pressure and longitudinal electric field on the temperatures of phase transitions, in particular, the transition +to the antiferroelectric phase at pressures greater than the critical one. +0 +0.1 +0.2 +0.3 +0.4 +0.5 +80 +90 +100 +110 +120 +130 +140 +150 +160 +Tc, TN, TAF, K +p, GPa +P +F +AF +E=0.0MV/m (1) + 0.1 (2) + 0.2 (3) + 0.3 (4) + 0.4 (5) + 0.5 (6) +1 +2 +3 +4 +5 +6 +Tc +TN +TAF +I−order +II−order +TN +tr +Figure 2. Dependence on the hydrostatic pressure of the temperature of the transition from the paraelectric +to the ferroelectric phase 𝑇𝑐, from the paraelectric to the antiferroelectric phase 𝑇𝑁 , from the ferroelectric +to the antiferroelectric phase 𝑇𝐴𝐹 at different values of the electric field 𝐸2 (MV/m): 0.0 –1 , 0.1 – 2, +0.2 – 3, 0.3 – 4, 0.4 – 5, 0.5 – 6 for the CDP crystal. Symbols are experimental data [20], lines are +theoretical calculations [15]. Tricritical points 𝑇tr +𝑁 (marked as *) separate the curves of the first-order +phase transitions (dashed lines) and of the second-order ones (solid lines). +As mentioned above, the EC effect is calculated as a change in the crystal temperature Δ𝑇ec during +adiabatic (at constant entropy) application of an electric field, as shown in figure 3. At the pressures less +than critical, longitudinal field 𝐸2 decreases the entropy of the crystal in the entire temperature range +(figure 3), because it puts the pseudospins in order in both sublattices, “A” and “B” (figure 1a). Therefore, +43711-7 + +A. S. Vdovych, R. R. Levitskii , I. R. Zachek +100 +120 +140 +160 +180 +200 +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +T, K +∆Tec +S=const +E2=0MV/m, p=0GPa +E2=50MV/m, +p=0GPa +E2=0MV/m, p=0.5GPa +S, J/(mol⋅K) +∆Tbc +152 +152.5 +153 +153.5 +154 +154.5 +162.5 +163 +163.5 +164 +T, K +Stotal=const +∆Tec +Stotal, J/(mol⋅K) +E2=0MV/m, p=0GPa +E2=0MV/m, p=0.5GPa +E2=50MV/m, +p=0GPa +∆Tbc +a +b +Figure 3. (Colour online) Temperature dependences of the pseudospin contribution to the molar entropy (a) +and total entropy (b) of the CDP crystal at different values of the field 𝐸2 and of the hydrostatic pressure 𝑝. +the Δ𝑇ec is positive. As we can see, the effect of the field on the total entropy 𝑆total (figure 3b) is much +weaker than the effect on only the pseudospin contribution 𝑆 (figure 3a), because the lattice heat capacity +quite strongly stabilizes the temperature of the crystal. +The calculated field and temperature dependences of Δ𝑇ec are shown in figure 4. In the weak fields +0 +5 +10 +15 +20 +25 +0 +0.2 +0.4 +0.6 +0.8 +1 +∆Tec, K +E, MV/m +20K +−20K +−5K +−10K +10K +T=Tc +T−Tc=5K +80 100 120 140 160 180 200 220 240 +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +1.4 +∆Tec, K +T, K +1 +2 +3 +4 +5 +6 +7 +8 +a +b +Figure 4. (Colour online) a) Field dependence of the electrocaloric temperature change Δ𝑇ec at different +values of temperature Δ𝑇 = 𝑇 − 𝑇𝑐 and at zero hydrostatic pressure 𝑝. b) Temperature dependence of +Δ𝑇ec at different values of the longitudinal electric field 𝐸2 (MV/m): 1.0 – 1; 2.0 – 2; 5.0 – 3; 10.0 – 4; +20.0 – 5; 30.0 – 6; 40.0 – 7; 50.0 – 8 and at zero hydrostatic pressure 𝑝. +(𝐸2 < 1 MV/m) at the initial temperature 𝑇 = 𝑇𝑐, the change in temperature Δ𝑇ec ∼ 𝐸2/3 +2 +(green curve +in figure 4a); at 𝑇 < 𝑇𝑐, Δ𝑇ec ∼ 𝐸2 (blue dashed curves in figure 4); at T>𝑇𝑐, Δ𝑇ec ∼ 𝐸2 +2 (red curves in +figure 4). At fields 𝐸2 > 1 MV/m, the dependences of Δ𝑇ec(𝐸2) significantly deviate from the mentioned +laws. +At high pressures, but less than the critical one, the field and temperature dependences of Δ𝑇ec are +qualitatively similar, as in the absence of pressure (figure 5). +43711-8 + +Electrocaloric and barocaloric effects +0 +5 +10 +15 +20 +25 +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +∆Tec, K +E, MV/m +T−Tc=20K +−20K +−5K +−10K +10K +T=Tc +5K +80 100 120 140 160 180 200 220 240 +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +1.4 +∆Tec, K +T, K +1 +2 +3 +4 +5 +6 +7 +8 +a +b +Figure 5. (Colour online) a) Field dependence of electrocaloric temperature change Δ𝑇ec at different +temperature values Δ𝑇 = 𝑇 − 𝑇𝑐 and at hydrostatic pressure 𝑝 = 0.3 GPa. b) Temperature dependence +of the electrocaloric temperature change Δ𝑇ec at different values of the longitudinal electric field 𝐸2 +(MV/m): 1.0 – 1; 2.0 – 2; 5.0 – 3; 10.0 – 4; 20.0 – 5; 30.0 – 6; 40.0 – 7; 50.0 – 8 and at hydrostatic +pressure 𝑝 = 0.3 GPa. +At pressures greater than the critical one, at temperatures 𝑇 ⩾ 𝑇𝑁 , EC effect is qualitatively similar +to the case of subcritical pressures in the paraelectric phase: at weak fields Δ𝑇ec ∼ 𝐸2 +2 (green and red +curves in figure 6a), at strong fields, the Δ𝑇ec(𝐸2) dependencies deviate from the quadratic law. At initial +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +−0.1 +−0.05 +0 +0.05 +0.1 +0.15 +∆Tec, K +E, MV/m +20K +−20K +−5K +−10K +10K +T=TN +T−TN=5K +80 100 120 140 160 180 200 220 240 +−0.2 +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +∆Tec, K +T, K +1 +2 +3 +4 +5 +6 +7 +8 +a +b +Figure 6. (Colour online) a) Field dependence of electrocaloric change of temperature Δ𝑇ec at different +values of initial temperature Δ𝑇 = 𝑇 − 𝑇𝑐 and at hydrostatic pressure 𝑝 = 0.45 GPa. b) Temperature +dependence of Δ𝑇ec at different values of the longitudinal electric field 𝐸2 (MV/m): 1.0 – 1; 2.0 – 2; 5.0 +– 3; 10.0 – 4; 20.0 – 5; 30.0 – 6; 40.0 – 7; 50.0 – 8 and at hydrostatic pressure 𝑝 = 0.5 GPa. +temperatures 𝑇 < 𝑇𝑁 and weak fields 𝐸2, the temperature of the crystal decreases nonlinearly with the +field (blue curves in figure 6a). This is due to antiferroelectric ordering because the crystal passes into the +antiferroelectric phase at pressures higher than the critical one. The ordering of pseudospins in sublattice +“B” (which is oriented opposite to the field) under the action of the field is stronger than the ordering of +pseudospins in sublattice “A”, which leads to the isothermal increase of entropy and adiabatic (at constant +entropy) lowering of temperature. With the further strengthening of the field, the pseudospins in the “B” +43711-9 + +A. S. Vdovych, R. R. Levitskii , I. R. Zachek +0 +0.1 +0.2 +0.3 +0.4 +0.5 +−0.5 +−0.4 +−0.3 +−0.2 +−0.1 +0 +∆Tbc, K +p, GPa +20K +−20K +−40K +−10K +10K +T=Tc +0 +T−Tc +0=40K +pantiferro−para +pferro−antiferro +. +. +80 100 120 140 160 180 200 220 240 +−0.7 +−0.6 +−0.5 +−0.4 +−0.3 +−0.2 +−0.1 +0 +∆Tbc, K +T, K +5kbar +Tc(0) +Tc(p) +TN(p) +3kbar +p=1kbar +a +b +Figure 7. (Colour online) a) Pressure dependence of the barocaloric temperature change Δ𝑇bc at different +values of temperature Δ𝑇 = 𝑇−𝑇0𝑐 and in the absence of a field. b) Temperature dependence of barocaloric +temperature change Δ𝑇bc at different values of adiabatically applied pressure 𝑝 and in the absence of a +field. +50 +100 +150 +200 +2 +2.5 +3 +3.5 +x 10 +−3 u1, u2 +u1 +u2 +u1 +para +u2 +para +T, K +50 +100 +150 +200 +−1 +0 +1 +2 +x 10 +−4 u3 +u3 +u3 +para +T, K +50 +100 +150 +200 +−8.5 +−8 +−7.5 +−7 +x 10 +−3 u5 +u5 +u5 +para +T, K +Figure 8. Temperature dependence of lattice strains 𝑢 𝑗 under zero pressure, calculated in [15]. +sublattice are overturned and ordered in the direction of the field, which leads to the isothermal decrease +of entropy and to the isoentropic increase of temperature. +Hydrostatic pressure 𝑝 lowers the Curie temperature. This leads to the isothermal increase of entropy +and to the isentropic lowering of temperature, as shown in figure 3. Therefore Δ𝑇bc is negative and at +𝑇 ⩾ 𝑇0 +𝑐 it lowers almost linearly with increasing pressure (figure 7a, green and red solid curves). At +𝑇 < 𝑇0 +𝑐 (ferroelectric phase) at low pressures, the BC effect is stronger than in the paraelectric phase (in +figure 7a these are the blue dashed curves corresponding to 𝑇 − 𝑇0 +𝑐 = −10𝐾, −20 K). At a certain value +of pressure, the crystal passes to the paraelectric phase (see figure 2), in which the rate of cooling with +pressure is less, and therefore a break appears in the Δ𝑇bc(𝑝) curve. +As can be seen from figure 2, at 𝑇 − 𝑇0 +𝑐 = −40 K there are two phase transitions when increasing +pressure: from ferroelectric to antiferroelectric phase, and then from antiferroelectric to paraelectric +phase. Accordingly, in figure 7a two breaks appear on the curve Δ𝑇bc(𝑝). +It should be noted that in this work, only the pseudospin (proton) contribution to the BC effect was +calculated, and lattice anharmonicities were not taken into account. The interaction between pseudospins +leads to the occurrence of stretching strains due to the electrostrictive coupling of the pseudospin and +lattice subsystems, since after substitution of (2.4) into (2.3) and also (2.8) into (2.6), there appear terms +43711-10 + +Electrocaloric and barocaloric effects +of the type 𝛿 𝑗𝑢 𝑗 +𝜎𝐴 +𝑞1 +2 +𝜎𝐴 +𝑞′2 +2 +and 𝜓 𝑗1𝑢 𝑗𝜂2 +1. The mean values of pseudospins decrease with an increase of +temperature. As a result, the electrostrictive coupling becomes weaker and the diagonal strains 𝑢1, 𝑢2, 𝑢3 +decrease (figure 8). +The volume of the crystal decreases along with strains, (𝜕𝑉/𝜕𝑇)𝑝 < 0. Therefore, Δ𝑇bc is negative, +according to the formula (2.25). We also note that it is possible to take a set of deformation potentials +𝛿 𝑗 [see (2.4)] and 𝜓 𝑗1, 𝜓 𝑗2 [see (2.8)], which leads to an increase of the volume of the crystal with an +increase of temperature. However, this simultaneously leads to an increase in the Curie temperature with +an increase in pressure, which contradicts the experimental data. +In contrast to electrostrictive coupling, lattice anharmonicities lead to thermal expansion of the +crystal and give a positive contribution to the BC effect. This contribution competes with the pseudospin +contribution, and, in a certain temperature range, it can be larger than the pseudospin contribution. +4. Conclusions +In the case of a weak longitudinal field 𝐸2, the electrocaloric change in temperature Δ𝑇ec increases +linearly with the field in the ferroelectric phase, quadratically in the paraelectric phase, and according +to the law Δ𝑇ec ∼ 𝐸2/3 +2 +at the initial temperature 𝑇 = 𝑇𝑐. In the strong field, the dependences Δ𝑇ec(𝐸2) +deviate from the mentioned laws. Applying the hydrostatic pressure, the EC effect is qualitatively similar +to the one at zero pressure. At pressures greater than the critical one, the EC effect may be negative due +to the transition of the crystal into the antiferroelectric phase. +The barocaloric change in temperature Δ𝑇bc has a negative sign and decreases almost linearly with +pressure since the Curie temperature decreases with pressure. The nonlinearity is strongly manifested at +low initial temperatures. In our calculations, only the pseudospin contribution to the BC effect is taken +into account. The electrostrictive coupling of the pseudospin and lattice subsystem leads to a decrease +in the volume of the crystal with increasing temperature, and as a result the BC effect is negative. To +obtain Δ𝑇bc, which can be compared with experimental data, it is necessary to take into account the +thermal expansion associated with the lattice anharmonicities. +Appendix. Notations in the expression for molar heat capacity +The notations introduced in expression (2.16) are as follows: +𝑆′ +𝑇 = 𝑅 +𝑁𝑚 +�4𝛽𝑤 +𝐷 +� +𝑦𝑇 +1 𝑎 sinh 𝑦1 + 𝑦𝑇 +2 𝑎 sinh 𝑦2 + 𝛽𝑤 +𝑇 𝑎𝑀𝑎 +� +− 4𝑀𝛽𝑤 +𝐷 +� +𝑦𝑇 +1 𝜂1 + 𝑦𝑇 +2 𝜂2 + 𝛽 +𝑇 +2𝑀𝑤 +𝐷 +�� +, +𝑆′ +𝜂1 = 𝑅 +𝑁𝑚 +� +2𝑇𝑦𝑇 +1 + 4𝛽𝑤 +𝐷 +�𝑦𝜂1 +1 𝑎 sinh 𝑦1 + 𝛽𝜈2𝑎 sinh 𝑦2 +� − 4𝑀𝛽𝑤 +𝐷 +� +𝜂1𝑦𝜂1 +1 + 𝜂2𝛽𝜈2 +�� +, +𝑆′ +𝜂2 = 𝑅 +𝑁𝑚 +� +2𝑇𝑦𝑇 +2 + 4𝛽𝑤 +𝐷 +�𝛽𝜈2𝑎 sinh 𝑦1 + 𝑦𝜂2 +2 𝑎 sinh 𝑦2 +� − 4𝑀𝛽𝑤 +𝐷 +� +𝜂2𝑦𝜂2 +2 + 𝜂1𝛽𝜈2 +�� +, +𝑆′ +𝑢𝑗 = 𝑅 +𝑁𝑚 +�4𝛽𝑤 +𝐷 +� +𝑦𝑢𝑗 +1 𝑎 sinh 𝑦1 + 𝑦𝑢𝑗 +2 𝑎 sinh 𝑦2 − 𝛽𝛿 𝑗𝑎𝑀𝑎� +− 4𝑀𝛽𝑤 +𝐷 +� +𝜂1𝑦𝑢𝑗 +1 + 𝜂2𝑦𝑢𝑗 +2 − 2𝑀𝛽𝛿 𝑗 +𝐷 +�� +.(A.1) +Here are the notations: +𝑦𝑇 +1 = − 𝛽 +𝑇 +� +𝜈1𝜂1 + 𝜈2𝜂2 + 1 +2 +� +𝜇𝑦𝐸2 + 3𝜂2 +1𝜇′𝐸2 +�� +, 𝑦𝑇 +2 = − 𝛽 +𝑇 +� +𝜈2𝜂1 + 𝜈1𝜂2 + 1 +2 +� +𝜇𝑦𝐸2 + 3𝜂2 +2𝜇′𝐸2 +�� +. +𝑦𝜂1 +1 += +1 +1 − 𝜂2 +1 ++ 𝛽𝜈1 + 3𝛽𝜂1𝜇′𝐸2, +𝑦𝜂2 +2 += +1 +1 − 𝜂2 +2 ++ 𝛽𝜈1 + 3𝛽𝜂2𝜇′𝐸2, +𝑦𝑢𝑗 +1 = 𝛽(𝜓 𝑗1𝜂1 + 𝜓 𝑗2𝜂2), +𝑦𝑢𝑗 +2 = 𝛽(𝜓 𝑗2𝜂1 + 𝜓 𝑗1𝜂2), +𝑀𝑎 = cosh 𝑦1 + cosh 𝑦2 + 4𝑎. +43711-11 + +A. S. Vdovych, R. R. Levitskii , I. R. Zachek +After differentiating the system of equations (2.13) with respect to the temperature, we obtain a system +of equations, from which we determine 𝜂′ +𝑇 𝑓 and 𝑢′ +𝑇 𝑗: +� ˆ𝐴𝜂 − ˆ𝐼 +ˆ𝐴𝑢 +ˆ𝐵𝜂 +ˆ𝐵𝑢 +� � +�𝜂′ +𝑇 +�𝑢′ +𝑇 +� ++ +� +�𝐴 +𝑇 +�𝐵 +𝑇 +� += �0. ⇒ +� +�𝜂′ +𝑇 +�𝑢′ +𝑇 +� += − +� ˆ𝐴𝜂 − ˆ𝐼 +ˆ𝐴𝑢 +ˆ𝐵𝜂 +ˆ𝐵𝑢 +�−1 � +�𝐴 +𝑇 +�𝐵 +𝑇 +� +, +(A.2) +where ˆ𝐼 is a 2×2 identity matrix. Coefficients of the ˆ𝐴𝜂 matrix are: +𝐴𝜂 +11 = 𝜂𝑦1 +1 𝑦𝜂1 +1 + 𝜂𝑦2 +1 𝛽𝜈2, +𝐴𝜂 +12 = 𝜂𝑦1 +1 𝛽𝜈2 + 𝜂𝑦2 +1 𝑦𝜂2 +2 , +𝐴𝜂 +21 = 𝜂𝑦1 +2 𝑦𝜂1 +1 + 𝜂𝑦2 +2 𝛽𝜈2, +𝐴𝜂 +22 = 𝜂𝑦1 +2 𝛽𝜈2 + 𝜂𝑦2 +2 𝑦𝜂2 +2 , +where the notations are entered: +𝜂𝑦1 +1 = 1 +𝐷 +� +cosh(𝑦1 + 𝑦2) + cosh(𝑦1 − 𝑦2) + 2𝑎 cosh 𝑦1 − 𝜂2 +1 +� +, +𝜂𝑦2 +1 = 𝜂𝑦1 +2 = 1 +𝐷 [cosh(𝑦1 + 𝑦2) − cosh(𝑦1 − 𝑦2) − 𝜂1𝜂2] , +𝜂𝑦2 +2 = 1 +𝐷 +� +cosh(𝑦1 + 𝑦2) + cosh(𝑦1 − 𝑦2) + 2𝑎 cosh 𝑦2 − 𝜂2 +2 +� +, +coefficients of matrix ˆ𝐴𝑢: +𝐴𝑢 +1𝑗 = 𝜂𝑦1 +1 𝑦𝑢𝑗 +1 + 𝜂𝑦2 +1 𝑦𝑢𝑗 +2 − 𝛽𝛿 𝑗 +𝐷 [2𝑎 sinh 𝑦1 − 2𝑀𝜂1] , +𝐴𝑢 +2𝑗 = 𝜂𝑦1 +2 𝑦𝑢𝑗 +1 + 𝜂𝑦2 +2 𝑦𝑢𝑗 +2 − 𝛽𝛿 𝑗 +𝐷 [2𝑎 sinh 𝑦2 − 2𝑀𝜂2] , +coefficients of matrix ˆ𝐵𝜂: +𝐵𝜂 +𝑗1 = −2 +𝑣 (𝜓 𝑗1𝜂1 + 𝜓 𝑗2𝜂2) + 4𝛿 𝑗 +𝑣𝐷 (𝑎 sinh 𝑦1𝑦𝜂1 +1 + 𝑎 sinh 𝑦2𝛽𝜈2) − 4𝑀𝛿 𝑗 +𝑣𝐷 +�𝜂1𝑦𝜂1 +1 + 𝜂2𝛽𝜈2 +� , +𝐵𝜂 +𝑗2 = −2 +𝑣 (𝜓 𝑗1𝜂2 + 𝜓 𝑗2𝜂1) + 4𝛿 𝑗 +𝑣𝐷 +�𝑎 sinh 𝑦1𝛽𝜈2 + 𝑎 sinh 𝑦2𝑦𝜂2 +2 +� − 4𝑀𝛿 𝑗 +𝑣𝐷 +(𝜂1𝛽𝜈2 + 𝜂2𝑦𝜂2 +2 ), +coefficients of matrix ˆ𝐵𝑢: +𝐵𝑢 +𝑗 𝑗′ = 𝑐𝐸0 +𝑗 𝑗′ + 4𝛿 𝑗 +𝑣𝐷 +� +𝑦 +𝑢𝑗′ +1 𝑎 sinh 𝑦1 + 𝑦 +𝑢𝑗′ +2 𝑎 sinh 𝑦2 − 𝛽𝛿 𝑗′𝑎𝑀𝑎� +− 4𝑀𝛿 𝑗 +𝑣𝐷 +� +𝜂1𝑦 +𝑢𝑗′ +1 ++ 𝜂2𝑦 +𝑢𝑗′ +2 +− 2𝑀𝛽𝛿 𝑗′ +𝐷 +� +, +coefficients of vectors �𝐴 +𝑇 and �𝐵 +𝑇 : +𝐴𝑇 +1 = 𝜂𝑦1 +1 𝑦𝑇 +1 + 𝜂𝑦2 +1 𝑦𝑇 +2 + 𝛽𝑤 +𝐷𝑇 (2𝑎 sinh 𝑦1 − 2𝑀𝜂1) , +𝐴𝑇 +2 = 𝜂𝑦1 +2 𝑦𝑇 +1 + 𝜂𝑦2 +2 𝑦𝑇 +2 + 𝛽𝑤 +𝐷𝑇 (2𝑎 sinh 𝑦2 − 2𝑀𝜂2) , +𝐵𝑇 +𝑗 = 4𝛿 𝑗 +𝑣𝐷 +� +𝑦𝑇 +1 𝑎 sinh 𝑦1 + 𝑦𝑇 +2 𝑎 sinh 𝑦2 + 𝑎𝑀𝑎𝛽𝑤 +𝑇 +� +− 4𝛿 𝑗 𝑀 +𝑣𝐷 +� +𝑦𝑇 +1 𝜂1 + 𝑦𝑇 +2 𝜂2 + 2𝑀𝛽𝑤 +𝐷𝑇 +� +. +References +1. Mischenko A. S., Zhang Q., Scott J. F., Whatmore R. W., Mathur N. D., Science, 2006, 311, No. 5765, +1270–1271, doi:10.1126/science.1123811. +2. Peng B., Fan H., Zhang Q., Adv. Funct. Mater., 2013, 23, No. 23, 2987–2992, doi:10.1002/adfm.201202525. +3. Peng B., Zhang Q., Gang B., Leighton G. J. T., Shaw C., Milne S. J., Zou B., Sun W., Huang H., Wang Z., +Energy Environ. Sci., 2019, 12, No. 5, 1708–1717, doi:10.1039/c9ee00269c. +43711-12 + +Electrocaloric and barocaloric effects +4. Lu S. G., Rozic B., Zhang Q. M., Kutnjak Z., Li X., Furman E., Gorny L. J., Lin M., Malic B., Kosec M., +Blinc R., Pirc R., Appl. Phys. Lett., 2010, 97, No. 16, 162904 (3 pages), doi:10.1063/1.3501975. +5. Asbani B., Dellis J. L., Lahmar A., Amjoud M., Gagou Y., Mezzane D., Kutnjak Z., Pirc R., El Marssi M., +Luk’yanchuk I., Rozic B., J. Alloys Compd., 2022, 907, 164517 (5 pages), doi:10.1016/j.jallcom.2022.164517. +6. Nouchokgwe Y., Lheritier P., Usui T., Torello A., El Moul A., Kovacova V., Granzow T., Hirose S., Defay E., +Scr. Mater., 2022, 219, 114873 (5 pages), doi:10.1016/j.scriptamat.2022.114873. +7. Liu X., Wu Z., Guan T., Jiang H., Long P., Li X., Ji C., Chen S., Sun Z., Luo J., Nat. Commun., 2021, 12, +5502 (7 pages), doi:10.1038/s41467-021-25644-x. +8. Wiseman G. G., IEEE Trans. Electron Devices, 1969, ED-16, No. 6, 588–593, doi:10.1109/T-ED.1969.16804. +9. Baumgartner H., Helv. Phys. Acta, 1950, 23, 651–696, doi:10.5169/seals-112128. +10. Shimshoni M., Harnik E., J. Phys. Chem. Solids, 1970, 31, No. 6, 1416–1417, +doi:10.1016/0022-3697(70)90148-4. +11. Vdovych A. S., Moina A. P., Levitskii R. R., Zachek I. R., Condens. Matter Phys., 2014, 17, No. 4, 43703 +(10 pages), doi:10.5488/CMP.17.43703. +12. Meng Y., Pu J., Pei Q., Joule, 2021, 5, No. 4, 780–793, doi:10.1016/j.joule.2020.12.018. +13. Gorev M. V., Mikhaleva E. A., Flerov I. N., Bogdanov E. V., J. Alloys Compd., 2019, 806, 1047–1051, +doi:10.1016/j.jallcom.2019.07.273. +14. Lloveras P., Stern-Taulats E., Barrio M., Tamarit J. Ll., Crossley S., Li W., Pomjakushin V., Planes A., +Manosa Ll., Mathur N.D., Moya X., Nat. Commun., 2015, 6, 8801 (6 pages), doi:10.1038/ncomms9801. +15. Vdovych A. S., Zachek I. R., Levitskii R. R., Condens. Matter Phys., 2020, 23, No. 3, 33702 (16 pages), +doi:10.5488/CMP.23.33702. +16. Matsunaga H., Itoh K., Nakamura E., J. Phys. Soc. Jpn., 1980, 48, No. 6, 2011–2014, doi:10.1143/JPSJ.48.2011. +17. Itoh K., Hagiwara T., Nakamura E., J. Phys. Soc. Jpn., 1983, 52, No. 8, 2626–2629, doi:10.1143/JPSJ.52.2626. +18. Iwata Y., Koyano N., Shibuya I., J. Phys. Soc. Jpn., 1980, 49, No. 1, 304–307, doi:10.1143/JPSJ.49.304. +19. Iwata Y., Deguchi K., Mitani S., Shibuya I., Onodera Y., Nakamura E., J. Phys. Soc. Jpn., 1994, 63, No. 11, +4044–4050, doi:10.1143/JPSJ.63.4044. +20. Yasuda N., Okamoto M., Shimizu H., Fujimoto S., Yoshino K., Inuishi Y., Phys. Rev. Lett., 1978, 41, No. 19, +1311–1314, doi:10.1103/PhysRevLett.41.1311. +21. Yasuda N., Fujimoto S., Okamoto M., Shimizu H., Yoshino K., Inuishi Y., Phys. Rev. B, 1979, 20, No. 7, +2755–2764, doi:10.1103/PhysRevB.20.2755. +22. Schuele P. J., Thoma R. A., Jpn. J. Appl. Phys., 1985, 24, No. S2, 935–937, doi:10.7567/JJAPS.24S2.935. +23. Schuele P. J., Schmidt V. H., Phys. Rev. B, 1989, 39, No. 4, 2549–2556, doi:10.1103/PhysRevB.39.2549. +24. Kobayashi Yu., Deguchi K., Azuma Sh., Suzuki E., Ming Li Ch., Endo Sh., Kikegawad T., Ferroelectrics, 2003, +285, No. 7, 83–89, doi:10.1080/00150190390205924. +25. Deguchi K., Azuma S., Kobayashi Y., Endo S., Tokunaga M., Phys. Rev. B, 2004, 69, No. 2, 024106, +doi:10.1103/PhysRevB.69.024106. +26. Gesi K., Ozawa K., Jpn. J. Appl. Phys., 1978, 17, No. 2, 435–436, doi:10.1143/JJAP.17.435. +27. Brandt N. B., Zhukov S. G., Kulbachinskii V. A., Smirnov P. S., Strukov B. A., Fiz. Tverd. Tela, 1986, 28, 3159, +(in Russian). +28. Magome E., Tomiaka S., Tao Y., Komukae M., J. Phys. Soc Jpn., 2010, 79, No. 2, 025002 (2 pages), +doi:10.1143/JPSJ.79.025002. +29. Imai K., J. Phys. Soc. Jpn., 1983, 52, No. 11, 3960–3965, doi:10.1143/JPSJ.52.3960. +30. Shchur Ya., Phys. Rev. B, 2006, 74, 054301 (8 pages), doi:10.1103/PhysRevB.74.054301. +31. Shchur Ya., Phys. Status Solidi B, 2007, 244, No. 2, 569–577, doi:10.1002/pssb.200642176. +32. Lasave J., Abufager P., Koval S., Phys. Rev. B, 2016, 93, No. 13, 134112 (11 pages), +doi:10.1103/PhysRevB.93.134112. +33. Kojyo N., Onodera Y., J. Phys. Soc. Jpn. 1988, 57, No. 12, 4391–4402, doi:10.1143/JPSJ.57.4391. +34. Shchur Ya., Bryk T., Klevets I., Kityk A. V., Comput. Mater. Sci., 2016, 111, 301–309, +doi:10.1016/j.commatsci.2015.09.014. +35. Van Troeye B., van Setten M. J., Giantomassi M., Torrent M., Rignanese G.-M., Gonze X., +Phys. Rev. B, 2017, 95, No. 2, 024112 (9 pages), doi:10.1103/PhysRevB.95.024112. +36. Blinc R., SaBaretto F. C., J. Chem. Phys., 1980, 72, No. 11, 6031–6034, doi:10.1063/1.439058. +37. Stasyuk I. V., Levytsky R. R., Zachek I. R., Shchur Ya. Y., Kutny J. V., Miz E. V., Preprint +of the Institute for Condensed Matter Physics, ICMP–91–4R, Lviv, 1991, (in Russian). +38. Deguchi K., Okaue E., Ushio S., Nakamura E., Abe K., J. Phys. Soc. Jpn., 1984, 53, No. 9, +3074–3080, doi:10.1143/JPSJ.53.3074. +39. Levitskii R. R., Zachek I. R., Vdovych A. S., J. Phys. Chem. Solids, 2012, 13, No. 1, 40–47. +43711-13 + +A. S. Vdovych, R. R. Levitskii , I. R. Zachek +40. Levitskii R. R., Zachek I. R., Vdovych A. S., J. Phys. Stud., 2012, 16, No. 4, 4702 (11 pages), +doi:10.30970/jps.16.4702 (in Ukrainian). +41. Vdovych A. S., Levitskii R. R., Zachek I. R., Moina A. P., J. Phys. Stud., 2021, 25, No. 3, 3702 (14 pages), +doi:10.30970/jps.25.3702. +42. Prawer S., Smith T. F., Finlayson T. R., Aust. J. Phys., 1985, 38, No. 1, 63–83, doi:10.1071/PH850063. +Електрокалоричний i барокалоричний ефекти у +сегнетоелектрику CsH2PO4 +А. С. Вдович 1, +Р. Р. Левицький 1, I. Р. Зачек 2 +1 Iнститут фiзики конденсованих систем Нацiональної академiї наук України, +вул. Свєнцiцького, 1, 79011 Львiв, Україна +2 Нацiональний унiверситет “Львiвська полiтехнiка”, Україна, 79013, Львiв, вул. С. Бандери, 12 +Для дослiдження калоричних ефектiв у сегнетоелектрику CsH2PO4 використано модифiковану псевдоспi- +нову модель цього кристала, яка враховує залежнiсть параметрiв взаємодiї мiж псевдоспiнами вiд дефор- +мацiй гратки. Модель також враховує залежнiсть ефективного дипольного момента на водневому зв’яз- +ку вiд параметра впорядкування. В наближеннi двочастинкового кластера вивчено вплив поздовжнього +електричного поля i гiдростатичного тиску на молярну ентропiю кристала. Дослiджено електрокалорич- +ний i барокалоричний ефекти. Розрахована електрокалорична змiна температури близько 1 K; вона може +мiняти знак пiд дiєю гiдростатичного тиску. Барокалорична змiна температури близько −0.5 K; при її роз- +рахунках не враховувалися ангармонiзми гратки. +Ключовi слова: сегнетоелектрики, сегнетоелектричний фазовий перехiд, електрокалоричний ефект, +барокалоричний ефект +43711-14 + diff --git a/OtAzT4oBgHgl3EQflP1e/content/tmp_files/load_file.txt b/OtAzT4oBgHgl3EQflP1e/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..10b283012c95c72a128b7715dd338873bae43cdc --- /dev/null +++ b/OtAzT4oBgHgl3EQflP1e/content/tmp_files/load_file.txt @@ -0,0 +1,1114 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf,len=1113 +page_content='Condensed Matter Physics, 2022, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 25, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 4, 43711: 1–14 DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5488/CMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='43711 http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='icmp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='lviv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='ua/journal Electrocaloric and barocaloric effects in CsH2PO4 ferroelectric A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych 1∗, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii 1, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Zachek2 1 Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 79011 Lviv, Ukraine 2 Lviv Polytechnic National University, 12 Bandera Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 79013 Lviv, Ukraine Received June 30, 2022, in final form August 23, 2022 To investigate the caloric effects in the CsH2PO4 ferroelectric, a modified pseudospin model of this crystal is used, which takes into account the dependence of the parameters of interaction between pseudospins on lattice strains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The model also takes into account the dependence of the effective dipole moment of a pseudospin on the order parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In the two-particle cluster approximation, the influence of the longitudinal electric field and hydrostatic pressure on the molar entropy of the crystal was studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The electrocaloric and barocaloric effects were studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The calculated electrocaloric temperature change is about 1 K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' it can change its sign under the influence of hydrostatic pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Barocaloric temperature change is about −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' lattice anharmonicities were not taken into account in its calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Key words: ferroelectricity, phase transitions, dielectric permittivity, mechanical deformation, hydrostatic pressure effect 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Introduction Currently, the greatest electrocaloric (EC) effect, as the change in temperature of dielectric with an adiabatic change of electric field, is observed in thin films of perovskite ferroelectrics and relaxors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In particular, there was achieved a change in temperature Δ𝑇ec = 12 K in the presence of strong electric field (𝐸 = 480 kV/cm) in crystal PbZr0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='95Ti0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='05O3 [1], 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 K at field strength 𝐸 = 598 kV/cm in Pb0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8Ba0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2ZrO3 [2], −42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 K at 𝐸 = 1632 kV/cm in 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5(Ba0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8Ca0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2)TiO3–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5Bi(Mg0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5Ti0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5)O3 [3], 40 K at 𝐸 = 1200 kV/cm in Pb0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='88La0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='08Zr0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='65Ti0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='35O3 [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In bulk samples, the EC effect is an order of magnitude weaker due to a less dielectric strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In par- ticular, there was achieved a temperature change Δ𝑇ec = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 K at 𝐸 = 90 kV/cm in Pb0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='88La0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='12(Zr0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='65Ti0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='35)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='97O3 [5], 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 K at 𝐸 = 197 kV/cm in lead scandium tantalate [6], 11 K at 𝐸 = 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='7 kV/cm in [(CH3)2CHCH2NH3]2PbCl4 [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In cheaper and more accessible KH2PO4 (KDP) type ferroelectrics with hydrogen bonds, the EC effect has been investigated in relatively weak fields or not at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In particular, in the KDP crystal there was achieved Δ𝑇ec ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='04 K at the field strength 𝐸 ≈ 4 kV/cm [8], Δ𝑇ec ≈ 1K at 𝐸 ≈ 12 kV/cm [9] and Δ𝑇 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='25 K at temperature 𝑇𝑐 at 𝐸 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 kV/cm [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Calculations carried out in [11] based on the pseudospin model of a deformed KDP crystal show that the Δ𝑇ec in this crystal can exceed 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Ferroelectrics, in which Δ𝑇ec is smaller than those mentioned above, are also promising for elec- trocaloric cooling since, in order to obtaine a given Δ𝑇ec, electrocaloric devices can be combined into a cascade of several links, in which the heater for the previous link is at the same time the cooler for the next link [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In ferroelectric materials, the phase transition temperature depends on the pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Therefore, they also exhibit a significant barocaloric (BC) effect, which is a change in the crystal temperature during an ∗Corresponding author: vas@icmp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='lviv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='ua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' This work is licensed under a Creative Commons Attribution 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 International License.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 43711-1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='01544v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='mtrl-sci] 4 Jan 2023 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii , I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Zachek 1 2 1 2 A B a b c I II a c a b Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (Colour online) Primitive cell of CDP crystal in the ferroelectric phase [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' adiabatic change in hydrostatic pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The strongest BC effect was achieved in crystals with hydrogen bonds NH4HSO4 [13] (Δ𝑇bc = −10 K at pressure 𝑝 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='15 GPa) and (NH4)2SO4 [14] (Δ𝑇bc = −8 K at pressure 𝑝 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 GPa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Crystal CsH2PO4 (CDP) is another example of a hydrogen-bonded ferroelectric of the KDP family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Neither EC nor BC effects in this crystal have been studied at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In the CDP crystal, there are two structurally non-equivalent types of hydrogen bonds of different lengths (figure 1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Longer bonds have one equilibrium position for protons, while shorter bonds have two equilibrium positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' They connect PO4 groups in chains along the 𝑏-axis (figure 1a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' therefore, the crystal is quasi-one-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At room temperature in the absence of pressure, the crystal is in the paraelectric phase and has monoclinic symmetry (space group P21/m) [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At the same time, protons on short bonds are in two equilibrium positions with the same probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Below 𝑇𝑐 = 153 K, the crystal passes to the ferroelectric phase (space group P21) [18, 19] with spontaneous polarization along the crystallographic 𝑏-axis, and protons with a higher probability occupy the upper position (figure 1a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' On the basis of dielectric studies [20, 21] it was established that at pressures 𝑝 = 𝑝𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='33 GPa and 𝑇cr 𝑐 = 124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6 K, double hysteresis loops appear, that is, a transition to the antiferroelectric phase occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' With the help of neutron diffraction studies [22], it was established that in the antiferroelectric phase, the unit cell of the CDP crystal doubles along the a-axis, as two sublattices in the form of bc planes arise, which are polarized antiparallel along 𝑏-axis and alternate along the a-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The symmetry remains monoclinic (space group P21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Protons on hydrogen bonds are arranged in neighboring sublattices in an antiparallel manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At very high pressures, an antiferroelectric phase of the second type (AF2) occurs, in which two sublattices have the form of chains along the b-axis, and they are polarized antiparallel along the 𝑏-axis and alternate in a checkerboard pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The AF2 phase was predicted on the basis of NMR studies [23] and confirmed in [24] on the basis of X-ray diffraction measurements and dielectric measurements [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The effect of hydrostatic pressure on the phase transition temperature and dielectric properties of Cs(H1−𝑥D𝑥)2PO4 ferroelectrics was studied in [20, 21, 24–28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The molar heat capacity of CDP was measured in [29], and was also calculated based on the lattice dynamics simulations in [30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Later, based on the ab-initio calculations [32] and using calculations based on the quasi-one-dimensional model [33], the important role of proton tunneling on the bonds was established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Piezoelectric coefficients, elastic constants, and molar heat capacity of CDP [34, 35] were also calculated on the basis of first-principle calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' A theoretical description of the dielectric properties of CDP at different values of hydrostatic pressure was carried out in [36, 37] based on the pseudospin model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' However, in these works, the interaction parameters do not depend on the lattice strains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' As a result, it is impossible to obtain piezoelectric and elastic characteristics of the crystal, and the critical pressure does not depend on temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In [38], temperature dependences of lattice strains 𝑢1, 𝑢2, 𝑢3, 𝑢5 were measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' A quasi-one- dimensional Ising model for the CDP crystal is also proposed there, in which the interaction parameters are linear functions of these strains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Based on this model, the temperature behavior of 𝑢 𝑗 (𝑇) was explained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' However, this model does not consider the crystal as two sublattices and does not allow describing the ferro-antiferroelectric transition at high pressures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 43711-2 C5CS CS CS CSElectrocaloric and barocaloric effects In the papers [15, 39–41], a two-sublattice pseudospin model of a deformed CDP crystal is proposed, in which the interactions between the nearest pseudospins in the chain are taken into account in the two-particle cluster approximation, and the long-range (including interchain) interactions are taken into account in the mean field approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At the same time, the interaction parameters are linear functions of 𝑢 𝑗 strains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' As a result, the temperature dependences of spontaneous polarization, dielectric constant, piezoelectric coefficients and elastic constants were calculated, and the influence of hydrostatic and uniaxial pressures and longitudinal electric field on these characteristics was studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In [41], the behavior of the thermodynamic characteristics of the CDP crystal under the action of hydrostatic and uniaxial pressures and a longitudinal electric field, as well as under the simultaneous action of pressures and the electric field, was investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In the present paper, the electrocaloric and barocaloric effects in CDP crystal are calculated based on the model proposed in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Model of CDP crystal The [15] model was used to calculate the thermodynamic characteristics of CDP, which considers the system of protons on O-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='O bonds with a two-minimum potential as a system of pseudospins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The primitive cell contains one chain, marked in figure 1 as “A”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' To describe the transition to the antiferroelectric phase at high pressures, in [15] an extended primitive cell formed by two chains (“A” and “B”) is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' All “A” chains form the “A” sublattice, and all “B” chains form the “B” sublattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Each chain in the primitive cell contains two neighboring PO4 tetrahedra (of type “I” and “II”) together with two short hydrogen bonds (“1” and “2”, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The dipole moments �𝑑 𝐴 𝑞1, �𝑑 𝐴 𝑞2, �𝑑𝐵 𝑞1, �𝑑𝐵 𝑞2 are attributed to the protons on the bonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Pseudospin variables 𝜎𝐴 𝑞1/2, 𝜎𝐴 𝑞2/2, 𝜎𝐵 𝑞1/2, 𝜎𝐵 𝑞2/2 describe changes associated with the rearrangement of the corresponding dipole moments of structural units: �𝑑 𝐴,𝐵 𝑞1,2 = �𝜇𝐴,𝐵 𝑞1,2 𝜎𝐴,𝐵 𝑞1,2 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Further, we use the notation “2” instead of “y” for the components of vectors and tensors, for convenience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In the presence of mechanical stresses that do not change the symmetry of the crystal 𝜎1 = 𝜎𝑥𝑥, 𝜎2 = 𝜎𝑦𝑦, 𝜎3 = 𝜎𝑧𝑧, 𝜎5 = 𝜎𝑥𝑧 (X ⊥ (b,c), Y ∥ b, Z ∥ c), as well as of the electric field 𝐸2 = 𝐸𝑦, the Hamiltonian of the CDP model has the form [15]: ˆ𝐻 = 𝑁𝑈seed + ˆ𝐻short + ˆ𝐻long + ˆ𝐻𝐸 + ˆ𝐻′ 𝐸, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1) where 𝑁 is the total number of extended primitive cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The first term in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1) is the “seed” energy, which corresponds to the lattice of heavy ions and does not explicitly depend on the configuration of the proton subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' It includes elastic, piezoelectric and dielectric parts expressed through electric field 𝐸2 and strains that do not change the lattice symmetry, 𝑢1 = 𝑢𝑥𝑥, 𝑢2 = 𝑢𝑦𝑦, 𝑢3 = 𝑢𝑧𝑧, 𝑢5 = 2𝑢𝑥𝑧: 𝑈seed = 𝑣 � 1 2 ∑︁ 𝑗, 𝑗′ 𝑐𝐸0 𝑗 𝑗′𝑢 𝑗𝑢′ 𝑗 − ∑︁ 𝑗 𝑒0 2𝑗𝐸2𝑢 𝑗 − 1 2𝜀0𝜒𝑢0 22 𝐸2 2 � , 𝑗, 𝑗 ′ = 1, 2, 3, 5, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2) where 𝜀0 = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8542·10−12 F/m is electric constant, 𝑐𝐸0 𝑗 𝑗′, 𝑒0 2𝑗, 𝜒𝑢0 22 are “seed” elastic constants, piezoelectric stress coefficients and dielectric susceptibility of a mechanically clamped crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝑣 is the volume of the extended primitive cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In the paraelectric phase, all coefficients 𝑒0 2𝑗 ≡ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The other terms in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1) describe the pseudospin part of the Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In particular, the second term in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1) is the Hamiltonian of short-range interactions ˆ𝐻short = −2𝑤 ∑︁ 𝑞𝑞′ �𝜎𝐴 𝑞1 2 𝜎𝐴 𝑞′2 2 + 𝜎𝐵 𝑞1 2 𝜎𝐵 𝑞′2 2 � �𝛿R𝑞R𝑞′ + 𝛿R𝑞+R𝑏,R𝑞′ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3) In (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3), 𝜎𝐴,𝐵 𝑞1,2 are 𝑧-components of pseudospin operator, that describe the state of the bond “1” or “2” of the chain “A” or “B”, in the 𝑞-th cell, �𝑅𝑏 is the lattice vector along 𝑂𝑌-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The first Kronecker delta 43711-3 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii , I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Zachek corresponds to the interaction between neighboring pseudospins in the chains near the tetrahedra PO4 of type “I”, where the second Kronecker delta is near the tetrahedra PO4 of type “II”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Contributions to the energy of interactions between pseudospins near tetrahedra of different types are identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Parameter 𝑤, which describes the short-range interactions within the chains, is expanded linearly into a series with respect to strains 𝑢 𝑗: 𝑤 = 𝑤0 + ∑︁ 𝑗 𝛿 𝑗𝑢 𝑗, ( 𝑗 = 1, 2, 3, 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4) The term ˆ𝐻long in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1) describes long-range dipole-dipole interactions and indirect (through the lattice vibrations) interactions between pseudospins which are taken into account in the mean field approximation: ˆ𝐻long = 𝑁𝐻0 + ˆ𝐻2, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5) where such notations are used: ˆ𝐻0 = 𝜈1(𝜂2 1 + 𝜂2 2) + 2𝜈2𝜂1𝜂2, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6) ˆ𝐻2 = ∑︁ 𝑞 � −(2𝜈1𝜂1 + 2𝜈2𝜂2) �𝜎𝐴 𝑞1 2 + 𝜎𝐴 𝑞2 2 � − (2𝜈2𝜂1 + 2𝜈1𝜂2) �𝜎𝐵 𝑞1 2 + 𝜎𝐵 𝑞2 2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='7) 𝜈1 = 𝜈0 1 + ∑︁ 𝑗 𝜓 𝑗1𝑢 𝑗, 𝜈2 = 𝜈0 2 + ∑︁ 𝑗 𝜓 𝑗2𝑢 𝑗, ⟨𝜎𝐴 𝑞1⟩ = ⟨𝜎𝐴 𝑞2⟩ = 𝜂1, ⟨𝜎𝐵 𝑞1⟩ = ⟨𝜎𝐵 𝑞2⟩ = 𝜂2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8) The parameter 𝜈1 describes the effective long-range interaction of the pseudospin with the pseudospins within the same sublattice, and 𝜈2 — with the pseudospins of the other sublattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The fourth term in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1) describes the interactions of pseudospins with the external electric field: ˆ𝐻𝐸 = − ∑︁ 𝑞 𝜇𝑦𝐸2 �𝜎𝐴 𝑞1 2 + 𝜎𝐴 𝑞2 2 + 𝜎𝐵 𝑞1 2 + 𝜎𝐵 𝑞2 2 � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='9) where 𝜇𝑦 is y-component of effective dipole moments per one pseudospin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The term ˆ𝐻′ 𝐸 in Hamiltonian (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1) takes into account the dependence of the effective dipole moment on the mean value of pseudospin 𝑠 𝑓 : ˆ𝐻′ 𝐸 = − ∑︁ 𝑞 𝑓 𝑠2 𝑓 𝜇′𝐸2 𝜎𝑞 𝑓 2 = − ∑︁ 𝑞 𝑓 � 1 𝑁 ∑︁ 𝑞′ 𝜎𝑞′ 𝑓 �2 𝜇′𝐸2 𝜎𝑞 𝑓 2 , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='10) where 𝜎𝑞 𝑓 (f=1, 2, 3, 4) are a brief notation of pseudospins 𝜎𝐴 𝑞1, 𝜎𝐴 𝑞2, 𝜎𝐵 𝑞1, 𝜎𝐵 𝑞2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Here, we use corrections to dipole moments 𝑠2 𝑓 𝜇′ instead of 𝑠 𝑓 𝜇′ because of the symmetry considerations and the energy should not change when the field and all pseudospins change their sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The term ˆ𝐻′ 𝐸, as well as long-range interactions, is taken into account in the mean field approximation: ˆ𝐻′ 𝐸 = −3 ∑︁ 𝑞 𝜇′𝐸2 �𝜂2 1𝜎𝐴 𝑞1 2 + 𝜂2 1𝜎𝐴 𝑞2 2 + 𝜂2 2𝜎𝐵 𝑞1 2 + 𝜂2 2𝜎𝐵 𝑞2 2 � + 2𝑁(𝜂3 1 + 𝜂3 2)𝜇′𝐸2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='11) In the two-particle cluster approximation for short-range interactions, the thermodynamic potential per one extended primitive cell is as follows: 𝑔 = 𝑈seed + 𝐻0 + 2(𝜂3 1 + 𝜂3 2)𝜇′𝐸2 + 2𝑘B𝑇 ln 2 − 2𝑤 − 𝑣 ∑︁ 𝑗 𝜎𝑗𝑢 𝑗 − 𝑘B𝑇 ln(1 − 𝜂2 1) − 𝑘B𝑇 ln(1 − 𝜂2 2) − 2𝑘B𝑇 ln 𝐷.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='12) 43711-4 Electrocaloric and barocaloric effects Here, the following notations are used: 𝐷 = cosh(𝑦1 + 𝑦2) + cosh(𝑦1 − 𝑦2) + 2𝑎 cosh 𝑦1 + 2𝑎 cosh 𝑦2 + 2𝑎2, 𝑎 = e−𝛽𝑤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝑦1 = 1 2 ln 1 + 𝜂1 1 − 𝜂1 + 𝛽𝜈1𝜂1 + 𝛽𝜈2𝜂2 + 1 2 𝛽(𝜇𝑦𝐸2 + 3𝜂2 1𝜇′𝐸2), 𝑦2 = 1 2 ln 1 + 𝜂2 1 − 𝜂2 + 𝛽𝜈2𝜂1 + 𝛽𝜈1𝜂2 + 1 2 𝛽(𝜇𝑦𝐸2 + 3𝜂2 2𝜇′𝐸2), where 𝛽 = 1 𝑘B𝑇 , 𝑘B is Boltzmann constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Minimizing the thermodynamic potential with respect to the order parameters 𝜂 𝑓 and strains 𝑢 𝑗 in [15], we obtain a system of equations for 𝜂 𝑓 and 𝑢 𝑗: 𝜂1 = 1 𝐷 [sinh(𝑦1 + 𝑦2) + sinh(𝑦1 − 𝑦2) + 2𝑎 sinh 𝑦1] , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='13) 𝜂2 = 1 𝐷 [sinh(𝑦1 + 𝑦2) − sinh(𝑦1 − 𝑦2) + 2𝑎 sinh 𝑦2] , 𝜎𝑗 = 𝑐𝐸0 𝑗1 𝑢1 + 𝑐𝐸0 𝑗2 𝑢2 + 𝑐𝐸0 𝑗3 𝑢3 + 𝑐𝐸0 𝑗5 𝑢5 − 𝑒0 2𝑗𝐸2 − 2𝛿 𝑗 𝑣 + 4𝛿 𝑗 𝑣𝐷 𝑀 − 1 𝑣 𝜓 𝑗1(𝜂2 1 + 𝜂2 2) − 2 𝑣 𝜓 𝑗2𝜂1𝜂2, where 𝑀 = � 𝑎 cosh 𝑦1 + 𝑎 cosh 𝑦2 + 2𝑎2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In the presence of hydrostatic pressure 𝜎1 = 𝜎2 = 𝜎3 = −𝑝, 𝜎4 = 𝜎5 = 𝜎6 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In [15], the expression for the longitudinal component of polarization 𝑃2 was also obtained: 𝑃2 = − � 𝜕𝑔 𝜕𝐸2 � 𝜎𝑗 = ∑︁ 𝑗 𝑒0 2𝑗𝑢 𝑗 + 𝜒𝑢0 22 𝐸2 + 𝜇𝑦 𝑣 �𝜂1 + 𝜂2 � + 𝜇′ 𝑣 �𝜂3 1 + 𝜂3 2 �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='14) Based on the thermodynamic potential (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='12), we obtain an expression for the entropy of the pseu- dospin subsystem: 𝑆 = − 𝑁𝐴 𝑁𝑚 � 𝜕𝑔 𝜕𝑇 � 𝜂,𝜀𝑖 = 𝑅 𝑁𝑚 �� �� −2 ln 2 + 2 ∑︁ 𝑓 =1 ln�1 − 𝜂2 𝑓 � + 2 ln 𝐷 − 2𝜂1𝛽 � 𝜈1𝜂1 + 𝜈2𝜂2 + 1 2 � 𝜇𝑦𝐸2 + 3𝜂2 1𝜇′𝐸2 �� − 2𝜂2𝛽 � 𝜈2𝜂1 + 𝜈1𝜂2 + 1 2 � 𝜇𝑦𝐸2 + 3𝜂2 2𝜇′𝐸2 �� + 4𝑀𝛽𝑤 𝐷 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='15) Here, 𝑁A is Avogadro constant, 𝑅 is the universal gas constant, 𝑁𝑚 = 4 is the number of CsH2PO4 molecules in the extended primitive cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The molar heat capacity of the pseudospin subsystem of the CDP crystal: 𝐶 = 𝑇 � d𝑆 d𝑇 � 𝐸2,𝜎𝑗 = 𝑇 �� � 𝑆′ 𝑇 + 2 ∑︁ 𝑓 =1 𝑆′ 𝜂 𝑓 𝜂′ 𝑇 𝑓 + ∑︁ 𝑗=1,2,3,5 𝑆′ 𝑢𝑗𝑢′ 𝑇 𝑗 �� � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='16) The explicit expressions for derivatives 𝑆′ 𝑇 , 𝑆′ 𝜂 𝑓 , 𝑆′ 𝑢𝑗, 𝜂′ 𝑇 𝑓 , 𝑢′ 𝑇 𝑗 are given in the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' We consider the total heat capacity to be the sum of the pseudospin and lattice components: 𝐶total = 𝐶 + 𝐶lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='17) The heat capacity of the lattice subsystem is considered to be the CDP heat capacity, calculated on the basis of first-principle calculations [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Its temperature dependence in the range of 80–350 K, in which the calculations were carried out, is well approximated by a polynomial 𝐶lattice = 4 ∑︁ 𝑙=0 𝑘𝑙𝑇𝑙, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='18) 43711-5 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii , I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Zachek where the coefficients 𝑘𝑙: 𝑘0 = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='62 J/(mol K), 𝑘1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5955 J/(mol K2), 𝑘2 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='001885 J/(mol K3), 𝑘3 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='376· 10−6 J/(mol K4), 𝑘4 = −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='034· 10−9 J/(mol K5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The entropy of the lattice subsystem near 𝑇𝑐: 𝑆lattice = ∫ 𝐶lattice 𝑇 d𝑇 = 𝑘0 ln(𝑇) + 4 ∑︁ 𝑙=1 𝑘𝑙𝑇𝑙 𝑙 + const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='19) Total entropy as a function of temperature, field component 𝐸2 and hydrostatic pressure 𝑝: 𝑆total(𝑇, 𝐸2, 𝑝) = 𝑆 + 𝑆lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='20) Solving (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='20) with respect to the temperature at 𝑆total(𝑇, 𝐸2, 𝑝) = const and two magnitudes of the field, it is possible to calculate the electrocaloric temperature change (as shown in figure 3b): Δ𝑇ec = 𝑇 [𝑆total, 𝐸2(2), 𝑝] − 𝑇 [𝑆total, 𝐸2(1), 𝑝].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='21) The change in temperature during the adiabatic change in the field 𝐸2 can also be calculated by the well-known formula Δ𝑇ec = − 𝐸2 ∫ 0 𝑇𝑉 𝐶total � 𝜕𝑃2 𝜕𝑇 � 𝐸2 d𝐸2, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='22) where pyroelectric coefficient � 𝜕𝑃2 𝜕𝑇 � 𝐸2 = ∑︁ 𝑗 𝑒0 2𝑗𝑢′ 𝑗𝑇 + 𝜇𝑦 𝑣 �𝜂′ 1𝑇 + 𝜂′ 2𝑇 � + 3𝜇′ 𝑣 �𝜂2 1𝜂′ 1𝑇 + 𝜂2 2𝜂′ 2𝑇 �, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='23) and 𝑉 = 𝑣𝑁𝐴/𝑁𝑚 is molar volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Similarly, solving (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='20) with respect to temperature at 𝑆total(𝑇, 𝐸2, 𝑝) = const and two pressure values, it is possible to calculate the barocaloric temperature change (as shown in figure 3b): Δ𝑇bc = 𝑇 [𝑆total, 𝐸2, 𝑝(2)] − 𝑇 [𝑆total, 𝐸2, 𝑝(1)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='24) The change in temperature under the adiabatic change in pressure 𝑝 can also be calculated by the known formula Δ𝑇bc = 𝑝∫ 0 𝑇 𝐶total � 𝜕𝑉 𝜕𝑇 � 𝑝 d𝑝 = 𝑝∫ 0 𝑁𝐴𝑇 𝑁𝑚𝐶total (𝑢′ 1𝑇 + 𝑢′ 2𝑇 + 𝑢′ 3𝑇 )d𝑝.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='25) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Discussion of the obtained results The theory parameters are determined in [15] from the condition of agreement of calculated char- acteristics with experimental data for temperature dependences of spontaneous polarization 𝑃2(𝑇) and dielectric permittivity 𝜀22(𝑇) at different values of hydrostatic pressure [21], spontaneous strains 𝑢 𝑗 [38], molar heat capacity [29] and elastic constants [42];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' as well as agreement with ab-initio calculations of the lattice contributions into molar heat capacity [34] and dielectric permittivity at zero temperature [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' It should be noted that the temperature dependences of the dielectric constant 𝜀22 at different values of hydrostatic pressure were also measured in [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' However, they do not agree with experimental data [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' It is possible that another crystal sample was used there, which was grown under different conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In addition, in [25] there are no data for the temperature dependences of spontaneous polarization at different pressures, as well as no data for dielectric characteristics at zero pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Therefore, we used experimental data [21] to determine the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Parameters of short-range interactions 𝑤0 and long-range interactions 𝜈0 1 (“intra-sublattice”), 𝜈0 2 (“inter-sublattice”) mainly fix the phase transition temperature from paraelectric to ferroelectric phase at the absence of external pressure and field, the order of phase transition and the shape of curve 𝑃2(𝑇).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Their optimal values are: 𝑤0/𝑘B = 650 K, 𝜈0 1/𝑘B = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='50 K, 𝜈0 2/𝑘B = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='23 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 43711-6 Electrocaloric and barocaloric effects In order to determine the deformational potentials 𝛿 𝑗 [see (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4)] and 𝜓 𝑗1, 𝜓 𝑗2 [see (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8)], it is necessary to use experimental data for the shift of the phase transition temperature under hydrostatic and uniaxial pressures as well as the data for temperature dependences of spontaneous strains 𝑢 𝑗, piezoelectric coefficients and elastic constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Unfortunately, only the data for the spontaneous strains and hydrostatic pressure effect on the dielectric characteristics are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' As a result, the experimental data for strains and dielectric characteristics can be described using a great number of combinations of parameters 𝜓 𝑗1, 𝜓 𝑗2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Therefore, for the sake of simplicity, we chose 𝜓 𝑗2 to be proportional to 𝜓 𝑗1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Optimal values of deformational potentials are: 𝛿1/𝑘B = 1214 K, 𝛿2/𝑘B = 454 K, 𝛿3/𝑘B = 1728 K, 𝛿5/𝑘B = −131 K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝜓11/𝑘B = 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 K, 𝜓21/𝑘B = 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 K, 𝜓31/𝑘B = 139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='7 K, 𝜓51/𝑘B = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝜓 𝑗2 = 1 3𝜓 𝑗1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The effective dipole moment in the paraelectric phase is found from the condition of agreement of the calculated curve 𝜀22(𝑇) with experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' We consider it to be dependent on the value of hydrostatic pressure 𝑝, that is 𝜇𝑦 = 𝜇0 𝑦(1 − 𝑘 𝑝𝑝), where 𝜇0 𝑦 = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='77 · 10−30 C·m, 𝑘 𝑝 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 · 10−9 Pa−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The correction to the effective dipole moment 𝜇′ = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='43 · 10−30 C·m is found from the condition of agreement of the calculated saturation polarization with experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The “seed” dielectric susceptibility 𝜒𝑢0 22 , coefficients of piezoelectric stress 𝑒0 2𝑗 and elastic constants 𝑐𝐸0 𝑖 𝑗 are found from the condition of agreement of theory with experimental data in the temperature regions far from the phase transition temperature 𝑇𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Their values are obtained as follows: 𝜒𝑢0 22 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='57;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝑒0 2𝑗 = 0 C/m2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝑐𝐸0 𝑗 𝑗′ (109N/m2): 𝑐𝐸0 11 = 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='83, 𝑐𝐸0 12 = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4, 𝑐𝐸0 13 = 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='87, 𝑐𝐸0 22 = 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='67, 𝑐𝐸0 23 = 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5, 𝑐𝐸0 33 = 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='45, 𝑐𝐸0 15 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='13, 𝑐𝐸0 25 = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4, 𝑐𝐸0 35 = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='50, 𝑐𝐸0 55 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The volume of the extended primitive cell is 𝜐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='467 · 10−27 m3 [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In the paper [15], a phase diagram (figure 2) was calculated, which explains the effect of hydrostatic pressure and longitudinal electric field on the temperatures of phase transitions, in particular, the transition to the antiferroelectric phase at pressures greater than the critical one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 80 90 100 110 120 130 140 150 160 Tc, TN, TAF, K p, GPa P F AF E=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0MV/m (1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 (2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 (3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 (4) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 (5) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 (6) 1 2 3 4 5 6 Tc TN TAF I−order II−order TN tr Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Dependence on the hydrostatic pressure of the temperature of the transition from the paraelectric to the ferroelectric phase 𝑇𝑐, from the paraelectric to the antiferroelectric phase 𝑇𝑁 , from the ferroelectric to the antiferroelectric phase 𝑇𝐴𝐹 at different values of the electric field 𝐸2 (MV/m): 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 –1 , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 – 2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 – 3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 – 4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 – 5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 – 6 for the CDP crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Symbols are experimental data [20], lines are theoretical calculations [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Tricritical points 𝑇tr 𝑁 (marked as *) separate the curves of the first-order phase transitions (dashed lines) and of the second-order ones (solid lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' As mentioned above, the EC effect is calculated as a change in the crystal temperature Δ𝑇ec during adiabatic (at constant entropy) application of an electric field, as shown in figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At the pressures less than critical, longitudinal field 𝐸2 decreases the entropy of the crystal in the entire temperature range (figure 3), because it puts the pseudospins in order in both sublattices, “A” and “B” (figure 1a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Therefore, 43711-7 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii , I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Zachek 100 120 140 160 180 200 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 T, K ∆Tec S=const E2=0MV/m, p=0GPa E2=50MV/m, p=0GPa E2=0MV/m, p=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5GPa S, J/(mol⋅K) ∆Tbc 152 152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 153 153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 154 154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 163 163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 164 T, K Stotal=const ∆Tec Stotal, J/(mol⋅K) E2=0MV/m, p=0GPa E2=0MV/m, p=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5GPa E2=50MV/m, p=0GPa ∆Tbc a b Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (Colour online) Temperature dependences of the pseudospin contribution to the molar entropy (a) and total entropy (b) of the CDP crystal at different values of the field 𝐸2 and of the hydrostatic pressure 𝑝.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' the Δ𝑇ec is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' As we can see, the effect of the field on the total entropy 𝑆total (figure 3b) is much weaker than the effect on only the pseudospin contribution 𝑆 (figure 3a), because the lattice heat capacity quite strongly stabilizes the temperature of the crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The calculated field and temperature dependences of Δ𝑇ec are shown in figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In the weak fields 0 5 10 15 20 25 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8 1 ∆Tec, K E, MV/m 20K −20K −5K −10K 10K T=Tc T−Tc=5K 80 100 120 140 160 180 200 220 240 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 ∆Tec, K T, K 1 2 3 4 5 6 7 8 a b Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (Colour online) a) Field dependence of the electrocaloric temperature change Δ𝑇ec at different values of temperature Δ𝑇 = 𝑇 − 𝑇𝑐 and at zero hydrostatic pressure 𝑝.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' b) Temperature dependence of Δ𝑇ec at different values of the longitudinal electric field 𝐸2 (MV/m): 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 7;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 8 and at zero hydrostatic pressure 𝑝.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (𝐸2 < 1 MV/m) at the initial temperature 𝑇 = 𝑇𝑐, the change in temperature Δ𝑇ec ∼ 𝐸2/3 2 (green curve in figure 4a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' at 𝑇 < 𝑇𝑐, Δ𝑇ec ∼ 𝐸2 (blue dashed curves in figure 4);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' at T>𝑇𝑐, Δ𝑇ec ∼ 𝐸2 2 (red curves in figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At fields 𝐸2 > 1 MV/m, the dependences of Δ𝑇ec(𝐸2) significantly deviate from the mentioned laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At high pressures, but less than the critical one, the field and temperature dependences of Δ𝑇ec are qualitatively similar, as in the absence of pressure (figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 43711-8 Electrocaloric and barocaloric effects 0 5 10 15 20 25 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8 ∆Tec, K E, MV/m T−Tc=20K −20K −5K −10K 10K T=Tc 5K 80 100 120 140 160 180 200 220 240 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 ∆Tec, K T, K 1 2 3 4 5 6 7 8 a b Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (Colour online) a) Field dependence of electrocaloric temperature change Δ𝑇ec at different temperature values Δ𝑇 = 𝑇 − 𝑇𝑐 and at hydrostatic pressure 𝑝 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' b) Temperature dependence of the electrocaloric temperature change Δ𝑇ec at different values of the longitudinal electric field 𝐸2 (MV/m): 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 7;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 8 and at hydrostatic pressure 𝑝 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At pressures greater than the critical one, at temperatures 𝑇 ⩾ 𝑇𝑁 , EC effect is qualitatively similar to the case of subcritical pressures in the paraelectric phase: at weak fields Δ𝑇ec ∼ 𝐸2 2 (green and red curves in figure 6a), at strong fields, the Δ𝑇ec(𝐸2) dependencies deviate from the quadratic law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At initial 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='15 ∆Tec, K E, MV/m 20K −20K −5K −10K 10K T=TN T−TN=5K 80 100 120 140 160 180 200 220 240 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 ∆Tec, K T, K 1 2 3 4 5 6 7 8 a b Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (Colour online) a) Field dependence of electrocaloric change of temperature Δ𝑇ec at different values of initial temperature Δ𝑇 = 𝑇 − 𝑇𝑐 and at hydrostatic pressure 𝑝 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='45 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' b) Temperature dependence of Δ𝑇ec at different values of the longitudinal electric field 𝐸2 (MV/m): 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 7;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='0 – 8 and at hydrostatic pressure 𝑝 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' temperatures 𝑇 < 𝑇𝑁 and weak fields 𝐸2, the temperature of the crystal decreases nonlinearly with the field (blue curves in figure 6a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' This is due to antiferroelectric ordering because the crystal passes into the antiferroelectric phase at pressures higher than the critical one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The ordering of pseudospins in sublattice “B” (which is oriented opposite to the field) under the action of the field is stronger than the ordering of pseudospins in sublattice “A”, which leads to the isothermal increase of entropy and adiabatic (at constant entropy) lowering of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' With the further strengthening of the field, the pseudospins in the “B” 43711-9 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii , I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Zachek 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 0 ∆Tbc, K p, GPa 20K −20K −40K −10K 10K T=Tc 0 T−Tc 0=40K pantiferro−para pferro−antiferro .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 80 100 120 140 160 180 200 220 240 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='7 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1 0 ∆Tbc, K T, K 5kbar Tc(0) Tc(p) TN(p) 3kbar p=1kbar a b Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (Colour online) a) Pressure dependence of the barocaloric temperature change Δ𝑇bc at different values of temperature Δ𝑇 = 𝑇−𝑇0𝑐 and in the absence of a field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' b) Temperature dependence of barocaloric temperature change Δ𝑇bc at different values of adiabatically applied pressure 𝑝 and in the absence of a field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 50 100 150 200 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 x 10 −3 u1, u2 u1 u2 u1 para u2 para T, K 50 100 150 200 −1 0 1 2 x 10 −4 u3 u3 u3 para T, K 50 100 150 200 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 −8 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 −7 x 10 −3 u5 u5 u5 para T, K Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Temperature dependence of lattice strains 𝑢 𝑗 under zero pressure, calculated in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' sublattice are overturned and ordered in the direction of the field, which leads to the isothermal decrease of entropy and to the isoentropic increase of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Hydrostatic pressure 𝑝 lowers the Curie temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' This leads to the isothermal increase of entropy and to the isentropic lowering of temperature, as shown in figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Therefore Δ𝑇bc is negative and at 𝑇 ⩾ 𝑇0 𝑐 it lowers almost linearly with increasing pressure (figure 7a, green and red solid curves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At 𝑇 < 𝑇0 𝑐 (ferroelectric phase) at low pressures, the BC effect is stronger than in the paraelectric phase (in figure 7a these are the blue dashed curves corresponding to 𝑇 − 𝑇0 𝑐 = −10𝐾, −20 K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At a certain value of pressure, the crystal passes to the paraelectric phase (see figure 2), in which the rate of cooling with pressure is less, and therefore a break appears in the Δ𝑇bc(𝑝) curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' As can be seen from figure 2, at 𝑇 − 𝑇0 𝑐 = −40 K there are two phase transitions when increasing pressure: from ferroelectric to antiferroelectric phase, and then from antiferroelectric to paraelectric phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Accordingly, in figure 7a two breaks appear on the curve Δ𝑇bc(𝑝).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' It should be noted that in this work, only the pseudospin (proton) contribution to the BC effect was calculated, and lattice anharmonicities were not taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The interaction between pseudospins leads to the occurrence of stretching strains due to the electrostrictive coupling of the pseudospin and lattice subsystems, since after substitution of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3) and also (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='6), there appear terms 43711-10 Electrocaloric and barocaloric effects of the type 𝛿 𝑗𝑢 𝑗 𝜎𝐴 𝑞1 2 𝜎𝐴 𝑞′2 2 and 𝜓 𝑗1𝑢 𝑗𝜂2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The mean values of pseudospins decrease with an increase of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' As a result, the electrostrictive coupling becomes weaker and the diagonal strains 𝑢1, 𝑢2, 𝑢3 decrease (figure 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The volume of the crystal decreases along with strains, (𝜕𝑉/𝜕𝑇)𝑝 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Therefore, Δ𝑇bc is negative, according to the formula (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' We also note that it is possible to take a set of deformation potentials 𝛿 𝑗 [see (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4)] and 𝜓 𝑗1, 𝜓 𝑗2 [see (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='8)], which leads to an increase of the volume of the crystal with an increase of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' However, this simultaneously leads to an increase in the Curie temperature with an increase in pressure, which contradicts the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In contrast to electrostrictive coupling, lattice anharmonicities lead to thermal expansion of the crystal and give a positive contribution to the BC effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' This contribution competes with the pseudospin contribution, and, in a certain temperature range, it can be larger than the pseudospin contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Conclusions In the case of a weak longitudinal field 𝐸2, the electrocaloric change in temperature Δ𝑇ec increases linearly with the field in the ferroelectric phase, quadratically in the paraelectric phase, and according to the law Δ𝑇ec ∼ 𝐸2/3 2 at the initial temperature 𝑇 = 𝑇𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In the strong field, the dependences Δ𝑇ec(𝐸2) deviate from the mentioned laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Applying the hydrostatic pressure, the EC effect is qualitatively similar to the one at zero pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' At pressures greater than the critical one, the EC effect may be negative due to the transition of the crystal into the antiferroelectric phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The barocaloric change in temperature Δ𝑇bc has a negative sign and decreases almost linearly with pressure since the Curie temperature decreases with pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The nonlinearity is strongly manifested at low initial temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' In our calculations, only the pseudospin contribution to the BC effect is taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' The electrostrictive coupling of the pseudospin and lattice subsystem leads to a decrease in the volume of the crystal with increasing temperature, and as a result the BC effect is negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' To obtain Δ𝑇bc, which can be compared with experimental data, it is necessary to take into account the thermal expansion associated with the lattice anharmonicities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Notations in the expression for molar heat capacity The notations introduced in expression (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='16) are as follows: 𝑆′ 𝑇 = 𝑅 𝑁𝑚 �4𝛽𝑤 𝐷 � 𝑦𝑇 1 𝑎 sinh 𝑦1 + 𝑦𝑇 2 𝑎 sinh 𝑦2 + 𝛽𝑤 𝑇 𝑎𝑀𝑎 � − 4𝑀𝛽𝑤 𝐷 � 𝑦𝑇 1 𝜂1 + 𝑦𝑇 2 𝜂2 + 𝛽 𝑇 2𝑀𝑤 𝐷 �� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝑆′ 𝜂1 = 𝑅 𝑁𝑚 � 2𝑇𝑦𝑇 1 + 4𝛽𝑤 𝐷 �𝑦𝜂1 1 𝑎 sinh 𝑦1 + 𝛽𝜈2𝑎 sinh 𝑦2 � − 4𝑀𝛽𝑤 𝐷 � 𝜂1𝑦𝜂1 1 + 𝜂2𝛽𝜈2 �� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝑆′ 𝜂2 = 𝑅 𝑁𝑚 � 2𝑇𝑦𝑇 2 + 4𝛽𝑤 𝐷 �𝛽𝜈2𝑎 sinh 𝑦1 + 𝑦𝜂2 2 𝑎 sinh 𝑦2 � − 4𝑀𝛽𝑤 𝐷 � 𝜂2𝑦𝜂2 2 + 𝜂1𝛽𝜈2 �� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝑆′ 𝑢𝑗 = 𝑅 𝑁𝑚 �4𝛽𝑤 𝐷 � 𝑦𝑢𝑗 1 𝑎 sinh 𝑦1 + 𝑦𝑢𝑗 2 𝑎 sinh 𝑦2 − 𝛽𝛿 𝑗𝑎𝑀𝑎� − 4𝑀𝛽𝑤 𝐷 � 𝜂1𝑦𝑢𝑗 1 + 𝜂2𝑦𝑢𝑗 2 − 2𝑀𝛽𝛿 𝑗 𝐷 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1) Here are the notations: 𝑦𝑇 1 = − 𝛽 𝑇 � 𝜈1𝜂1 + 𝜈2𝜂2 + 1 2 � 𝜇𝑦𝐸2 + 3𝜂2 1𝜇′𝐸2 �� , 𝑦𝑇 2 = − 𝛽 𝑇 � 𝜈2𝜂1 + 𝜈1𝜂2 + 1 2 � 𝜇𝑦𝐸2 + 3𝜂2 2𝜇′𝐸2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝑦𝜂1 1 = 1 1 − 𝜂2 1 + 𝛽𝜈1 + 3𝛽𝜂1𝜇′𝐸2, 𝑦𝜂2 2 = 1 1 − 𝜂2 2 + 𝛽𝜈1 + 3𝛽𝜂2𝜇′𝐸2, 𝑦𝑢𝑗 1 = 𝛽(𝜓 𝑗1𝜂1 + 𝜓 𝑗2𝜂2), 𝑦𝑢𝑗 2 = 𝛽(𝜓 𝑗2𝜂1 + 𝜓 𝑗1𝜂2), 𝑀𝑎 = cosh 𝑦1 + cosh 𝑦2 + 4𝑎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 43711-11 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii , I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Zachek After differentiating the system of equations (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='13) with respect to the temperature, we obtain a system of equations, from which we determine 𝜂′ 𝑇 𝑓 and 𝑢′ 𝑇 𝑗: � ˆ𝐴𝜂 − ˆ𝐼 ˆ𝐴𝑢 ˆ𝐵𝜂 ˆ𝐵𝑢 � � �𝜂′ 𝑇 �𝑢′ 𝑇 � + � �𝐴 𝑇 �𝐵 𝑇 � = �0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' ⇒ � �𝜂′ 𝑇 �𝑢′ 𝑇 � = − � ˆ𝐴𝜂 − ˆ𝐼 ˆ𝐴𝑢 ˆ𝐵𝜂 ˆ𝐵𝑢 �−1 � �𝐴 𝑇 �𝐵 𝑇 � , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2) where ˆ𝐼 is a 2×2 identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Coefficients of the ˆ𝐴𝜂 matrix are: 𝐴𝜂 11 = 𝜂𝑦1 1 𝑦𝜂1 1 + 𝜂𝑦2 1 𝛽𝜈2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝐴𝜂 12 = 𝜂𝑦1 1 𝛽𝜈2 + 𝜂𝑦2 1 𝑦𝜂2 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝐴𝜂 21 = 𝜂𝑦1 2 𝑦𝜂1 1 + 𝜂𝑦2 2 𝛽𝜈2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝐴𝜂 22 = 𝜂𝑦1 2 𝛽𝜈2 + 𝜂𝑦2 2 𝑦𝜂2 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' where the notations are entered: 𝜂𝑦1 1 = 1 𝐷 � cosh(𝑦1 + 𝑦2) + cosh(𝑦1 − 𝑦2) + 2𝑎 cosh 𝑦1 − 𝜂2 1 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝜂𝑦2 1 = 𝜂𝑦1 2 = 1 𝐷 [cosh(𝑦1 + 𝑦2) − cosh(𝑦1 − 𝑦2) − 𝜂1𝜂2] ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝜂𝑦2 2 = 1 𝐷 � cosh(𝑦1 + 𝑦2) + cosh(𝑦1 − 𝑦2) + 2𝑎 cosh 𝑦2 − 𝜂2 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' coefficients of matrix ˆ𝐴𝑢: 𝐴𝑢 1𝑗 = 𝜂𝑦1 1 𝑦𝑢𝑗 1 + 𝜂𝑦2 1 𝑦𝑢𝑗 2 − 𝛽𝛿 𝑗 𝐷 [2𝑎 sinh 𝑦1 − 2𝑀𝜂1] ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝐴𝑢 2𝑗 = 𝜂𝑦1 2 𝑦𝑢𝑗 1 + 𝜂𝑦2 2 𝑦𝑢𝑗 2 − 𝛽𝛿 𝑗 𝐷 [2𝑎 sinh 𝑦2 − 2𝑀𝜂2] ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' coefficients of matrix ˆ𝐵𝜂: 𝐵𝜂 𝑗1 = −2 𝑣 (𝜓 𝑗1𝜂1 + 𝜓 𝑗2𝜂2) + 4𝛿 𝑗 𝑣𝐷 (𝑎 sinh 𝑦1𝑦𝜂1 1 + 𝑎 sinh 𝑦2𝛽𝜈2) − 4𝑀𝛿 𝑗 𝑣𝐷 �𝜂1𝑦𝜂1 1 + 𝜂2𝛽𝜈2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝐵𝜂 𝑗2 = −2 𝑣 (𝜓 𝑗1𝜂2 + 𝜓 𝑗2𝜂1) + 4𝛿 𝑗 𝑣𝐷 �𝑎 sinh 𝑦1𝛽𝜈2 + 𝑎 sinh 𝑦2𝑦𝜂2 2 � − 4𝑀𝛿 𝑗 𝑣𝐷 (𝜂1𝛽𝜈2 + 𝜂2𝑦𝜂2 2 ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' coefficients of matrix ˆ𝐵𝑢: 𝐵𝑢 𝑗 𝑗′ = 𝑐𝐸0 𝑗 𝑗′ + 4𝛿 𝑗 𝑣𝐷 � 𝑦 𝑢𝑗′ 1 𝑎 sinh 𝑦1 + 𝑦 𝑢𝑗′ 2 𝑎 sinh 𝑦2 − 𝛽𝛿 𝑗′𝑎𝑀𝑎� − 4𝑀𝛿 𝑗 𝑣𝐷 � 𝜂1𝑦 𝑢𝑗′ 1 + 𝜂2𝑦 𝑢𝑗′ 2 − 2𝑀𝛽𝛿 𝑗′ 𝐷 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' coefficients of vectors �𝐴 𝑇 and �𝐵 𝑇 : 𝐴𝑇 1 = 𝜂𝑦1 1 𝑦𝑇 1 + 𝜂𝑦2 1 𝑦𝑇 2 + 𝛽𝑤 𝐷𝑇 (2𝑎 sinh 𝑦1 − 2𝑀𝜂1) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝐴𝑇 2 = 𝜂𝑦1 2 𝑦𝑇 1 + 𝜂𝑦2 2 𝑦𝑇 2 + 𝛽𝑤 𝐷𝑇 (2𝑎 sinh 𝑦2 − 2𝑀𝜂2) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 𝐵𝑇 𝑗 = 4𝛿 𝑗 𝑣𝐷 � 𝑦𝑇 1 𝑎 sinh 𝑦1 + 𝑦𝑇 2 𝑎 sinh 𝑦2 + 𝑎𝑀𝑎𝛽𝑤 𝑇 � − 4𝛿 𝑗 𝑀 𝑣𝐷 � 𝑦𝑇 1 𝜂1 + 𝑦𝑇 2 𝜂2 + 2𝑀𝛽𝑤 𝐷𝑇 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Mischenko A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zhang Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Scott J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Whatmore R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Mathur N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Science, 2006, 311, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 5765, 1270–1271, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1123811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Peng B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Fan H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zhang Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2013, 23, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 23, 2987–2992, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1002/adfm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='201202525.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Peng B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zhang Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Gang B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Leighton G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Shaw C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Milne S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zou B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Sun W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Huang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Wang Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Energy Environ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2019, 12, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 5, 1708–1717, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1039/c9ee00269c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 43711-12 Electrocaloric and barocaloric effects 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Lu S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Rozic B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zhang Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Kutnjak Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Li X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Furman E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Gorny L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Lin M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Malic B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Kosec M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Blinc R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Pirc R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2010, 97, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 16, 162904 (3 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3501975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Asbani B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Dellis J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Lahmar A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Amjoud M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Gagou Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Mezzane D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Kutnjak Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Pirc R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', El Marssi M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Luk’yanchuk I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Rozic B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Alloys Compd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2022, 907, 164517 (5 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='jallcom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='164517.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Nouchokgwe Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Lheritier P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Usui T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Torello A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', El Moul A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Kovacova V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Granzow T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Hirose S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Defay E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2022, 219, 114873 (5 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='scriptamat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='114873.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Liu X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Wu Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Guan T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Jiang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Long P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Li X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Ji C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Chen S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Sun Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Luo J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2021, 12, 5502 (7 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1038/s41467-021-25644-x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Wiseman G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Electron Devices, 1969, ED-16, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 6, 588–593, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1109/T-ED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='16804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Baumgartner H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Helv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Acta, 1950, 23, 651–696, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5169/seals-112128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Shimshoni M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Harnik E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Solids, 1970, 31, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 6, 1416–1417, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1016/0022-3697(70)90148-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Moina A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Levitskii R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zachek I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Matter Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2014, 17, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 4, 43703 (10 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5488/CMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='43703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Meng Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Pu J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Pei Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Joule, 2021, 5, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 4, 780–793, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='joule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Gorev M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Mikhaleva E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Flerov I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Bogdanov E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Alloys Compd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2019, 806, 1047–1051, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='jallcom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Lloveras P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Stern-Taulats E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Barrio M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Tamarit J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Ll.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Crossley S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Li W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Pomjakushin V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Planes A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Manosa Ll.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Mathur N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Moya X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2015, 6, 8801 (6 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1038/ncomms9801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zachek I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Levitskii R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Matter Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2020, 23, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 3, 33702 (16 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5488/CMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='33702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Matsunaga H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Itoh K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Nakamura E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1980, 48, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 6, 2011–2014, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1143/JPSJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Itoh K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Hagiwara T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Nakamura E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1983, 52, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 8, 2626–2629, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1143/JPSJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2626.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Iwata Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Koyano N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Shibuya I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1980, 49, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 1, 304–307, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1143/JPSJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Iwata Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Deguchi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Mitani S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Shibuya I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Onodera Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Nakamura E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1994, 63, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 11, 4044–4050, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1143/JPSJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Yasuda N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Okamoto M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Shimizu H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Fujimoto S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Yoshino K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Inuishi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1978, 41, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 19, 1311–1314, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Yasuda N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Fujimoto S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Okamoto M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Shimizu H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Yoshino K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Inuishi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' B, 1979, 20, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 7, 2755–2764, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2755.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Schuele P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Thoma R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1985, 24, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S2, 935–937, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='7567/JJAPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='24S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='935.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Schuele P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Schmidt V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' B, 1989, 39, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 4, 2549–2556, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2549.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Kobayashi Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Deguchi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Azuma Sh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Suzuki E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Ming Li Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Endo Sh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Kikegawad T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Ferroelectrics, 2003, 285, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 7, 83–89, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1080/00150190390205924.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Deguchi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Azuma S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Kobayashi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Endo S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Tokunaga M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' B, 2004, 69, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2, 024106, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='024106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Gesi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Ozawa K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1978, 17, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2, 435–436, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1143/JJAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='435.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Brandt N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zhukov S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Kulbachinskii V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Smirnov P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Strukov B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Tverd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Tela, 1986, 28, 3159, (in Russian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Magome E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Tomiaka S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Tao Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Komukae M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Soc Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2010, 79, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2, 025002 (2 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1143/JPSJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='025002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Imai K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1983, 52, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 11, 3960–3965, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1143/JPSJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3960.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Shchur Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' B, 2006, 74, 054301 (8 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='054301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Shchur Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Status Solidi B, 2007, 244, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2, 569–577, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1002/pssb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='200642176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Lasave J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Abufager P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Koval S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' B, 2016, 93, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 13, 134112 (11 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='134112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Kojyo N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Onodera Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 1988, 57, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 12, 4391–4402, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1143/JPSJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4391.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Shchur Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Bryk T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Klevets I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Kityk A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2016, 111, 301–309, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='commatsci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Van Troeye B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', van Setten M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Giantomassi M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Torrent M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Rignanese G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Gonze X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' B, 2017, 95, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 2, 024112 (9 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='024112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Blinc R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', SaBaretto F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1980, 72, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 11, 6031–6034, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='439058.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Stasyuk I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Levytsky R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zachek I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Shchur Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Kutny J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Miz E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Preprint of the Institute for Condensed Matter Physics, ICMP–91–4R, Lviv, 1991, (in Russian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Deguchi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Okaue E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Ushio S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Nakamura E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Abe K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1984, 53, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 9, 3074–3080, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1143/JPSJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3074.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zachek I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Vdovych A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Solids, 2012, 13, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 1, 40–47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 43711-13 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii , I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Zachek 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Levitskii R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zachek I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Vdovych A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Stud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2012, 16, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 4, 4702 (11 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='30970/jps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='4702 (in Ukrainian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Vdovych A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Levitskii R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Zachek I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Moina A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Stud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 2021, 25, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 3, 3702 (14 pages), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='30970/jps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='3702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Prawer S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Smith T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Finlayson T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', Aust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=', 1985, 38, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' 1, 63–83, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='1071/PH850063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Електрокалоричний i барокалоричний ефекти у сегнетоелектрику CsH2PO4 А.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' С.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Вдович 1, Р.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Р.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Левицький 1, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Р.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Зачек 2 1 Iнститут фiзики конденсованих систем Нацiональної академiї наук України, вул.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Свєнцiцького, 1, 79011 Львiв, Україна 2 Нацiональний унiверситет “Львiвська полiтехнiка”, Україна, 79013, Львiв, вул.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' С.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Бандери, 12 Для дослiдження калоричних ефектiв у сегнетоелектрику CsH2PO4 використано модифiковану псевдоспi- нову модель цього кристала, яка враховує залежнiсть параметрiв взаємодiї мiж псевдоспiнами вiд дефор- мацiй гратки.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Модель також враховує залежнiсть ефективного дипольного момента на водневому зв’яз- ку вiд параметра впорядкування.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' В наближеннi двочастинкового кластера вивчено вплив поздовжнього електричного поля i гiдростатичного тиску на молярну ентропiю кристала.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Дослiджено електрокалорич- ний i барокалоричний ефекти.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Розрахована електрокалорична змiна температури близько 1 K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' вона може мiняти знак пiд дiєю гiдростатичного тиску.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Барокалорична змiна температури близько −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content='5 K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' при її роз- рахунках не враховувалися ангармонiзми гратки.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} +page_content=' Ключовi слова: сегнетоелектрики, сегнетоелектричний фазовий перехiд, електрокалоричний ефект, барокалоричний ефект 43711-14' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf'} diff --git a/P9AzT4oBgHgl3EQfWvzh/vector_store/index.pkl b/P9AzT4oBgHgl3EQfWvzh/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..6dfeed03cc9c35fe0db29b26b16c74c0073ee5e4 --- /dev/null +++ b/P9AzT4oBgHgl3EQfWvzh/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b45cab74953389bd1818278dabff1171fade86e91da348d72926b2d2215e786b +size 132829 diff --git a/P9E2T4oBgHgl3EQfVwcE/vector_store/index.faiss b/P9E2T4oBgHgl3EQfVwcE/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..98cebb239ed332067589a0f6714584b91da2a7c0 --- /dev/null +++ b/P9E2T4oBgHgl3EQfVwcE/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3bde780d1c7a806b19a08c3f68d13b6cf81de262b5fe153dc5d7e9203bca6661 +size 6750253 diff --git a/PtAzT4oBgHgl3EQfzv6c/content/tmp_files/2301.01774v1.pdf.txt b/PtAzT4oBgHgl3EQfzv6c/content/tmp_files/2301.01774v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d8f9aa256b8e03d2dcd3d266d03bf7289bd245ef --- /dev/null +++ b/PtAzT4oBgHgl3EQfzv6c/content/tmp_files/2301.01774v1.pdf.txt @@ -0,0 +1,810 @@ +Draft version January 6, 2023 +Typeset using LATEX twocolumn style in AASTeX63 +The Earliest Stage of Galactic Star Formation +Charles L. Steinhardt,1, 2 Vadim Rusakov,1, 2 Thomas H. Clark,3, 1 Andrei Diaconu,3, 1 John Forbes,4 +Albert Sneppen,1, 2 John Weaver,1, 2 +1Cosmic Dawn Center (DAWN) +2Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen Ø +3California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA +4Flatiron Center for Computational Astrophysics, 162 5th Ave 9th floor, New York, NY 10010, USA +ABSTRACT +Using a recently-developed technique to estimate gas temperatures (TSF) in star-forming regions +from large photometric surveys, we propose a diagram, analogous to the Hertzsprung-Russell diagram +for individual stars, to probe the evolution of individual galaxies. On this TSF-sSFR (specific star +formation rate) diagram, a small fraction of star-forming galaxies appear to be dominated by different +feedback mechanisms than typical star-forming galaxies. +These galaxies generically have younger +stellar populations, lower stellar masses and increase in relative abundance towards higher redshifts, +so we argue that these objects are in an earlier stage of galactic star formation. Further, Hubble +observations find that these ”core-forming” galaxies also exhibit distinct morphology, and that tracks +on the TSF-sSFR diagram are also a morphological sequence. Thus, unlike starburst phases which can +be triggered environmentally, these earliest, core-forming galaxies, appear to be a stage that typical +galaxies go through early in their star formation history. We therefore argue that most galaxies first +go through a core formation stage, then subsequently disk formation, and finally become quiescent. +1. INTRODUCTION +It is perhaps natural to divide the history of a typical +galaxy into three phases, each dominated by different +astrophysical processes. During the first phase, gravity +brings the ingredients which will become a protogalaxy +into close proximity. Then, a wide variety of baryonic +processes assemble those ingredients into stars, a cen- +tral supermassive black hole, and other components of +a galaxy. Finally, for most high-mass galaxies, at some +point in the past these formation processes have pre- +dominantly stopped due to processes which have not yet +been conclusively determined, leaving a quiescent galaxy +with a passive galactic nucleus. +However, at present only the latter two of these classes +have been observed. +A variety of methods (Williams +et al. 2009; Muzzin et al. 2013; Steinhardt et al. 2020b) +are capable of unambiguously labeling all but a small +fraction of galaxies as either star-forming or quiescent +in large photometric catalogs. +The small fraction of +galaxies with uncertain classifications often lie in the +“green valley” (Martin et al. 2005; Salim 2014), con- +Corresponding author: Charles Steinhardt +steinhardt@nbi.ku.dk +sidered a possible transition stage between bluer star- +forming galaxies and redder quiescent ones. +Most star-forming galaxies exhibit remarkably similar +growth, including tight relationships at fixed redshift +between stellar mass and SFR (the star-forming main +sequence; Noeske et al. 2007; Peng et al. 2010; Speagle +et al. 2014; Schreiber et al. 2018), mass and metallicity +(Tremonti et al. 2004; Sanders et al. 2020) and mass +and radius (van der Wel et al. 2014). If these relations +are the end result of various feedback mechanisms (Peng +et al. 2010), galaxies in a transition phase between initial +assembly and subsequent main sequence-like evolution +might not follow them. This anomalous behavior might +even provide a means of identifying these galaxies. +Additional growth phases that do not follow these +relations (or lie at the extremes) have been proposed +or observed. +Galaxies with enhanced star formation +rates (SFR) are often described as starbursts, and lower- +redshift populations of ultra-luminous infrared galaxies +(ULIRGs; Lonsdale et al. 2006) may be related to star- +bursts. Simulations also suggest that there may be two +star-forming phases, one burst-like and the other steady +(Stern et al. 2021). Although every galaxy is expected to +have a steady star-forming phase and a quiescent phase, +bursts are believed to be associated with mergers or +other environmental factors (Rodr´ıguez Montero et al. +arXiv:2301.01774v1 [astro-ph.GA] 4 Jan 2023 + +2 +2019), and thus not every galaxy will have one. There- +fore, starbursts are not considered strong candidates as +the earliest evolutionary phase of typical galaxies. +In this work, the IMF temperature (TSF) - specific +star formation rate (sSFR) diagram, a galaxy analogue +of the Hertzsprung-Russell diagram (Hertzsprung 1909; +Russell 1914) for stars, is introduced and used to pro- +duce galactic evolutionary tracks and identify galaxies +in the earliest stages of star formation. These earliest +galaxies exhibit distinctive properties and morphology, +with a gradual transition towards more typical main se- +quence behavior indicating that this is an evolutionary +sequence. +In contrast to proposed burst phases, this +new, core-forming phase is seemingly an early, steady +star-forming state shared by all galaxies and transitions +gradually into the more familiar main sequence. Fur- +thermore, if most galaxies follow a similar evolutionary +track, there will also be local and low-redshift analogues +of this pre-main sequence phase. +In § 2, the methodology behind measuring TSF from +photometric catalogs is summarized, as well as several +tests performed to validate these temperatures. The re- +sulting TSF-sSFR diagram is developed in § 3, along with +the conclusion that the earliest stage of galaxy evolution +should consist of a core-forming phase. Finally, these +results are discussed in § 4, including additional predic- +tions and a toy model providing a possible astrophysical +interpretation. +2. MEASURING GAS TEMPERATURES FROM +PHOTOMETRIC SURVEYS +This work relies on a recently-developed technique for +inferring the temperature of gas in star-forming molec- +ular clouds from multi-wavelength photometric surveys. +It is expected that the IMF should depend upon the tem- +perature of gas in star-forming molecular clouds (Low +& Lynden-Bell 1976; Larson 1985; Bernardi et al. 2017; +Jermyn et al. 2018). Thus, a measurement of the IMF +might also provide a measurement of gas temperatures +during the last major epoch of star formation. +The IMF is expected to depend not only on gas tem- +perature, but on a complex series of interactions sensi- +tive to metallicity, density, pressure, and environment +Larson (1985). As a result, the Galactic IMF is deter- +mined observationally rather than theoretically, despite +the inherent difficulty of these observations resulting in +several common approximations (Salpeter 1955; Kroupa +2001; Chabrier 2003). The Kroupa IMF (Kroupa 2001) +has two breakpoints, one determined by a Jeans mass- +like calculation relating to the initial collapse of a cloud +and the second by a similar calculation during fragmen- +tation as the cloud collapses. With all other conditions +held fixed, it is then possible to derive a family of IMFs +which depends on the gas temperature in star-forming +regions, TSF (Jermyn et al. 2018): +dN +dm ∝ +� +� +� +� +� +� +� +m−0.3 +m < 0.08M⊙f(TSF ) +m−1.3 +0.08M⊙f(TSF ) < m < 0.5M⊙f(TSF ) +m−2.3 +0.5M⊙f(TSF ) < m, +(1) +Although there is broad agreement that higher tem- +perature lead to higher-mass breakpoints, the exact +temperature dependence is more difficult to establish. +Various studies have concluded that the break masses +could scale as f(TSF ) ∝ TSF (Hopkins et al. 2012), +f(TSF ) ∝ T 3/2 +SF (Jeans 1902), f(TSF ) ∝ T 2 +SF (Jermyn +et al. 2018), or f(TSF ) ∝ T 5/2 +SF (Chabrier et al. 2014). +Here, we select the T 2 +SF dependence with the normaliza- +tion set to match a Kroupa IMF at TSF = 20K (which is +the characteristic temperature of Galactic star-forming +clouds) following the convention established in Jermyn +et al. (2018) and Sneppen et al. (2022) +IMFs corresponding to a grid of gas temperatures, +ranging from 10-60K, are then used to generate syn- +thetic spectra using the Flexible Stellar Population Syn- +thesis (FSPS) libraries (Conroy et al. 2009) for use with +the EAZY photometric template fitting code (Brammer +et al. 2008). EAZY uses a basis of 12 templates gen- +erated as linear combinations of 560 individual models +with various ages, star formation histories, metallicities, +and extinction. A set of 12 basis templates is generated +for each TSF . +The best-fit reconstructed spectrum is +then found for every object in the COSMOS2015 photo- +metric catalog using each IMF, and the lowest χ2 across +all IMFs is selected as the best fit. +Although in principle this allows an IMF determina- +tion for all ∼ 106 COSMOS2015 galaxies, in practice this +is not possible because of the strong covariances between +the IMF, metallicity, and extinction (Sneppen et al. +2022). Since they are not fully degenerate, given suf- +ficient information it is possible to distinguish between, +e.g., a bluer spectrum due to a top-heavier (or bottom- +lighter) IMF and due to lower extinction. However, this +requires high signal-to-noise measurements across mul- +tiple bands. In order to explore this, a mock dataset +was constructed at a range of IMFs and observed in the +COSMOS2015 filters. It was found that the gas tem- +perature could be accurately recovered for the ∼ 10% +brightest objects in COSMOS2015, but that the remain- +der would require additional observations to determine +the IMF (Sneppen et al. 2022). The work here relies + +3 +only on those ∼ 14 × 104 objects, which is the cause for +low statistics at z ≳ 2. +In addition to these strong covariances, there is a com- +plete mathematical degeneracy between the IMF and +the star formation history (SFH), as an identical stel- +lar population can be produced with different combina- +tions of IMF and SFH. Mock datasets were used to show +that the template fitting technique used here is primarily +sensitive to the highest-mass break in the stellar popula- +tion. For a continuous SFH, as is likely for typical star- +forming galaxies, this should correspond to the highest- +mass break in the IMF, and therefore can be used as +an IMF and gas temperature indicator. However, in the +case of rapid quenching, this break can instead come +from the SFH, and a population of such objects is dis- +cussed in Steinhardt et al. (2022b) in connection with +star formation turnoff. +These uncommon objects of- +ten exhibit two local minima in the minimum χ2(TSF ), +with one minimum corresponding to the gas tempera- +ture (and lying on the main locus in the TSF −sSFR +diagram) and the other corresponding to the break in +SFH. +Finally, it is necessary to consider other effects on the +IMF apart from gas temperature. +A Jeans-mass like +calculation is sensitive to anything which changes either +gravitational or thermodynamical effects. +In particu- +lar, it is expected that the IMF should be sensitive to +metallicity in addition to temperature, and it is known +that galactic metallicities change with redshift. Given +the difficulty of constraining template fits with addition +of a single-parameter family of IMFs, is it not possible +to fit a multiple-parameter family of IMFs with current +photometric surveys. Likely, the correct interpretation +of TSF is instead as a combination of gas temperature, +metallicity, and other parameters. +Nevertheless, there are several indications that inter- +preting TSF as gas temperature is reasonable (Sneppen +et al. 2022). Notably, a comparison between TSF and +dust temperatures shows strong agreement (Fig. 1) in +not only the broad qualitative trends but even quantita- +tively (Steinhardt et al. 2022c). Thus, TSF proves a rea- +sonable proxy for (cool) dust temperature, and if gas and +dust are approximately in equilibrium, TSF should then +indicate gas temperature in star-forming regions. The +resulting change in stellar masses at z ∼ 2 produces a +picture more consistent with downsizing and quenching +at lower redshifts (Steinhardt et al. 2022b). This work, +showing that an evolutionary sequence selected entirely +from template fitting is also a morphological sequence, +further validates that TSF is a meaningful astrophysical +indicator. +3. THE TSF-SSFR DIAGRAM +The key diagnostic developed in this work is the TSF- +sSFR diagram. The specific star formation rate, or star +formation rate per unit mass, is a measure of how effi- +ciently a galaxy is turning material into new stars. The +IMF temperature TSF (Sneppen et al. 2022; Steinhardt +et al. 2022a,b,c), is an estimate of the temperature in +star-forming molecular clouds at the time of star for- +mation. Thus, a diagram comparing TSF and sSFR is +intended as an analogue of the Hertzsprung-Russell (H- +R) diagram comparing T and luminosity for individual +stars. +TSF is also a measure of the Jeans mass (Jeans 1902) +necessary for these clouds to collapse and form stars, +so it should be expected that there is a relationship be- +tween sSFR and TSF. Using the recently-developed tech- +niques described in Sneppen et al. (2022), it is possible +to determine this relationship for the first time, then use +it as a probe of the astrophysics in star-forming galaxies. +It should be stressed that both sSFR and TSF are +inferred quantities and rely on a large set of assump- +tions. +It is well established that star formation rates +(and therefore sSFR as well) are difficult to constrain in +photometric template fitting (Brammer et al. 2008; Con- +roy & Wechsler 2009; Ilbert et al. 2013; Speagle et al. +2014; Laigle et al. 2016; Weaver et al. 2022). The ad- +dition of a new parameter to measure the shape of the +IMF and thus infer TSF adds additional potential degen- +eracies (Sneppen et al. 2022). Further, the remainder of +this work asserts that the shape of the parametrized +Kroupa IMF is a proxy for TSF, as based on the Jeans +mass approximation, using a specific scaling out of sev- +eral options, as described in § 2. +Finally, this method assumes that galaxies can be de- +scribed with a single, best-fit TSF, even though it is likely +that molecular clouds in star-forming regions will have +a range of gas temperatures. As a result, even if there is +truly an underlying relationship between star formation +efficiency and gas temperature, the best-fit sSFR and +TSF for a galaxy containing molecular clouds in a wide +range of conditions will not necessarily lie on that rela- +tion. However, as it is commonly done in constructing +photometric catalogs and template fitting, it is necessary +to approximate galaxies as being effectively monolithic. +They are assumed to be well-characterized by a single +gas temperature for most star-forming clouds and a sin- +gle sSFR which describes the efficiency in all of those +regions. +3.1. Identifying Three Primary Growth Regimes +The distribution of galaxies on the TSF-sSFR dia- +gram (Fig. +2) exhibits a continuous locus which can + +4 +Figure 1. Gas (TSF ; top) and dust (bottom) temperatures for COSMOS galaxies as a function of stellar mass M⋆ and SFR +in four redshift windows. The TSF are adapted from Steinhardt et al. (2022c). The dust temperature measurements are based +on the analysis of the far-infrared and sub-millimeter stacked observations made with the Herschel Space Observatory and are +reproduced (B. Magnelli, private communication) from Magnelli et al. (2014). For ease of comparison, all panels use the Galactic +IMF-derived COSMOS2015 stellar masses and SFR, even though a modified IMF will also modify both star formation rates +and stellar mass. Both gas and dust temperatures exhibit a similar gradient, increasing towards lower stellar masses and higher +SFR at all redshifts. The two measurements are further in approximate quantitative agreement, despite the two methods each +having significant but independent sources of uncertainty. This is consistent with an equilibrium between cool molecular gas +and dust temperatures, as well as the interpretation that TSF is indeed a proxy for temperature. +be described as three different behaviors, labeled as +core-forming, typical star-forming, and quiescent. +At +fixed redshift, these groups also comprise a mass se- +quence, with the lowest-mass galaxies selected as core- +forming and the highest-mass as quiescent. Although +two most distinctive relationships are in the high-TSF +(core-forming) and low-sSFR (quiescent) tails of the dis- +tribution, the vast majority of objects in the COSMOS +catalog, as the name suggests, are selected as typical +star-forming. +The three groups are characterized by their different +relationships between sSFR and TSF (Fig. 2): +1. Core-forming galaxies have a wide range of TSF, +with an increase in TSF corresponding to only a +small increase in sSFR. +2. Normal star-forming galaxies, the bulk of the pop- +ulation, have a relatively narrow range of both +sSFR and TSF. The range is perhaps to narrow +to effectively constrain the relationship, but the +increase in sSFR with temperature is far sharper +than for core-forming galaxies. +3. Quiescent galaxies have a wide range of sSFR, al- +ways lower than for star-forming galaxies, but are +all nearly at identical TSF. +4. DISCUSSION +With the addition of a parameter corresponding to +changes in the IMF due to the gas temperature in +star-forming regions, it is possible to measure that gas +temperature, TSF, in large photometric catalogs. +An +examination of the relationship between specific star- +formation rate and the best-fit temperature finds three +distinct behaviors. Core-forming galaxies exhibit a wide +range of TSF at relatively similar sSFR. Typical star- +forming galaxies exhibit a narrow range of both param- +eters at fixed redshift, consistent with previous studies +(Noeske et al. 2007; Peng et al. 2010; Speagle et al. 2014; +Schreiber et al. 2018; Tremonti et al. 2004; Sanders et al. +2020). +Finally, quiescent galaxies exhibit nearly con- +stant TSF at a wide range of low sSFR. Previous studies +have typically separated galaxies into star-forming and +quiescent, but the core-forming branch is a new class of +objects that arise from measuring TSF. + +0.7< +<0.8 +0.8 +ΛN +<1.2 ++ +1.2 +1.7 +HT +1.7 +40 +3 +log(SFR [Mo yr-1]) +2 +Temperature +35 +0 +30 +3 +2 +25 +1 +0 +20 +9 +10 +11 +12 +9 +10 +11 +12 +9 +10 +11 +12 +9 +10 +11 +12 +log(M [Mo])5 +Figure 2. The TSF-sSFR diagram, analogous to a Hertzsprung-Russell diagram for galaxies, for COSMOS2015 galaxies at +0.7 < z < 1.8. Panels are colored by the median (left) redshift; (top-right) stellar mass; and (bottom-right) age of the stellar +population. Moving from top-right to bottom left, galaxies become more massive, with older stellar populations, and are more +commonly observed at later times. Although no morphological information was used to produce the diagram, this is also a +morphological sequence (see also Figure 3). The diagram is therefore interpreted as an evolutionary track followed by typical +galaxies, with core-forming galaxies identified as the initial stage of star formation. +4.1. Interpretation as an Evolutionary Sequence +These three groups form a mass sequence at fixed red- +shift and display a progression in the fitted age of stellar +population (Fig. 2). The gradient in both parameters +across galaxy populations indicate an evolutionary se- +quence between core-forming, normal star-forming and +quiescent galaxies. In addition, there is a redshift depen- +dence to their relative number densities: at higher red- +shift, there are more core-forming and fewer quiescent +galaxies. This is consistent with numerous other stud- +ies finding mass downsizing (cf. Fontanot et al. 2009) +in galaxy evolution. It is therefore natural to consider +core-forming galaxies as some sort of early star-forming +phase, prior to typical star formation which is far more +prevalent in photometric surveys. +4.2. Interpretation as Various Feedback Modes +A model of the various feedback mechanisms respon- +sible for the star-forming main sequence is well beyond +the scope of this work. Here, a toy model is proposed +which might explain the two tails (core-forming and +quiescent) of the distribution. +Typical Star-Forming: Several models of the main +sequence invoke tight feedback between conditions in +star-forming molecular clouds and high-mass (and there- +fore newly-formed) stars. For example, cosmic rays from +the deaths of massive stars might provide the dominant +heating mechanism responsible for setting gas tempera- +tures Papadopoulos (2010), but an increase in SFR and +thus higher gas temperatures would also increase the +Jeans mass and eventually regulate the SFR. At fixed +gas density this would produce an equilibrium solution, +and as gas density declines, an attractor solution exists +(Steinhardt et al. 2020a). +A variety of different mechanisms have been pro- +posed, including gas regulation (Peng et al. 2010; Lilly +et al. 2013; Peng et al. 2015), cosmic ray feedback (Pa- +padopoulos 2010; Steinhardt et al. 2020a), and even +stochastic processes as an alternative to feedback (Kel- +son 2014). +However, it has not yet been possible to +observationally determine which, if any, of these mech- +anisms is correct. A possible entry point would be the +discovery of galaxies transitioning from their initial as- +sembly to main sequence-like growth, before these feed- +back processes have had time to dominate their observed +properties. +In this picture, the two tails of the distribution would +then be produced by conditions which break one of these + +1.7 +9.4 +0.7 < < 1.8 +8 +8 +9.8 +9 + Median +1.5 +10.2 +10 +Stellar mass ↑ +Core-forming +0 +[Mo] +log(specific SFR [ +10.6 +11 +0.7 < < 1.8 +Typical SF +1 +10 +8 +Quiescent +3 +1.1 +age +9 +Median +5 +[Gyr] +-10 +11 +Age ↑ +7 +9 +0.9 +-11 +0.7 < z < 1.8 +11 +30 +40 +50 +60 +30 +60 +20 +20 +40 +50 +Inferred star formation temperature [K6 +two feedback modes. +Quiescent: As sSFR declines, at some point young +stars will no longer provide the dominant contribution to +gas temperature. For example, given the current Galac- +tic SFR of ∼ 1M⊙/yr, molecular cloud temperatures are +insensitive to small changes in SFR. Thus, the quiescent +tail of the distribution would asymptotically approach a +constant TSF as sSFR goes to zero. Here, TSF decouples +as it is a measure of the gas temperature at the time +when the stellar population is formed and not the cur- +rent temperature (Sneppen et al. 2022; Steinhardt et al. +2022b). +A constant TSF thus implies that by the time galaxies +start to quench, contributions from star formation have +already ceased to dominate gas temperatures. +This +would be consistent with proposed mechanisms such +as strangulation (Peng et al. 2015) or gas depletion +(Cortese et al. 2021). +However, a different behavior +would be expected if quenching were driven by major +mergers or some other external event which could occur +even at high sSFR. +Core-Forming: The core-forming galaxies can per- +haps be explained by breaking the other feedback mode. +If a galaxy has sufficiently high gas density, an increase +in temperature and the corresponding Jeans mass will +have negligible effect on SFR. Rather, the limiting factor +might be infall rates or other effects on gas availability. +Young, massive stars would still provide the dominant +source of gas heating, but the relevant equilibrium would +be set by cooling mechanisms rather than by feedback +limiting SFR. For example, if the predominant cooling +mechanism is black-body radiation, sSFR ∝ T 4 +SF , or +equivalently, TSF ∝ sSFR1/4. +4.3. Inside-Out Growth +This explanation for early main sequence galaxies ad- +ditionally predicts that their star-forming regions must +be compact. Due to the high temperatures, stars can +only form in high-density regions where the increased +Jeans mass does not inhibit collapse. +If baryons ini- +tially are densest in the central regions of galaxies, then +stars will only form in those central regions. As TSF +decreases, lower density regions further out will be able +to form stars. +Perhaps, this suggests that the two star-forming +phases identified here correspond to distinct regions. In +their initial stages, star-forming galaxies can only form +stars in central regions, even if the morphological fea- +tures of a bulge may not yet be present. Thus, we ob- +serve protogalaxies to be remarkably compact (van der +Wel et al. 2014), and observe the oldest Galactic stellar +populations towards the Galactic center (Baade 1944; +Trippe et al. 2008). It is for this reason that the high- +TSF branch is labeled in this work as ‘core-forming’. +Once the central region has finished forming stars, no +high-density regions remain and star formation rates de- +cline, decreasing TSF. Normal star-forming galaxies, cor- +responding to most of the star-forming main sequence, +then form stars in the lower-density disk. This is con- +sistent with hints that the star-forming main sequence, +when viewed in terms of disk mass rather than the full +stellar mass, may be redshift-independent (Abramson +et al. 2014). Finally, quiescent galaxies have even ceased +to efficiently form disk stars. +4.4. Interpretation as a Morphological Sequence +This interpretation is also supported by morphological +observations of COSMOS galaxies. Much of the COS- +MOS field is covered by Hubble observations capable of +resolving galaxies along most of the TSF-sSFR diagram +at z ≲ 1. Although no morphological information was +used in determining best-fit parameters, producing the +TSF-sSFR diagram, or using that diagram to label ob- +jects as core-forming, typical star-forming, or quiescent, +these categories nevertheless exhibit distinct morphol- +ogy (Fig. 3). +The core-forming galaxies (Fig. +3, top) are signifi- +cantly more compact than other star-forming galaxies +at a redshift z ∼ 0.8, and the blue color indicates a +young stellar population throughout. Previous studies +have found that massive galaxies are typically compact +at much higher redshift (Bouwens et al. 2007; Bezan- +son et al. 2009; de la Rosa et al. 2016; Tacchella et al. +2016; Schnorr-M¨uller et al. 2021). It is therefore natu- +ral to interpret these z = 0.8 examples as much lower- +redshift analogues. Often, these are seen as a unique, +high-redshift state created by extreme conditions in the +first, most overdense regions to collapse. The picture +inferred from the TSF-sSFR diagram is that these are +instead a phase that most galaxies go through at the +start of star formation. An additional strong prediction +for future dynamical studies is that the baryon distri- +bution in these galaxies should extend well beyond the +starlight into regions which are not dense enough to form +stars but will do so as soon as their gas cools. +Typical star-forming galaxies (Fig. +3, middle) are +more extended than core-forming galaxies, have blue col- +ors and young stellar populations when unresolved, but +when resolved also exhibit older populations in their cen- +ters than at larger radii. It is already well-established +that both our own Galaxy (Trippe et al. 2008) and oth- +ers have older stellar populations in their cores than at + +7 +Figure 3. Hubble WFC3 observations in the F814W and F160W filters for randomly-selected core-forming (top), typical star- +forming (middle), and quiescent (bottom) galaxies from the COSMOS2015 survey at z ∼ 0.8. The TSF-sSFR diagram (Figure +2) is interpreted to indicate an evolutionary sequence from top to bottom. The core-forming galaxies are significantly more +compact and the blue color indicates a young stellar population throughout these galaxies. Typical star-forming galaxies have +blue colors and young stellar populations when unresolved, but also exhibit older populations in their centers than at larger +radii. Quiescent galaxies have old stellar populations throughout. This morphology supports the interpretation of the TSF-sSFR +diagram track as an evolutionary sequence, running from core formation to typical star formation, and finally to quiescence. +higher radii. This would be a natural consequence of +the model presented here. +Finally, quiescent galaxies +have older stellar populations throughout, as they are +no longer efficiently forming stars. +Thus, the TSF-sSFR diagram indicates not only a se- +quence of inferred properties, but also a morphologi- +cal sequence consistent with a natural toy model de- +rived from those properties. Thus, much as tracks on a +Hertzsprung-Russell diagram can be used to find stellar +evolution sequences, tracks on the TSF-sSFR diagram +track can be interpreted as a galactic evolutionary se- +quence, running from core formation to typical star for- +mation, and finally to quiescence. +Although the sequence of galaxies in mass, age, and +remarkably, morphology seen in Figure 1 strongly indi- +cates an evolutionary track, there are alternative ex- +planations informed by the appearance of similar L- +shaped diagrams in the literature (Barro et al. 2017). +In this interpretation, galaxies simply grow along the +star-forming main sequence, gradually growing in stellar +surface density and effective radius following the reason- +ably tight relations in these quantities with stellar mass. +The high-TSF galaxies identified here would then be ex- +plained not by a distinct stage in galactic evolution, but +rather as a selection of galaxies that have recently had +a burst of star formation on the timescale to which the +photometry is sensitive. Both simulations (Iyer et al. +2020) and observations (Guo et al. 2016) suggest low- +mass galaxies are preferentially bursty, which may also +explain the lack of observed dark matter cusps in lower- +mass galaxies (Pontzen & Governato 2012). This sce- +nario has a distinct set of predictions from the evolu- +tionary track case, including the presence of similarly +compact and blue galaxies on the star-forming main se- +quence with TSF ∼ 25 K with little difference in their +gas structure to the high TSF branch. +Near future observations will be able to test falsifiable +predictions of these scenarios both through dynamical +studies and through high-redshift studies which in the +model presented in this work must consist exclusively of +compact, blue, core-forming galaxies. If those tests are +consistent predictions, it would mean that the earliest +stage of star formation is indeed distinct, and that even +low-redshift examples can be used to study the transi- +tion between initial assembly and subsequent evolution +and probe the origins of the star-forming main sequence. +The analysis in this paper is based on the COS- +MOS2015 catalog, available at https://ftp.iap.fr/pub/ +from users/hjmcc/COSMOS2015/. +The template fits +are produced by EAZY, available at https://github. +com/gbrammer/eazy-photoz with templates made using +FSPS, available at https://github.com/cconroy20/fsps. +The authors would like to thank Georgios Magdis, +Jackson Mann, Sune Toft, and Darach Watson for help- +ful comments and Benjamin Magnelli for kindly provid- +ing dust temperature measurements. The Cosmic Dawn +Center (DAWN) is funded by the Danish National Re- +search Foundation under grant No. 140. + +8 +REFERENCES +Abramson, L. E., Kelson, D. D., Dressler, A., et al. 2014, +ApJL, 785, L36, doi: 10.1088/2041-8205/785/2/L36 +Baade, W. 1944, ApJ, 100, 137, doi: 10.1086/144650 +Barro, G., Faber, S. M., Koo, D. C., et al. 2017, ApJ, 840, +47, doi: 10.3847/1538-4357/aa6b05 +Bernardi, M., Meert, A., Sheth, R. K., et al. 2017, MNRAS, +467, 2217, doi: 10.1093/mnras/stx176 +Bezanson, R., van Dokkum, P. G., Tal, T., et al. 2009, ApJ, +697, 1290, doi: 10.1088/0004-637X/697/2/1290 +Bouwens, R. J., Illingworth, G. D., Franx, M., & Ford, H. +2007, ApJ, 670, 928, doi: 10.1086/521811 +Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, +ApJ, 686, 1503, doi: 10.1086/591786 +Chabrier, G. 2003, PASP, 115, 763, doi: 10.1086/376392 +Chabrier, G., Hennebelle, P., & Charlot, S. 2014, ApJ, 796, +75, doi: 10.1088/0004-637X/796/2/75 +Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486, +doi: 10.1088/0004-637X/699/1/486 +Conroy, C., & Wechsler, R. H. 2009, ApJ, 696, 620, +doi: 10.1088/0004-637X/696/1/620 +Cortese, L., Catinella, B., & Smith, R. 2021, PASA, 38, +e035, doi: 10.1017/pasa.2021.18 +de la Rosa, I. G., La Barbera, F., Ferreras, I., et al. 2016, +MNRAS, 457, 1916, doi: 10.1093/mnras/stw130 +Fontanot, F., De Lucia, G., Monaco, P., Somerville, R. S., +& Santini, P. 2009, MNRAS, 397, 1776, +doi: 10.1111/j.1365-2966.2009.15058.x +Guo, Y., Rafelski, M., Faber, S. M., et al. 2016, ApJ, 833, +37, doi: 10.3847/1538-4357/833/1/37 +Hertzsprung, E. 1909, Astronomische Nachrichten, 179, +373, doi: 10.1002/asna.19081792402 +Hopkins, P. F., Kereˇs, D., Murray, N., Quataert, E., & +Hernquist, L. 2012, MNRAS, 427, 968, +doi: 10.1111/j.1365-2966.2012.21981.x +Ilbert, O., McCracken, H. J., Le F`evre, O., et al. 2013, +A&A, 556, A55, doi: 10.1051/0004-6361/201321100 +Iyer, K. G., Tacchella, S., Genel, S., et al. 2020, MNRAS, +498, 430, doi: 10.1093/mnras/staa2150 +Jeans, J. H. 1902, Philosophical Transactions of the Royal +Society of London Series A, 199, 1, +doi: 10.1098/rsta.1902.0012 +Jermyn, A. S., Steinhardt, C. L., & Tout, C. A. 2018, +Monthly Notices of the Royal Astronomical Society, 480, +4265–4272, doi: 10.1093/mnras/sty2123 +Kelson, D. D. 2014, arXiv e-prints, arXiv:1406.5191. +https://arxiv.org/abs/1406.5191 +Kroupa, P. 2001, MNRAS, 322, 231, +doi: 10.1046/j.1365-8711.2001.04022.x +Laigle, C., McCracken, H. J., Ilbert, O., et al. 2016, ApJS, +224, 24, doi: 10.3847/0067-0049/224/2/24 +Larson, R. B. 1985, MNRAS, 214, 379, +doi: 10.1093/mnras/214.3.379 +Lilly, S. J., Carollo, C. M., Pipino, A., Renzini, A., & Peng, +Y. 2013, ApJ, 772, 119, +doi: 10.1088/0004-637X/772/2/119 +Lonsdale, C. J., Farrah, D., & Smith, H. E. 2006, in +Astrophysics Update 2, ed. J. W. Mason, 285, +doi: 10.1007/3-540-30313-8 9 +Low, C., & Lynden-Bell, D. 1976, MNRAS, 176, 367, +doi: 10.1093/mnras/176.2.367 +Magnelli, B., Lutz, D., Saintonge, A., et al. 2014, A&A, +561, A86, doi: 10.1051/0004-6361/201322217 +Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, +ApJL, 619, L1, doi: 10.1086/426387 +Muzzin, A., Marchesini, D., Stefanon, M., et al. 2013, ApJ, +777, 18, doi: 10.1088/0004-637X/777/1/18 +Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, +ApJL, 660, L43, doi: 10.1086/517926 +Papadopoulos, P. P. 2010, ApJ, 720, 226. +http://stacks.iop.org/0004-637X/720/i=1/a=226 +Peng, Y., Maiolino, R., & Cochrane, R. 2015, Nature, 521, +192, doi: 10.1038/nature14439 +Peng, Y.-j., Lilly, S. J., Kovaˇc, K., et al. 2010, ApJ, 721, +193, doi: 10.1088/0004-637X/721/1/193 +Pontzen, A., & Governato, F. 2012, MNRAS, 421, 3464, +doi: 10.1111/j.1365-2966.2012.20571.x +Rodr´ıguez Montero, F., Dav´e, R., Wild, V., Angl´es-Alc´azar, +D., & Narayanan, D. 2019, MNRAS, 490, 2139, +doi: 10.1093/mnras/stz2580 +Russell, H. N. 1914, Popular Astronomy, 22, 331 +Salim, S. 2014, Serbian Astronomical Journal, 189, 1, +doi: 10.2298/SAJ1489001S +Salpeter, E. E. 1955, ApJ, 121, 161, doi: 10.1086/145971 +Sanders, R. L., Shapley, A. E., Reddy, N. A., et al. 2020, +MNRAS, 491, 1427, doi: 10.1093/mnras/stz3032 +Schnorr-M¨uller, A., Trevisan, M., Riffel, R., et al. 2021, +MNRAS, 507, 300, doi: 10.1093/mnras/stab2116 +Schreiber, C., Glazebrook, K., Nanayakkara, T., et al. 2018, +A&A, 618, A85, doi: 10.1051/0004-6361/201833070 +Sneppen, A., Steinhardt, C. L., Hensley, H., et al. 2022, +ApJ, 931, 57, doi: 10.3847/1538-4357/ac695e +Speagle, J. S., Steinhardt, C. L., Capak, P. L., & +Silverman, J. D. 2014, ApJS, 214, 15, +doi: 10.1088/0067-0049/214/2/15 +Steinhardt, C. L., Jermyn, A. S., & Lodman, J. 2020a, ApJ, +890, 19, doi: 10.3847/1538-4357/ab66b7 + +9 +Steinhardt, C. L., Kokorev, V., Rusakov, V., Garcia, E., & +Sneppen, A. 2022a, arXiv e-prints, arXiv:2208.07879. +https://arxiv.org/abs/2208.07879 +Steinhardt, C. L., Weaver, J. R., Maxfield, J., et al. 2020b, +ApJ, 891, 136, doi: 10.3847/1538-4357/ab76be +Steinhardt, C. L., Sneppen, A., Hensley, H., et al. 2022b, +arXiv e-prints, arXiv:2206.01750. +https://arxiv.org/abs/2206.01750 +Steinhardt, C. L., Sneppen, A., Mostafa, B., et al. 2022c, +ApJ, 931, 58, doi: 10.3847/1538-4357/ac62d6 +Stern, J., Faucher-Gigu`ere, C.-A., Fielding, D., et al. 2021, +ApJ, 911, 88, doi: 10.3847/1538-4357/abd776 +Tacchella, S., Dekel, A., Carollo, C. M., et al. 2016, +MNRAS, 458, 242, doi: 10.1093/mnras/stw303 +Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. +2004, ApJ, 613, 898, doi: 10.1086/423264 +Trippe, S., Gillessen, S., Gerhard, O. E., et al. 2008, A&A, +492, 419, doi: 10.1051/0004-6361:200810191 +van der Wel, A., Franx, M., van Dokkum, P. G., et al. 2014, +ApJ, 788, 28, doi: 10.1088/0004-637X/788/1/28 +Weaver, J. R., Kauffmann, O. B., Ilbert, O., et al. 2022, +ApJS, 258, 11, doi: 10.3847/1538-4365/ac3078 +Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P., +& Labb´e, I. 2009, ApJ, 691, 1879, +doi: 10.1088/0004-637X/691/2/1879 + diff --git a/PtAzT4oBgHgl3EQfzv6c/content/tmp_files/load_file.txt b/PtAzT4oBgHgl3EQfzv6c/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d4f07bf680c0a19c463284fdeafdeaaf2ed71930 --- /dev/null +++ b/PtAzT4oBgHgl3EQfzv6c/content/tmp_files/load_file.txt @@ -0,0 +1,702 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf,len=701 +page_content='Draft version January 6, 2023 Typeset using LATEX twocolumn style in AASTeX63 The Earliest Stage of Galactic Star Formation Charles L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Steinhardt,1, 2 Vadim Rusakov,1, 2 Thomas H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Clark,3, 1 Andrei Diaconu,3, 1 John Forbes,4 Albert Sneppen,1, 2 John Weaver,1, 2 1Cosmic Dawn Center (DAWN) 2Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen Ø 3California Institute of Technology, 1200 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' California Blvd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Pasadena, CA 91125, USA 4Flatiron Center for Computational Astrophysics, 162 5th Ave 9th floor, New York, NY 10010, USA ABSTRACT Using a recently-developed technique to estimate gas temperatures (TSF) in star-forming regions from large photometric surveys, we propose a diagram, analogous to the Hertzsprung-Russell diagram for individual stars, to probe the evolution of individual galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' On this TSF-sSFR (specific star formation rate) diagram, a small fraction of star-forming galaxies appear to be dominated by different feedback mechanisms than typical star-forming galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' These galaxies generically have younger stellar populations, lower stellar masses and increase in relative abundance towards higher redshifts, so we argue that these objects are in an earlier stage of galactic star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Further, Hubble observations find that these ”core-forming” galaxies also exhibit distinct morphology, and that tracks on the TSF-sSFR diagram are also a morphological sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Thus, unlike starburst phases which can be triggered environmentally, these earliest, core-forming galaxies, appear to be a stage that typical galaxies go through early in their star formation history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' We therefore argue that most galaxies first go through a core formation stage, then subsequently disk formation, and finally become quiescent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' INTRODUCTION It is perhaps natural to divide the history of a typical galaxy into three phases, each dominated by different astrophysical processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' During the first phase, gravity brings the ingredients which will become a protogalaxy into close proximity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Then, a wide variety of baryonic processes assemble those ingredients into stars, a cen- tral supermassive black hole, and other components of a galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Finally, for most high-mass galaxies, at some point in the past these formation processes have pre- dominantly stopped due to processes which have not yet been conclusively determined, leaving a quiescent galaxy with a passive galactic nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' However, at present only the latter two of these classes have been observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' A variety of methods (Williams et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Muzzin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Steinhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020b) are capable of unambiguously labeling all but a small fraction of galaxies as either star-forming or quiescent in large photometric catalogs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The small fraction of galaxies with uncertain classifications often lie in the “green valley” (Martin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Salim 2014), con- Corresponding author: Charles Steinhardt steinhardt@nbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='ku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='dk sidered a possible transition stage between bluer star- forming galaxies and redder quiescent ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Most star-forming galaxies exhibit remarkably similar growth, including tight relationships at fixed redshift between stellar mass and SFR (the star-forming main sequence;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Noeske et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Schreiber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2018), mass and metallicity (Tremonti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020) and mass and radius (van der Wel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' If these relations are the end result of various feedback mechanisms (Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2010), galaxies in a transition phase between initial assembly and subsequent main sequence-like evolution might not follow them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' This anomalous behavior might even provide a means of identifying these galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Additional growth phases that do not follow these relations (or lie at the extremes) have been proposed or observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Galaxies with enhanced star formation rates (SFR) are often described as starbursts, and lower- redshift populations of ultra-luminous infrared galaxies (ULIRGs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Lonsdale et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2006) may be related to star- bursts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Simulations also suggest that there may be two star-forming phases, one burst-like and the other steady (Stern et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Although every galaxy is expected to have a steady star-forming phase and a quiescent phase, bursts are believed to be associated with mergers or other environmental factors (Rodr´ıguez Montero et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='01774v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='GA] 4 Jan 2023 2 2019), and thus not every galaxy will have one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' There- fore, starbursts are not considered strong candidates as the earliest evolutionary phase of typical galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In this work, the IMF temperature (TSF) - specific star formation rate (sSFR) diagram, a galaxy analogue of the Hertzsprung-Russell diagram (Hertzsprung 1909;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Russell 1914) for stars, is introduced and used to pro- duce galactic evolutionary tracks and identify galaxies in the earliest stages of star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' These earliest galaxies exhibit distinctive properties and morphology, with a gradual transition towards more typical main se- quence behavior indicating that this is an evolutionary sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In contrast to proposed burst phases, this new, core-forming phase is seemingly an early, steady star-forming state shared by all galaxies and transitions gradually into the more familiar main sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Fur- thermore, if most galaxies follow a similar evolutionary track, there will also be local and low-redshift analogues of this pre-main sequence phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In § 2, the methodology behind measuring TSF from photometric catalogs is summarized, as well as several tests performed to validate these temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The re- sulting TSF-sSFR diagram is developed in § 3, along with the conclusion that the earliest stage of galaxy evolution should consist of a core-forming phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Finally, these results are discussed in § 4, including additional predic- tions and a toy model providing a possible astrophysical interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' MEASURING GAS TEMPERATURES FROM PHOTOMETRIC SURVEYS This work relies on a recently-developed technique for inferring the temperature of gas in star-forming molec- ular clouds from multi-wavelength photometric surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' It is expected that the IMF should depend upon the tem- perature of gas in star-forming molecular clouds (Low & Lynden-Bell 1976;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Larson 1985;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Bernardi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Jermyn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Thus, a measurement of the IMF might also provide a measurement of gas temperatures during the last major epoch of star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The IMF is expected to depend not only on gas tem- perature, but on a complex series of interactions sensi- tive to metallicity, density, pressure, and environment Larson (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' As a result, the Galactic IMF is deter- mined observationally rather than theoretically, despite the inherent difficulty of these observations resulting in several common approximations (Salpeter 1955;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Kroupa 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Chabrier 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The Kroupa IMF (Kroupa 2001) has two breakpoints, one determined by a Jeans mass- like calculation relating to the initial collapse of a cloud and the second by a similar calculation during fragmen- tation as the cloud collapses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' With all other conditions held fixed, it is then possible to derive a family of IMFs which depends on the gas temperature in star-forming regions, TSF (Jermyn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2018): dN dm ∝ � � � � � � � m−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3 m < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='08M⊙f(TSF ) m−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='08M⊙f(TSF ) < m < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='5M⊙f(TSF ) m−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='5M⊙f(TSF ) < m, (1) Although there is broad agreement that higher tem- perature lead to higher-mass breakpoints, the exact temperature dependence is more difficult to establish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Various studies have concluded that the break masses could scale as f(TSF ) ∝ TSF (Hopkins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2012), f(TSF ) ∝ T 3/2 SF (Jeans 1902), f(TSF ) ∝ T 2 SF (Jermyn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2018), or f(TSF ) ∝ T 5/2 SF (Chabrier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Here, we select the T 2 SF dependence with the normaliza- tion set to match a Kroupa IMF at TSF = 20K (which is the characteristic temperature of Galactic star-forming clouds) following the convention established in Jermyn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' (2018) and Sneppen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' (2022) IMFs corresponding to a grid of gas temperatures, ranging from 10-60K, are then used to generate syn- thetic spectra using the Flexible Stellar Population Syn- thesis (FSPS) libraries (Conroy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2009) for use with the EAZY photometric template fitting code (Brammer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' EAZY uses a basis of 12 templates gen- erated as linear combinations of 560 individual models with various ages, star formation histories, metallicities, and extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' A set of 12 basis templates is generated for each TSF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The best-fit reconstructed spectrum is then found for every object in the COSMOS2015 photo- metric catalog using each IMF, and the lowest χ2 across all IMFs is selected as the best fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Although in principle this allows an IMF determina- tion for all ∼ 106 COSMOS2015 galaxies, in practice this is not possible because of the strong covariances between the IMF, metallicity, and extinction (Sneppen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Since they are not fully degenerate, given suf- ficient information it is possible to distinguish between, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', a bluer spectrum due to a top-heavier (or bottom- lighter) IMF and due to lower extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' However, this requires high signal-to-noise measurements across mul- tiple bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In order to explore this, a mock dataset was constructed at a range of IMFs and observed in the COSMOS2015 filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' It was found that the gas tem- perature could be accurately recovered for the ∼ 10% brightest objects in COSMOS2015, but that the remain- der would require additional observations to determine the IMF (Sneppen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The work here relies 3 only on those ∼ 14 × 104 objects, which is the cause for low statistics at z ≳ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In addition to these strong covariances, there is a com- plete mathematical degeneracy between the IMF and the star formation history (SFH), as an identical stel- lar population can be produced with different combina- tions of IMF and SFH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Mock datasets were used to show that the template fitting technique used here is primarily sensitive to the highest-mass break in the stellar popula- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' For a continuous SFH, as is likely for typical star- forming galaxies, this should correspond to the highest- mass break in the IMF, and therefore can be used as an IMF and gas temperature indicator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' However, in the case of rapid quenching, this break can instead come from the SFH, and a population of such objects is dis- cussed in Steinhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' (2022b) in connection with star formation turnoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' These uncommon objects of- ten exhibit two local minima in the minimum χ2(TSF ), with one minimum corresponding to the gas tempera- ture (and lying on the main locus in the TSF −sSFR diagram) and the other corresponding to the break in SFH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Finally, it is necessary to consider other effects on the IMF apart from gas temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' A Jeans-mass like calculation is sensitive to anything which changes either gravitational or thermodynamical effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In particu- lar, it is expected that the IMF should be sensitive to metallicity in addition to temperature, and it is known that galactic metallicities change with redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Given the difficulty of constraining template fits with addition of a single-parameter family of IMFs, is it not possible to fit a multiple-parameter family of IMFs with current photometric surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Likely, the correct interpretation of TSF is instead as a combination of gas temperature, metallicity, and other parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Nevertheless, there are several indications that inter- preting TSF as gas temperature is reasonable (Sneppen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Notably, a comparison between TSF and dust temperatures shows strong agreement (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 1) in not only the broad qualitative trends but even quantita- tively (Steinhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Thus, TSF proves a rea- sonable proxy for (cool) dust temperature, and if gas and dust are approximately in equilibrium, TSF should then indicate gas temperature in star-forming regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The resulting change in stellar masses at z ∼ 2 produces a picture more consistent with downsizing and quenching at lower redshifts (Steinhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' This work, showing that an evolutionary sequence selected entirely from template fitting is also a morphological sequence, further validates that TSF is a meaningful astrophysical indicator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' THE TSF-SSFR DIAGRAM The key diagnostic developed in this work is the TSF- sSFR diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The specific star formation rate, or star formation rate per unit mass, is a measure of how effi- ciently a galaxy is turning material into new stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The IMF temperature TSF (Sneppen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Steinhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022a,b,c), is an estimate of the temperature in star-forming molecular clouds at the time of star for- mation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Thus, a diagram comparing TSF and sSFR is intended as an analogue of the Hertzsprung-Russell (H- R) diagram comparing T and luminosity for individual stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' TSF is also a measure of the Jeans mass (Jeans 1902) necessary for these clouds to collapse and form stars, so it should be expected that there is a relationship be- tween sSFR and TSF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Using the recently-developed tech- niques described in Sneppen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' (2022), it is possible to determine this relationship for the first time, then use it as a probe of the astrophysics in star-forming galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' It should be stressed that both sSFR and TSF are inferred quantities and rely on a large set of assump- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' It is well established that star formation rates (and therefore sSFR as well) are difficult to constrain in photometric template fitting (Brammer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Con- roy & Wechsler 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Ilbert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Laigle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Weaver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The ad- dition of a new parameter to measure the shape of the IMF and thus infer TSF adds additional potential degen- eracies (Sneppen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Further, the remainder of this work asserts that the shape of the parametrized Kroupa IMF is a proxy for TSF, as based on the Jeans mass approximation, using a specific scaling out of sev- eral options, as described in § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Finally, this method assumes that galaxies can be de- scribed with a single, best-fit TSF, even though it is likely that molecular clouds in star-forming regions will have a range of gas temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' As a result, even if there is truly an underlying relationship between star formation efficiency and gas temperature, the best-fit sSFR and TSF for a galaxy containing molecular clouds in a wide range of conditions will not necessarily lie on that rela- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' However, as it is commonly done in constructing photometric catalogs and template fitting, it is necessary to approximate galaxies as being effectively monolithic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' They are assumed to be well-characterized by a single gas temperature for most star-forming clouds and a sin- gle sSFR which describes the efficiency in all of those regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Identifying Three Primary Growth Regimes The distribution of galaxies on the TSF-sSFR dia- gram (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2) exhibits a continuous locus which can 4 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Gas (TSF ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' top) and dust (bottom) temperatures for COSMOS galaxies as a function of stellar mass M⋆ and SFR in four redshift windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The TSF are adapted from Steinhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' (2022c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The dust temperature measurements are based on the analysis of the far-infrared and sub-millimeter stacked observations made with the Herschel Space Observatory and are reproduced (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Magnelli, private communication) from Magnelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' For ease of comparison, all panels use the Galactic IMF-derived COSMOS2015 stellar masses and SFR, even though a modified IMF will also modify both star formation rates and stellar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Both gas and dust temperatures exhibit a similar gradient, increasing towards lower stellar masses and higher SFR at all redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The two measurements are further in approximate quantitative agreement, despite the two methods each having significant but independent sources of uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' This is consistent with an equilibrium between cool molecular gas and dust temperatures, as well as the interpretation that TSF is indeed a proxy for temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' be described as three different behaviors, labeled as core-forming, typical star-forming, and quiescent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' At fixed redshift, these groups also comprise a mass se- quence, with the lowest-mass galaxies selected as core- forming and the highest-mass as quiescent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Although two most distinctive relationships are in the high-TSF (core-forming) and low-sSFR (quiescent) tails of the dis- tribution, the vast majority of objects in the COSMOS catalog, as the name suggests, are selected as typical star-forming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The three groups are characterized by their different relationships between sSFR and TSF (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2): 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Core-forming galaxies have a wide range of TSF, with an increase in TSF corresponding to only a small increase in sSFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Normal star-forming galaxies, the bulk of the pop- ulation, have a relatively narrow range of both sSFR and TSF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The range is perhaps to narrow to effectively constrain the relationship, but the increase in sSFR with temperature is far sharper than for core-forming galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Quiescent galaxies have a wide range of sSFR, al- ways lower than for star-forming galaxies, but are all nearly at identical TSF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' DISCUSSION With the addition of a parameter corresponding to changes in the IMF due to the gas temperature in star-forming regions, it is possible to measure that gas temperature, TSF, in large photometric catalogs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' An examination of the relationship between specific star- formation rate and the best-fit temperature finds three distinct behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Core-forming galaxies exhibit a wide range of TSF at relatively similar sSFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Typical star- forming galaxies exhibit a narrow range of both param- eters at fixed redshift, consistent with previous studies (Noeske et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Schreiber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Tremonti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Finally, quiescent galaxies exhibit nearly con- stant TSF at a wide range of low sSFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Previous studies have typically separated galaxies into star-forming and quiescent, but the core-forming branch is a new class of objects that arise from measuring TSF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='7< <0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8 ΛN <1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='7 HT 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='7 40 3 log(SFR [Mo yr-1]) 2 Temperature 35 0 30 3 2 25 1 0 20 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 log(M [Mo])5 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The TSF-sSFR diagram, analogous to a Hertzsprung-Russell diagram for galaxies, for COSMOS2015 galaxies at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='7 < z < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Panels are colored by the median (left) redshift;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' (top-right) stellar mass;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' and (bottom-right) age of the stellar population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Moving from top-right to bottom left, galaxies become more massive, with older stellar populations, and are more commonly observed at later times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Although no morphological information was used to produce the diagram, this is also a morphological sequence (see also Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The diagram is therefore interpreted as an evolutionary track followed by typical galaxies, with core-forming galaxies identified as the initial stage of star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Interpretation as an Evolutionary Sequence These three groups form a mass sequence at fixed red- shift and display a progression in the fitted age of stellar population (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The gradient in both parameters across galaxy populations indicate an evolutionary se- quence between core-forming, normal star-forming and quiescent galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In addition, there is a redshift depen- dence to their relative number densities: at higher red- shift, there are more core-forming and fewer quiescent galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' This is consistent with numerous other stud- ies finding mass downsizing (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Fontanot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2009) in galaxy evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' It is therefore natural to consider core-forming galaxies as some sort of early star-forming phase, prior to typical star formation which is far more prevalent in photometric surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Interpretation as Various Feedback Modes A model of the various feedback mechanisms respon- sible for the star-forming main sequence is well beyond the scope of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Here, a toy model is proposed which might explain the two tails (core-forming and quiescent) of the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Typical Star-Forming: Several models of the main sequence invoke tight feedback between conditions in star-forming molecular clouds and high-mass (and there- fore newly-formed) stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' For example, cosmic rays from the deaths of massive stars might provide the dominant heating mechanism responsible for setting gas tempera- tures Papadopoulos (2010), but an increase in SFR and thus higher gas temperatures would also increase the Jeans mass and eventually regulate the SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' At fixed gas density this would produce an equilibrium solution, and as gas density declines, an attractor solution exists (Steinhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' A variety of different mechanisms have been pro- posed, including gas regulation (Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Lilly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2015), cosmic ray feedback (Pa- padopoulos 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Steinhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020a), and even stochastic processes as an alternative to feedback (Kel- son 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' However, it has not yet been possible to observationally determine which, if any, of these mech- anisms is correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' A possible entry point would be the discovery of galaxies transitioning from their initial as- sembly to main sequence-like growth, before these feed- back processes have had time to dominate their observed properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In this picture, the two tails of the distribution would then be produced by conditions which break one of these 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='7 < < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8 8 8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8 9 Median 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2 10 Stellar mass ↑ Core-forming 0 [Mo] log(specific SFR [ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='6 11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='7 < < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8 Typical SF 1 10 8 Quiescent 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1 age 9 Median 5 [Gyr] 10 11 Age ↑ 7 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='9 11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='7 < z < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8 11 30 40 50 60 30 60 20 20 40 50 Inferred star formation temperature [K6 two feedback modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Quiescent: As sSFR declines, at some point young stars will no longer provide the dominant contribution to gas temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' For example, given the current Galac- tic SFR of ∼ 1M⊙/yr, molecular cloud temperatures are insensitive to small changes in SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Thus, the quiescent tail of the distribution would asymptotically approach a constant TSF as sSFR goes to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Here, TSF decouples as it is a measure of the gas temperature at the time when the stellar population is formed and not the cur- rent temperature (Sneppen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Steinhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' A constant TSF thus implies that by the time galaxies start to quench, contributions from star formation have already ceased to dominate gas temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' This would be consistent with proposed mechanisms such as strangulation (Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2015) or gas depletion (Cortese et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' However, a different behavior would be expected if quenching were driven by major mergers or some other external event which could occur even at high sSFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Core-Forming: The core-forming galaxies can per- haps be explained by breaking the other feedback mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' If a galaxy has sufficiently high gas density, an increase in temperature and the corresponding Jeans mass will have negligible effect on SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Rather, the limiting factor might be infall rates or other effects on gas availability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Young, massive stars would still provide the dominant source of gas heating, but the relevant equilibrium would be set by cooling mechanisms rather than by feedback limiting SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' For example, if the predominant cooling mechanism is black-body radiation, sSFR ∝ T 4 SF , or equivalently, TSF ∝ sSFR1/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Inside-Out Growth This explanation for early main sequence galaxies ad- ditionally predicts that their star-forming regions must be compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Due to the high temperatures, stars can only form in high-density regions where the increased Jeans mass does not inhibit collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' If baryons ini- tially are densest in the central regions of galaxies, then stars will only form in those central regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' As TSF decreases, lower density regions further out will be able to form stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Perhaps, this suggests that the two star-forming phases identified here correspond to distinct regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In their initial stages, star-forming galaxies can only form stars in central regions, even if the morphological fea- tures of a bulge may not yet be present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Thus, we ob- serve protogalaxies to be remarkably compact (van der Wel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014), and observe the oldest Galactic stellar populations towards the Galactic center (Baade 1944;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Trippe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' It is for this reason that the high- TSF branch is labeled in this work as ‘core-forming’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Once the central region has finished forming stars, no high-density regions remain and star formation rates de- cline, decreasing TSF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Normal star-forming galaxies, cor- responding to most of the star-forming main sequence, then form stars in the lower-density disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' This is con- sistent with hints that the star-forming main sequence, when viewed in terms of disk mass rather than the full stellar mass, may be redshift-independent (Abramson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Finally, quiescent galaxies have even ceased to efficiently form disk stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Interpretation as a Morphological Sequence This interpretation is also supported by morphological observations of COSMOS galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Much of the COS- MOS field is covered by Hubble observations capable of resolving galaxies along most of the TSF-sSFR diagram at z ≲ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Although no morphological information was used in determining best-fit parameters, producing the TSF-sSFR diagram, or using that diagram to label ob- jects as core-forming, typical star-forming, or quiescent, these categories nevertheless exhibit distinct morphol- ogy (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The core-forming galaxies (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 3, top) are signifi- cantly more compact than other star-forming galaxies at a redshift z ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8, and the blue color indicates a young stellar population throughout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Previous studies have found that massive galaxies are typically compact at much higher redshift (Bouwens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Bezan- son et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' de la Rosa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Tacchella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Schnorr-M¨uller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' It is therefore natu- ral to interpret these z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8 examples as much lower- redshift analogues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Often, these are seen as a unique, high-redshift state created by extreme conditions in the first, most overdense regions to collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The picture inferred from the TSF-sSFR diagram is that these are instead a phase that most galaxies go through at the start of star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' An additional strong prediction for future dynamical studies is that the baryon distri- bution in these galaxies should extend well beyond the starlight into regions which are not dense enough to form stars but will do so as soon as their gas cools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Typical star-forming galaxies (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 3, middle) are more extended than core-forming galaxies, have blue col- ors and young stellar populations when unresolved, but when resolved also exhibit older populations in their cen- ters than at larger radii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' It is already well-established that both our own Galaxy (Trippe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2008) and oth- ers have older stellar populations in their cores than at 7 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Hubble WFC3 observations in the F814W and F160W filters for randomly-selected core-forming (top), typical star- forming (middle), and quiescent (bottom) galaxies from the COSMOS2015 survey at z ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The TSF-sSFR diagram (Figure 2) is interpreted to indicate an evolutionary sequence from top to bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The core-forming galaxies are significantly more compact and the blue color indicates a young stellar population throughout these galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Typical star-forming galaxies have blue colors and young stellar populations when unresolved, but also exhibit older populations in their centers than at larger radii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Quiescent galaxies have old stellar populations throughout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' This morphology supports the interpretation of the TSF-sSFR diagram track as an evolutionary sequence, running from core formation to typical star formation, and finally to quiescence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' higher radii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' This would be a natural consequence of the model presented here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Finally, quiescent galaxies have older stellar populations throughout, as they are no longer efficiently forming stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Thus, the TSF-sSFR diagram indicates not only a se- quence of inferred properties, but also a morphologi- cal sequence consistent with a natural toy model de- rived from those properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Thus, much as tracks on a Hertzsprung-Russell diagram can be used to find stellar evolution sequences, tracks on the TSF-sSFR diagram track can be interpreted as a galactic evolutionary se- quence, running from core formation to typical star for- mation, and finally to quiescence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Although the sequence of galaxies in mass, age, and remarkably, morphology seen in Figure 1 strongly indi- cates an evolutionary track, there are alternative ex- planations informed by the appearance of similar L- shaped diagrams in the literature (Barro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' In this interpretation, galaxies simply grow along the star-forming main sequence, gradually growing in stellar surface density and effective radius following the reason- ably tight relations in these quantities with stellar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The high-TSF galaxies identified here would then be ex- plained not by a distinct stage in galactic evolution, but rather as a selection of galaxies that have recently had a burst of star formation on the timescale to which the photometry is sensitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Both simulations (Iyer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020) and observations (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2016) suggest low- mass galaxies are preferentially bursty, which may also explain the lack of observed dark matter cusps in lower- mass galaxies (Pontzen & Governato 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' This sce- nario has a distinct set of predictions from the evolu- tionary track case, including the presence of similarly compact and blue galaxies on the star-forming main se- quence with TSF ∼ 25 K with little difference in their gas structure to the high TSF branch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Near future observations will be able to test falsifiable predictions of these scenarios both through dynamical studies and through high-redshift studies which in the model presented in this work must consist exclusively of compact, blue, core-forming galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' If those tests are consistent predictions, it would mean that the earliest stage of star formation is indeed distinct, and that even low-redshift examples can be used to study the transi- tion between initial assembly and subsequent evolution and probe the origins of the star-forming main sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The analysis in this paper is based on the COS- MOS2015 catalog, available at https://ftp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='iap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='fr/pub/ from users/hjmcc/COSMOS2015/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The template fits are produced by EAZY, available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' com/gbrammer/eazy-photoz with templates made using FSPS, available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='com/cconroy20/fsps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The authors would like to thank Georgios Magdis, Jackson Mann, Sune Toft, and Darach Watson for help- ful comments and Benjamin Magnelli for kindly provid- ing dust temperature measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' The Cosmic Dawn Center (DAWN) is funded by the Danish National Re- search Foundation under grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 8 REFERENCES Abramson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Kelson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Dressler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014, ApJL, 785, L36, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/2041-8205/785/2/L36 Baade, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 1944, ApJ, 100, 137, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1086/144650 Barro, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Faber, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Koo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2017, ApJ, 840, 47, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3847/1538-4357/aa6b05 Bernardi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Meert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Sheth, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2017, MNRAS, 467, 2217, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/stx176 Bezanson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', van Dokkum, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Tal, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2009, ApJ, 697, 1290, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0004-637X/697/2/1290 Bouwens, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Illingworth, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Franx, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Ford, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2007, ApJ, 670, 928, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1086/521811 Brammer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', van Dokkum, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Coppi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2008, ApJ, 686, 1503, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1086/591786 Chabrier, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2003, PASP, 115, 763, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1086/376392 Chabrier, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Hennebelle, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Charlot, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014, ApJ, 796, 75, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0004-637X/796/2/75 Conroy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Gunn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & White, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2009, ApJ, 699, 486, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0004-637X/699/1/486 Conroy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Wechsler, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2009, ApJ, 696, 620, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0004-637X/696/1/620 Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Catinella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Smith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2021, PASA, 38, e035, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1017/pasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='18 de la Rosa, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', La Barbera, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Ferreras, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2016, MNRAS, 457, 1916, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/stw130 Fontanot, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', De Lucia, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Monaco, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Somerville, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Santini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2009, MNRAS, 397, 1776, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='15058.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='x Guo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Rafelski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Faber, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2016, ApJ, 833, 37, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3847/1538-4357/833/1/37 Hertzsprung, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 1909, Astronomische Nachrichten, 179, 373, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1002/asna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='19081792402 Hopkins, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Kereˇs, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Murray, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Quataert, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Hernquist, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2012, MNRAS, 427, 968, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='21981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='x Ilbert, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', McCracken, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Le F`evre, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2013, A&A, 556, A55, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1051/0004-6361/201321100 Iyer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Tacchella, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Genel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020, MNRAS, 498, 430, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/staa2150 Jeans, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 1902, Philosophical Transactions of the Royal Society of London Series A, 199, 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1098/rsta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='0012 Jermyn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Steinhardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Tout, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2018, Monthly Notices of the Royal Astronomical Society, 480, 4265–4272, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/sty2123 Kelson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014, arXiv e-prints, arXiv:1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='5191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='org/abs/1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='5191 Kroupa, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2001, MNRAS, 322, 231, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1046/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1365-8711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='04022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='x Laigle, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', McCracken, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Ilbert, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2016, ApJS, 224, 24, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3847/0067-0049/224/2/24 Larson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 1985, MNRAS, 214, 379, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='379 Lilly, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Carollo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Pipino, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Renzini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Peng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2013, ApJ, 772, 119, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0004-637X/772/2/119 Lonsdale, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Farrah, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Smith, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2006, in Astrophysics Update 2, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' Mason, 285, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1007/3-540-30313-8 9 Low, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Lynden-Bell, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 1976, MNRAS, 176, 367, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='367 Magnelli, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Lutz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Saintonge, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014, A&A, 561, A86, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1051/0004-6361/201322217 Martin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Fanson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Schiminovich, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2005, ApJL, 619, L1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1086/426387 Muzzin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Marchesini, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Stefanon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2013, ApJ, 777, 18, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0004-637X/777/1/18 Noeske, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Weiner, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Faber, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2007, ApJL, 660, L43, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1086/517926 Papadopoulos, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2010, ApJ, 720, 226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' http://stacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='iop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='org/0004-637X/720/i=1/a=226 Peng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Maiolino, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Cochrane, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2015, Nature, 521, 192, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1038/nature14439 Peng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='-j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Lilly, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Kovaˇc, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2010, ApJ, 721, 193, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0004-637X/721/1/193 Pontzen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Governato, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2012, MNRAS, 421, 3464, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='20571.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='x Rodr´ıguez Montero, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Dav´e, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Wild, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Angl´es-Alc´azar, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Narayanan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2019, MNRAS, 490, 2139, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/stz2580 Russell, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 1914, Popular Astronomy, 22, 331 Salim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014, Serbian Astronomical Journal, 189, 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='2298/SAJ1489001S Salpeter, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 1955, ApJ, 121, 161, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1086/145971 Sanders, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Shapley, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Reddy, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020, MNRAS, 491, 1427, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/stz3032 Schnorr-M¨uller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Trevisan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Riffel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2021, MNRAS, 507, 300, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/stab2116 Schreiber, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Glazebrook, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Nanayakkara, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2018, A&A, 618, A85, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1051/0004-6361/201833070 Sneppen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Steinhardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Hensley, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022, ApJ, 931, 57, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3847/1538-4357/ac695e Speagle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Steinhardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Capak, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Silverman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014, ApJS, 214, 15, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0067-0049/214/2/15 Steinhardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Jermyn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Lodman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020a, ApJ, 890, 19, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3847/1538-4357/ab66b7 9 Steinhardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Kokorev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Rusakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Garcia, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Sneppen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022a, arXiv e-prints, arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='07879.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='org/abs/2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='07879 Steinhardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Weaver, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Maxfield, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2020b, ApJ, 891, 136, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3847/1538-4357/ab76be Steinhardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Sneppen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Hensley, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022b, arXiv e-prints, arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='01750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='org/abs/2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='01750 Steinhardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Sneppen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Mostafa, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022c, ApJ, 931, 58, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3847/1538-4357/ac62d6 Stern, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Faucher-Gigu`ere, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Fielding, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2021, ApJ, 911, 88, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3847/1538-4357/abd776 Tacchella, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Dekel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Carollo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2016, MNRAS, 458, 242, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1093/mnras/stw303 Tremonti, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Heckman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Kauffmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2004, ApJ, 613, 898, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1086/423264 Trippe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Gillessen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Gerhard, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2008, A&A, 492, 419, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1051/0004-6361:200810191 van der Wel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Franx, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', van Dokkum, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2014, ApJ, 788, 28, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0004-637X/788/1/28 Weaver, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Kauffmann, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Ilbert, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2022, ApJS, 258, 11, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='3847/1538-4365/ac3078 Williams, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Quadri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', Franx, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', van Dokkum, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=', & Labb´e, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content=' 2009, ApJ, 691, 1879, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} +page_content='1088/0004-637X/691/2/1879' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtAzT4oBgHgl3EQfzv6c/content/2301.01774v1.pdf'} diff --git a/RtA0T4oBgHgl3EQfDv-e/vector_store/index.faiss b/RtA0T4oBgHgl3EQfDv-e/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..df15d77b43eb603c06a3a858a2740fe3cd9ef071 --- /dev/null +++ b/RtA0T4oBgHgl3EQfDv-e/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c63cd3c1f18e01633bff51a2b4d15f96c983ecfdb1a33959702fe3b7a8d43c6f +size 1507373 diff --git a/T9FLT4oBgHgl3EQfQi86/content/2301.12033v1.pdf b/T9FLT4oBgHgl3EQfQi86/content/2301.12033v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ff1dabe268fb9ecbe3d789d43643eac6b9a53c63 --- /dev/null +++ b/T9FLT4oBgHgl3EQfQi86/content/2301.12033v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ddc2830356661c92b63ce960173faa4de2b826a4581769735b833dc927fb88fc +size 865781 diff --git a/T9FLT4oBgHgl3EQfQi86/vector_store/index.pkl b/T9FLT4oBgHgl3EQfQi86/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..67cdb12c7451df99ace9be7ad0455e1af0e56c08 --- /dev/null +++ b/T9FLT4oBgHgl3EQfQi86/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5499bd29456777557db5bd04b58e3253548a26dfc34a3b7e2cafaef92d466328 +size 242763 diff --git a/TdAzT4oBgHgl3EQfJfuh/content/tmp_files/2301.01081v1.pdf.txt b/TdAzT4oBgHgl3EQfJfuh/content/tmp_files/2301.01081v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d2710d7c47f9ff2b7cc6c69f5a5cc4c85554943c --- /dev/null +++ b/TdAzT4oBgHgl3EQfJfuh/content/tmp_files/2301.01081v1.pdf.txt @@ -0,0 +1,1177 @@ +StyleTalk: One-shot Talking Head Generation with Controllable Speaking Styles +Yifeng Ma1*, Suzhen Wang2, Zhipeng Hu2,3, Changjie Fan2, +Tangjie Lv2, Yu Ding2,3†, Zhidong Deng1†, Xin Yu4 +1 Department of Computer Science and Technology, BNRist, THUAI, +State Key Laboratory of Intelligent Technology and Systems, Tsinghua University +2 Virtual Human Group, Netease Fuxi AI Lab, 3 Zhejiang University +4 University of Technology Sydney +{wangsuzhen, zphu, fanchangjie, hzlvtangjie, dingyu01}@corp.netease.com +mayf18@mails.tsinghua.edu.cn, michael@tsinghua.edu.cn, xin.yu@uts.edu.au +Abstract +Different people speak with diverse personalized speaking +styles. Although existing one-shot talking head methods have +made significant progress in lip sync, natural facial expres- +sions, and stable head motions, they still cannot generate +diverse speaking styles in the final talking head videos. To +tackle this problem, we propose a one-shot style-controllable +talking face generation framework. In a nutshell, we aim to +attain a speaking style from an arbitrary reference speak- +ing video and then drive the one-shot portrait to speak with +the reference speaking style and another piece of audio. +Specifically, we first develop a style encoder to extract dy- +namic facial motion patterns of a style reference video and +then encode them into a style code. Afterward, we intro- +duce a style-controllable decoder to synthesize stylized fa- +cial animations from the speech content and style code. In +order to integrate the reference speaking style into gener- +ated videos, we design a style-aware adaptive transformer, +which enables the encoded style code to adjust the weights +of the feed-forward layers accordingly. Thanks to the style- +aware adaptation mechanism, the reference speaking style +can be better embedded into synthesized videos during de- +coding. Extensive experiments demonstrate that our method +is capable of generating talking head videos with diverse +speaking styles from only one portrait image and an audio +clip while achieving authentic visual effects. Project Page: +https://github.com/FuxiVirtualHuman/styletalk. +Introduction +Audio-driven photo-realistic talking head generation has +drawn growing attention due to its broad applications in +virtual human creation, visual dubbing, and short video +creation. The past few years have witnessed tremendous +progress in accurate lip synchronization (Prajwal et al. 2020; +Wang et al. 2022), head pose generation (Zhou et al. 2021; +Wang et al. 2021) and high-fidelity video generation (Zhang +et al. 2021c; Yin et al. 2022). However, existing one-shot +based works pay less attention to modeling diverse speaking +styles, thus failing to produce expressive talking head videos +with various styles. +In real-world scenarios, different people speak the same +utterance with significantly diverse personalized speaking +*Work done at Netease. +†Corresponding authors. +identity reference +driving audio +style reference +video A +output with speaking style A +output with speaking style B +style reference +video B +Figure 1: Illustration of our proposed framework. Given the +one-shot image of the target speaker, our approach produces +stylized photo-realistic talking faces, in which the speaker +speaks the audio content with different speaking styles as +shown in the additional style reference videos. Note that +speech content is not from the style reference video. +styles. Even for the same person, the speaking styles vary in +different situations. Due to such significant diversities, creat- +ing style-controllable talking heads is still a great challenge, +especially in the one-shot setting. In previous work (Wang +et al. 2020; Sinha et al. 2022), the speaking style is merely +denoted as discrete emotion classes. Such a formulation +is far from representing flexible speaking styles. Although +some recent methods (Ji et al. 2022; Liang et al. 2022) can +control facial expressions by involving an additional emo- +tional source video, they mainly transfer the facial motion +characteristics in a frame-by-frame fashion without model- +ing the temporal dynamics of facial expressions. Therefore, +a universal spatio-temporal representation of speaking styles +is highly desirable. +Here, we denote speaking styles as personalized dynamic +facial motion patterns. We aim to generate stylized photo- +realistic talking videos for a one-shot speaker image, in +which the speaker speaks the given audio content with the +speaking style extracted from a style reference video (style +clip). Specifically, we design a novel style-controllable +talking head generation framework, called StyleTalk. Our +framework first encodes the style clip and the input audio +into the corresponding latent features, and then uses them as +arXiv:2301.01081v1 [cs.CV] 3 Jan 2023 + +Transformer +Encoder +Self-attention +Pooling +Text: Hello +Ph: HH,… +Audio +Encoder 𝑬𝑎 +… +… +… +… +Image +Renderer +𝑬𝑟 +style reference +video +𝑉 +expression +parameters +𝜹1:𝑁 +Style Encoder 𝑬𝑠 +phoneme +labels +𝐴 +audio +𝒂𝑡−𝑤:𝑡+𝑤 +𝒂′𝑡−𝑤:𝑡+𝑤 +style +code +𝒔 +reference +image +𝑰𝒓 +Multi-head +Attention +FC +ReLU +FC +softmax +𝑾1, 𝒃1 +𝑾2, 𝒃2 +𝑾𝑘, 𝒃𝑘 +𝜋1 +𝜋2 +𝜋𝑘 +… +… +∗ +∗ +∗ +𝒙′ = ෪ +𝑾𝑻 𝒙 + ෩𝒃 +Feed-forward +Layers +෪ +𝑾, ෩𝒃, +… +… +𝒙 +query +key +value +calculation of attention +attention +expert +weights +Style-aware Adaptive Layer +× 𝑵 +Style-controllable +Dynamic Decoder +𝑬𝑑 +generated +expression +parameters +෡𝜹1:𝑇 +Mouth +Discriminator +𝑫sync +Style +Discriminator +𝑫style +Temporal +Discriminator +𝑫tem +𝒔 +… +… +𝒂′𝑡−𝑤:𝑡+𝑤 +style +code +audio +feature +audio +feature +3DMM +(a) StyleTalk Framework +(b) Style-controllable Dynamic Decoder +Figure 2: (a) The pipeline of StyleTalk. Our framework first extracts sequential 3DMM expression parameters δ1:N from the +style reference video V and then feeds them into the style encoder Es to obtain the style code s. An audio encoder Ea +encodes phoneme labels into audio features a′ +t−w,t+w. Then the style-controllable dynamic decoder Ed generates the stylized +expression parameters ˆδ with s and a′. Finally, the image renderer Er takes the expression parameters ˆδ and the identity +reference image Ir as input and generates the output video. (b) The style-controllable dynamic decoder. +the input of a style-controllable dynamic decoder to obtain +the stylized 3D facial animations. Finally, an image renderer +(Ren et al. 2021) takes the 3D facial animations and the ref- +erence image as input to generate talking faces. +To be specific, our primary goal is to obtain a universal +style encoder that is able to model the facial motion patterns +from arbitrary style clips. Here, we employ a transformer- +based (Vaswani et al. 2017) style encoder with self-attention +pooling layers (Safari, India, and Hernando 2020) to ex- +tract the latent style code from the sequential 3D Morphable +Model (3DMM) (Blanz and Vetter 1999) expression param- +eters of one style clip. In particular, we introduce a triplet +constraint on the style code space, enabling the universal +style extractor to be applicable to unseen style clips. Fur- +thermore, we observe that the learned style codes would lie +in a semantically meaningful space. +Driving a one-shot talking head with different speaking +styles is also a challenging one-to-many mapping problem. +Although style codes can serve as the condition and trans- +form an ambiguous one-to-many mapping into a conditional +one-to-one mapping (Qian et al. 2021), we still observe un- +satisfactory lip-sync and visual artifacts when talking faces +exhibit large facial motions. To solve this issue, we pro- +pose a style-controllable dynamic transformer as our de- +coder. Inspired by Wang and Tu (2020), we found that the +feed-forward layers following the multi-head attention are +of great importance to style manipulation. Hence, we pro- +pose to adaptively generate the kernel weights of the feed- +forward layers based on the style code. Specifically, we ap- +ply an attention mechanism over K kernels conditioning on +style codes to modulate stylized facial expressions of the +target face adaptively. Thanks to this adaptive mechanism, +our method turns the one-to-many mapping problem (Wang +et al. 2022) to the style-controllable one-to-one mapping in +the one-shot setting, thus effectively improving the lip-sync +in different styles and producing more convincing facial ex- +pressions. +Extensive experiments demonstrate that our method can +generate photo-realistic talking faces with diverse speak- +ing styles while achieving accurate lip synchronization. Our +contributions are summarized as: +• We propose a novel one-shot style-controllable audio- +driven talking face generation framework, which creates +authentic talking videos with diverse styles from one tar- +get speaker image. +• We propose a universal style extractor that can effectively +learn talking styles from unseen speaking style clips, thus +facilitating the generation of diverse stylized talking head +videos. +• Benefiting from our proposed style-controllable dynamic +transformer decoder, we successfully produce accurate +stylized lip-sync and natural stylized facial expressions. +Related Work +Audio-Driven Talking Head Generation +With the in- +creasing demand for virtual human creation, driving talking +head with audio (Zhu et al. 2021; Chen et al. 2020a) has +attracted considerable attention. Audio-driven methods can +be classified into two categories: person-specific and person- +agnostic methods. +Person-specific +methods +(Suwajanakorn, +Seitz, +and +Kemelmacher-Shlizerman 2017; Fried et al. 2019) are only +applied for speakers seen during training. Most person- +specific methods (Yi et al. 2020; Thies et al. 2020; Song +et al. 2020; Li et al. 2021; Lahiri et al. 2021; Ji et al. 2021; +Zhang et al. 2021a,b) first produce 3D facial animations and +then synthesize photo-realistic talking videos. Recently, Guo +et al. (2021) and Liu et al. (2022) introduce neural radiance +fields for high-fidelity talking head generation. + +Person-agnostic methods aim to generate talking head +videos in a one-shot setting. The early methods (Chung, Ja- +maludin, and Zisserman 2017; Song et al. 2018; Chen et al. +2018; Song et al. 2018; Zhou et al. 2019; Chen et al. 2019; +Vougioukas, Petridis, and Pantic 2019; Das et al. 2020) focus +only on creating accurate mouth movements that are syn- +chronized with the speech content. With the development +of deep learning, a number of methods (Wiles, Koepke, and +Zisserman 2018; Chen et al. 2020b; Zhou et al. 2020; Pra- +jwal et al. 2020; Zhang et al. 2021c; Wang et al. 2021; Zhou +et al. 2021; Wang et al. 2022) start to produce more natural +talking faces by taking the facial expressions and head poses +into consideration. Although the aforementioned methods +can generate videos for arbitrary speakers, none of these +methods is able to create expressive stylized talking head +videos. +Stylized Talking Head Generation +Although the expres- +sive facial expressions is crucial in vivid talking head gen- +eration, only a few methods (Sadoughi and Busso 2019; +Vougioukas, Petridis, and Pantic 2019; Wang et al. 2020; +Wu et al. 2021; Ji et al. 2021; Sinha et al. 2022; Ji et al. +2022; Liang et al. 2022) take it into consideration. Ji et al. +(2021) extract disentangled content and emotion informa- +tion from audio, and then produce videos guided by the +predicted landmarks. However, determining emotions only +from audio may lead to ambiguities (Ji et al. 2022), lim- +iting the applicability of an emotional talking face model. +Wang et al. (2020) and Sinha et al. (2022) create emotion- +controllable talking faces by employing the explicit emotion +labels as input, which drop the formulation of personalized +differences in speaking styles. Ji et al. (2022) and Liang et al. +(2022) generate expressive talking head by transferring the +expressions in an additional emotional source video to the +target speaker frame-by-frame. To sum up, none of the pre- +vious works captures the spatial and temporal co-activations +of facial expressions. +Proposed Method +In this paper, we propose a novel framework for generating +the style-controllable talking faces with three inputs: (1) the +reference image Ir of the target speaker; (2) the audio clip +A of length T that provides the speech content; (3) the style +reference talking video V = Is +1:N of length N, called style +clip. Our framework can create photo-realistic taking videos +Y = ˆI1:T in which the target speaker speaks the speech +content with the speaking style reflected in the style clip. +As shown in Figure 2, the proposed framework consists of +four components: (1) an audio encoder Ea which extracts +the sequential pure articulation-related features a′ +1:T from +phoneme labels a1:T ; (2) a style encoder Es that encodes +the facial motion patterns in the style clip into the compact +style code s; (3) a style-controllable dynamic decoder Ed +which produces the stylized 3DMM expression parameters +ˆδ1:T from the audio features and the style code; (4) an im- +age renderer Er which generates the photo-realistic talking +faces using the reference image and the expression param- +eters. We employ PIRenderer (Ren et al. 2021) as the ren- +derer. We adopt the training strategy proposed in Wang et al. +(2022) by taking the assembled input {Ir, at−w,t+w, V } in +a sliding window. w is the window length and is set to 5. +Audio Encoder +The audio encoder Ea is expected to extract the articulation- +related information from the audio. However, We observe +that audio contains some articulation-irrelevant information, +such as the emotion and the intensity, that affects the speak- +ing style of the output. To remove such information, we +adopt the phoneme labels instead of acoustics features (e.g., +Mel Frequency Cepstrum Coefficients (MFCC)) to represent +the audio signals. The phoneme labels at−w:t+w are con- +verted to word embeddings and then fed to a transformer +encoder to obtain audio features a′ +t−w:t+w, a′ +t ∈ R256. The +phoneme is extracted by a speech recognition tool. +Style Encoder +The style encoder Es extracts the speaking style reflected +in the style clip. Since the speaking style is the dynamic fa- +cial motion patterns, it is irrelevant to the style clip’s face +shape, texture, and illumination. To remove such informa- +tion, we employ the 3DMM (Deng et al. 2019) to convert +the style video clip to the the sequential expression parame- +ters δ1:N ∈ RN×64. +Unlike previous methods that merely transfer the static +expressions of the static images (Ji et al. 2022; Liang et al. +2022), we design a style encoder to model the dynamic facial +motion patterns. A transformer encoder takes the sequen- +tial 3DMM expression parameters as the input tokens. Af- +ter modeling the temporal correlation between tokens, the +encoder outputs the style vectors of each token, s′ +1:N. Intu- +itively, the speaking style in the video clip can be identified +by a few typical frames, so we employ a self-attention pool- +ing layer (Safari, India, and Hernando 2020) to aggregate +the style information over the style vectors. Specifically, this +layer adopts an additive attention-based mechanism, which +computes the token-level attention weights using a feed- +forward network. The token-level attention weights repre- +sent the frame-level contributions to the video-level style +code. We sum all the style vectors multiplied by the attention +weights to get the final style code s ∈ Rds, +s = softmax(WsH)HT , +(1) +where Ws +∈ +R1×ds is a trainable parameter, H += +[s1, ...sN] ∈ Rds×N is the sequence of the encoded fea- +tures, ds is the dimension of each style vector. +Style-Controllable Dynamic Decoder +At the early stage, we employ the vanilla transformer de- +coder, which takes the articulation representations a′ +t−w:t+w +and the style code s as input. Specifically, we repeat the style +code 2w +1 times and then add them with positional encod- +ings to obtain the style tokens. The style tokens serve as the +query of the transformer decoder, and the latent articulation +representations serve as the key and value. The middle out- +put token is fed into a feed-forward network to generate the +output expression parameters. +When utilizing the aforementioned decoder, we observe +the defective lip movements and facial expressions when + +MEAD +HDTF +Method +SSIM↑ CPBD↑ F-LMD ↓ M-LMD ↓ Syncconf↑ SSIM↑ CPBD↑ F-LMD ↓ M-LMD ↓ Syncconf↑ +MakeitTalk +0.725 +0.106 +3.969 +5.324 +2.104 +0.593 +0.248 +5.084 +4.447 +2.563 +Wav2Lip +0.795 +0.178 +2.718 +4.052 +5.257 +0.618 +0.299 +4.544 +3.630 +3.072 +PC-AVS +0.504 +0.071 +5.828 +4.970 +2.183 +0.422 +0.132 +10.506 +3.931 +2.701 +AVCT +0.832 +0.139 +2.923 +5.520 +2.525 +0.755 +0.233 +2.733 +3.610 +3.147 +GC-AVT +0.340 +0.142 +8.039 +7.103 +2.417 +0.337 +0.296 +10.537 +6.206 +2.772 +EAMM +0.397 +0.084 +6.698 +6.478 +1.405 +0.387 +0.144 +7.031 +6.857 +1.799 +Ground Truth +1 +0.222 +0 +0 +4.131 +1 +0.307 +0 +0 +3.961 +Ours +0.837 +0.164 +2.122 +3.249 +3.474 +0.812 +0.302 +1.941 +2.412 +3.165 +Table 1: The quantitative results on MEAD and HDTF. +generating stylized talking faces with large facial move- +ments. Inspired by Yang et al. (2019) and Karras et al. +(2020), we assume that the static kernel weights cannot +model the diverse speaking styles. With this assumption, we +design a style-aware adaptive transformer, which dynam- +ically adjusts the network weights according to the style +code. Specifically, since Wang and Tu (2020) reveals that the +feed-forward layers play the most important role in trans- +former decoder, we replace the feed-forward layers with +novel style-aware adaptive feed-forward layers. The style- +aware adaptive layer utilizes K = 8 parallel sets of weights +˜ +W k, ˜bk. Such parallel weights are expected to be the ex- +perts for modeling the distinct facial motion patterns of the +different speaking styles. Then we introduce the additional +layers followed by Softmax to adaptively compute the atten- +tion weights over each set of weights depending on the style +code. Then the feed-forward layer weights are aggregated +dynamically via the attention weights: +˜ +W (s) = +K +� +k=1 +πk(s) ˜ +W k, ˜b(s) = +K +� +k=1 +πk(s)˜bk, +s.t. 0 ≤ πk(s) ≤ 1, +K +� +k=1 +πk(s) = 1, +(2) +where πk is the attention weight for kth feed-forward layer +weights ˜ +W k, ˜bk. The output of style-controllable dynamic +feed-forward layers is then obtained by: +y = g +� +˜ +W +T (s)x + ˜b(s) +� +, +(3) +where g is an activation function. Our experiments show that +the style-controllable dynamic decoder helps to create accu- +rate stylized lip movements and natural stylized facial ex- +pressions in diverse speaking styles. +Disentanglement of Upper and Lower faces +In experiments, we observe that the upper face and the +lower face have different motion patterns. The upper face +(eye, eyebrow) moves in low frequency while the lower face +(mouth) moves in high frequency. Therefore, it is reasonable +to model the motion patterns of the two parts with separate +networks. +We first divide expression parameters into the lower face +group and the upper face group and then utilize two parallel +style-controllable dynamic decoders, called the upper face +decoder and the lower face decoder, to generate the corre- +sponding group. We select 13 out of 64 expression parame- +ters that are highly related to mouth movements as the lower +face group, and the other parameters as the upper face group. +The selected mouth-related PCA expression bases are re- +ported in the supplementary materials. The two groups of +generated expression parameters are concatenated to obtain +the final generated expression parameters. +Objective Function Design +Since our framework generates each frame individually, we +adopt a batched sequential training strategy to improve the +temporal consistency. Specifically, we generate successive +L = 64 frames δ1:L at one time as a clip. We then feed these +frames into three discriminators: a temporal discriminator +Dtem, a vertex-based lip-sync discriminator Dsync, and a +style discriminator Dstyle. In addition, we employ the triplet +constraint to obtain a semantically meaningful style space. +Lip-sync Discriminator +Because the mouth shape varies +in different speaking styles, it is extremely challenging to +achieve accurate lip synchronization. Inspired by Prajwal +et al. (2020), we designed a lip-sync discriminator Dsync, +which is trained to discriminate the synchronization between +audio and mouth by randomly sampling an audio window +that is either synchronous or asynchronous with a video win- +dow. In the 3DMM, the mouth-related PCA bases also con- +trol other facial movements. To extract pure mouth shape +representation, we first convert expression parameters into +face mesh using PCA bases and then pick out the mouth +vertices. Instead of feeding images and acoustic features in +the original SyncNet (Chung and Zisserman 2016), we feed +the mesh vertex coordinates and phonemes respectively. We +use the PointNet(Qi et al. 2017) as the mouth encoder to ex- +tract the mouth embedding em, and a phoneme encoder to +compute the audio embedding ea from the phoneme win- +dow. We adopt cosine similarity to indicate the probability +that em and ea are synchronous: +Psync = +em · ea +max(∥em∥2 · ∥ea∥2, ϵ), +(4) + +Mouth +GT +Wav2Lip +PC-AVS +AVCT +GC-AVT +EAMM +Ours +Audio +Speaker +Style reference +Mouth +GT +Wav2Lip +PC-AVS +AVCT +GC-AVT +EAMM +Ours +Audio +Speaker +Style reference +Figure 3: Qualitative comparisons with the person agnostic methods. The identity reference, style reference videos and audio- +synced videos are shown in the first two rows. Please zoom in or see our demo video for more details. +where ϵ is a small constant. Dm is pretrained and frozen. Our +proposed framework maximize synchronous probability via +a sync loss Lsync on each frame of the generated clip: +Lsync = 1 +L +L +� +i=1 +−log(P i +sync). +(5) +Style Discriminator +The style discriminator Dstyle is +trained to determine the speaking style of the input sequen- +tial 3DMM expression parameters δ1:L. Specifically, the +style discriminator produces the probability P s ∈ RC that +the sequence of parameters belongs to each speaking style. +C denotes the number of speaking styles. The style dis- +criminator follows the structure of PatchGAN (Goodfellow +et al. 2014; Isola et al. 2017; Yu and Porikli 2017a,b; Yu +et al. 2018) .The style discriminator is trained using cross- +entropy loss and then frozen. The style discriminator guides +the framework to generate vivid speaking styles via a style +loss Lstyle: +Lstyle = −log(P s +i ), +(6) +where i is the category of the ground-truth speaking style. +Temporal Discriminator +The temporal discriminator +Dtem learns to distinguish the realness of the input se- +quences of 3DMM expression parameters δ1:L. Dtem fol- +lows the structure of PatchGAN and is trained jointly with +the framework by employing a GAN hinge loss Ltem. +Triplet Constraint +Intuitively, the style codes of similar +speaking styles should cluster in the style space. We employ +a style triplet constraint on style codes. Given the style clip +V c with the speaking style c, we randomly sample two other +style clips V p +c, V n +c , which are and are not with the speaking +style c, respectively. Then we obtain the corresponding style +codes sc, sp +c and sn +c . We constrain their distances in the style +space with the triplet loss (Dong and Shen 2018): +Ltrip = max{∥sc − sp +c∥2 − ∥sc − sn +c ∥2 + γ, 0}, +(7) +where γ is the margin parameter and is set to 5. +Total Loss +During training, we reconstruct the facial ex- +pressions of each clip in the self-driven setting. We adopt +a combination of the L1 loss and the structural similarity +(SSIM) loss (Wang et al. 2004): +Lrec = µLL1(δ1:L, ˆδ1:L) + (1 − µ)Lssim(δ1:L, ˆδ1:L), (8) +where δ1:L and ˆδ1:L are the ground truth and reconstructed +facial expressions respectively. µ is a ratio coefficient and is +set to 0.1. Our total loss is given by a combination of the +aforementioned loss terms: +L = λrec Lrec + λtrip Ltrip + λsync Lsync + ++λtem Ltem + λstyle Lstyle , +(9) +where we use λrec = 88, λtrip = 1, λsync = 1, λtem = 1 and +λstyle = 1. + +neutral +intensity +(a) +(b) +Figure 4: (a) Visualization of the style codes of four speakers in MEAD. (b) Visualization of the emotional style codes of the +speaker W011 in MEAD. Darker colors indicate higher emotion intensity. +w/o DyFFN +w/o ℒtrip +w/o 𝐷style +source image +mouth GT +style reference +Full +𝐾 = 16 +w/o 𝐷sync +𝐾 = 4 +Figure 5: Qualitative results of the ablation study. +Style 1 +Style 2 +Figure 6: Interpolation results between 2 speaking styles. +Experiments +Datasets +To learn a universal style extractor, we require +a dataset with adequately diverse speaking styles. We con- +struct our dataset based on the widely used datasets, MEAD +(Wang et al. 2020) and HDTF (Zhang et al. 2021c). MEAD +is a in-the-lab talking-face corpus in which 60 speakers +speak with three different intensity levels of eight emo- +tions. HDTF is a high-resolution in-the-wild audio-visual +dataset. For MEAD, we assume that the video clips, where +the speaker speaks with the same emotion at the same in- +tensity level, share the same speaking style. For HDTF, we +assume that the video clips from one speaker share the same +speaking style. Finally, we obtain 1104 speaking styles in +the training set. The original videos are cropped and resized +to 256×256 pixels as in FOMM (Siarohin et al. 2019), and +sampled at the rate of 30 FPS. +Implementation Details +Our framework is implemented +by Pytorch. We employ Adam optimizer (Kingma and Ba +2014) for training. Er is trained on the combination of Vox- +Celeb (Snyder et al. 2018), MEAD, HDTF datasets. Dsync +and Dstyle are trained on HDTF and MEAD for 12 hours on +4 RTX 3090 GPU with a learning rate of 0.0001. Er, Dsync, +Dstyle is then frozen. Ea, Es, Ed and Dtem are trained +jointly on HDTF and MEAD for 4 hours on 2 RTX 3090 +Method +SSIM↑ CPBD↑ F-LMD ↓ M-LMD ↓ Syncconf↑ +w/o DyFFN +0.830 +0.165 +2.414 +4.178 +3.059 +K = 4 +0.831 +0.163 +2.327 +3.524 +3.331 +K = 16 +0.835 +0.161 +2.133 +3.396 +3.473 +w/o Dstyle +0.836 +0.160 +2.483 +3.628 +3.430 +w/o Ltrip +0.837 +0.160 +2.401 +3.771 +3.532 +w/o Dsync +0.834 +0.164 +2.281 +4.351 +2.305 +Full (K = 8) 0.837 +0.164 +2.122 +3.249 +3.474 +Table 2: Quantitive results of the ablation study on MEAD. +GPU with a learning rate of 0.0001. +Quantitative Evaluation +We conduct quantitative evaluations on several widely used +metrics. To evaluate the lip synchronization, we adopt the +confidence score of SyncNet (Chung and Zisserman 2016) +(Syncconf) and the Landmark Distance around mouths (M- +LMD) (Chen et al. 2019). To evaluate the accuracy of gen- +erated facial expressions, we adopt the Landmark Distance +on the whole face (F-LMD). To evaluate the quality of gen- +erated talking head videos, we adopt SSIM, and the Cumu- +lative Probability of Blur Detection (CPBD) (Narvekar and +Karam 2009). +We compare our method with state-of-the-art methods in- +cluding: MakeitTalk (Zhou et al. 2020), Wav2Lip (Prajwal +et al. 2020), PC-AVS (Zhou et al. 2021), AVCT (Wang et al. +2022), GC-AVT (Liang et al. 2022), and EAMM(Ji et al. +2022). We conduct the experiments in the self-driven set- +ting on the test set, where the speaker and the speaking style +are not seen during training. We select the first image of +each video as the reference image, and the corresponding +audio clip as the audio input. The samples of the compared +methods are generated either with their released codes or +with the help of their authors. Since Wav2Lip only generates +movements of the mouth area, the head poses are fixed in its +samples. For other methods, poses are derived from ground +truth videos. The results of the quantitative evaluation are +reported in Table 1. +Our method achieves the best performance among most +metrics on MEAD and HDTF. Since Wav2Lip merely gen- +erates mouth movements and does not change other parts +of the reference images, it obtains the highest CPBD score +on MEAD. However, the mouth area generated by Wav2Lip +is blurry (See Figure 3). Since Wav2Lip is trained using + +Person ID +5 +M005 +000 +Aubue +M007 +0000 +contempt +w011 +disgusted +a +W023 +Sn +fear +happy +sad +surprisedkiddingme!Thisisamazing.I'm soSyncNet as a discriminator, it is reasonable for Wav2Lip to +obtain the highest confidence score of SyncNet on MEAD. +The score is even higher than that of the ground truth. Our +confidence score of SyncNet is closest to ground truth on +MEAD and the highest on HDTF dataset, and our M-LMD +scores are the best. This means that our method is able to +achieve accurate lip-sync. Besides, our method achieves the +best performance under the F-LMD metric, which means our +method is able to produce facial expressions following the +reference speaking style. +Qualitative Evaluation +We compare our method with speaker-agnostic (one-shot) +methods. The results of are displayed in Figure 3. The iden- +tity reference, style reference, and audio are all unseen dur- +ing training. As can be seen, our method is able to gener- +ate talking faces with reference speaking style while achiev- +ing accurate lip-sync and preserving speaker identity bet- +ter(please see our demo video). +Among all methods, only EAMM, GC-AVT, and our +method achieve speaking style control. However, EAMM +and GC-AVT can only control the speaking styles reflected +in the upper face, i.e., eye, and eyebrow, while failing to +control the stylized mouth shape. Furthermore, the speaking +styles of their created videos are significantly inconsistent +with those of the style reference. GC-AVT cannot preserve +the speaking identity well. Besides, both EAMM and GC- +AVT cannot produce plausible background. +In terms of lip-sync, only Wav2Lip, AVCT, PC-AVS, and +GC-AVT are competitive with our method, whereas they all +can be seen as merely modeling one neutral speaking style +in the mouth area, which makes achieving accurate lip-sync +an easier task. EAMM cannot achieve accurate lip-sync. In +contrast, our method can imitate speaking styles in the entire +face from arbitrary style clips while achieving accurate lip- +sync, satisfactory identity preservation, and producing plau- +sible backgrounds. +We conduct a user study to further validate the effective- +ness of our method and report the results in the supplemen- +tary materials. +Ablation Study +We conduct ablation studies on MEAD with six variants: +(1) replace the adaptive feedforward layer with the vanilla +feedforward layer (w/o DyFFN), (2)/(3) set K = 4/16 in +dynamic feedforward layer (K = 4/K = 16), (4) remove +the style discriminator Dstyle (w/o Dstyle), (5) remove triplet +loss (w/o Ltrip), (6) remove the lip-sync discriminator Dsync +(w/o Dsync), and (7) our full model (Full). The results are +shown in Table 2 and Figure 5. +Since all variants utilize the same image renderer, they +obtain similar SSIM and CPBD scores. The variant w/o +DyFFN obtain worse F-LMD, M-LMD and Syncconf scores +than the Full model, which demonstrates the effectiveness of +proposed style-aware dynamic decoder in modeling stylized +facial motions. We empirically observe that K = 8 is the +best setting for our task. Without Dstyle and Ltrip, the scores +of F-LMD and M-LMD also drop dramatically. This implies +that the style discriminator and the triplet constraint compel +our framework to better perceive the stylized facial motion +patterns. Without the supervision of Dsync, the results show +bad lip synchronization. +Style Space Inspection +Style Space Visualization +We project the style codes to +a 2D space using t-distributed stochastic neighbour embed- +ding (t-SNE) (Van der Maaten and Hinton 2008) . For clarity, +we select the speaking styles of 4 speakers from the MEAD +dataset. Each speaker has 22 speaking styles (7 emotions × +3 levels plus one neutral style). For each speaking style, we +randomly select 10 video clips to extract style codes. +In figure 4 (a), each speaker is marked with a distinct +color. As shown, the style codes of the same speaker cluster +in the style space. This implies that the speaking styles of +one speaker are more similar than those with the same emo- +tion. Figure 4 (b) shows the style codes from one speaker in +MEAD dataset. Each style code is marked with a color cor- +responding to its emotion and intensity. Each group of style +codes with the same emotion first gathers into one cluster. +In each cluster, the style codes of emotions with low inten- +sity are close to those of the neutral emotion. Notably, some +emotions show similar facial motion patterns, such as anger +vs disgust and surprise vs fear. Thus, their style codes are +close in the style space. The aforementioned observations +prove that our model is able to learn a semantically mean- +ingful style space. +Style Manipulation +Thanks to the meaningful style +space, our method can edit the speaking styles by manip- +ulating style codes. As shown in Figure 6, when linearly in- +terpolating between two style codes extracted from unseen +style clips, the speaking styles of generated videos transi- +tion smoothly. Through interpolation, our method is able to +control the style intensity (by interpolating the style with a +neutral style) and create new speaking styles. +Conclusion +In this paper, we propose a novel talking head genera- +tion framework, StyleTalk, which generates one-shot audio- +driven talking faces with diverse speaking styles. Our +method effectively extracts the speaking style from an arbi- +trary style reference video and then injects the style into the +facial animations of the target speaker using our proposed +style-controllable modules. In contrast to previous works, +our method captures the spatio-temporal co-activations of +the facial expressions from the style reference videos, thus +leading to authentic stylized talking face videos. Extensive +experiments demonstrate that our method creates photo- +realistic talking head videos with a conditional speaking +style while achieving more accurate lip-sync and better +identity-preservation compared with the state-of-the-art. +Acknowledgments +This work is supported by the 2022 Hangzhou Key Science +and Technology Innovation Program (No. 2022AIZD0054) +and the Key Research and Development Program of Zhe- +jiang Province (No. 2022C01011). This research is partially + +funded by the ARC-Discovery grants (DP220100800) and +ARC-DECRA (DE230100477). This work was supported in +part by the National Science Foundation of China (NSFC) +under Grant No. 62176134, by a grant from the Institute +Guo Qiang (2019GQG0002), Tsinghua University, and by +research and application on AI technologies for smart mo- +bility funded by SAIC Motor. +We would like to thank Xinya Ji, Borong Liang, Yan Pan +for their generous help with the comparisons. We would also +like to thank Lincheng Li and Zhimeng Zhang for helpful +discussions. +References +Blanz, V.; and Vetter, T. 1999. +A morphable model for +the synthesis of 3D faces. In Proceedings of the 26th an- +nual conference on Computer graphics and interactive tech- +niques, 187–194. +Chen, L.; Cui, G.; Kou, Z.; Zheng, H.; and Xu, C. 2020a. +What comprises a good talking-head video generation?: A +survey and benchmark. arXiv preprint arXiv:2005.03201. +Chen, L.; Cui, G.; Liu, C.; Li, Z.; Kou, Z.; Xu, Y.; and Xu, C. +2020b. Talking-head generation with rhythmic head motion. +In ECCV, 35–51. Springer. +Chen, L.; Li, Z.; Maddox, R. K.; Duan, Z.; and Xu, C. 2018. +Lip movements generation at a glance. In ECCV, 520–535. +Chen, L.; Maddox, R. K.; Duan, Z.; and Xu, C. 2019. Hier- +archical cross-modal talking face generation with dynamic +pixel-wise loss. In CVPR, 7832–7841. +Chung, J. S.; Jamaludin, A.; and Zisserman, A. 2017. You +said that? arXiv preprint arXiv:1705.02966. +Chung, J. S.; and Zisserman, A. 2016. Out of time: auto- +mated lip sync in the wild. In Asian conference on computer +vision, 251–263. Springer. +Das, D.; Biswas, S.; Sinha, S.; and Bhowmick, B. 2020. +Speech-driven facial animation using cascaded gans for +learning of motion and texture. +In ECCV, 408–424. +Springer. +Deng, Y.; Yang, J.; Xu, S.; Chen, D.; Jia, Y.; and Tong, +X. 2019. +Accurate 3d face reconstruction with weakly- +supervised learning: From single image to image set. +In +CVPRW, 0–0. +Dong, X.; and Shen, J. 2018. Triplet loss in siamese network +for object tracking. In ECCV, 459–474. +Fried, O.; Tewari, A.; Zollh¨ofer, M.; Finkelstein, A.; Shecht- +man, E.; Goldman, D. B.; Genova, K.; Jin, Z.; Theobalt, C.; +and Agrawala, M. 2019. Text-based editing of talking-head +video. ACM Transactions on Graphics (TOG), 38(4): 1–14. +Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; +Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. +2014. Generative adversarial nets. Advances in neural in- +formation processing systems, 27. +Guo, Y.; Chen, K.; Liang, S.; Liu, Y.; Bao, H.; and Zhang, J. +2021. AD-NeRF: Audio Driven Neural Radiance Fields for +Talking Head Synthesis. arXiv preprint arXiv:2103.11078. +Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image- +to-image translation with conditional adversarial networks. +In Proceedings of the IEEE conference on computer vision +and pattern recognition, 1125–1134. +Ji, X.; Zhou, H.; Wang, K.; Wu, Q.; Wu, W.; Xu, F.; and Cao, +X. 2022. +EAMM: One-Shot Emotional Talking Face via +Audio-Based Emotion-Aware Motion Model. arXiv preprint +arXiv:2205.15278. +Ji, X.; Zhou, H.; Wang, K.; Wu, W.; Loy, C. C.; Cao, X.; +and Xu, F. 2021. Audio-driven emotional video portraits. In +CVPR, 14080–14089. +Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; +and Aila, T. 2020. Analyzing and improving the image qual- +ity of stylegan. In CVPR, 8110–8119. +Kingma, D. P.; and Ba, J. 2014. +Adam: A method for +stochastic optimization. arXiv preprint arXiv:1412.6980. +Lahiri, A.; Kwatra, V.; Frueh, C.; Lewis, J.; and Bregler, C. +2021. LipSync3D: Data-Efficient Learning of Personalized +3D Talking Faces from Video using Pose and Lighting Nor- +malization. In CVPR, 2755–2764. +Li, L.; Wang, S.; Zhang, Z.; Ding, Y.; Zheng, Y.; Yu, X.; and +Fan, C. 2021. Write-a-speaker: Text-based Emotional and +Rhythmic Talking-head Generation. In AAAI, volume 35, +1911–1920. +Liang, B.; Pan, Y.; Guo, Z.; Zhou, H.; Hong, Z.; Han, X.; +Han, J.; Liu, J.; Ding, E.; and Wang, J. 2022. Expressive +talking head generation with granular audio-visual control. +In CVPR, 3387–3396. +Liu, X.; Xu, Y.; Wu, Q.; Zhou, H.; Wu, W.; and Zhou, B. +2022. +Semantic-aware implicit neural audio-driven video +portrait generation. arXiv preprint arXiv:2201.07786. +Narvekar, N. D.; and Karam, L. J. 2009. A no-reference per- +ceptual image sharpness metric based on a cumulative prob- +ability of blur detection. In 2009 International Workshop on +Quality of Multimedia Experience, 87–91. IEEE. +Prajwal, K.; Mukhopadhyay, R.; Namboodiri, V. P.; and +Jawahar, C. 2020. +A lip sync expert is all you need for +speech to lip generation in the wild. In Proceedings of the +28th ACM International Conference on Multimedia, 484– +492. +Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017. Pointnet: +Deep learning on point sets for 3d classification and segmen- +tation. In CVPR, 652–660. +Qian, S.; Tu, Z.; Zhi, Y.; Liu, W.; and Gao, S. 2021. Speech +drives templates: Co-speech gesture synthesis with learned +templates. In ICCV, 11077–11086. +Ren, Y.; Li, G.; Chen, Y.; Li, T. H.; and Liu, S. 2021. Piren- +derer: Controllable portrait image generation via semantic +neural rendering. In ICCV, 13759–13768. +Sadoughi, N.; and Busso, C. 2019. Speech-driven expressive +talking lips with conditional sequential generative adversar- +ial networks. IEEE Transactions on Affective Computing, +12(4): 1031–1044. +Safari, P.; India, M.; and Hernando, J. 2020. Self-attention +encoding and pooling for speaker recognition. +arXiv +preprint arXiv:2008.01077. + +Siarohin, A.; Lathuili`ere, S.; Tulyakov, S.; Ricci, E.; and +Sebe, N. 2019. First order motion model for image anima- +tion. Advances in Neural Information Processing Systems, +32: 7137–7147. +Sinha, S.; Biswas, S.; Yadav, R.; and Bhowmick, B. 2022. +Emotion-Controllable Generalized Talking Face Genera- +tion. arXiv preprint arXiv:2205.01155. +Snyder, D.; Garcia-Romero, D.; Sell, G.; Povey, D.; and +Khudanpur, S. 2018. +X-vectors: Robust dnn embeddings +for speaker recognition. In 2018 IEEE international confer- +ence on acoustics, speech and signal processing (ICASSP), +5329–5333. IEEE. +Song, L.; Wu, W.; Qian, C.; He, R.; and Loy, C. C. 2020. +Everybody’s talkin’: Let me talk as you want. arXiv preprint +arXiv:2001.05201. +Song, Y.; Zhu, J.; Li, D.; Wang, X.; and Qi, H. 2018. Talk- +ing face generation by conditional recurrent adversarial net- +work. arXiv preprint arXiv:1804.04786. +Suwajanakorn, +S.; +Seitz, +S. +M.; +and +Kemelmacher- +Shlizerman, I. 2017. Synthesizing obama: learning lip sync +from audio. ACM Transactions on Graphics (ToG), 36(4): +1–13. +Thies, J.; Elgharib, M.; Tewari, A.; Theobalt, C.; and +Nießner, M. 2020. Neural voice puppetry: Audio-driven fa- +cial reenactment. In ECCV, 716–731. Springer. +Van der Maaten, L.; and Hinton, G. 2008. Visualizing data +using t-SNE. Journal of machine learning research, 9(11). +Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, +L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At- +tention is all you need. In Advances in neural information +processing systems, 5998–6008. +Vougioukas, K.; Petridis, S.; and Pantic, M. 2019. Realis- +tic speech-driven facial animation with gans. International +Journal of Computer Vision, 1–16. +Wang, K.; Wu, Q.; Song, L.; Yang, Z.; Wu, W.; Qian, C.; +He, R.; Qiao, Y.; and Loy, C. C. 2020. Mead: A large-scale +audio-visual dataset for emotional talking-face generation. +In ECCV, 700–717. Springer. +Wang, S.; Li, L.; Ding, Y.; Fan, C.; and Yu, X. 2021. Au- +dio2Head: Audio-driven One-shot Talking-head Generation +with Natural Head Motion. IJCAI. +Wang, S.; Li, L.; Ding, Y.; and Yu, X. 2022. One-shot talk- +ing face generation from single-speaker audio-visual corre- +lation learning. In Proceedings of the AAAI Conference on +Artificial Intelligence, volume 36, 2531–2539. +Wang, W.; and Tu, Z. 2020. Rethinking the value of trans- +former components. +In Proceedings of the 28th Inter- +national Conference on Computational Linguistics, 6019– +6029. +Wang, Z.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P. +2004. +Image quality assessment: from error visibility to +structural similarity. IEEE transactions on image process- +ing, 13(4): 600–612. +Wiles, O.; Koepke, A.; and Zisserman, A. 2018. X2face: A +network for controlling face generation using images, audio, +and pose codes. In ECCV, 670–686. +Wu, H.; Jia, J.; Wang, H.; Dou, Y.; Duan, C.; and Deng, Q. +2021. Imitating arbitrary talking style for realistic audio- +driven talking face synthesis. In Proceedings of the 29th +ACM International Conference on Multimedia, 1478–1486. +Yang, B.; Bender, G.; Le, Q. V.; and Ngiam, J. 2019. Cond- +conv: Conditionally parameterized convolutions for efficient +inference. Advances in Neural Information Processing Sys- +tems, 32. +Yi, R.; Ye, Z.; Zhang, J.; Bao, H.; and Liu, Y.-J. +2020. +Audio-driven talking face video generation with +learning-based personalized head pose. +arXiv preprint +arXiv:2002.10137. +Yin, F.; Zhang, Y.; Cun, X.; Cao, M.; Fan, Y.; Wang, X.; Bai, +Q.; Wu, B.; Wang, J.; and Yang, Y. 2022. Styleheat: One- +shot high-resolution editable talking face generation via pre- +trained stylegan. arXiv preprint arXiv:2203.04036. +Yu, X.; Fernando, B.; Ghanem, B.; Porikli, F.; and Hartley, +R. 2018. Face super-resolution guided by facial component +heatmaps. In ECCV, 217–233. +Yu, X.; and Porikli, F. 2017a. Face hallucination with tiny +unaligned images by transformative discriminative neural +networks. In AAAI. +Yu, X.; and Porikli, F. 2017b. +Hallucinating very low- +resolution unaligned and noisy face images by transforma- +tive discriminative autoencoders. In CVPR, 3760–3768. +Zhang, C.; Ni, S.; Fan, Z.; Li, H.; Zeng, M.; Budagavi, M.; +and Guo, X. 2021a. 3d talking face with personalized pose +dynamics. IEEE Transactions on Visualization and Com- +puter Graphics. +Zhang, C.; Zhao, Y.; Huang, Y.; Zeng, M.; Ni, S.; Budagavi, +M.; and Guo, X. 2021b. FACIAL: Synthesizing Dynamic +Talking Face with Implicit Attribute Learning. +In ICCV, +3867–3876. +Zhang, Z.; Li, L.; Ding, Y.; and Fan, C. 2021c. Flow-Guided +One-Shot Talking Face Generation With a High-Resolution +Audio-Visual Dataset. In CVPR, 3661–3670. +Zhou, H.; Liu, Y.; Liu, Z.; Luo, P.; and Wang, X. 2019. +Talking face generation by adversarially disentangled audio- +visual representation. In AAAI, volume 33, 9299–9306. +Zhou, H.; Sun, Y.; Wu, W.; Loy, C. C.; Wang, X.; and Liu, +Z. 2021. Pose-controllable talking face generation by im- +plicitly modularized audio-visual representation. In CVPR, +4176–4186. +Zhou, Y.; Han, X.; Shechtman, E.; Echevarria, J.; Kaloger- +akis, E.; and Li, D. 2020. +MakeltTalk: speaker-aware +talking-head animation. +ACM Transactions on Graphics +(TOG), 39(6): 1–15. +Zhu, H.; Luo, M.-D.; Wang, R.; Zheng, A.-H.; and He, R. +2021. Deep audio-visual learning: A survey. International +Journal of Automation and Computing, 1–26. + diff --git a/TdAzT4oBgHgl3EQfJfuh/content/tmp_files/load_file.txt b/TdAzT4oBgHgl3EQfJfuh/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..61c3c9b5a9c567583321cf357599fcc602411bb9 --- /dev/null +++ b/TdAzT4oBgHgl3EQfJfuh/content/tmp_files/load_file.txt @@ -0,0 +1,1234 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf,len=1233 +page_content='StyleTalk: One-shot Talking Head Generation with Controllable Speaking Styles Yifeng Ma1*, Suzhen Wang2, Zhipeng Hu2,3, Changjie Fan2, Tangjie Lv2, Yu Ding2,3†, Zhidong Deng1†, Xin Yu4 1 Department of Computer Science and Technology, BNRist, THUAI, State Key Laboratory of Intelligent Technology and Systems, Tsinghua University 2 Virtual Human Group, Netease Fuxi AI Lab, 3 Zhejiang University 4 University of Technology Sydney {wangsuzhen, zphu, fanchangjie, hzlvtangjie, dingyu01}@corp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='netease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='com mayf18@mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='cn, michael@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='cn, xin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='yu@uts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='au Abstract Different people speak with diverse personalized speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expres- sions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To tackle this problem, we propose a one-shot style-controllable talking face generation framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In a nutshell, we aim to attain a speaking style from an arbitrary reference speak- ing video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Specifically, we first develop a style encoder to extract dy- namic facial motion patterns of a style reference video and then encode them into a style code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Afterward, we intro- duce a style-controllable decoder to synthesize stylized fa- cial animations from the speech content and style code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In order to integrate the reference speaking style into gener- ated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Thanks to the style- aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during de- coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Project Page: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='com/FuxiVirtualHuman/styletalk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Introduction Audio-driven photo-realistic talking head generation has drawn growing attention due to its broad applications in virtual human creation, visual dubbing, and short video creation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The past few years have witnessed tremendous progress in accurate lip synchronization (Prajwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022), head pose generation (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021) and high-fidelity video generation (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021c;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' However, existing one-shot based works pay less attention to modeling diverse speaking styles, thus failing to produce expressive talking head videos with various styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In real-world scenarios, different people speak the same utterance with significantly diverse personalized speaking Work done at Netease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' †Corresponding authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' identity reference driving audio style reference video A output with speaking style A output with speaking style B style reference video B Figure 1: Illustration of our proposed framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Given the one-shot image of the target speaker, our approach produces stylized photo-realistic talking faces, in which the speaker speaks the audio content with different speaking styles as shown in the additional style reference videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Note that speech content is not from the style reference video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Even for the same person, the speaking styles vary in different situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Due to such significant diversities, creat- ing style-controllable talking heads is still a great challenge, especially in the one-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In previous work (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Sinha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022), the speaking style is merely denoted as discrete emotion classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Such a formulation is far from representing flexible speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Although some recent methods (Ji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022) can control facial expressions by involving an additional emo- tional source video, they mainly transfer the facial motion characteristics in a frame-by-frame fashion without model- ing the temporal dynamics of facial expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Therefore, a universal spatio-temporal representation of speaking styles is highly desirable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Here, we denote speaking styles as personalized dynamic facial motion patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We aim to generate stylized photo- realistic talking videos for a one-shot speaker image, in which the speaker speaks the given audio content with the speaking style extracted from a style reference video (style clip).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Specifically, we design a novel style-controllable talking head generation framework, called StyleTalk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our framework first encodes the style clip and the input audio into the corresponding latent features, and then uses them as arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='01081v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='CV] 3 Jan 2023 Transformer Encoder Self-attention Pooling Text: Hello Ph: HH,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='… Audio Encoder 𝑬𝑎 … … … … Image Renderer 𝑬𝑟 style reference video 𝑉 expression parameters 𝜹1:𝑁 Style Encoder 𝑬𝑠 phoneme labels 𝐴 audio 𝒂𝑡−𝑤:𝑡+𝑤 𝒂′𝑡−𝑤:𝑡+𝑤 style code 𝒔 reference image 𝑰𝒓 Multi-head Attention FC ReLU FC softmax 𝑾1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 𝒃1 𝑾2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 𝒃2 𝑾𝑘,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 𝒃𝑘 𝜋1 𝜋2 𝜋𝑘 … … ∗ ∗ ∗ 𝒙′ = ෪ 𝑾𝑻 𝒙 + ෩𝒃 Feed-forward Layers ෪ 𝑾,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' ෩𝒃,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' … … 𝒙 query key value calculation of attention attention expert weights Style-aware Adaptive Layer × 𝑵 Style-controllable Dynamic Decoder 𝑬𝑑 generated expression parameters \u0de1𝜹1:𝑇 Mouth Discriminator 𝑫sync Style Discriminator 𝑫style Temporal Discriminator 𝑫tem 𝒔 … … 𝒂′𝑡−𝑤:𝑡+𝑤 style code audio feature audio feature 3DMM (a) StyleTalk Framework (b) Style-controllable Dynamic Decoder Figure 2: (a) The pipeline of StyleTalk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our framework first extracts sequential 3DMM expression parameters δ1:N from the style reference video V and then feeds them into the style encoder Es to obtain the style code s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' An audio encoder Ea encodes phoneme labels into audio features a′ t−w,t+w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Then the style-controllable dynamic decoder Ed generates the stylized expression parameters ˆδ with s and a′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Finally, the image renderer Er takes the expression parameters ˆδ and the identity reference image Ir as input and generates the output video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (b) The style-controllable dynamic decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' the input of a style-controllable dynamic decoder to obtain the stylized 3D facial animations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Finally, an image renderer (Ren et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021) takes the 3D facial animations and the ref- erence image as input to generate talking faces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To be specific, our primary goal is to obtain a universal style encoder that is able to model the facial motion patterns from arbitrary style clips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Here, we employ a transformer- based (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017) style encoder with self-attention pooling layers (Safari, India, and Hernando 2020) to ex- tract the latent style code from the sequential 3D Morphable Model (3DMM) (Blanz and Vetter 1999) expression param- eters of one style clip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In particular, we introduce a triplet constraint on the style code space, enabling the universal style extractor to be applicable to unseen style clips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Fur- thermore, we observe that the learned style codes would lie in a semantically meaningful space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Driving a one-shot talking head with different speaking styles is also a challenging one-to-many mapping problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Although style codes can serve as the condition and trans- form an ambiguous one-to-many mapping into a conditional one-to-one mapping (Qian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021), we still observe un- satisfactory lip-sync and visual artifacts when talking faces exhibit large facial motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To solve this issue, we pro- pose a style-controllable dynamic transformer as our de- coder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Inspired by Wang and Tu (2020), we found that the feed-forward layers following the multi-head attention are of great importance to style manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Hence, we pro- pose to adaptively generate the kernel weights of the feed- forward layers based on the style code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Specifically, we ap- ply an attention mechanism over K kernels conditioning on style codes to modulate stylized facial expressions of the target face adaptively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Thanks to this adaptive mechanism, our method turns the one-to-many mapping problem (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022) to the style-controllable one-to-one mapping in the one-shot setting, thus effectively improving the lip-sync in different styles and producing more convincing facial ex- pressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Extensive experiments demonstrate that our method can generate photo-realistic talking faces with diverse speak- ing styles while achieving accurate lip synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our contributions are summarized as: We propose a novel one-shot style-controllable audio- driven talking face generation framework, which creates authentic talking videos with diverse styles from one tar- get speaker image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We propose a universal style extractor that can effectively learn talking styles from unseen speaking style clips, thus facilitating the generation of diverse stylized talking head videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Benefiting from our proposed style-controllable dynamic transformer decoder, we successfully produce accurate stylized lip-sync and natural stylized facial expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Related Work Audio-Driven Talking Head Generation With the in- creasing demand for virtual human creation, driving talking head with audio (Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020a) has attracted considerable attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Audio-driven methods can be classified into two categories: person-specific and person- agnostic methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Person-specific methods (Suwajanakorn, Seitz, and Kemelmacher-Shlizerman 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Fried et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019) are only applied for speakers seen during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Most person- specific methods (Yi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Thies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Song et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Lahiri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021a,b) first produce 3D facial animations and then synthesize photo-realistic talking videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Recently, Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2021) and Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2022) introduce neural radiance fields for high-fidelity talking head generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Person-agnostic methods aim to generate talking head videos in a one-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The early methods (Chung, Ja- maludin, and Zisserman 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Song et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Song et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Vougioukas, Petridis, and Pantic 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020) focus only on creating accurate mouth movements that are syn- chronized with the speech content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' With the development of deep learning, a number of methods (Wiles, Koepke, and Zisserman 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Pra- jwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021c;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022) start to produce more natural talking faces by taking the facial expressions and head poses into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Although the aforementioned methods can generate videos for arbitrary speakers, none of these methods is able to create expressive stylized talking head videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Stylized Talking Head Generation Although the expres- sive facial expressions is crucial in vivid talking head gen- eration, only a few methods (Sadoughi and Busso 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Vougioukas, Petridis, and Pantic 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Sinha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022) take it into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2021) extract disentangled content and emotion informa- tion from audio, and then produce videos guided by the predicted landmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' However, determining emotions only from audio may lead to ambiguities (Ji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022), lim- iting the applicability of an emotional talking face model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2020) and Sinha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2022) create emotion- controllable talking faces by employing the explicit emotion labels as input, which drop the formulation of personalized differences in speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2022) and Liang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2022) generate expressive talking head by transferring the expressions in an additional emotional source video to the target speaker frame-by-frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To sum up, none of the pre- vious works captures the spatial and temporal co-activations of facial expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Proposed Method In this paper, we propose a novel framework for generating the style-controllable talking faces with three inputs: (1) the reference image Ir of the target speaker;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2) the audio clip A of length T that provides the speech content;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (3) the style reference talking video V = Is 1:N of length N, called style clip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our framework can create photo-realistic taking videos Y = ˆI1:T in which the target speaker speaks the speech content with the speaking style reflected in the style clip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' As shown in Figure 2, the proposed framework consists of four components: (1) an audio encoder Ea which extracts the sequential pure articulation-related features a′ 1:T from phoneme labels a1:T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2) a style encoder Es that encodes the facial motion patterns in the style clip into the compact style code s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (3) a style-controllable dynamic decoder Ed which produces the stylized 3DMM expression parameters ˆδ1:T from the audio features and the style code;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (4) an im- age renderer Er which generates the photo-realistic talking faces using the reference image and the expression param- eters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We employ PIRenderer (Ren et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021) as the ren- derer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We adopt the training strategy proposed in Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2022) by taking the assembled input {Ir, at−w,t+w, V } in a sliding window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' w is the window length and is set to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Audio Encoder The audio encoder Ea is expected to extract the articulation- related information from the audio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' However, We observe that audio contains some articulation-irrelevant information, such as the emotion and the intensity, that affects the speak- ing style of the output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To remove such information, we adopt the phoneme labels instead of acoustics features (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=', Mel Frequency Cepstrum Coefficients (MFCC)) to represent the audio signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The phoneme labels at−w:t+w are con- verted to word embeddings and then fed to a transformer encoder to obtain audio features a′ t−w:t+w, a′ t ∈ R256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The phoneme is extracted by a speech recognition tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Style Encoder The style encoder Es extracts the speaking style reflected in the style clip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Since the speaking style is the dynamic fa- cial motion patterns, it is irrelevant to the style clip’s face shape, texture, and illumination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To remove such informa- tion, we employ the 3DMM (Deng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019) to convert the style video clip to the the sequential expression parame- ters δ1:N ∈ RN×64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Unlike previous methods that merely transfer the static expressions of the static images (Ji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022), we design a style encoder to model the dynamic facial motion patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' A transformer encoder takes the sequen- tial 3DMM expression parameters as the input tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Af- ter modeling the temporal correlation between tokens, the encoder outputs the style vectors of each token, s′ 1:N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Intu- itively, the speaking style in the video clip can be identified by a few typical frames, so we employ a self-attention pool- ing layer (Safari, India, and Hernando 2020) to aggregate the style information over the style vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Specifically, this layer adopts an additive attention-based mechanism, which computes the token-level attention weights using a feed- forward network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The token-level attention weights repre- sent the frame-level contributions to the video-level style code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We sum all the style vectors multiplied by the attention weights to get the final style code s ∈ Rds, s = softmax(WsH)HT , (1) where Ws ∈ R1×ds is a trainable parameter, H = [s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='sN] ∈ Rds×N is the sequence of the encoded fea- tures, ds is the dimension of each style vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Style-Controllable Dynamic Decoder At the early stage, we employ the vanilla transformer de- coder, which takes the articulation representations a′ t−w:t+w and the style code s as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Specifically, we repeat the style code 2w +1 times and then add them with positional encod- ings to obtain the style tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The style tokens serve as the query of the transformer decoder, and the latent articulation representations serve as the key and value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The middle out- put token is fed into a feed-forward network to generate the output expression parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' When utilizing the aforementioned decoder, we observe the defective lip movements and facial expressions when MEAD HDTF Method SSIM↑ CPBD↑ F-LMD ↓ M-LMD ↓ Syncconf↑ SSIM↑ CPBD↑ F-LMD ↓ M-LMD ↓ Syncconf↑ MakeitTalk 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='106 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='969 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='324 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='593 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='248 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='084 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='447 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='563 Wav2Lip 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='795 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='178 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='718 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='052 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='257 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='618 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='299 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='544 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='630 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='072 PC-AVS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='071 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='828 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='970 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='183 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='422 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='132 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='506 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='931 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='701 AVCT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='832 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='139 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='923 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='520 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='525 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='755 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='233 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='733 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='610 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='147 GC-AVT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='340 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='142 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='039 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='103 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='417 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='337 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='296 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='537 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='206 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='772 EAMM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='397 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='084 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='698 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='478 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='405 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='387 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='144 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='031 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='857 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='799 Ground Truth 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='222 0 0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='131 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='307 0 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='961 Ours 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='164 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='122 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='249 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='474 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='302 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='941 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='412 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='165 Table 1: The quantitative results on MEAD and HDTF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' generating stylized talking faces with large facial move- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Inspired by Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2019) and Karras et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2020), we assume that the static kernel weights cannot model the diverse speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' With this assumption, we design a style-aware adaptive transformer, which dynam- ically adjusts the network weights according to the style code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Specifically, since Wang and Tu (2020) reveals that the feed-forward layers play the most important role in trans- former decoder, we replace the feed-forward layers with novel style-aware adaptive feed-forward layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The style- aware adaptive layer utilizes K = 8 parallel sets of weights ˜ W k, ˜bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Such parallel weights are expected to be the ex- perts for modeling the distinct facial motion patterns of the different speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Then we introduce the additional layers followed by Softmax to adaptively compute the atten- tion weights over each set of weights depending on the style code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Then the feed-forward layer weights are aggregated dynamically via the attention weights: ˜ W (s) = K � k=1 πk(s) ˜ W k, ˜b(s) = K � k=1 πk(s)˜bk, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 0 ≤ πk(s) ≤ 1, K � k=1 πk(s) = 1, (2) where πk is the attention weight for kth feed-forward layer weights ˜ W k, ˜bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The output of style-controllable dynamic feed-forward layers is then obtained by: y = g � ˜ W T (s)x + ˜b(s) � , (3) where g is an activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our experiments show that the style-controllable dynamic decoder helps to create accu- rate stylized lip movements and natural stylized facial ex- pressions in diverse speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Disentanglement of Upper and Lower faces In experiments, we observe that the upper face and the lower face have different motion patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The upper face (eye, eyebrow) moves in low frequency while the lower face (mouth) moves in high frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Therefore, it is reasonable to model the motion patterns of the two parts with separate networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We first divide expression parameters into the lower face group and the upper face group and then utilize two parallel style-controllable dynamic decoders, called the upper face decoder and the lower face decoder, to generate the corre- sponding group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We select 13 out of 64 expression parame- ters that are highly related to mouth movements as the lower face group, and the other parameters as the upper face group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The selected mouth-related PCA expression bases are re- ported in the supplementary materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The two groups of generated expression parameters are concatenated to obtain the final generated expression parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Objective Function Design Since our framework generates each frame individually, we adopt a batched sequential training strategy to improve the temporal consistency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Specifically, we generate successive L = 64 frames δ1:L at one time as a clip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We then feed these frames into three discriminators: a temporal discriminator Dtem, a vertex-based lip-sync discriminator Dsync, and a style discriminator Dstyle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In addition, we employ the triplet constraint to obtain a semantically meaningful style space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Lip-sync Discriminator Because the mouth shape varies in different speaking styles, it is extremely challenging to achieve accurate lip synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Inspired by Prajwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (2020), we designed a lip-sync discriminator Dsync, which is trained to discriminate the synchronization between audio and mouth by randomly sampling an audio window that is either synchronous or asynchronous with a video win- dow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In the 3DMM, the mouth-related PCA bases also con- trol other facial movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To extract pure mouth shape representation, we first convert expression parameters into face mesh using PCA bases and then pick out the mouth vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Instead of feeding images and acoustic features in the original SyncNet (Chung and Zisserman 2016), we feed the mesh vertex coordinates and phonemes respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We use the PointNet(Qi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017) as the mouth encoder to ex- tract the mouth embedding em, and a phoneme encoder to compute the audio embedding ea from the phoneme win- dow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We adopt cosine similarity to indicate the probability that em and ea are synchronous: Psync = em · ea max(∥em∥2 · ∥ea∥2, ϵ), (4) Mouth GT Wav2Lip PC-AVS AVCT GC-AVT EAMM Ours Audio Speaker Style reference Mouth GT Wav2Lip PC-AVS AVCT GC-AVT EAMM Ours Audio Speaker Style reference Figure 3: Qualitative comparisons with the person agnostic methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The identity reference, style reference videos and audio- synced videos are shown in the first two rows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Please zoom in or see our demo video for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' where ϵ is a small constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Dm is pretrained and frozen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our proposed framework maximize synchronous probability via a sync loss Lsync on each frame of the generated clip: Lsync = 1 L L � i=1 −log(P i sync).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (5) Style Discriminator The style discriminator Dstyle is trained to determine the speaking style of the input sequen- tial 3DMM expression parameters δ1:L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Specifically, the style discriminator produces the probability P s ∈ RC that the sequence of parameters belongs to each speaking style.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' C denotes the number of speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The style dis- criminator follows the structure of PatchGAN (Goodfellow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Isola et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yu and Porikli 2017a,b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='The style discriminator is trained using cross- entropy loss and then frozen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The style discriminator guides the framework to generate vivid speaking styles via a style loss Lstyle: Lstyle = −log(P s i ), (6) where i is the category of the ground-truth speaking style.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Temporal Discriminator The temporal discriminator Dtem learns to distinguish the realness of the input se- quences of 3DMM expression parameters δ1:L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Dtem fol- lows the structure of PatchGAN and is trained jointly with the framework by employing a GAN hinge loss Ltem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Triplet Constraint Intuitively, the style codes of similar speaking styles should cluster in the style space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We employ a style triplet constraint on style codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Given the style clip V c with the speaking style c, we randomly sample two other style clips V p c, V n c , which are and are not with the speaking style c, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Then we obtain the corresponding style codes sc, sp c and sn c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We constrain their distances in the style space with the triplet loss (Dong and Shen 2018): Ltrip = max{∥sc − sp c∥2 − ∥sc − sn c ∥2 + γ, 0}, (7) where γ is the margin parameter and is set to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Total Loss During training, we reconstruct the facial ex- pressions of each clip in the self-driven setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We adopt a combination of the L1 loss and the structural similarity (SSIM) loss (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2004): Lrec = µLL1(δ1:L, ˆδ1:L) + (1 − µ)Lssim(δ1:L, ˆδ1:L), (8) where δ1:L and ˆδ1:L are the ground truth and reconstructed facial expressions respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' µ is a ratio coefficient and is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our total loss is given by a combination of the aforementioned loss terms: L = λrec Lrec + λtrip Ltrip + λsync Lsync + +λtem Ltem + λstyle Lstyle , (9) where we use λrec = 88, λtrip = 1, λsync = 1, λtem = 1 and λstyle = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' neutral intensity (a) (b) Figure 4: (a) Visualization of the style codes of four speakers in MEAD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' (b) Visualization of the emotional style codes of the speaker W011 in MEAD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Darker colors indicate higher emotion intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' w/o DyFFN w/o ℒtrip w/o 𝐷style source image mouth GT style reference Full 𝐾 = 16 w/o 𝐷sync 𝐾 = 4 Figure 5: Qualitative results of the ablation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Style 1 Style 2 Figure 6: Interpolation results between 2 speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Experiments Datasets To learn a universal style extractor, we require a dataset with adequately diverse speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We con- struct our dataset based on the widely used datasets, MEAD (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020) and HDTF (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' MEAD is a in-the-lab talking-face corpus in which 60 speakers speak with three different intensity levels of eight emo- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' HDTF is a high-resolution in-the-wild audio-visual dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' For MEAD, we assume that the video clips, where the speaker speaks with the same emotion at the same in- tensity level, share the same speaking style.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' For HDTF, we assume that the video clips from one speaker share the same speaking style.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Finally, we obtain 1104 speaking styles in the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The original videos are cropped and resized to 256×256 pixels as in FOMM (Siarohin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019), and sampled at the rate of 30 FPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Implementation Details Our framework is implemented by Pytorch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We employ Adam optimizer (Kingma and Ba 2014) for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Er is trained on the combination of Vox- Celeb (Snyder et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018), MEAD, HDTF datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Dsync and Dstyle are trained on HDTF and MEAD for 12 hours on 4 RTX 3090 GPU with a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Er, Dsync, Dstyle is then frozen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ea, Es, Ed and Dtem are trained jointly on HDTF and MEAD for 4 hours on 2 RTX 3090 Method SSIM↑ CPBD↑ F-LMD ↓ M-LMD ↓ Syncconf↑ w/o DyFFN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='830 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='165 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='414 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='178 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='059 K = 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='831 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='163 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='327 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='524 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='331 K = 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='835 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='161 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='133 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='396 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='473 w/o Dstyle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='836 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='160 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='483 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='628 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='430 w/o Ltrip 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='160 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='401 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='771 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='532 w/o Dsync 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='164 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='281 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='351 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='305 Full (K = 8) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='164 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='122 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='249 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='474 Table 2: Quantitive results of the ablation study on MEAD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' GPU with a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Quantitative Evaluation We conduct quantitative evaluations on several widely used metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To evaluate the lip synchronization, we adopt the confidence score of SyncNet (Chung and Zisserman 2016) (Syncconf) and the Landmark Distance around mouths (M- LMD) (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To evaluate the accuracy of gen- erated facial expressions, we adopt the Landmark Distance on the whole face (F-LMD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' To evaluate the quality of gen- erated talking head videos, we adopt SSIM, and the Cumu- lative Probability of Blur Detection (CPBD) (Narvekar and Karam 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We compare our method with state-of-the-art methods in- cluding: MakeitTalk (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020), Wav2Lip (Prajwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020), PC-AVS (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021), AVCT (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022), GC-AVT (Liang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022), and EAMM(Ji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We conduct the experiments in the self-driven set- ting on the test set, where the speaker and the speaking style are not seen during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We select the first image of each video as the reference image, and the corresponding audio clip as the audio input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The samples of the compared methods are generated either with their released codes or with the help of their authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Since Wav2Lip only generates movements of the mouth area, the head poses are fixed in its samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' For other methods, poses are derived from ground truth videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The results of the quantitative evaluation are reported in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our method achieves the best performance among most metrics on MEAD and HDTF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Since Wav2Lip merely gen- erates mouth movements and does not change other parts of the reference images, it obtains the highest CPBD score on MEAD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' However, the mouth area generated by Wav2Lip is blurry (See Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Since Wav2Lip is trained using Person ID 5 M005 000 Aubue M007 0000 contempt w011 disgusted a W023 Sn fear happy sad surprisedkiddingme!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='Thisisamazing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content="I'm soSyncNet as a discriminator, it is reasonable for Wav2Lip to obtain the highest confidence score of SyncNet on MEAD." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The score is even higher than that of the ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our confidence score of SyncNet is closest to ground truth on MEAD and the highest on HDTF dataset, and our M-LMD scores are the best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' This means that our method is able to achieve accurate lip-sync.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Besides, our method achieves the best performance under the F-LMD metric, which means our method is able to produce facial expressions following the reference speaking style.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Qualitative Evaluation We compare our method with speaker-agnostic (one-shot) methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The results of are displayed in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The iden- tity reference, style reference, and audio are all unseen dur- ing training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' As can be seen, our method is able to gener- ate talking faces with reference speaking style while achiev- ing accurate lip-sync and preserving speaker identity bet- ter(please see our demo video).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Among all methods, only EAMM, GC-AVT, and our method achieve speaking style control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' However, EAMM and GC-AVT can only control the speaking styles reflected in the upper face, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=', eye, and eyebrow, while failing to control the stylized mouth shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Furthermore, the speaking styles of their created videos are significantly inconsistent with those of the style reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' GC-AVT cannot preserve the speaking identity well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Besides, both EAMM and GC- AVT cannot produce plausible background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In terms of lip-sync, only Wav2Lip, AVCT, PC-AVS, and GC-AVT are competitive with our method, whereas they all can be seen as merely modeling one neutral speaking style in the mouth area, which makes achieving accurate lip-sync an easier task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' EAMM cannot achieve accurate lip-sync.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In contrast, our method can imitate speaking styles in the entire face from arbitrary style clips while achieving accurate lip- sync, satisfactory identity preservation, and producing plau- sible backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We conduct a user study to further validate the effective- ness of our method and report the results in the supplemen- tary materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ablation Study We conduct ablation studies on MEAD with six variants: (1) replace the adaptive feedforward layer with the vanilla feedforward layer (w/o DyFFN), (2)/(3) set K = 4/16 in dynamic feedforward layer (K = 4/K = 16), (4) remove the style discriminator Dstyle (w/o Dstyle), (5) remove triplet loss (w/o Ltrip), (6) remove the lip-sync discriminator Dsync (w/o Dsync), and (7) our full model (Full).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The results are shown in Table 2 and Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Since all variants utilize the same image renderer, they obtain similar SSIM and CPBD scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The variant w/o DyFFN obtain worse F-LMD, M-LMD and Syncconf scores than the Full model, which demonstrates the effectiveness of proposed style-aware dynamic decoder in modeling stylized facial motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We empirically observe that K = 8 is the best setting for our task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Without Dstyle and Ltrip, the scores of F-LMD and M-LMD also drop dramatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' This implies that the style discriminator and the triplet constraint compel our framework to better perceive the stylized facial motion patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Without the supervision of Dsync, the results show bad lip synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Style Space Inspection Style Space Visualization We project the style codes to a 2D space using t-distributed stochastic neighbour embed- ding (t-SNE) (Van der Maaten and Hinton 2008) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' For clarity, we select the speaking styles of 4 speakers from the MEAD dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Each speaker has 22 speaking styles (7 emotions × 3 levels plus one neutral style).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' For each speaking style, we randomly select 10 video clips to extract style codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In figure 4 (a), each speaker is marked with a distinct color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' As shown, the style codes of the same speaker cluster in the style space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' This implies that the speaking styles of one speaker are more similar than those with the same emo- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Figure 4 (b) shows the style codes from one speaker in MEAD dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Each style code is marked with a color cor- responding to its emotion and intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Each group of style codes with the same emotion first gathers into one cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In each cluster, the style codes of emotions with low inten- sity are close to those of the neutral emotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Notably, some emotions show similar facial motion patterns, such as anger vs disgust and surprise vs fear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Thus, their style codes are close in the style space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' The aforementioned observations prove that our model is able to learn a semantically mean- ingful style space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Style Manipulation Thanks to the meaningful style space, our method can edit the speaking styles by manip- ulating style codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' As shown in Figure 6, when linearly in- terpolating between two style codes extracted from unseen style clips, the speaking styles of generated videos transi- tion smoothly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Through interpolation, our method is able to control the style intensity (by interpolating the style with a neutral style) and create new speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Conclusion In this paper, we propose a novel talking head genera- tion framework, StyleTalk, which generates one-shot audio- driven talking faces with diverse speaking styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Our method effectively extracts the speaking style from an arbi- trary style reference video and then injects the style into the facial animations of the target speaker using our proposed style-controllable modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In contrast to previous works, our method captures the spatio-temporal co-activations of the facial expressions from the style reference videos, thus leading to authentic stylized talking face videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Extensive experiments demonstrate that our method creates photo- realistic talking head videos with a conditional speaking style while achieving more accurate lip-sync and better identity-preservation compared with the state-of-the-art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Acknowledgments This work is supported by the 2022 Hangzhou Key Science and Technology Innovation Program (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022AIZD0054) and the Key Research and Development Program of Zhe- jiang Province (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022C01011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' This research is partially funded by the ARC-Discovery grants (DP220100800) and ARC-DECRA (DE230100477).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' This work was supported in part by the National Science Foundation of China (NSFC) under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 62176134, by a grant from the Institute Guo Qiang (2019GQG0002), Tsinghua University, and by research and application on AI technologies for smart mo- bility funded by SAIC Motor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We would like to thank Xinya Ji, Borong Liang, Yan Pan for their generous help with the comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' We would also like to thank Lincheng Li and Zhimeng Zhang for helpful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' References Blanz, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Vetter, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' A morphable model for the synthesis of 3D faces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In Proceedings of the 26th an- nual conference on Computer graphics and interactive tech- niques, 187–194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Cui, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Kou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zheng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' What comprises a good talking-head video generation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' : A survey and benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='03201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Cui, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Kou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Talking-head generation with rhythmic head motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ECCV, 35–51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Maddox, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Duan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Lip movements generation at a glance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ECCV, 520–535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Maddox, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Duan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Hier- archical cross-modal talking face generation with dynamic pixel-wise loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPR, 7832–7841.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Jamaludin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Zisserman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' You said that?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='02966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Zisserman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Out of time: auto- mated lip sync in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In Asian conference on computer vision, 251–263.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Das, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Biswas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Sinha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Bhowmick, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Speech-driven facial animation using cascaded gans for learning of motion and texture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ECCV, 408–424.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Deng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Xu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Jia, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Tong, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Accurate 3d face reconstruction with weakly- supervised learning: From single image to image set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPRW, 0–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Dong, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Shen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Triplet loss in siamese network for object tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ECCV, 459–474.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Fried, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Tewari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zollh¨ofer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Finkelstein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Shecht- man, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Goldman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Genova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Jin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Theobalt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Agrawala, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Text-based editing of talking-head video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' ACM Transactions on Graphics (TOG), 38(4): 1–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Goodfellow, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Pouget-Abadie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Mirza, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Warde-Farley, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ozair, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Courville, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Bengio, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Generative adversarial nets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Advances in neural in- formation processing systems, 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Guo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Bao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='11078.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Isola, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Efros, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Image- to-image translation with conditional adversarial networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, 1125–1134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ji, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Xu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Cao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='15278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ji, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Loy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Cao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Xu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Audio-driven emotional video portraits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPR, 14080–14089.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Karras, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Laine, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Aittala, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Hellsten, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Lehtinen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Aila, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Analyzing and improving the image qual- ity of stylegan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPR, 8110–8119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Kingma, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Ba, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Adam: A method for stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='6980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Lahiri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Kwatra, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Frueh, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Lewis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Bregler, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' LipSync3D: Data-Efficient Learning of Personalized 3D Talking Faces from Video using Pose and Lighting Nor- malization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPR, 2755–2764.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ding, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zheng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Fan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Write-a-speaker: Text-based Emotional and Rhythmic Talking-head Generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In AAAI, volume 35, 1911–1920.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Pan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Guo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Hong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Han, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Han, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ding, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Expressive talking head generation with granular audio-visual control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPR, 3387–3396.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Zhou, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Semantic-aware implicit neural audio-driven video portrait generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='07786.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Narvekar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Karam, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' A no-reference per- ceptual image sharpness metric based on a cumulative prob- ability of blur detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In 2009 International Workshop on Quality of Multimedia Experience, 87–91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Prajwal, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Mukhopadhyay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Namboodiri, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Jawahar, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' A lip sync expert is all you need for speech to lip generation in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In Proceedings of the 28th ACM International Conference on Multimedia, 484– 492.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Qi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Su, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Mo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Guibas, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Pointnet: Deep learning on point sets for 3d classification and segmen- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPR, 652–660.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Qian, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Tu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Speech drives templates: Co-speech gesture synthesis with learned templates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ICCV, 11077–11086.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ren, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Piren- derer: Controllable portrait image generation via semantic neural rendering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ICCV, 13759–13768.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Sadoughi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Busso, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Speech-driven expressive talking lips with conditional sequential generative adversar- ial networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' IEEE Transactions on Affective Computing, 12(4): 1031–1044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Safari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' India, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Hernando, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Self-attention encoding and pooling for speaker recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='01077.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Siarohin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Lathuili`ere, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Tulyakov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ricci, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Sebe, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' First order motion model for image anima- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 32: 7137–7147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Sinha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Biswas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yadav, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Bhowmick, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Emotion-Controllable Generalized Talking Face Genera- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='01155.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Snyder, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Garcia-Romero, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Sell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Povey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Khudanpur, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' X-vectors: Robust dnn embeddings for speaker recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In 2018 IEEE international confer- ence on acoustics, speech and signal processing (ICASSP), 5329–5333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Song, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Qian, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' He, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Loy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Everybody’s talkin’: Let me talk as you want.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='05201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Qi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Talk- ing face generation by conditional recurrent adversarial net- work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='04786.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Suwajanakorn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Seitz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Kemelmacher- Shlizerman, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Synthesizing obama: learning lip sync from audio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' ACM Transactions on Graphics (ToG), 36(4): 1–13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Thies, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Elgharib, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Tewari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Theobalt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Nießner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Neural voice puppetry: Audio-driven fa- cial reenactment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ECCV, 716–731.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Van der Maaten, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Hinton, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Visualizing data using t-SNE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Journal of machine learning research, 9(11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Vaswani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Parmar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Uszkoreit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Jones, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Gomez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Kaiser, Ł.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Polosukhin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' At- tention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In Advances in neural information processing systems, 5998–6008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Vougioukas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Petridis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Pantic, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Realis- tic speech-driven facial animation with gans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' International Journal of Computer Vision, 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Song, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Qian, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' He, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Qiao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Loy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Mead: A large-scale audio-visual dataset for emotional talking-face generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ECCV, 700–717.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ding, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Fan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Au- dio2Head: Audio-driven One-shot Talking-head Generation with Natural Head Motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' IJCAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ding, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' One-shot talk- ing face generation from single-speaker audio-visual corre- lation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, 2531–2539.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Tu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Rethinking the value of trans- former components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In Proceedings of the 28th Inter- national Conference on Computational Linguistics, 6019– 6029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Bovik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Sheikh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Simoncelli, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Image quality assessment: from error visibility to structural similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' IEEE transactions on image process- ing, 13(4): 600–612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wiles, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Koepke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Zisserman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' X2face: A network for controlling face generation using images, audio, and pose codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ECCV, 670–686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Jia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Dou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Duan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Deng, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Imitating arbitrary talking style for realistic audio- driven talking face synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In Proceedings of the 29th ACM International Conference on Multimedia, 1478–1486.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Bender, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Le, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Ngiam, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Cond- conv: Conditionally parameterized convolutions for efficient inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Advances in Neural Information Processing Sys- tems, 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ye, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Bao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Audio-driven talking face video generation with learning-based personalized head pose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='10137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Cun, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Cao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Fan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Bai, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Styleheat: One- shot high-resolution editable talking face generation via pre- trained stylegan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='04036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Fernando, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ghanem, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Porikli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Hartley, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Face super-resolution guided by facial component heatmaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ECCV, 217–233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Porikli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Face hallucination with tiny unaligned images by transformative discriminative neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In AAAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Porikli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2017b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Hallucinating very low- resolution unaligned and noisy face images by transforma- tive discriminative autoencoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPR, 3760–3768.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Fan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zeng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Budagavi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Guo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 3d talking face with personalized pose dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' IEEE Transactions on Visualization and Com- puter Graphics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zeng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Budagavi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Guo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In ICCV, 3867–3876.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Ding, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Fan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Flow-Guided One-Shot Talking Face Generation With a High-Resolution Audio-Visual Dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPR, 3661–3670.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Luo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Talking face generation by adversarially disentangled audio- visual representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In AAAI, volume 33, 9299–9306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Sun, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Loy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Pose-controllable talking face generation by im- plicitly modularized audio-visual representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' In CVPR, 4176–4186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Han, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Shechtman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Echevarria, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Kaloger- akis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' MakeltTalk: speaker-aware talking-head animation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' ACM Transactions on Graphics (TOG), 39(6): 1–15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zhu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Luo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Zheng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' and He, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' Deep audio-visual learning: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} +page_content=' International Journal of Automation and Computing, 1–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf'} diff --git a/TdE2T4oBgHgl3EQftAiy/content/tmp_files/2301.04066v1.pdf.txt b/TdE2T4oBgHgl3EQftAiy/content/tmp_files/2301.04066v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..ae70e8c6d70ee2b1e3fa2130d1f02c3eb9ddc28c --- /dev/null +++ b/TdE2T4oBgHgl3EQftAiy/content/tmp_files/2301.04066v1.pdf.txt @@ -0,0 +1,10250 @@ +´Ecole Doctorale EM2PSI (ED 405) +TH`ESE DE DOCTORAT +sp´ecialit´e : physique th´eorique +Soutenue le 29 Novembre 2022 +Ali Zahra +Multi-Species Generalization of the Totally +Asymmetric Simple Exclusion Process +Integrability and Hydrodynamic Aspects +Pr´esent´ee en vue de l’obtention du grade de DOCTEUR +Dirig´ee par : +Luigi Cantini +Jury de soutenance +Kirone Mallick +Directeur de recherche +CEA (IPhT-Saclay) +Rapporteur +Gunter M. Sch¨utz +Professeur +IST (Universidade de Lisboa) +Rapporteur +Flora Koukiou +Professeur +CNRS (CY Universit´e) +Examinateur +Sylvain Prolhac +Maitre de conf´erence +IRSAMC (Universit´e Paul Sabatier) +Examinateur +Filippo Colomo +Charg´e de recherche +INFN (Sezione di Firenze) +Examinateur +Jean Avan +Directeur de recherche +CNRS (CY Universit´e) +Examinateur +Luigi Cantini +Maitre de conf´erence +CNRS (CY Universit´e) +Directeur de th`ese +arXiv:2301.04066v1 [cond-mat.stat-mech] 10 Jan 2023 + +CERGYPARIS +CY +UNIVERSITELPTM +LaboratoiredePhysigue +Theorigue et ModelisationAbstract +Exclusion processes in one dimension first appeared in the 70s and have since dragged much +attention from communities in different domains: stochastic processes, out of equilibriums +statistical physics, and more recently integrable systems. +While the state of the art for +a single species totally asymmetric simple exclusion process (TASEP) can be described, +from different aspects as mature, much less is known when multiple interacting species are +present. +Using tools from integrable systems and hydrodynamics in the first place and +stochastic processes in the second place, this work attempts to study the behavior of a +novel version of the model with different species of particles having hierarchical dynamics +that depend on arbitrary parameters. +While Burger’s equation famously represents the +hydrodynamic limit of TASEP with a single species, we present a counterpart coupled system +of PDE representing the hydrodynamic limit for a model with two species. The solutions +of these PDEs display a rich phenomenology of solutions best characterized through the +underlying normal modes. We discuss the associated Riemann problem and validate our +results with numerical simulations. This system with two species can be used as a toy model +for studying driven diffusive systems with open boundaries. Using heuristics, we present +results suggesting a general principle governing the boundary induced phase diagram of +systems with multiple coupled driven conserved quantities, generalizing thus the extremal +current principle known for the case of a single driven quantity. The integrability side of +our study is mainly concerned with developing a formalism allowing the computation of +the finite-time probability distribution of particle positions on the 1D lattice, generalizing +therefore known results for TASEP and other multi-species models. We finally study the +behavior and the impact of a single second class impurity initially located at the interface +separating two regions of different densities of first class particles. Different limit shapes are +deduced and observed. Using tools from probability theory, we generalize the asymptotic +speed properties of the impurity for a regime of the hopping parameters. + +R´esum´e +Les processus d’exclusion `a une dimension sont apparus pour la premi`ere fois dans les ann´ees +70 et ont depuis attir´e beaucoup d’attention de la part des communaut´es dans diff´erents do- +maines : processus stochastiques, physique statistique hors ´equilibre, et plus r´ecemment +syst`emes int´egrables. Alors que l’´etat de l’art pour un processus d’exclusion simple totale- +ment asym´etrique (TASEP) d’une seule esp`ece peut ˆetre d´ecrit, sous diff´erents aspects comme +mature, on en sait beaucoup moins lorsque plusieurs esp`eces en interaction sont pr´esentes. +En utilisant des outils issus des syst`emes int´egrables et de l’hydrodynamique en premier +lieu et des processus stochastiques en second lieu, ce travail tente d’´etudier le comporte- +ment d’une nouvelle version du mod`ele avec diff´erentes esp`eces de particules ayant une dy- +namique hi´erarchique qui d´epend de param`etres arbitraires. Alors que l’´equation de Burger +repr´esente la limite hydrodynamique de TASEP avec une seule esp`ece, nous pr´esentons un +syst`eme coupl´e d’EDP repr´esentant la limite hydrodynamique pour un mod`ele avec deux +esp`eces. Les solutions de ces EDP pr´esentent une riche ph´enom´enologie de solutions mieux +caract´eris´ee par les modes normaux sous-jacents. Nous discutons du probl`eme de Riemann +associ´e et validons nos r´esultats par des simulations num´eriques. Ce syst`eme `a deux esp`eces +peut ˆetre utilis´e comme un mod`ele jouet pour ´etudier les syst`emes diffusifs pilot´es avec des +bords ouverts. En utilisant des heuristiques, nous pr´esentons des r´esultats sugg´erant un +principe g´en´eral r´egissant le diagramme de phase induit par les fronti`eres des syst`emes avec +de multiples quantit´es conserv´ees coupl´ees, g´en´eralisant ainsi le principe du courant extr´emal +connu pour le cas d’une seule quantit´e entraˆın´ee. L’aspect int´egrabilit´e de notre ´etude con- +cerne principalement le d´eveloppement d’un formalisme permettant le calcul de la distribu- +tion de probabilit´e en temps fini des positions des particules sur le r´eseau `a 1D, g´en´eralisant +ainsi les r´esultats connus pour TASEP et d’autres mod`eles multi-esp`eces. Nous ´etudions +enfin le comportement et l’impact d’une seule impuret´e de seconde classe initialement situ´ee +`a l’interface s´eparant deux r´egions de densit´es diff´erentes de particules de premi`ere classe. +Diff´erentes formes limites sont d´eduites et observ´ees. En utilisant des outils de la th´eorie des +probabilit´es, nous g´en´eralisons les propri´et´es de vitesse asymptotique de l’impuret´e pour un +r´egime des taux. +1 + +Acknowledgment +First and foremost, I would like to thank my supervisor Luigi Cantini. Working with him +has been simply great. Our meetings have always been a source of inspiration to me. I can’t +be grateful enough to him for what I learned during my Ph.D. Besides all of the scientific +side, his support and kindness are exceptional. +I am thankful to all the members of jury for having kindly accepted to evaluate this work. +Most of them had to make a long trip to physically attend my defense. I would like to thank +the two reporters who put a remarkable effort into reading my manuscript and writing the +reports. Their comments and suggestions have been very useful for improving the quality of +this dissertation. I want to thank all the members of LPTM, who made this lab such a great +environment both on the professional and social levels. The lunch breaks with Jean Avan +and Genvieve Rollet are always rich in culture and humor. I’m indebted to both of them for +the generous support they offered to me on multiple occasions. A particular thanks go to +Andreas Honecker who has been always very kind and helpful starting from my Master year +and throughout the following years. I had plenty of pleasure sharing teaching duties with +Guy Trambly de Laissardi`ere, Jean Philippe Kownacki, Claire Pinette, Genevi`eve Rollet +and Andreas Honecker. They were always generous with their insightful pedagogical hints. I +would like to thank the administrator of our lab Sylvie Villemin who is always there to help +with a big smile. I want to thank my friends and family for their continuous encouragement +and support. This text has been linguistically checked and refined thanks to the effort of my +friends Laurence Verges, Dovile Jankauskaite, Ibrahim Saideh and Marta Pedrosa Garc´ıa- +Moreno. Finally, I want to thank the doctoral school EM2PSI for their financial support +through the doctoral contract. +2 + +Contents +0 +Introduction +6 +1 +Introduction to conservation laws +17 +1.1 +Scalar conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +18 +1.1.1 +Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +18 +1.1.2 +Method of characteristics . . . . . . . . . . . . . . . . . . . . . . . . . +18 +1.1.3 +Weak solution, Rankine-Hugoniot condition +. . . . . . . . . . . . . . +20 +1.1.4 +Non-unicity of weak solutions . . . . . . . . . . . . . . . . . . . . . . +22 +1.1.5 +Hopf’s treatment of the Burgers equation . . . . . . . . . . . . . . . . +23 +1.1.6 +Kruˇzkov entropy condition . . . . . . . . . . . . . . . . . . . . . . . . +26 +1.1.7 +Relation to Hamilton-Jacobi equation . . . . . . . . . . . . . . . . . . +31 +1.1.8 +Riemann problem +. . . . . . . . . . . . . . . . . . . . . . . . . . . . +33 +1.2 +Hyperbolic Systems of Conservation Laws +. . . . . . . . . . . . . . . . . . . +35 +1.2.1 +A linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +36 +1.2.2 +Weak solutions, the Rankine-Hugoniot condition +. . . . . . . . . . . +36 +1.2.3 +The shock curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +37 +1.2.4 +Admissibility conditions +. . . . . . . . . . . . . . . . . . . . . . . . . +38 +1.2.5 +Rarefaction Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . +40 +1.2.6 +T-curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +41 +1.2.7 +The Riemann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . +41 +1.2.8 +Riemann Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . +42 +1.2.9 +Temple Class Systems +. . . . . . . . . . . . . . . . . . . . . . . . . . +43 +2 +Hydrodynamic behavior of the two–TASEP +46 +2.1 +Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +46 +2.2 +Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +48 +2.2.1 +The z variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +50 +2.2.2 +Behavior at the boundary of the physical domain +. . . . . . . . . . . +52 +2.3 +Conservations laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +53 +3 + +2.3.1 +The cases α = β = 1 and α + β = 1 . . . . . . . . . . . . . . . . . . . +54 +2.3.2 +The general case: Riemann variables +. . . . . . . . . . . . . . . . . . +55 +2.3.3 +Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +57 +2.3.4 +Riemann’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . +60 +2.4 +Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +61 +2.5 +Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +63 +3 +Integrable tools for the exclusion process +65 +3.1 +Exclusion process on the line . . . . . . . . . . . . . . . . . . . . . . . . . . . +66 +3.1.1 +Exact solution for TASEP on the line . . . . . . . . . . . . . . . . . . +66 +3.1.2 +Adding second class particles +. . . . . . . . . . . . . . . . . . . . . . +72 +3.1.3 +Multispecies exclusion process with arbitrary hopping rates . . . . . . +73 +3.2 +Exclusion process on the ring +. . . . . . . . . . . . . . . . . . . . . . . . . . +85 +3.2.1 +Coordinate Bethe Ansatz for a defect in the ring . . . . . . . . . . . . +85 +3.2.2 +Algebraic Bethe Ansatz for The Exclusion Process on the ring . . . . +91 +4 +Boundary-induced phase transitions in multi-species driven diffusive sys- +tems +104 +4.1 +Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +104 +4.1.1 +Outlines and main result: +. . . . . . . . . . . . . . . . . . . . . . . . +106 +4.2 +Extremal current principle revisited . . . . . . . . . . . . . . . . . . . . . . . +108 +4.2.1 +The Riemann problem perspective . . . . . . . . . . . . . . . . . . . . +109 +4.2.2 +Vanishing viscosity approach: +. . . . . . . . . . . . . . . . . . . . . . +111 +4.3 +The case of a multi-species driven diffusive system . . . . . . . . . . . . . . . +112 +4.3.1 +Proof of the principle . . . . . . . . . . . . . . . . . . . . . . . . . . . +114 +4.4 +Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +114 +4.4.1 +Open boundaries 2-TASEP with arbitrary hopping rates +. . . . . . . +114 +4.4.2 +Limits of the method and open questions . . . . . . . . . . . . . . . . +118 +5 +Effect of a single second class particle +119 +5.1 +Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +119 +5.1.1 +Notations +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +120 +5.1.2 +Invariant measure for TASEP . . . . . . . . . . . . . . . . . . . . . . +120 +5.1.3 +Convergence of density field: . . . . . . . . . . . . . . . . . . . . . . . +121 +5.1.4 +Harris graphical representation +. . . . . . . . . . . . . . . . . . . . . +122 +5.1.5 +Basic tool: Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . +122 +5.1.6 +Second class particle with unity rates in a rarefaction fan . . . . . . . +123 +5.1.7 +Matrix Product Ansatz for second class particle on the ring +. . . . . +124 +5.2 +A defect in a step initial profile +. . . . . . . . . . . . . . . . . . . . . . . . . +126 +5.2.1 +1-0 initial condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . +127 +5.2.2 +Non escaping particles . . . . . . . . . . . . . . . . . . . . . . . . . . +130 +5.2.3 +Density field profile and the second class particle +. . . . . . . . . . . +130 +5.2.4 +ν − µ step initial configuration . . . . . . . . . . . . . . . . . . . . . . +134 +5.2.5 +The case of ν > µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +135 +5.2.6 +The case of ν < µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +137 +4 + +5.2.7 +A uniform vanishing density of second class particles: . . . . . . . . . +140 +5.3 +Speed process of a defect in a step initial configuration +. . . . . . . . . . . . +141 +5.3.1 +Probability distribution of a second class particle of arbitrary rates in +a step initial configuration . . . . . . . . . . . . . . . . . . . . . . . . +143 +5.3.2 +Appendix +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +145 +5 + +CHAPTER 0 +Introduction +Statistical physics at equilibrium is one of the most impressive success stories in physics, it +allows us to explain the properties of matter surrounding us. Its mathematical foundations +are well established too [1] [2]. Given a Hamiltonian system, one can find the probability +distribution of microscopic states as the one that maximizes the entropy, so for a system +coupled to a reservoir, this probability is given by the Boltzmann-Gibbs ensemble +Peq(C) = 1 +Z e−H(C)/kBT +(1) +This allows in principle to compute all physical quantities such as free energy and correlation +functions. To perform these computations, one often needs approximation methods such as +the mean-field approach, the renormalization group, and series expansion. Analytical exact +expressions are possible only for a minor number of models giving them a major role in the +theory [3]. A prominent pioneer example is the Ising model in 2D, that was solved by Lars +Onsager in 1944 [4] and for which critical exponents were computed exactly for the first time +and were different from the mean-field ones. This had a major impact in understanding the +the critical behavior around phase transition in equilibrium statistical physics and paved +the way for the emergence of the idea of universality where this behavior depends in many +situations only on the dimensionality and the symmetries of interactions [3]. However, most +of the collective phenomena going on in nature are out of equilibrium. If one defines systems +out of equilibrium as merely the complementary set of systems at equilibrium, then this set is +so vast that it is not reasonable to expect it to have some common theoretical features. So we +are usually led to work within a particular setting. For instance, in closed quantum systems, +we typically consider particular schemes of a time-dependent Hamiltonian that makes the +problem tractable [5] common examples include periodic driving, where the Hamiltonian has +a time periodicity H(t) = H(t+τ) [6]. Another one is quantum quenching, for which a system +is prepared at the ground state of a time-independent Hamiltonian, and at some instant, +we suddenly turn on a perturbing Hamiltonian and observe the dynamic evolution of the +system till thermalization [7]. These systems are often hard to analyze analytically, and even +6 + +numerically using only a classical computer, they rather require quantum simulators such as +the ones based on ultracold atoms in optical lattices [8]. Most importantly, quantum systems +in nature are usually not closed but rather coupled to an environment, they thus exhibit +decoherence and their effective behavior collapses in many situations to non-Hamiltonian +stochastic evolution, see chapter 8 of [9] for details. This brings us to the focus of this +dissertation, which is the stochastic systems out of equilibrium. In particular, we will be +considering Markovian systems, which are as well adapted to classical Hamiltonian systems +at the mesoscopic time scale. In such systems the stochastic evolution depends only on the +current configuration of the system, and not on its history, in other words, these systems +don’t have intrinsic memory. Mathematically, the relevant information about the system +is reduced to the set of transition rates between the different microscopic configurations, +denote wC′→C the hopping rate from the configuration C′ to the configuration C. Once +these rates are known, one can write the evolution equation of the probability distribution +over the configuration space 1 +dP(C) +dt += +� +C′̸=C +wC′→CP(C′) +� +�� +� +gain +− +� +C′̸=C +wC→C′P(C) +� +�� +� +loss +This is called the master equation. It can be written in a compact form: +dP +dt = MP, where +M is called the Markov matrix. MC,C′ := wC′→C for the off-diagonal elements, and MC,C = +− � +C′̸=C wC→C′ for the diagonal ones. Starting form some initial probability distribution +over the configurations, and evolving in time with a Markov operator, the system relaxes +in time to a stationary state for which the probability weights are static. 2 If π is the this +stationary distribution, it should verify Mπ = 0. In other words, this is the eigenvector +corresponding to the zero eigenvalue. The stochastic structure of the Markov matrix makes +it so that all the other eigenvalues have a negative real part, so they correspond to decaying +modes. The eigenvalue with the largest non zero real part provides an estimation (through its +inverse) of the typical relaxation time of the system, which is a relevant physical observable +quantity. The Markovian framework is adapted for both equilibrium and out equilibrium +systems. In the equilibrium case, although the Boltzmann-Gibbs doesn’t tell us about the +transition rates, it is always possible to assume detailed balance, meaning that there is no +net probability current between any two configurations at equilibrium, this is expressed as: +Peq(C)wC→C′ = Peq(C′)wC′→C +Given a system satisfying detailed balance, if we record its time evolution, we can’t +tell in which direction the film is played. So, this is equivalent to time reversibility. The +existence of a distribution verifying the detailed balance can be expressed as a restriction +on the elements of the Markov matrix, known as the Kolmogorov criteria 3,which states +that around any closed cycle of states, there is no net flow of probability, for example, +1Assume this space is countable. The more general framework is briefly mentioned in chapter 5 +2For an infinite system, these weights might not be normalisable, and it’s more accurate to speak about +an invariant measure, as it will be explained in chapter 3 +3Although Kolmogorov implies the existence of detailed balance, the opposite implication is valid only for +irreducible Markov chain, i.e. chains for which any state is accessible from any other state (not necessarily +directly). +7 + +for any three configurations, we should have: w1→2w2→3w3→1 = w1→3w3→2w2→1, [10]. The +simplest way to create a system out of equilibrium is to take a system in equilibrium and +to perturb it slightly so that it is driven out of its equilibrium distribution, which breaks +the detailed balance. Linear response theory is adapted to deal with this situation [11].It +applies typically to a system with a small gradient of thermodynamic variables inducing +purely diffusive currents. Reciprocity relations over the elements of the diffusion matrix +were revealed by Onsager based on the local microscopic time reversibility of the interactions +and were the origin of his Nobel Prize in chemistry in 1968. Another basic situation to +be out of equilibrium is to have a configuration C such that wC→C′ = 0 for all C′ and +wC′→C ̸= 0 for some C +′, the state C is called an absorbing state, once the system reaches +it, it cannot get out of it, this creates a uni-directional probability currents towards the +absorbing state and ensures being out of equilibrium. An example for these systems is a +model of the spread of an epidemic, a recovered population would be an absorbing state. +Although, universal behaviors have been observed for absorbing state phase transitions, +most notably the direct percolation universality class where universal critical exponents were +observed [12] [13]. However, this model is not exactly solvable, so the critical exponents are +known only approximately through numerical means. A remarkable setting where we both +have exactly solvable models with non-equilibrium steady state(NESS) [14], is the driven +diffusive systems, they can be thought of,for instance, as a gas of charged particles with a +driving electromagnetic force breaking the space isotropy and inducing a permanent current +even when the system is homogeneous [15]. They can be of course defined on the continuous +space and for an arbitrary dimension. However, we will only consider lattice gas models +defined on the lattice in 1D, this choice is justified by the availability of an exactly solvable +toy model, that is as well relevant for applications. This model is the Asymmetric Simple +Exclusion Process (ASEP), which is considered a paradigmatic model for driven diffusive +systems in general and transport models in 1D in particles. It’s often as well described as +the Ising model for out-of-equilibrium statistical physics4. Let’s provide a definition and +review briefly its most elementary properties. These properties can be found in details in +few classical reviews on the topic, for instance: [16] [17]. +The Asymmetric Simple Exclusion Process +This model is defined as a gas of identical particles on the Z lattice. Each particle is a +random walker in continuous time, it hops forward at a rate p, but only if the site in front +of it is empty, and can hop backward at a rate q, only if the site behind is empty. +So +there is a hardcore exclusion between the particles that leads to a maximum number of +one particle per site. The initial motivation and context of the appearance of the model +will be mentioned latter in this introduction. A simple particular case is when p = q then +the model is called SSEP (Symmetric Simple Exclusion Process), this model is not out of +equilibrium, it’s easy to understand that there is no average current and that detailed balance +is conserved, however, this particular case is still relevant either from a mathematical point +of view where it has been historically the first case to be solved exactly by mapping it to +4The same claim is made for the directed percolation, however, integrability makes the analogy to the +Ising model more relevant for ASEP +8 + +spin chains, or sometimes it can be seen as a critical system where we have a transition +between non-equilibrium and equilibrium. Another particular case that is interesting for +many reasons is when the particles move only in one direction, take for instance q = 0, +we speak here about the Totally Asymmetric Simple Exclusion Process (TASEP). We can +set p = 1 by a change of the scale of time. This particular case allows, in many cases, for +exact computations that are much harder for the general ASEP, so it provided the simplest +out-of-equilibrium exactly solvable model. +Figure 1: The corner growth process as an interpretation of TASEP +What adds to the interest of TASEP is that it has different interpretations. For instance, +it can be mapped to a surface growth model. This was first pointed out by Rost [18]. Let +a 2D surface with an upper boundary represented by an affine continuous function h(x, t) +defined up to an additive constant and verifying: +h(j + 1 +2, t) − h(j − 1 +2, t) = +� +−1 +if the site at j is occupied +1 +if the site at j is empty +(2) +One can understand that the time evolution of the TASEP corresponds to a random +growth process of the surface, figure 1. +Another interesting interpretation of TASEP is in terms of queuing theory: The particles +can be though of as servers and the voids as clients, so each server has a queue of clients in +front of it. When a particle jumps, a client is served, this client will queue up in the queue +belonging to the following server, and waits again for its turn. This image was exploited +by [19] who found the invariant measure for TASEP. More details are in the introduction of +chapter 5. +Different types of boundary conditions are possible for ASEP, each has its own interest. +They are illustrated in figure 2. Let’s look at the most classical properties ASEP on the +ring, and TASEP with open boundary conditions. +ASEP on the ring +The periodic boundary condition is the simplest. it’s almost a trivial, yet pedagogical ex- +ercise to find the stationary state for ASEP with periodic boundary conditions. Consider a +configuration composed of l blocks of particles, where a block is a set of adjacent particles +surrounded by voids. The system can leave or join the configuration only by the front or the +backs of a block: +9 + +(a) +q +p +× +× +(b) +α +δ +Left +Res. +β +γ +Right +Res. +(c) +Figure 2: Different boundary conditions for the exclusion process. (a) Peri- +odic boundary condition where the sites are identifiable to Z/LZ, L being the +number of sites. (b) ASEP on the line; the lattice is Z. (c) Open boundary +conditions, where we have a finite number of site. The system is coupled to a +reservoir on the left where particles can hop inside at a rate α if the first site is +empty. If it is not, then the occupying particle can escape the system at a rate +δ. Similar mechanism occurs on the right but with different rates. +◦ • • • ◦ +q +p +◦ • • ◦ • +• ◦ • • ◦ +p +q +Now it’s easy to understand that if we chose a uniform probability distribution for the +configurations (each configuration has a probability Peq), then each of the escaping rate and +the entering rate will be equal to l(p + q)Peq which leads to a stationary system. If there are +M particles and N sites, each configuration will have the probability: Peq = 1/ +�N +M +� +. Now the +current can be found exactly by choosing a site and counting the number of configurations +such that this site is occupied and followed by a void or the other way around: +J = pE(•◦) − qE(◦•) = (p − q) +�N−2 +M−1 +� +�N +M +� += (p − q)M +N (M − N +M − 1 ) → (p − q)ρ(1 − ρ) +where the limit is taken for infinite N and M and keeping a fixed ratio ρ := M +N which is the +average density. We notice that this expression in the limit of a large system is the same as +one obtained by a mean field. We will briefly see in chapter 5 that this is due to the fact +that the product measure is invariant for ASEP in an infinite system. +Hydrodynamic behaviour of TASEP +Now imagine a system with an average local coarse-grained density changing over space +and time ρ(x, t), regardless of the boundaries,consider the TASEP case, we can write a +10 + +conservation equation associated with the previous expression of the current, +∂tρ + (1 − 2ρ)∂xρ = 0 +This equation is called the non-viscous Burgers equation. Its more precise meaning will be +given later in this introduction. However, note that 1 − 2ρ expresses the speed of the front +wave around the density ρ. Note that it is a decreasing function of the density. If we have +an increasing initial profile of density over space, then the upper parts will move faster than +the lower parts, creating an even steeper profile, till we finally reach a discontinuous profile +that is called a shock, cite 3. This shock is not static, if the density on its left is ρL and on +its right is ρR then the speed of the shock is given 1 − ρL − ρR, as we will see in chapter +2. On the other hand, if the initial profile is decreasing as a function of the space, then its +slope will get even smaller, and the solution will stay regular, more details will be provided +in chapter 2. +x +ρ +0.5 +t = 2 +t = 1 +t = 0 +Figure 3: Illustation of the formation of the shocks in Burgers equation as a +result of the group velocity v = 1 − 2ρ +TASEP with open boundaries +Consider TASEP with open boundaries where particles can hop inside the system from the +left at rate α if the first site is empty, and can leave the system from the right at rate β. +The left boundary behaves as if has a density ρR = α, and the right boundary behaves as if +it has a density ρL = 1 − β. Now, it is possible to sketch most of the behavior of the system +using a heuristic hydrodynamic approach based on the front wave speed v = 1 − 2ρ. Note +first that if α < 1 +2 then vL = 1 − 2α > 0, so there is a kinetic wave at density α trying to +penetrate the system from the left. If β < 1 +2 then vR = 1 − 2(1 − β) = 2β − 1 < 0, so now +the kinetic wave of density 1 − β is trying to enter from the right. Now, we can distinguish +four cases, figure 4 +• α < 1 +2 and β > 1 +2, only the wave from the left is entering the system, and it will reach +the bulk, so we have a system dominated by a density α < 1 +2, this phase is called a +low-density phase (LD) +• α > +1 +2 and β < +1 +2, the opposite of the previous situation, the bulk density will be +1 − β > 1 +2. This is called a high-density phase (HD) +• α < 1 +2 and β < 1 +2, both of kinetic waves are entering the system, so will create a shock +that moves at a speed 1 − ρL − ρR = β − α. If this speed is positive then the left +11 + +α +β +1 +2 +1 +1 +MC +LD +HD +Figure 4: Boundary induced phase diagram of TASEP. LD: Low-density phase. +HD: high-density phase. MC: Maximal current phase. The blue line represents +boundaries where a phase order phase transition occurs. The orange line rep- +resents a second-order phase transition. The bulk density can be regarded as +the order parameter +boundary dominates the bulk, extending the low-density phase. Otherwise, the right +boundary wins and the system is in the high-density phase. +• α > 1 +2 and β > 1 +2, then both of the waves are leaving the system, creating a phase +where the current is maximal (MC) and the bulk density is 1 +2 +This qualitative hydrodynamic approach has been confirmed by an exact solution [20] by +solving recursion relations of the probability profile on the size of the system. The boundary +induced phase transition for TASEP is one of the simplest for driven diffusive systems, and +it paved the way for developing a more general principle describing the boundary-induced +phase transitions of any system with a single driven quantity [21] [22], [23], [24]. We will see +how it will be generalized in chapter 4 for systems with multiple coupled driven quantities. +A brief historical perspective: +Let’s now stop at the most prominent stations during the lifetime of the model that was an +inspiration to our work: +1. In 1968, MacDonald, Gibbs, and Pipkin first proposed ASEP [25]in the context of +transport in biology modeling the situation of multiple enzymes copying sequentially +from the same DNA template. They actually introduced a more general version of +ASEP where the exclusion rule extends over L neighboring sites rather than just one, so +particles can’t have a distance less than L 5. They found using a mean-field analysis, the +expression of the current for a uniform ρ density system. In addition, they sketched the +5Or equivalently, as the original formulation, they are not particles, but segments of length L +12 + +main features of the behavior of ASEP with open boundaries using the hydrodynamic +approach. +2. In 1978, Alexander and Holstein [26] mapped the master equation for SSEP to the +Heisenberg spin chain. +Since this spin chain was diagonalized exactly by Bethe in +1931, this sparked the interest of the integrability community in particle systems. +The mapping was later extended to various other one-dimensional reaction-diffusion +processes. Check [27] for an early review which highlighted the underlying Heck algebra +that is common among the evolution operators of that family of models. In 1992 Gwa +and Spohn [28] mapped ASEP to XXZ spin chain, which allowed them to diagonalize +the Markov matrix using Bethe Ansatz and to estimate the relaxation time. More +details will be provided in chapter 3. +3. In 1981, Rost [18] noticed that if time and space are scaled in the same way (in other +words, you compress the space and accelerate the time with the same large factor), +the corresponding density profile converges to a deterministic limit shape given by +Burgers equation. The limit shape is properly defined for the height function through +a hydrodynamic scaling: +ρ(x, t) = ∂x lim +ϵ→0 ϵh(xϵ−1, tϵ−1), +(3) +where the macroscopic density is the physical solution of Burgers equation. 6 Although +this result is true for any initial condition, Rost proved it with a step initial profile, all +negative sites are occupied, and all positive sites are empty. This initial profile plays a +role comparable to that of quench in quantum out-of-equilibrium systems. The limit +shape with this initial condition is: +ρ(x, t) = +� +� +� +� +� +1 +if +x < −t +1 +2(1 − x +t ) +if +− t < x < t +0 +if +x > t +(4) +And the height will have a limit shape: +lim +t→∞ +h(vt, t) +t += +� +|v| +if +|v| < 1 +1 +2(v2 + 1) +if +− 1 < v < 1 +(5) +Although the Burgers equation existed much earlier, it was the first time the exclusion +process was proposed as a microscopic description of the Burgers equation. +4. In 1991, P.A. Ferrari, while studying the shocks fluctuation of ASEP [29], introduces +a second class particle, this particle jumps as a normal particle when the following site +is empty: 20 → 02, but the normal particle (named first class) see it as void, and can +thus swap with it: 12 → 21. The second-class particle can’t overtake the first-class +particle, hence the terminology. This particle was introduced as a means to identify +6As we will see in the next chapter, a weak form of Burgers equation admits unstable solutions that we +refer to as non-physical +13 + +microscopically the shock. It was inspired by the basic coupling technique introduced +by Ligget [30] for TASEP. In the same year Ferrari, Kipnis and Saada proved that if a +second-class particle is added to the origin of a rarefaction fan, it will choose a random +asymptotic speed within the available ones with a uniform measure. Soon the second- +class particle attracts the attention of a wider audience. In 1993, Derrida, Janowsky, +Lebowitz, and Speer [31] determine the shock profile as seen from the perspective of a +second-class particle. Not much later, the second-class particle acquires an interest on +its own besides its role as a theoretical mean. In 1996, Derrida [32] and Mallick [33] +generalized this concept into a defect or impurity, which is a second-class particle that +can jump with an arbitrary hopping rate and can be taken over with another arbitrary +rate. This was the birth of a new model: the two species TASEP. +5. In 1997 Sch¨utz [34] obtained for TASEP on the infinite line, an exact expression for +the conditional probability P(x1, ..., xN; t|y1, ..., yN; 0) of N particles being at positions +{x1, ..., xN} at time t given their initial positions {y1, ..., yN} at time zero. The result +is obtained using Bethe Ansatz and was expressed as an N ×N determinant. This was +an early result connecting TASEP to the domain of integrable probability. Tracy and +Widom generalized it to ASEP [35] [36]. Latter Tasep with second class particles was +treated by Chatterjee and Sch¨utz [37]. This will be reviewed and extended in chapter +3. +6. In 1993, the exact phase diagram for of TASEP with open boundaries was derived in +two independant papers: Sch¨utz and Domany [20] solved recursion relations on the size +of the system for the stationary state, allowing its explicit expression, and discussed +the phase diagram in terms of the dynamics a domain wall. The second paper is [38] +where Derrida, Evans, Hakim and Pasquier determined this stationary state using a +Matrix Product Ansatz (MPA) formulation. This opened the door for a series of cases +where a non-equilibrium steady state is expressed in a matrix product form. For a +pedagogical review check [16]. A brief explanation of MPA will be provided in chapter +5. +7. In 1999, Johansson [39] revealed a connection to Random Matrix Theory (RMT) that +triggered an impressive quantity of subsequent investigations. This is important to +out-of-equilibrium statistical physics in particular because RMT has been a gold mine +for universal behaviors. Let’s state the main result: +lim +t→∞ Prob +� +h(vt, t) > 1 + v2 +2 +t +� �� � +Limit shape +−s (1 − v2)2/3 +21/3 +t1/3 +� +�� +� +Fluctuations +� += FGUE(s) +(6) +where FGUE is the cumulative Tracy–Widom distribution, precisely, it is the dis- +tribution of the rescaled largest eigenvalue λmax of random matrix sampled from +the Unitary Gaussian Ensemble. If n × n is the size of the matrix, this eigenvalue +grows as +√ +2n and fluctuates with a standard deviation of n− 1 +6. +Then we have: +FGUE(s) := limn→∞ Prob((λmax − +√ +2n) +√ +2n +1 +6 < s). +The term +1+v2 +2 +represents the +speed of the growth. The most important information in that equation is the exponent +14 + +in t1/3. It has been previously conjectured that this growth model belongs to the KPZ +universality class, and thus fluctuates as t1/3 however, it was the first time this was +proven and the only model for which it was proven rigorously. To make sure that 6 is +appreciated correctly, one can compare to the central limit theorem, where t1/3 plays +the role of t1/2 and FGUE plays the role of the integral of a Gaussian. The poof of the +previous result is based on combinatorics, there is a correspondence with the problem +of the distribution of the length of the longest increasing subsequence in a random +permutation that has the same limiting distribution [40]. +From single-species to multi-species TASEP +The exclusion process, and TASEP in particular, is far from being only a mathematical +model in 1D that theoretical physicists get excited about. It is used as a mesoscopic vehi- +cle model in the field of traffic flow, for instance, the phase diagram for TASEP with open +boundaries is celebrated in the traffic literature [41] [42]. However, this model is too ideal- +ized to be applied to real systems, It’s rather only suited for one-lane, one-direction identical +vehicles on a homogeneous freeway with no accidents. We all know how is it in daily situ- +ations. A similar narrative can be made regarding intracellular transport in biology where +the exclusion process is still relevant, for instance in molecular motor proteins moving along +micro-tubules filaments [43] [44], but again, real transport in cellular biology involves com- +plex phenomena not counted by TASEP, such as the existence of multiple types of molecules +transported on the same filament. See figure 5 for an example of transport molecular motors +in neurons, studying this transport phenomenon has been relevant for the understanding of +brain function, development, and disease [45]. +Figure 5: Molecular transport on an axon, the main nerve fiber of a neuron, +featuring different types of molecular motors, adapted from [45] +Hence the need for a model taking into account the presence of different types of particles +that have different rates and that can swap between each other. In this model the exclusion +rule is still valid as well as the local update. Different species swap with arbitrary entra- +species rates: +(•• → ••) with rate τ•• +For this model to be exactly solvable, some restrictions have to be obeyed by the rates as +we will see in chapter 3. In the particular case of two species + void, it’s enough to assume +hierarchy for the model to be exactly solvable, meaning that if we denote the particles as +15 + +AMPA +RNA +NMDA +Receptor +granule +Receptor +GRIP11 +KIF5 +LIN7 (Velis) +Dendrite +KIF5 +LIN2 (CASK) +KIF17 +LIN10 (Mint 1) +KIFC2 +Cytoplasmic +Dynein +Glycine +Multivesicular body-like +Receptor +organelle0, 1, 2, the only possible swaps are: 10 → 01, 20 → 02, 12 → 21 with arbitrary rates. This +model was first introduced by Derrida [32] and Mallick [33] for a single second-class particle. +Cantini later found the currents for an arbitrary number of defects [46]. This model, besides +its applications, represents a much richer spectrum of phenomenology compared to TASEP, +even when the simplest questions are asked. The objective of this dissertation is to be a +building block for the bulk of knowledge for the 2-species exclusion process. +Novelties of this work: +• Addressing the hydrodynamic behavior of two species TASEP. Although the rigorous +convergence to the limit shape is a mathematically subtle question, we will rather make +use of the integrability of the model that provides the currents and solves coupled con- +servation partial differential equations. The solutions are substantially more complex +and rich than the TASEP one. This is the subject of our publication [47] which is +included as in chapter 2. +• We provide in chapter 3 a framework allowing the calculations of finite time conditional +probability for the position of a finite number of particles of multiple species. The +formalism can be though of as a stochastic vertex model and leads explicit formulas in +particular situations, generalizing the work of Sch¨utz [34] and Sch¨utz et al. [37] +• We investigate in chapter 4 a method that allows to determine the steady state of a +driven diffusive system with multiple driven coupled quantities, generalizing thus the +extremum current principle proposed by Krug [21], Sch¨utz and others [22], [23], [24]. +This method is operational even for models where the stationary measure is not a +product measure, completing thus other method proposed in [48] [49] [50]. We apply +this formalism to multiple particle models, 2-TASEP being one of them. +• In Chapter 5, we treat the question of the interaction between a defect particle and +a density field for TASEP on the line with a Riemann initial condition. Besides the +different phenomenology encountered, we expand the proof of the uniform density for +the asymptotic speed for the case of a step initial profile. +For the unfamiliar reader, the first chapter is dedicated to providing all the necessary +tools from the domain of conservation laws. This is required for the second chapter as well +as the fourth one. +Each of chapters 3,4 and 5 will be the core of a future separate publication. +16 + +CHAPTER 1 +Introduction to conservation laws +In 1757, Leonhard Euler wrote in his memoir ”Principes g´en´eraux du mouvement des fluides” +an equation for the conservation of momentum and another for the mass. These equations +were among the first partial differential equations ever written [51, 52] and raised the ini- +tial problems that led later to the development of the domain of conservation laws with +widespread applications in physics and chemistry. From a mathematical point of view, they +are often qualified as hyperbolic due to their wavelike solutions. Yet, they are famous for +having shocks singular solutions, requiring mostly an ad-hoc mathematical framework and +placing them often in the last chapter of PDE textbooks. Despite being an old subject, re- +search is still active in the domain [53]. Although the space multi-dimensional conservation +laws are nowadays an exciting frontier of research, we restrict our presentation to 1D space, +focusing mainly on the aspects related to the needs of the other chapters. +This essay starts with a discussion of scalar conservation laws in section 1.1, with an +emphasis on the techniques that are generalizable to non-scalar systems with multiple cou- +pled conserved quantities. In particular, the stability conditions for the weak solution are +discussed in details. Burgers equation is used as a toy example for the scalar laws, the ver- +sion used here is ut + uux = 0 which is slightly simpler than the TASEP one but completely +equivalent. A flavor of the vanishing viscosity method is given in section 1.1.5 during Hopf’s +treatment of the Burgers equation. This method will be relevant to chapter 4 when dealing +with multiple conservation laws in a system with open boundaries. In section 1.2, we review +the most classical features of systems of conservation laws, this provides the background +necessary for chapter 2 where we solved a system with two conserved quantities resulting +from a scaled two species TASEP model. We finish this section with a brief discussion of +a particular family of conservation laws known as the Temple class, which has a curious +connection with integrable models that we briefly investigate on the hydrodynamic level. +Despite that in section 1.1.7, we present the Hopf-Lax formula that allows formally +to treat a wide class of initial conditions, the focus is later given only to the Riemann +initial condition. The relevance of the Riemann problem can be compared to quenching in a +quantum system; it’s a popular procedure that provides insights into the dynamical behavior +17 + +of the system and has been used in chapter 2 for the 2-species TASEP. +This chapter is largely mathematical and mostly based on classical texts [54–56], [55], +[56], [57], [58], [59], [60], [61]. +1.1 +Scalar conservation laws +1.1.1 +Introduction +In this part we consider a single unknown function: u(x, t) : R × R+ → R that represents a +density satisfying a conservation laws with initial data at t = 0: +ut + (f(u))x = 0 +u(x, 0) = u0(x) +(1.1) +with f in the class C1, representing the flux of u. We are concerned here in investigating the +solutions of this problem in the most general setting. To give an initial flavor, although not +representative of general solutions, let’s start with the trivial case of a linear flux. +A linear flux: +The most simple case is when f(u) = cu. The equation becomes: +ut + cux = 0 +(1.2) +This means that the directional derivative of u in the direction (1, c) is zero, so u is constant +over the lines x = ct + x0: +u(ct + x0, t) = u(x0, 0) = u0(x0) +With a change of variable we have: +u(x, t) = u0(x − ct) +(1.3) +So the initial profile will be just moving at a constant speed c. Note that if we write the +general equation in the form: ut + f ′(u)ux = 0 and consider an initial profile that is uniform +with an infinitesimal perturbation around ˜u u0(x) ≈ ˜u then it will evolve translating with +the speed f ′(˜u), we call this speed, the speed of perturbations. +If the flux is non-linear, the differential equation is said to be quasi-linear (A fully non- +linear equation requires a non-linearity of the highest derivative: i.e. ux or ut). In the next +paragraph, we remind a general method that is used not only for conservation laws but for +a wider class of non-linear first order PDE. +1.1.2 +Method of characteristics +The method of characteristics consists of partitioning the variables’ space into a family of +curves where the PDE transforms into a system of ODEs (Ordinary differential equation) +18 + +on the curves. It is adapted for the general class of non-linear first order equations, i.e. +equations of the form: H(Du, u, x) = 0 defined on an open domain x ∈ U ⊂ Rn and subject +to a boundary condition u = g on a curve Γ ⊂ ∂U. The characteristics are the three functions +of a real parameter: +x(s) +z(s) := u(x(s)) +p(s) := Du(x(s)) +(1.4) +Deriving F with respect to xi gives: +� +j +∂H +∂pj +uxjxi + ∂H +∂z uxi + ∂H +∂xi += 0 +(1.5) +We can identify the first term with ˙pi(s) = � +j uxixj ˙xj(s) providing that we identify ∂H +∂pj with +˙xj. So finally, we have this system of ODE: +˙x = DpH +˙p = −DxH − pDzH +˙z = pDpH +(1.6) +(Note that if we forget about the third equation and the second term of the second equation, +we get Hamilton-Jacobi equations. +We will come back to this later). +This equivalence +between the PDE and the set of ODEs is formally valid for regular solutions u ∈ C2. Under +this condition, the Cauchy problem of the ODE has a unique solution for sufficiently regular +H (Lipschitz) providing that the boundary condition is compatible with the characteristics. +Application to the scalar conservation law +For our purpose, it’s quite simple: x = (x, t), p = (ux, ut), H(ut, ux, u, x, t) = ut + f ′(u)ux +The characteristics are: +˙t = 0 +˙x = f ′(z) +˙z = 0 +(1.7) +They form a closed system. We can obviously use the time as a parameter: +dx +dt (t) = f ′(u(x, t)) +d +dtu(x(t), t) = 0 +(1.8) +So u is constant all over the characteristics, and they are simply straight lines: +x(t) = f ′(u0(x0))t + x0 +u(x(t), t) = u0(x0) +(1.9) +19 + +If the initial condition is smooth then the solution at time t > 0 is still smooth as far as +the characteristics don’t intersect, so we have a classical C1 solution for 0 ≤ t < T. If f ′ is +κ1-Lipschitz and u0 is κ2-Lipschitz then the first intersection of characteristics will appear at +T = κ1κ2. At the points (x, t) of the intersection of characteristics, the value of the solution +is not defined since different values carried from different characteristics contradict. The +limit of u(x, t) at the point of intersection of characteristics depends on the path, so the +solution forms a finite discontinuity, figure 1.1. +x +t +x0 +A characteristic transporting +the density u(x0) +Figure 1.1: Illustration of singularity formation through characteristic inter- +sections +1.1.3 +Weak solution, Rankine-Hugoniot condition +Clearly, we need a weaker interpretation of the equation that takes into account discontinuous +solutions. A possible way is to consider the equation in the distribution sense, so u would +be a distribution acting on a Schwartz space (a space of test functions φ(x, t) of the class +C∞ with compact support) +� ∞ +0 +� ∞ +−∞ +(ut(x, t) + f(u(x, t))x)φ(x, t)dxdt = 0 +(1.10) +The relevance of this writing is that it allows performing the integration by part: +� ∞ +0 +� ∞ +−∞ +u(x, t)φt(x, t) + f(u(x, t))φx(x, t)dxdt = 0 +(1.11) +This equation may be called the integral form of the conservation law. It doesn’t impose +a regularity restriction on the solutions. Functions verifying this equation are called weak +solutions. +Let’s consider now a situation where we have a solution u(x, t) that is regular all over +R × R+ except on some continuous path Γ parameterized by x = s(t) (so we assume that +there is a single finite discontinuity at each instant). We are interested in describing the +behavior of this path. Let’s assume as well the following limits exist: +20 + +lim +x +<−→s(t) +u(x, t) := uL(t) +lim +x +>−→s(t) +u(x, t) := uR(t) +(1.12) +The path divides the domain R × R+ into two subdomains, one located on its left ΩL +and another on its right ΩR. figure 1.2 +x +t +⃗n +ΩL +ΩR +Γ +Figure 1.2: A singular path propagating in the (x, t) domain +We can decompose eq. (1.11) into : +� +R×R+ uφt + f(u)φxdxdt = +� +ΩR uφt + f(u)φxdxdt + +� +ΩL uφt + f(u)φxdxdt = 0 +(1.13) +Let’s integrate by part the first term: +� +ΩL uφt + f(u)φxdxdt = +� +ΩL utφ + f(u)xφdxdt − +� +∂ΩL uφnt + f(u)φnxdxdt +(1.14) += − +� +Γ +(uLnt + f(uL)nx)φdxdt +(1.15) +Where (nx, nt) is a unit vector normal to the boundaries +We can treat the term on the right in a similar fashion except that we will have a minus +sign from (nx, nt) since we will use the same normal vector as previously. so finally, we get: +� +Γ +((uL − uR)nt + (f(uL) − f(uR))nx)φdxdt = 0 +(1.16) +Which means: +(uL − uR)nt + (f(uL) − f(uR))nx = 0 +(1.17) +21 + +knowing (nx, nt) allows us to have the tangent to Γ, which gives the derivative: +ds +dt = −nt +nx +(1.18) +This is nothing but the speed of the shock, let’s note it σ. So we reach the famous Rankine- +Hugoniot formula: +(uL(t) − uR(t))σ(t) = f(uL(t)) − f(uR(t)) +(1.19) +There is a simple way to grasp this identity, simply by imagining the shock as a level of +water in a 2D tank that has a source and a sink. Each side represents the rate of filling of +the tank expressed in two different ways. The problem with weak solutions is that they are +not always unique as we will see in what follows. +1.1.4 +Non-unicity of weak solutions +While the strong form of the conservation equation doesn’t always have a solution, the weak +form might have more than one solution with the same initial data. Let’s give the Burgers +equation as an example: +ut + uux = 0 +(1.20) +With the initial condition: +u0(x) = 1x>0(x) +(1.21) +The flux for this equation is f(u) = u2/2. It admits two weak solutions: a regular one, called +a rarefaction fan: +u(x, t) = x +t 10t(x) +(1.22) +And a shock with a speed 1 +2 +u(x, t) = 1x> t +2(x) +(1.23) +One can argue that the second solution is not stable. Consider for instance this small (in +the sens of L1) perturbation of the initial profile: +uϵ(x) = x +ϵ 10ϵ(x) +(1.24) +It’s clear by looking at the characteristics that this profile will evolve in time like the first +solution (the fan) and will thus divert from the shock solution corresponding to ϵ = 0. We +will see later more formal notions of stability of solutions. +If we now change the initial condition to this one: +u0(x) = 1x<0(x) +(1.25) +Then we have this weak solution: +u(x, t) = 1x< t +2(x) +(1.26) +However, this is a stable one: if we apply a similar perturbation to the initial data as +previously: +uϵ(x) = ϵ − x +ϵ +100(x) +(1.43) +So we need to find where (1.40) attains its minimum: +G(0, y, t) − x +t y = y2 +2t + y1y>0(y) − x +t y +(1.44) +It is smooth everywhere except at y = 0. If x < 0 then the minimum is at y = x. If +x > t then the minimum is x − t. +y∗(x, t) = y∗(x, t) = +� +� +� +� +� +x +if +x < 0 +x − t +if +x > t +0 +if +0 < x < t +(1.45) +So the solution x−y∗ +t +becomes +u(x, t) = +� +� +� +� +� +1 +if +x < 0 +x − t +if +x > t +x +t +if +0 < x < t +(1.46) +Which is the expected solution. +25 + +A second example +Let’s consider the other classical initial profile: +u0(x) = 1x<0(x) +(1.47) +In this case we have: +G(0, y, t) = y2 +2t + y1y<0(y) +(1.48) +We can see from the figure that the locus of the minimum of G(0, y, y) − x y +t will not be +continuous with respect to x. The discontinuity can be found simply: x = t +2 +y∗(1 +2, t) = 1 +y∗(1 +2, t) = 0 +(1.49) +y∗(x, t) = y∗(x, t) = +� +x +if +x < t +2 +x − t +if +x > t +2 +(1.50) +And finally the expected solution +u(x, t) = +� +1 +if +x < t +2 +0 +if +x > t +2 +(1.51) +We notice that this formalism identifies and select naturally the stable solution of Burgers +equation among the weak ones. We will be visiting in what follows more formal admissibility +conditions that apply more generally. +1.1.6 +Kruˇzkov entropy condition +The work of Kruˇzkov in the 70’s [63] represents a major development in the understanding +of conservation laws. Let u be a smooth solution (so in the strong sense) to the problem: +ut + (f(u))x = 0 +u(x, 0) = u0(x) +(1.52) +with f ∈ C1, Let η be a positive convex C1 function. +The claim is that η(u) will be a +conserved quantity under the evolution of u. This is quite easy to show: +η(u)t = η′(u)ut = η′(u)(−(f(u))x) = −η′(u)f +′(u)ux +(1.53) +So if we define q so that: +q +′(u) = η′(u)f +′(u) +(1.54) +We get: +η(u)t + qx = 0 +(1.55) +η(.) is called an entropy function and q is the associated entroy flux. +26 + +This property seems quite counter-intuitive at a first glance, especially because there are +few assumptions on η, but the key point is that it is true only for the ”strong” evolution, +and can actually be understood geometrically with the help of the figure 1.4. This property +allows us to distinguish a strong solution from a weak solution, and thus will allow us to +establish admissibility criteria for selecting the viscous solution among the weak ones, as we +will see in what follows. +u +x +f +′(u) +f +′(u) +(a) A regular profile +u +x +f +′(u) +f +′(u) +f(uL)−f(uR) +uL−uR +(b) A singular profile +Figure 1.4: For a regular profile(on the left), the front of an infinitesimal +slice moves at the same speed as its back. This property is conserved by the +application of η. On the other side, for a weak solution, the ”mass” moves +between different slices, this is responsible for the violation of the conservation +of η(u) +Entropic Admissibility condition +u is said to be an entropy solution if for all entropy functions η with the corresponding flux +q, this inequality is verified: +η(u)t + qx ≤ 0 +(1.56) +It’s fairly easy to show that this is a necessary condition for any viscous solution: Consider +a viscous solution u = limϵ→0 uϵ, where uϵ verifies: +uϵ +t + f(uϵ)x = ϵuϵ +xx +(1.57) +Then by multiplying both sides by η +′(u) we have: +η +′(uϵ)uϵ +t + η +′(uϵ)f ′(uϵ)uϵ +x = ϵη +′(uϵ)uϵ +xx +(1.58) +η(uϵ)t + q′(uϵ)uϵ +x = ϵ(η(uϵ)xx − η +′′(uϵ)(uϵ +x)2) +(1.59) +Since η +′′(uϵ)(uϵ +x)2 ≥ 0 +27 + +η(uϵ)t + q′(uϵ)uϵ +x ≤ ϵη(uϵ)xx +(1.60) +so in the limit ϵ → 0 we get: +η(u)t + qx ≤ 0 +(1.61) +This inequality has to be understood in the weak sens: +� +R×R+(η(u)tφ(x, t) + qxφ(x, t))dxdt ≤ 0 +(1.62) +For a positive test function φ. Then by Green’s formula: +� +R×R+(η(u)φt(x, t) + q(u)φx(x, t))dxdt − +� +R+ η(u)φ(0, t)dt ≥ 0 +(1.63) +Remarks +1. Suppose the previous inequality is verified for (η1, q1) and for (η2, q2) then it is verified +for η = η1 + η2 associated with the flux q = q1 + q2. Note however that the sum might +not be convex. +2. One needs not to check the previous inequality for all convex continuous η, it’s enough +to check it for a this special family: {ηk(u) = |u − k| +k ∈ R}. The associated flux +of this family is qk(u) = (f(u) − f(k))sgn(u − k), with sgn is the sign function. The +entropic inequality then becomes: +� +R×R+(|u−k|φt+(f(u)−f(k))sgn(u−k)φx)dxdt− +� +R+ |u0(x)−k|φ(x, 0)dx ≥ 0 (1.64) +Proof: It’s actually possible to establish a sequence of piece-wise affine functions that +converge to any continuous convex function such that each element of the sequence is +of the form: +ηn = an + bnu + +� +k +cn +k|u − k| +(1.65) +Each term of the sequence verifies the inequality thanks to the previous remark, so is +the limit. +3. If f is convex then it’s enough to check for one η +4. Oleinik’s entropy condition If we consider a solution that is smooth everywhere +except for a discontinuity at s(t) at time t, then we can apply on η(u) the same +calculations as for the Hugnoiot-Rankine condition, and it would lead to the inequality: +(η(uL) − η(uR))nt + (q(uL) − q(uR))nx ≥ 0 +(1.66) +28 + +if we apply this to the family ηk(u) = |u − k| = (u − k)sgn(u − k), we get: +uL +[ +uR +|u − k|]nt + +uL +[ +uR +(f(u) − f(k))sgn(u − k)]nx ≥ 0 +(1.67) +Let’s choose k in between uL and uR: k = λuL + (1 − λ)uR with λ ∈ [0, 1] +((uL + uR − 2k)nt + (f(uL) + f(uR) − 2f(k))nx)sgn(uL − uR) ≥ 0 +(1.68) +Now using the Hugoniot-Rankine relation: +(f(uL) − f(uR) +uL − uR +(uL + uR − 2k) + (f(uL) + f(uR) − 2f(k)))sgn(uL − uR) ≥ 0 (1.69) +noticing that uL + uR − 2k = (2λ − 1)(uL − uR) we get: +((λf(uL) + (1 − λ)f(uR) − f(k)))sgn(uL − uR) ≥ 0 +(1.70) +Which means: +• If uL > uR, then f restricted to the [uR, uL] is under its chord, figure 2.7b +• If uL < uR, then f restricted to the [uL, uR] is above its chord , figure 2.7a +This constitutes Oleinik’s entropy condition for the admissibility of discontinuous +shocks. +5. The stability interpretation: +One can understand Oleinik’s entropy condition intuitively in terms of the stability of +the shock: assume uR < u∗ < uL, then the condition can be written as: (figure 1.5 ) +f(u∗) − f(uR) +u∗ − uR +≤ f(uL) − f(u∗) +uL − u∗ +(1.71) +This means that if the shock between uL and uR is split (due to a small perturbation) +into two shocks: one between uL and an intermediate value u∗ followed by one between +u∗ and uR, in order for the two shocks to unite again, the first shock has to be faster +than the second, which is given by (1.71).See figure 1.6 for illustration. This condition +is referred to sometimes as Liu entropy condition. +6. If f is convex, then the Oleinik’s entropy condition becomes particularly simple: only +decreasing shocks are admissible: +uL > uR +(1.72) +If f is concave, the admissible shocks are the increasing ones. +29 + +u +f(u) +uL +uR +u∗ +(a) +u +f(u) +uL +uR +u∗ +(b) +Figure 1.5: The situations where the Oleinik condition is verified +x +u +uL +u∗ +uR +Figure 1.6: Illustration of the stability condition of a decreasing shock: the +upper sub shock should have a higher speed than the lower sub shock for any +intermediate split value u∗ +7. We can rewrite 1.71 slightly differently: +f(uL) − f(uR) +uL − uR +≤ f(uL) − f(u∗) +uL − u∗ +(1.73) +One can understand the equivalence between the two inequality easily by contemplating +figure 1.5. the relevance of this form is its adaptability to a generalization to the non- +scalar case, as we will see later. +We saw that the entropy condition is a necessary condition for a viscous solution. It +is possible to show that an entropic solution is unique. so, if we admit the existence of a +viscous solution, the entropic condition is sufficient for selecting it. This result is known as +Kruˇzkov uniqueness theorem. The proof relies on an L1 contraction property of entropic +solutions. It can be found in chapter 3 of [54] +30 + +1.1.7 +Relation to Hamilton-Jacobi equation +The objective here is to state one of the most classical formulas for scalar conservation +laws: Lax-Okeinik formula that describes an entropic solution for arbitrary bounded initial +condition. We choose to arrive from a path familiar to most physicist: the Hamilton-Jacobi +equation. +Let’s start by recalling the context of the HJE. Consider a system endowed with a La- +grangian: L(q, ˙q, t). We define the action as: +Sq0,t0(q, t) := min +� t,q +t0,q0 +L(q, ˙q, τ)dτ +(1.74) +Where the minimum is taken over all the trajectories q(.) such that q(t0) = q0 and +q(t1) = q1. Note that this definition is slightly technically different from the usual definition +of the action that is a functional of the trajectories and not a function of (q, t) ∈ Rn × R+. +For what follows we set n = 1 for simplicity. Many properties can be generalized trivially to +higher dimensions. +Let’s notice that the action verifies the following property: consider an infinite path γ +that divides the the (q, t) space into two parts, one containing (q0, t0) and the other (q, t) +then: +Sq0,t0(q, t) := min +(˜q,˜t)∈Γ(Sq0,t0(˜q, ˜t) + S˜q,˜t(q, t)) +(1.75) +This suggest a different way to initialize the action. Consider that we know the action +over a path (for simplicity R × {0} ): +S(q, 0) = S0(q) +(1.76) +then we can define the action all over the space by: +S(q, t) = min +˜q (S0(˜q) + S˜q,0(q, t)) +(1.77) +We will see a bit later the relevance of this definition. Let’s continue first our development +of the HJE. elementary calculus of variations of (1.74) allows to establish: +∂S +∂q = ∂L +∂ ˙q := p +(1.78) +And equally: +∂S +∂t = − ˙qp + L := −H +(1.79) +Note that q and t are only spectators regarding the Legendre transformation between H and +L. After writing ˙q in terms of p,q and t and then H in terms of (q, p, t), one can use the +previous two equations to have a first order PDE for S: +∂S +∂t + H(q, ∂S +∂q , t) = 0 +(1.80) +31 + +This is the Hamilton Jacobi equation. Once S is found, one can find the trajectories in a +similar fashion to finding the light rays in geometrical optics out of the wavefronts. ( When +q is scalar, the image of the trajectories is trivial, one needs only to find ˙q as a function of q, +which can be done directly from (1.78) ), for more details: [64]. Actually, the characteristics +(1.6) of this equation are Hamilton’s equations. At this stage, it’s easy to make sense of the +famous Hopf-Lax formula +Hopf Lax formula: +If we consider the HJE with the initial condition: +S(q, t) = S0(q) +(1.81) +From the previous discussion, we can write S as: +S(x, t) = inf{ +� t +0 +L( ˙q(s))ds + S0(y) +| +q0 = y, q(t) = x} +(1.82) +Let’s now assume that H is convex and superlinear lim|p|→∞ +H(p) +p += ∞, then the Hopfs- +Lax formula tells us that we don’t actually need to minimize over all the trajectories starting +from the path and reaching the point(x, t), it’s enough to minimize among straight lines with +the constant speed x−y +t +: +S(x, t) = min +y∈R {tL(x − y +t +) + S0(y)} +(1.83) +Proof. If we choose a straight trajectory from point y ∈ R to x with a constant speed ˙q = x−y +t +It’s obvious that +S(x, t) ≤ min +y∈R {tL(x − y +t +) + S0(y)} +to show the other direction inequality, we use the convexity of L by applying Jensen’s +inequality: +L( +� t +0 +1 +t ˙q(s)ds) ≤ 1 +t +� t +0 +L( ˙q(s))ds +(1.84) +So that makes: +tL(x − y +t +) ≤ +� t +0 +L( ˙q(s))ds +(1.85) +Which completes the proof. +Regularity and uniqueness of the solution +The Hopf-Lax formula provides a weak +form solution for the HJE as it doesn’t require for S to be differentiable. Let’s be more +precise: assumes S0 to be Lipschitz with Lip(S0) ≤ M then S defined by Hopf-Lax solves +the HJE a.e., and it is Lipschitz with Lip(St) ≤ M and differentiable almost everywhere. +Now we reach the stage where we can show the link to the conservation law. If we derive +(1.80) with respect to q, and ignore the dependence of H on q and t we get +∂ +∂t +∂S +∂q + ∂H +∂q (∂S +∂q ) = 0 +(1.86) +Now we can identify u with ∂S +∂q and H with f and we find our conservation law. +32 + +Lax-Oleinik formula +The solution S defined by Lax-Hopf is differentiable almost every- +where (Rademacher’s theorem). We would like to work out its derivative: +u(x, t) := ∂ +∂x min +y∈R {tL(x − y +t +) + S0(y)} +(1.87) +Under some assumptions: +• f(0) = 0 +• f is uniformly convex +• f is smooth +• u0 is bounded +And let G(x) = (f ′)−1(x), then +• There exists for almost all values of x, a unique y(x, t) such that the minimum is +attained: +min +y∈R {tL(x − y +t +) + S0(y)} = tL(x − y(x, t) +t +) + S0(y(x, t)) +(1.88) +• x → y(x, t) is non decreasing +• Almost everywhere for x the previous derivative is: +u(x, t) = G(x − y(x, t) +t +) +(1.89) +This generalizes the Hopfs treatment of Burgers equation previously encountered. +1.1.8 +Riemann problem +The Riemann problem is a conservation system with constant initial data except at zero: +u0(x) = +� +uL +if x < 0 +uR +if x > 0 +(1.90) +The advantage of this initial condition is that it allows for a solution which is invariant under +the resealing: +u(x, t) = u(λx, λt) +(1.91) +In other words, the solution is a function of x +t := ξ +u(x, t) = u(x +t ) := u(ξ) +(1.92) +We can write the conservation equation as: +u +′(ξ)(f +′(u(ξ)) − ξ) = 0 +(1.93) +This equation in the strong sense can give us insight into the regular solutions: they can +be either constants or of the form: u(ξ) = (f +′)−1(ξ). This requires f +′ to be invertible. We +need to take into account the shocks and the initial condition and to treat the case where +f +′ is not invertible. It’s convenient to start the discussion with a convex (or concave), then +move to the general form of flux. +33 + +Convex flux +If uL > uR then there is a simple solution which is a shock at a speed f(uL)−f(uR) +uL−uR +and it is +an entropic solution since it verifies the Oleinik condition. +If uL < uR, then we can have a continuous entropic solution: +u(ξ) = +� +� +� +� +� +uL +if ξ < f +′(uL) +(f +′)−1(ξ) +if f +′(uL) < ξ < f +′(uR) +uR +if ξ > f +′(uR) +(1.94) +Thanks to the convexity, f +′ is increasing and thus invertible. The part the solution on the +interval [f +′(uL), f +′(uR)] is called a rarefaction fan +Note that if f is not differentiable (but only continuous) at some point ˜u then the solution +is constant on the interval [f +′(˜u−0+), f +′(˜u+0+)], so we can have multiples rarefaction fans. +For a convex flux, one cannot observe at the same time a shock and a rarefaction fan. +The case of a concave flux is treated in exactly similar fashion except that the shock +will appear now when uL > uR while the rarefaction for uL < uR. We have actually the +symmetry f(u) ↔ −f(−u) that allows to passe from one case to the other. +Non convex flux +The general non-convex, non-concave flux case has been treated by S.Osheri in 1983 [65] +According to him the solution is: +if uL < uR: +ξu(ξ) − f(u(ξ)) = +max +v∈[uL,uR]{ξv − f(v)} +(1.95) +if uL > uR: +ξu(ξ) − f(u(ξ)) = +min +v∈[uL,uR]{ξv − f(v)} +(1.96) +There is an equivalent very simple formation, figure 1.7 (that I astonishingly haven’t +encountered it in the literature): +if uL < uR, we replace f by its convex hull: +ˇf = max{g ∈ C0; g ≤ f} +(1.97) +if uL > uR, we replace f by its concave hull: +ˆf = min{g ∈ C0; g ≥ f} +(1.98) +One can understand the equivalence of the two formulations with the help of some ele- +mentary geometrical constructions. +34 + +Remarks +• if part of the flux is linear then this part corresponds to a discontinuity moving at a +speed equal to the slope of straight line, which means that the Oleinik condition is a +particular case of this formulation since the shock for convex f and uL > uR can be +as well seen as the solution of a linear flux in the interval [uR, uL]. This flux is called +”contact flux” in the literature. +• If the initial condition is ”Riemann like”, in the sense that it’s uniform on the left and +on the right, except on some bounded interval, then the re-scaled solution converges +to the limit shape of the corresponding Riemann problem. +u +f(u) +uL +uR +(a) The concave hull (in red) of flux (in green), needed +when uR < uL +u +f(u) +uR +uL +(b) The convex hull (in red) of flux (in green), needed +when uR > uL +Figure 1.7: Non convex/concave flux treatment, equivalent of Osheri’s solu- +tion. +1.2 +Hyperbolic Systems of Conservation Laws +In the first part we treated the case of a single conserved quantity, the problem becomes +significantly more complex with n conserved quantities u = (u1, ..., un)t with a flux for the +quantity i that depends on all of the quantities: f : Rn → Rn. The conservation law becomes +a system of n coupled PDE’s: +ut + (f(u))x = 0 +u(x, 0) = u0(x) +(1.99) +This system is said to be strictly hyperbolic when the differential of the flux A(u) = Duf is +diagonalisable in R and its eigenvalues are distinct for all u: +λ1 < λ2 < .. < λn +(1.100) +35 + +This allows to choose the left and the right eigenvectors (li and ri respectively) such that: +li.rj = δi,j +(1.101) +The proof of this is elementary: +lt +iArj = lt +iλirj = lt +iλjrj +(1.102) +Finally: +(λi − λj)li.rj = 0 +(1.103) +Before treating the general non-linear system, let’s have a look at the simple case of a linear +one: +1.2.1 +A linear system +A simple situation when is f is linear: f(u) = Au The conservation system is: +ut + Aux = 0 +(1.104) +We can write the vector u as : +u = +� +i +(u.li)ri +(1.105) +Lets define n new quantities: ˜u = (˜ui)1≤i≤n +˜ui = u.li +(1.106) +Which are the densities in the base of the right eigenvectors. Then we can realize by mul- +tiplying both sides of equation (1.104) by li that each of these quantities verifies a scalar +conservation law: +(˜ui)t + λi(˜ui)x = 0 +(1.107) +Where λi is the eigenvalue associated with li. So, the new quantities evolve independently, +and the solution of the original system is simply: +u(x, t) = +� +i +(u(x − λit, 0).li)ri +(1.108) +The situation becomes significantly more complex when the matrix A is a function of u. The +different waves can now interact with each other. We will consider only the situation when +the system can be written in a conservative form, i.e. when A is the differential of a flux +function. We assume as well the strict hyperbolic condition as previously. +1.2.2 +Weak solutions, the Rankine-Hugoniot condition +Similarly to the scalar case, one has to interpret the conservation equation in the sense of dis- +tributions. This allows for discontinuous solutions to exist. A straightforward generalization +of the Rankine-Hugoniot condition is possible: The discontinuities should verify: +36 + +(uL − uR)σ = (f(uL) − f(uR)) +(1.109) +Unlike its scalar counterpart, this condition doesn’t only provide the shock speed, but +also constraint the densities between which one can have a shock solution, namely for all +1 ≤ i, j ≤ n +Det +�uL +i − uR +i +fi(uL) − fi(uR) +uL +j − uR +j +fj(uL) − fj(uR) +� += 0 +(1.110) +1.2.3 +The shock curves +Let’s fix a point in the density space u∗ and search for all the points that can be connected +to u∗ through a shock. One can see this set as parameterized by σ, so it is expected to form +a 1d manifold, i.e a curve, but actually, it is composed of n curves that passes by u∗. To see +this, one can linearize 1.109 in the neighborhood of u∗: +u = u∗ + 1 +σA(u∗)(u − u∗) +(1.111) +Since A has n real distinct eigenvalues, we can conclude that this equation admits n in- +dependent 1d eigenspaces that would represent the tangents of n shock curves. We can +parameterize each by its speed: Si +u∗(σ), figure 1.8. Obviously, the small perturbations in the +i-shocks propagate at a speed λi: +lim +σ→λi Si +u∗(σ) = u∗ +(1.112) +Note that the i-shock curve emerging from one point does not coincide in general with +the i-shock curve emerging from another point located at the former. +u∗ +r0 +r1 +S1 +u∗ +S0 +u∗ +Figure 1.8: Shock curves in a 2d density space +37 + +1.2.4 +Admissibility conditions +Since weak solutions are not necessarily unique, we need to select among them the ”physical” +ones. Conceptually, we can add an infinitesimal diffusion term to the conservation equation: +ut + (f(u))x + ϵuxx = 0 +(1.113) +And search for a solution that are a limit in L +1 +loc when ϵ → 0. +Although, it was possible for the Burgers equation to be treated in this manner as Hopf +did, this approach doesn’t provide a practical procedure allowing to eliminate non-physical +solutions. One has to look for alternative approaches. +Entropy condition +The notion of Entropy can be extended to the multi-dimensional case; however, its exis- +tence is no longer guaranteed. Let’s recall that entropy is a smooth convex scalar function, +associated with a flux that verifies: +Duq = DuηA(u) +(1.114) +This is a system of n first-order PDE with two scalar variables. For n > 2 the system +is over-determined and doesn’t in general have a solution. +If it does, then it allows for +classifying solutions within three categories: +• regular solutions (in the sense C1) conserve the entropy under time evolution. +• physical singular solutions consume entropy +• non-physical solutions produce entropy. +The second category means that a uL − uR discontinuity, traveling at a speed λ, should +verify: +(η(uL) − η(uR))λ ≤ q(uL) − q(uR) +(1.115) +It’s not possible to extend the Oleinik condition in a straightforward way even if we +restrict ourselves to a particular i-shock curve. For this to happen, the stability condition +has to be formulated in the sense of Liu. +Liu Condition +Consider an i-shock curve that originates at uL and let uR be a point that belongs to that +curve: uR = Si +uL(σ) and let u∗ be an intermediate point on the curve between uL and uR: +u∗ = Si +uL(s). The Liu stability condition states that: +σ(uL, uR) ≤ σ(uL, u∗) +(1.116) +This obviously means that the intermediate perturbation shock will not form a separate +shock but rather join back with the mother shock. This follows the same logic as the scalar +case, figure 1.6, restricted on one i-shock curve. This condition was developed by Liu in his +paper: [66]. Another handy directly applicable condition is the Lax condition, introduced in +the next paragraph. +38 + +Lax condition +Let λi(uL),λi(uR) be the i-eigenvalues at uL, uR respectively, then Lax stability condition +can be expressed as: +λi(uL) ≥ σ(uL, uR) ≥ λi(uR) +(1.117) +This means that the small perturbations on the left and on the right of the shock should +move towards the shock. In terms of characteristics: In the neighborhood of the i-shock, the +neighboring i-characteristics should be entering the shock and not leaving it, figure 1.9. In a +x +t +Admissible +(a) Characteristics are joining the shock +x +t +Not admissible +(b) Characteristics are leaving the shock +Figure 1.9: Illustration of Lax condition in terms of the behavior of of char- +acteristic around the shock represented by the brown segment +sense, this condition represents the time-irreversible character of the singular solution. The +information of the initial data is lost at the shocks. mathematical solutions that inverse this +process are not physical. +Conclusion +Concretely, the admissibility conditions will eliminate for each shock curve originating from +u∗, one of the two parts of the shock curve separated by u∗. Let’s denote Si+ +u∗ the non- +admissible part and Si− +u∗ the admissible one. +We orientate ri to the non-admissible part, figure 1.10. This orientation will be compat- +ible with further developments. +Recall that in the case of a scalar system, the convexity of the current allowed a sim- +plification of the analysis in particular because the mapping from the density to the speed +of perturbations becomes monotonous, and thus one to one. In higher dimensions, we need +this character to be conserved on the integral curves the eigenvectors of the Jacobian matrix +as we will see in what follows. +A simplifying hypothesis +A typical hypothesis in the textbooks that has its origins to Lax 1957 [67] is to assume that +each of the eigenvectors’ fields falls into one of the two categories: +39 + +u∗ +r0 +r1 +S1 +u∗ +S0 +u∗ +Figure 1.10: Admissible sections of shock curves(green). Non-admissible ones +are colored(red) +• Duλi.ri(u) > 0 for all u and in this case it’s said to be genuinely non linear +• Duλi.ri(u) = 0 for all u and is said to be linearly degenerate. +The first case means that the directional derivative of λi in the direction of ri is positive. +Obviously, the sign is irrelevant as far as it doesn’t change. However, for later convenience, +we choose the direction of ri so that this sign is positive. This means that λi is an increasing +function along the directed integral curves of the i-field. The second case simply means that +λi is constant along these curves. +1.2.5 +Rarefaction Curves +For a genuinely non-linear field, we obviously can parameterize an integral curve by the +corresponding eigenvalue field. So i-curve passing by a density point u∗ can be described by: +λi → Ri +u∗(λi) +(1.118) +In other words, this is the solution (and the flow for the parameter u∗) of the ODE: +du +ds = +ri(u) +Duλi.ri(u) +(1.119) +This curve is called the i-rarefaction curve. +The i-rarefaction curve that passes by u∗ is tangent to the i-shock curve that originates +at u∗. It is even possible to show that they have the same curvature, figure 1.11. In a class +of conservation laws known as the Temple class, the two curves are identical for all the fields. +u∗ divides the rarefaction curve passing by it into two parts. We denote Ri+ +u∗ the part +verifying λi(u) > λi(u∗), and by Ri− +u∗, the other part. +40 + +u∗ +r0 +S0 +u∗ +R0 +u∗ +Figure 1.11: A rarefaction curve with a shock curve +Si− +u∗ +ri +u∗ +Ri+ +u∗ +Figure 1.12: The structure of a T-curve +1.2.6 +T-curves +It will soon become meaningful to define a new curve by sticking Ri+ +u∗ to Si− +u∗. This curve is +called a T-curve. +In the next paragraph, we will be considering the solutions of the system of conservation +laws for the particular Riemann initial condition. +1.2.7 +The Riemann Problem +We consider the system of conservation laws associated with an initial condition: +u(x, 0) = uL1x<0 + uR1x>0 +(1.120) +It is easy to verify that the system is invariant under the transformation (x, t) → (µx, µt), +so one can express the solution in terms of the variable ξ = x +t and we can convert the system +into an equation of u(ξ): +u +′(ξ)(ξ − A) = 0 +(1.121) +Besides trivial constant solutions we can identify the following ones: +Elementary solutions +We can distinguish the following simple solutions composed of a single type of waves: +41 + +• If uL and uR belong to the same i- shock curve and verify: λi(uL) ≥ λi(uR) then the +solution of the Riemann problem is a simple shock: +u(ξ) = +� +uL +if ξ < σ(uL, uR) +uR +if ξ > σ(uL, uR) +(1.122) +• If uL and uR belong to the same genuinely non-linear i-rarefaction curve and verify: +λi(uL) < λi(uR) then the solution of the Riemann problem is a simple Rarefaction +wave: +u(ξ) = +� +� +� +� +� +uL +if ξ < λi(uL) +Ri +uL(ξ) +if λi(uL) < ξ < λi(uR) +uR +if ξ > λi(uR) +(1.123) +To verify why the branch in the middle holds, it’s enough to multiply the equation +1.121 from the right by ri, we get a factor with the eigenvalue equation that is solved +by this branch. +• If uL and uR belong to the same linearly degenerate i- rarefaction curve with a constant +eigenvalue λi then the solution of the Riemann problem is a shock: +u(ξ) = +� +uL +if ξ < λi +uR +if ξ > λi +(1.124) +This type of shock is sometimes referred to as contact discontinuity. Unlike the two +previous cases, the linearly degenerate curve is bi-directional, it’s at the same time a +rarefaction and a shock curve. +In conclusion, to have a physical elementary solution, uR has to belong to one of the +T-curves generated by uL. +Combined solutions +If uL and uR don’t belong to the same curve, one has to combine different T-curves to connect +the two. It’s possible to show the existence and unicity of this combination of curves for uL +and uR sufficiently close. +1.2.8 +Riemann Variables +Let’s contemplate the vector field of the right eigenvectors: +liA = λili +(1.125) +Let’s assume that up to a multiplicative scalar field li can be derived from a scalar potential +zi(u). i.e: li ∝ ∇zi. We can choose the norm of li so that we have equality: +li = ∇zi +(1.126) +42 + +We call these scalar fields, the Riemann variables. They always exist for n = 2. For n > 2 +they don’t exist in general. Riemann variables simplify the analysis of the conservation laws. +They allow to partially decouple the system. More precisely We have: +∂tzi(u) + λi∂xzi(u) = ∇zi∂t(u) + λi∇zi∂x(u) += ∇zi(∂t(u) + λi∂x(u)) += li(∂t(u) + λi∂x(u)) += li(∂t(u) + A∂x(u)) = 0 +(1.127) +This means that if we express the system in terms of the Riemann variables, the coupling +between the equations appears only in the velocity coefficient λi(z). +The sets where zi is constant form a foliation of manifolds of dimension n−1 in the density +space, that are perpendicular to the integral curves of li and since we have, li.rj = δi,j, This +means that zi is constant over all the j-rarefaction curves such that j ̸= i. For this reason, +they are sometimes called the Riemann invariants. +One can show that these speeds can be obtained by: +λi(z) = ∂Jk +∂zi +/∂uk +∂zi +(1.128) +This is true for any k and it implies that: +∂Jn +∂zi +∂um +∂zi += ∂Jm +∂zi +∂un +∂zi +(1.129) +Remark +The condition for the existence of Riemann variables is provided Frobenius theorem. It’s +more convenient to express it in the language of differentiable forms. Let’s see li as a 1-form. +If they exist, then we have a scalar field f such that li = fdzi. We have: dli = df ∧ dzi. Now +since fdzi ∧ df ∧ dzi = 0, we have the Frobenius condition: +li ∧ dli = 0 +It’s easy to see that in 2D, this is always verified +1.2.9 +Temple Class Systems +A particular case of conservation laws for which explicit calculations are typically possible +and simpler is the Temple class. It was first noticed and studied by Blake Temple 1982 [68]. +I will be simplifying the main ideas of this paper. +Definition +We say that a system is of temple class if for all i the i-rarefaction curve coincides with +the i-shock curve. This of course happens trivially for an i-field in the case of a contact +discontinuity, which means that λi is constant over each of the integral curves. i.e the i-field +is linearly degenerate. We will assume that none of the fields in this situation for what +follows. +43 + +Important Property +A system is of Temple class if and only if all the rarefaction curves and the shock. curves +are affine. +One of the directions of the implications is trivial. Since we know that the i-rarefaction +and the i-shock curve originated from a point are tangent, being affine implies coinciding. +For the other direction, I will not provide rigorous proof, it can be found in the paper of +Temple, but I can provide an intuitive understanding: Since the shock curve coincides with +the rarefaction curve, it means that the shock curve in this case does not depend on the +point where it is originated from along the rarefaction curve. so if we take three distinct +points on this curve: u1, u2, u3. we can write three Hugoniot conditions: +f(u1) − f(u2) = σ1(u1 − u2) +(1.130) +f(u2) − f(u3) = σ2(u2 − u3) +(1.131) +f(u1) − f(u3) = σ3(u1 − u3) +(1.132) +If the curve is linearly degenerate, then σ1 = σ2 = σ3. However, we excluded this possibility. +so the sigmas are not all identical (except potentially at a subset of the curve of Lebesgue +measure zero, at which we can prolong the arguments by continuity). Obviously, the left +side of the third equation is the sum of the first two, so the same must hold for the right +side: +σ1(u1 − u2) + σ2(u2 − u3) = σ3(u1 − u3) +(1.133) +It is easy to see now that if the sigmas are not all equal, then they are all different. This +implies a linear relationship between the three points and means that they are aligned. +Remarks +• If the initial data of our problem belong to a single rarefaction-shock curve, then it will +evolve staying on this curve for any time, so this curve is sometimes called an invariant +manifold of dimension one. In other words, it is possible to restrict the system of +conservation laws to the manifold, and the restriction will be a scalar conservation +law: +∂tρ + λ(φ(ρ))∂xρ = 0 +(1.134) +where φ : R → Rn is a parameterization of the curve. This similarity between Temple +class and scalar conservation laws allows extending some of the general theories that +were proven only for scalar systems to Temple classes. For instance, the existence and +uniqueness of physical solutions were proven in [41] +• Riemann variables are build-in within Temple systems: Let li(u∗) be the left eigenvector +at u∗. The j-rarefaction lines for all j ̸= i form a hyperplane perpendicular to li(u) +will be perpendicular to this hyperplane for all u belonging to it. If we parameterize +the family of hyperplanes associated with the i-left field by zi then this will constitute +obviously a Riemann variable: li ∝ ∇zi. For a more rigorous treatment of the existence +of Riemann variables, one has to make use of the Frobenius theorem. +44 + +• A conservation system can of course be partially of Temple class, in the sense that +the properties of Temple apply only to some of the characteristic fields. These fields +would form an invariant manifold where initial data stay on it and do not leave it. The +restriction of the conservation system to this manifold would be a Temple system. +Temple class for a system of two conservation laws. +Consider two conservation laws corresponding to non-degenerate fields. +∂tu + ∂xf(u, v) = 0 +∂tu + ∂xg(u, v) = 0 +(1.135) +We assume that the rarefaction lines are not parallel for either of the fields. If one of them +is, then this one decouples trivially from the system. We can parameterize the i-rarefaction +field by the slope of its lines, say zi(u, v). These variables would obviously be Riemann +invariant. We are interested here in determining the class of currents that can generate such +systems. One can show that: +g = fz0 + H1(z0) +g = fz1 + H2(z1) +(1.136) +This means that if we know the currents on the boundaries of a temple class system, we can +determine the currents on the bulk. +45 + +CHAPTER 2 +Hydrodynamic behavior of the two–TASEP +The content of this chapter is based on the article Cantini, Zahra (2022) that +is published in Journal of Physics A: Mathematical and Theoretical 55.30 (2022) +https://iopscience.iop.org/article/10.1088/1751-8121/ac79e3/meta +Abstract +We address the question of the hydrodynamic behavior of a 2-species generalization of the +TASEP, called 2–TASEP, introduced by Derrida [32] and Mallick [33]. We find that the +auxiliary variables, introduced previously in the literature to express the density dependence +of particle currents, turn out to be the Riemann variables of the conservation equations. This +allows us to work out quite explicitly the rarefaction and shock solutions and to completely +solve the associated Riemann problem. Our theoretical results are confirmed by Monte Carlo +simulations. +2.1 +Introduction +The asymmetric simple exclusion process (ASEP) is a minimal model of transport in (quasi) +one–dimensional systems. It consists of particles which occupy the sites of a one dimensional +lattice with only one particle allowed on each lattice site. These particles hop under the +effect of an external driving force which breaks detailed balance and creates a stationary +current. This model was introduced in the late 60s in biology to model translation in protein +synthesis [25] and independently in probability [19] and afterwards it has found a wide +spectrum of applications, ranging from theoretical and experimental studies of biophysical +transport [17] to modeling traffic flow [42, 69]. +As soon one considers models which are +more suited for physical/biological systems, one will encounter variants of ASEP containing +46 + +localized or mobile defects and several species of particles, which have different behaviors. As +a result, typically these models are not exactly solvable and even for some of the most basic +questions, like the study of large scale behavior of the system (which in the case of ASEP +is known to be described by the Burgers equation [18,70–72]), approximations schemes like +mean–field are necessary. +In this paper we address the question of the large scale or hydrodynamic behavior of an +exactly solvable multispecies generalization of ASEP, consisting of two kinds of particles, •– +particles and ◦–particles, moving in opposite directions. One can think of them as opposite +charged particles moving under the influence of an external electric field or as cars moving on +two opposite lanes. Each site of a one–dimensional lattice is either empty or occupied by one +of the two kinds of particles. For convenience, empty sites can be treated as a third species +of particles, the ∗–particles. In continuous time, a •–particle jumps forward on empty sites +with rate β, while a white ◦–particle jumps backward on empty sites with rate α. On top +of this, an adjacent pair •◦ swaps to ◦• with rate 1. +• ∗ → ∗ • +rate +β +∗ ◦ → ◦ ∗ +rate +α +• ◦ → ◦ • +rate +1 +(2.1) +This model has appeared in the literature under different names. It has been first considered +in [32,33], where the stationary measure on a finite periodic lattice was written in a matrix +product ansatz form [16, 38]. +It is also a particular case (q = 0) of the so called AHR +model [73–75], in which the swap ◦• → •◦ is allowed with rate q. Being a natural 2–species +generalization of TASEP we shall call this model 2–TASEP. It turns out that the 2–TASEP is +Yang–Baxter integrable, this was first proven in [76] in a particular case with the constraint +α+β = 1, which happens to be the same condition for the system to have a product invariant +measure. For arbitrary values of α and β, the Yang-Baxter integrability was proven in [46]. +It belongs indeed to a larger family of integrable multispecies exclusion processes introduced +in [77]. Bethe ansatz techniques can be used to solve exactly for the long time limit behavior +of the generating function of the currents [46, 78]. More recently, in the case α + β = 1, +the transition probabilities as well as the joint current distribution for some specific initial +distribution of a finite number of • and ◦–particles have been obtained [79, 80], and an +asymptotic analysis of these results has allowed to prove that the joint current distribution +is given by a product of a Gaussian and a GUE Tracy-Widom distribution in the long time +limit, as predicted by non–linear fluctuating hydrodynamics [81–83]. +When α + β = 1 the stationary measure factorizes and the currents have a simple ex- +pression as function of the densities. In [84,85] the hydrodynamic limit of the 2–TASEP for +α = β = 1 +2 has been studied and proven to converge to the classical Leroux system of conser- +vation laws [86,87]. The Leroux system is a notable example of a Temple class system i.e. a +2–components conservation law whose shock and rarefaction curves coincide [68]. The theory +of Temple class systems shares several common features with the theory of single component +conservation laws [88], in particular well-posedness results for Temple systems are available +for a much larger class of initial data compared to general systems of conservation laws. +For arbitrary α and β only numerical results based on mean field approximation are +available [89]. +In the present paper we study the exact hydrodynamic equations of the +47 + +2–TASEP and show that they are Temple class for arbitrary α and β. This allows us to +compute their rarefaction and shock solution, as well as to solve completely the Riemann +problem, which consists in determining the density profile starting from a domain-wall initial +data. +The paper is organized as follows. In Section 2.2 we review and expand on results about +the 2–TASEP currents obtained in [46]. The core of the paper is Section 2.3 where the +conservation laws are studied. We derive the rarefaction waves as well as the shock solutions +and finally we solve the full Riemann problem. In Section 2.4 we compare the prediction of +the hydrodynamic equations with Monte Carlo simulations. Conclusions and some outlooks +for further works are discussed in Section 2.5. +2.2 +Currents +In this section we reproduce and expand the results of the analysis in [46] in a convenient +way, which makes manifest the symmetries of the model. In order to compute the particle +currents as functions of the local densities, we consider our model on a periodic ring with a +fixed number of particles of each species. Call Mi the number of particles of species i, they +are related to N, the length of the ring, by N = M•+M◦+M∗. Let the system evolve starting +at time t = 0 from an arbitrary fixed configuration and call ni,j(t) the number of swaps of +consecutive ordered pairs of particles of type i, j up to time t. This number increases by +1 +each time two consecutive ordered particles of species i, j exchange their position i, j → j, i. +The average rate of swaps i, j → j, i in the steady state is just given by limt→+∞ +1 +tE [ni,j(t)], +irrespectively of the initial state. The particle currents in the steady state are hence given +by +Ji = lim +t→+∞ +1 +NtE +�� +j̸=i +ni,j(t) − nj,i(t) +� +(2.2) +In our case, it is convenient to introduce the following quantity +Φ(ν•,◦, ν•,∗, ν∗,◦) = lim +t→+∞ +1 +t E [ν•,◦ n•,◦(t) + ν•,∗ n•,∗(t) + ν∗,◦ n∗,◦(t)] . +(2.3) +The currents are obtained as specialization of Φ(ν•,◦, ν•,∗, ν∗,◦) +J• = Φ(1, 1, 0) +N +, +J◦ = Φ(−1, 0, −1) +N +, +J∗ = Φ(0, −1, 1) +N +. +(2.4) +In [46] the function Φ(ν•,◦, ν•,∗, ν∗,◦) was shown to be given by the solution of the following +equation +det G(Φ(ν•,◦, ν•,∗, ν∗,◦), ν•,◦, ν•,∗, ν∗,◦) = 0. +(2.5) +where the matrix G(Φ, ν•,◦, ν•,∗, ν∗,◦) is given by +G(Φ, ν•,◦, ν•,∗, ν∗,◦) = +� +� +Φ +Fα[M◦, M•, M∗] +Fβ[M•, M◦, M∗] +ν•,◦M• + ν∗,◦M∗ +Fα[M◦ + 1, M•, M∗] +−Fβ[M•, M◦ + 1, M∗] +ν•,◦M◦ + ν•,∗M∗ +−Fα[M◦, M• + 1, M∗] +Fβ[M• + 1, M◦, M∗] +� +� +(2.6) +48 + +with +Fγ[a, b, c] := +� +0 +dz +2πi +1 +za(z − 1)b(z − γ)c. +(2.7) +When one of the particle species is strictly absent (i.e. when one among M•, M◦, M∗ vanishes) +the model reduces to a single species TASEP and it is not difficult to see that one of the +currents vanishes, while the others boil down to the usual TASEP current. On the other hand +in the following we shall assume that at least one particle per species is present (Mi ̸= 0) +and we shall be mainly interested in the thermodynamic limit of these quantities as N → ∞, +with limN→∞ +Mi +N = ρi. We shall see, as already found in [32,33], that the presence of even +a single particle of a given species (i.e. an infinitesimally vanishing but not strictly zero +density) can affect the macroscopic behavior of the system. With this in mind, we consider +the limit a −→ ∞, with b/a and c/a fixed, of the function Fγ[a, b, c], that behaves like1 +Fγ[a, b, c] ∼ +1 +za +γ(zγ − 1)b(zγ − γ)c, +where zγ is the zero of the saddle point equation a +z + +b +z−1 + +c +z−γ = 0, belonging to the interval +[0, min[1, γ]]. Applying this expression in eq.(2.5) we get in the thermodynamic limit +lim +N→∞ +Φ(ν•,◦, ν•,∗, ν∗,◦) +N += (ν•,◦ρ• + ν∗,◦ρ∗)zα(1 − zβ) + (ν•,◦ρ◦ + ν•,∗ρ∗)zβ(1 − zα) +(2.8) +where with zα ∈ [0, min(1, α)] and zβ ∈ [0, min(1, β)] are the solution of the saddle point +equations +ρ◦ +zα ++ +ρ• +zα − 1 + 1 − ρ◦ − ρ• +zα − α += 0 +(2.9) +ρ• +zβ ++ +ρ◦ +zβ − 1 + 1 − ρ◦ − ρ• +zβ − β += 0. +(2.10) +The result for the currents then reads +J◦ = zα(zβ − 1) + ρ◦(zα − zβ) +(2.11) +J• = zβ(1 − zα) + ρ•(zα − zβ) +(2.12) +J∗ = ρ∗(zα − zβ) +(2.13) +Notice that eqs.(2.9,4.29) are invariant under exchange ρ◦ ↔ ρ•, α ↔ β and zα ↔ zβ. This +implies as expected, that under exchange ρ◦ ↔ ρ• and α ↔ β we have J◦ ↔ −J•. Let us +finish this section by showing how some known results fit in the analysis above. +♦ β = 1. In this case •–particles do not distinguish ◦–particles from ∗–particles and so they +behave just as particles in a single species TASEP. This is reflected in eq.(4.29), where ρ◦ +disappears and one finds zβ = ρ•, which replaced in eq.(4.27) gives J• = ρ•(1 − ρ•). The +case α = 1 is completely analogous: zα = ρ◦ and J◦ = ρ◦(ρ◦ − 1). +♦ α+β = 1. In this case it is known that the stationary measure takes a factorized form [75]. +At the level of the currents, we have indeed J◦ = −ρ◦(ρ• + αρ∗) and J• = ρ•(ρ◦ + βρ∗). +1Here we are supposing a, b, c, γ > 0. +49 + +2.2.1 +The z variables +In our analysis the variables z = (zα, zβ) will play a prominent role, it is therefore important +to work out their domain of definition Dz(α, β) corresponding to the physical domain D in +the variables ρ = (ρ◦, ρ•), ρ◦, ρ• ≥ 0, ρ◦ + ρ• ≤ 1. +First of all we have already seen above that z has to satisfy zα ∈ [0, min(1, α)] and +zβ ∈ [0, min(1, β)]. At fixed z, the system of equations (2.9,4.29) is just the crossing of two +lines in the ρ plane: ℓα coming from eq.(2.9) and ℓβ coming from eq.(4.29). In Fig. 2.1 we +show by a simple geometrical argument that these lines cross inside D whenever zα +zβ ≤ 1. +So in conclusion the domain Dz(α, β) is given by zα ∈ [0, min(1, α)], zβ ∈ [0, min(1, β)] and +zα + zβ ≤ 1. The geometrical reasoning explained in Fig. 2.1 allows also to conclude that at +fixed zα, ρ• is an increasing function of zβ, while at fixed zβ, ρ◦ is an increasing function of +zα. +1 +1 +ρ◦ +ρ• +ℓβ +zβ +β +(1 − zβ, zβ) +ℓα +zα +α +(zα, 1 − zα) +Figure 2.1: +The shaded triangle is the physical region D. +Given zα ∈ +[0, min(1, α)], the line ℓα (red) intersects the boundary of D at the bottom side +and at the diagonal side at the point Cα of coordinates ρ◦ = zα, ρ• = 1 − zα. +Similarly given zβ ∈ [0, min(1, β)], the line ℓβ (blue) intersects the boundary +of D at the left side and at the diagonal side at the point Cβ of coordinates +ρ◦ = 1 − zβ, ρ• = zβ. For the two lines to cross we need the point Cα to lie +above the point Cβ, which is the case iff zα + zβ ≤ 1. +In Figs. 2.2 we have reported on the left the physical domain D in the densities plane +and on the right the corresponding domain Dz in the z variables plane for the cases α, β > 1 +(2.2a) , α, β < 1 and α+β > 1 (2.2b) and α+β < 1 (2.2c). Notice that in Fig. 2.2a the thick +red segment on the ρ◦ axis is mapped to the point (zα = 1, zβ = 0) and the thick blue segment +on the ρ• axis is mapped to the point (zα = 0, zβ = 1). In Fig. 2.2c: the overlap of the red +and blue segments on the boundary ρ∗ = 0 is mapped to the point (zα = α, zβ = β). This +indicates that the mapping ρ → z can be singular on the boundary of the physical domain +D, where at least one of the densities vanishes. Let’s analyze the different possibilities and +work out the portion of the boundary where the mapping is singular. +ρ◦ → 0 In this case from eq.(2.9) we deduce that zα = 0 while the two solutions of eq.(4.29) +are zβ = 1, zβ = ρ•β and we have to retain the smallest one. If β ≤ 1 then on the ρ◦ = 0 +axis the map is 1-to-1 and there are no singularities, on the other hand, if β > 1 then all the +points ρ• ≥ β−1 are mapped to the same point (zα = 0, zβ = 1). +50 + +ρ◦ +ρ• +1 +β +1 +α +1 +1 +zα +zβ +1 +1 +(a) α, β > 1 +ρ◦ +ρ• +(1 − β, β) +(α, 1 − α) +1 +1 +zα +zβ +α +β +1 +1 +(b) α, β < 1, α + β > 1 +ρ◦ +ρ• +1 +1 +zα +zβ +α +β +1 +1 +(c) α + β < 1 +Figure 2.2: On the left the physical domain D in the densities plane, on the +right the corresponding domain Dz in the z variables plane. On both sides we +have drawn in red the lines ℓα at constant zα and in blue the lines ℓβ at constant +zβ. The lines ℓα (red) have slope α(1−zα) +(α−1)zα and in particular they have positive +slope for α > 1 as in figure (a) and negative slope for α < 1 as in figures (b) +and (c). Similarly, the lines ℓβ (blue) have slope (β−1)zβ +β(1−zβ), they have positive +slope for β > 1 as in figure (a) and negative slope for β < 1 as in figures (b) +and (c). +ρ• → 0 This case is treated similarly to the previous one: we have zβ = 0 and the two +solutions of eq.(2.9) are zα = 1, zα = ρ◦α. If α ≤ 1 then on the ρ• = 0 axis the map is 1-to-1 +and there are no singularities, on the other hand, if α > 1 then all the points ρ◦ ≥ α−1 are +mapped to the same point (zα = 1, zβ = 0). +ρ∗ → 0 Eqs.(2.9, 4.29) have solutions, zα = α, zα = ρ◦, zβ = β, zβ = 1 − ρ◦. Whenever +α + β ≤ 1, all the points on the line ρ◦ + ρ• = 1 such that α ≤ ρ◦ ≤ 1 − β are mapped to +the single point zα = α, zβ = β. +51 + +2.2.2 +Behavior at the boundary of the physical domain +The singularities of the mapping ρ → z reflect some important features of the model. Let’s +consider the currents of non zero density particles at the boundary of D +ρ◦ → 0 We have for the current +J•(ρ•) = +� βρ•(1 − ρ•) +0 ≤ ρ• ≤ β−1 +(1 − ρ•) +β−1 ≤ ρ• ≤ 1. +(2.14) +ρ• → 0 We have for the current +J◦(ρ◦) = +� −αρ◦(1 − ρ◦) +0 ≤ ρ◦ ≤ α−1 +−(1 − ρ◦) +α−1 ≤ ρ◦ ≤ 1. +(2.15) +ρ∗ → 0 We have for the current +J•(ρ•) = +� ρ•(1 − ρ•) +0 ≤ ρ• ≤ β, 1 − α ≤ ρ• ≤ 1 +β(1 − α) + (α − β)ρ• +β ≤ ρ• ≤ 1 − α. +(2.16) +These results have to be compared to the situation in which we have strict absence of a +ρ• +J•(ρ•) +β +1 +β−1 +(a) +ρ◦ +− J◦(ρ◦) +α +1 +α−1 +(b) +ρ• +J•(ρ•) +1 +β +1 − α +(c) +Figure 2.3: (a) Current J• for β > 1 and ρ◦ = 0. (b) Current J◦ for α > 1 +and ρ• = 0. (c) Current J• for α + β < 1 and ρ∗ = 0. The dashed lines +correspond to the current for a strict absence of ◦–particles (a), •–particles +(b), ∗–particles (c). +species of particles (and not just vanishing density). Consider for example a system without +◦–particles. Such a system is effectively a single species TASEP with jump rates equal to β +and hence with current just J•(ρ•) = βρ•(1−ρ•). Comparing this with eq.(2.14) we see that +52 + +for β > 1 this behavior holds only for 0 ≤ ρ• ≤ β−1, while for ρ• > β−1 the presence of even +a single ◦–particle affects the macroscopic behavior of the system, giving rise to a modified +current. +At the boundary of D, the average speed of the zero density particles displays also an +interesting behavior. +ρ◦ → 0 Speed of ◦–particles +v◦(ρ•) = +� +− α+β(1−α)ρ•(1−ρ•) +1+(α−1)ρ• +− βρ• +0 ≤ ρ• ≤ β−1 +−1 +β−1 ≤ ρ• ≤ 1, +(2.17) +ρ• → 0 Speed of •–particles +v•(ρ◦) = +� +β+α(1−β)ρ◦(1−ρ◦) +1+(β−1)ρ◦ +− αρ◦ +0 ≤ ρ◦ ≤ α−1 +1 +α−1 ≤ ρ◦ ≤ 1, +(2.18) +ρ∗ → 0 Speed of ∗–particles +v∗(ρ•) = zα − zβ +(2.19) +with +zα = +� +α +ρ• ≤ 1 − α +1 − ρ• +ρ• ≥ 1 − α , +zβ = +� β +ρ• ≥ β +ρ• +ρ• ≤ β +(2.20) +The results in eqs.(2.17–2.19) have been obtained in the literature by considering systems +with a single particle of either species: the cases ρ∗ → 0, eqs.(2.16,2.19) first appeared +in [33, 78], the cases ρ◦ → 0 or ρ• → 0, eqs.(2.14,2.17) and eqs.(2.15,2.18) first appeared +in [90]. +2.3 +Conservations laws +Under Euler–scaling (where site position and time scale as ϵ−1n, ϵ−1t for ϵ → 0) the density +profiles are expected to evolve deterministically as solutions of a system of conservation laws. +Consider initial data ρ(0) +i (x) and to such data associate a family of initial conditions of the +2-TASEP of product Bernoulli form, with local probability at site n given by +E[χϵ +i(n, t = 0)] = ρ(0) +i (ϵn), +where χϵ +i(n, t) is the i–th species indicator function at time t and site n. We expect that +the random variable χϵ +i(⌊ϵ−1x⌋, ϵ−1t, ) converges for ϵ → 0 to a deterministic density profile. +More precisely we expect that +lim +ϵ−→0 +� +n:a≤ϵn≤b +ϵ χϵ +i(n, ϵ−1t) = +� b +a +ρi(x, t)dx, +a.s. +(2.21) +53 + +where ρ = (ρ◦, ρ•) is the solutions of a system of conservation laws +∂tρ + ∂xJ = 0. +(2.22) +with initial condition ρ(t = 0) = ρ(0) = (ρ(0) +◦ , ρ(0) +• ). By making the usual hypothesis of local +stationarity we identify the local currents with the stationary currents at density ρ, given +by eqs.(2.11,4.27). A more precise statement and proof of this result for the case α = β = 1 +2 +can be found in [84]. While the approach developed in [84] can be extended to the full +α + β = 1 line (for which the stationary measure is product), it is not expected to work for +arbitrary values of α and β [91]. In the present paper we take eqs.(2.21,2.22) as a working +hypothesis. Eqs.(2.22) form a system of coupled conservation laws, whose non-linearity is +known to be at the origin of characteristic phenomena such as shocks formation in finite +time, and rarefaction waves, i.e. self-similar solutions, which present regions expanding in +time at constant speed where the densities interpolate between two boundary values. In +the following we shall analyze in detail eqs.(2.22). We shall show that the variables z are +Riemann variables for this system. On general grounds we know that the rarefaction fans can +be expressed in an implicit form involving the Riemann variables. What is more surprising +is that for our system also the shock solutions are explicitly written in terms of the Riemann +variables: they correspond to a discontinuity of only one of the two Riemann variables (the +other one being continuous). Putting together fans and shock we can explicitly solve the +Riemann problem. In the Section 2.4 these theoretical results are compared to Monte Carlo +simulations of the 2–TASEP. +2.3.1 +The cases α = β = 1 and α + β = 1 +Before discussing the system of equation (2.22) in full generality let us start with some +comments on two particular cases: α = β = 1 and α + β = 1 +• +α = β = 1. +When β = 1, the •–particles don’t distinguish ◦–particles from ∗–particles. This means that +the •–particles evolve as in a single species TASEP. At the level of currents, for β = 1 we +have indeed J• = ρ•(1 − ρ•). In this case the conservation law for ρ• completely decouples +from that of ρ◦ and takes the usual form of the non-viscous Burgers equation +∂tρ• + (1 − 2ρ•)∂xρ• = 0. +Analogously, for α = 1, the conservation law for ρ◦ completely decouples from that of ρ• and +takes the form +∂tρ◦ − (1 − 2ρ◦)∂xρ◦ = 0. +So for α = β = 1, system (2.22) just decouples completely into two Burgers equations. +• +α + β = 1. +In this case, thanks to the factorization of the stationary measure, the currents can be +explicitly written as functions of the densities +J◦ = −ρ◦(ρ• + β(1 − ρ◦ − ρ•)), +J• = ρ•(ρ◦ + α(1 − ρ◦ − ρ•)). +54 + +One can consider conserved quantities ρ and v, defined by +� ρ +v +� += +� +− α(α+2β) +3 +− β(α+2β) +3 +α +−β +� � ρ◦ +ρ• +� ++ +� (2α+β)(2β+α) +9 +β−α +3 +� +(2.23) +The associated currents are (up to irrelevant additive constants) +Jρ = ρv, +Jv = ρ + v2. +These are the currents of the Leroux system [86, 87] (the particular case α = β = 1 +2 is the +one considered in [84]), which is known to be a Temple class system. +2.3.2 +The general case: Riemann variables +For the problem under investigation one could expect that in addition to the generic com- +plexity of the analysis of a coupled system of conservation equations, one has to face the +further complication due to the implicit dependence of the currents on the densities, which +goes through the auxiliary variables z. Actually, quite unexpectedly, what seems a drawback +of the equations turns out to be the main feature which allows to solve them. Indeed the +variables z happen to be Riemann variables for our conservation laws, i.e. they diagonalize +the system of eqs.(2.22) and simplify substantially their analysis. From now on we want to +think of both ρ and J as functions of z . +We first notice that, solving eqs.(2.11,4.27) for the densities ρ in terms of z and J and +replacing them into eqs.(2.9,4.29), the currents are the solution of the following linear system +of equations +J◦ +zα ++ +J• +zα − 1 − J◦ + J• +zα − α + 1 = 0 +(2.24) +J• +zβ ++ +J◦ +zβ − 1 − J◦ + J• +zβ − β + 1 = 0. +(2.25) +Now differentiate the l.h.s. of eq.(2.9) with respect to t, differentiate the l.h.s. of eq.(2.24) +with respect to x and sum the obtained results. Thanks to the conservation laws eqs.(2.22) +the derivatives ∂tρ and ∂xJ cancel and one remains with +∂tzα + vα(z)∂xzα = 0, +vα(z) = +� +J◦ +z2α + +J• +(zα−1)2 − +J◦+J• +(zα−α)2 +� +� +ρ◦ +z2α + +ρ• +(zα−1)2 + 1−ρ◦−ρ• +(zα−α)2 +�. +(2.26) +In the same way one obtains the equation for zβ +∂tzβ + vβ(z)∂xzβ = 0, +vβ(z) = +� +J• +z2 +β + +J◦ +(zβ−1)2 − +J◦+J• +(zβ−β)2 +� +� +ρ• +z2 +β + +ρ◦ +(zβ−1)2 + 1−ρ◦−ρ• +(zβ−β)2 +�. +(2.27) +The speeds vα and vβ are the eigenvalues of the linearization matrix ∂ρjJi, and on general +grounds they can also be written as +vα = ∂ρiJi|zβ = ∂zαJi(z) +∂zαρi(z), +vβ = ∂ρiJi|zα = ∂zβJi(z) +∂zβρi(z). +(2.28) +55 + +A close inspection of their expression allows to conclude that +vβ(z) ≥ vα(z), +(2.29) +with the equality holding for 1−zα−zβ = 0, which is a non empty set only for α+β ≥ 1. We +conclude that for α + β < 1, the system in (2.22) is strictly hyperbolic on the whole physical +domain D, whereas for for α+β ≥ 1 it is degenerate hyperbolic on the locus 1−zα −zβ = 0, +i.e. ρ∗ = 0, ρ◦ ≤ α, ρ• ≤ β (green segments in Figs. 2.2a,2.2b) and strictly hyperbolic on the +rest of the physical domain. +Using eqs.(2.26,2.27) we can easily work out the rarefaction fans. These are continuous +solutions of eqs.(2.22), which depend only on the self-similarity variable ξ = x/t, z(x, t) = +z(ξ = x/t). They are given by the solutions of the equations +(vα − ξ)∂ξzα = 0 +(vβ − ξ)∂ξzβ = 0. +(2.30) +Locally we have four possibilities. +1. The trivial solution, namely both zα and zβ are constant. +2. Both ∂ξzα ̸= 0, ∂ξzβ ̸= 0. In this case we must have vα − ξ = vβ − ξ = 0, and in +particular vα = vβ. As mentioned above, this is possible only if 1 − zα − zβ = 0. In +this case we get a rarefaction fan of equation +ρ◦(ξ) = zα(ξ) = 1 + ξ +2 +, +ρ•(ξ) = z•(ξ) = 1 − ξ +2 +. +(2.31) +Notice that the condition 1−zα−zβ = 0 implies absence of ∗-particles, and the solution +(2.31) corresponds to the fan solution of the single species TASEP (upon identification +of ◦-particles with empty sites). +3. zα constant, ∂ξzβ ̸= 0. In this case the rarefaction fan (β–fan) is given by +vβ(zα, zβ(ξ, zα)) = ξ. +(2.32) +This equation, combined with the expression ρ(zα, zβ), allows to write a β-fan in +parametrized form (zα is kept constant while zβ varies), see Fig. 2.4b. One can show +that (at fixed zα) vβ is a decreasing function of zβ, while ρ• is an increasing function +of zβ . This means that zβ(ξ, zα) and ρ•(ξ, zα) are decreasing functions of ξ. +4. zβ constant, ∂ξzα ̸= 0. This case is similar to the previous one, but the role of α and +β variables is exchanged. So we speak of an α–fan, given by +vα(zα(ξ, zβ), zβ) = ξ. +(2.33) +One can show that (at fixed zβ) vα and ρ◦ are increasing function of zα. This means +that zα(ξ, zβ) and ρ◦(ξ, zβ) are increasing functions of ξ. +Projection in the ρ–plane of the three types of fans as well as an example of a β–fan are +represented in Fig. 2.4. +56 + +ρ◦ +ρ• +1 +1 +(a) +v− +β +v+ +β +ρ• +ρ∗ +ρ◦ +ρ +ξ +(b) +Figure 2.4: (a) Projection in the ρ–plane of the three types of rarefactions +fans in the case α, β < 1: in green a TASEP-like rarefaction fan, in blue an +α–fan, in red a β–fan. (b) A plot of a β–fan. The local densities correspond to +the width of the corresponding colored regions. In particular the line separating +the yellow region from the violet region represents the plot of the density ρ•(ξ). +The extremes of the fan are given by : v− +β = vβ(zα, 1 − zα), v+ +β = vβ(zα, 0). +2.3.3 +Shocks +It is well known that a smooth solution of a nonlinear conservation laws like eqs.(2.22) may +develop a shock discontinuity in finite time. One needs therefore to admit the notion of weak +solution, i.e. solution in the sense of distributions, which need not even be continuous. The +discontinuity associated to a shock with trajectory xs(t), has to satisfy the Rankine-Hugoniot +jump relations . If we denote by [ρ] and [J] respectively the discontinuities of the densities +and of the currents across the shock, i.e. +[ρ] = ρ(x+ +s ) − ρ(x− +s ), +[J] = J(x+ +s ) − J(x− +s ) +then the Rankine-Hugoniot jump relations read +[ρ] − vs[J] = 0, +vs = shock’s speed. +(2.34) +The Rankine-Hugoniot jump relations, allow to express the speed of the shock in terms of +the discontinuity and at the same time put a constraint on the admissible discontinuities, +the Hugoniot condition: +det +� +[ρ◦] +[J◦] +[ρ•] +[J•] +� += 0. +(2.35) +In order to analyze the Hugoniot condition, we consider ρ(x− +s ) = ρ− as fixed. For strictly +hyperbolic systems of N conservation laws, it is known that the set of ρ+ = ρ(x+ +s ) satisfying +the Hugoniot condition passes through ρ− and locally decompose around ρ− in N different +branches [92], each one called a shock curve. In our case we expect two shock curves passing +through any point ρ−, which correspond to two different kinds of shocks. Using eq.(2.9) and +57 + +eq.(2.24) we see that if z+ +α = z− +α = zα, then we have +[ρ◦] +zα ++ +[ρ•] +zα − 1 − [ρ◦] + [ρ•] +zα − α += 0 +[J◦] +zα ++ +[J•] +zα − 1 − [J◦] + [J•] +zα − α += 0. +(2.36) +This means that the matrix in the eq.(2.35) has the left null vector ( 1 +zα − +1 +zα−α, +1 +zα−1 − +1 +zα−α) +and therefore its determinant vanishes. We conclude that a straight line at zα constant is a +shock curves. In the same way we find that the lines at zβ constant are also shock curves. +In conclusion we have found that we have two kind of admissible shocks +• β-shocks: zα(ρ−) = zα(ρ+) = zα with speed vs,β(zα; z− +β , z+ +β ); +• α-shocks: zβ(ρ−) = zβ(ρ+) = zβ, with speed vs,α(zβ; z− +α , z+ +α ). +The corresponding shocks speeds vs,β(zα; z− +β , z+ +β ) and vs,α(zβ; z− +α , z+ +α ) do not have particularly +transparent expressions except for some particular cases. In the case α = β = 1, a β–shock +is a discontinuity of the density ρ•, with ρ◦ constant across the discontinuity, while an α– +shock is the other way round, i.e. a discontinuity of the density ρ◦, with ρ• constant across +the discontinuity. Shock curves coincide with rarefaction curves so this is an example of a +conservation system of Temple class [68]. +A further analysis of the Hugoniot condition allows to conclude that in the bulk of the +physical domain D, the only possible shocks are α and β–shocks. There exists however one +more class of shocks when both sides of the discontinuity lie on the boundary line ρ∗ = 0. +These shocks have speed vs = [J•] +[ρ•], where the current J• is given by eq.(2.16). +It is possible to show that at fixed zα the current J• is a concave function of the density ρ• +(see fig. 2.5 ). This implies that, for a fixed value of the densities on one side of the shock, say +ρ−, the speed of a β–shock is a decreasing function of ρ+ +• . This property can be conveniently +ρ• +J• +0.2 +0.4 +0.6 +0.8 +1 +0.1 +0.2 +0.3 +0.4 +0.5 +(a) +ρ• +J• +0.2 +0.4 +0.6 +0.8 +1 +0.05 +0.1 +0.15 +0.2 +0.25 +(b) +Figure 2.5: Current J• as function of ρ• at constant zα = .2. (a) Fixed α = 4 +and decreasing β (blue line β = 5, green line β = 1, red line β = 0.3). (b) Fixed +β = 0.3 and decreasing α (blue line α = 3, green line α = 1, red line α = 0.3). +reformulated in terms of the z variables. At constant zα, ρ• is an increasing function of zβ, +58 + +hence at fixed zα and z− +β , the speed of β–shock vs,β(zα; z− +β , z+ +β ) is a decreasing function of +z+ +β . In particular it takes its minimum for the largest zβ allowed, i.e. zβ,max = 1 − zα +vs,β(zα; zβ, z+ +β ) ≥ vs,β(zα; zβ, 1 − zα) +0 ≤ z+ +β ≤ 1 − zα. +(2.37) +The current J◦ is a convex function of ρ◦ at fixed zβ. A similar reasoning as the one presented +above allows to conclude +vs,α(zβ; zα, z+ +α ) ≤ vs,α(zβ; zα, 1 − zβ) +0 ≤ z+ +α ≤ 1 − zβ. +(2.38) +Now, from an explicit computation, we notice that +vs,α(zβ; zα, 1 − zβ) = vs,β(zα; zβ, 1 − zα) = zα − zβ. +This allows to conclude that +vs,α(zβ; zα, �zα) ≤ vs,β(zα; zβ, �zβ). +(2.39) +In words this means that, for a fixed value of the densities on one side of the shock, the +speed of any β–shock is larger than the speed of any α–shock. +Since lim� +zα→zα vs,α(zβ; zα, �zα) = vα(zα, zβ) and lim� +zβ→zβ vs,β(zα; zβ, �zβ) = vβ(zα, zβ), we get +also +vα(zα, zβ) ≤ vs,β(zα; zβ, �zβ) +(2.40) +vβ(zα, zβ) ≥ vs,α(zβ; zα, �zα). +(2.41) +The Hugoniot condition is not sufficient to select the physical shocks. Indeed eqs.(2.22) +has to be thought of as the zero viscosity limit of a set of conservation laws which contains +a diffusive term, a term which comes from the microscopic corrections to the currents and +depends on the derivatives of the densities. Inviscid limits of viscous solutions are typically +characterized by entropy conditions, which for shocks take the form of the Liu entropy +criterion [92, 93]. Let the right densities ρ+ lie on a Hugoniot curve emanating from ρ−, +then for all densities �ρ lying on the same Hugoniot curve in between ρ− and ρ+ the Liu +condition states that +vs(ρ−, ρ+) ≤ vs(ρ−, �ρ). +(2.42) +Physically this condition can be understood as a stability condition: if under a perturbation +the shock were to split by inserting an intermediate state �ρ, then a violation of condition +(2.42) would imply that the shock between ρ− and �ρ would move away from the original +shock between ρ− and ρ+. In the case of β–shocks the Liu condition reads +vs,β(zα; z− +β , z+ +β ) ≤ vs,β(zα; z− +β , �zβ), +∀ �zβ ∈ [min(z− +β , z+ +β ), max(z− +β , z+ +β )] +(2.43) +Since, as mentioned above, at fixed zα the current Jβ is a concave function of the density +ρ•, ∂2 +ρ•Jβ|zα < 0, we conclude that the Liu constraint means ρ− +• < ρ+ +• . This can be also +59 + +formulated in terms of the z variables. Indeed, since ∂zβρ•|zα > 0, we must have z− +β < z+ +β . +A similar analysis can be performed for α–shocks. +Here is a summary of our results. They are schematized in the +figure on the right, where we have reported the direction of the +possible shock–discontinuities. +• For an α–shocks (blue oriented line), we need ρ− +◦ > ρ+ +◦ or +equivalently z− +α > z+ +α . +• For a β–shocks (red oriented line), we need ρ− +• < ρ+ +• or +equivalently z− +β < z+ +β . +ρ◦ +ρ• +1 +1 +2.3.4 +Riemann’s problem +With the result for the rarefaction curves and the shock curves at our disposal, it is rather +simple to describe the general solution of the Riemann problem, i.e. the solution of eqs.(2.22) +with domain wall initial conditions +ρ(x, t = 0) = +� ρL = (ρL +◦ , ρL +• ) +x < 0 +ρR = (ρR +◦ , ρR +• ) +x > 0. +(2.44) +By uniqueness, the solution of the Riemann problem has to take the form ρ(x, t) = ρ(ξ) with +ξ = x/t and is given by a sequence of rarefaction waves and/or shocks. It is best described in +terms of the variables zL = (zL +α, zL +β ), zR = (zR +α , zR +β ). We have four possible situations (these +are schematically summarized in figure 2.6). +• zL +α > zR +α , zL +β < zR +β . The solution is composed of two shocks: an α-shock with z− = (zL +α, zL +β ) +and z+ = (zR +α , zL +β ) at position ξα = vs,α(zL +β ; zL +α, zR +α ), followed by a β–shock with z− = (zR +α , zL +β ) +and z+ = (zR +α , zR +β ) at position ξβ = vs,β(zR +α ; zL +β , zR +β ). This result follows from the inequality +(2.39) +ξα = vs,α(zL +β ; zL +α, zR +α ) ≤ vs,β(zR +α ; zL +β , zR +β ) = ξβ. +• zL +α > zR +α , zL +β > zR +β . The solution is composed of an α-shock and a β–fan. The α–shock +has z− = (zL +α, zL +β ) and z+ = (zR +α , zL +β ) and it is located at position ξα = vs,α(zL +β ; zL +α, zR +α ). +The β–fan starts with value (zR +α , zL +β ) at ξβ,1 = vβ(zR +α , zL +β ) and ends with value (zR +α , zR +β ) at +ξβ,2 = vβ(zR +α , zR +β ). This result follows from the inequality +ξα = vs,α(zL +β ; zL +α, zR +α ) ≤ vβ(zR +α , zL +β ) = ξβ,1 ≤ vβ(zR +α , zR +β ) = ξβ,2. +The first inequality is just inequality (2.41), while the second one follows from the fact that +vβ is a decreasing function of zβ. +• zL +α < zR +α , zL +β < zR +β . The solution is composed of an α–fan and a β–shock. The α–fan starts +with value (zL +α, zL +β ) at ξα,1 = vα(zL +α, zL +β ) and ends with value (zR +α , zL +β ) at ξα,2 = vα(zR +α , zL +β ). The +β shock has z− = (zR +α , zL +β ) and z+ = (zR +α , zR +β ) and is located at position ξβ = vs,β(zR +α ; zL +β , zR +β ). +• zL +α < zR +α , zL +β > zR +β . The solution is composed of fans. One has to distinguish two cases +depending whether zR +α + zL +β is larger or smaller than 1. If zR +α + zL +β < 1, the solution consists +60 + +of an α–fan starting with value (zL +α, zL +β ) at ξα,1 = vα(zL +α, zL +β ) and ending with value (zR +α , zL +β ) +at ξα,2 = vα(zR +α , zL +β ) followed by a β–fan starting at ξβ,1 = vβ(zR +α , zL +β ) and ending at ξβ,2 = +vβ(zR +α , zR +β ). If α + β > 1 then it is possible to have zR +α + zL +β > 1. In this case the α-fan +cannot reach the value (zR +α , zL +β ), which lies outside the physical domain. It ends at the value +(1 − zL +β , zL +β ), followed by a degenerate fan till (zR +α , 1 − zR +α ) and then by a β–fan till (zR +α , zR +β ). +1 +1 +zα +zβ +L +R +R +R +R +R +Figure 2.6: Projection in the z–plane of the different type of solutions of the +Riemann problem. The left values of the z variables are represented by the +point L. The points R represent the different distinct possibilities for the right +values of the z variables. Continuous lines represent fans, while dashed lines +represent shocks. +In green is indicated the possible TASEP-like fan, in red +either an α–shock or an α–fan and in blue either a β–shock or a β–fan. +2.4 +Monte Carlo simulations +We come back to the original microscopic stochastic model and compare the predictions of +the hydrodynamic equations with numerical simulations. We have simulated our model on +a finite lattice of integer coordinates, running on the interval [−L, L], with L = 2100. The +system is initialized in a random configuration sampled from a product measure of local +densities ρL on sites of coordinate i < 0 and ρR on sites of coordinates i ≥ 0. At the left +and right boundaries the particles are chosen neither to leave nor to enter the system. This +means that we expect to find three distinct regions: two kinetic waves coming from the +boundaries and a kinetic wave originating from the discontinuity at the origin. Whereas we +make no prediction on the boundary waves, we expect that as long as they don’t meet the +bulk one, they do not influence the latter. +Let us introduce the height function, which is defined up to an arbitrary additive constant +61 + +by +hi +�n +t , t +� +− hi (−1, t) := 1 +t +� +−t zR +α = 0.139 and zL +β = 0.097 < zR +β = 0.627. In this case the solution of the +Riemann problem predicts an α–shock of speed vs,α = 0.008 followed by a β-shock of speed +vs,β = 0.186. The β shock is clearly visible at the bend of h• (green line), the α shock +is less visible because of the small bends in both height functions. In Fig. 2.7d, we have +α = 0.7, β = 1.2 and we show the result of the simulation where the theoretical analysis +predicts an α–fan and a β–shock, the shock being visible at the bend of h• (green line), +located at ξ = vs,β = 0.49. +1.00 +0.75 +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 += 1.7 += 2 t =700 + hnum + hnum + h + h + + + + +ρ◦ +ρ• +L +R +1 +1 +Figure 2.8: Situation diplaying an α and a β–fan with a depletion region +in the middle, (ρL +◦ = 0.1, ρL +• = 0.5, ρL +∗ = 0.4), (ρR +◦ += 0.5ρR +• += 0.05, ρR +∗ += +0.45). On the left: height function of •-particles (green lines) and of ∗-particles. +Continuous lines represent the numerical values, dashed lines represent the +theoretical prediction. At the bottom we have reported the predicted densities. +Notice the flat central region of h∗ corresponding to a region of vanishing ρ∗. +On the right: the projection of this configuration in the densities plane: in blue +the β fan, in green the TASEP-like fan with vanishing ρ∗ and in red the α fan. +Finally in Fig.2.8 we explore the formation of a TASEP–like fan corresponding to a region +where the density of ∗–particles vanishes. We chose α = 1.7, β = 2, (ρL +◦ = 0.1, ρL +• = 0.5, ρL +∗ = +0.4), (ρR +◦ = 0.5, ρR +• = 0.05, ρR +∗ = 0.45) so that initially the ∗-particles are present everywhere +in the system. The plot of h∗ (purple line) shows a central flat region, which corresponds to +a region of vanishing ∗-particles density. +2.5 +Conclusion +In this article we have investigated the hydrodynamic behavior of an exactly solvable two +species exclusion process, consisting of two kinds of particles moving in opposite directions +on a one dimensional lattice and swapping their position when adjacent. By making the +assumption of local stationarity and exploiting the knowledge of the particle currents on +63 + +periodic geometry, we have written down the hydrodynamic conservation laws of the model +and investigated their solutions: rarefaction fans, shocks and the solution of the Riemann +problem. Then such predictions have been shown to be in agreement with numerical simu- +lations of the microscopic model. The macroscopic conservation laws are shown to belong +to a class of conservation laws called Temple systems, which possess coinciding rarefaction +and shock curves. +While this property has important implications for the mathematical analysis of the con- +servation equations, it is not clear to us what is its physical underpinning. We believe it +would be interesting to investigate how generic this property is among exclusion processes, +and whether it is somehow related to the integrability of the underlying microscopic model. +On this line of thoughts, natural candidates to investigate seem to be the multispecies inte- +grable generalizations (with more than 2 species) introduced in [77]. +Another interesting issue would be to understand the behavior of our model when re- +stricted to a finite lattice in contact with boundary particle reservoirs. On general grounds, +novel feautures are expected to emerge like for example the phenomenon of boundary induced +phase transitions [21]. For the case of a single conserved quantity the well-known max–min +principle of Krug [21], later generalized by Popkov and Sch¨utz [22] allows to determine the +dependence of the current on the boundary couplings and hence the phase diagram of the +model. However, it is not known how to generalize the max–min principle in the case of +more than one conserved species. Preliminary numerical investigations based on the model +presented here seems to indicate that the Riemann problem may play a relevant role in order +to tackle this problem [94]. +64 + +CHAPTER 3 +Integrable tools for the exclusion process +Exactly solvable models are rare gems in theoretical physics. In the domain of far from +equilibrium statistical physics, they are paving the way for its exploration. In that regard, +the exclusion process within its different variants is playing this role in a way often compared +to the role the Ising model played for the equilibrium counterpart. In this chapter we are +considering two popular boundary conditions for the exclusion process: The infinite Z lattice, +and the periodic boundary conditions. For the former, we are interested in the finite time +probability distribution of the position of a finite number of particles conditioned on a given +initial configuration. In the latter, the main objective is to find the expression of the currents +in the steady state in a system with multiple species with arbitrary rates. The two problems +seem quite distinct at the first glance, in particular, because the first does not possess a +stationary state while the second does. Yet, it happens that a similar technique works for +both as a starting point: writing the stationary measure as Bethe vector. This measure will +not be a probability measure for the first and will not lead to Bethe equations, while for the +second it will. Exact probability calculations on the line gained importance after the seminal +work of [39] revealing a connection between properly scaled finite probabilities for TASEP +and the largest eigenvalue distribution for the Gaussian Unitary Ensemble. +The novelty of this chapter is the section 3.1.3 where we present a general framework for +calculating the finite time conditional probability for an arbitrary number of species with +arbitrary hopping rates. This leads to explicit determinantal formulas in particular cases. +The rest of section 3.1 serves a pedagogical purpose: we start by reviewing the simplest +version of the problem, which is TASEP with a single species, this roughly follows [34], +the complexity is then increased gradually by visiting briefly the problem with second class +particles of unity rates, that has been discussed in [37] before reaching the general multi- +species situation in section 3.1.3. This section will the core of a near-future independent +publication. +Section 3.2 is devoted to reviewing how the Bethe Ansatz is applied for finding the +currents in the exclusion process on the ring, most of the results obtained here are needed +for the other chapters. The complexity is again increased gradually by first considering the +65 + +problem of a single defect and treating it with Coordinate Bethe Ansatz following [33], and +then reviewing the arbitrary number of defects using the Algebraic Bethe Ansatz, following +[46]. +3.1 +Exclusion process on the line +3.1.1 +Exact solution for TASEP on the line +Consider a single component TASEP with a finite number of particles N, defined on the +integers line Z. Let {x1, ..., xN} ⊂ Z the initial positions of particles arranged in increasing +order: xi < xi+1. Let {y1, ..., yN} ⊂ Z the final position of these particles at time t. The +state space will be: S = {X ⊂ Z, #X = N}. +We would like to calculate the conditional probability P({y1, ..., yN}; t|{x1, ..., xN}. By +abuse of notation, we omit the initial condition dependence. This probability evolves ac- +cording to the Master equation: If there is no neighboring particles, yi < yi+1 − 1 for all i, +then: +d +dtP({y1, ..., yN}; t) = +N +� +i=1 +P({y1, .., yi − 1, .., yN}; t) − NP({y1, ..., yN}; t) +(3.1) +In case two particles are neighbors, say for instance: yj+1 = yj + 1, and all the others are +apart, then there will be two terms missing on right-hand side: +d +dtP({y1, .., yj, yj + 1, .., yN}; t) = +� +i̸=j+1 +P({y1, .., yi − 1, .., yN}; t) − (N − 1)P({y1, ..., yN}; t) +(3.2) +It’s possible to make equation 3.1 account for equation 3.2 if we allow the probability +function to assign values for non-physical configurations with consecutive particles, these +values have to be: +P({y1, .., yj, yj+1 = yj, .., yN}; t) = P({y1, .., yj, yj + 1, .., yN}; t) +(3.3) +Now with this condition, it’s easy to check that equation 1 becomes valid even with neigh- +boring particles. +Bethe Ansatz Solution +The probability distribution can be seen as a vector in the infinite dimension space of func- +tions P({.}) ∈ RS. Solving the ordinary differential equation is equivalent to diagonalizing +the Markov matrix. So we need to consider the spectral problem: +λP({.}) = MP({.}) +(3.4) +One Particle: Let’s first examine this equation for the almost trivial case of one particle +N = 1, No Ansatz is required here. We have a functional equation: +λP({y}) = P({y − 1}) − P({y}) +(3.5) +66 + +Which admits plane waves as solutions: +Pp({y}) = eipy +(3.6) +The parameter p is analogous to the momentum and is associated with the eigenvalue: +λp = e−ip − 1 +(3.7) +And the associated time evolution will be: +Pp({y}; t) = eλpteipy +(3.8) +Of course, these solutions are not physical, since they are not normalizable, and not even real. +However, we can decompose our initial condition in terms of these waves: P(x,t=0)= δx,y = +1 +2π +� 2π +0 +e−ipxeipydp. The bounded interval of the integral is due to the integer dependence of +the left side, it’s a Fourier series decomposition. Now we can write the time evolution of this +initial condition: +P({y}; t) = +1 +2πi +� 2π +0 +e−ipxPp({y}; t)dp += +1 +2πi +� 2π +0 +e(e−ip−1)te−ip(x−y)dp += +1 +2πi +� +0 +e(z−1)tz(x−y−1)dz += e−t +ty−x +(y − x)! +(3.9) +Where the last step integral was performed by residues theorem. +Two particles: The situation is a bit more complicated for N = 2. The eigenvalue +problem for the Markov matrix is: +λP({y1, y2}) = P({y1 − 1, y2}) + P({y1, y2 − 1}) − 2P({y1, y2}) +(3.10) +We can again check that ei(p1y1+p2y2) is indeed a family of solutions for the equation. However, +this family is not compatible with the boundary condition: +P({y1, y2 = y1}) = P({y1, y2 = y1 + 1}) +(3.11) +At this point, the Bethe Ansatz is needed. The solutions can be expressed as a superposition +of the possible permutations of the momentum of the plane waves: +P{p1,p2}({y1, y2}) = A1,2ei(p1y1+p2y2) + A2,1ei(p2y1+p1y2) +(3.12) +With this combination, the boundary condition can be verified for a right choice of the +coefficients, namely: +A1,2 +A2,1 += −1 − eip1 +1 − eip2 +(3.13) +67 + +And the corresponding eigenvalue would be: +λ{p1,p2} = e−ip1 + e−ip2 − 2 = λp1 + λp2 +(3.14) +Now we need to write the initial condition as a superposition of this family: +δx1,y1δx2,y2 = +1 +(2π)2 +� 2π +0 +� 2π +0 +f(p1, p2)(ei(p1y1+p2y2) − 1 − eip2 +1 − eip1 ei(p2y1+p1y2))dp1dp2 +(3.15) +Actually this integral is not well defined because of the presence of a singularity at p1 = 0. +Let’s write it as an integral in the complex plane: +δx1,y1δx2,y2 = +� +0 +� +0 +f(z1, z2)(zy1−1 +1 +zy2−1 +2 +− 1 − z2 +1 − z1 +zy2−1 +1 +zy1−1 +2 +)dz1dz2 +(3.16) +To define this integral, we need to tell whether the 1 is included in the unit circle. If we +choose to exclude it, which means taking the contour integral only around zero, then the +naive expression for f: f(z1, z2) = z−x1 +1 +z−x2 +2 +would yield a solution for the previous equation. +Finally, we can write the time-evolved solution: +P({y1, y2}; t) = +� � +e(z−1 +1 ++z−1 +2 +−2)t(zy1−x1−1 +1 +zy2−x2−1 +2 +− 1 − z2 +1 − z1 +zy2−x1−1 +1 +zy1−x2−1 +2 +)dz1dz2 +=(e−t +� +e +t +z1 zy1−x1−1 +1 +dz1)(e−t +� +e +t +z2 zy2−x2−1 +2 +dz2) +− (e−t +� +e +t +z1 zy2−x1−1 +1 +1 − z1 +dz1)(e−t +� +e +t +z2 (1 − z2)zy1−x2−1 +2 +dz2) +(3.17) +This suggests to define the function: +Fp(n; t) := e−t +� +e +t +z +zn−1 +(1 − z)pdz +(3.18) +So that we can write the previous expression as: +P{p1,p2}({y1, y2}; t) = F0(y1 − x1; t)F0(y2 − x2; t) − F1(y2 − x1; t)F−1(y1 − x2; t) += Det((Fi−j(yi − xj; t))ij) +(3.19) +Properties of the functions Fp(n, t) +First of all these functions can be expressed in series form, by developing the exponential +in the integral, exchanging the integral and the sum, and then integrating each term by the +residues theorem. Consider first that p > 0 +68 + +Fp(n; t) = e−t +� +∞ +� +k=0 +tk +zkk!zn−1 +∞ +� +m=0 +Cp−1 +m+p−1zmdz += e−t +∞ +� +k=0 +∞ +� +m=0 +� tk +k!Cp−1 +m+p−1zm+n−k−1dz += e−t +∞ +� +k=n +tk +k!Cp−1 +k−n+p−1 = e−t +∞ +� +k=0 +Cp−1 +k+p−1 +tk+n +(k + n)! +(3.20) +For p ≤ 0 the power series expansion above is still actually valid, but one has to extend the +definition of Cb +a to negative numbers. This is possible using the Γ function: +Cb +a = +Γ(a + 1) +Γ(b + 1)Γ(a − b + 1) +This can be used to show that for p ≤ 0: +Cm +p+m−1 = +� +(−1)mCm +−p +if +m < p + 1 +0 +if +m ≥ p + 1 +(3.21) +This can be used to show that the power series expansion of +1 +(1−z)p is reduced to the finite +expected Binomial expansion for p ≤ 0. We can as well rewrite the expression of Fp(n, t): +Fp(n, t) = e−t +−p +� +k=0 +(−1)kCk +−p +tk+n +(k + n)! +(3.22) +Remark: The function Fp(n, t) is related to the confluent hypergeometric function 1F1 +Fp(n; t) = e−1tn +n! +1F1(p, n + 1; t) +(3.23) +Where 1F1(a, b; t) = �∞ +k=0 +(a)k +(b)k +tk +k! And (a)k = a(a + 1)...(a + k − 1). +Other properties which are easy to show: +• +d +dtFp(n, t) = Fp−1(n − 1; t) = Fp(n − 1, t) − Fp(n, t) +(3.24) +• +� t +0 +Fp(n, s)ds = Fp+1(n + 1; t) − Fp+1(n + 1; 0) = Fp+1(n + 1; t) − Cp−1 +−n+p−1 +(3.25) +• +n2 +� +n=n1 +Fp(n; t) = Fp+1(n; t) − Fp+1(n + 1; t) +(3.26) +69 + +Arbitrary number of particles: An N particle calculation follows the same logic as +the two particles, but with some subtle details. The Bethe wave function would be composed +of N! term: +Pp(y) = +� +σ∈SN +Aσ +N +� +i=1 +eipσ(i)yi +(3.27) +Where p = {p1, ..., pN}, y = {y1, ..., yN} and SN is the symmetric group. The restriction on +the coefficients generalizes to: +Aσ +Aστi,i+1 += − 1 − eipσ(i) +1 − eipσ(i+1) +(3.28) +Where τi,i+1 is the transposition applied on positions i and i + 1. +Since each permutation can be written as a product of the transposition of neighboring +sites, then it’s enough to fix one of the coefficients in order to fix all the others. Say for +instance that AId = 1. +We know that the decomposition of a permutation in terms of +transpositions is not unique, so for this approach to be self-consistent, the value of the +coefficient should be independent of the transposition path. The most trivial check is the +invariance under a double application of the same transposition, which is obviously verified +here. It happens that we don’t need to check for all the possible paths and it’s enough to +verify that the path is taken by next neighbor transpositions: +τ1,3 = τ1,2τ2,3τ1,2 = τ2,3τ1,2τ2,3 +(3.29) +This is the Yang-Baxter equation. We can check that it is verified: +Aτ1,3 = Aτ1,2τ2,3τ1,2 = Aτ2,3τ1,2τ2,3 = −1 − eip3 +1 − eip1 +(3.30) +This can be generalized to any permutation τi,j. One can notice that the map σ → Aσ is not +a group homomorphism(if it were, there would have been no need to check for Yang-Baxter, +it would be trivially verified), the homomorphism property applies only for permutations +with independent support. Say σ1 and σ2 are two such permutations, then: +Aσ1σ2 = Aσ1Aσ2 +(3.31) +By deduction on cyclic permutations, one can reach an explicit formula for Aσ that is valid +for any permutation: +Aσ = ϵ(σ) +N +� +i=1 +(1 − zσ(i))σ(i)−i +(3.32) +Where ϵ(σ) is the signature of σ. It’s easy to show that this formula verifies indeed eq. 3.28. +Now we need to check the validity of the (naive) composition of the initial condition in terms +of the Bethe wave vectors. For this we need to show that: +� +σ̸=Id +� +0 +... +� +0 +Aσ +N +� +i=1 +z +yi−xσ(i)−1 +σ(i) +dz1...dzN = 0 +(3.33) +70 + +It’s actually possible to show that each term in the sum is zero. Take for instance the term +corresponding to some σ ̸= Id. there must exists for it an index ˜i such that ˜i > σ(˜i) so it +follows: +y˜i > yσ(˜i) ≥ xσ(˜i) +(3.34) +So the factor z +y˜i−xσ(˜i)−1 +σ(˜i) +would have no poles, and since Aσ is holomorphic too in a neighbor- +hood of zero, the corresponding contour integral around zero would vanish. Now we need to +examine the time evolution. Let’s write down the eigenvalue equation: +λpPp(y) = +N +� +i=1 +� +σ∈SN +e−ipσ(i)Aσ +N +� +i=1 +eipσ(i)yi − NPp += +N +� +i=1 +N +� +j=1 +� +σ:σ(i)=j +e−ipjAσ +N +� +i=1 +eipσ(i)yi − NPp += +N +� +j=1 +e−ipj +N +� +i=1 +� +σ:σ(i)=j +Aσ +N +� +i=1 +eipσ(i)yi − NPp +(3.35) +So the second and the third sum can be united again into a sum over all the permutations +and we find again that the eigenvalue for a Bethe wave has the same form as for two particles: +λp = +N +� +i=1 +(e−ipi − 1) = +N +� +i=1 +λpi +(3.36) +All the ingredients are now ready for the time-evolved vector: +P({y}; t) = +� +0 +... +� +0 +( +N +� +j=1 +e +t +zj −t) +� +σ∈SN +ϵ(σ) +N +� +i=1 +(1 − zσ(i))σ(i)−iz +yi−xσ(i)−1 +σ(i) +dz1...dzN += +� +σ∈SN +ϵ(σ) +N +� +i=1 +� +0 +e +t +zσ(i) −t(1 − zσ(i))σ(i)−iz +yi−xσ(i)−1 +σ(i) +dzσ(i) += +� +σ∈SN +ϵ(σ) +N +� +i=1 +Fi−σ(i)(yi − xσ(i); t) += Det((Fi−j(yi − xj; t))ij) +(3.37) +Remarks +1. It’s possible to prove the final result of 3.37 is indeed the solution of the Master equation +just by using the properties of the functions Fp(n; t) and elementary operations on the +determinant. This is done in [34] +2. It’s obviously possible to extend this method to ASEP. The computations are a bit +more tedious, partly because the plane waves are not the only eigenvectors of the +Markov matrix. Families of bound states appear as eigenvectors as well. To see this, +71 + +one has to get a bit into the details of the procedure: the extra term in the master +equation will require an extra term in the boundary condition, so it becomes: P(y, y)+ +qP(y + 1, y + 1) = (1 + q)P(y, y + 1) where q is the backward hopping parameter. +Applying this condition on the Bethe wave vector yields: A12(1 + qz1z2 − z2(1 + q)) = +−A21(1 + qz1z2 − z1(1 + q)), beside the usual solutions similar to the TASEP case, +one can choose to satisfy the previous equation for instance by setting A21 = 0 and +1 + qz1z2 − z2(1 + q) = 0 this leads to a constraint between z1 and z2 forcing them +to leave the unit circle and producing a one-parameter family of solutions that would +extend the base on which one needs to decomposing the initial condition. This has +been done for two particles in [34], and generalized to an arbitrary number of particles +in [35]. +3.1.2 +Adding second class particles +We consider TASEP on the line with a finite number ofirst-class particles, denoted by A +and second class particles, denoted by B, with unity hopping rates. The space state is now +S × {A, B}N. Where N is the total number of particles. For a given set of positions of +the particles, the probabilities of the different permutations can be represented by a vector +in (C2)⊗N (Notations don’t assume particles type conservation). The master equation is +the same as single species TASEP when neighboring particles are absent. Let’s write the +equation for 2 adjacent particles: +d +dtP(y, y + 1; t) = P(y − 1, y + 1; t) − MP(y, y + 1; t) +(3.38) +Where P(y1, y2; t) = +� +� +� +� +P AA(y1, y2; t) +P AB(y1, y2; t) +P BA(y1, y2; t) +P BB(y1, y2; t) +� +� +� +� and M = +� +� +� +� +1 +0 +0 +0 +0 +2 +0 +0 +0 +−1 +1 +0 +0 +0 +0 +1 +� +� +� +� +This requires new boundary conditions for P AB and P BA so that the non-neighboring +master equation gets reduced to the neighboring one on the boundaries. These conditions +are: +P AB(y, y) = 0 +(3.39) +P BA(y, y) = P BA(y, y + 1) + P AB(y, y + 1) +(3.40) +As usual we write the Bethe vector as: +P{p1,p2}(y1, y2) = A1,2ei(p1y1+p2y2) + A2,1ei(p2y1+p1y2) +(3.41) +Where the coefficients are vector now. The matrix that allows transiting between them +is found thanks to the boundary restrictions: +A2,1 = R(p1, p2)A1,2 +(3.42) +72 + +Where: +R(p1, p2) = +� +� +� +� +� +− 1−eip2 +1−eip1 +0 +0 +0 +0 +−1 +0 +0 +0 +− eip1−eip2 +1−eip1 +− 1−eip2 +1−eip1 +0 +0 +0 +0 +− 1−eip2 +1−eip1 +� +� +� +� +� +(3.43) +More generally, we can conclude how to apply a transposition on a coefficient: +Aσ.τi,i+1 = R(pσ(i), pσ(i+1))Aσ +(3.44) +This is enough to provide all the coefficients in terms of AId. To make sure that for +each permutation σ, there is a well-defined Aσ, one can show that the R matrix verifies the +Yang-Baxter Equation: +R23(p1, p2)R12(p1, p3)R23(p2, p3) = R12(p2, p3)R23(p1, p3)R12(p1, p2) +(3.45) +Where R23 = Id ⊗ R and R12 = R ⊗ Id +It’s not hard to verify that the initial condition can still be written as an integral of Bethe +vectors in a similar fashion to single species. Let P(x1, x2; 0) the initial probability vector, +then we have: +δx1,y1δx2,y2AId = +� +0 +� +0 +(zx1 +1 zx2 +2 )(zy1−1 +1 +zy2−1 +2 +− R(p1, p2)zy2−1 +1 +zy1−1 +2 +))AIddz1dz2 +(3.46) +δx,yP(x; 0) = +� +0 +� +0 +( +N +� +i=1 +zxi +i )(zy1−1 +1 +zy2−1 +2 +− R(p1, p2)zy2−1 +1 +zy1−1 +2 +)AIddz2 +(3.47) +Pp(y) = +� +σ∈SN +Aσ +N +� +i=1 +eipσ(i)yi +(3.48) +So the time evolution: +P(y; t) = +� +... +� +( +N +� +j=1 +e +t +zj −t) +� +σ∈SN +Aσ +N +� +i=1 +zyi−xi−1 +σ(i) +dzi +(3.49) +It’s possible to write an explicit formula for P in the case where the order of species of +the final configuration is the same as the initial one, this has been done in [37](No exchange +theorem). In the following section, we will be examining the case where the hopping rates +are arbitrary per species, and the number of species is arbitrary too. +3.1.3 +Multispecies exclusion process with arbitrary hopping rates +Let’s treat the most general situation with N particles of multiple species. The position +of the particles shall be denoted by Latin letters, while their species by Greek ones, so Let +I = {i1 < ... < iN} be the set of positions corresponding to the species α = {α1 < ... < αN}. +Let rα the hopping rate of particles of species α and rα,β the rate of the ordered swap α ↔ β. +of a particle of type α followed by one of type β. +73 + +Let G(I, α|J, β; t) be the probability of having the state (I, α) at time t starting from the +initial state (J, β) The master equation for non neighboring particles: +d +dtG(I, α|J, β; t) = +N +� +k=1 +rαkG(i1.., ik − 1, ..iN, α|J, β; t) − ( +N +� +k=1 +αk)G(I, α|J, β; t) +(3.50) +For two neighboring particles: +d +dtG(i, i + 1, 12) = rαG(i − 1, i + 1, 12) + rβαG(i, i + 1, 21) − (rα,β + rβ)G(i, i + 1, 12) (3.51) +d +dtG(i, i + 1, 12) = rαG(i − 1, i + 1, 12) + rβG(i, i, 12) − (rβ + rα)G(i, i + 1, 12) +(3.52) +So the boundary condition needs to be: +rβG(i, i, 12) = (rα − rα,β)G(i, i + 1, 12) + rβαG(i, i + 1, 21) +(3.53) +For the Bethe vector, let’s first notice that vector zi +1zj +2 does not yield the same eigenvalue +as zi +2zj +1 (for non-neighboring particles). To conserve this property, one needs to resale the +Bethe vector in the following way: +ψI +α = rI +α +� +σ∈SN +F σ +ασ[zI] +(3.54) +Where rI +α = �n +k=1 rik +αk, zI = � +k zik +k and σ[zI] = � +k zik +σ(k). Applied on the Markov matrix, +the corresponding eigenvalue is: +λ = +� +k +(z−1 +k +− rk) +(3.55) +As usual, we need to establish how the coefficients of the Bethe vector are related so that +the boundary conditions are respected. Let’s consider a 2 particle Bethe vector: +ψi,j +α,β = ri +αrj +β(F () +α,βzi +1zj +2 + F (12) +α,β zi +2zj +1) +(3.56) +Inserting it into 3.53, we get: +− (F () +α,β + F (12) +α,β ) + (rα − rα,β)(F () +α,βz2 + F (12) +α,β z1) + rα +rβ +rβ,α(F () +β,αz2 + F (12) +β,α z1) = 0 +(3.57) +This can be written in a matrix form: +� +F (12) +α,β +F (12) +β,α +� �(rα − rα,β)z1 − 1 +rα +rβ rβ,αz1 +� ++ +� +F () +α,β +F () +β,α +� �(rα − rα,β)z2 − 1 +rα +rβ rβ,αz2 +� += 0 +(3.58) +74 + +And by the symmetry α ↔ β we get another equation: +� +F (12) +α,β +F (12) +β,α +� � +rβ +rαrα,βz1 +(rβ − rβ,α)z1 − 1 +� ++ +� +F () +α,β +F () +β,α +� � +rβ +rαrα,βz2 +(rβ − rβ,α)z2 − 1 +� += 0 +(3.59) +The two previous equations can be regrouped: +� +F (12) +α,β +F (12) +β,α +� � +(rα − rα,β)z1 − 1 +rβ +rαrα,βz1 +rα +rβ rβ,αz1 +(rβ − rβ,α)z1 − 1 +� += +− +� +F () +α,β +F () +β,α +� � +(rα − rα,β)z2 − 1 +rβ +rαrα,βz2 +rα +rβ rβ,αz2 +(rβ − rβ,α)z2 − 1 +� +(3.60) +In vector notation: +F (12)M(z2) + F ()M(z1) = 0 +(3.61) +For two species It’s convenient to define F σ := (F σ +α,α, F σ +α,β, F σ +β,α, F σ +β,β) ∈ C2 ⊗ C2 and M +will become: +M(z) = +� +� +� +� +rαz − 1 +0 +0 +0 +0 +(rα − rα,β)z − 1 +rβ +rαrα,βz +0 +0 +rα +rβ rβ,αz +(rβ − rβ,α)z − 1 +0 +0 +0 +0 +rβz − 1 +� +� +� +� +(3.62) +We need to generalize this to an arbitrary number of species m, but with only 2 particles, +then it’s convenient to define the line vector F σ ∈ Cm ⊗ Cm +So we can define the ˇR matrix: +F (12) = F () ˇR(z1, z2) +(3.63) +Where: +ˇR(z1, z2) = −M(z1)M(z2)−1 +(3.64) +In a generalized tensor form: +M(z)µν +αβ = ((rα − rα,β)z − 1)δµ +αδν +β + rα +rβ +rβ,αzδν +αδµ +β +(3.65) +F στi,i+1 = F σ ˇR(zσ(i), zσ(i+1)) +(3.66) +Integrability and restrictions on the rates +The matrix ˇR needs to obey the Braided Yang-Baxter equation, namely: +ˇR23(z1, z2) ˇR12(z1, z3) ˇR23(z2, z3) = ˇR12(z2, z3) ˇR23(z1, z3) ˇR12(z1, z2) +(3.67) +Explicit expansion of this equation shows that we need to impose hierarchy over the species. +A given species can hope only over lower ones in the hierarchy: +rα,β = 0 +if +α > β +(3.68) +75 + +In addition to this restriction, an additional one is needed, for α > β > γ +rγ,α − rβ,α = rγ − rβ +(3.69) +Which means: +rα,β = (rα + νβ)1β>α +(3.70) +with νβ being a parameter depending only on β +With these restrictions, the M matrix simplifies to: +M(z) = +� +� +� +� +rαz − 1 +0 +0 +0 +0 +−1 − νβz +(rβ(rα + νβ)z)/ra +0 +0 +0 +−1 + rβz +0 +0 +0 +0 +rβz − 1 +� +� +� +� +(3.71) +And the ˇR matrix: +ˇR(z1, z2) = +� +� +� +� +� +� +− z2rα−1 +z1rα−1 +0 +0 +0 +0 +− z2νβ+1 +z1νβ+1 +rβ(rα+νβ)(z1−z2) +rα(−1+rβz1)(1+νβz1) +0 +0 +0 +− z2rβ−1 +z1rβ−1 +0 +0 +0 +0 +− z2rβ−1 +z1rβ−1 +� +� +� +� +� +� +Representation in terms of operators +Let’s define the action of a permutation over a variable: +σxi = xσ(i)σ +(3.72) +This allows us to write +F στiστi = F σ ˇRi(zσ(i), zσ(i+1))στi = F σσ ˇRi(zi, zi+1)τi +(3.73) +We define the operator: +πi := ˇRi(zi, zi+1)τi +(3.74) +Which acts from the left on an F σσ: +F στiστi = F σσπi +(3.75) +So this operator obviously allows to construct F σσ starting from F IdId. Let σ = � +i τki +a decomposition of σ in terms of transpositions, then, by defining: +πσ := +� +i +πki +(3.76) +We can write: +F σσ = F eeπσ +(3.77) +Of course, the operators π need to abide by the Braided equation: +76 + +πiπi+1πi = πi+1πiπi+1 +(3.78) +We can notice that σ → πσ is a group morphism: πσ´σ = πσπ´σ +Now we can write the Bethe wave vector: +ψI +α = rI +α +� +σ∈SN +F σ +ασzI += rI +αF e +α( +� +σ∈SN +πσ)zI += rI +αF e +αΠ0zI +(3.79) +Where Π0 = � +σ∈SN πσ One can show easily that Π0 satisfies the following property: +Π0πσ = πσΠ0 = Π0 +(3.80) +Now let’s write the propagator: +G(I, α|J, β; t) = rI +αr−J +β +� +... +� +eλ(z)tz−J(Π0)β +αzI +N +� +i=1 +dzi +2πizi += rI +αr−J +β +� +... +� +eλ(z)tΦ(I, α|J, β) +N +� +i=1 +dzi +2πizi +(3.81) +Where +Φ(I, α|J, β) := z−J( +� +σ∈SN +πσ)β +αzI +(3.82) +Graphical representation of the operator Π0 +It’s possible to see (Π0)β +α as a partition function of a vertex model constrained by an initial +configuration β and a final configuration α. To illustrate this idea, let’s first consider two +arbitrary species • and • , with • > • we can identify 5 non zero elements of the ˇR matrix +in the base{••, ••, ••, ••} +77 + += h(x, y) +x +y +y +x += g•(x, y) +x +y +y +x += g•(x, y) +x +y +y +x += g•(x, y) +x +y +y +x += 0 +x +y +y +x += f(x, y) +x +y +y +x +Where the weights are: +f(x, y) := ˇR•• +•• = +r•(r• + ν•)(x − y) +r•(−1 + r•x)(1 + ν•x) +(3.83) +g•(x, y) := ˇR•• +•• = −yr• − 1 +xr• − 1 +(3.84) +h(x, y) =: ˇR•• +•• = −yν• + 1 +xν• + 1 +(3.85) +So if we have m species, we would have 3 +�m +2 +� ++ 2m non zero vertices. +The quantity that we can want to compute is Φ(I, α|J, β) which is a sum over per- +mutations. Each non-zero term of this sum corresponds to one or more than one possible +cconnection between the initial and final order of species using the above building blocks +such that there is a path of one color connecting particles of the same color. This can be +best understood through examples. So we will consider two examples on three particles. +Examples on 3 particles +Consider two red particles and one green with • > •. We would like to calculate: Φ(I, •••|J, •••) +So we need to build diagrams that connect the initial configuration ••• drawn on the top +of the diagram to the final configuration ••• drawn at the bottom of the diagram. The +diagrams should be so that there is a path of green color connecting green particles and red +paths connecting red particles. Besides the building blocks illustrated above, we can use +vertical lines. In this example, the only permutations that can achieve this are the ones for +which σ(3) = 1, so there are two permutations τ12τ23 and τ13 +78 + +Φ(I, •••|J, •••) = z−J( +z2 +z3 +z1 +z3 +z2 +z1 ++ +z2 +z3 +z1 +z3 +z1 +z2 +)zI +Now we can compute each term: +z−J +z2 +z3 +z1 +z3 +z2 +z1 +zI = z−j1 +1 +z−j2 +2 +z−j3 +3 +f(z2, z3)f(z1, z3)zi1 +3 zi2 +1 zi3 +2 +(3.86) +z−J +z2 +z3 +z1 +z3 +z1 +z2 +zI = z−j1 +1 +z−j2 +2 +z−j3 +3 +f(z2, z3)f(z1, z3)g•(z1, z2)zi1 +3 zi2 +2 zi3 +1 +(3.87) +This example was relatively simple due to two reasons, first, the only possible permuta- +tions were the ones that conserve the colors. Second, there was a single diagram at most per +permutation. However, this is not always the case. Let’s consider for instance this final con- +figuration: •••, then in order to calculate Φ(I, •••|J, •••), we notice that we can construct +non zero diagrams not only by using permutations that conserve the colors (ie. verifying +σ(3) = 2). Where we have two of such permutations τ23 and τ23τ12 = (123), and two others +that don’t conserve the colors: τ12τ23 = (321) and τ13. In addition to that, we can construct +two diagrams that are associated with τ13: +79 + +Φ(I, •••|J, •••) = +z−J( +z2 +z3 +z1 +z1 +z2 +z3 +� +�� +� +(π(23))••• +••• ++ +z2 +z3 +z1 +z3 +z2 +z1 +� +�� +� +(π(123))••• +••• ++ +z2 +z3 +z1 +z2 +z1 +z3 +� +�� +� +(π(321))••• +••• ++ +z2 +z3 +z1 +z3 +z1 +z2 ++ +z2 +z3 +z1 +z3 +z1 +z2 +� +�� +� +(π(13))••• +••• +zI +(3.88) +Each term acts on zI according to the associated permutation, which is given by the final +ordering of the z′s +z−J +z2 +z3 +z1 +z1 +z2 +z3 +zI = z−j1 +1 +z−j2 +2 +z−j3 +3 +f(z2, z3)zi1 +1 zi2 +3 zi3 +2 +(3.89) +z−J +z2 +z3 +z1 +z3 +z2 +z1 +zI = z−j1 +1 +z−j2 +2 +z−j3 +3 +f(z2, z3)h(z1, z3)zi1 +3 zi2 +1 zi3 +2 +(3.90) +z−J +z2 +z3 +z1 +z2 +z1 +z3 +zI = z−j1 +1 +z−j2 +2 +z−j3 +3 +g•(z1, z2)f(z1, z3)zi1 +2 zi2 +3 zi3 +1 +(3.91) +z−J +z2 +z3 +z1 +z3 +z1 +z2 +zI = z−j1 +1 +z−j2 +2 +z−j3 +3 +h(z2, z3)g•(z1, z3)f(z1, z2)zi1 +3 zi2 +2 zi3 +1 +(3.92) +80 + +z−J +z2 +z3 +z1 +z3 +z1 +z2 +zI = z−j1 +1 +z−j2 +2 +z−j3 +3 +f(z2, z3)h(z1, z3)g•(z1, z2)zi1 +3 zi2 +2 zi3 +1 +(3.93) +Exchange equations +Note that if we define the quantity: +M J(z1, ..., zn) := zJΠ0 +(3.94) +Where the permutation acts on its left by its inverse. +Now we can write this exchange +equation: +M J(z1, ..., zk, zk+1, ..., zn) ˇRk(zk, zk+1) = M J(z1, ..., zk+1, zk, ..., zn) +(3.95) +The exchange equations in component: +M J +...,αk,αk,...(z1, ..., zk, zk+1, ..., zn)1 − rαkzk+1 +1 − rαkzk += M J(z1, ..., zk+1, zk, ..., zn) +(3.96) +Proof of the initial condition +One needs to check the initial condition: +δα,βδJ,J = rI +αr−J +β +� +... +� +z−J( +� +σ∈SN +πσ)β +αzI +N +� +i=1 +dzi +2πizi +(3.97) +We will prove that the terms cancel one by one: +σ ̸= e =⇒ +� +0 +n +� +k=1 +dxk +2πixk +x−JπσxI = 0 +(3.98) +Let S be the support of σ, S := {l : σ(l) ̸= l}, and let’s define: +k = max(S) +m = σ−1(k) +Obviously, since σ ̸= e, S is not empty, so the previous elements exist. +It’s possible to write σ in terms of transpositions in a reduced form so that all the non- +constant elements propagate in a monotonous manner, figure 3.1. Let’s on the other hand +notice that all the weight functions f, g• and h are affine in their second variable and zk will +81 + +z2 +z1 +zm +zk +zk +z1 +zm +Figure 3.1: A permutation in a reduced form. The blue line corresponds to +a variable zk contributing as a polynomial to the matrix elements of πσ. The +orange line corresponds to zm +always be the second variable for all the weight factors of πσ. This implies that πσ will be a +polynomial of order k − σ(k) in zk. If we integrate with respect to zk, then the integral will +be necessarily zero except for iσ(k) − jk ∈ {−(k − σ(k)), ..., −1, 0}. Since m < k, we have: +iσ(m) − jm > iσ(m)−1 − jm > ... > iσ(k) − jm > iσ(k) − jk +(3.99) +The strictness of the previous inequalities implies: +iσ(m) − jm − (iσ(k) − jk) > k − σ(k) +(3.100) +So, for the situations where the integral with respect to zk is not zero, we can integrate with +respect to zm and we have: +iσ(m) − jm > 0 +which makes the integral vanishes for zm thanks to analyticity on the neighborhood of zero. +Two species +A situation where it is relatively easy to bring the calculations to the end is for an initial +condition of a single second-class particle in front of a finite number of first-class particles, +and a final configuration where all the first-class particles have jumped over the second-class +particle. This is a generalization of the first example given in the previous section. Let +J = {j1 < ... < jn < j} the initial positions of particles, with j being the one of the second +class. Similarly, I = {i < i1 < ... < in} are the final positions. We need first to calculate: +Φ(I, ••...•|J, •...••) = zi−j +n +� +i=1 +f(zi, z) +� +σ∈Sn +ϵ(σ) +n +� +k=1 +(1 − zσ(k)r•)σ(k)−kz +ik−jσ(k) +σ(k) +(3.101) += +�r•(r• + ν•) +r• +�n +zi−j � +σ∈Sn +ϵ(σ) +n +� +k=1 +(1 − zσ(k)r•)σ(k)−kz +ik−jσ(k) +σ(k) +(zk − z) +(−1 + r•zk)(1 + ν•zk) +82 + += +�r•(r• + ν•) +r• +�n +zi−jdet +�(1 − zkr•)h−kzik−jh +k +(zk − z) +(−1 + r•zk)(1 + ν•zk) +� +hk +Now we can calculate the conditional probability: +G(I, ••...•|J, •...••) = rI +αr−J +β +� +... +� +eλ(z)tΦ(I, ••...•|J, •...••) dz +2πiz +n +� +i=1 +dzi +2πizi +(3.102) +Where: +λ(z) = +n +� +k=1 +z−1 +k +− nr• + z−1 − r• +(3.103) +G(I, ••...•|J, •...••) = +�r•(r• + ν•) +r• +� � +e +t +z −r•t(r•z)i−jdet[mk,h(z, t)]hk +dz +2πiz +(3.104) +Where: +mk,h(z, t) := e−r•t +� e +t +x(1 − xr•)h−k(r•x)ik−jh(x − z) +(−1 + r•x)(1 + ν•x) +dx +2πix +(3.105) +We would like to find probability that the second particle at time t has been over jumped +by the other particles regardless of their positions: +G(i, ••...•|J, •...••) = +∞ +� +in=i+n +... +i3−1 +� +i2=i+2 +i2−1 +� +i1=i+1 +G(I, ••...•|J, •...••) +(3.106) +Performing elementary operations on the determinant: +G(i, ••...•|J, •...••) = +� +e +t +z −r•t(r•z)i−jdet[hk,h(z, t)]hk +dz +2πiz +(3.107) +With +hk,h(z, t) := +�r•(r• + ν•) +r• +� +e−r•t +� e +t +x(1 − xr•)h−k−1(r•x)i+k−jh(x − z) +(−1 + r•x)(1 + ν•x) +dx +2πix +Escaping probability +In the case n = 1 +G(i, ••|J, ••; t) = +�r•(r• + ν•) +r• +� +e−(r•+r•)t +� � +e( 1 +x + 1 +z )t +(r•z)i−j(r•x)i+1−j1(x − z) +(1 − xr•)(−1 + r•x)(1 + ν•x) +dx +2πix +dz +2πiz +(3.108) +One can show that if i < j1 then the integral will be zero with respect to the z variable. +We want to sum over i ≥ j1: +83 + +G(••|J, ••; t) = +�r•(r• + ν•) +r• +� +e−(r•+r•)t +� +0 +� +0 +e( 1 +x + 1 +z )t +(r•z)j1−j(r•x)(x − z) +(1 − r•r•xz)(1 − xr•)(−1 + r•x)(1 + ν•x) +dx +2πix +dz +2πiz +(3.109) +We can integrate over z. Since zero is an essential pole, and since j1 − j < 0, there is no +pole at infinity (imagine the function defined on the Riemann sphere), so we can take into +account the residue of the pole outside the integral path, i.e. the pole at z = (r•r•x)−1 +G(••|J, ••; t) = +�r•(r• + ν•) +r• +� � +e +(1−r•x)(1−r•x) +x +t (r•x)j−j1+1(x − (r•r•x)−1) +(1 − xr•)(−1 + r•x)(1 + ν•x) +dx +2πix +(3.110) +For large t we can perform a saddle point analysis, by writing the previous integral as +� +0 +f(z)eg(z)tdz +(3.111) +with: +f(z) = r•(r• + ν•)(r•x)j−j1+1(x − (r•r•x)−1) +r•(1 − xr•)(−1 + r•x)(1 + ν•x) +(3.112) +and +g(z) = (1 − r•x)(1 − r•x) +x +(3.113) +The saddle point zc is a verifying g′(zc) = 0. We have two of them: +z± +c = ± +1 +√r•r• +(3.114) +The saddle point method is based on deforming the integral path so that it passes by the +saddle point and such that the new path satisfies Im(g(z)) is constant. This constant is +obviously the imaginary part of the saddle point. +In our case we can notice that circle +centered at zero and with radios +1 +√r•r• has a zero imaginary part for g(z). We cannot deform +the path integral into that circle without getting one of the poles: +1 +r• or +1 +r• depending on the +relative values of r• and r•. Since f(z± +c ) = 0, the contribution of the saddle point will be +zero and the contribution of the pole inside will be dominant: +• if r• > r•, then the pole +1 +r• is inside the circle, and the we have: +G(••|J, ••; t) = r• + ν• +r• + ν• +�r• +r• +�j−j1+1 +(3.115) +• if r• > r•, then the pole +1 +r• is inside the circle, and we get +G(••|J, ••; t) = 1 +(3.116) +This gives the same results for the same asymptotic escaping probability as the one +obtained by an elementary method in chapter 5. +84 + +3.2 +Exclusion process on the ring +1D lattice models with periodic boundary conditions have a long tradition in mathematical +physics. Such boundaries provide a mathematical simplicity besides their physical relevance. +In the thermodynamic limit, they share properties with systems defined on the line. In our +case, we are using results obtained on the ring in the steady state for a dynamic system on +the line. In particular, in chapter 5, we will need the expression of the speed of a defect as +a function of the density field, this was obtained via a Matrix Product Ansatz in [33] and +independently using the coordinate Bethe Ansatz in [78]. We will be reviewing the latter in +section 2.1. On the other hand, in chapter 2 we will be using the expression of the currents of +different species as a function of the densities, these expressions were again obtained in the +thermodynamic limit for a system on a ring using the Nested algebraic Bethe Ansatz [46]. +Section 2.2 will be mainly devoured for reviewing this. The choice of reviewing these two +works in this order serves as well a pedagogical purpose. They provide together a simple +setting for explaining the Bethe Ansatz on the Ring. +3.2.1 +Coordinate Bethe Ansatz for a defect in the ring +Consider a lattice of L sites with periodic boundary condition (the site L + 1 is identified +with the site 1), with M −1 first class particles and a single defect, i.e. a second-class particle +with arbitrary rates: +α +20 → 02 +β +12 → 21 +(3.117) +Let Yt be the distance traveled by the defect up to time t, i.e. the number of forward jumps +minus the number of backward jumps. Our objective is to determine the statistical properties +of this random variable in the steady state (for large t). +Derrida-Lebowitz trick. +An idea that is useful whenever we have a Markov process and we get intersected in the +statistical properties of a sub process is to introduce a counter for this sub-process, i.e. a +random variable that represents the number of times this sub process occur to to a time t. +It’s Yt in our case, and then to try to write down a time evolution equation for its generating +function. This was first used in [95], [96]. Let’s see how does this work in our case. Let +Pt(C, Y ) be the probability for the system to be at the configuration C and having Yt = Y . +We can classify the transitions among the different configurations into three types: +• A transition C +′ → C that increases Yt by one. Denote its rate by M1(C, C +′) +• A transition C +′ → C that decreases Yt by one. Denote its rate by M−1(C, C +′) +• A transition C +′ → C that leaves Yt unchanged. Denote its rate by M0(C, C +′) +Now we can write the evolution equation for Pt(C, Y ), which is a generalized master +equation: +85 + +dPt(C, Y ) +dt += +� +C′ +M0(C, C +′)Pt(C +′, Y ) + M1(C, C +′)Pt(C +′, Y − 1) + M−1(C, C +′)Pt(C +′, Y + 1) +(3.118) +Note that M1(C +′, C +′) = M−1(C, C) = 0 and M0(C, C) = � +C(M1(C, C +′) + M−1(C, C +′)). +The conditional generating function for Yt is: +F ν +t (C) := E(eνYt|C) = +� +Y +eνY Pt(C, Y ) +(3.119) +Deriving with respect to time and using eq. 3.118 ,then exchanging the sums allows to +find out that it obeys the evolution equation: +dF ν +t (C) +dt +:= +� +C′ +(M0(C, C +′) + eνM1(C, C +′) + e−νM−1(C, C +′))F ν +t (C +′) +(3.120) +This suggest to define the Matrix: +M ν = M0 + eνM1 + e−νM−1 +(3.121) +So that we can write the previous equation in a compact form: +dF ν +t +dt += M νF ν +t +(3.122) +The full generating function is the sum over the components of F ν +t , and can be written +as a linear combination of exponential functions: +Fν +t = +� +C +F ν +t (C) = +� +i +αieλit +(3.123) +Where the λi are eigenvalues of the matrix M ν. +The Matrix M ν +Id has positive entries so it has a non-degenerate real eigenvalue greater +than the module of all other eigenvalues according to Perron-Frobinus theorem. Same holds +for M ν. Let λ(ν) be this largest eigenvalue for M ν. The generating function behaves for +large time as: +Ft ∼ eλ(ν)t +(3.124) +The objective is to find the speed of the defect for large times: +1 +t E(Yt) = 1 +t +dFt +dν |ν=0 ∼ eλ(0)tdλ +dν +(3.125) +Of course the largest eigenvalue for M is zero thanks to its stochasticity, so we have λ(0) = 0 +1 +t E(Yt) = dλ +dν |ν=0 = lim +ν→0 +λ(ν) +ν +(3.126) +To diagonalise M ν and find its largest eigenvalue, Once can use the Bethe Ansatz +86 + +Bethe Ansatz +Let’s label the configurations by the positions of the particles with the convention: x1 < +x2 < .. < xN + L Where 1 ≤ x1 ≤ L is the position of the defect. Let ψ(x1, ...xM) be an +eigenvector of M ν with an eigenvalue λ(ν) (for the moment, it can be any eigenvalue), The +master equation gives rise to a functional equation verified by ψ This equation is simple for +a configuration where the particles are not neighbors, i.e: xi+1 − xi ≥ 2: +λψ(x1, ...xM) = +N +� +i=2 +ψ(x1, ..., xi − 1, ..., xM) + eναψ(x1 − 1, ...xM) − (N − 1 + α)ψ(x1, ...xM) +(3.127) +If we want this equation to be valid for all possible positions, we can do that by tolerating +that the function ψ assigns values to non-physical configurations, precisely configurations +where two neighboring particles have the same positions. These assigned values need to be +chosen so that eq. 3.127 reduces to the correct form for configurations with neighboring +particles. One can find this way the following boundary conditions: +ψ(x1, ..., xi, xi..., xM) = ψ(x1, ..., xi, xi + 1..., xM) +for +1 < i < M +(3.128) +ψ(x1, x1, ..., xM) = e−νβψ(x1 + 1, x3, ..., xM, x1 + L) + αψ(x1, x1 + 1, ..., xM) +(3.129) +eναψ(x1 − 1, ..., x1 + L − 1) = (1 − β)ψ(x1, ..., x1 + L − 1) +(3.130) +If we plug a plane wave of the form (z1eνα)x1 �M +i=2 zxi +i +in 3.127 we get a solution whenever: +λ = +M +� +i=1 +1 +zi +− (N − 1 + α) +(3.131) +However this solution will not verify the boundary condition. We use the Bethe Ansatz for +a more general form of the solutions: +ψ(x1, ..., xM) = (eνα)x1 � +σ∈SM +Aσ +M +� +i=1 +zxi +σ(i) +(3.132) +The three boundary conditions can be satisfied by imposing respectively the following con- +straints on the coefficients: +Aσ(1 − zσ(j+1)) = −Aστj,j+1(1 − zσ(j)) +for +1 < j < M +(3.133) +Aσ(1−αzσ(2))+Aστ2,3...τM−1,M(αβzσ(1)zL +σ(2)) = −Aστ1,2(1−αzσ(1))−Aστ2,3...τM−1,Mτ1,M(αβzσ(2)zL +σ(1)) +(3.134) +AσzL +σ(M)[(1 − β)zσ(1) − 1] = −Aστ1,MzL +σ(1)[(1 − β)zσ(M) − 1] +(3.135) +Applying the third constraint on the second: +Aσ(1−αzσ(2)) = −Aστ1,2(1−αzσ(1))−αβAστ2,3...τM−1,M(zσ(1)zL +σ(2)−zσ(2)zL +σ(2) +bzσ1 − 1 +bzσ2 − 1) (3.136) +87 + +With b = 1 − β. Applying successively the first constraint to the third, one can write a +relation between Aσ and Aστ(2,3)...τ(M−1,M): +Aστ2,3...τM−1,M = Aσ +M−2 +� +k=1 +zσ(M−k) − 1 +zσ(2) − 1 += Aσ +�M +k=1(zk − 1) +(zσ(2) − 1)M−1(zσ(1) − 1) +(3.137) +Applying this to the second constraint: +Aστ1,2(1 − αzσ(1)) = −Aσ(1 − αzσ(2)) − αβAστ2,3...τM−1,MzL +σ(2)(zσ(1) − zσ(2) +bzσ1 − 1 +bzσ2 − 1) (3.138) +Aστ1,2(1 − αzσ(1)) = −Aσ((1 − αzσ(2)) + αβ +zL +σ(2) +�M +k=1(zk − 1) +(zσ(2) − 1)M−1(zσ(1) − 1)(zσ(1) − zσ(2) +bzσ1 − 1 +bzσ2 − 1)) +(3.139) +Aστ1,2(1 − αzσ(1)) = −Aσ +� +(1 − αzσ(2)) + αβ +(zσ(2) − zσ(1))zL +σ(2) +�M +k=1(zk − 1) +(zσ(2) − 1)M−1(zσ(1) − 1)(bzσ(2) − 1) +� +(3.140) +Bethe Equations +Applying the last equation twice leads to the following constraints on the moments z′s: +�(αzi − 1)(bzi − 1)(zi − 1)M−1 +−αβ �M +k=1(1 − zk)zL +i ++ 1 +� +1 +1 − zi += +�(αzj − 1)(bzj − 1)(zj − 1)M−1 +−αβ �M +k=1(1 − zk)zL +j ++ 1 +� +1 +1 − zj +(3.141) +In words, the left side of the equality does not depend on i, so it is constant: +E = +�(αzi − 1)(bzi − 1)(zi − 1)M−1 +CzL +i ++ 1 +� +1 +1 − zi +(3.142) +Where C is: +C = −αβ +M +� +k=1 +(1 − zk) +(3.143) +Finally the wave function ψ(x1, ..., xM) has to be invariant under translation, which leads to: +eνα +M +� +k=1 +zk = 1 +(3.144) +Analysis of Bethe equations +We will go sketchy in this paragraph as the more technical details can be found in [78].The +objective is to compute λ(ν). The last Bethe equation eq. 3.144 can be written as: +ν = − ln(α) − +M +� +k=1 +ln(zk) +(3.145) +88 + +Both λ and ν depend on the z variables through quantities of the form: +M +� +k=1 +h(zk) +(3.146) +Where h(z) = 1 +z for λ and h(z) = ln(z) for ν. It’s possible to find a general formula for this +quantity: +M +� +k=1 +h(zk) = (M − 1)h(1) + h( 1 +α) + +∞ +� +n=1 +Cn +n +� � +1 ++ +� +1 +α +� dz +2πih +′(z)[Q(z)]n +(3.147) +Where: +Q(z) = +−zL(1 + (z − 1)E) +(bz − 1)(αz − 1)(z − 1)M−1 +(3.148) +This leads to the following expressions for λ and ν +λ(ν) = − +∞ +� +n=1 +Cn +n +� � +1 ++ +� +1 +α +� dz +2πi +1 +z2[Q(z)]n +(3.149) +ν = − +∞ +� +n=1 +Cn +n +� � +1 ++ +� +1 +α +� dz +2πi +1 +z[Q(z)]n +(3.150) +Beside this, it is possible to show that: +0 = +∞ +� +n=1 +Cn +n +� � +1 ++ +� +1 +α +� dz +2πi +1 +z − 1[Q(z)]n +(3.151) +Asymptotics for the speed +We first notice that the limit ν → 0 corresponds to zi → 0 for 2 ≤ i ≤ M and z1 → 1 +α. In +this limit, we have as well C → 0. Let Q(0) = limν→0 Q. The speed can be written using +only the first terms in the expressions of ν and λ: +v = lim +ν→0 +λ +ν = +� � +1 + +� +1 +α +� dz +2πi +1 +z2Q(0)(z) +� � +1 + +� +1 +α +� dz +2πi +1 +zQ(0)(z) +(3.152) +0 = +� � +1 ++ +� +1 +α +� dz +2πi +1 +z − 1Q(0)(z) +(3.153) +Q(0)(z) = +−zL(1 + (z − 1)E(0)) +(bz − 1)(αz − 1)(z − 1)M−1 +(3.154) +From the last two equations: +0 = +� � +1 ++ +� +1 +α +� dz +2πi +1 +z − 1 +−zL(1 + (z − 1)E(0)) +(bz − 1)(αz − 1)(z − 1)M−1 +(3.155) +89 + +So if we define: +XL,M := +� � +1 ++ +� +1 +α +� dz +2πi +zL +(bz − 1)(αz − 1)(z − 1)M +(3.156) +We get: +XL,M + XL,M−1E(0) = 0 +(3.157) +And the speed will be: +v = XL,M−1XL−2,M−1 − XL−2,M−2XL,M +XL,M−1XL−1,M−1 − XL−1,M−2XL,M +(3.158) +Hydrodynamic limit +Assume α ̸= 1. We need to find the limit of XL,M as L, M → ∞ with the ratio M +L = ρ +fixed. To find the asymptotic of the integral, one needs to use the method of saddle point. +Substituting M = ρL We can write the integral of the form +� +γ f(z)(g(z))Ldz, and we are +interested in the limit L → ∞. The method is based on deforming γ, if possible, so that +the phase of g(z) is fixed and that it passes by the saddle point zc, which is a point that +verifies g +′(zc) = 0, assume there is only one for simplicity. The phase being constant, the +saddle point method applies in a similar fashion as in the real case. At the saddle point the +gradient of Re(g) is perpendicular to the gradient of Im(g), hence the name of the saddle +point. +Note first that 1 +α is a simple pole, so the integral around it is: +� +1 +α +dz +2πi +zL +(bz − 1)(αz − 1)(z − 1)M = +1 +(b − α)( +1 +(1 − α)ρα(1−ρ))L +(3.159) +And same for the pole 1 +b +� +1 +b +dz +2πi +zL +(bz − 1)(αz − 1)(z − 1)M = +1 +(α − b)( +1 +(1 − b)ρb(1−ρ))L +(3.160) +The saddle point is zs = +1 +1−ρ +The contribution from the saddle point is: +(1 − ρ)2 +(ρ − 1 + b)(ρ − 1 + α)( +1 +ρρ(1 − ρ)1−ρ)L +(3.161) +Now the evaluation of the integral 3.156 will depend on the relative position of the saddle +point and the poles. A comparison between the different configurations yields the known +results, let’s discuss one of them: +1 +α < zc < 1 +b is equivalent to 1 − α < ρ < β then the contour around the pole 1 +α and the +saddle point can be merged into one. A small computation shows that the contribution of +the saddle point will dominate the one from the pole. And the speed will be can be computed +v = 1 − 2ρ +(3.162) +90 + +Analyzing the rest of cases lead to the different regimes for the speed: +For β < ρ and 1 − α < ρ +v = 1 − ρ − β +(3.163) +For β > ρ and 1 − α > ρ +v = α − ρ +(3.164) +For β < ρ < 1 − α +v = α − β +(3.165) +3.2.2 +Algebraic Bethe Ansatz for The Exclusion Process on the +ring +The basic idea for solving a quantum system is to find operators that commute. Hopefully, +one has sufficiently many so that the common eigenspaces are all uni-dimensional. For sys- +tems defined on a 1D lattice with local interactions, a formalism known as the Algebraic +Bethe Ansatz (ABA) provides a procedure for generating such commuting operators besides +finding the common eigenvectors and the corresponding eigenvalues. However, for this mech- +anism to function, some implicit conditions on the local interactions have to be met, if so, +we speak of an integrable system in the sense of Yang-Baxter. Although this was originally +developed for quantum systems, it can be used for systems sharing similar mathematical +structures. In our case, our modal is not Hamiltonian but stochastic, so we have a Markov +matrix that replaces the Hamiltonian, and a master equation that replaces Schrodinger’s +equation. This part is a review of some selected known literature treating the exclusion +process on the ring. The objective is to reach the expression of the currents used in chapter +2. In section 2.2.1 we describe how ABA work for ASEP with one single species to obtain +the statistical properties of the current. The objective of this is two-fold: first to provide a +rather simple setting for explaining the procedure of the ABA. Secondly, to use the results +obtained here for the next section. Originally the problem was treated with the coordinate +Bethe Ansatz in [95], where the deviation function of the current was obtained. For our +needs, we will stop at the Bethe equations. This presentation can be seen as a detailed +version of appendix A of [46] +In section 2.2.2, we treat the case of an arbitrary number of defects (multi-species +TASEP). Although the coordinate Bethe Ansatz dealt successfully with a system with a +single defect, using it for an arbitrary number of defects would be quite cumbersome. ABA +is a more elegant and, in a sense, efficient technique for this case. this has been done in [46], +where the nested ABA was used to diagonalize the deformed Markov matrix so to provide +for analytical expressions for the currents. we mainly here review this with more details. +Numerous introductory monologues for ABA exist. For a very short, very elementary +one [97]. For a detailed course [98]. We will be using here the nested ABA. This version is +needed whenever the local Hilbert space has a dimension higher than 2. For an introduction +to the nested ABA [99–101]. +Finally, [102] provides a compact elegant review for ABA +applied to the exclusion process. +ABA for ASEP with one species +Consider ASEP with m particles on a ring with N sites. Each particle can hop forward +with a rate p and backward with a rate q. The state of the system is described by a vector +91 + +in the space H = (C2)⊗N, where each base element corresponds to a configuration of the +system and is composed of an N tensor product of elements from the local base {⟨0| , ⟨1|}. +Of course, the particles conservation will make only a subspace of H accessible. The markov +matrix of the system can be written as a sum of local operators, each is acting non trivially +only on two neighboring sites: +M = +N +� +i=1 +Mi,i+1 +(3.166) +Where the site N + 1 identified with the site 1, and Mi,i+1 is given by: +Mi,i+1 = 11 ⊗ ... ⊗ 1i−1 ⊗ +� +� +� +� +0 +0 +0 +0 +0 +−p +q +0 +0 +p +−q +0 +0 +0 +0 +0 +� +� +� +� ⊗ 1i+2 ⊗ ... ⊗ 1N +(3.167) +It’s quite known that this local operator can be written in terms of Pauli matrices so that +the Markov matrix can be seen as a non-Hermitian spin chain: +M = +N +� +i=1 +� +pS− +i S+ +i+1 + qS+ +i S− +i+1 + 1 +4Sz +i Sz +i+1 +� +− N +4 +(3.168) +This can be mapped to an XXZ quantum spin chain with twisted boundary conditions [103]. +and explains the relevance of Bethe ansatz for diagonalizing the Markov operator, which was +famously used to find the spectral gap of the model [28]. However, if we are interested in +the statistical properties of the current then a generalized master equation with a deformed +Markov matrix is required similarly to the previous section. Let Yt be the random variable +counting the number of forward jumps of all particles minus the number of their backward +jumps up to time t. The probability Pt(C, Y ) of the system being at configuration C and +having Yt = Y verifies an evolution equation that has the same form as eq. 3.118 in the +previous section, and it results in a generating function for Yt that has the form of eq. 3.2.1. +So its behavior is determined by the knowledge of the largest eigenvalue of the deformed +Matrix: +M ν = M0 + eνM1 + e−νM−1 +(3.169) +This matrix can be written as a sum of local operators: +M ν = +N +� +i=1 +M ν +i,i+1 +(3.170) +Where: +M ν +i,i+1 = 11 ⊗ ... ⊗ 1i−1 ⊗ +� +� +� +� +0 +0 +0 +0 +0 +−p +qe−ν +0 +0 +peν +−q +0 +0 +0 +0 +0 +� +� +� +� ⊗ 1i+2 ⊗ ... ⊗ 1N +(3.171) +Obviously the limit ν → 0 is usual markov matrix: M 0 = M. +92 + +The integrability of the operator M ν is equivalent to the existence of a matrix ˇR(x, y) ∈ +End(C2 ⊗ C2) with the following properties: +1. It’s a solution to the braided Yang-Baxter Equation: +ˇR23(x, y) ˇR12(x, z) ˇR23(y, z) = ˇR12(y, z) ˇR23(x, z) ˇR12(x, y) +(3.172) +2. Its derivative is the local operator: M ν +12 = ∂x ˇR12(x, y)|x=y=0. The relevance of this +requirement will become clear in what follows, precisely eq. 3.190. +3. It satisfied the the inversion relation: +ˇR12(x, y) ˇR12(y, x) = 1. The interpretation of +this will be again clear latter. +A natural candidate is the baxterized form: +ˇR12(x, y) = 1 + λ(x, y)M ν +12 +(3.173) +The constraints determine λ up to a parameterization, we choose: +λ(x, y) = +e +x−y +2 − e +y−x +2 +qe +x−y +2 − pe +y−x +2 +(3.174) +So the ˇR matrix acts on a two neighboring local spaces as: +ˇR(x, y) = +� +� +� +� +1 +0 +0 +0 +0 +1 − pλ(x, y) +qe−νλ(x, y) +0 +0 +peνλ(x, y) +1 − qλ(x, y) +0 +0 +0 +0 +1 +� +� +� +� +(3.175) +Let Rab := Pab ˇRab. Where Pab is the permutation operator applied on the local spaces +a and b, it permutes the corresponding components of product states. So R acts on two +neighboring sites as: +R(x, y) = +� +� +� +� +1 +0 +0 +0 +0 +peνλ(x, y) +1 − qλ(x, y) +0 +0 +1 − pλ(x, y) +qe−νλ(x, y) +0 +0 +0 +0 +1 +� +� +� +� +(3.176) +This matrix verifies a slightly different version of YBE: +R12(x, y)R13(x, z)R23(y, z) = R23(y, z)R13(x, z)R12(x, y) +(3.177) +The next usual step is to define the monodromy matrix that acts on the space a ⊗ H, +where a = C2 is an auxiliary space. +Ta,H(x, η) = Ra,N(x, ηN)...Ra,1(x, η1) +(3.178) +Where Ra,i(x, ηN) acts non trivially only on the space a and the site i +The matrix T satisfies the fundamental commutation relation. +93 + +Ra,b(x, y)Ta,H(x, η)Tb,H(y, η) = Tb,H(y, η)Ta,H(x, η)Ra,b(x, y) +(3.179) +which is again equivalent to YBE. It’s possible to show that simply by using the commutation +[Ra,i(x, ηi), Rb,j(y, ηj)] = 0 for i ̸= j. +We can write the monodromy matrix in the base of the auxiliary space: +Ta,H(x, η) = +�A(x, η) +B(x, η) +C(x, η) +D(x, η) +� +(3.180) +Where A, B, C, D are operators acting on the space H. Expanding the fundamental com- +mutation relation eq. 3.189 will tell us how these operators commute. What will be relevant +to our needs are: +[A(x, η), A(y, η)] = 0 +(3.181) +[B(x, η), B(y, η)] = 0 +(3.182) +A(x, η)B(y, η) = +eν +qλ(y, x)B(y, η)A(x, η) − eν(1 − qλ(y, x)) +qλ(y, x) +B(x, η)A(y, η) +(3.183) +D(x, η)B(y, η) = +eν +qλ(x, y)B(y, η)D(x, η) − eν(1 − pλ(x, y)) +qλ(x, y) +B(x, η)D(y, η) +(3.184) +Now the transfer matrix is obtained by tracing out the auxiliary space of the monodromy +matrix : +t(x, η) = tra(Ta,H(x, η)) +(3.185) +Which simply means: +t(x, η) = A(x, η) + D(x, η) +(3.186) +This matrix has the advantage of commuting with itself for different parameters: +[t(x, η), t(y, η)] = 0 +(3.187) +This is again a result of the fundamental commutation relation eq. 3.189. multiplying both +of its sides from the right by R−1 +a,b(x, y) and tracing out the two auxiliary spaces, we get: +tra,b(Ta,H(x, η)Tb,H(y, η)) = tra,b(Tb,H(y, η)Ta,H(x, η)) +(3.188) +Where the R matrices disappeared thanks to the cyclicity of the trace. Now we need to +uncover one of the sides let’s say the left one by writing its coordinates: +T i1j1,i3j3 +a,H +(x, η)δi2j2T j2i2,j3k3 +b,H +(x, η)δj1i1 = T j1j1,i3j3 +a,H +(x, η)T j2j2,j3k3 +b,H +(x, η) +(3.189) +The right side is the the coordinate version of tra(Ta,H(x, η))trb(Tb,H(y, η)), which leads to +the desired commutation. +94 + +So the family of operators {t(x, η), x ∈ C} can be simultaneously diagonalized. The +operator M ν can be derived: +M ν = t−1(0, 0) d +dxt(x, 0)|x=0 +(3.190) +To show this let x0 be value for the spectral parameter x for which R12(x = x0, 0) = P12. +(in our case x0 = 0). At these values, the transfer matrix is: +t(x0, 0) = tra(Pa,1...Pa,N) = P1,2,...,N +(3.191) +t−1(x0, 0) = tra(Pa,N...Pa,1) = PN,N−1,...,1 +(3.192) +d +dxt(x, 0)|x=x0 = +N +� +i=1 +tra(Pa,1...Pa,i−1Ma,i(x0, 0)Pa,i+1...Pa,N) += +N +� +i=1 +Mi−1,i(x0, 0) +(3.193) +The reference state +The Bethe vector is constructed starting from a reference state and using a creation operator. +The natural choice for this reference state is an empty system with no particles: +|0⟩ = |0⟩1 ⊗ ... ⊗ |0⟩N +with +|0⟩i = +�1 +0 +� +(3.194) +Let’s examine the action of the Monodromy operators on |0⟩ +A(x, η) |0⟩ = |0⟩ +(3.195) +C(x, η) |0⟩ = 0 +(3.196) +D(x, η) |0⟩ = (qe−ν)N +N +� +i=1 +λ(x, ηi) |0⟩ +(3.197) +To understand the previous relations, it’s enough to write the R matrix in the base of +the auxiliary space: +Ra,i(x, ηi) = +�A(i)(x, ηi) +B(i)(x, ηi) +C(i)(x, ηi) +D(i)(x, ηi) +� +(3.198) +Where the entry operators act non trivially only on the i space. The monodromy matrix is +then: +Ta,H(x, η) = +�A(1)(x, η1) +B(1)(x, η1) +C(1)(x, η1) +D(1)(x, η1) +� +... +�A(N)(x, ηN) +B(N)(x, ηN) +C(N)(x, ηN) +D(N)(x, ηN) +� +(3.199) +The action of the entry operators on |0⟩ is simple, for instance, in particular: +A(N)(x, ηN) |0⟩ = |0⟩ , +C(N)(x, ηN) |0⟩ = 0, +D(N)(x, ηN) |0⟩ = qe−νλ(x, ηN) |0⟩ +(3.200) +95 + +Now applying it consecutively on the Monodromy matrix will give triangular matrices whose +product is the desired result. Note that |0⟩ is not an eigenvector of the operator B. However, +following the same logic as previously, it’s possible by recurrence to conclude the action of +the operator B on |0⟩. +B(x, η) |0⟩ = +N +� +i=1 +(−q)i(qe−ν)i−1 +i� +j=1 +λ(x, ηj) |0⟩1 ⊗ ... ⊗ |1⟩i ⊗ ... ⊗ |0⟩N +(3.201) +So applying B will create a linear combination of single particle states. It will be our +creation operator. +Bethe vector +The objective is to have an eigenvector of the transfer matrix. Let’s search for an m particles +vector of the form: +|Ψm(y1, ..., ym)⟩ = B(y1)...B(ym) |0⟩ +(3.202) +By applying the operator A and D on the Bethe vector, we get in general a term that is +proportional to it and other terms that are not. The proportional term is called the wanted +term, and the other terms are not wanted. +Bethe equations are obtained such that the +unwanted terms cancel out. Let’s first examine the application of A on Ψm. The idea is +to use the fundamental commutation relation 3.183 consecutively to bring the operator A +to the end of the B(y1)...B(ym) chain so that it will be converted to a scalar when applied +on |0⟩. This will generate 2m terms that can be classified into m + 1 categories according +to the spectral parameter of the operator A after having reached the end of the B′s chain. +The wanted term is straightforward, it’s enough to retain the first term of the commutation +relation at each time: +A(x) |Ψm(y1, ..., ym)⟩ |wanted = +m +� +i=1 +eν +qλ(yi, x) |Ψm(y1, ..., ym)⟩ +(3.203) +To find the j unwanted term, we use the commutation of the B′s operators, since this +term will not depend on the order of the B′s, we bring B(yj) to the left of the B chain +before applying A. now there is a unique way for yj it to reach the last position, which is by +following the second term of the fundamental commutation at the beginning, and then by +sticking to the first term for the rest, so we get: +A(x) |Ψm(y1, ..., ym)⟩ |unwanted = +m +� +j=1 +(−eν(1 − qλ(yj, x)) +qλ(yj, x) +) +m +� +i̸=j +eν +qλ(yi, yj) |Ψm(x, y1, ..., yj−1, yj+1, ..., ym)⟩ +(3.204) +And in a similar fashion, we have the action of the operator D +D(x) |Ψm(y1, ..., ym)⟩ |wanted = (qe−ν)N +N +� +i=1 +λ(x, ηi) +m +� +i=1 +eν +qλ(x, yi) |Ψm(y1, ..., ym)⟩ +(3.205) +96 + +D(x) |Ψm(y1, ..., ym)⟩ |unwanted = +m +� +j=1 +(−eν(1 − pλ(x, yj)) +qλ(x, yj) +) +m +� +i̸=j +eν +qλ(yj, yi)(qe−ν)N +N +� +i=1 +λ(yj, ηi) |Ψm(x, y1, ..., yj−1, yj+1, ..., ym)⟩ +(3.206) +Now we can write the eigenvalue for transfer matrix: +Λ(x) = +m +� +i=1 +eν +qλ(yi, x) + (qe−ν)N +N +� +i=1 +λ(x, ηi) +m +� +i=1 +eν +qλ(x, yi) +(3.207) +Bethe equations +(−eν(1 − qλ(yj, x)) +qλ(yj, x) +) +m +� +i̸=j +eν +qλ(yi, yj)+(−eν(1 − pλ(x, yj)) +qλ(x, yj) +) +m +� +i̸=j +eν +qλ(yj, yi)(qe−ν)N +N +� +i=1 +λ(yj, ηi) = 0 +(3.208) +Which gives after simplifications the m equations +eνN = +m +� +i̸=j +λ(yi, yj) +λ(yj, yi) +N +� +i=1 +qλ(yj, ηi) +1 ≤ j ≤ m +(3.209) +These equations are simpler to analyze in the TASEP limit (p, q) → (1, 0) This is however +beyond the objective of this section and was done in ... to extract ... +Twisted Monodromy Matrix +Let w be a matrix acting on C2 such that w1w2 = w ⊗ w commutes with the matrix R: +[w1w2, R1,2(x, y)] = 0 +(3.210) +Then it is straightforward to show that the matrix waTa,H satisfies the fundamental commu- +tation relation: +Ra,b(x, y)(waTa,H(x, η))(wbTb,H(y, η)) = wbTb,H(y, η)waTa,H(x, η)Ra,b(x, y) +(3.211) +Where wa acts non trivially on the auxiliary space a. waTa,H is called the twisted monodromy +matrix. It naturally appears in systems with twisted periodic boundary condition, which is +the same as the periodic one except that the coupling between the first site and the last site +differs by a phase factor. One asks: how does a twisted monodromy matrix impact the ABA +procedure? First note that it changes the properties of the reference state, this is easy to +understand if we write it in the auxiliary space: +waTa,H = +�w11A + w12C +w11B + w12D +w21A + w22C +w21B + w22D +� +(3.212) +97 + +So (waTa,H)21 is not an annihilation operator for the vacuum and (waTa,H)21 doesn’t admit +it as an eigenvector. One in principle has to search for another reference state than the +vacuum. However, if we choose w to be diagonal, (i.e. w21 = w12 = 0), then these properties +are conserved, except that the eigenvalues get a factor for the diagonal operators. We note +as well that our R matrix is invariant under the commutation 3.210 for an arbitrary diagonal +w operator. For this case, the new Bethe equations become: +eνN = w22 +w11 +m +� +i̸=j +λ(yi, yj) +λ(yj, yi) +N +� +i=1 +qλ(yj, ηi) +1 ≤ j ≤ m +(3.213) +And the corresponding twisted eigenvalue: +Λ(x) = w11 +m +� +i=1 +eν +qλ(yi, x) + w22(qe−ν)N +N +� +i=1 +λ(x, ηi) +m +� +i=1 +eν +qλ(x, yi) +(3.214) +TASEP limit: in the limit (p, q) → (1, 0) the function λ becomes: λ(x, y) = 1 − ex−y. +However, we get a singularity with the Bethe equations where some spectral parameters +need to be infinite. Since the spectral parameters are just intermediate parameters, we can +parameterize them to avoid the singularity: Zi = e−yi/q. So the Bethe equations become: +eνN = w22 +w11 +m +� +i̸=j +−Zj +Zi +N +� +k=1 +e−ηk +e−ηk − Zj +1 ≤ j ≤ m +(3.215) +And the eigenvalue: +Λ(x) = w11 +m +� +i=1 +(eν(1 − exZi)) +(3.216) +This will be useful for the following section +Algebraic Bethe Ansatz for arbitrary number of defects: +Consider a lattice of N sites with periodic boundary conditions with M1 first class particles, +and M2 second class particles of arbitrary rates using the same notation as the previous +section. +α +20 → 02 +β +12 → 21 +(3.217) +A probability wave vector of the system is an element of the space: H = (C3)⊗N Where each +base element is an N tensor product of elements from the set {⟨0| , ⟨1| , ⟨2|} and corresponds +to a configuration of the system. Of course, the particles conservation will make only a +subspace of H accessible. The markov matrix of the system can be written as a sum of local +operators, each is acting non trivially only on two neighboring sites: +M = +N +� +i=1 +Mi,i+1 +(3.218) +98 + +the site N + 1 is identified with the site 1 and Mi,i+1 is given in the base: +⟨00| , ⟨01| , ⟨02| , ⟨10| , ⟨11| , ⟨12| , ⟨20| , ⟨21| , ⟨22| +Mi,i+1 = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +α +0 +0 +0 +0 +0 +−1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +−β +0 +0 +0 +0 +0 +0 +0 +0 +0 +−α +0 +0 +0 +0 +0 +0 +0 +β +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +� +� +� +� +� +� +� +� +� +� +� +� +� +� +(3.219) +The tensor product by identity operator is implied on the sites where the local operator +doesn’t act. Being interested in the currents of the first and second class particles, we need +to deform the Markov matrix in a similar fashion as the previous section. We introduce the +random variables: +• Y 10 +t +the number of times a first class particle jumped over a void particle up to time t. +• Y 12 +t +the number of times a first class particle jumped over a second class particle up +to time t. +• Y 20 +t +the number of times a second class particle jumped over a void up to time t. +hence the modified Markov matrix needs three parameters: +M ν10,ν12,ν20 +i,i+1 += E10 +i,i+1 + βE12 +i,i+1 + αE20 +i,i+1 +(3.220) +Where: +E10 +i,i+1 = eν10 |01⟩ ⟨10| − |10⟩ ⟨10| +(3.221) +E20 +i,i+1 = eν20 |02⟩ ⟨20| − |20⟩ ⟨20| +(3.222) +E12 +i,i+1 = eν12 |21⟩ ⟨12| − |12⟩ ⟨12| +(3.223) +So the deformed Markov matrix is: +M ν10,ν20,ν12 = +L +� +i=1 +M ν10,ν20,ν12 +i,i+1 +(3.224) +Obviously the limit (ν10, ν20, ν12) → (0, 0, 0) gives rise to the usual non deformed Markov +matrix: +M = M 0,0,0 +(3.225) +In a similar fashion to the single defect case, the conditioned generating function for the +random vector (Y 10, Y 20, Y 12) has to obey the evolution equation: +99 + +d +dtF ν10,ν20,ν12 +t +(C) := +� +C′ +M ν10,ν20,ν12(C, C +′)F ν10,ν20,ν12 +t +(C +′) +(3.226) +The full generating function is given by a sum over the configurations: F ν10,ν20,ν12 +t += +� +C F ν10,ν20,ν12 +t +(C) and is estimated at large time by an exponential function with a parameter +λ(ν10, ν20, ν12) that is the largest eigenvalue of the matrix M ν10,ν20,ν12: +F ν10,ν20,ν12 +t +∼ eλ(ν10,ν20,ν12)t +(3.227) +In the limit (ν10, ν20, ν12) → (0, 0, 0) this eigenvalue is the one of the matrix M which is +zero, and it is non degenerate for all the values of (ν10, ν20, ν12), a result that stems from +Perron-Frobenius theorem. In the next section, we will see how to diagonalize the operator +M ν10,ν20,ν12 in order to find this eigenvalue. +The Nested Algebraic Bethe Ansatz +The model can be thought of as an SU(3) spin chain. The integrability of the operator +M ν10,ν20,ν12 is equivalent to the existence of a matrix ˇR(x, y) ∈ End(C3 ⊗ C3) with the +following properties: +1. It’s a solution to the braided Yang-Baxter Equation: +ˇR23(x, y) ˇR12(x, z) ˇR23(y, z) = ˇR12(y, z) ˇR23(x, z) ˇR12(x, y) +(3.228) +2. Its derivative is the local operator: M ν10,ν20,ν12 +12 += ∂y ˇR12(x, y)|x→y +3. It satisfied the the inversion relation. +Since the local operator M ν10,ν12,ν20 +i,i+1 +is a sum of more elementary operators, one can search +for an ˇR matrix of the Baxterized form: +ˇRi,i+1(x, y) = 1 + g10(x, y)E10 +i,i+1 + g12(x, y)E12 +i,i+1 + g20(x, y)E20 +i,i+1 +(3.229) +A solution: +g10(x, y) = 1 − ex−y +(3.230) +g12(x, y) = 1 − 1 + β(e−y − 1) +1 + β(e−x − 1) +(3.231) +g20(x, y) = 1 − 1 + α(ex − 1) +1 + β(ey − 1) +(3.232) +Let Rab := Pab ˇRab. This matrix verifies a slightly different version of YBE: +R12(x, y)R13(x, z)R23(y, z) = R23(y, z)R13(x, z)R12(x, y) +(3.233) +The next usual step is to define the monodromy matrix that acts on the space a ⊗ H, +where a = C3 is an auxiliary space. +100 + +Ta,H(x, η) = Ra,N(x, ηN)...Ra,1(x, η1) +(3.234) +This matrix satisfies the fundamental commutation relation: +Ra,b(x, y)Ta,H(x, η)Tb,H(y, η) = Ta,H(y, η)Tb,H(x, η)Ra,b(x, y) +(3.235) +Now the transfer matrix is obtained by tracing out the auxiliary space of the monodromy +matrix : +t(x, η) = tra(Ta,H(x, η)) +(3.236) +This matrix has the advantage of commuting with itself for different parameters: +[t(x, η), t(y, η)] = 0 +(3.237) +So the family of operators {t(x, η), x ∈ C} can be simultaneously diagonalized. The operator +M ν10,ν20,ν12 can be derived: +M ν10,ν20,ν12 = −t−1(0, 0) d +dxt(x, 0)|x=0 +(3.238) +Commutation relations +Let’s contemplate the ˇR matrix: +ˇR = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 +0 +eν10g10 +0 +0 +0 +0 +0 +0 +0 +1 +0 +0 +0 +eν20g20 +0 +0 +0 +0 +0 +1 − g10 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 − g12 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 − g20 +0 +0 +0 +0 +0 +0 +0 +eν12g12 +0 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 +� +� +� +� +� +� +� +� +� +� +� +� +� +� +(3.239) +Where the elements colored in blue form a lower dimension ˇR matrix acting on the space +C2 ⊗ C2: +ˇR(1) = +� +� +� +� +1 +0 +0 +0 +0 +1 − g12 +0 +0 +0 +eν12g12 +1 +0 +0 +0 +0 +1 +� +� +� +� +(3.240) +This matrix can be shown to solve a model with only first and second-class particles, so it +can be seen as one species ASEP with particles hopping forward at rate α and backwards at +rate β. +Let’s write the Monodromy matrix in the base of the auxiliary space: +Ta,H(x, 0) = +� +� +A(x) +B1(x) +B2(x) +C1(x) +D11(x) +D12(x) +C2(x) +D21(x) +D22(x) +� +� +(3.241) +101 + +So the transfer matrix can be written as: +t(x) = A(x) + D11(x) + D22(x) +(3.242) +Using the fundamental commutation relation, we can find how these operators commute. +We are looking for eigenvectors for the transfer matrix. As in the case of C2 local space, +one has to start with a reference state and find adequate creation operators. +Reference state +A natural possible reference state is an empty system with no particles, so it’s a tensor +product of empty sites: +|0⟩ = |0⟩1 ⊗ ... ⊗ |0⟩N +with +|0⟩i = +� +� +1 +0 +0 +� +� +(3.243) +The Monodromy matrix can be written as: +Ta,H(x) = +� +� +� +A(1)(x) +B(1) +1 (x) +B(1) +2 (x) +C(1) +1 (x) +D(1) +11 (x) +D(1) +12 (x) +C(1) +2 (x) +D(1) +21 (x) +D(1) +22 (x) +� +� +� ... +� +� +� +A(N)(x) +B(N) +1 +(x) +B(N) +2 +(x) +C(N) +1 +(x) +D(N) +11 (x) +D(N) +12 (x) +C(N) +2 +(x) +D(N) +21 (x) +D(N) +22 (x) +� +� +� +(3.244) +Where upper index (i) refers to an operator acting non trivially only on the site (i) of the +lattice, and its expression is given by the corresponding block of the ˇR matrix. Examining +the structure of these matrices, its easy to verify that |0⟩ is an eigenvector of the three +operators constituting the transfer matrix: +A |0⟩ = |0⟩ +(3.245) +D11 |0⟩ = (eν10(1 − ex))N |0⟩ +(3.246) +D22 |0⟩ = (αeν20(1 − ex))N |0⟩ +(3.247) +The Bethe vector +For a two dimension local space system, there is a single creation operator among the Mon- +odromy operators, usually called B that can create a one particle Bethe state with a mo- +mentum µ by applying it to the reference empty state |µ⟩ = B(µ) |0⟩. To get an n particle +state, it’s enough to apply the creation operator n times with the corresponding moments, +requiring it to be eigenvector to the transfer matrix generates the Bethe equations. In our +case, we need a creation operator for the first-class particles and another for the second class +particles. Examining the structure of the ˇR matrix, we can understand that B1 is the first +and B2 is the second. These two operators don’t commute, so the Bethe vector has to be +written as a linear combination of all the possible ordering of operators: +|ΨM1,M2(y1, ..., yr)⟩ = +� +i1,...ir∈{1,2} +ΨM1,M2 +i1,...ir Bi1(y1)...Bir(yr) |0⟩ +(3.248) +102 + +Where M1, M2 is the number of first and second class particles respectively. Of course the +coefficients that ΨM1,M2 +i1,...ir with lower indices that are not composed of M1 ones and M2 twos +have to be zero. This vector has to be an eigenvector of the transfer matrix, it is not in +general an eigenvector of the operators A,D11,D22. by applying each of these operators on +the Bethe vector, we get a wanted term that is proportional to it, and unwanted term that +is not. The three unwanted terms should cancel out. The conditions for this will constitute +the Bethe equations. +The cancellation of the unwanted terms will require the denationalization of a matrix +of the form w1(y)T (1) +11 + w2(y)T (1) +22 which is a twisted monodromy matrix for TASEP with +one species (the second class particles) in a lattice composed of the first and second class +particles. This leads to Bethe equations with two sets of spectral parameters M1 + M2 y′s +and another set of M2 Z′s coming from the lower order transfer matrix. The details can be +found in [46] as well as the derivation of the currents in the hydrodynamic limit which is +similar to the one defect case. +103 + +CHAPTER 4 +Boundary-induced phase transitions in multi-species driven diffusive +systems +4.1 +Introduction +Driven diffusive systems are archetypes for non-equilibrium statistical mechanics. +They +appear in various areas of physics, chemistry and theoretical biology [17] [16]. To have a +general idea, one can imagine a gas of identical particles in a 1D lattice that is coupled to +reservoirs from both sides. The driven aspect of the system is obtained by breaking the +space symmetry through an external field so that there is a current of particles even if the +two reservoirs on the boundaries are identical. Such systems are known to exhibit shock +solutions, in contrast to their purely diffusive counterparts. Once the current as a function +of the coarse-grained density in a homogeneous state is known, the phase diagram for the +steady state of the open-boundary system can be determined by a simple general principle +known as the extremal current principle. Its first version, dealing with the maximum current +phase, was proposed by Krug [21] [104]. A more general version taking into account the +minimum phase was elaborated by Sch¨uz et al [22], [23]. Despite the success of this principle +in treating open boundary problems of numerous models, its validity is restricted to systems +with a single species of particles. A generalization to interacting multi-species systems is +far from being obvious. One needs to define multiple coarse-grained densities corresponding +to the different species. The expressions of the corresponding currents as a function of the +densities are derived from the local dynamic for a given model and are assumed to be known +in a homogeneous system. +In some particular cases of multi-species systems, it’s still possible to do an exact analysis. +For instance, in [105] [106], 2-species TASEP is considered with a restriction on the boundary +rates so that the hole-particle symmetry is preserved. The steady state is exactly solved +using the Matrix Product Ansatz (MPA) for special values of the parameters, the mean-field +approximation is needed to continue the analysis and sketch a phase transition that identifies +a phase with a power law decay and another with exponential decay. More generally: Under +104 + +unity hopping rates in the bulk and boundary rates preserving the hole-particle symmetry, +it is possible to decompose the 2-species TASEP into two 1-species systems by viewing the +second-class particles as void for one system and first-class particles for the other system, +this sometimes called the coloring argument [107]. +A Colorable model is in general not +integrable (in the sense that no matrix representation for the steady state exists) except for +special values of the boundary rates. [108] +Another example is given in [109] where a multi-species generalization of TASEP with +open boundaries was treated exactly with MPA with hopping rates of particles drawn from +a distribution with hierarchical priority. No hole-particles symmetry is conserved here, how- +ever, the applicability of the generalization of the MBA required that only one parameter +expression is allowed for injecting particles and another for extracting particles, which results +in a two parameters phase transition similar to one species TASEP for a class of distributions, +while the HD phase is missing for the rest of distributions. +More generally, a quadratic algebra MPA description of the steady state of a multi-species +stochastic system will always lead to a constraint on the rates of the boundaries [110] +A simplifying special situation is when the current of a species (or a combination of +species) is null. This is the case in [111], [112] where 2-species TASEP is considered with +confined second-class particles with equal boundary hopping rates. Stationary state and +phase transition is obtained, using MPA, and is shown to be composed of three regions +similar to one-species TASEP. In [113] 2-species ASEP with confined first class particles was +analyzed and phase transition was obtained with exact methods. This model was generalized +in [114] to multi-species ASEP with again semi-permeable boundaries. Phase transition was +analyzed in [115]. A full classification of 2-species ASEP with integrable boundaries can be +found in [108]. +A class of models which admit product invariant measures in the homogeneous state was +studies in the literature. This restriction provides the advantage of making the mean field +currents exact, and most importantly, it allows through a restriction on the hopping rates on +the boundaries to find a simple relation between the effective densities for a boundary and +the corresponding hopping rates at that boundary. Such relations are unknown for a general +non-product measure. Examples for such systems are treated in [116] [117] [49] [48] [50]. +Although in principle, it is possible to take into account the correlations by defining a +projection measure as argued in [117], however we are not aware of any model where this +possibility has been tested. +Our final example for the special cases is a recent one: in [118] 2-speed TASEP is treated +(the two species can’t swap) with entry and exit rates for each species. Mean field analysis +is used to give an approximate prediction of the bulk behavior that works well only when +the boundary rates are close to each other. +The objective of this chapter is to investigate a method allowing to find the steady +state bulk and boundaries for systems with multi-species for arbitrary non zero boundary +rates without a prior knowledge with relation between boundary rates and the reservoirs +densities. We show through an example that such a relation doesn’t exist in general: the +effective density of a reservoir does not depend only on the corresponding boundary rates, +but as well on what happens in the whole systems, in other words, the reservoirs should be +seen as coupled rather than independent. In addiction, we show the relevance of the normal +modes(the Riemann variable) in providing for a physical interpretation of the behavior of +105 + +the system. In the arguments for our approach, we assumed a diagonal relation between +the diffusive currents and the density gradient. Despite the fact that this has been disputed +in [49], [50], 1, the method still seems to give reasonably good results for the models we tested +on. A further investigation is needed to understand whether this is du to a particularity of +our our models. The model we will be testing on presents a weakly hyperbolic point (un +umbilic point), which provides for another example where the analysis in [119] can be applied. +We apply our method to 2-species TASEP with arbitrary non-zero hopping rates both on +the bulk and on the boundaries. This requires taking into account the subtle interplay be- +tween bulk dynamics and the density effect of coupling constants on the boundaries.A Rather +good agreement with Monte Carlo simulations is obtained. Preliminary investigations, not +included here, show the validity of the method for a higher number of species. +4.1.1 +Outlines and main result: +Although our main interest is the hydrodynamics of short-range interaction particles system +with multiple conserved species. We can place ourselves in a more general framework and +consider n abstract quantities with local densities that are functions of space and time: +ρ(x, t) = (ρ1(x, t), ..., ρn(x, t)) +x ∈ R +t ≥ 0 +And associated currents: +J(ρ) = (J1(ρ), .., Jn(ρ)) +Where Ji is the current of ρi. These densities evolve according to a set of coupled partial +differential conservation laws: +∂tρ + ∂xJ = 0 +(4.1) +The aim of this chapter is to point out and make use of a connection between the following, +a priori independent, two problems: +▶ The Riemann Problem: which is defined on an infinite line with initial uniform +densities except for a discontinuity at 0: +ρ(x, 0) = ρL1x<0(x) + ρR1x>0(x) +x ∈ R +(4.2) +The equations with this initial condition will be invariant under the transformation +(x, t) → (λx, λt) and therefore the solution can be expressed as a function of one +variable x +t . In particular, we have: +ρ(0, t) = ρ(0, 1) := ρ|0 := R(0, ρL, ρR) +for +t > 0 +(4.3) +We will call this constant value: the solution to the Riemann problem at zero. +1I thank the reviewer that made me aware of these papers +106 + +▶ The open boundaries problem: Now let’s consider a finite system of size L cou- +pled to two reservoirs so that the densities on the extremities are given by the same +corresponding densities of the Riemann problem, namely: +ρ(0, t) = ρL +ρ(L, t) = ρR +(4.4) +These boundary conditions are a-priori ill-posed, they cannot in general be fulfilled +point-wise. A weak sense formulation is needed and was first introduced in [120]. It’s +based on the vanishing viscosity method. A second order diffusion term ϵ∂xxρ when +added to the conservation equation makes it parabolic, and thus the boundary condi- +tions well defined, the limit ϵ → 0 is taken in L1 +loc. An equivalent entropic formulation +exists [120] [121] [122]. For fixed boundary conditions, the system is expected to reach +a steady state in the limit t → ∞, in this state, the densities profile becomes only +functions of the space variable. In the bulk, the conservation equation is reduced to +∂xJ = 0 which leads to constant bulk densities for non-degenerate currents. We shall +call ρB the bulk density in the steady state. For what follows, unless stated otherwise, +we assume the presence of a residual viscosity that plays a role only near the boundaries +and allows to consider that the boundary conditions are verified point-wise. +Failure of the independent boundaries approach +In systems out of equilibrium, the concept of a reservoir of fixed densities is not always +straightforward. The density on one boundary is not necessarily a function of the dynamics +on that boundary but can be a function of the behavior of all of the system, i.e. it depends +on the dynamics on the other boundary too. For the model we considered, our first attempts +were to to produce a reservoir density as a function of boundary rates for each boundary +independently. +We tried to model a reservoirs as an external site where particles from +different species are created and and annihilated at a much higher frequencies than the +hopping rates of the model, so that the life-time of a particle belonging to a each species +is proportional to the desired density of that species on the boundary. This approached +combined with the principle failed to give a satisfactory results. Another approach is to +choose the boundary rates that are the same as the average effective hopping rates of particles +in a uniform system with the desired densities. This again has failed. Finally, we tried to +take into account the correlations in a similar fashion as proposed by [117],although this +has improved the results, it was still not sufficiently satisfactory. In the applications, we +introduce a method that allows us to determine the boundaries, as well as the bulk, as one +function of all the coupling parameters on both sides. For the time being we simply assume +that we measure the boundaries by the measuring the first and the last site. Conceptually, +one can consider these sites as part of the reservoirs. +The analysis for a class of multi-densities hyperbolic systems is significantly simplified +in terms of quantities known as the normal modes or the Riemann variables. These are +transformation functions of the densities that allow to write the conservation laws in a +simpler form. +107 + +The principle that we suggest allows obtaining the bulk densities of the open boundaries +system once the corresponding Riemann problem is solved. +The principle +The steady-state phase diagram of the bulk for the open boundary problem is governed by +the solution of the associated Riemann problem at zero. We have: +(a) ρB = ρ|0 +(b) The sings of the eigenvalues vk of the Jacobian matrix [ ∂Ji +∂ρj (ρB)]ij at the bulk governs +the behavior of the normal modes at the boundaries in the following way: +• vk > 0, the corresponding normal mode is induced from the left and exhibits an +exponential convergence on the right +• vk < 0 the other way around +• vk = 0 represents a transition point where the convergence is polynomial on both +sides, and induced by neither of the boundaries. +Note that the idea of the signs of eigenvalues governing the phase transition is already +discusses in [48] where the phase transitions were classified among continuous and non- +continuous, leading to a diagram in the order parameter of the bulk densities. +We start by showing that this principle is an equivalent reformulation of the extremal +current principle for the case of a single conserved quantity, then we will be treating the +general case of multi-component density. +4.2 +Extremal current principle revisited +Driven diffusive systems coupled to reservoirs with a single conserved driven quantity are +considered in the literature. Krug [21] first studied a system with concave current expres- +sion J(ρ) and coupled to a vanishing density reservoir on the right, and postulated that +independently of the microscopic dynamics, the system tries to maximize its current over +the interval [0, ρL]. He described a phase transition occurring when ρR passes through the +density for which the current is maximal. Based on insights obtained from the exact solu- +tion of TASEP, and KLS [20], this maximal current principle was generalized by Sch¨utz and +others [22], [23], [24] to the extremal current principle where the current expression needs +not be concave and the reservoir on the right can be arbitrary, and it was finally proved +rigorously in [123]. +According to it the current in the system is given by: +j = +� +maxρ∈[ρR,ρL](J(ρ)) +if ρL > ρR +minρ∈[ρL,ρR](J(ρ)) +if ρL < ρR +(4.5) +This principle allows sketching a phase diagram that exhibits both first order and sec- +ond order nonequilibrium phase transitions. The phases are typically named Low-density, +108 + +ρL +ρR +1 +2 +1 +1 +HD +RI (ρB = ρL) +LD +LI (ρB = ρL) +MC +(ρB = 1 +2) +ρB +1 +2 +1 +0 +LI +RI +Figure 4.1: +Phase diagram of one species TASEP in terms of controlling +parameters on the left, and in terms of the bulk density on the right. The low +density (LD) phase can be identified as the Left induced(LI).high density(HD) +phase can be identified as (RI). The maximal current phase is identified with +a bulk induced phase, with ρB = 1 +2 that represents a transition point between +the two previous phases as illustrated on the right. +high-density, and maximal/minimal current phases. This terminology is more conveniently +replaced by Left induced, Right Induced, and bulk-induced phases. Check figure 4.1 for +TASEP as an example. +The bulk density can be used to uniquely identify the selected +steady state of the system. That allows sketching a lower dimensional diagram in terms of +the bulk density which will play a more important role for systems with multiple conserved +quantities. +4.2.1 +The Riemann problem perspective +Let’s show that the extremal principle is compatible with the solution at zero of the corre- +sponding Riemann problem starting with an initial data of densities ρL on the left and ρR +on the right. We need to consider the two cases: +ρL < ρR This is to be compared with the minimum current branch of the extremal principle. +We first assume that J is strictly convex over the interval [ρL, ρR]. Its derivative v(ρ) := dJ +dρ +will then be increasing on that interval so it is reversible on it. The solution to the Riemann +problem can be expressed as a function of ξ = x +t : +ρ(ξ) = ρL1ξv(ρR) + v−1(ξ)1v(ρL)<ξ 0 The solution of the Riemann problem at zero has the value ρL. On the +other hand, since v is increasing, it will keep being positive over the interval [ρL, ρR], +this ensures J is increasing and the minimum current over the same interval to be +attained at ρL. This implies that the bulk density will have the same value: ρB = ρL. +We say that we are in the left induced phase. +– if v(ρR) < 0. With similar reasoning, we find that ρR will be simultaneously the density +of the bulk and the solution of the Riemann problem at zero. We say that we are in +the right induced phase. +– If neither of the two previous statements is true, then thanks to the monotonicity of +v, there exists a unique value ρ∗ ∈ [ρL, ρR] for which v(ρ∗) = 0. This value is both +the Riemann solution at zero and the value at which the minimum of J(ρ) is attained. +This makes it as well the density of the bulk: ρB = ρL. We say that the system is in +the bulk induced phase . +Notice that if J is only broadly convex, which means that it has a linear part, then the +inverse of the derivative will have a discontinuity that corresponds to a discontinuity of the +Riemann solution, however, the above reasoning will still be valid except if this linear part +is a constant, then this discontinuity will be located at zero, and both the extremal current +principle and our principle will fail to predict what happens. For the case of TASEP, an +analysis based on domain wall dynamics [124] predicts the absence of the bulk and a linear +profile joining the two boundaries resulting from a symmetric random walk performed by +the shock over the lattice. +So far, we have only considered a convex current. The Riemann problem for an arbitrary +smooth J was discussed in [65], the solution at ξ in the regime ρL < ρR should satisfy: +ξρ(ξ) − J(ρ(ξ)) = +max +v∈[ρL,ρR]{ξv − J(v)} +(4.7) +With the help of some elementary geometrical operations, one can get convinced that this +solution could be obtained by replacing on the interval [ρL, ρR] the current J by its convex +hull defined as: +˘J(ρ) = max{I convex, and I ≤ J} +(4.8) +Since the minimum of the current is the same as its convex hull over the interval, this allows +repeating all the analysis mentioned above using ˘J instead of J. +ρL > ρR We need here to require J to be concave, and if it’s not then, it should be replaced +by its concave hull on the interval [ρR, ρL] and we can again make the same arguments +comparing the solution of the Riemann problem at zero with the bulk density predicted by +the maximum current regime of the extremal principle. +For the sake of simplicity, we required J (or its hull) to be smooth. If it is not derivative +at some density, then the Riemann solution will have a constant part equal to this density, +on an interval determined by the left and right derivatives. If the zero happens to belong to +110 + +this interval, we get a hybrid phase that is not boundary induced but yet shares its properties +in terms of the exponential convergence on the boundaries. +4.2.2 +Vanishing viscosity approach: +We will now review a simple proof of the extremal current principle (4.5) that will as well +serve a pedagogical purpose for the multi-species case. +It is known that solutions for conservation systems are not unique and that physical +solutions are obtained in the vanishing viscosity limit, where a diffusive component is the +current expression. At the steady state, the total current is the same all over the system +and can be written as: +Jtotal = J(ρ) − D ∂ρ +∂x +(4.9) +In general D is a function of ρ, but since we are only interested in the limit D → 0, this +dependence will be irrelevant. The behavior of the system can be obtained by analyzing the +ODE: +∂ρ +∂x = (J(ρ) − Jtotal)/D +(4.10) +If we are looking for a solution with a trajectory joining ρL and ρR then such a trajectory +in 1D exists only if the flow of the ODE is oriented from ρL to ρR all over the segment joining +them. This means that the solution should always be monotonous. +If ρL < ρR then this means that: +J(ρ) − Jtotal ≥ 0 +(4.11) +Since the zero will be asymptotically attained at the bulk, we recover the minimum current +phase of 4.5, and in a similar manner, we can find the other phase. +This ODE has at least one stationary point in the interval between ρL and ρR. Let’s +assume it is the only one (this is equivalent to assuming that the hull of the current doesn’t +have a constant part). The type of this stationary point falls into one of these three categories: +• Sink: then the system is in the right induced phase, and we have an exponential decay +on the left boundary. One can simply see why it is an exponential decay by linearizing +the ODE in the neighborhood of ρR: ∂xρ = v(ρR)(ρ − ρR)/D whose solution is: +ρ(x) = ρR + (ρL − ρR)e +v(ρR) +D +(x−xL) +(4.12) +Of course v(ρR) < 0, so limD→0(ρ(xR)) = ρR and v(ρB) < 0 +• Source: this corresponds to a left induced phase, and we have again an exponential +decay as previously, but v(ρB) > 0 +111 + +• Second order singularity: The derivative of the current is zero at the stationary +point. We have a power law decay to the bulk, it’s easy to show that: let n > 1 be the +first order for which the derivative of the current at the bulk is non-zero. This order +has to be even. We expand the flow to this order : ρ +′ = J(n)(ρB)(ρ − ρB)n/Dn! that +admits a decay as: +ρ(x) ∼ ρB + +n−1 +� +Dn! +(1 − n)J(n)(ρB) +1 +x +(4.13) +Note that strictly speaking, The ODE does not admit a trajectory that goes from one +side to the other of a second-order stationary point. A proper description of the system +in this phase requires adding a stochastic noise term to the equation. We can say that +the noise allows the trajectory to jump over the stationary point. +Remark +The behavior of ρB is associated with what class v(ρB) belongs to within the set: +{−, 0, +}. This association is consistently identical to the behavior of ρ|0 with v(ρ|0). +We will see how this idea will be generalized in the multi-species case by applying it +to the Riemann variables instead. +4.3 +The case of a multi-species driven diffusive system +The non trivial case is when we have n > 1 coupled densities. We can rewrite the conservation +laws 4.1: +∂tρ + V ∂xρ = 0 +(4.14) +Where Vij = ∂Ji +∂ρj . Let’s assume that the Riemann variables exist (this is always the case for +n = 2), These variables are defined as the transformation of the densities: +ρ ∈ Dρ → z ∈ Dz ⊂ Rn +(4.15) +Such that if the conservation laws are written in terms of these variables, the matrix V +will become diagonal: +∂tzi + vi(z)∂xzi = 0 +1 ≤ i ≤ n +(4.16) +Where vi(z) = ∂Jk +∂zi / ∂ρk +∂zi . For more details, look at the annex. Let’s first consider the +Riemann problem with the initial condition z(x) = zL1x<0 +zR1x>0. Let z|0 be the solution +at zero. Let’s sketch a phase diagram in the z|0 space. Consider first in this space the +hyper-surfaces defined by vi(z) = 0, it will partition Dz into three regions: Dz = {z : +vi(z) > 0} ∪ {z : vi(z) < 0} ∪ {z : vi(z) = 0}. +Each of these three regions defines the behavior of zi|0 +• vi(z|0) > 0 that leads to zi|0 = zL +i , so zi|0 is left induced. +112 + +• vi(z|0) < 0 that leads to zi|0 = zR +i , so zi|0 is right induced. +• vi(z|0) = 0 and we say that zi|0 is bulk induced. +If we keep partitioning the z-space for each of the zi, we end up in general with 3n +regions, each is defined by a choice for each of the vi ∈ {+, 0, −}. However, in a strictly +hyperbolic system, the eigenvalues are strictly ordered, which adds a restriction on these +choices, forbidding some of the phases. +Let’s now move to the open boundary problem. The total current of the particles of type +i can be written as: +Jtotal +i += Ji(z) − Di +∂ρi +∂x +(4.17) +Where Di > 0. We assumed here that the diffusive component resulting from the gradient +of the other types of particles is negligible compared to the one from the same type. +Let’s rewrite the previous equation as: +∂z +∂x = M −1D−1(J(z) − Jtotal) := F(z) +(4.18) +Where Mij = ∂ρi +∂zj , D is a diagonal matrix Dii = Di. +To obtain the phase diagram, one has to analyze this ODE. Once again, we will use the +bulk variables as order parameters for the phase diagram. First let’s notice that: F(zB) = 0. +The bulk is a stationary point for the ODE. The phase will be determined by the type +of this stationary point, i.e. the signs of the eigenvalues of the Jacobin ∂Fi +∂zj (zB) From the +properties of the Riemann variables one can show that this Jacobin is a diagonal matrix in +the bulk and is simply: +∂Fi +∂zj +(zB) = D−1 +i viδij +(4.19) +So the phase diagram is again governed by the set vi +We can have: +• A Sink if all the vi are negative, this means that the bulk is driven from right +• A source if all the vi are positive, this means that the bulk is driven from left. +• A Saddle point if some vi are negative and some are positive, this means that the +bulk is mixed-driven, each zi will be driven according to the sign of the corresponding +vi +• Second order singularity if some vi are zero. The bulk will belong to the intersection +of the manifolds vi = 0 +We conclude that z|0 and zB This doesn’t constitute proof of our principle but rather a +self-consistency test. +113 + +4.3.1 +Proof of the principle +Consider the conservation laws defined on a half-space R+ with a single boundary condition +located at the origin: +ρ(0, t) = ρL +t > 0 +(4.20) +The set of admissible limit values at this boundary in the zero-viscosity limit are the one +that verify a boundary entropy inequality. [120] [125] [126]. Namely this set is: +E+(ρL) = {ρ ∈ Rn, q(ρ) − q(ρL) − Dη(ρL)(f(ρ) − f(ρL)) ≤ 0, +∀(η, q) pair of entropy-flux} +(4.21) +For our open boundary problem, this set is as well the set of admissible bulk densities +for a given left boundary condition. +On the other hand, let’s consider the set of all possible values of the solution Riemann +problem at zero with a fixed left density: +V +(ρL) = {R(0; ρL, ρR), ρR Varing in Rn} +(4.22) +It has been shown in [125] that for strictly hyperbolic systems, the two previous sets are +equal: +E+(ρL) = V +(ρL) +∀ρL ∈ Rn +(4.23) +We can now obviously formulate this property for a system with a system of right bound- +ary conditions: +E−(ρR) = V −(ρR) +∀ρR ∈ Rn +(4.24) +In our system with two boundary conditions, in the steady state, the bulk belongs to the +intersection: +ρB ∈ V +(ρL) ∩ V −(ρR) +(4.25) +All what is left is to show that this intersection has only this unique element. This can +be shown by a simple argumentum ad absurdum. +4.4 +Applications +4.4.1 +Open boundaries 2-TASEP with arbitrary hopping rates +This model is a multi-species generalization of TASEP. it consists of two types of particles +in addition to the void. The hopping rates in the bulk and on the boundaries are: +Hopping +Left +Bulk +Right +• ∗ → ∗ • +νL +•∗ +β +νR +•∗ +∗ ◦ → ◦ ∗ +νL +∗◦ +α +νR +∗◦ +• ◦ → ◦ • +νL +•◦ +1 +νR +•◦ +114 + +The currents for this model with periodic boundary conditions were calculated in [46]. +These currents were used in [47] to study its hydrodynamic behavior and in particular to +solve the corresponding Riemann problem. +Let’s restate the expression of the currents: +J◦ = zα(zβ − 1) + ρ◦(zα − zβ) +(4.26) +J• = zβ(1 − zα) + ρ•(zα − zβ) +(4.27) +where with zα ∈ [0, min(1, α)] and zβ ∈ [0, min(1, β)] are solution of the saddle point +equations +ρ◦ +zα ++ +ρ• +zα − 1 + 1 − ρ◦ − ρ• +zα − α += 0 +(4.28) +ρ• +zβ ++ +ρ◦ +zβ − 1 + 1 − ρ◦ − ρ• +zβ − β += 0. +(4.29) +The variables zα, zβ happen to be the as well the Riemann variables. [47] for full details. +In the one species TASEP, the density on each boundary is uniquely determined by the +hopping rate at that boundary. In that sense the boundaries are independent. This is still +true for a colorable two-species TASEP with equal hopping rates in the bulk. However, +strong numerical evidence suggests that this stop being true for the general case, like our +case. The boundaries become coupled and one has to solve simultaneously the boundaries +and the bulk: +(νL, νR) −→ (ρL, ρB, ρR) +(4.30) +We provide two approaches to perform that, an iterative one and a direct one. +The iterative approach +Let’s write the the currents on the left and on the right boundaries: +JL +• = νL +•◦ρL +◦ + νL +•∗(1 − ρL +◦ − ρL +• ) +JL +◦ = −(νL +•◦ + νL +∗◦)ρL +◦ +JR +◦ = −νR +•◦ρR +• − νR +∗◦(1 − ρR +◦ − ρR +• ) +JR +• = (νR +•◦ + νR +•∗)ρR +• +(4.31) +Of course in the steady state, the currents are uniform all over the system, so we can +write: +J L(ρL) = J(ρB) = J R(ρR) +(4.32) +Where J(ρB) is the current in the bulk, a known function of the bulk densities. +We have here 4 equations with 6 variables(the densities on the left, right and bulk). We +can add to them two consistency equations resulting from principle: +(ρL, ρR) +Riemann +−−−−−→ ρB +(4.33) +115 + +Figure 4.2: Phase diagram of 2-species TASEP with open boundaries on the +left. an example of the ODE flow with a sink singularity in the left induced +phase, and a saddle point in a mixed induced one. vα = 0 in Red, vβ = 0 in +black. +This provides in principle a closed system of 6 equations, that one can solve them using +an iterative method: we choose random initial densities for the boundaries, then we find +the bulk density and then calculate the boundary densities, and we continue the iteration +between the boundaries and the bulk till convergence. This algorithm applied in such a +way can get stuck in cyclic trajectories, but this can simply be avoided by introducing some +damping. i.e. a sufficiently small parameter γ such that: xn+1 = γf(xn) + (1 − γ)xn where +x is the nth iteration of the variables and f is the set of functions governing the iterations. +This method for this model gives results in good agreement with simulations. Examples +figure 4.3 +Remark +One has to make sure that the variables don’t leave their physical domain. +If the initial condition lies outside the basin of attraction of the fixed point, then the +algorithm will not converge to the expected values. This has been observed in a marginal +fraction of tests and required simply repetition with different initial values. +An equivalent approach +We have seen that in there is a finite number of possible scenarios for the bulk in terms of +the Riemann variables. One can find the variables in the bulk that are compatible with each +of these scenarios. +• Left driven solution: it can be obtained by solving two equations with two variables: +J L(z) = J(z) +(4.34) +Where z are the Riemann variable both in the bulk and on the left. +116 + +Zβ +0.8 +Zd +0.2 +0.4 +0.6 +0.8Zβ +0.8 +Zα→R +Zβ-→R +0.4 +Zα→R +0.2 +Zβ→L +Zα→L +Zβ→L +Zα +0.2 +0.4 +0.6 +0.8(a) Densities profile. The horizontal segments repre- +sent the predicted values +(b) Iterative evolution of the different densities, with +damping γ = 0.1 +Figure 4.3: Two examples of the application of the algorithm for finding the +densities on the boundaries and in the bulk of the 2-species TASEP +• A right driven solution: similarly, by solving the same two equations but using J R +instead of J L +• Mixed driven: zα is driven from right, and zβ is driven from the left. We need to solve +four equations with four variables: +J L(zL +α, zβ) = J(zα, zβ) = J R(zα, zR +β ) +(4.35) +• Bulk driven for zα and left driven for zβ: We have to solve three equations with three +variables: +v0(zα, zβ) = 0 +J L(zL +α, zβ) = J(zα, zβ) +(4.36) +• Bulk driven for zβ and right driven for zα: similar to the previous case. +• Bulk driven for both. One point is possible here for the bulk: +(zα, zβ) = (1 +2, 1 +2) +(4.37) +Figure 4.4 illustrate how this approach is applied to 2-TASEP. +117 + +10 +α= 0.6β= 0.75 time =227582 +po +=0.46v=0.21=0.01 +pl +0.8 +0.6 +0.4 +0.2 +0.0 +20 +40 +60 +80 +1001.0 +rOR +0.8 +rlL +r1R +r1B +0.6 +0.2 +0°0 +0 +20 +40 +60 +80 +1001.0 +α=0.69β=0.48 time=230051 +po +=0.77v=0.49v=0.10 +pl +0.8 +0.6 +0.4 +0.2 +0.0 +20 +40 +60 +80 +1001.0 +rOR +8°0 +rlL +rIR +r1B +0.6 +0.4 +0.2 +0°0 +0 +20 +40 +60 +80 +100(a) Simulation of the density profile. The horizontal +segments represent predicted values. +(b) Possible solutions in the bulk. The blue (red) +region represents the bulk z variables compatible with +physical densities on the left (right) +Figure 4.4: Two examples for the application of the equivalent approach for +solving the 2-species Tasep with open boundaries +4.4.2 +Limits of the method and open questions +When repeated for thousands of realizations for different random boundary rates, the method +gives accurate results for approximately 95% of realizations. For the rest, we observe some +miss-match with the simulations. We are still investigating into this. A few hypothesis are +possible: It might be an effect of a non-diagonal elements of diffusion matrix similarly to the +one observed for the model considered in [50] [49] However, it’s a bit strange that these non- +diagonal terms affect only a small minority of realizations. another potential hypothesis is +a failure of the hydrodynamic when getting too close from the singular points of the model. +In deed, we observed that this miss-match often happen when the bulk is too close of a +singularity. We count to check if by any change the break of integrability has any role to +play in addition to the break of the product measure. It’s as well worth investigating whether +this miss-match is induced by a spontaneous symmetry breaking as the one observed in [106]. +Finally, We think that models with Temple class hydrodynamics have a particular status. +The models we considered are indeed Temple class and same is true for the model defined +in [127] and considered with open boundaries in [50] [49]. It would be really interesting to +test these methods on examples that are not Temple class. +118 + +1.0 +α =0.55β= 1.5 time =328408 +6=0.07 +zl +0.8 +po +pl +0.6 +i +0.4 - +0.2 +0.0 +0 +20 +40 +60 +80 +1000.8 +o Simulation + Phvsical solution on the left + Physical solution on the right +0.6 +Left driven by both + Right driven by both +0.4 +Mixed driven +Left driven by Zp, Va = 0 +0.2 +Right driven by Za, Vβ = 0 +0.1 +0.0 +0.1 +0.2 +0.3 +0.4 +0.51.0 +α = 0.41 β = 0.71 time = 309631 +OZ +vf = 0.50 vb +6=0.19呢=0.08 +z1 +0.8 +po +pl +0.6 +0.4 +0.2 +0.0 +0 +20 +40 +60 +80 +1000.7 +0.6F +o Simulation +0.5 + Physical solution on the left + Physical solution on the right +0.4 F +Left driven by both +0.3 +1 Right driven by both + Mixed driven +0.2E +Right driven by Za, Vβ = 0 +0.1 +L +0.0 +0.0 +0.1 +0.2 +0.3 +0.4CHAPTER 5 +Effect of a single second class particle +5.1 +Introduction +Second-class particles with unity hopping rates have played a significant role in understanding +the exclusion process. There was no shortage of motivation behind introducing them. They +can be perceived as tracer particles, if one is added to a position x, it follows the character- +istics of Burgers equation emanating from x [29,128]. In other words, it follows a trajectory +such that its surrounding density field is constant. In a shock, where different characteristics +join, the second-class particle gets stuck which provides a possible microscopic definition for +the position of the shock. [38,129]. Studying the behavior of second-class particles gives in- +sights into the propagation of an excess of mass perturbation for burgers equation [130,131]. +A rather fascinating property of a second-class particle is that if it is added to a point from +where characteristics emerge (i.e. a decreasing discontinuity), then it will choose one of the +available characteristics at random with a uniform distribution, in other words, it will pick +up uniformly an asymptotic speed within the possible ones, and stick to it [132]. second-class +particles provide as well a microscopic way of describing density fluctuations for the Burgers +equation [130]. +Since second-class particles with unity rates are seen as void by the first-class particles, +they have no impact on the surrounding density field. The picture is drastically different +for second-class particles with arbitrary rates: an interplay between the behavior of the +particle and the surrounding density is observed and studied. These particles, besides their +theoretical importance in extending the ones of unity rates, can have a direct interpretation +as defects in transport models. We will be referring sometimes to a second-class particle +with arbitrary rates as a defect. They represent the main interest of this chapter. +We start by reviewing some basic properties for TASEP and unity second-class particles. +These are mainly the ones that we will need for the following sections. In section 5.2, we +treat rather heuristically the interaction between the second-class particle with the density +field on the line arising from a step initial condition, where new phenomenology is reported +119 + +and analyzed. In section 5.3, we prove rather rigorously some properties of the asymptotic +speed distribution of a second-class particle in a fan. +5.1.1 +Notations +Consider TASEP on Z. The space of configurations is {0, 1}Z with elements η := (η(k))k∈Z. +The generator of the process formally reads: +Ag(η) = +� +i∈Z +(g(τi,i+1η) − g(η))η(i)(1 − η(i + 1)) +(5.1) +where g is a bounded real function on the configuration space, τi,i+1η is the configuration +obtained from η, by swapping the values of sites i and i + 1. If η0 is the initial configuration, +we call ηt the time evolved configuration according to this dynamics. +5.1.2 +Invariant measure for TASEP +The first reflex when dealing with a Markov process is to question the existence of stationary +states. This is a probability measure over the configuration space that will remain constant +under time evolution. +Visually, if one imagines N copies of the system populated with +configurations chosen according to this measure, then the proportions of populations stay +the same in the infinite N limit. +Lemma 5.1.1 (Spitzer). For 0 ≤ ρ ≤ 1, let νρ be the product measure on the configuration +space with uniform Bernoulli marginals of density ρ, ie. νρ(η(x) = 1) = ρ. then νρ is an +invariant measure for TASEP. +Sketch Proof : it is possible to understand this property by making use of some elementary +results from queuing theory. Each particle can be thought of as a server, and each void as a +customer. When a particle jumps, a customer is served and sent to the next queue. At the +initial time, the length of queues follows a geometrical distribution with parameter ρ. The +probability that a given queue has i customers is (1−ρ)iρ. This is identical to the stationary +state of a queue with arrivals following a Poisson process of intensity 1 − ρ. Since the server +is serving as well with Poisson times at intensity 1, according to Burke’s theory, the serving +will be at rate 1 − ρ, which is the rate of arrivals for the next server. Thus, this steady state +will be maintained. +Corollary 5.1.2. A tagged particle in TASEP on the line with ρ uniform density jumps as +a free particle with waiting times determined by a Poisson process of the rate of 1 − ρ. +Remark: while the invariant measure for TASEP is a product measure, the measure is +not any more a product once more species are introduced, however Angel [133] showed that +the stationary measure for 2-TASEP can understood as a collapse process of two independent +processes with a uniform product measure. This picture was interpreted by Ferrari and +Martin [134] in terms of a queuing process with discrete times besides being generated to +arbitrary number of species. Based on these ideas, Evans, Ferrari and Mallick constructed +the stationary measure for N-species TASEP in a matrix product formulation. These ideas +stand for the unity rates of the additional species. It would be interesting to investigate the +potential generalization to arbitrary rates. +120 + +5.1.3 +Convergence of density field: +Let u(x, t) be the entropy solution of Burgers equation with initial data u0(x) and for ϵ > 0, +consider TASEP with the initial product measure of marginals: νϵ +0(ηϵ +0(x) = 1) = u0(ϵx) +Then we have: +lim +ϵ→0 E(ηϵ +t/ϵ([x/ϵ])) = u(x, t) +a.e +(5.2) +One way to visualize this is to imagine a lattice with constant ϵ, initiated according to +u0 and evolving with a scaled accelerated time t/ϵ. +For a step initial data u0(ϵx) does not depend on ϵ, and so it is possible to formulate the +previous statement as a long time limit shape: +lim +t→∞ E(ηt([vt])) = u(v, 1) +a.e +(5.3) +with an initial measure having constant ρ density on the left and λ on the right, νρ,λ(η(x) = +1) = ρ1x<0 + λ1x≥0. +This limit was first proven for a particular case of a decreasing step initial condition +by Rost [18], using subadditive ergodic theory, and then generalized to arbitrary initial +condition by many others: Sepp¨al¨ainen [135–137], Benassi and Fouque [70], Fouque, Saada, +and Vares [138] Andjel and Vares [139]. It can be insightful to state the original statement +expressed by Rost: Let N(v1, v2, t) be the number of particles between v1t and v2t at time +t, then +lim +t→∞ +N(v1, v2, t) +t += +� v2 +v1 +u(v, 1)dv +a.s +(5.4) +Local equilibrium We can notice that the only possible invariant measures are the +uniform product measure and measures producing a frozen system, i.e. all sites are full +starting from some site. However, it is possible to formulate a local invariant measure, in +the following sense: Let A be a finite set in Z, then: +lim +ϵ→0 E( +� +x∈A +ηϵ +t/ϵ([x + r/ϵ])) = u(r, t)|A| +a.s +(5.5) +where |A| is the cardinal of A. So locally around the position r/ϵ at time t/ϵ ,the measure +is approximately uniform product measure with density u(r, t). +For a Riemann initial condition, it is possible to express the local equilibrium in an even +more intuitive manner. If one places itself in a moving frame of reference of velocity v, then +the observer sees the system converge to a uniform measure of density u(v, 1), after a long +time. +In a more complex system of particles, the invariant measure corresponding to a constant +density might not be a product measure, but it is still possible to express the local equilibrium +in the sense that the system converges locally around a particular speed to that invariant +measure. +121 + +5.1.4 +Harris graphical representation +One useful way to visualize the time evolution of TASEP, which was introduced by Harris +[140], is to imagine a Poisson clock attached to each site of the lattice. The set of clocks +define a Poisson point process ω on Z × R+ with rate 1. Each point (n, t) ∈ w is represented +by an arrow (n, t) → (n + 1, t) figure. +Particles follow a vertical path and try to pass through arrows whenever the next path +is empty, figure 5.1 +A problem might appear in this definition since the concept of the next particle that will +jump can be ill-defined whenever there is an infinite sequence of arrows converging to a point +of time, and this will happen with a probability 1 for each moment. However, for any finite +time interval, with probability 1, Z will be partitioned into finite intervals with no arrows +connecting the corresponding blocks, which makes the construction well defined. +t = 0 +t = T +(a) +t = 0 +t = T +(b) +Figure 5.1: Harris graphical construction +5.1.5 +Basic tool: Coupling +Coupling is a basic proof tool in probability theory in general and a very frequently used +technique for systems of interacting particles, for which it was introduced by Liggett [30] +[141]. The basic idea consists of conceiving a common realization of two or more random +processes in such a way that each process independently does not ”feel” any difference from it +natural time evolution. Formally, this amounts to the construction of a joint process (Xt, Yt) +with marginals measures identical to those of the two processes. For TASEP, this technique +was used to prove many of its macroscopic properties. We will give an example in the next +paragraph regarding the speed distribution of a second-class particle in a rarefaction fan. +Contently, consider two initial conditions for TASEP, η1 +0 and η2 +0, one common way to couple +them is to use the same clocks on the sites, i.e. to let the two processes follow the same Harris +flow. Another common way would be to label the particles on each of the configurations and +to attach the same Poisson clock to particles with the same label. We will be introducing in +section 5.3 a new coupling scheme for systems involving a second-class particle of arbitrary +rates. +122 + +5.1.6 +Second class particle with unity rates in a rarefaction fan +As it was previously mentioned, the first class particles follow the characteristics of Burgers +equation. However, if we consider a decreasing step initial condition νρ,λ with ρ > λ with +a second class particle at the origin, then right after the initial moment, the discontinuity +collapses to a linear profile, and the second class particle can find itself a priori at any +position of this rarefaction fan. This situation has been studied by Ferrari and Kipnis [132]. +Theorem 5.1.3. (Ferrari-Kipnis) +Let Xt be the position of the second class particle at time t and let Xϵ +t = ϵXt/ϵ, then: +lim +ϵ→0 Xϵ +t = Ut +in distribution, +(5.6) +where Ut is a random variable with uniform distribution over the interval: [(1−2ρ)t, (1−2ν)t] +Proof. The general proof is provided in [132]. For a pedagogical purpose, we will detail a +particular case of the 1−0 step initial condition which already contains the core ideas. Let η0 +be this step initial configuration with particles on all the negative sites including the origin, +and let ˜η0 be the same initial configuration except having a void at the origin. If we consider +a coupling between the process ηt and ˜ηt, where the clocks are attached to the sites, then +the unique discrepancy initially present between η0 and ˜η0 will stay unique and it is rather +easy to understand that it will behave like a second class particle, figure 5.2. +Now let N(x, t), ˜N(x, t) be the number of particles whose positions are strictly greater +than x for the configurations ηt, ˜ηt , respectively. +Finally, let N ϵ(x, t) = N(x/ϵ, t/ϵ), +˜N ϵ(x, t) = ˜N(x/ϵ, t/ϵ). We have obviously ˜N(x, t) ≤ N(x, t) ≤ ˜N(x, t) + 1, and similarly for +N ϵ and ˜N ϵ. Our objective is to prove eq. 5.6, which is equivalent to: +lim +ϵ→0 P(Xϵ +t > x) = t − x +2t +(5.7) +We first notice that the event Xϵ +t > x is equivalent to N ϵ(x, t) = ˜N ϵ(x, t)+1, this means: +P(Xϵ +t > x) = E(N ϵ(x, t)) − ˜E( ˜N ϵ(x, t)) +(5.8) +In order to calculate the right side of the previous equation, we can perform another +coupling with the same initial conditions η0 and ˜η0, but instead: attaching the clocks to the +particles rather than to the sites. This requires prior labeling that we choose according to +their order from the left, figure 5.3. Within this coupling, the number of discrepancies will not +be conserved under time evolution and hence the loss of second-class particles interpretation. +On the other hand, what we have is merely a translation by one step, ηt(k + 1) = ˜ηt(k). The +advantage of this is that the event N ϵ(x, t) = ˜N ϵ(x, t) + 1 becomes equivalent to ηt/ϵ((x + +1)/ϵ) = 1, so the right side of eq. 5.8 will be equal to: +E(N ϵ(x, t)) − ˜E( ˜N ϵ(x, t)) = E(ηt/ϵ((x + 1)/ϵ) +(5.9) +Here we can use the convergence of the density field to have the limit ϵ → 0 +lim +ϵ→0 P(Xϵ +t > x) = u(x, t) = t − x +2t +(5.10) +123 + +η0 +˜η0 +ηT +˜ηT +Figure 5.2: Time evolution of two coupled systems with Poisson clocks at- +tached to the sites. The discrepancy behaves as a second-class particle. +η0 +1 +2 +3 +4 +5 +6 +1 +2 +3 +4 +5 +˜η0 +ηT +1 +2 +3 +4 +5 +6 +7 +˜ηT +1 +2 +3 +4 +5 +6 +Figure 5.3: Time evolution of two coupled systems with Poisson clocks at- +tached to the particles, particles with the same label attempt to make a jump +at the same time. +Note that it’s possible to prove the previous convergence in a stronger sense, it was +proven almost surely in [142], using Sepp¨al¨ainen’s variational formula [136]. This uniform +distribution will not in general stay uniform is the initial configuration is perturbed. However +it’s still possible to find the limit distribution for arbitrary initial condition using a formalism +developed in [143] [144]. This method is based on a mapping between TASEP and the Last +Passage Percolation (LPP) model, and uses an interpretation of the second class particle as +an interface between two competing surfaces in the LPP picture, however it doesn’t seem to +be generalization once the rates of the second class particle are not unity. +5.1.7 +Matrix Product Ansatz for second class particle on the ring +The statistical behavior of a second-class particle with arbitrary rates as well as the density +profile was obtained in a system with periodic boundary condition, using exact methods, +one of such is the Matrix Product Ansatz, (MPA), [33] Consider a ring with L + 1 sites, N +first class particles and a single second-class particle with rates: +α +20 → 02 +β +12 → 21 +(5.11) +124 + +Let’s place ourselves in the reference of the second class particle that will have a position +zero, and all other particles have positions {1, 2, ..., L}. Then the main idea of the MBA is +the Ansatz that the stationary measure can be written as a matrix element of the product +of L matrices belonging to two types: D representing the particles, and E representing the +void: +p(η) = +1 +ZL,N +⟨V | +L +� +k=1 +(η(k)D + (1 − η(k))E) |W⟩ +(5.12) +In words, the weight of a configuration is obtained by a choice of a corresponding product +through replacing • ↔ D and ◦ ↔ E, for instance: p(• ◦ ◦... • •) ∝ ⟨V | DEE...DD |W⟩ , +where D, E,⟨V |,|W⟩ being non commuting operators verifying the simple algebra: +DE = D + E +D |W⟩ = 1 +β |W⟩ +⟨V | E = 1 +α ⟨V | +(5.13) +It is not very hard to understand why this algebra allows for the weights to be stationary. +The simplest way to get a flavor of it is through an example: Let us for instance check that +the weight of the configuration (◦ ◦ • • • ◦ ◦) is stationary. This weight is controlled by the +following transitions: +◦ • ◦ • • ◦ ◦ +◦ ◦ ◦ • • • ◦ +1 +α +◦ ◦ • • • ◦ ◦ +1 +α +◦ ◦ • • ◦ • ◦ +◦ • • • ◦ ◦ ◦ +It is straightforward to check the stationarity after doing the appropriate decomposition: +p(◦ • ◦ • • ◦ ◦) = Z5,3 +Z6,3 +p(◦ • • • ◦◦) + Z5,2 +Z6,3 +p(◦ ◦ • • ◦◦) +(5.14) +p(◦ ◦ ◦ • • • ◦) = 1 +α +Z5,3 +Z6,3 +p(◦ ◦ • • •◦) +(5.15) +p(◦ ◦ • • • ◦ ◦) = Z5,2 +Z6,3 +p(◦ ◦ • • ◦◦) + Z5,3 +Z6,3 +p(◦ ◦ • • •◦) = 1 +α +Z5,3 +Z6,3 +p(◦ • • • ◦◦) +(5.16) +The partition function ZL,N can be written as: +ZL,N = ⟨V | +� +η∈C +L +� +k=1 +(η(k)D + (1 − η(k))E) |W⟩ := ⟨V | GL,N |W⟩ +(5.17) +where C is the space of configurations for the system: {C = η : �L +k=1 η(k) = N}. There +are known infinite matrix representations for D, E, ⟨V | and |W⟩, that allows finding the +expression of ZL,N. Once this is obtained, full calculations can be found in [33], and any +125 + +relevant observers can be expressed in terms of it. What is important for us is the speed of +the second-class particle: +v = αE(τ1 = 0) − βE(τL = 1) += +1 +ZL,N +α ⟨V | EGL−1,N |W⟩ − β ⟨V | GL−1,N−1D |W⟩ += ZL−1,N − ZL−1,N−1 +ZL,N +(5.18) +Taking the asymptotic limit of large N with +N +L = ρ fixed, it is possible to find simple +expressions of this speed as a function of the density. Since these expressions will be useful +to the rest of the chapter, let’s state them here: +For β > ρ > 1 − α +v = 1 − 2ρ +(a) +For β < ρ and 1 − α < ρ +v = 1 − ρ − β +(b) +For β > ρ and 1 − α > ρ +v = α − ρ +(c) +For β < ρ < 1 − α +v = α − β +(d) +It is possible to find the expression of the density profile using this technique. The result +that is relevant to our next section is that the second-class particle disrupts the density field +only when β < ρ < 1 − α, creating a macroscopic density of β on its right and 1 − α on its +left. +Note that MBA is not the only method used to find this expression. in [78], Bethe Ansatz +was used to derive the expression of the previous speeds, with the advantage of providing +expressions for the diffusion constant and in principle higher cumulants. +Let us finish here by noticing that it is possible to write the speed expressions in this +compact form: +v = v+ − v− +(5.19) +with: +v+ = min(α, 1 − ρ) +v− = min(β, ρ) +This suggests an intuitive understanding in terms of queues. This idea will be exploited +and elaborated further in section 5.3. +5.2 +A defect in a step initial profile +We consider a second-class particle with arbitrary rates initially located at the origin of the +Z lattice with a uniform Bernoulli product ν density for the negative sites and, likewise, µ +for the positive ones. We are interested in both the dynamics of the second-class particle +and the evolution of the density field. The two are coupled for the case of α + β < 1 since +126 + +we know from [33] that for this case the defect might macroscopically disturb the density +profile in a ring, we will assume this to still be valid for our case, an assumption that will be +supported by a mean-field analysis and numerical simulations. The asymptotic speed will the +second-class particle will be deterministic in this case. We will show using self-consistency +analysis in which situations the density profile is disturbed and we will find its limit shape +by solving the Burgers equation with a moving interior boundary condition induced by the +second-class particle. Rather rich zoology is observed according to the different values of the +parameters. +In the case of α + β > 1, the second-class particle behavior is decoupled from the density +profile, however, the interest here will be on the asymptotic behavior of the second-class +particle that will not be deterministic. +We start with the case of a 1 − 0 initial condition, which is simple but yet exhibits a +particularity of an escaping particle phenomenon. +5.2.1 +1-0 initial condition +We choose the densities ν = 1, and µ = 0, and we start by considering the situation where +one of α or β (or both) is greater than 1. +An escaping second class particle +Numerical simulations, figure 5.4, suggest that in a fraction of realizations, the particle 2 +moves at a speed α (β) in case α > 1(β > 1). It is easy to understand what happens: the +second-class particle sometimes manages to get drawn in an environment with only holes, +(with only first-class particles) and thus moves as a free particle. In the case where a second +class particle doesn’t escape, the simulations suggest that the fixed limit speed will be chosen +in the interval [−1, +1]. This is similar to the behavior of a second class particle with unit +rates with the important difference that no information is known about the probability +distribution from which this asymptotic speed is drawn. Numerical evidence suggests that +it is not a uniform one in general. We will see later in which situations it will stay uniform. +We will be interested in the next paragraph in finding the escaping probability from the left +and from the right. +The right escaping probability +The right scenario happens when the second-class particle finds itself eventually in a void +environment with no first-class particle in front of it, and will hence be moving as a free +particle with a speed α > 1. If one of the first-class particles manages to jump over it, then +it will obviously limit it is speed to 1. +Note that in case α ≤ 1, the probability of the right scenario is zero, because the distance +between particle 2 and the first of the first-class particles will follow at best (for α = 1) a +symmetric random walk, so it will hit zero with certainty. +Let Xk be the random variable that represents the distance between particle 2 and the +first particle of the first-class particles after k changes of this distance, taken positively when +127 + +(a) +(b) +(c) +(d) +Figure 5.4: +Trajectories and asymptotic speeds cumulative distribution of +the second class particle for α = 3 and β = 2 in (a) and (b), and for α = 2 +and β = 3 in (c) and (d). Cumulative density is plotted over 2000 realization +for time t = 1000. Dashed lines represent theoretical values of the escaping +probabilities. 100 trajectories are plotted on the left. The symmetries between +the top figures and the bottom ones are due to the choice of α and β figuring +the hole-particle symmetry of the system. +the second-class particle is in front of the first-class particle 1. X follows an asymmetric +random walk with: +P(X0 = 1) = 1 +P(Xk+1 = 2|Xk = 1) = +α +α + β := w +P(Xk+1 = −1|Xk = 1) = +β +α + β +P(Xk+1 = n + 1|Xk = n > 1) = +α +α + 1 := p > 1 +2 +P(Xk+1 = n − 1|Xk = n > 1) = +1 +α + 1 = 1 − p +Our problem is a problem of a random walker with absorbing boundaries [145]. +128 + +1000 +800 +600 +Time t +400 +200 +0 +-2000 +-1000 +0 +1000 +2000 +3000 +Position x1.0 +1-R1 +0.8 +Cumulative density +0.6 +0.4 +0.2 +0.0 +-2 +-1 +0 +1 +2 +3 +Asymptotic speed1000 +800 +600 +Time t +400 +200 +0 +-3000 +-2000 +-1000 +0 +1000 +2000 +Position x1.0 +L1 +1-R1 +- +0.8 +Cumulative density +0.6 +0.4 +0.2 +0.0 +-3 +-2 +-1 +0 +1 +2 +Asymptotic speedLet +Rn = P(Xl ≥ 1for all l > k|Xk = n ≥ 1) +Our objective is to calculate R1. We can establish a recursive relation that is verified by +Rn +Rn = pRn+1 + (1 − p)Rn−1 n ≥ 2 +(5.20) +This recursive sequence can be solved by considering the linear system: +�Rn+1 +Rn +� += +� 1 +p +p−1 +p +1 +0 +� � Rn +Rn−1 +� += +� 1 +p +p−1 +p +1 +0 +�n−1 �R2 +R1 +� +(5.21) +This matrix has 1 and 1−p +p +as eigenvalues, thus the general term of the sequence is: +Rn = A + B(1 − p +p +)n n ≥ 2 +(5.22) +where A and B are constants to be determined from initial conditions. We can get A +easily: limn→∞ Rn = 1, which yields A = 1. Let us express B in terms of R2: +Rn = 1 + (R2 − 1)(1 − p +p +)n−2 n ≥ 2 +(5.23) +In particular: +R3 = 1 + (R2 − 1)(1 − p +p +) +(5.24) +On the other hand, we have: +R2 = pR3 + (1 − p)R1 +(5.25) +and +R1 = wR2 +(5.26) +From the last three relations, we can finally get R1 +R1 = +w(1 − 2p) +(1 − p)(1 + w) − 1 = +α − 1 +α + β − 1 +(5.27) +We notice that this result matches the one obtained from the particular case of the +formalism developed in chapter 3 using the Bethe Ansatz. +The general term for n ≥ 2 reads: +Rn = 1 + +(1 − p)(1 − w) +(1 − p)(1 + w) − 1(1 − p +p +)n−2 += 1 − +β +(α + β − 1) +1 +αn−1 +(5.28) +Note that it is almost straightforward to generalize the escaping probability for the case +of an initial condition ν − 0, with ν < 1. The initial distance between the first class particle +129 + +and the second is not anymore necessarily one, but it can take any value n with a probability +ν(1 − ν)n−1. So the escaping probability will become: +Rν−0 = +∞ +� +n=1 +ν(1 − ν)n−1Rn += +ν +(α + β − 1)[ +βα +(α − 1 + ν) + α − β − 1] +(5.29) +The left escaping probability +The left scenario happens if and only if there is no void before the second-class particle. +If β ≤ 1 then this probability is zero. If β > 1 we can calculate this probability using +the hole-particle symmetry: viewing the void as a first-class particle moving backward and +hopping over the second-class particle at rate α and viewing the first-class particles as a void +in which the second-class particle can hop backward at rate β. That would come down to +exchanging α and β in the previous calculations. We call this probability L1 +L1 = +β − 1 +α + β − 1 +(5.30) +And it can be generalized for an initial condition 1 − µ by replacing ν by 1 − µ beside α +and β in the expression of Rν−0 +L1−µ = +1 − µ +(α + β − 1)[ +βα +(β − µ) − α + β − 1] +(5.31) +5.2.2 +Non escaping particles +Preliminary investigations lead us to the following conjuncture: +Conjecture 5.2.1. The probability distribution of the asymptotic speed of a non-escaping +second-class particle is uniform in the interval [−1, 1] for α, β > 1. +This is firstly supported by numerical evidence, figure 5.5. It is as well understood in the +limits α, β ∈ {1, ∞}. To understand the infinity limit, take for instance β = 1 and α = ∞. +There will be only an infinitesimal chance for a non-escaping scenario that will start with +an initial condition: ...11121000.... The couple 21 behaves as a second-class particle of unity +rates, and will thus be uniformly distributed. This conjuncture as well will prolong the same +result but for the case of α, β < 1 that we will prove in section 5.3. +5.2.3 +Density field profile and the second class particle +If we assume local equilibrium, the behavior of the second-class particle is dependent on the +surrounding density field. This behavior can impact in its turn the density field creating +an interplay between the two. +In this section, we will show heuristically that the local +equilibrium assumption and the asymptotic speed formulas for the different parameters are +130 + +Figure 5.5: Comparison between a simulated cumulative density and a uni- +form hypothesis in the case of β = 1, α = 2. The simulated graph is plotted +for 4000 realizations, each is evolved up to t = 1000. The theoretical uniform +distribution is plotted over the interval [1 − 2β, 2α − 1]. This interval is as well +valid for α, β < 1. By giving the right slope, it suggests a consistency between +the conjecture and the escaping probability formula. +enough to predict the macroscopic evolution of the system. We call a density region: an +interval for the density where the speed is given by one formula. Let’s recall them: +The Density Regions: +For β > ρ > 1 − α +v = 1 − 2ρ +(a) +For β < ρ and 1 − α < ρ +v = 1 − ρ − β +(b) +For β > ρ and 1 − α > ρ +v = α − ρ +(c) +For β < ρ < 1 − α +v = α − β +(d) +The general logic of our analysis relies on the following simple procedure: +1. Assume the second class particle belongs to one of these regions. +2. Solve the density field according to this assumption. +3. Check the consistency between the solution and the assumption. If there is no consis- +tency, try again with a different region. +Applying this, we find a unique self-consistent situation for each set of parameters. We +confirm it by simulation. +We will be discussing two cases: when α + β < 1 and when α + β > 1 +The case of α + β < 1 +Let’s assume that the density profile is a decreasing function of space. Let’s assume as well +that this profile is initially continuous, even if this is clearly not true for exactly t = 0 . +Since β < 1 − α, only the regions (b), (c) and (d) of the density are meaningful. +131 + +1.0 +Uniform hypothesis +Simulation +0.8 +Cumulative density +0.6 +0.4 +0.2 +0.0 +-1.0 +-0.5 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +Asymptotic speedIf the particle finds itself in the region (b), then it moves at a speed 1−ρ−β > 1−2ρ so +the particle will move into lower density till it reaches the region (d) and will cross its upper +boundary because the inequality above still holds on this boundary. +If the particle finds itself in the region (c), it will move at a speed α − ρ < 1 − 2ρ, so it +will move into higher density and will continue till it reaches again the region (d) crossing +also its lower boundary. After being in region (d), the particle will move at a constant speed +v = α − β The condition α + β < 1 implies: 1 − 2(1 − α) < α − β < 1 − 2β. +It means that there is a point of density ρ0 inside the region (d) verifying 1−2ρ0 = α−β, +and the particle will be attracted to this point. Actually ρ0, is the average of the density of +the boundaries of the region (d): ρ0 = (1 − α + β)/2. +Formation of discontinuity +So far, we have ignored the dynamic interaction between the particle and the density profile. +If we choose the parameters α = β = 0, the particle will become a wall and discontinuity +will be created at that point. We can suspect a discontinuity for other values of α and β. +To check this possibility heuristically, we will consider two different densities, on the left of +the particle ρ− and on the right of the particle ρ+. Let us try to evaluate these two values. +If our hypothesis about the discontinuity happens to be wrong we should find ρ− = ρ+. +The particle will be trapped in this discontinuity, so the discontinuity will move at the +same speed as the particle. We can find ρ− and ρ+ using two elementary equations: +The first one: +ρ−(1 − ρ−) − ρ+(1 − ρ+) = (α − β)(ρ− − ρ+) +(5.32) +This is a conservation equation that relates the current on the left and on the right of +the discontinuity to the speed in a hydrodynamic manner. It can be simplified: +1 − ρ− − ρ+ = α − β +(5.33) +The second equation relates the rate of first-class particles jumping over the particle and the +rate of holes jumping backwards on the particle with its speed: +α − β = (1 − ρ+)α − βρ− +(5.34) +The two previous equations make it obvious that the only solution is: +ρ− = 1 − α +ρ+ = β +(5.35) +This is of course not surprising since it’s already known on the ring using MPA [33]. +Dynamic density profile +The natural next question is concerned with the influence of the presence of the particle on +the rest of the density profile. +For simplicity, we place ourselves in the frame of the particle. In this frame, the density +verifies the hydrodynamic conservation equation: +132 + +∂ρ +∂t + (1 − 2ρ − α + β)∂ρ +∂x = 0 +(5.36) +Let’s bring it into an even more familiar form: +∂˜ρ +∂t + (1 − 2˜ρ)∂˜ρ +∂x = 0 +(5.37) +with: +˜ρ = ρ + α − β +2 +(5.38) +The right part: +The right part of the density profile has this boundary condition: +˜ρ(0, t) = β + α − β +2 += α + β +2 +(5.39) +Now we can guess the solution by comparing it to a model with an open left boundary +and defined on a half-space with a density on the boundary α + β +2 +[16]. +Since we have α + β +2 +< 1 +2, this corresponds exactly to the phase where a kinetic wave of +a constant density: α + β +2 +propagates inside the system with a speed 1−2( α+β +2 ) = 1−α −β +For the front of the kinetic wave, we expect it to be linear with a speed going from +1 − α − β at the upper front to 1 − α + β at the bottom. +These arguments lead us to check this solution for the right part of the density with +respect to the particle: +ρR(x, t) = +� +� +� +� +� +β +if 0 < x ≤ (1 − β − α)t +−x +2t + 1+β−α +2 +if (1 − β − α)t ≤ x ≤ (1 + β − α)t +0 +if x > (1 + β − α)t +(5.40) +One can verify immediately that this is indeed a solution. +The left part +Similar arguments as above made on the holes this time can lead us to this solution: +ρL(x, t) = +� +� +� +� +� +1 − α +if (β + α − 1)t ≤ x < 0 +−x +2t + 1−α+β +2 +if (β − α − 1)t ≤ x ≤ (β + α − 1)t +1 +if x < (β − α − 1)t +(5.41) +133 + +Let’s finally write the density profile with respect to the static reference: +ρ0(x, t) = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +1 +if x < −t +−x +2t + 1 +2 +if − t ≤ x ≤ (2α − 1)t +1 − α +if (2α − 1)t ≤ x < α − β +β +if 0 < x ≤ (1 − 2β)t +−x +2t + 1 +2 +if (1 − 2β)t ≤ x ≤ t +0 +if t < x +(5.42) +So the second class particle can be seen as moving interior boundary condition. +The case of α + β > 1 +In this case, β > 1 − α, so only the regions (a), (b) and (c) are meaningful. The region (b) +is accessible only if β < 1. The region (c) is accessible only if α < 1 +If the particle finds itself at the region (a) it will move at the speed 1 − 2ρ which is the +same speed as the characteristics (the speed of perturbations), so it will not modify the usual +density profile. With this speed, the particle will always be experiencing the same density, +so this speed will not change. +If β < 1 then the particle might find itself at region (b), it will move at a speed 1−β−ρ > +1 − 2ρ so the particle will move towards the lower density till it reaches the density ρ = β +where it can stabilize at a speed 1 − 2β ∈ [−1, 1] If α < 1 the particle might find itself in +the region (d), it will move at the speed α − ρ < 1 − 2ρ so it will move towards the higher +density till it reaches ρ = 1 − α, where it stabilizes at the speed 1 − 2ρ = 2α − 1 ∈ [−1, 1]. +Conclusion +In the case where α + β > 1, the particle will choose a speed that belongs to the interval +[max(−1, 1 − 2β), min(1, 2α − 1)] and will stick to this speed. We will prove in section 5.3 +that this speed is chosen according to a uniform distribution, as if the particle had unit rates +but was put in a ν − µ step initial profile, with ν = β, µ = 1 − α, figure 5.6. +Note that the size of the previous interval will go to zero in the limit α + β → 1. The +particle will be at a speed 1 − 2β = 2α − 1 = α − β, so the speed is continuous when passing +between the two regimes. +5.2.4 +ν − µ step initial configuration +We come back again to the general situation of a ν − µ initial condition and a second-class +particle at the origin. We choose 0 < µ and ν < 1 so we do not encounter the already +escaping particles phenomena. +The qualitative behavior of the system will depend on the relative position of the four +parameters: µ, ν, 1 − α, β. In all generality, we may encounter 4! = 24 different regimes, +however, the symmetry reduces this quantity by half. +134 + +Figure 5.6: Two examples of the cumulative distribution of asymptotic speed +of a second class particle in a 1-0 step initial profile, α, β < 1,α + β > 1 (con- +tinuous orange line). This distribution is identical to the one of unity rates but +with initial profile ν − µ with ν = β and µ = 1 − α (dashed line), which is +uniform. Green straight segment represents the theoretical uniform distribu- +tion. Smoothness of distributions and the divergence from the theoretical on +the boundaries are due to finite time effect. Distributions are plotted for 2000 +realizations, each is for t = 500. +Symmetries +Each macroscopic configuration has a symmetric one with respect to zero, obtained by the +transformation: +(µ, ν, α, β) −→ (1 − ν, 1 − µ, β, α) +This is nothing but an extension of the hole-particle symmetry. +We will be dividing our discussion into two regimes: ν > µ and ν < µ +5.2.5 +The case of ν > µ +This would be the rarefaction fan regime in the absence of the second-class particle. We +distinguish again the two cases: α + β < 1 and α + β > 1. +α + β < 1 +In the case of (ν, µ) = (1, 0), we saw that the second-class particle will create a decreasing +discontinuity in the rarefaction fan. This of course can still happen for generic µ, ν, however, +we encounter new observations: under some conditions on parameters, the second-class +particle might stay outside the rarefaction region without creating any discontinuity, for +other set of parameters, it will create a shock wave to his left, or to his right or to both in +addition to the decreasing discontinuity at its position. To distinguish all of these different +cases, we proceed in a similar fashion as in 1.2: we assume the particle belongs to some +density region, we compare the velocity of the particle with the velocity of the boundaries of +the assumed region which will inform us about the stability of the assumption, and confirm +by numerical simulations. +135 + +1.0 +α= β = 1, v= 0.8,μ= 0.4 +α = 0.6,β = 0.8, v= 1,μ= 0 +Theoretical +0.8 +Cumulative density +0.6 +0.4 +0.2 +0.0 +-0.2 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Asymptotic speed1.0 +α=β = 1, v= 0.8,μ= 0.4 +α = 0.6,β = 0.8, v= 1,μ= 0 +Theoretical +0.8 +Cumulative density +0.6 +0.4 +0.2 +0.0 +-0.8 +-0.6 +-0.4 +-0.2 +0.0 +0.2 +0.4 +0.6 +Asymptotic speedThe diagram below recapitulates the different scenarios here according to the relative +values of the parameters: +1 − α +β +µ +ν +1 +µ +ν +1 +C, R +D, SL +D, SR +SL +D, SR +D +C, L +Det-R +W-I +W-II +W-III +Det-L +W-IV +• C: Continuous profile, the presence of the particle does not affect the density profile. +The particle either escapes to the left (C, L) of the rarefaction fan at a speed α − ν or +to the right (C, R) of the fan at a speed of 1 − β − µ, figure 5.8a. +• D: Discontinuity, the density profile presents a decreasing discontinuity located at the +position of the second class particle, and both move at the speed of α − β. +This +discontinuity can be located within a rarefaction fan splitting it into two, figure 5.8b, +which is similar to the 1 − 0 initial condition case. Or, it can be accompanied by one +shock or two. +• SR: A shock on the right of the discontinuity: The presence of the particle will generate, +in addition to the discontinuity, a shock that is located on its right and moves at a +higher speed 1 − β − µ. This shock will replace the fan on the right, figure 5.8c. +• SL: The shock is located on the left this time and has a speed α − ν, figure 5.8d. +The case of α + β > 1 +We know that, in this case, the particle will not disturb the density profile. Its asymptotic +speed can be either deterministic or random belonging to an interval. Again, this will depend +on the parameters like shown in the diagram: +• Det-L: the particle will have a deterministic speed lower than the lowest of the bound- +aries of the rarefaction fan, so it will be located on its left. This speed is: α − ν +• Det-R: the symmetric case of the previous one, the speed will be: 1 − β − µ +136 + +(a) +(b) +(c) +(d) +Figure 5.7: Examples featuring non uniform distributions for the asymptotic +speed of the second class particle, where (ν, µ) ̸= (1, 0) and (α, β) ̸= (1, 1). Ver- +tical dashed lines represent the predicted windows for the distribution. Dotted +orange lines correspond to a hypothetical uniform distribution. (a) corresponds +to W-I, and (c) to W-IV. Graphs are plotted for 1000 realizations. +• W-I: The limit speed is a random distribution within the window [1 − 2ν, 1 − 2µ] +• W-II: The limit speed is a random distribution within the window [1 − 2β, 1 − 2µ] +• W-III: The limit speed is a random distribution within the window [1 − 2β, 2α − 1] +• W-IV The limit speed is a random distribution within the window [1 − 2ν, 2α − 1] +It is sometimes useful to compactify the four windows with one expression: +[max(1 − 2ν, 1 − 2β), min(2α − 1, 1 − 2µ)] +Numerical evidence suggest that these distributions are in general not uniform. figure +5.7. Further investigations are required to determine their forms. +One can check that the boundaries between the different regions are continuous. +5.2.6 +The case of ν < µ +This is the case of a shock in the absence of a second-class particle. The shock profile is not +affected by the presence of the particle except in the region 1 − α > µ and β < ν, where the +137 + +α=0.9, β =0.7, v= 0.8, μ= 0.3 +1.0 +0.8 +Cumulative density +0.6 +0.4 +0.2 +0.0 +-0.6 +-0.4 +-0.2 +0.0 +0.2 +0.4 +0.6 +Asymptotic speedα=2,β=3, v=0.8, μ=0.1 +1.0 +0.8 +Cumulative density +0.6 +0.4 +0.2 +0.0 +-0.75 +-0.50 +-0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +Asymptotic speedα= 0.6, β= 0.6, v= 0.8, μ= 0.3 +1.0 +0.8 +Cumulative density +0.6 +0.4 +0.2 +0.0 +-0.4 +-0.2 +0.0 +0.2 +0.4 +Asymptotic speedα= 2, β= 0.8, v= 0.7, μ=0.2 +1.0 +0.8 +Cumulative density +0.6 +0.4 +0.2 +0.0 +-0.4 +-0.2 +0.0 +0.2 +0.4 +0.6 +0.8 +Asymptotic speed(a) C,R +(b) D +(c) SL +(d) SL, SR +Figure 5.8: +Examples of the phenomenology of the density field in the +case of µ < ν and α + β < 1. +Dashed green line represent the theoret- +ical density. +Dashed blue line is the theoretical height defined as h(x) = +� x +x0(1 − 2ρ(s))ds + h(x0). Continuous orange line represents the numerically +simulated height function. The vertical line is the simulated position of the +second-class particle. The field is run from the step initial condition to t = 2000. +The acronyms of the sub-figures are explained in the section 5.2.5 +. +shock bifurcates into two as a result of a decreasing discontinuity created by the particle. +The diagram below illustrates all regions here. +138 + +α=0.2, β=0.4, v= 1,μ=0.8 +2.00 +hth +hnum +1.75 +Pth +1.50 +1.25 +1.00 +0.75 +0.50 +0.25 +0.00 +-1.00 +-0.75 +-0.50 +-0.25 +0.00 +0.25 +0.50 +0.75 +Scaled position x/tα=0.2, β=0.4, v= 1, μ=0.2 +2.00 +1.75 +1.50 +1.25 +1.00 +0.75 +0.50 +hth +0.25 +hnum +Pth +0.00 +-1.00 -0.75 -0.50 -0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +Scaled position x/tα=0.2, β=0.2, v= 1,μ=0.6 +2.00 +hth +hnum +1.75 +Pth +1.50 +1.25 +1.00 +0.75 +0.50 +0.25 +0.00 +-1.00 -0.75 -0.50 -0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +Scaled position x/tα=0.2, β=0.2, v=0.5, μ= 0.4 +2.0 +1.5 +1.0 +0.5 +hth +hnum +Pth +0.0 +-1.00 -0.75 -0.50 -0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +Scaled position x/t(a) St +(b) L +(c) R +(d) Sp +Figure 5.9: Examples of the phenomenology in the case of µ > ν and α+β < 1. +The dashed green line represents the theoretical density. Dashed blue line is the +theoretical height defined as h(x) = +� x +x0(1 − 2ρ(s))ds + h(x0). The continuous +orange line represents the numerically simulated height function. The vertical +line is the simulated position of the second-class particle. The field is run from +the step initial condition to t = 2500. The acronyms of the sub-figures are +explained in section 5.2.6 +1 − α +β +ν +µ +1 +ν +µ +1 +L +R +St +Sp +• St The particle is stuck in the shock and at its speed of 1 − ν − µ, figure 5.9a +• R The particle has a higher speed than the shock. Its speed is 1 − µ − β figure 5.9c +139 + +α=0.9,β=0.5,V=0.2,μ=0.7 +2.5 +2.0 +1.5 +1.0 +0.5 +hth +hnum +Pth +0.0 +-0.75 +-0.25 +0.00 +0.25 +0.50 +0.75 +-1.00 +-0.50 +Scaled position x/tα=0.1,β=0.5,v=0.2,μ=0.7 +2.5 +2.0 +1.5 +1.0 +0.5 +hth +hnum +Pth +0.0 +-0.75 +-0.25 +0.00 +0.25 +0.50 +-1.00 +-0.50 +0.75 +Scaled position x/tα=0.8, β = 0.1,v=0.3, μ= 0.8 +2.0 +1.5 +1.0 +0.5 +nth +hnum +Pth +0.0 +-1.00 +-0.25 +0.00 +0.25 +0.50 +-0.75 +-0.50 +0.75 +Scaled position x/tα=0.1,β=0.1,v=0.2,μ=0.6 +2.5 +2.0 +1.5 +1.0 +0.5 +nth +Pth +0.0 +-0.75 +-1.00 +-0.50 +-0.25 +0.00 +0.25 +0.50 +0.75 +Scaled position x/tρ +J(ρ) +1 +β +1 − α +Figure 5.10: A vanishing density of second class particles makes the usual +burgers current(dashed line), linear in the interval [β, 1 − α] (thick line) +• L The particle has a lower speed than the shock. Its speed is given by α − ν, figure +5.9b +• Sp The shock splits into two shocks separated by a discontinuity located at the particle +position and moves at a speed α−β. The shock on its right moves at a speed 1−µ−β. +The shock on the left has a speed α − ν, figure 5.9d. This region is a continuation of +its counterpart when ν > µ. +One can verify that the limits between the different regions are continuous. +5.2.7 +A uniform vanishing density of second class particles: +In this section, we would like to investigate the following question: under which circumstances +one single second class particle is macroscopically equivalent to a vanishing uniform density +of second-class particles on the line? The question is of course non trivial only in the case +where α + β < 1. This vanishing density can be obtained as a limit of the model introduced +in [47]. This limit modified the usual current of the Burgers equation in a way illustrated in +figure 5.10. One can identify the following situations: +• This simplest case is when the intervals [β, 1 − α] and [min(µ, ν), max(µ, ν)] do not +overlap. In this case, neither the vanishing density nor a single particle has an effect +on the density field that behaves simply as a solution of Burgers equation, figure 5.11a +• The interval [β, 1 − α] is included in [min(µ, ν), max(µ, ν)].The density profile here +is the same for both a single particle and a vanishing density: in the case of µ < ν +the vanishing density has an impact over the density field which is the same as the +perturbation created by a single particle. figure 5.11b In the case of µ > ν the shock +does not feel neither a single particle nor a vanishing density, figure 5.11c +• The interval[min(µ, ν), max(µ, ν)] is included in [β, 1 − α]. Here a single class par- +ticle will create two shocks while a vanishing density will create only a discontinuity +regardless of the order of ν and µ figure 5.11d +• The two intervals overlap without one of them being included in the other. The two +situations do not give rise to the same density profile. In the case of the fan, the +particle produces a shock, figure 5.11e. In the case of the shock, its speed is affected by +the vanishing density, since the linear part will affect Hugoniot condition, figure 5.11f +140 + +(a) +(b) +(c) +(d) +(e) +(f) +Figure 5.11: Comparison between the effect of a single particle and the effect +of vanishing density of second class particles over the density field. Plots with +the vanishing density are made for a uniform density of 10−3 +. +5.3 +Speed process of a defect in a step initial configu- +ration +As mentioned previously, a second-class particle of rates α + β > 1 does not have a deter- +ministic asymptotic speed. The purpose of this section is to provide a rigorous proof that +for the case of α < 1 and β < 1 and a 1-0 initial step configuration, the distribution of +the asymptotic speed is still uniform within the allowed window. The proof relies on some +results from the queuing theory besides extending the usage of the coupling tool to systems +with defect particles. In the next lemma, we will consider a system of first-class particles +with two special tagged particles that have arbitrary hopping rates. +Lemma 5.3.1. Let (ηt, xα1 +1 (t), xα2 +2 (t)) ∈ {0, 1}Z × Z × Z be a configuration of the system +at time t with two tagged first class particles of forward hopping rates α1 and α2 located at +positions xα1 +1 (t) and xα2 +2 (t), respectively. Assume that xα2 +2 (0) = xα1 +1 (0) + 1, then the process +xα1 +1 (t) is symmetric with respect to the parameters α1 and α2. +In other words: if (η0, xα1 +1 (0), xα2 +2 (0)) = (˜η0, ˜xα2 +1 (0), ˜xα1 +2 (0)), then for any set of fixed times +141 + +α=0.3, β=0.4,v= 1,μ=0.8 +1.00 +Single particle +Vanishing density +0.95 +Density ( +0.90 +0.85 +0.80 +-1.00 -0.75 -0.50 -0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +x /+α=0.2, β=0.4, v= 1,μ=0.2 +1.0 +Single particle +Vanishing density +0.8 +Density p +0.6 +0.4 +0.2 +-1.00 -0.75 -0.50 -0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +X /+α=0.2, β=0.4,v=0.2, μ= 1 +1.0 +Single particle +Vanishing density +0.8 +Density p +0.6 +0.4 +0.2 +-1.00 -0.75 -0.50 -0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +X /+α=0.2, β= 0.2, v= 0.4, μ= 0.6 +0.8 +Single particle +Vanishing density +0.7 +0.6 +Density +0.5 +0.4 +0.3 +0.2 +-1.00 -0.75 -0.50 -0.25 0.00 +0.25 +0.50 +0.75 +1.00 +X /+α=0.2,β=0.2,v= 1,μ=0.5 +1.0 +Single particle +Vanishing density +0.8 +Density p +0.6 +0.4 +0.2 +-1.00 -0.75 -0.50 -0.25 0.00 +0.25 +0.50 +0.75 +1.00α=0.2, β=0.2, v=0.5,μ= 1 +1.0 +0.9 +Density p +0.8 +0.7 +0.6 +Single particle +Vanishing density +0.5 +-1.00 -0.75 -0.50 -0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +X /+(ti)1≤i≤n, the joint probability distribution of +(xα1 +1 (t1), ..., xα1 +1 (tn)) +d= (˜xα2 +1 (t1), ..., ˜xα2 +1 (tn)) +For later convenience and with no loss of generality we set: α1 = 1 and α2 = α. +Sketch Proof : this lemma can be shown from results in the queuing theory literature. +For that purpose, imagine the particles as servers and the void as customers. In [146,147], +it has been proven that if we have a series of consecutive exponential servers initially empty, +and an arbitrary arrival statistical process, then the departure process (the movement of +the most left particle) is independent of the ordering of the servers. We obviously need +this property in our case for only two servers (the two servers’ case is anyway equivalent to +any finite number of servers). Since the arrival process can be arbitrary, a random initial +configuration of the rest of the particles doesn’t present a problem. +In the Appendix, we obtain an explicit expression of the distribution of the marginal +process (i.e. the distribution of the position of the most left particle at a time t) using [148] +or equivalently the conditional probability expression in chapter 3, and show manifestly its +symmetry with regards to α1 and α2. +Lemma 5.3.2. Consider two systems with initial configurations: +(η0, xα1 +1 (0), xα2 +2 (0)) = +(˜η0, ˜xα2 +1 (0), ˜xα1 +2 (0)), where xα2 +2 (0) = xα1 +1 (0) + 1, then it is possible to couple the two systems +so that for all t ≥ 0 we have xα1 +1 (t) = ˜xα2 +1 (t). +Remark +It is possible to use the hole-particle symmetry to generate a dual lemma of lemma 5.3.2 +. For that purpose, we tag two holes instead of two particles, we set their rates to β1 and +β2. +(That obviously means that jumping over these holes would be determined now by +the clocks attached to them). We denote the configuration at time t: (ηt, yβ1 +1 (t), yβ2 +2 (t)). +Assume that yβ2 +2 (0) = yβ1 +1 (0) − 1, then the process yβ1 +1 (t) is invariant under the exchange +of β1 and β2. It is as well possible, as in the previous lemma, to couple the movement of +the two holes yβ1 +1 +and ˜yβ2 +1 +belonging to the two systems with the same initial configuration: +(η0, yβ1 +1 (0), yβ2 +2 (0)) = (˜η0, ˜yβ1 +1 (0), ˜yβ2 +2 (0)), providing that at t = 0 the two holes are consecutive. +Note that the clocks involved in this coupling are all located to the left of y1, (˜y1) and +are all attached to holes. +Lemma 5.3.3. Let’s consider an initial configuration with a particle at the origin, a hole +at the site -1 and a Bernoulli product measure on the other sites with a parameter µ for the +positive sites and ν for the negative sites starting from -2. Let’s call this initial configuration: +(η0, y1(0), x1(0)) = (η0, −1, 0) Then: +(a) x1(t) will have the same distribution as the position of a free particle of rate 1 − µ +starting at the origin. +(b) y1(t) will have the same distribution as the position of a free hole of rate ν starting at +the site -1. +Sketch Proof. Noticing that x1(t) obviously depends only on the movement of the particles +located on the positive sites, (a) becomes nothing but a restatement of example 3.2 of Spitzer +(1970) [149]. (b) is obviously obtained from (a) using the hole-particle symmetry. +142 + +5.3.1 +Probability distribution of a second class particle of arbi- +trary rates in a step initial configuration +Let 0 ≤ α, β ≤ 1 and α + β ≥ 1. We consider a second-class particle of rates β, α located +initially at the origin with no particle to its right and no hole to its left. We denote this +system: (ηt, βzα(t)) +with βzα(t) being the position of the second class particle at time t. +Let’s consider as well the configuration with a second-class particle of rates equal to 1 +located at the origin in a Bernoulli product measure initial configuration with a parameter +1 − α for the positive sites and a parameter β for the negative sites. We denote this system +(ηR +t , zR(t)), we call it the reference system. +Our main result here is: +zR(t)|ηR +0 +d= βzα(t)|η0 +Proof: +Let us define the configuration ξR as follows: +ξR +0 (0) := 1 +ξR +0 (−1) := 0 +ξR +0 (k) = +� ηR +0 (k) +k > 0 +ηR +0 (k + 1) +k < −1 +(5.43) +It is a classical procedure to see the second-class particle of rates equal to one as a couple +of a hole followed by a first-class particle. We will track the position of this (0, 1) couple, +(defined as the position of the particle component of it) using the variable zR, this would +require a suitable coupling between ηR and ξR that allows this identification. Let’s as well +tag the particle (the hole) located initially at the origin (at -1) with the variable xR, (yR). +Note that xR and yR coincide only initially with the couple (0, 1) constituting the second +class particle. +Let’s define the configuration: +(ξ(0) +0 , xα +(0)(0), yβ +(0)(0)) := (1{k≤0}, −1, 0) +In words, this is a free tagged hole followed by a free tagged particle of rates β and α +respectively. We choose a clock for the tagged particle that rings each time xR makes a jump +(we will sometimes call a tagged particle by the name of its position variable) While the +clock of the tagged hole rings each time the yR is jumped over. We track the position of the +couple (0, 1) at the origin using a variable z(0)(t). Again, z(0) coincides only initially with +xα +(0). +We set t0 = 0 and we define a real decreasing sequence of intervals ([tn, ∞))n∈N and a +sequence of initial configurations ((ξ(n) +tn , xα +(n)(tn), yβ +(n)(tn)))n∈N by induction, where the system +ξ(n) is defined on the time interval [tn, ∞(, and for n ≥ 1: +tn := min(min +t {t ≥ tn−1 and xα +(n−1)(t) > xα +(n−1)(tn−1)}, min +t {t ≥ tn−1 and yβ +(n−1)(t) < yβ +(n−1)(tn−1)}) +In words, tn is the moment when either the tagged particle or the tagged hole of the +configuration ξ(n−1) first decides to move. +143 + +We define now the configuration ξ(n) +t +over the interval [tn, ∞) as one starting with the +initial configuration: +(ξ(n) +tn , xα +(n)(tn), yβ +(n)(tn)) := +� +(ξ(n−1) +tn +, xα +(n−1)(tn) − 1, yβ +(n−1)(tn)) +if yα +(n−1)(tn) = yα +(n−1)(tn−1) − 1 +(ξ(n−1) +tn +, xα +(n−1)(tn), yβ +(n−1)(tn) + 1) +if xα +(n−1)(tn) = xα +(n−1)(tn−1) + 1 +To avoid possible confusion, we always assume the trajectories of the particles to be +C`adl`ag functions. +Note that the definition of ξ(n) +t +would allow its tagged hole and its tagged particle to be +consecutive in the interval [tn, tn+1) and only in this interval. +As we defined z(0), we can define z(n) on the interval [tn, ∞( as the position of the second +component of the couple (0, 1) that coincides initially with (yβ +(n), xα +(n)). +So, one of two possible events for ξ(n−1) illustrated in the table can cause the creation of +ξ(n). +ξ(n−1) +tn +...yβx1xα... +...yβy1xα... +ξ(n) +tn +...yβxαx1... +...y1yβxα... +• The first event is the jumping of xα +(n−1), in this case, we know that there is a hole +between the tagged hole and the tagged particle at time tn. Let’s tag this hole in +the middle with the variable y1 +(n−1).We have y1 +(n−1)(tn) = yβ +(n−1)(tn) + 1. We are now +in a position that allows us to use the the dual lemma of lemma 5.3.2 to couple the +movements of yβ +(n)(t) and y1 +(n−1)(t) for t ≥ tn, We will as well couple all the particles to +the right of xα +(n−1) with all the particles to the right of xα +(n) inclusive for t ≥ tn, this is +obviously possible since this two segments coincides at tn. So we have: +ξ(n−1) +t +[k] = ξ(n) +t +[k] for k ≥ xα +n−1(t) for t ≥ tn +That means as well that segments: y1 +(n−1) to xα +(n−1) and yβ +(n) to xα +(n) will be identical to +the one between : +ξ(n−1) +t +[k] = ξ(n) +t +[k] for y1 +(n−1) ≤ k ≤ xα +n−1(t) for t ≥ tn +From the previous statement it becomes obvious that: +z(n)(t) = z(n−1)(t) for t ≥ tn +(5.44) +• The second event is the backward jumping of yβ +(n−1). One can show in a similar fashion +as previously by using the Lemma 5.3.3 and by coupling the particles left to yβ +(n−1) +with the ones left to yβ +(n). We show again that 5.44 holds in this case too. +144 + +By induction on 5.44 we get: +z(n)(t) = z(0)(t) = z(R)(t) for t ≥ tn +(5.45) +The final step of our proof is to define the system ζ as follows: +ζt = ξ(n) +t +for t ∈ [tn, tn−1) +In this system, the tagged particle of rate α and the tagged hole of rate β are always +consecutive, so ζ can be coupled with η, and the proof is completed using 5.45. +5.3.2 +Appendix +We obtain here an explicit formula for the marginals of the process described in lemma +5.3.1 and show explicitly its symmetry with respect to α1 and α2. Consider a finite system +of N particles of initial positions y = {y1 < y2 < ... < yN} with forward hopping rates +{α1,...,αN} respectively. The conditional probability of having these particles at positions +x = {x1 < x2 < ... < xN} has been found in [148], and is given by +P(x|y; t) = +N +� +i=1 +(e−tαiαxi−yi +i +) +��������� +F1,1(x1 − y1, t) +F1,2(x2 − y1, t) +. . . +F1,N(xN − y1, t) +F2,1(x1 − y2, t) +F2,2(x2 − y2, t) +. . . +F2,N(xN − y2, t) +... +... +... +FN,1(x1 − yN, t) +FN,2(x2 − yN, t) +. . . +FN,N(xN − yN, t) +��������� +(5.46) +where: +Fk,l(x, t) := +1 +2πi +� +e +t +z zx−1 +l−1 +� +i=1 +(1 − αiz)−1 +k−1 +� +i=1 +(1 − αiz)dz +(5.47) +For our case, we have: y2 = y1 + 1 and αi = 1 for i > 2. We are interested in the probability +distribution of the first particle regardless of the final position of the rest of the particles, +this amounts to the sum over all their possible final positions: +P(x1|y; t) = +∞ +� +xn=x1+n−1 +... +x4−1 +� +x3=x1+2 +x3−1 +� +x2=x1+1 +P(x1, ..., xn|y) +(5.48) +One can show that the functions Fk,l(x, t) verify the following properties: +For l ≥ 3 +n2 +� +n=n1 +Fk,l(n, t) = Fk,l+1(n1, t) − Fk,l+1(n2 + 1, t) +for +l ≥ 3 +(5.49) +∞ +� +n=n1 +Fk,l(n, t) = Fk,l+1(n1, t) +l ≥ 3 +(5.50) +145 + +And for l = 2 +n2 +� +n=n1 +αn +2Fk,2(n, t) = αn1 +2 Fk,3(n1, t) − αn2+1 +2 +Fk,3(n2 + 1, t) +(5.51) +Note that the function Fk,l(x, t) are symmetric with respect to α1 and α2 only when k ̸= 2 +and l ̸= 2. Now we can perform the summation in 5.3.2 column by column starting from the +second one and getting rid each time of the term that is proportional to the next column: +we get as a result: +P(x|y; t) = +N +� +i=1 +(e−tαi)(α1α2)−y1αx1 +1 αx2−1 +2 +(5.52) +P(x1|y; t) = +N +� +i=1 +(e−tαi)(α1α2)−y1αx1 +1 α−1 +2 +× +��������� +F1,1(x1 − y1, t) +αx1+1 +2 +F1,3(x1 + 1 − y1, t) +F1,4(x1 + 2 − y1, t) +. . . +F1,N(x1 + N − 1 − y1, t) +F2,1(x1 − y2, t) +αx1+1 +2 +F2,3(x1 + 1 − y2, t) +F2,4(x1 + 2 − y2, t) +. . . +F2,N(x1 + N − 1 − y2, t) +... +... +... +... +FN,1(x1 − yN, t) +αx1+1 +2 +FN,3(x1 + 1 − yN, t) +FN,4(x1 + 3 − yN, t) +. . . +FN,N(x1 + N − 1 − yN, t) +��������� +(5.53) +The final step is to manipulate the second line where we have k = 2. We notice that: +F2,l(x, t) = F1,l(x, t) − αiF1,l(x + 1, t) +(5.54) +If we apply this to the second line, the second term will be proportional to the first line +(remember that y2 = y1 + 1 ), and thus we get the final formula: +P(x1|y; t) = +N +� +i=1 +(e−tαi)(α1α2)−y1(α1α2)x1 +× +����������� +F1,1(x1 − y1, t) +F1,3(x1 + 1 − y1, t) +F1,4(x1 + 2 − y1, t) +. . . +F1,N(x1 + N − 1 − y1, t) +F1,1(x1 − y1 − 1, t) +F1,3(x1 − y1, t) +F1,4(x1 − y1 + 1, t) +. . . +F1,N(x1 − y1 + N, t) +F3,1(x1 − y3, t) +F3,3(x1 + 1 − y3, t) +F3,4(x1 + 2 − y3, t) +. . . +F3,N(x1 + N − 1 − y3, t) +... +... +... +... +FN,1(x1 − yN, t) +FN,3(x1 + 1 − yN, t) +F2,4(x1 + 3 − yN, t) +. . . +FN,N(x1 + N − 1 − yN, t) +����������� +(5.55) +This formula is manifestly symmetric with regards to α1 and α2. +This result is still valid for an infinite system N → ∞ since at each instant t, with a +probability 1 there exists a particle that didn’t try to jump in the interval [0, t], and so only +the finite number of particles behind it will be involved. +146 + +Bibliography +[1] L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5, vol. 5. Elsevier, 2013. +[2] J. Sethna, Statistical mechanics: entropy, order parameters, and complexity, vol. 14. +Oxford University Press, USA, 2021. +[3] R. J. Baxter, Exactly solved models in statistical mechanics. Elsevier, 2016. +[4] L. Onsager, “Crystal statistics. i. a two-dimensional model with an order-disorder +transition,” Physical Review, vol. 65, no. 3-4, p. 117, 1944. +[5] J. Eisert, M. Friesdorf, and C. Gogolin, “Quantum many-body systems out of equilib- +rium,” Nature Physics, vol. 11, no. 2, pp. 124–130, 2015. +[6] W. V. Berdanier, Universality in Non-Equilibrium Quantum Systems. University of +California, Berkeley, 2020. +[7] A. Mitra, “Quantum quench dynamics,” Annual Review of Condensed Matter Physics, +vol. 9, pp. 245–259, 2018. +[8] C. Gross and I. Bloch, “Quantum simulations with ultracold atoms in optical lattices,” +Science, vol. 357, no. 6355, pp. 995–1001, 2017. +[9] E. Joos, H. D. Zeh, C. Kiefer, D. J. Giulini, J. Kupsch, and I.-O. Stamatescu, Deco- +herence and the appearance of a classical world in quantum theory. Springer Science +& Business Media, 2013. +[10] F. P. Kelly, Reversibility and stochastic networks. Cambridge University Press, 2011. +[11] R. Kubo, “Statistical-mechanical theory of irreversible processes. i. general theory and +simple applications to magnetic and conduction problems,” Journal of the Physical +Society of Japan, vol. 12, no. 6, pp. 570–586, 1957. +147 + +[12] H.-K. Janssen, “On the nonequilibrium phase transition in reaction-diffusion systems +with an absorbing stationary state,” Zeitschrift f¨ur Physik B Condensed Matter, vol. 42, +no. 2, pp. 151–154, 1981. +[13] H. Hinrichsen, “Non-equilibrium phase transitions,” Physica A: Statistical Mechanics +and its Applications, vol. 369, no. 1, pp. 1–28, 2006. +[14] X.-J. Zhang, H. Qian, and M. Qian, “Stochastic theory of nonequilibrium steady states +and its applications. part i,” Physics Reports, vol. 510, no. 1-2, pp. 1–86, 2012. +[15] R. Zia, L. Shaw, B. Schmittmann, and R. Astalos, “Contrasts between equilibrium +and non-equilibrium steady states: computer aided discoveries in simple lattice gases,” +Computer physics communications, vol. 127, no. 1, pp. 23–31, 2000. +[16] R. A. Blythe and M. R. Evans, “Nonequilibrium steady states of matrix-product form: +a solver’s guide,” Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 46, +p. R333, 2007. +[17] T. Chou, K. Mallick, and R. K. P. Zia, “Non-equilibrium statistical mechanics: from +a paradigmatic model to biological transport,” Reports on progress in physics, vol. 74, +no. 11, p. 116601, 2011. +[18] H. Rost, “Non-equilibrium behaviour of a many particle process: Density profile and +local equilibria,” Zeitschrift f¨ur Wahrscheinlichkeitstheorie und Verwandte Gebiete, +vol. 58, no. 1, pp. 41–53, 1981. +[19] F. Spitzer, “Interaction of Markov processes,” Advances in Mathematics, vol. 5, no. 2, +pp. 246–290, 1970. +[20] G. Sch¨utz and E. Domany, “Phase transitions in an exactly soluble one-dimensional +exclusion process,” Journal of statistical physics, vol. 72, no. 1-2, pp. 277–296, 1993. +[21] J. Krug, “Boundary–induced phase transitions in driven diffusive systems,” Physical +review letters, vol. 67, no. 14, p. 1882, 1991. +[22] V. Popkov and G. M. Sch¨utz, “Steady-state selection in driven diffusive systems with +open boundaries,” EPL (Europhysics Letters), vol. 48, no. 3, p. 257, 1999. +[23] J. Hager, J. Krug, V. Popkov, and G. Sch¨utz, “Minimal current phase and univer- +sal boundary layers in driven diffusive systems,” Physical Review E, vol. 63, no. 5, +p. 056110, 2001. +[24] S. Katz, J. L. Lebowitz, and H. Spohn, “Nonequilibrium steady states of stochastic +lattice gas models of fast ionic conductors,” vol. 34, no. 3, pp. 497–537. +[25] C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, “Kinetics of biopolymerization on +nucleic acid templates,” Biopolymers: Original Research on Biomolecules, vol. 6, no. 1, +pp. 1–25, 1968. +148 + +[26] S. Alexander and T. Holstein, “Lattice diffusion and the heisenberg ferromagnet,” +Physical Review B, vol. 18, no. 1, p. 301, 1978. +[27] F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg, “Reaction-diffusion processes, +critical dynamics, and quantum chains,” Annals of Physics, vol. 230, no. 2, pp. 250– +302, 1994. +[28] L.-H. Gwa and H. Spohn, “Bethe solution for the dynamical-scaling exponent of the +noisy burgers equation,” Physical Review A, vol. 46, no. 2, p. 844, 1992. +[29] P. A. Ferrari, “Shocks in the burgers equation and the asymmetric simple exclusion +process,” in Statistical Physics, Automata Networks and Dynamical Systems, pp. 25– +64, Springer, 1992. +[30] T. M. Liggett, “Coupling the simple exclusion process,” The Annals of Probability, +pp. 339–356, 1976. +[31] B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, “Exact solution of +the totally asymmetric simple exclusion process: shock profiles,” Journal of statistical +physics, vol. 73, no. 5, pp. 813–842, 1993. +[32] B. Derrida, “Statphys-19: 19th IUPAP Int,” 1996. +[33] K. Mallick, “Shocks in the asymmetry exclusion model with an impurity,” Journal of +Physics A: Mathematical and General, vol. 29, no. 17, p. 5375, 1996. +[34] G. M. Sch¨utz, “Exact solution of the master equation for the asymmetric exclusion +process,” Journal of statistical physics, vol. 88, no. 1, pp. 427–445, 1997. +[35] C. A. Tracy and H. Widom, “Integral formulas for the asymmetric simple exclusion +process,” Communications in Mathematical Physics, vol. 279, no. 3, pp. 815–844, 2008. +[36] C. A. Tracy and H. Widom, “A fredholm determinant representation in asep,” Journal +of Statistical Physics, vol. 132, no. 2, pp. 291–300, 2008. +[37] S. Chatterjee and G. M. Sch¨utz, “Determinant representation for some transition prob- +abilities in the tasep with second class particles,” Journal of statistical physics, vol. 140, +no. 5, pp. 900–916, 2010. +[38] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, “Exact solution of a 1d asymmet- +ric exclusion model using a matrix formulation,” Journal of Physics A: Mathematical +and General, vol. 26, no. 7, p. 1493, 1993. +[39] K. Johansson, “Shape fluctuations and random matrices,” Communications in math- +ematical physics, vol. 209, no. 2, pp. 437–476, 2000. +[40] J. Baik, P. Deift, and K. Johansson, “On the distribution of the length of the longest +increasing subsequence of random permutations,” Journal of the American Mathemat- +ical Society, vol. 12, no. 4, pp. 1119–1178, 1999. +149 + +[41] A. Heibig, “Existence and uniqueness of solutions for some hyperbolic systems of con- +servation laws,” Archive for rational mechanics and analysis, vol. 126, no. 1, pp. 79– +101, 1994. +[42] D. Chowdhury, L. Santen, and A. Schadschneider, “Statistical physics of vehicular +traffic and some related systems,” Physics Reports, vol. 329, no. 4-6, pp. 199–329, +2000. +[43] A. Parmeggiani, “Non-equilibrium collective transport on molecular highways,” in +Traffic and Granular Flow’07, pp. 667–677, Springer, 2009. +[44] D. Chowdhury, A. Schadschneider, and K. Nishinari, “Physics of transport and traffic +phenomena in biology: from molecular motors and cells to organisms,” Physics of Life +reviews, vol. 2, no. 4, pp. 318–352, 2005. +[45] N. Hirokawa, S. Niwa, and Y. Tanaka, “Molecular motors in neurons: transport mech- +anisms and roles in brain function, development, and disease,” Neuron, vol. 68, no. 4, +pp. 610–638, 2010. +[46] L. Cantini, “Algebraic bethe ansatz for the two species asep with different hopping +rates,” Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 9, p. 095001, +2008. +[47] L. Cantini and A. Zahra, “Hydrodynamic behavior of the two-tasep,” Journal of +Physics A: Mathematical and Theoretical, vol. 55, no. 30, p. 305201, 2022. +[48] V. Popkov and M. Salerno, “Hierarchy of boundary-driven phase transitions in multi- +species particle systems,” Physical Review E, vol. 83, no. 1, p. 011130, 2011. +[49] V. Popkov, “Infinite reflections of shock fronts in driven diffusive systems with two +species,” Journal of Physics A: Mathematical and General, vol. 37, no. 5, p. 1545, +2004. +[50] V. Popkov and M. Salerno, “Hydrodynamic limit of multichain driven diffusive mod- +els,” Physical Review E, vol. 69, no. 4, p. 046103, 2004. +[51] D. Christodoulou, “The euler equations of compressible fluid flow,” Bulletin of the +American Mathematical Society, vol. 44, no. 4, pp. 581–602, 2007. +[52] L. Euler, “Principes g´en´eraux du mouvement des fluides,” M´emoires de l’acad´emie des +sciences de Berlin, pp. 274–315, 1757. +[53] A. Bressan, “Open questions in the theory of one dimensional hyperbolic conservation +laws,” in Nonlinear Conservation Laws and Applications, pp. 1–22, Springer, 2011. +[54] L. C. Evans, Partial differential equations, vol. 19. American Mathematical Soc., 2010. +[55] D. Serre, Systems of Conservation Laws 1: Hyperbolicity, entropies, shock waves. Cam- +bridge University Press, 1999. +150 + +[56] D. Serre, Systems of Conservation Laws 2: Geometric Structures, Oscillations, and +Initial-Boundary Value Problems, vol. 2. Cambridge University Press, 1999. +[57] P. D. Lax, Hyperbolic partial differential equations, vol. 14. American Mathematical +Soc., 2006. +[58] C. M. Dafermos and C. M. Dafermos, Hyperbolic conservation laws in continuum +physics, vol. 3. Springer, 2005. +[59] A. Bressan, “Hyperbolic conservation laws: an illustrated tutorial,” in Modelling and +optimisation of flows on networks, pp. 157–245, Springer, 2013. +[60] L. V. SPINOLO, “Notes for the course “systems of conservation laws in one space +variable”,” +[61] G. Menon, “Pde, part ii,” Lecture Notes. +[62] E. Hopf, “The partial differential equation u sub t+ uu sub x= mu sub xx,” tech. rep., +INDIANA UNIV AT BLOOMINGTON, 1950. +[63] S. N. Kruˇzkov, “First order quasilinear equations in several independent variables,” +Mathematics of the USSR-Sbornik, vol. 10, no. 2, p. 217, 1970. +[64] B. Houchmandzadeh, “The hamilton–jacobi equation: +an alternative approach,” +American Journal of Physics, vol. 88, no. 5, pp. 353–359, 2020. +[65] S. Osher, “The riemann problem for nonconvex scalar conservation laws and hamilton- +jacobi equations,” Proceedings of the American Mathematical Society, vol. 89, no. 4, +pp. 641–646, 1983. +[66] T.-P. Liu, “The entropy condition and the admissibility of shocks,” Journal of Math- +ematical Analysis and Applications, vol. 53, no. 1, pp. 78–88, 1976. +[67] P. D. Lax, “Hyperbolic systems of conservation laws ii,” Communications on pure and +applied mathematics, vol. 10, no. 4, pp. 537–566, 1957. +[68] B. Temple, “Systems of conservation laws with invariant submanifolds,” Transactions +of the American Mathematical Society, vol. 280, no. 2, pp. 781–795, 1983. +[69] M. R. Evans, “Bose-einstein condensation in disordered exclusion models and relation +to traffic flow,” EPL (Europhysics Letters), vol. 36, no. 1, p. 13, 1996. +[70] A. Benassi and J.-P. Fouque, “Hydrodynamical limit for the asymmetric simple exclu- +sion process,” The Annals of Probability, pp. 546–560, 1987. +[71] F. Rezakhanlou, “Hydrodynamic limit for attractive particle systems on Zd,” Commu- +nications in mathematical physics, vol. 140, no. 3, pp. 417–448, 1991. +[72] C. Kipnis and C. Landim, Scaling limits of interacting particle systems, vol. 320. +Springer Science & Business Media, 1998. +151 + +[73] P. F. Arndt, T. Heinzel, and V. Rittenberg, “Spontaneous breaking of translational +invariance in one-dimensional stationary states on a ring,” Journal of Physics A: Math- +ematical and General, vol. 31, no. 2, p. L45, 1998. +[74] P. F. Arndt, T. Heinzel, and V. Rittenberg, “Spontaneous breaking of translational in- +variance and spatial condensation in stationary states on a ring. I. the neutral system,” +Journal of statistical physics, vol. 97, no. 1, pp. 1–65, 1999. +[75] N. Rajewsky, T. Sasamoto, and E. R. Speer, “Spatial particle condensation for an +exclusion process on a ring,” Physica A: Statistical Mechanics and its Applications, +vol. 279, no. 1-4, pp. 123–142, 2000. +[76] V. Popkov, M. E. Fouladvand, and G. M. Sch¨utz, “A sufficient criterion for integrability +of stochastic many-body dynamics and quantum spin chains,” Journal of Physics A: +Mathematical and General, vol. 35, no. 33, p. 7187, 2002. +[77] L. Cantini, “Inhomogenous Multispecies TASEP on a ring with spectral parameters,” +arXiv preprint arXiv:1602.07921, 2016. +[78] B. Derrida and M. Evans, “Bethe ansatz solution for a defect particle in the asymmetric +exclusion process,” Journal of Physics A: Mathematical and General, vol. 32, no. 26, +p. 4833, 1999. +[79] Z. Chen, J. de Gier, I. Hiki, and T. Sasamoto, “Exact confirmation of 1d nonlinear +fluctuating hydrodynamics for a two-species exclusion process,” Physical review letters, +vol. 120, no. 24, p. 240601, 2018. +[80] Z. Chen, J. de Gier, I. Hiki, T. Sasamoto, and M. Usui, “Limiting current distribution +for a two species asymmetric exclusion process,” arXiv preprint arXiv:2104.00026, +2021. +[81] H. Van Beijeren, “Exact results for anomalous transport in one-dimensional hamilto- +nian systems,” Physical review letters, vol. 108, no. 18, p. 180601, 2012. +[82] H. Spohn, “Nonlinear fluctuating hydrodynamics for anharmonic chains,” Journal of +Statistical Physics, vol. 154, no. 5, pp. 1191–1227, 2014. +[83] P. L. Ferrari, T. Sasamoto, and H. Spohn, “Coupled kardar-parisi-zhang equations in +one dimension,” Journal of Statistical Physics, vol. 153, no. 3, pp. 377–399, 2013. +[84] J. Fritz and B. T´oth, “Derivation of the leroux system as the hydrodynamic limit of a +two-component lattice gas,” Communications in mathematical physics, vol. 249, no. 1, +pp. 1–27, 2004. +[85] B. T´oth and B. Valk´o, “Perturbation of singular equilibria of hyperbolic two- +component systems: a universal hydrodynamic limit,” Communications in mathemat- +ical physics, vol. 256, no. 1, pp. 111–157, 2005. +152 + +[86] A. Y. Leroux and M. Schatzman, “Analyse et approximation de probl`emes hyper- +boliques non lin´eaires,” Cours INRIA, 1978. +[87] D. Serre, “Existence globale de solutions faibles sous une hypoth`ese unilaterale pour un +syst`eme hyperbolique non lin´eaire,” Quarterly of applied mathematics, vol. 46, no. 1, +pp. 157–167, 1988. +[88] D. Serre, Systems of Conservation Laws 2: Geometric Structures, Oscillations, and +Initial-Boundary Value Problems, vol. 2. Cambridge University Press, 1999. +[89] P. F. Arndt and V. Rittenberg, “Spontaneous breaking of translational invariance +and spatial condensation in stationary states on a ring. ii. the charged system and +the two-component burgers equations,” Journal of statistical physics, vol. 107, no. 5, +pp. 989–1013, 2002. +[90] H. Lee, V. Popkov, and D. Kim, “Two-way traffic flow: Exactly solvable model of +traffic jam,” Journal of Physics A: Mathematical and General, vol. 30, no. 24, p. 8497, +1997. +[91] B. T´oth. private communication. +[92] P. G. LeFloch, Hyperbolic Systems of Conservation Laws: The theory of classical and +nonclassical shock waves. Springer Science & Business Media, 2002. +[93] T. P. Liu, “The Riemann problem for general 2× 2 conservation laws,” Transactions +of the American Mathematical Society, vol. 199, pp. 89–112, 1974. +[94] L. Cantini and A. Zahra. work in progress. +[95] B. Derrida and J. L. Lebowitz, “Exact large deviation function in the asymmetric +exclusion process,” Physical review letters, vol. 80, no. 2, p. 209, 1998. +[96] B. Derrida and C. Appert, “Universal large-deviation function of the kardar–parisi– +zhang equation in one dimension,” Journal of statistical physics, vol. 94, no. 1, pp. 1–30, +1999. +[97] R. I. Nepomechie, “A spin chain primer,” arXiv preprint hep-th/9810032, 1998. +[98] N. A. Slavnov, “Algebraic bethe ansatz,” arXiv preprint arXiv:1804.07350, 2018. +[99] O. Babelon, “A short introduction to classical and quantum integrable systems,” Lec- +ture Notes (http://www. lpthe. jussieu. fr/babelon/saclay2007. pdf), 2007. +[100] O. Babelon, D. Bernard, and M. Talon, Introduction to classical integrable systems. +Cambridge University Press, 2003. +[101] N. Slavnov, “Introduction to the nested algebraic bethe ansatz,” SciPost Physics Lec- +ture Notes, p. 019, 2020. +153 + +[102] O. Golinelli and K. Mallick, “The asymmetric simple exclusion process: an integrable +model for non-equilibrium statistical mechanics,” Journal of Physics A: Mathematical +and General, vol. 39, no. 41, p. 12679, 2006. +[103] F. H. Essler and V. Rittenberg, “Representations of the quadratic algebra and partially +asymmetric diffusion with open boundaries,” Journal of Physics A: Mathematical and +General, vol. 29, no. 13, p. 3375, 1996. +[104] J. Krug, “Steady state selection in driven diffusive systems,” in Spontaneous formation +of space-time structures and criticality, pp. 37–40, Springer, 1991. +[105] M. R. Evans, D. P. Foster, C. Godr`eche, and D. Mukamel, “Asymmetric exclu- +sion model with two species: spontaneous symmetry breaking,” Journal of statistical +physics, vol. 80, no. 1, pp. 69–102, 1995. +[106] M. R. Evans, D. P. Foster, C. Godr`eche, and D. Mukamel, “Spontaneous symmetry +breaking in a one dimensional driven diffusive system,” Physical review letters, vol. 74, +no. 2, p. 208, 1995. +[107] A. Ayyer, J. L. Lebowitz, and E. R. Speer, “On some classes of open two-species +exclusion processes,” arXiv preprint arXiv:1008.4721, 2010. +[108] N. Cramp´e, K. Mallick, E. Ragoucy, and M. Vanicat, “Open two-species exclusion +processes with integrable boundaries,” Journal of Physics A: Mathematical and The- +oretical, vol. 48, no. 17, p. 175002, 2015. +[109] M. Khorrami and V. Karimipour, “Exact determination of the phase structure of a +multi-species asymmetric exclusion process,” Journal of Statistical Physics, vol. 100, +no. 5, pp. 999–1030, 2000. +[110] F. Alcaraz, S. Dasmahapatra, and V. Rittenberg, “N-species stochastic models with +boundaries and quadratic algebras,” Journal of Physics A: Mathematical and General, +vol. 31, no. 3, p. 845, 1998. +[111] C. Arita, “Phase transitions in the two-species totally asymmetric exclusion process +with open boundaries,” Journal of Statistical Mechanics: Theory and Experiment, +vol. 2006, no. 12, p. P12008, 2006. +[112] C. Arita, “Exact analysis of two-species totally asymmetric exclusion process with +open boundary condition,” Journal of the Physical Society of Japan, vol. 75, no. 6, +p. 065003, 2006. +[113] M. Uchiyama, “Two-species asymmetric simple exclusion process with open bound- +aries,” Chaos, Solitons & Fractals, vol. 35, no. 2, pp. 398–407, 2008. +[114] L. Cantini, A. Garbali, J. de Gier, and M. Wheeler, “Koornwinder polynomials and the +stationary multi-species asymmetric exclusion process with open boundaries,” Journal +of Physics A: Mathematical and Theoretical, vol. 49, no. 44, p. 444002, 2016. +154 + +[115] A. Ayyer and D. Roy, “The exact phase diagram for a class of open multispecies +asymmetric exclusion processes,” Scientific reports, vol. 7, no. 1, pp. 1–8, 2017. +[116] A. R´akos and G. Sch¨utz, “Exact shock measures and steady-state selection in a driven +diffusive system with two conserved densities,” Journal of statistical physics, vol. 117, +no. 1, pp. 55–76, 2004. +[117] V. Popkov and G. M. Sch¨utz, “Why spontaneous symmetry breaking disappears in a +bridge system with pde-friendly boundaries,” Journal of Statistical Mechanics: Theory +and Experiment, vol. 2004, no. 12, p. P12004, 2004. +[118] P. Bonnin, I. Stansfield, M. C. Romano, and N. Kern, “Two-species tasep model: +from a simple description to intermittency and travelling traffic jams,” arXiv preprint +arXiv:2102.02486, 2021. +[119] V. Popkov, “Boundary-driven phase transitions in open driven systems with an umbilic +point,” The European Physical Journal Special Topics, vol. 216, no. 1, pp. 139–151, +2013. +[120] C. Bardos, A.-Y. LeRoux, and J.-C. N´ed´elec, “First order quasilinear equations with +boundary conditions,” Communications in partial differential equations, vol. 4, no. 9, +pp. 1017–1034, 1979. +[121] P. Le Floch, “Explicit formula for scalar non-linear conservation laws with boundary +condition,” Mathematical methods in the applied sciences, vol. 10, no. 3, pp. 265–287, +1988. +[122] F. Ancona and A. Marson, “Scalar non-linear conservation laws with integrable bound- +ary data,” Nonlinear Analysis-Series A Theory and Methods and Series B Real World +Applications, vol. 35, no. 6, pp. 687–710, 1999. +[123] C. Bahadoran, “Hydrodynamics and hydrostatics for a class of asymmetric particle +systems with open boundaries,” Communications in Mathematical Physics, vol. 310, +no. 1, pp. 1–24, 2012. +[124] L. Santen and C. Appert, “The asymmetric exclusion process revisited: fluctuations +and dynamics in the domain wall picture,” Journal of statistical physics, vol. 106, no. 1, +pp. 187–199, 2002. +[125] F. Dubois and P. Le Floch, “Boundary conditions for nonlinear hyperbolic systems of +conservation laws,” Journal of Differential Equations, vol. 71, no. 1, pp. 93–122, 1988. +[126] P. Mazet and F. Bourdel, “Analyse num´erique des ´equations d’euler pour l’´etude des +´ecoulements autour de corps ´elanc´es en incidence,” CERT Report, no. 1/3252, 1986. +[127] V. Popkov and G. M. Sch¨utz, “Shocks and excitation dynamics in a driven diffusive +two-channel system,” Journal of statistical physics, vol. 112, no. 3, pp. 523–540, 2003. +155 + +[128] F. Rezakhanlou, “Microscopic structure of shocks in one conservation laws,” vol. 12, +no. 2, pp. 119–153, 1995. +[129] E. D. Andjel, M. D. Bramson, and T. M. Liggett, “Shocks in the asymmetric exclusion +process,” Probability Theory and Related Fields, vol. 78, no. 2, pp. 231–247, 1988. +[130] H. Van Beijeren, “Fluctuations in the motions of mass and of patterns in one- +dimensional driven diffusive systems,” Journal of statistical physics, vol. 63, no. 1, +pp. 47–58, 1991. +[131] P. A. Ferrari, C. Kipnis, and E. Saada, “Microscopic structure of travelling waves in +the asymmetric simple exclusion process,” The Annals of Probability, vol. 19, no. 1, +pp. 226–244, 1991. +[132] P. A. Ferrari and C. Kipnis, “Second class particles in the rarefaction fan,” vol. 31, +no. 1, pp. 143–154, 1995. +[133] O. Angel, “The stationary measure of a 2-type totally asymmetric exclusion process,” +Journal of Combinatorial Theory, Series A, vol. 113, no. 4, pp. 625–635, 2006. +[134] P. A. Ferrari and J. B. Martin, “Stationary distributions of multi-type totally asym- +metric exclusion processes,” The Annals of Probability, pp. 807–832, 2007. +[135] T. Sepp¨al¨ainen, “Hydrodynamic scaling, convex duality, and asymptotic shapes of +growth models,” 1996. +[136] T. Sepp¨al¨ainen, “Existence of hydrodynamics for the totally asymmetric simple k- +exclusion process,” The Annals of Probability, vol. 27, no. 1, pp. 361–415, 1999. +[137] T. Sepp¨al¨ainen, “Translation invariant exclusion processes (book in progress),” Uni- +versity of Wisconsin, Department of Mathematics, 2008. +[138] A. Benassi, J.-P. Fouque, E. Saada, and M. E. Vares, “Asymmetric attractive particle +systems on z: hydrodynamic limit for monotone initial profiles,” Journal of statistical +physics, vol. 63, no. 3, pp. 719–735, 1991. +[139] E. D. Andjel and M. E. Vares, “Hydrodynamic equations for attractive particle systems +on z,” Journal of statistical physics, vol. 47, no. 1, pp. 265–288, 1987. +[140] T. E. Harris, “Additive set-valued markov processes and graphical methods,” The +Annals of Probability, pp. 355–378, 1978. +[141] T. M. Liggett and T. M. Liggett, Interacting particle systems, vol. 2. Springer, 1985. +[142] T. Mountford and H. Guiol, “The motion of a second class particle for the tasep starting +from a decreasing shock profile,” Annals of Applied Probability, pp. 1227–1259, 2005. +[143] E. Cator and L. P. Pimentel, “Busemann functions and the speed of a second class +particle in the rarefaction fan,” The Annals of Probability, vol. 41, no. 4, pp. 2401–2425, +2013. +156 + +[144] E. Cator and L. P. Pimentel, “Busemann functions and equilibrium measures in last +passage percolation models,” Probability Theory and Related Fields, vol. 154, no. 1, +pp. 89–125, 2012. +[145] M. Kac, “Random walk in the presence of absorbing barriers,” The Annals of Mathe- +matical Statistics, vol. 16, no. 1, pp. 62–67, 1945. +[146] R. R. Weber, “The interchangeability of·/m/1 queues in series,” Journal of Applied +Probability, vol. 16, no. 3, pp. 690–695, 1979. +[147] T. Lehtonen, “On the ordering of tandem queues with exponential servers,” Journal +of Applied Probability, vol. 23, no. 1, pp. 115–129, 1986. +[148] A. G. R´akos and G. Sch¨utz, “Bethe ansatz and current distribution for the tasep +with particle-dependent hopping rates,” Markov Processes and Related Fields, vol. 12, +pp. 323–334, 2006. +[149] F. Spitzer, “Interaction of markov processes,” in Random Walks, Brownian Motion, +and Interacting Particle Systems, pp. 66–110, Springer, 1991. +157 + diff --git a/TdE2T4oBgHgl3EQftAiy/content/tmp_files/load_file.txt b/TdE2T4oBgHgl3EQftAiy/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..14d674dab8e87ea5aff45c01a0da0195d38100f1 --- /dev/null +++ b/TdE2T4oBgHgl3EQftAiy/content/tmp_files/load_file.txt @@ -0,0 +1,6327 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf,len=6326 +page_content='´Ecole Doctorale EM2PSI (ED 405) TH`ESE DE DOCTORAT sp´ecialit´e : physique th´eorique Soutenue le 29 Novembre 2022 Ali Zahra Multi-Species Generalization of the Totally Asymmetric Simple Exclusion Process Integrability and Hydrodynamic Aspects Pr´esent´ee en vue de l’obtention du grade de DOCTEUR Dirig´ee par : Luigi Cantini Jury de soutenance Kirone Mallick Directeur de recherche CEA (IPhT-Saclay) Rapporteur Gunter M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Sch¨utz Professeur IST (Universidade de Lisboa) Rapporteur Flora Koukiou Professeur CNRS (CY Universit´e) Examinateur Sylvain Prolhac Maitre de conf´erence IRSAMC (Universit´e Paul Sabatier) Examinateur Filippo Colomo Charg´e de recherche INFN (Sezione di Firenze) Examinateur Jean Avan Directeur de recherche CNRS (CY Universit´e) Examinateur Luigi Cantini Maitre de conf´erence CNRS (CY Universit´e) Directeur de th`ese arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='04066v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='stat-mech] 10 Jan 2023 CERGYPARIS CY UNIVERSITELPTM LaboratoiredePhysigue Theorigue et ModelisationAbstract Exclusion processes in one dimension first appeared in the 70s and have since dragged much attention from communities in different domains: stochastic processes, out of equilibriums statistical physics, and more recently integrable systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' While the state of the art for a single species totally asymmetric simple exclusion process (TASEP) can be described, from different aspects as mature, much less is known when multiple interacting species are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Using tools from integrable systems and hydrodynamics in the first place and stochastic processes in the second place, this work attempts to study the behavior of a novel version of the model with different species of particles having hierarchical dynamics that depend on arbitrary parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' While Burger’s equation famously represents the hydrodynamic limit of TASEP with a single species, we present a counterpart coupled system of PDE representing the hydrodynamic limit for a model with two species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The solutions of these PDEs display a rich phenomenology of solutions best characterized through the underlying normal modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We discuss the associated Riemann problem and validate our results with numerical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This system with two species can be used as a toy model for studying driven diffusive systems with open boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Using heuristics, we present results suggesting a general principle governing the boundary induced phase diagram of systems with multiple coupled driven conserved quantities, generalizing thus the extremal current principle known for the case of a single driven quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The integrability side of our study is mainly concerned with developing a formalism allowing the computation of the finite-time probability distribution of particle positions on the 1D lattice, generalizing therefore known results for TASEP and other multi-species models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We finally study the behavior and the impact of a single second class impurity initially located at the interface separating two regions of different densities of first class particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Different limit shapes are deduced and observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Using tools from probability theory, we generalize the asymptotic speed properties of the impurity for a regime of the hopping parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' R´esum´e Les processus d’exclusion `a une dimension sont apparus pour la premi`ere fois dans les ann´ees 70 et ont depuis attir´e beaucoup d’attention de la part des communaut´es dans diff´erents do- maines : processus stochastiques, physique statistique hors ´equilibre, et plus r´ecemment syst`emes int´egrables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Alors que l’´etat de l’art pour un processus d’exclusion simple totale- ment asym´etrique (TASEP) d’une seule esp`ece peut ˆetre d´ecrit, sous diff´erents aspects comme mature, on en sait beaucoup moins lorsque plusieurs esp`eces en interaction sont pr´esentes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' En utilisant des outils issus des syst`emes int´egrables et de l’hydrodynamique en premier lieu et des processus stochastiques en second lieu, ce travail tente d’´etudier le comporte- ment d’une nouvelle version du mod`ele avec diff´erentes esp`eces de particules ayant une dy- namique hi´erarchique qui d´epend de param`etres arbitraires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Alors que l’´equation de Burger repr´esente la limite hydrodynamique de TASEP avec une seule esp`ece, nous pr´esentons un syst`eme coupl´e d’EDP repr´esentant la limite hydrodynamique pour un mod`ele avec deux esp`eces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Les solutions de ces EDP pr´esentent une riche ph´enom´enologie de solutions mieux caract´eris´ee par les modes normaux sous-jacents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Nous discutons du probl`eme de Riemann associ´e et validons nos r´esultats par des simulations num´eriques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Ce syst`eme `a deux esp`eces peut ˆetre utilis´e comme un mod`ele jouet pour ´etudier les syst`emes diffusifs pilot´es avec des bords ouverts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' En utilisant des heuristiques, nous pr´esentons des r´esultats sugg´erant un principe g´en´eral r´egissant le diagramme de phase induit par les fronti`eres des syst`emes avec de multiples quantit´es conserv´ees coupl´ees, g´en´eralisant ainsi le principe du courant extr´emal connu pour le cas d’une seule quantit´e entraˆın´ee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' L’aspect int´egrabilit´e de notre ´etude con- cerne principalement le d´eveloppement d’un formalisme permettant le calcul de la distribu- tion de probabilit´e en temps fini des positions des particules sur le r´eseau `a 1D, g´en´eralisant ainsi les r´esultats connus pour TASEP et d’autres mod`eles multi-esp`eces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Nous ´etudions enfin le comportement et l’impact d’une seule impuret´e de seconde classe initialement situ´ee `a l’interface s´eparant deux r´egions de densit´es diff´erentes de particules de premi`ere classe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Diff´erentes formes limites sont d´eduites et observ´ees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' En utilisant des outils de la th´eorie des probabilit´es, nous g´en´eralisons les propri´et´es de vitesse asymptotique de l’impuret´e pour un r´egime des taux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 1 Acknowledgment First and foremost, I would like to thank my supervisor Luigi Cantini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Working with him has been simply great.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Our meetings have always been a source of inspiration to me.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' I can’t be grateful enough to him for what I learned during my Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Besides all of the scientific side, his support and kindness are exceptional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' I am thankful to all the members of jury for having kindly accepted to evaluate this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Most of them had to make a long trip to physically attend my defense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' I would like to thank the two reporters who put a remarkable effort into reading my manuscript and writing the reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Their comments and suggestions have been very useful for improving the quality of this dissertation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' I want to thank all the members of LPTM, who made this lab such a great environment both on the professional and social levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The lunch breaks with Jean Avan and Genvieve Rollet are always rich in culture and humor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' I’m indebted to both of them for the generous support they offered to me on multiple occasions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A particular thanks go to Andreas Honecker who has been always very kind and helpful starting from my Master year and throughout the following years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' I had plenty of pleasure sharing teaching duties with Guy Trambly de Laissardi`ere, Jean Philippe Kownacki, Claire Pinette, Genevi`eve Rollet and Andreas Honecker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' They were always generous with their insightful pedagogical hints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' I would like to thank the administrator of our lab Sylvie Villemin who is always there to help with a big smile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' I want to thank my friends and family for their continuous encouragement and support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This text has been linguistically checked and refined thanks to the effort of my friends Laurence Verges, Dovile Jankauskaite, Ibrahim Saideh and Marta Pedrosa Garc´ıa- Moreno.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Finally, I want to thank the doctoral school EM2PSI for their financial support through the doctoral contract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 2 Contents 0 Introduction 6 1 Introduction to conservation laws 17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Scalar conservation laws .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Introduction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Method of characteristics .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 Weak solution, Rankine-Hugoniot condition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4 Non-unicity of weak solutions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='5 Hopf’s treatment of the Burgers equation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 23 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='6 Kruˇzkov entropy condition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 26 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='7 Relation to Hamilton-Jacobi equation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='8 Riemann problem .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 33 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Hyperbolic Systems of Conservation Laws .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 A linear system .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Weak solutions, the Rankine-Hugoniot condition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 The shock curves .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 37 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4 Admissibility conditions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 38 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='5 Rarefaction Curves .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='6 T-curves .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 41 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='7 The Riemann Problem .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 41 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='8 Riemann Variables .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 42 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='9 Temple Class Systems .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 43 2 Hydrodynamic behavior of the two–TASEP 46 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Introduction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 46 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Currents .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 48 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 The z variables .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 50 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Behavior at the boundary of the physical domain .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 52 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 Conservations laws .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 53 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 The cases α = β = 1 and α + β = 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 54 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 The general case: Riemann variables .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 55 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 Shocks .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 57 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4 Riemann’s problem .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 60 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4 Monte Carlo simulations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 61 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='5 Conclusion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 63 3 Integrable tools for the exclusion process 65 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Exclusion process on the line .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 66 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Exact solution for TASEP on the line .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 66 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Adding second class particles .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 72 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 Multispecies exclusion process with arbitrary hopping rates .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 73 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Exclusion process on the ring .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 85 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Coordinate Bethe Ansatz for a defect in the ring .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 85 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Algebraic Bethe Ansatz for The Exclusion Process on the ring .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 91 4 Boundary-induced phase transitions in multi-species driven diffusive sys- tems 104 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Introduction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 104 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Outlines and main result: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 106 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Extremal current principle revisited .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 108 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 The Riemann problem perspective .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 109 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Vanishing viscosity approach: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 111 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 The case of a multi-species driven diffusive system .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 112 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Proof of the principle .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 114 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4 Applications .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 114 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Open boundaries 2-TASEP with arbitrary hopping rates .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 114 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Limits of the method and open questions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 118 5 Effect of a single second class particle 119 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Introduction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 119 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Notations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 120 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Invariant measure for TASEP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 120 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 Convergence of density field: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 121 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4 Harris graphical representation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 122 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='5 Basic tool: Coupling .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 122 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='6 Second class particle with unity rates in a rarefaction fan .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 123 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='7 Matrix Product Ansatz for second class particle on the ring .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 124 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 A defect in a step initial profile .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 126 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 1-0 initial condition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 127 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Non escaping particles .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 130 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 Density field profile and the second class particle .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 130 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4 ν − µ step initial configuration .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 134 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='5 The case of ν > µ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 135 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='6 The case of ν < µ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 137 4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='7 A uniform vanishing density of second class particles: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 140 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 Speed process of a defect in a step initial configuration .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 141 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Probability distribution of a second class particle of arbitrary rates in a step initial configuration .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 143 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Appendix .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 145 5 CHAPTER 0 Introduction Statistical physics at equilibrium is one of the most impressive success stories in physics, it allows us to explain the properties of matter surrounding us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Its mathematical foundations are well established too [1] [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Given a Hamiltonian system, one can find the probability distribution of microscopic states as the one that maximizes the entropy, so for a system coupled to a reservoir, this probability is given by the Boltzmann-Gibbs ensemble Peq(C) = 1 Z e−H(C)/kBT (1) This allows in principle to compute all physical quantities such as free energy and correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' To perform these computations, one often needs approximation methods such as the mean-field approach, the renormalization group, and series expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Analytical exact expressions are possible only for a minor number of models giving them a major role in the theory [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A prominent pioneer example is the Ising model in 2D, that was solved by Lars Onsager in 1944 [4] and for which critical exponents were computed exactly for the first time and were different from the mean-field ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This had a major impact in understanding the the critical behavior around phase transition in equilibrium statistical physics and paved the way for the emergence of the idea of universality where this behavior depends in many situations only on the dimensionality and the symmetries of interactions [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' However, most of the collective phenomena going on in nature are out of equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If one defines systems out of equilibrium as merely the complementary set of systems at equilibrium, then this set is so vast that it is not reasonable to expect it to have some common theoretical features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' So we are usually led to work within a particular setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' For instance, in closed quantum systems, we typically consider particular schemes of a time-dependent Hamiltonian that makes the problem tractable [5] common examples include periodic driving, where the Hamiltonian has a time periodicity H(t) = H(t+τ) [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Another one is quantum quenching, for which a system is prepared at the ground state of a time-independent Hamiltonian, and at some instant, we suddenly turn on a perturbing Hamiltonian and observe the dynamic evolution of the system till thermalization [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' These systems are often hard to analyze analytically, and even 6 numerically using only a classical computer, they rather require quantum simulators such as the ones based on ultracold atoms in optical lattices [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Most importantly, quantum systems in nature are usually not closed but rather coupled to an environment, they thus exhibit decoherence and their effective behavior collapses in many situations to non-Hamiltonian stochastic evolution, see chapter 8 of [9] for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This brings us to the focus of this dissertation, which is the stochastic systems out of equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In particular, we will be considering Markovian systems, which are as well adapted to classical Hamiltonian systems at the mesoscopic time scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In such systems the stochastic evolution depends only on the current configuration of the system, and not on its history, in other words, these systems don’t have intrinsic memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Mathematically, the relevant information about the system is reduced to the set of transition rates between the different microscopic configurations, denote wC′→C the hopping rate from the configuration C′ to the configuration C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Once these rates are known, one can write the evolution equation of the probability distribution over the configuration space 1 dP(C) dt = � C′̸=C wC′→CP(C′) � �� � gain − � C′̸=C wC→C′P(C) � �� � loss This is called the master equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' It can be written in a compact form: dP dt = MP, where M is called the Markov matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' MC,C′ := wC′→C for the off-diagonal elements, and MC,C = − � C′̸=C wC→C′ for the diagonal ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Starting form some initial probability distribution over the configurations, and evolving in time with a Markov operator, the system relaxes in time to a stationary state for which the probability weights are static.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 2 If π is the this stationary distribution, it should verify Mπ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In other words, this is the eigenvector corresponding to the zero eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The stochastic structure of the Markov matrix makes it so that all the other eigenvalues have a negative real part, so they correspond to decaying modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The eigenvalue with the largest non zero real part provides an estimation (through its inverse) of the typical relaxation time of the system, which is a relevant physical observable quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The Markovian framework is adapted for both equilibrium and out equilibrium systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In the equilibrium case, although the Boltzmann-Gibbs doesn’t tell us about the transition rates, it is always possible to assume detailed balance, meaning that there is no net probability current between any two configurations at equilibrium, this is expressed as: Peq(C)wC→C′ = Peq(C′)wC′→C Given a system satisfying detailed balance, if we record its time evolution, we can’t tell in which direction the film is played.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' So, this is equivalent to time reversibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The existence of a distribution verifying the detailed balance can be expressed as a restriction on the elements of the Markov matrix, known as the Kolmogorov criteria 3,which states that around any closed cycle of states, there is no net flow of probability, for example, 1Assume this space is countable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The more general framework is briefly mentioned in chapter 5 2For an infinite system, these weights might not be normalisable, and it’s more accurate to speak about an invariant measure, as it will be explained in chapter 3 3Although Kolmogorov implies the existence of detailed balance, the opposite implication is valid only for irreducible Markov chain, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' chains for which any state is accessible from any other state (not necessarily directly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 7 for any three configurations, we should have: w1→2w2→3w3→1 = w1→3w3→2w2→1, [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The simplest way to create a system out of equilibrium is to take a system in equilibrium and to perturb it slightly so that it is driven out of its equilibrium distribution, which breaks the detailed balance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Linear response theory is adapted to deal with this situation [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='It applies typically to a system with a small gradient of thermodynamic variables inducing purely diffusive currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Reciprocity relations over the elements of the diffusion matrix were revealed by Onsager based on the local microscopic time reversibility of the interactions and were the origin of his Nobel Prize in chemistry in 1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Another basic situation to be out of equilibrium is to have a configuration C such that wC→C′ = 0 for all C′ and wC′→C ̸= 0 for some C ′, the state C is called an absorbing state, once the system reaches it, it cannot get out of it, this creates a uni-directional probability currents towards the absorbing state and ensures being out of equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' An example for these systems is a model of the spread of an epidemic, a recovered population would be an absorbing state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Although, universal behaviors have been observed for absorbing state phase transitions, most notably the direct percolation universality class where universal critical exponents were observed [12] [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' However, this model is not exactly solvable, so the critical exponents are known only approximately through numerical means.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A remarkable setting where we both have exactly solvable models with non-equilibrium steady state(NESS) [14], is the driven diffusive systems, they can be thought of,for instance, as a gas of charged particles with a driving electromagnetic force breaking the space isotropy and inducing a permanent current even when the system is homogeneous [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' They can be of course defined on the continuous space and for an arbitrary dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' However, we will only consider lattice gas models defined on the lattice in 1D, this choice is justified by the availability of an exactly solvable toy model, that is as well relevant for applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This model is the Asymmetric Simple Exclusion Process (ASEP), which is considered a paradigmatic model for driven diffusive systems in general and transport models in 1D in particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' It’s often as well described as the Ising model for out-of-equilibrium statistical physics4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Let’s provide a definition and review briefly its most elementary properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' These properties can be found in details in few classical reviews on the topic, for instance: [16] [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The Asymmetric Simple Exclusion Process This model is defined as a gas of identical particles on the Z lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Each particle is a random walker in continuous time, it hops forward at a rate p, but only if the site in front of it is empty, and can hop backward at a rate q, only if the site behind is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' So there is a hardcore exclusion between the particles that leads to a maximum number of one particle per site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The initial motivation and context of the appearance of the model will be mentioned latter in this introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A simple particular case is when p = q then the model is called SSEP (Symmetric Simple Exclusion Process),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' this model is not out of equilibrium,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' it’s easy to understand that there is no average current and that detailed balance is conserved,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' however,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' this particular case is still relevant either from a mathematical point of view where it has been historically the first case to be solved exactly by mapping it to 4The same claim is made for the directed percolation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' however,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' integrability makes the analogy to the Ising model more relevant for ASEP 8 spin chains,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' or sometimes it can be seen as a critical system where we have a transition between non-equilibrium and equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Another particular case that is interesting for many reasons is when the particles move only in one direction, take for instance q = 0, we speak here about the Totally Asymmetric Simple Exclusion Process (TASEP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We can set p = 1 by a change of the scale of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This particular case allows, in many cases, for exact computations that are much harder for the general ASEP, so it provided the simplest out-of-equilibrium exactly solvable model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Figure 1: The corner growth process as an interpretation of TASEP What adds to the interest of TASEP is that it has different interpretations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' For instance, it can be mapped to a surface growth model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This was first pointed out by Rost [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Let a 2D surface with an upper boundary represented by an affine continuous function h(x, t) defined up to an additive constant and verifying: h(j + 1 2, t) − h(j − 1 2, t) = � −1 if the site at j is occupied 1 if the site at j is empty (2) One can understand that the time evolution of the TASEP corresponds to a random growth process of the surface, figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Another interesting interpretation of TASEP is in terms of queuing theory: The particles can be though of as servers and the voids as clients, so each server has a queue of clients in front of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' When a particle jumps, a client is served, this client will queue up in the queue belonging to the following server, and waits again for its turn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This image was exploited by [19] who found the invariant measure for TASEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' More details are in the introduction of chapter 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Different types of boundary conditions are possible for ASEP, each has its own interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' They are illustrated in figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Let’s look at the most classical properties ASEP on the ring, and TASEP with open boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' ASEP on the ring The periodic boundary condition is the simplest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' it’s almost a trivial, yet pedagogical ex- ercise to find the stationary state for ASEP with periodic boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Consider a configuration composed of l blocks of particles, where a block is a set of adjacent particles surrounded by voids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The system can leave or join the configuration only by the front or the backs of a block: 9 (a) q p × × (b) α δ Left Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' β γ Right Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' (c) Figure 2: Different boundary conditions for the exclusion process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' (a) Peri- odic boundary condition where the sites are identifiable to Z/LZ, L being the number of sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' (b) ASEP on the line;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' the lattice is Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' (c) Open boundary conditions, where we have a finite number of site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The system is coupled to a reservoir on the left where particles can hop inside at a rate α if the first site is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If it is not, then the occupying particle can escape the system at a rate δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Similar mechanism occurs on the right but with different rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' • • • ◦ q p • • ◦ • ◦ • • ◦ p q Now it’s easy to understand that if we chose a uniform probability distribution for the configurations (each configuration has a probability Peq), then each of the escaping rate and the entering rate will be equal to l(p + q)Peq which leads to a stationary system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If there are M particles and N sites, each configuration will have the probability: Peq = 1/ �N M � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Now the current can be found exactly by choosing a site and counting the number of configurations such that this site is occupied and followed by a void or the other way around: J = pE(•◦) − qE(◦•) = (p − q) �N−2 M−1 � �N M � = (p − q)M N (M − N M − 1 ) → (p − q)ρ(1 − ρ) where the limit is taken for infinite N and M and keeping a fixed ratio ρ := M N which is the average density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We notice that this expression in the limit of a large system is the same as one obtained by a mean field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We will briefly see in chapter 5 that this is due to the fact that the product measure is invariant for ASEP in an infinite system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Hydrodynamic behaviour of TASEP Now imagine a system with an average local coarse-grained density changing over space and time ρ(x, t), regardless of the boundaries,consider the TASEP case, we can write a 10 conservation equation associated with the previous expression of the current, ∂tρ + (1 − 2ρ)∂xρ = 0 This equation is called the non-viscous Burgers equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Its more precise meaning will be given later in this introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' However, note that 1 − 2ρ expresses the speed of the front wave around the density ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Note that it is a decreasing function of the density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If we have an increasing initial profile of density over space, then the upper parts will move faster than the lower parts, creating an even steeper profile, till we finally reach a discontinuous profile that is called a shock, cite 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This shock is not static, if the density on its left is ρL and on its right is ρR then the speed of the shock is given 1 − ρL − ρR, as we will see in chapter 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' On the other hand, if the initial profile is decreasing as a function of the space, then its slope will get even smaller, and the solution will stay regular, more details will be provided in chapter 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' x ρ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='5 t = 2 t = 1 t = 0 Figure 3: Illustation of the formation of the shocks in Burgers equation as a result of the group velocity v = 1 − 2ρ TASEP with open boundaries Consider TASEP with open boundaries where particles can hop inside the system from the left at rate α if the first site is empty, and can leave the system from the right at rate β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The left boundary behaves as if has a density ρR = α, and the right boundary behaves as if it has a density ρL = 1 − β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Now, it is possible to sketch most of the behavior of the system using a heuristic hydrodynamic approach based on the front wave speed v = 1 − 2ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Note first that if α < 1 2 then vL = 1 − 2α > 0, so there is a kinetic wave at density α trying to penetrate the system from the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If β < 1 2 then vR = 1 − 2(1 − β) = 2β − 1 < 0, so now the kinetic wave of density 1 − β is trying to enter from the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Now, we can distinguish four cases, figure 4 α < 1 2 and β > 1 2, only the wave from the left is entering the system, and it will reach the bulk, so we have a system dominated by a density α < 1 2, this phase is called a low-density phase (LD) α > 1 2 and β < 1 2, the opposite of the previous situation, the bulk density will be 1 − β > 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This is called a high-density phase (HD) α < 1 2 and β < 1 2, both of kinetic waves are entering the system, so will create a shock that moves at a speed 1 − ρL − ρR = β − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If this speed is positive then the left 11 α β 1 2 1 1 MC LD HD Figure 4: Boundary induced phase diagram of TASEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' LD: Low-density phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' HD: high-density phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' MC: Maximal current phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The blue line represents boundaries where a phase order phase transition occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The orange line rep- resents a second-order phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The bulk density can be regarded as the order parameter boundary dominates the bulk, extending the low-density phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Otherwise, the right boundary wins and the system is in the high-density phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' α > 1 2 and β > 1 2, then both of the waves are leaving the system, creating a phase where the current is maximal (MC) and the bulk density is 1 2 This qualitative hydrodynamic approach has been confirmed by an exact solution [20] by solving recursion relations of the probability profile on the size of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The boundary induced phase transition for TASEP is one of the simplest for driven diffusive systems, and it paved the way for developing a more general principle describing the boundary-induced phase transitions of any system with a single driven quantity [21] [22], [23], [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We will see how it will be generalized in chapter 4 for systems with multiple coupled driven quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A brief historical perspective: Let’s now stop at the most prominent stations during the lifetime of the model that was an inspiration to our work: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1968, MacDonald, Gibbs, and Pipkin first proposed ASEP [25]in the context of transport in biology modeling the situation of multiple enzymes copying sequentially from the same DNA template.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' They actually introduced a more general version of ASEP where the exclusion rule extends over L neighboring sites rather than just one, so particles can’t have a distance less than L 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' They found using a mean-field analysis, the expression of the current for a uniform ρ density system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In addition, they sketched the 5Or equivalently, as the original formulation, they are not particles, but segments of length L 12 main features of the behavior of ASEP with open boundaries using the hydrodynamic approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1978, Alexander and Holstein [26] mapped the master equation for SSEP to the Heisenberg spin chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Since this spin chain was diagonalized exactly by Bethe in 1931, this sparked the interest of the integrability community in particle systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The mapping was later extended to various other one-dimensional reaction-diffusion processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Check [27] for an early review which highlighted the underlying Heck algebra that is common among the evolution operators of that family of models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1992 Gwa and Spohn [28] mapped ASEP to XXZ spin chain, which allowed them to diagonalize the Markov matrix using Bethe Ansatz and to estimate the relaxation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' More details will be provided in chapter 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1981, Rost [18] noticed that if time and space are scaled in the same way (in other words, you compress the space and accelerate the time with the same large factor), the corresponding density profile converges to a deterministic limit shape given by Burgers equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The limit shape is properly defined for the height function through a hydrodynamic scaling: ρ(x, t) = ∂x lim ϵ→0 ϵh(xϵ−1, tϵ−1), (3) where the macroscopic density is the physical solution of Burgers equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 6 Although this result is true for any initial condition, Rost proved it with a step initial profile, all negative sites are occupied, and all positive sites are empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This initial profile plays a role comparable to that of quench in quantum out-of-equilibrium systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The limit shape with this initial condition is: ρ(x, t) = � � � � � 1 if x < −t 1 2(1 − x t ) if − t < x < t 0 if x > t (4) And the height will have a limit shape: lim t→∞ h(vt, t) t = � |v| if |v| < 1 1 2(v2 + 1) if − 1 < v < 1 (5) Although the Burgers equation existed much earlier, it was the first time the exclusion process was proposed as a microscopic description of the Burgers equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1991, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Ferrari, while studying the shocks fluctuation of ASEP [29], introduces a second class particle, this particle jumps as a normal particle when the following site is empty: 20 → 02, but the normal particle (named first class) see it as void, and can thus swap with it: 12 → 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The second-class particle can’t overtake the first-class particle, hence the terminology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This particle was introduced as a means to identify 6As we will see in the next chapter, a weak form of Burgers equation admits unstable solutions that we refer to as non-physical 13 microscopically the shock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' It was inspired by the basic coupling technique introduced by Ligget [30] for TASEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In the same year Ferrari, Kipnis and Saada proved that if a second-class particle is added to the origin of a rarefaction fan, it will choose a random asymptotic speed within the available ones with a uniform measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Soon the second- class particle attracts the attention of a wider audience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1993, Derrida, Janowsky, Lebowitz, and Speer [31] determine the shock profile as seen from the perspective of a second-class particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Not much later, the second-class particle acquires an interest on its own besides its role as a theoretical mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1996, Derrida [32] and Mallick [33] generalized this concept into a defect or impurity, which is a second-class particle that can jump with an arbitrary hopping rate and can be taken over with another arbitrary rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This was the birth of a new model: the two species TASEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1997 Sch¨utz [34] obtained for TASEP on the infinite line, an exact expression for the conditional probability P(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=', xN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' t|y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=', yN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 0) of N particles being at positions {x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=', xN} at time t given their initial positions {y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=', yN} at time zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The result is obtained using Bethe Ansatz and was expressed as an N ×N determinant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This was an early result connecting TASEP to the domain of integrable probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Tracy and Widom generalized it to ASEP [35] [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Latter Tasep with second class particles was treated by Chatterjee and Sch¨utz [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This will be reviewed and extended in chapter 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1993, the exact phase diagram for of TASEP with open boundaries was derived in two independant papers: Sch¨utz and Domany [20] solved recursion relations on the size of the system for the stationary state, allowing its explicit expression, and discussed the phase diagram in terms of the dynamics a domain wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The second paper is [38] where Derrida, Evans, Hakim and Pasquier determined this stationary state using a Matrix Product Ansatz (MPA) formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This opened the door for a series of cases where a non-equilibrium steady state is expressed in a matrix product form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' For a pedagogical review check [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A brief explanation of MPA will be provided in chapter 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In 1999, Johansson [39] revealed a connection to Random Matrix Theory (RMT) that triggered an impressive quantity of subsequent investigations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This is important to out-of-equilibrium statistical physics in particular because RMT has been a gold mine for universal behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Let’s state the main result: lim t→∞ Prob � h(vt, t) > 1 + v2 2 t � �� � Limit shape −s (1 − v2)2/3 21/3 t1/3 � �� � Fluctuations � = FGUE(s) (6) where FGUE is the cumulative Tracy–Widom distribution, precisely, it is the dis- tribution of the rescaled largest eigenvalue λmax of random matrix sampled from the Unitary Gaussian Ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If n × n is the size of the matrix, this eigenvalue grows as √ 2n and fluctuates with a standard deviation of n− 1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Then we have: FGUE(s) := limn→∞ Prob((λmax − √ 2n) √ 2n 1 6 < s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The term 1+v2 2 represents the speed of the growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The most important information in that equation is the exponent 14 in t1/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' It has been previously conjectured that this growth model belongs to the KPZ universality class, and thus fluctuates as t1/3 however, it was the first time this was proven and the only model for which it was proven rigorously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' To make sure that 6 is appreciated correctly, one can compare to the central limit theorem, where t1/3 plays the role of t1/2 and FGUE plays the role of the integral of a Gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The poof of the previous result is based on combinatorics, there is a correspondence with the problem of the distribution of the length of the longest increasing subsequence in a random permutation that has the same limiting distribution [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' From single-species to multi-species TASEP The exclusion process, and TASEP in particular, is far from being only a mathematical model in 1D that theoretical physicists get excited about.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' It is used as a mesoscopic vehi- cle model in the field of traffic flow, for instance, the phase diagram for TASEP with open boundaries is celebrated in the traffic literature [41] [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' However, this model is too ideal- ized to be applied to real systems, It’s rather only suited for one-lane, one-direction identical vehicles on a homogeneous freeway with no accidents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We all know how is it in daily situ- ations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A similar narrative can be made regarding intracellular transport in biology where the exclusion process is still relevant, for instance in molecular motor proteins moving along micro-tubules filaments [43] [44], but again, real transport in cellular biology involves com- plex phenomena not counted by TASEP, such as the existence of multiple types of molecules transported on the same filament.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' See figure 5 for an example of transport molecular motors in neurons, studying this transport phenomenon has been relevant for the understanding of brain function, development, and disease [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Figure 5: Molecular transport on an axon, the main nerve fiber of a neuron, featuring different types of molecular motors, adapted from [45] Hence the need for a model taking into account the presence of different types of particles that have different rates and that can swap between each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In this model the exclusion rule is still valid as well as the local update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Different species swap with arbitrary entra- species rates: (•• → ••) with rate τ•• For this model to be exactly solvable, some restrictions have to be obeyed by the rates as we will see in chapter 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In the particular case of two species + void, it’s enough to assume hierarchy for the model to be exactly solvable, meaning that if we denote the particles as 15 AMPA RNA NMDA Receptor granule Receptor GRIP11 KIF5 LIN7 (Velis) Dendrite KIF5 LIN2 (CASK) KIF17 LIN10 (Mint 1) KIFC2 Cytoplasmic Dynein Glycine Multivesicular body-like Receptor organelle0, 1, 2, the only possible swaps are: 10 → 01, 20 → 02, 12 → 21 with arbitrary rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This model was first introduced by Derrida [32] and Mallick [33] for a single second-class particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Cantini later found the currents for an arbitrary number of defects [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This model, besides its applications, represents a much richer spectrum of phenomenology compared to TASEP, even when the simplest questions are asked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The objective of this dissertation is to be a building block for the bulk of knowledge for the 2-species exclusion process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Novelties of this work: Addressing the hydrodynamic behavior of two species TASEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Although the rigorous convergence to the limit shape is a mathematically subtle question, we will rather make use of the integrability of the model that provides the currents and solves coupled con- servation partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The solutions are substantially more complex and rich than the TASEP one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This is the subject of our publication [47] which is included as in chapter 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We provide in chapter 3 a framework allowing the calculations of finite time conditional probability for the position of a finite number of particles of multiple species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The formalism can be though of as a stochastic vertex model and leads explicit formulas in particular situations, generalizing the work of Sch¨utz [34] and Sch¨utz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' [37] We investigate in chapter 4 a method that allows to determine the steady state of a driven diffusive system with multiple driven coupled quantities, generalizing thus the extremum current principle proposed by Krug [21], Sch¨utz and others [22], [23], [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This method is operational even for models where the stationary measure is not a product measure, completing thus other method proposed in [48] [49] [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We apply this formalism to multiple particle models, 2-TASEP being one of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In Chapter 5, we treat the question of the interaction between a defect particle and a density field for TASEP on the line with a Riemann initial condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Besides the different phenomenology encountered, we expand the proof of the uniform density for the asymptotic speed for the case of a step initial profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' For the unfamiliar reader, the first chapter is dedicated to providing all the necessary tools from the domain of conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This is required for the second chapter as well as the fourth one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Each of chapters 3,4 and 5 will be the core of a future separate publication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 16 CHAPTER 1 Introduction to conservation laws In 1757, Leonhard Euler wrote in his memoir ”Principes g´en´eraux du mouvement des fluides” an equation for the conservation of momentum and another for the mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' These equations were among the first partial differential equations ever written [51, 52] and raised the ini- tial problems that led later to the development of the domain of conservation laws with widespread applications in physics and chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' From a mathematical point of view, they are often qualified as hyperbolic due to their wavelike solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Yet, they are famous for having shocks singular solutions, requiring mostly an ad-hoc mathematical framework and placing them often in the last chapter of PDE textbooks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Despite being an old subject, re- search is still active in the domain [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Although the space multi-dimensional conservation laws are nowadays an exciting frontier of research, we restrict our presentation to 1D space, focusing mainly on the aspects related to the needs of the other chapters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This essay starts with a discussion of scalar conservation laws in section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1, with an emphasis on the techniques that are generalizable to non-scalar systems with multiple cou- pled conserved quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In particular, the stability conditions for the weak solution are discussed in details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Burgers equation is used as a toy example for the scalar laws, the ver- sion used here is ut + uux = 0 which is slightly simpler than the TASEP one but completely equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A flavor of the vanishing viscosity method is given in section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='5 during Hopf’s treatment of the Burgers equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This method will be relevant to chapter 4 when dealing with multiple conservation laws in a system with open boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2, we review the most classical features of systems of conservation laws, this provides the background necessary for chapter 2 where we solved a system with two conserved quantities resulting from a scaled two species TASEP model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We finish this section with a brief discussion of a particular family of conservation laws known as the Temple class, which has a curious connection with integrable models that we briefly investigate on the hydrodynamic level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Despite that in section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='7, we present the Hopf-Lax formula that allows formally to treat a wide class of initial conditions, the focus is later given only to the Riemann initial condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The relevance of the Riemann problem can be compared to quenching in a quantum system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' it’s a popular procedure that provides insights into the dynamical behavior 17 of the system and has been used in chapter 2 for the 2-species TASEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This chapter is largely mathematical and mostly based on classical texts [54–56], [55], [56], [57], [58], [59], [60], [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Scalar conservation laws 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1 Introduction In this part we consider a single unknown function: u(x, t) : R × R+ → R that represents a density satisfying a conservation laws with initial data at t = 0: ut + (f(u))x = 0 u(x, 0) = u0(x) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1) with f in the class C1, representing the flux of u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We are concerned here in investigating the solutions of this problem in the most general setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' To give an initial flavor, although not representative of general solutions, let’s start with the trivial case of a linear flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A linear flux: The most simple case is when f(u) = cu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The equation becomes: ut + cux = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2) This means that the directional derivative of u in the direction (1, c) is zero, so u is constant over the lines x = ct + x0: u(ct + x0, t) = u(x0, 0) = u0(x0) With a change of variable we have: u(x, t) = u0(x − ct) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3) So the initial profile will be just moving at a constant speed c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Note that if we write the general equation in the form: ut + f ′(u)ux = 0 and consider an initial profile that is uniform with an infinitesimal perturbation around ˜u u0(x) ≈ ˜u then it will evolve translating with the speed f ′(˜u), we call this speed, the speed of perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If the flux is non-linear, the differential equation is said to be quasi-linear (A fully non- linear equation requires a non-linearity of the highest derivative: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' ux or ut).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' In the next paragraph, we remind a general method that is used not only for conservation laws but for a wider class of non-linear first order PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 Method of characteristics The method of characteristics consists of partitioning the variables’ space into a family of curves where the PDE transforms into a system of ODEs (Ordinary differential equation) 18 on the curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' It is adapted for the general class of non-linear first order equations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' equations of the form: H(Du, u, x) = 0 defined on an open domain x ∈ U ⊂ Rn and subject to a boundary condition u = g on a curve Γ ⊂ ∂U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The characteristics are the three functions of a real parameter: x(s) z(s) := u(x(s)) p(s) := Du(x(s)) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4) Deriving F with respect to xi gives: � j ∂H ∂pj uxjxi + ∂H ∂z uxi + ∂H ∂xi = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='5) We can identify the first term with ˙pi(s) = � j uxixj ˙xj(s) providing that we identify ∂H ∂pj with ˙xj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' So finally, we have this system of ODE: ˙x = DpH ˙p = −DxH − pDzH ˙z = pDpH (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='6) (Note that if we forget about the third equation and the second term of the second equation, we get Hamilton-Jacobi equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We will come back to this later).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' This equivalence between the PDE and the set of ODEs is formally valid for regular solutions u ∈ C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Under this condition, the Cauchy problem of the ODE has a unique solution for sufficiently regular H (Lipschitz) providing that the boundary condition is compatible with the characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Application to the scalar conservation law For our purpose, it’s quite simple: x = (x, t), p = (ux, ut), H(ut, ux, u, x, t) = ut + f ′(u)ux The characteristics are: ˙t = 0 ˙x = f ′(z) ˙z = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='7) They form a closed system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We can obviously use the time as a parameter: dx dt (t) = f ′(u(x, t)) d dtu(x(t), t) = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='8) So u is constant all over the characteristics, and they are simply straight lines: x(t) = f ′(u0(x0))t + x0 u(x(t), t) = u0(x0) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='9) 19 If the initial condition is smooth then the solution at time t > 0 is still smooth as far as the characteristics don’t intersect, so we have a classical C1 solution for 0 ≤ t < T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If f ′ is κ1-Lipschitz and u0 is κ2-Lipschitz then the first intersection of characteristics will appear at T = κ1κ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' At the points (x, t) of the intersection of characteristics, the value of the solution is not defined since different values carried from different characteristics contradict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The limit of u(x, t) at the point of intersection of characteristics depends on the path, so the solution forms a finite discontinuity, figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' x t x0 A characteristic transporting the density u(x0) Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1: Illustration of singularity formation through characteristic inter- sections 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='3 Weak solution, Rankine-Hugoniot condition Clearly, we need a weaker interpretation of the equation that takes into account discontinuous solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' A possible way is to consider the equation in the distribution sense, so u would be a distribution acting on a Schwartz space (a space of test functions φ(x, t) of the class C∞ with compact support) � ∞ 0 � ∞ −∞ (ut(x, t) + f(u(x, t))x)φ(x, t)dxdt = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='10) The relevance of this writing is that it allows performing the integration by part: � ∞ 0 � ∞ −∞ u(x, t)φt(x, t) + f(u(x, t))φx(x, t)dxdt = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='11) This equation may be called the integral form of the conservation law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' It doesn’t impose a regularity restriction on the solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Functions verifying this equation are called weak solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Let’s consider now a situation where we have a solution u(x, t) that is regular all over R × R+ except on some continuous path Γ parameterized by x = s(t) (so we assume that there is a single finite discontinuity at each instant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We are interested in describing the behavior of this path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Let’s assume as well the following limits exist: 20 lim x <−→s(t) u(x, t) := uL(t) lim x >−→s(t) u(x, t) := uR(t) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='12) The path divides the domain R × R+ into two subdomains, one located on its left ΩL and another on its right ΩR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2 x t ⃗n ΩL ΩR Γ Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='2: A singular path propagating in the (x, t) domain We can decompose eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='11) into : � R×R+ uφt + f(u)φxdxdt = � ΩR uφt + f(u)φxdxdt + � ΩL uφt + f(u)φxdxdt = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='13) Let’s integrate by part the first term: � ΩL uφt + f(u)φxdxdt = � ΩL utφ + f(u)xφdxdt − � ∂ΩL uφnt + f(u)φnxdxdt (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='14) = − � Γ (uLnt + f(uL)nx)φdxdt (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='15) Where (nx, nt) is a unit vector normal to the boundaries We can treat the term on the right in a similar fashion except that we will have a minus sign from (nx, nt) since we will use the same normal vector as previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' so finally, we get: � Γ ((uL − uR)nt + (f(uL) − f(uR))nx)φdxdt = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='16) Which means: (uL − uR)nt + (f(uL) − f(uR))nx = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='17) 21 knowing (nx, nt) allows us to have the tangent to Γ, which gives the derivative: ds dt = −nt nx (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='18) This is nothing but the speed of the shock, let’s note it σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' So we reach the famous Rankine- Hugoniot formula: (uL(t) − uR(t))σ(t) = f(uL(t)) − f(uR(t)) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='19) There is a simple way to grasp this identity, simply by imagining the shock as a level of water in a 2D tank that has a source and a sink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Each side represents the rate of filling of the tank expressed in two different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' The problem with weak solutions is that they are not always unique as we will see in what follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='4 Non-unicity of weak solutions While the strong form of the conservation equation doesn’t always have a solution, the weak form might have more than one solution with the same initial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Let’s give the Burgers equation as an example: ut + uux = 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='20) With the initial condition: u0(x) = 1x>0(x) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='21) The flux for this equation is f(u) = u2/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' It admits two weak solutions: a regular one, called a rarefaction fan: u(x, t) = x t 10t(x) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='22) And a shock with a speed 1 2 u(x, t) = 1x> t 2(x) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='23) One can argue that the second solution is not stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' Consider for instance this small (in the sens of L1) perturbation of the initial profile: uϵ(x) = x ϵ 10ϵ(x) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='24) It’s clear by looking at the characteristics that this profile will evolve in time like the first solution (the fan) and will thus divert from the shock solution corresponding to ϵ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' We will see later more formal notions of stability of solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content=' If we now change the initial condition to this one: u0(x) = 1x<0(x) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='25) Then we have this weak solution: u(x, t) = 1x< t 2(x) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE2T4oBgHgl3EQftAiy/content/2301.04066v1.pdf'} +page_content='26) However, this is a stable one: if we apply a similar perturbation to the initial data as previously: uϵ(x) = ϵ − x ϵ 10 18,000; and oscillation amplitude, A ≈ 1 Å).35 +The metallic tip was functionalized with a CO molecule for enhanced resolution.40 +5 + +1.2 +Angle-resolved photoemission spectroscopy (ARPES) measurements +ARPES experiments were performed in ultra high vacuum at T= 6K at beamline 7.0.2 (MAESTRO) at +the Advanced Light Source. The beam-spot size was ≈ 1 µm. The photon energy for the valence band +structure is hν = 150 eV and hν = 350 eV for core levels. The XPS curve-fitting analysis was performed +using a convolution of Doniach-Sunjic and Gaussian line shapes superimposed on a background built of a +constant, a linear component, and a step-function. For each S 2p spin-orbit doublet, a spin-orbit splitting +of 1.2 eV and a branching ratio I(2p3/2) : I(2p1/2) = 2 : 1 (defined in terms of peak areas) were used. +The W 4f spin-orbit doublets were fit using individual components with a spin-orbit splitting of 2.2 eV, +to take into account non-linearities. +1.3 +Sample preparation +Monolayer islands of WS2 were grown on graphene/SiC substrates with an ambient pressure CVD +approach. A monolayer graphene (MLG)/SiC substrate with 10 mg of WO3 powder on top was placed at +the center of a quartz tube, and 400 mg of sulfur powder was placed upstream. The furnace was heated to +900 ◦C and the sulfur powder was heated to 250 ◦C using a heating belt during synthesis. A carrier gas +for process throughput was used (Ar gas at 100 sccm) and the growth time was 60 min. The CVD grown +WS2/MLG/SiC was further annealed in vacuo at 400 ◦C for 2 hours. +Monolayer WS2 was sputtered with an argon ion gun (SPECS, IQE 11/35) that operated at 0.1 keV +energy with 60◦ off-normal incidence at a pressure of 5×10−6 mbar and held at 600 ◦C. A rough measure +of current (0.6×10−6 A) enabled the argon ion flux to be estimated at (1.5×1013 ions +cm2s), where the sample +was irradiated for up to 30 seconds. +Samples were transferred from the STM to the nARPES chamber using an Ar suitcase that prevented +air exposure to enable cross-correlative studies without risking sample degradation. +Data availability +All data needed to evaluate the conclusions exhibited are present in the paper and/or the supplemental +information. +Code availability +Software used for analysis are either presented in the supplemental information or can be provided upon +reasonable request from the authors. +Acknowledgements +The authors thank Nino Hatter and Sebastian Baum from CreaTec Fischer & Co. GmbH for helpful +discussions. This work was supported as part of the Center for Novel Pathways to Quantum Coherence +in Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of +Science, Basic Energy Sciences. Work was performed at the Molecular Foundry and at the Advanced +Light Source, which was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. +Department of Energy under contract no. DE-AC02-05CH11231. S.K and J.A.R. acknowledge support +from the National Science Foundation Division of Materials Research (NSF-DMR) under awards 2002651 +and 2011839. J.T.K and F.A. acknowledge financial support by the Deutsche Forschungsgemeinschaft +(DFG) through the TUM International Graduate School of Science and Engineering (IGSSE), GSC 81. +Author Contributions +A.R., J.C.T., and A.W.-B. conceived and carried out the experiments. A.R., J.C.T., and J.T.K carried out +nARPES/XPS measurements with the assistance of C.J., A.B., and E.R. E.B. and J.C.T. contributed to +SRIM/TRIM simulations. A.R., J.C.T., and J.T.K. carried out ncAFM measurements with the assistance +6 + +of H.-Z.T. and M.F.C. A.R., J.C.T., and J.T.K. performed all STM/STS experiments with additional +contributions from A.R., E.W., A.S., D.F.O., F.A., W.A., and A.W.-B. A.R. and J.C.T. performed all +nARPES related data analysis with support from C.J., A.B., and E.R. A.R. and J.C.T. performed all +ncAFM, STM, and STS related data analysis with support from A.R., E.W., A.S., D.F.O., J.B.N., M.F.C., +F.A., W.A., and A.W.-B. Z.Y., T.Z., S.K., J.A.R. and M.T. synthesized the samples. All authors discussed +the results and contributed towards the manuscript. +Competing interests +The authors declare that they have no competing interests. +REFERENCES +[1] Wang, L. et al. Direct observation of one-dimensional Peierls-type charge density wave in twin +boundaries of monolayer MoTe2. ACS Nano 14, 8299 (2020). +[2] Peierls, R. & Peierls, R. E. Quantum theory of solids. (Oxford Univ. Press, 1955). +[3] Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918 (2018). +[4] Kim, B. J. et al. Distinct spinon and holon dispersions in photoemission spectral functions from +one-dimensional SrCuO2. Nat. Phys. 2, 397 (2006). +[5] Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire +devices. Science 336, 1003 (2012). +[6] Tomonaga, S.-I. Remarks on Bloch’s method of sound waves applied to many-fermion problems. +Prog. Theor. Phys. 5, 544 (1950). +[7] Luttinger, J. M. An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154 (1963). +[8] Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598 (1999). +[9] Ishii, H. et al. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low +temperatures. Nature 426, 540 (2003). +[10] Lee, J. et al. Real space imaging of one-dimensional standing waves: Direct evidence for a Luttinger +liquid. Phys. Rev. Lett. 93, 166403 (2004). +[11] Auslaender, O. M. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional +wire. Science 295, 825 (2002). +[12] Auslaender, O. M. et al. Spin-charge separation and localization in one dimension. Science 308, 88 +(2005). +[13] Jompol, Y. et al. Probing spin-charge separation in a Tomonaga-Luttinger liquid. Science 325, 597 +(2009). +[14] Jolie, W. et al. Tomonaga-Luttinger liquid in a box: Electrons confined within MoS2 mirror-twin +boundaries. Phys. Rev. X 9, 011055 (2019). +[15] Xia, Y. et al. Charge density modulation and the Luttinger Liquid state in MoSe2 mirror twin +boundaries. ACS Nano 14, 10716 (2020). +[16] Zhu, T. et al. Imaging gate-tunable Tomonaga-Luttinger liquids in 1H-MoSe2 mirror twin boundaries. +Nat. Mater. 21, 748 (2022). +7 + +[17] Jia, J. et al. Tuning the many-body interactions in a helical Luttinger liquid. Nat. Commun. 13, 6046 +(2022). +[18] Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045 (2017). +[19] Hashisaka, M. & Fujisawa, T. Tomonaga–Luttinger-liquid nature of edge excitations in integer +quantum hall edge channels. Phys. Rev. 3, 32 (2018). +[20] Liu, H. et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and +their spatial undulations. Phys. Rev. Lett. 113, 066105 (2014). +[21] Ma, Y. et al. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic +MoSe2 grain boundary. Nat. Commun. 8, 14231 (2017). +[22] Lehtinen, O. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional +MoSe2. ACS Nano 9, 3274 (2015). +[23] Park, J., Xue, K.-H., Mouis, M., Triozon, F.M.C., & Cresti, A. Electron transport properties of +mirror twin grain boundaries in molybdenum disulfide: Impact of disorder. Phys. Rev. B 100, 235403 +(2019). +[24] Ma, Y. et al. Metallic twin grain boundaries embedded in MoSe2 monolayers grown by molecular +beam epitaxy. ACS Nano 11, 5130 (2017). +[25] Du, X. et al. Crossed Luttinger liquid hidden in a quasi-two-dimensional material. Nat. Phys. (2022). +https://doi.org/10.1038/s41567-022-01829-z +[26] Batzill, M. Mirror twin grain boundaries in molybdenum dichalcogenides. J. Condens. Matter Phys. +30, 493001 (2018). +[27] Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. +Phys. 12, 751 (2016). +[28] Lin, Z. et al. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Materials +3, 022002 (2016). +[29] Sangwan, V. K. & Hersam, M. C. Electronic transport in two-dimensional materials. Annu. Rev. +Phys. Chem. 69, 299 (2018). +[30] Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. +Nature 580, 472 (2020). +[31] Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. +Mater. 19, 861 (2020). +[32] Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., & Kis, A. 2D transition metal dichalco- +genides. Nat. Rev. Mater. 2, 1 (2017). +[33] Li, C. et al. Engineering graphene and TMDs based van der waals heterostructures for photovoltaic +and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981 (2018). +[34] Ugeda, M. M. et al. Observation of topologically protected states at crystalline phase boundaries in +single-layer WSe2. Nat. Commun. 9, 3401 (2018). +[35] Schuler, B. et al. Electrically driven photon emission from individual atomic defects in monolayer +WS2. Sci. Adv. 6, eabb5988 (2020). +[36] Schuler, B. et al. Large spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies +in monolayer WS2. Phys. Rev. Lett. 123, 076801 (2019). +8 + +[37] Mitterreiter, E. et al. Atomistic positioning of defects in helium ion treated single-layer MoS2. Nano +Lett. 20, 4437 (2020). +[38] Mitterreiter, E. et al. The role of chalcogen vacancies for atomic defect emission in MoS2. Nat. +Commun. 12, 3822 (2021). +[39] Kastl, C. et al. Effects of defects on band structure and excitons in WS2 revealed by nanoscale +photoemission spectroscopy. ACS Nano 13, 1284 (2019). +[40] Schuler, B. et al. How substitutional point defects in two-dimensional WS2 induce charge localiza- +tion, spin–orbit splitting, and strain. ACS Nano 13, 10520 (2019). +[41] Kastl, C. et al. The important role of water in growth of monolayer transition metal dichalcogenides. +2D Materials 4, 021024 (2017). +[42] Kastl, C. et al. Multimodal spectromicroscopy of monolayer WS2 enabled by ultra-clean van der +waals epitaxy. 2D Materials 5, 045010 (2018). +[43] Ma, L. et al. Tailoring the optical properties of atomically-thin WS2 via ion irradiation. Nanoscale +9, 11027 (2017). +[44] Komsa, H.-P. & Krasheninnikov, A. V. Engineering the electronic properties of two-dimensional +transition metal dichalcogenides by introducing mirror twin boundaries. Adv. Electron. Mater. 3, +1600468 (2017). +[45] Lin, J., Pantelides, S. T., & Zhou, W. Vacancy-induced formation and growth of inversion domains +in transition-metal dichalcogenide monolayer. ACS Nano 9, 5189 (2015). +[46] Thomas, J. C. et al. Autonomous scanning probe microscopy investigations over WS2 and Au{111}. +npj Comput. Mater. 8, 99 (2022). +[47] Forti, S. et al. Electronic properties of single-layer tungsten disulfide on epitaxial graphene on +silicon carbide. Nanoscale 9, 16412 (2017). +[48] Ristein, J., Mammadov, S., & Seyller, T. Origin of doping in quasi-free-standing graphene on silicon +carbide. Phys. Rev. Lett. 108, 246104 (2012). +[49] Kuc, A., Zibouche, N., & Heine, T. Influence of quantum confinement on the electronic structure of +the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011). +[50] Bostwick, A., Ohta, T., Seyller, T., Horn, K., & Rotenberg, E. Quasiparticle dynamics in graphene. +Nat. Phys. 3, 36 (2007). +[51] Rosenzweig, P., Karakachian, H., Marchenko, D., üster, K. K, & Starke, U. Overdoping graphene +beyond the van Hove singularity. Phys. Rev. Lett. 125, 176403 (2020). +[52] Kot, P. et al. Band dispersion of graphene with structural defects. Phys. Rev. B 101, 235116 (2020). +9 + +Fig. 1: WS2 Defect Introduction. (a) Scanning tunneling micrograph depicting pristine WS2 before Ar+ +bombardment (Itunnel = 30 pA, Vsample = 1.2 V). Scale bar, 10 nm. (b) After the pristine sample is heated +and exposed to an Ar+ sputter (Itunnel = 30 pA, Vsample = 1.2 V), both VS and MTBs are present. Scale +bar, 2 nm. (c) Lattice structure is measured by ncAFM (Vsample = 0.0 V), with a CO-functionalized tip, +which showcases the SMTB that is placed next to a structural schematic of (d) of the MTB. Scale bar, +0.25 nm. (e) Point spectroscopy, in the form of the LDOS, for unmodified WS2, VS, and an SMTB. +10 + +(a) +(b) +As-grown +Ar+Bombardment@600°℃ +(c) +(d) +tungsten + carbon +nigh + sulfur +SiC(0001) +△f (Hz) +(e) +WS2 +.0 +dl/d (a.u.) +Vs +SMTB +0.5 +0.0 +0.0 +0 +5 +0 +5 +5 +0 +2 +Bias (V)Fig. 2: LDOS Mapping. Conductance maps (Vmodulation = 5 mV) performed across an SMTB show +dual-line orbital behavior at (a) 0.132 eV (LUS) and (b) -0.025 eV (HOS) that is spatially out of phase. +(c) Accumulated conductance maps across a single-line of the SMTB (Vmodulation = 5 mV) are further +shown as a function of bias, where the number of nodes increase as bias voltage is increased. Scale bars, +1 nm. Conductance maps (dI/dV) of the (d) 0.047 eV (LUS) and (e) -0.047 eV (HOS) that are spatially +in phase within a single-line AMGB. (f) Compiled conductance maps (Vmodulation = 5 mV) across the +single-line AMGB are further shown, where the number of nodes decreases as the voltage is increased. +11 + +SMTB LUS +AMGB LUS +(a) +(d) +v = 0.047 v +SMTB HOS +AMGB HOS +(b) +(e) +V= +-0.047 V +(c) +(f) +VBias += 0.132 V, LUs +-0.3 V, Hos-2 +VBias +VBias = 0.2 V, LUS+1 +V,HOS-1 +VBias +HOS +VBiasFig. 3: nARPES Band Structure Comparison. (a) Unmodified and (b) defective band structure of WS2 +on graphene. The inset displays the WS2 (green) and the graphene (black) BZ. The spectra are collected +along the Γ-K orientation. nARPES spectra of as-grown (c) and defective (d) crystals that are collected +along the red line of the inset in panel (a), with respective MDCs at the EF shown in (e) and (f). (g) EDCs +overlapped with STS from unmodified and defective WS2. Dark blue and dark red are the STS signals +collected on pristine WS2 and on an MTB, respectively. Dashed green is the STS spectrum collected on +an isolated sulfur vacancy. The light blue and light red lines are the EDCs collected at the K point of the +BZ (dashed vertical lines in panels (a) and (b) respectively). +12 + +0.2 +(a) +2.5 x 1012 cm-2 +(b) +1.2 x 1013 cm-2 +0.0 +0.0 +(eV) +-0.2 +0.5 +-0.4 +3-3 +1.0 +0.6 +-0.8 +E,(eV) +1.5 +(d) +(c) +-1.0 +-0.2 +0.00.2 +0.2 +0.0 +0.2 +E 2.0 +k,(A-1) +k, (A-1) +(e) +2.5 +Intensity (A.U) +3.0 +0.0 +0.5 +1.0 +1.5 +0.0 +0.5 +1.0 +1.5 +k (A-1) +k (A-1) +STS +(g) +EDC +As-grown WS2 +(f) +AS-grown WS2 +Intensity (A.U) +MTB +Defective WS2 +Intensity (A.U) +S Vacancy +I +-1.5 +-0.5 +-1.0 +0.0 +0.5 +1.0 +-0.3 +-0.2 +-0.1 +0.0 +0.1 +0.2 +0.3 +E-E = (eV) +k,(A-1)Fig. 4: Tomonoga Luttinger Liquid Spatial Dependence. (a) LDOS spectra collected from pristine +WS2 to an MTB (Vmodulation = 5 mV, Iset = 150 pA) and then recorded in reverse. The as-measured VBM, +CBM, HOS, and LUS are highlighted with relative positions to EF. (b) The process of charge transfer +from graphene into an MTB that is able to host highly correlated electron states is depicted, where the EF +of graphene is shifted and locally modified due to the presence of an MTB. +13 + +(a) +1.0 +CBM +high +LUS +Sample bias (V) +EE +dl/dV (a.u.) +0.0 +HOS +-1.0 +low +VBM +-2.0 +-0.5 +0.0 +0.5 +Distance (nm) +(b) +X sTS acquisition +electron +tungsten +sulfur +o carbonSupplemental Information for +WS2 Band Gap Renormalization Induced by Tomonaga Luttinger +Liquid Formation in Mirror Twin Boundaries +SUPPLEMENTARY NOTES +1| Ar+ sputtering and SRIM simulations +Monte Carlo simulations based on The Stopping and Range of Ions in Matter, SRIM simulations,1 were +used to evaluate preparation conditions using Ar+ bombardment. The Transport of Ions in Matter (TRIM) +calculation, which assumes amorphous targets, with 50,000 ions was determined to be sufficient for +simulation convergence; between simulating 20,000 and 50,000 ions, the variation in the number of +vacancies created was less than 2% for all possible atomic vacancies. The Ar+ energy was set to 0.1 keV +to gauge angle dependence and fixed at an angle of 60◦ to gauge energy dependence, where these values +were chosen to be used experimentally. We set the height of WS2 to 0.72 nm, the height of graphene to +0.34 nm, and the height of SiC to 30 nm.2,3 Density, displacement energy, and surface binding energy +values were matched to literature values.4–6 +Using the estimated argon flux of 1.5×1013 ions +cm2s at 30 seconds of irradiation, we obtain a value of 4.5 +ions +nm2 . Each ion is predicted to induce 3 VS, or 13.5 VS +nm2 . Considering the local measurement of 0.168 ± +0.052 VS +nm2 and MTB formation of 0.021 ± 0.009 MTB +nm2 with a length of 3.37 ± 2.87 nm (2 missing sulfur +per 0.315 nm in symmetric mirror twin boundary (SMTB) and the asymmetric mirror glide boundary +(AMGB)), we extract an upper bound value of 1.4 Smissing +nm2 +and lower bound value of 0.2 Smissing +nm2 . We use +simulation results to estimate defect creation and local measurements to approximate defect density. +2| Defect analysis +An object class can be instantiated within Python, where each image can be loaded for analysis with a +given size (nm). Defects are selected initially by inspection, and local minima or maxima are calculated +within a given pixel range. Each selected defect is then cross-checked and input into a graph, where +density can be calculated by the number of defects within a the given area, assuming an equal N×N +image. +class node(object): +def __init__(self,position,value): +self.value=value +self.position=position +def getPosition(self): +return self.position +def getvalue(self): +return self.value +def getNodeHash(self): +return hash(str(self.position)+str(self.value)) +def __str__(self): +return str(’Pos:’+str(self.position)+’ Val:’+str(self.value)) +1 +arXiv:2301.02721v1 [cond-mat.mtrl-sci] 6 Jan 2023 + +class edge(object): +def __init__(self,src,dest): +self.src = src +self.dest = dest +def getSource(self): +return self.src +def getDestination(self): +return self.dest +def getWeight(self): +return self.dest.getvalue() +def __str__(self): +return str(self.src.getPosition())+’-->’+str(self.dest.getPosition()) +class emap(object): +def __init__(self): +self.edges = {} +def addNode(self,node): +if node in self.edges: +raise ValueError(’Duplicate node’) +else: +self.edges[node]=[] +def addEdge(self,edge): +src = edge.getSource() +dest = edge.getDestination() +if not (src in self.edges and dest in self.edges): +raise ValueError(’Node not in graph’) +self.edges[src].append(dest) +def getChildrenof(self,node): +return self.edges[node] +def hasNode(self,node): +return node in self.edges +def display(self): +for i in self.edges: +print(i) +def getedgelen(self): +return len(self.edges) +class defect_map(object): +def __init__(self): +self.len=0 +self.images = [] +self.imsize = [] +self.density = [] +def addimage(self,im,siz): +self.images.append(im) +self.imsize.append(siz) +self.len += 1 +def getlen(self): +return self.len +def select_defects(self, win): +2 + +for idx in range(0,len(self.images)): +outpts = selectdefects(self.images[idx],win,idx) +dList = emap() +nlist = [] +k = 0 +for x, y, z in outpts: +mol=node([x,y],k) +dList.addNode(mol) +nlist.append(mol) +k += 1 +visited = [] +for i in nlist: +visited.append(i) +for j in nlist: +if j not in visited: +dList.addEdge(edge(i,j)) +self.density.append(dList.getedgelen()) +def getdensity(self): +tmp = [] +for i in range(0,len(self.density)): +tmp.append(self.density[i]/(self.imsize[i]**2)) +return tmp +3 + +SUPPLEMENTARY FIGURES +Supplementary Fig. 1: Defect Density. Defective density is calculated as the number of defects per unit +area, where (a) annealed only samples show a low defect density, (b) sputtered with annealing produces +a larger number of both MTBs and VS, and (c) sputtered with annealing plus an additional 30 minute +anneal produces elongated MTBs with less VS (Itunnel = 30 pA, Vsample = 1.2 V). Scale bars, 4 nm. Each +defect, across a large number of images over multiple samples and subsequent preparations, is selected +by inspection and then by solving for the local minima or maxima within a given pixel window. +4 + +(a) +(b) +(c) +0.15 +0.52 +0.44 +Annealing @ 600 °℃ +SAA +Astep +nm +nm +nm +0 +WS,/EG-SiC(0001) Prep +MTB (defects/nm2) +Point Vacancies +(defects/nm2) +Anneal, 600 °C +0 +0.010 +/- 0.002 +SAstep: Ar+ Bombardment, +0.021 +/- 0.009 +0.168 +/- 0.052 +600°C +SAAstep: Ar+ Bombardment, +0.009 +/- 0.001 +0.004 +/- 0.003 +600 °C + 30 min anneal, 600Supplementary Fig. 2: SRIM Simulations. (a) Results of SRIM simulations with 50000 ions for a (b) +WS2/Graphene/SiC(0001) heterostructure, where Ar+ ions are expected to nominally interact with the +TMD overlayer given the ion energy and angle of irradiation incidence. Both (c) and (d) depict the +number of vacancies produced over a given incidence angle and energy, where we use an energy of 0.1 +keV and an angle of 60◦, respectively. +5 + +(a) +(b) +lonImplantation +WS2 +Ar +graphene +0.5 +WS2 +(d) +Graphene +1.0 +SiC(0001) +15.0 +IT +S vacancies +W vacancies +Si vacancies +12.5 +C vacancies +lon +10.0 +Vacancies/l +7.5 +N +5.0 +(c) +2.0 +2.5 +3.0 +0.0 - +2.5 +Vacancies/lon +101 +102 +103 +2.0 +2.5 +S vacancies +lon Energy (ev) +W vacancies +1.5 +Si vacancies +C vacancies +1.0 +Sic +3.0 +0.5 +0 +250 +500 +750 +Ar (μm-1 ion-1), o.1 keV +0.0 +0 +20 +40 +60 +80 +(.)Supplementary Fig. 3: MTB Structure. (a) AMGB (or 4|4E) structure shown in both the z and y +directions, where the MTB, described by an edge shifted by 1 +2a (a=a1=a2), is highlighted in red. (b) The +SMTB (or 4|4P) structure shown in both the z and y directions, which is connected at chalcogen site link +with opposing tungsten atoms, is highlighted in red for clarity. +6 + +(a) +(b) +tungsten +sulfurSupplementary Fig. 4: Atomic Force Imaging. (a) Schematic depicting the AMGB over graphene that is +collected by (b) ncAFM with a CO functionalized tip (Vsample = 0.0 V). Scale bar, 0.25 nm. Depressions +near the AMGB reflect oxygen atoms within an otherwise unmodified WS2 lattice. +7 + +(b) +high +(a) +△f (Hz) +low +tungsten +carbon +sulfur +SiC(0001)Supplementary Fig. 5: Differential Conductance Mapping. dI/dV mapping (Vmodulation = 5 mV) over +the spectra region shown for an SMTB on a jet color scale, where the energy is ramped from near the +VBM of WS2 by 0.05 V to the HOS gap opening of the MTB hosting a TLL, and then from the LUS +to the CBM of WS2. Arrows indicate decreasing bias. A 1D particle in a box behavior is evident, and +orbitals of both the TLL and a VS can be visualized at respective energies. +8 + +Vsample +1.0 +0.5 +0.0 +dl/dv (a.u.) + sample +0.5 +-1.0 +-1.5 +SMTB +WS2 +-2.0 +0 +Bias (V)Supplementary Fig. 6: Differential Conductance Mapping. dI/dV mapping (Vmodulation = 5 mV) over +the spectra region shown for an AMGB on a jet color scale, where the energy is ramped from near +the VBM of WS2 by 0.05 V to the HOS, and then from the LUS to the CBM of WS2. Orbitals of the +as-formed TLL can be visualized as a function of bias voltage, where arrows indicate decreasing bias. +9 + +Vsample +1.00 +0.75 +0.50 +0.25 +dl/dv (a.u.) +0.00 + sample +-0.25 +-0.50 +-0.75 +-1.00 +AMGB +WS2 +0.0 +0 +Bias V)Supplementary Fig. 7: Spatially Resolved Scanning Tunneling Spectroscopy. Dense local density +of states spectra collected along (a) an MTB (1x128x500 pixels) (Vmodulation = 5 mV, Iset = 150 pA) +beginning at the starred point along the red line. This is shown as a (b) function of bias and distance, +where the (c) FT of this spectra gives rise to separate spin (blue) and charge (red) Fermi velocities. The +relationship Kc = νs +νc yields the Luttinger parameter of 0.5. +10 + +0.26 +(a) +nm +0 +0.3 +(b) +0.2 +Sample bias (V) +0.1 +-0.1 +-0.2 +-0.3 +5 +10 +0.2 +0.8 +1.5 +0 +x (nm) +q (nm-1)Supplementary Fig. 8: Gap Length Dependence. Band gaps are depicted across 8 MTBs, where each +point represents the average of multiple reproducible data points, measured as a function of length (slope += 1644.9 ± 173.7 meV·nm, offset = -47.2 ± 16.4 meV). A linear relationship is shown across both SMTB +and AMGB structures. Fitting was performed using the lmfit package in Python.7 +11 + +nm +14 +13 +12 +11 +10 +6 +8 +160 +140 +Egap (meV) +120 +100 +80 +0.07 +0.08 +0.09 +0.10 +0.11 +0.12 +1/L (nm-1)Supplementary Fig. 9: Constant-Current Density of States Decay Across an MTB. A power law +dependence is measured across a connected (a) MTB defect that starts at the starred point along the red +line, where (b) the exponential fit, over an extracted region of high intensity to lower intensity, gives an +exponential parameter matching the Luttinger parameter of 0.5. Fitting was performed using the lmfit +package in Python.7 +12 + +(a) +0.68 +(b) 0.06 +Topography +Exponential Fitting +nm +0.03 +N +0 +0 +1.33 +0 +2.65 +x (nm)Supplementary Fig. 10: nARPES Polarization Investigation. WS2 bands collected with linear vertical +polarization. The horizontal line below E-EF indicate the top of the valence band for the defective crystal. +13 + +Supplementary Fig. 11: Measured W and S Core Levels Spectra of As-grown and Defective WS2. +(a) W 4 f 7/2 and 5/2 levels centered at 33.5 eV and 35.7 eV, respectively, and (b) S 2p 3/2 and 1/2 core +levels centered at 161.3 eV and 162.4 eV, respectively, from the unmodified sample. (c) and (d) are +relative to WS2 after SAstep, displaying two components (light and dark orange), with a relative shift of +0.4 eV for W 4f peaks and 0.2 eV for S 2p peaks. +REFERENCES +[1] Ziegler, J. F., Ziegler, M., & Biersack, J. SRIM – The stopping and range of ions in matter. Nucl. +Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 268, 1818 (2010). +[2] Mitterreiter, E. et al. The role of chalcogen vacancies for atomic defect emission in MoS2. Nat. +Commun. 12, 3822 (2021). +[3] Fox, D. et al. Helium ion microscopy of graphene: beam damage, image quality and edge contrast. +Nanotechnology 24, 335702 (2013). +[4] Komsa, H.-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: +Defect production and doping. Phys. Rev. Lett. 109, 035503 (2012). +[5] Susi, T. et al. Isotope analysis in the transmission electron microscope. Nat. Commun. 7, 13040 +(2016). +[6] Chang, J., Cho, J.-Y., Gil, C.-S., & Lee, W.-J. A simple method to calculate the displacement damage +cross section of silicon carbide. Nucl. Eng. Technol. 46, 475 (2014). +[7] Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. LMFIT: Non-Linear Least-Square +Minimization and Curve-Fitting for Python. https://lmfit.github.io/lmfit-py/ (2014). +14 + +(a) +(q) +W 4f +S 2p +Intensity (A.U.) +(c) +(d) +"step +373635343332 +31164163162161160159 +Binding Energy (eV) +Binding Energy (eV) \ No newline at end of file diff --git a/WdE0T4oBgHgl3EQf3ALu/content/tmp_files/load_file.txt b/WdE0T4oBgHgl3EQf3ALu/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..15dc01178e62162eb61f71225f528933ac267fcb --- /dev/null +++ b/WdE0T4oBgHgl3EQf3ALu/content/tmp_files/load_file.txt @@ -0,0 +1,1113 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf,len=1112 +page_content='WS2 Band Gap Renormalization Induced by Tomonaga Luttinger Liquid Formation in Mirror Twin Boundaries Antonio Rossi1,2,3*†, John C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Thomas1,3*†, Johannes T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Küchle1,4, Elyse Barré1, Zhuohang Yu5,6, Da Zhou5,6, Shalini Kumari5,6, Hsin-Zon Tsai9, Ed Wong1, Chris Jozwiak2, Aaron Bostwick2, Joshua A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Robinson5,6,7, Mauricio Terrones5,6,7, Archana Raja1, Adam Schwartzberg1, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Frank Ogletree1, Jeffrey B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Neaton2,9, Michael F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Crommie3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Francesco Allegretti4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Willi Auwärter4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Eli Rotenberg2*,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' and Alexander Weber-Bargioni1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='3* 1Molecular Foundry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lawrence Berkeley National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Berkeley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' CA 94720,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' United States of America 2Advanced Light Source,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lawrence Berkeley National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Berkeley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' CA 94720,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' United States of America 3Materials Sciences Division,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lawrence Berkeley National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Berkeley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' CA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' United States of America 4Physics Department E20,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Technical University of Munich,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' James-Franck-Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 85748 Garching,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Germany 5Department of Materials Science and Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The Pennsylvania State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' University Park,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' PA 16082 United States of America 6Center for Two-Dimensional and Layered Materials,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The Pennsylvania State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' University Park,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' PA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 16802 United States of America 7Department of Physics and Department of Chemistry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The Pennsylvania State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' University Park,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' PA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 16802 United States of America 8Center for Advanced Mathematics for Energy Research Applications,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lawrence Berkeley National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Berkeley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' CA 94720,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' United States of America 9Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' University of California at Berkeley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Berkeley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' CA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' United States of America 10Kavli Energy Nano Sciences Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' University of California Berkeley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Berkeley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' CA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' United States of America afweber-bargioni@lbl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='gov, arossi@lbl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='gov, jthomas@lbl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='gov †These authors contributed equally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' ABSTRACT Tomonaga-Luttinger liquid (TLL) behavior in one-dimensional systems has been predicted and shown to occur at semiconductor-to-metal transitions within two-dimensional materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Reports of mirror twin boundaries (MTBs) hosting a Fermi liquid or a TLL have suggested a dependence on the underlying substrate, however, unveiling the physical details of electronic contributions from the substrate require cross-correlative investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Here, we study TLL formation in MTBs within defectively engineered WS2 atop graphene, where band structure and the atomic environment is visualized with nano angle- resolved photoelectron spectroscopy, scanning tunneling microscopy and scanning tunneling spectroscopy, and non-contact atomic force microscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Correlations between the local density of states and electronic band dispersion elucidated the electron transfer from graphene into a TLL hosted by MTB defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We find that MTB defects can be substantially charged at a local level, which drives a band gap shift by ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='02721v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='mtrl-sci] 6 Jan 2023 MAIN One-dimensional (1D) systems in condensed matter physics provide unique insight into a variety of quasi particle excitations, including charge density waves (CDWs) that arise due to Peierls instabilities,1,2 lossless transport through electronic wires in topological edge states,3 quantum spin liquids,4 as well as more exotic phenomena such as Marjorana modes in nanowires5 and the emergence of a Tomonaga- Luttinger liquid (TLL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The latter has been realized in both nanotubes and transition metal dichalcogenides (TMDs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='6–17 These quasi particle excitations not only host new condensed matter physics phenomena but hold the promise to become major pillars of quantum electronics and quantum information applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='18 We show the capability to controllably create 1D confined systems and to directly observe TLL formation at its native length scale, which is key to understanding the governing principles behind such a strongly- correlated system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The hallmarks of a TLL are the independent dispersion of charge and spin, fractional charge transport, and power law suppression of the density of states (DOS) near the Fermi energy (EF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='14–16,19 The formation of a TLL was first observed in 1D carbon nanotubes,8,9 where the conductance of bundled single-walled carbon nanotubes showed power law scaling with respect to bias voltage and temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This has since been extended to a number of 1D systems such as semiconductor single-channel wires, nanowires, organic conductors, and fractional quantum Hall edge channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='4,8,13,15,19–25 Recently, this phenomenon has also been shown to exist within 1D defects in two-dimensional (2D) TMDs at a plane of lattice points where the crystal structures on either side of the interface are mirrored, which defines a mirror twin boundary (MTB) within monolayer TMDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='14–16 MTBs have been predicted to form out of sub-stoichiometric metal (M = Mo, W) or from depleted chalcogen (X = S, Se, Te) in MX2 materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='22,26,27 TLL formation at MTB defects within TMDs adds to the the fascinating and vast array of material properties that 2D monolayer TMDs hold such as single photon emission, tunable band gaps, and strong spin-orbit coupling, to name a few.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='28–38 Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' have applied scanning tunneling microscopy and scanning tunneling spectroscopy (STM/STS) to directly map out the local density of states (LDOS) associated with TLLs,16 where measurements show a gap opening near EF, a length dependence on the highest occupied and lowest unoccupied state band gap, and spin-charge dispersion observable in Fourier transform (FT) STS maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='14,15 The role of the substrate for the formation of TLLs in MTBs has yet to be fully ascertained, and, in addition, a comprehensive understanding of the macroscopic band structure with the local electronic structure in TLL formation requires explanation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' In order to address these questions, we engineer 1D defects into 2D WS2 grown on graphene with tunable control over both length and density via a post- synthesis, in-situ approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Measurement techniques cross-correlating STM/STS together with spatially- and nano angle-resolved photo emission spectroscopy (nARPES) help to give a broad range of information both on the electronic band structure of the system and the nature of the defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='39 Non-contact atomic force microscopy (ncAFM) further enables structure identification of MTBs that host a TLL, where a metallic tip is functionalized with a CO molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='27,40 We report new insights into the role of the graphene substrate in TLL formation within 1D TMD MTB heterostructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Two 1D defect symmetries are unamibiguously identified, where their controlled introduction enables TLL formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Exclusive doping (charge transfer) from graphene into an MTB gives on the order of ∼4-5 electrons per MTB, which brings the EF of graphene near the Dirac point reducing its screening power and, therefore, increasing the electron-electron interaction in the MTBs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We also observe an atomically localized band gap renormalization over the MTB/TLL systems, with indications of the conduction band taking part in TLL formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' In order to study 1D MTB defects that may host a TLL, we perform STM/STS studies on both unmodified WS2, grown epitaxially via chemical vapor deposition (CVD) on a graphene/SiC substrate, and the same sample after Ar+ sputtering and annealing in-situ to induce defectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='41–43 Comparative results of low-energy sputtering in contrast to a low-temperature anneal are shown (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1 (a-b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' As- grown samples are not significantly modified by annealing up to 250 ◦C, while chalcogen vacancies (VS) start to form at 600 ◦C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='36 Low-energy Ar+ sputtering at chalcogen creation sample temperatures 2 (SAstep) greatly increases the density of VS and MTB defects (see Supplementary Notes 1 and 2 and Supplementary Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1 and 2 for both density calculations and SRIM simulations) compared to only annealing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Post SAstep annealing at 600 ◦C (SAAstep) substantially reduces point defect density, where MTBs with increased length (LSAstep = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='37 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='87 nm, LSAAstep = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='75 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='01 nm) are formed (see Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We confirm local structure via ncAFM performed with a functionalized CO tip in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1 (c and d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Under the conditions of chalcogen depletion and excess metal, the asymmetric mirror glide boundary (AMGB) and the symmetric mirror twin boundary (SMTB), amongst other possible formations, are predicted to be favorable in TMDs,22,26,44 where we measure the formation of both AMGB and SMTB defects under the conditions described (see Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3) that corresponds to predicted structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' As ncAFM frequency shifts are not affected by the electronic structure changes near EF,27 the atomically- resolved images obtained of SMTB in WS2 are described by a WS2 edge sharing chalcogen point sites, and, in addition, the acquired AMGB is characterized by an edge shifted by half of a lattice spacing (a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='315 nm) with W bonded to four sulfur atoms across the MTB (see Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='45 It may be important to note that while MTBs have been more extensively studied in MoS2 and MoSe2, high formation energy in WS2 has hindered atomic-scale investigations of MTBs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We are able to take advantage of sulfur reduction techniques coupled with tandem atomic-scale measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Upon further investigation with STS, the two types of defects introduced during both SAstep and SAAstep are verified to be MTBs and VS, as detailed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1 (e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Here, the band gap of surrounding WS2 is measured to be on the order of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 eV and VS shows deep unoccupied defect states split by spin-orbit coupled W d states, which is consistent with previously measured values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='36 Conversely, MTBs show a semiconducting band gap between the highest occupied state (HOS) and lowest unoccupied state (LUS) on the order of 100 meV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' In order to better investigate the physics of the MTB bandgap formed in WS2, we make use of both point STS and differential conductance mapping, which are powerful tools for screening defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='27,36,46 Electronic band-edge state differential conductance maps, acquired by dI/dV imaging (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2 (a-f)), at the LUS (ψ−) and the HOS (ψ+) are spatially out-of-phase for the SMTB case, and are a spatially in-phase for an AMGB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Additionally, the number of orbital nodes changes as a function of bias for both the AMGB and the SMTB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This 1D particle-in-a-box behavior, which has been demonstrated for both types of defects in other TMDs, such as MoSe2 and MoS2, shows an increasing number of nodes moving further past the LUS (with decreasing period) and a decreasing number of nodes moving below the HOS (with increased period) for the SMTB or the reverse behavior for the AMGB,14,16 which is consistent with our measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We find that the nodal periodicity at the HOS and LUS for a measured SMTB structure (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2 (a-b)) is near 2 nm and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 nm, respectively, which is far above the lattice constant of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='315 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Additionally, the measured periodicity for the inspected AMGB structure is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 nm (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2 (d-e)) at both the HOS and the LUS, which is not within an integer relationship with the lattice parameter of WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Supplemental Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 5 and 6 further show conductance maps as a function of energy both below HOS and above the LUS for both structures, where the presence of a neighboring VS does not show significant hybridization with an SMTB across measured energy regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We also highlight nodal increase as a function of bias in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2 (c), where the number of nodes moves from 6 at the LUS up to 10 nodes at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='4 eV before nearing the CBM of WS2 for the SMTB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This is also shown for an AMGB in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2 (f), where 8 nodes are measured at the HOS and 9 nodes are measured at -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='3 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A dense (1×128×500) linescan of point spectroscopy is captured in Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 7, where nodes increase by an integer number as the bias is swept from below the HOS to above the LUS for an SMTB, which is depicted both spatially and in Fourier space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Here, the HOS has 4 nodes and the LUS has 5, increasing up to 10 nodes at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='31 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' As low-energy excitations are not Fermi liquid quasiparticles in TLL theory, the spin- and charge-density waves exhibit different dispersions and velocities, denoted as υs and υc, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Their ratio can be experimentally measured in the FT-STS measurement as Kc = υs/υc, where Kc is the Luttinger parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' From our FT-STS, we extract a Kc of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5, which is consistent with previously acquired values on other TMD systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='14,16 Band gap (Egap) as a function of length is shown in Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 8, where Egap is dependent upon length (L), scaling linearly with L−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This behaviour stands in contrast to Peierls 3 instability, where the Egap is constant in the CDW case and does not exhibit a length dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='14 Finally, we also look at the DOS measured in topographic STM images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' TLL nodal oscillations are indistinguishable above CBM of WS2, however, a measure of signal intensity as a function of distance is feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Here, electron density is expected to decay according to Kc as ρ ∼ x−Kc,15 where the DOS (ρ) measured under constant-current as a function of distance (x), in nanometers, is shown in Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The fitted exponential function yields a value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 that is well-matched to the values obtained in the FT-STS and in agreement with previously measured MTBs that host a TLL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='14–16 Overall, we identify the TLL properties of these defects by observing a Luttinger parameter of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5, measuring an Egap opening near EF, identifying an Egap dependence on MTB length, visualizing 1D particle in a box behavior, and extracting evidence of spin-charge separation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We next perform nARPES to directly visualize the crystal band dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The sub-µm probe in nARPES offers a spatial resolution capable of capturing the local inhomogeneity in the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 showcases the as-measured band structure of the unmodified crystal versus the sample exposed to Ar+ bombardment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The two spectra are collected from the same sample, where a small region is found to be unaffected by the SAstep, due to sample holder shadowing during preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The spectrum obtained from the non-defective structure is displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' It is collected along the Γ-K direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Graphene and WS2 keep epitaxial registry, therefore WS2 also has the same crystal orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='47 A sketch of the two Brillouin zones (BZ) (graphene in black, WS2 in green) is highlighted in the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Graphene exhibits sharp bands with the EF ∼400 meV above the Dirac point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This is consistent with graphene prepared from thermal decomposition of SiC, where the carbon-rich buffer layer between graphene and SiC substrate creates an electric dipole at the interface affecting the chemical potential of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='48 Such a native gating also affects the WS2 band, whose top of the valence band appears to be ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='48 eV below the EF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='47 The local maximum at Γ appears below the maximum at K, confirming the monolayer nature of the TMD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='49 The SAstep deeply affects the bands of WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 (b) shows the spectrum obtained from the region with high defect density due to the SAstep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A substantial band gap renormalization is observed, where both the magnitude and chemical potential position are affected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The WS2 occupied electron bands are shifted upwards by ∼500 meV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The position of the top of the valence band is further confirmed by the spectrum collected with linear vertical polarization (see Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The graphene bands are also shifted up, although not by the same magnitude, with a subsequent change in the doping level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This is clear analyzing the Dirac bands collected near the K point of the graphene BZ along the direction highlighted in red within the inset of panel (a) (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 (c and d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The momentum distribution curvers (MDCs), collected at the EF (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 (e and f)) can be fit with two Lorentzian functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The position of their peaks defines a distance that approximates the diameter of the circle fitting the Fermi surface of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Using Luttinger theorem,50,51 it is possible to extract the doping level being np = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2×1013 cm−2 and nd = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5×1012 cm−2 for the as-grown and defective crystal, respectively (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 (c-f)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The unmodified doping level agrees well with the value found in literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='50 From these values and locally-measured defect densities (Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1 and Supplementary Note 2), we are able to determine that each MTB hosts 3-8 electrons (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='021 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='009 MTB nm2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Our Monte Carlo calculations further suggest that our sample treatment does not have a direct impact on graphene (Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' As a matter of fact, the presence of defects in graphene would open a gap at the Dirac point caused by an alteration of the system symmetry rather than shifting its chemical potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='52 The shift of the Dirac point in graphene is the result of charge transfer from graphene to the newly formed MTBs in WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The chemical potential difference with respect to the as-grown crystal does not match the magnitude observed for WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Our findings suggest that graphene plays a significant role in the formation of a TLL, both donating charge to the newly formed defects and providing a weaker electronic screening due to the lower carrier density near neutrality point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This, overall, increases the electron-electron interaction strength in the TMD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 (g), we analyze the energy distribution curves (EDC) crossing the top of the valence band (vertical dashed line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 (a-b)) by overlapping the EDCs with the STS curves collected from the unmodified crystal, a single sulfur vacancy, and an MTB formed on the TMD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The band shift is caused mostly by a band gap renormalization related to the presence of the MTB as opposed to isolated sulfur 4 vacancies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Indeed, the onset of the valence band displayed by the STS obtained from the sulfur vacancy (dashed green line) does not match the onset of the valence band extracted by the EDC taken from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3 (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Conversely, the STS curve obtained from the 1D MTB (dark red line) displays the onset of the valence band matching the EDC from nARPES data taken after the SAstep (light red line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The blue lines show the EDC and STS comparison from the pristine structure, where in this case the alignment between the two curves is well-matched at the expected onset of the valence band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This behavior is additionally measured with spatially-localized STS acquisition in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 4, where a shift in the VBM is seen approaching an MTB with an STM tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The measured onsets of the VBM (-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='04 eV) and the CBM (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='74 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='09 eV) was measured locally with STS, which corresponds with the appearance of the HOS and LUS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The relative shift of the VBM is +530 meV (CBM is shifted by -80 meV) and is further depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 4 (a), which matches well to the band structure acquired by nARPES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Both nARPES measurements and STS highlight the importance in choice of substrate to determine the electronic properties of 1D defects in TMDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Where other findings have shown a substrate dependence,15 cross-correlated measurements made in this report are able to directly visualize the EF position related to the presence of MTBs over graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' W 4f and S 2p core levels in Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 11 show both core levels are rigidly shifted to lower binding energy in a similar fashion as the bands in the valence region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This suggests that the band gap renormalization is overall electrostatically driven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' W and S peak fitting upon MTB formation displays a weaker component that is further shifted towards a lower binding energy of an additional few hundreds of meV due to the local chemical environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This work presents a new, controllable way to create to create MTBs in WS2 epitaxially grown on graphene is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We show how MTBs host a TLL, in which spectroscopic and topological signature is shown via STM/STS and ncAFM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A band gap opening of roughly 100 meV is observed near the EF confirming the correlated nature of the electronic state inside the 1D defect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We demonstrated the formation of two kinds of MTBs, AMGB and SMTB, which display similar spectroscopic features but a distinct spatial difference in conductance image mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' By means of nARPES, we were able to correlate scanning probe spectroscopic MTB features to the band structure of the crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We observed how defective states behave as an acceptor of graphene electrons and that they cause a massive band gap renormalization of WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The same effect is reflected on core levels where we observe a similar chemical shift in binding energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Encoding information with two different quantum degrees of freedom across 1D structures can have immediate relevance for quantum information processing, where application of such materials has yet to be manifested in functional devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Additionally, electron transport across semiconductor to metal transitions may be beneficial in ultrafast electronic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Here, we provide a step-by-step approach to produce 1D metallic structures within a 2D semiconducting material, which holds relevance in atomic-scale tailorable systems and electronic modification at the nanoscale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We further anticipate engineered TMD materials to be relevant in spin-polarized measurements, charge state effects, and spin transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1 METHODS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1 Scanning probe microscopy (SPM) measurements All measurements were performed with a Createc GmbH scanning probe microscope operating under ultrahigh vacuum (pressure < 2x10−10 mbar) at liquid helium temperatures (T < 6 K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Either etched tungsten or platinum iridium tips were used during acquisition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Tip apexes were further shaped by indentations into a gold substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' STM images are taken in constant-current mode with a bias applied to the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' STS measurements were recorded using a lock-in amplifier with a resonance frequency of 683 Hz and a modulation amplitude of 5 mV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' In ncAFM measurements, a qPlus quartz-crystal cantilever was used (resonance frequency, f0 ≈ 30 kHz;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' spring constant, k ≈ 1800 N/m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' quality factor, Q > 18,000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' and oscillation amplitude, A ≈ 1 Å).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='35 The metallic tip was functionalized with a CO molecule for enhanced resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='40 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 Angle-resolved photoemission spectroscopy (ARPES) measurements ARPES experiments were performed in ultra high vacuum at T= 6K at beamline 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 (MAESTRO) at the Advanced Light Source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The beam-spot size was ≈ 1 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The photon energy for the valence band structure is hν = 150 eV and hν = 350 eV for core levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The XPS curve-fitting analysis was performed using a convolution of Doniach-Sunjic and Gaussian line shapes superimposed on a background built of a constant, a linear component, and a step-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' For each S 2p spin-orbit doublet, a spin-orbit splitting of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 eV and a branching ratio I(2p3/2) : I(2p1/2) = 2 : 1 (defined in terms of peak areas) were used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The W 4f spin-orbit doublets were fit using individual components with a spin-orbit splitting of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 eV, to take into account non-linearities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='3 Sample preparation Monolayer islands of WS2 were grown on graphene/SiC substrates with an ambient pressure CVD approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A monolayer graphene (MLG)/SiC substrate with 10 mg of WO3 powder on top was placed at the center of a quartz tube, and 400 mg of sulfur powder was placed upstream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The furnace was heated to 900 ◦C and the sulfur powder was heated to 250 ◦C using a heating belt during synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A carrier gas for process throughput was used (Ar gas at 100 sccm) and the growth time was 60 min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The CVD grown WS2/MLG/SiC was further annealed in vacuo at 400 ◦C for 2 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Monolayer WS2 was sputtered with an argon ion gun (SPECS, IQE 11/35) that operated at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1 keV energy with 60◦ off-normal incidence at a pressure of 5×10−6 mbar and held at 600 ◦C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A rough measure of current (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='6×10−6 A) enabled the argon ion flux to be estimated at (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5×1013 ions cm2s), where the sample was irradiated for up to 30 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Samples were transferred from the STM to the nARPES chamber using an Ar suitcase that prevented air exposure to enable cross-correlative studies without risking sample degradation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Data availability All data needed to evaluate the conclusions exhibited are present in the paper and/or the supplemental information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Code availability Software used for analysis are either presented in the supplemental information or can be provided upon reasonable request from the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Acknowledgements The authors thank Nino Hatter and Sebastian Baum from CreaTec Fischer & Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' GmbH for helpful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This work was supported as part of the Center for Novel Pathways to Quantum Coherence in Materials, an Energy Frontier Research Center funded by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Department of Energy, Office of Science, Basic Energy Sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Work was performed at the Molecular Foundry and at the Advanced Light Source, which was supported by the Office of Science, Office of Basic Energy Sciences, of the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Department of Energy under contract no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' DE-AC02-05CH11231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='K and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' acknowledge support from the National Science Foundation Division of Materials Research (NSF-DMR) under awards 2002651 and 2011839.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='K and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through the TUM International Graduate School of Science and Engineering (IGSSE), GSC 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Author Contributions A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' conceived and carried out the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='K carried out nARPES/XPS measurements with the assistance of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' contributed to SRIM/TRIM simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' carried out ncAFM measurements with the assistance 6 of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' performed all STM/STS experiments with additional contributions from A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' performed all nARPES related data analysis with support from C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' performed all ncAFM, STM, and STS related data analysis with support from A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' synthesized the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' All authors discussed the results and contributed towards the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Competing interests The authors declare that they have no competing interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' REFERENCES [1] Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Direct observation of one-dimensional Peierls-type charge density wave in twin boundaries of monolayer MoTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' ACS Nano 14, 8299 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [2] Peierls, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' & Peierls, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Quantum theory of solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (Oxford Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Press, 1955).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [3] Schindler, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Higher-order topology in bismuth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 14, 918 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [4] Kim, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2, 397 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [5] Mourik, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Science 336, 1003 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [6] Tomonaga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Remarks on Bloch’s method of sound waves applied to many-fermion problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 5, 544 (1950).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [7] Luttinger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' An exactly soluble model of a many-fermion system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 4, 1154 (1963).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [8] Bockrath, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Luttinger-liquid behaviour in carbon nanotubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nature 397, 598 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [9] Ishii, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nature 426, 540 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [10] Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Real space imaging of one-dimensional standing waves: Direct evidence for a Luttinger liquid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 93, 166403 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [11] Auslaender, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Tunneling spectroscopy of the elementary excitations in a one-dimensional wire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Science 295, 825 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [12] Auslaender, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Spin-charge separation and localization in one dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Science 308, 88 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [13] Jompol, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Probing spin-charge separation in a Tomonaga-Luttinger liquid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Science 325, 597 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [14] Jolie, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Tomonaga-Luttinger liquid in a box: Electrons confined within MoS2 mirror-twin boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' X 9, 011055 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [15] Xia, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Charge density modulation and the Luttinger Liquid state in MoSe2 mirror twin boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' ACS Nano 14, 10716 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [16] Zhu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Imaging gate-tunable Tomonaga-Luttinger liquids in 1H-MoSe2 mirror twin boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 21, 748 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 7 [17] Jia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Tuning the many-body interactions in a helical Luttinger liquid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 13, 6046 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [18] Keimer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' & Moore, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The physics of quantum materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 13, 1045 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [19] Hashisaka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' & Fujisawa, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Tomonaga–Luttinger-liquid nature of edge excitations in integer quantum hall edge channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3, 32 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [20] Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 113, 066105 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [21] Ma, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 8, 14231 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [22] Lehtinen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' ACS Nano 9, 3274 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [23] Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Xue, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Mouis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Triozon, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', & Cresti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Electron transport properties of mirror twin grain boundaries in molybdenum disulfide: Impact of disorder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' B 100, 235403 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [24] Ma, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Metallic twin grain boundaries embedded in MoSe2 monolayers grown by molecular beam epitaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' ACS Nano 11, 5130 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [25] Du, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Crossed Luttinger liquid hidden in a quasi-two-dimensional material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1038/s41567-022-01829-z [26] Batzill, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Mirror twin grain boundaries in molybdenum dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Matter Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 30, 493001 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [27] Barja, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 12, 751 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [28] Lin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Defect engineering of two-dimensional transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2D Materials 3, 022002 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [29] Sangwan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' & Hersam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Electronic transport in two-dimensional materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Annu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 69, 299 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [30] Shimazaki, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Strongly correlated electrons and hybrid excitons in a moiré heterostructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nature 580, 472 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [31] Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Correlated electronic phases in twisted bilayer transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 19, 861 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [32] Manzeli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Ovchinnikov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Pasquier, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Yazyev, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', & Kis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2D transition metal dichalco- genides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2, 1 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [33] Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Engineering graphene and TMDs based van der waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 47, 4981 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [34] Ugeda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 9, 3401 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [35] Schuler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Electrically driven photon emission from individual atomic defects in monolayer WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 6, eabb5988 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [36] Schuler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Large spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 123, 076801 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 8 [37] Mitterreiter, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Atomistic positioning of defects in helium ion treated single-layer MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 20, 4437 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [38] Mitterreiter, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The role of chalcogen vacancies for atomic defect emission in MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 12, 3822 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [39] Kastl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Effects of defects on band structure and excitons in WS2 revealed by nanoscale photoemission spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' ACS Nano 13, 1284 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [40] Schuler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' How substitutional point defects in two-dimensional WS2 induce charge localiza- tion, spin–orbit splitting, and strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' ACS Nano 13, 10520 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [41] Kastl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The important role of water in growth of monolayer transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2D Materials 4, 021024 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [42] Kastl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Multimodal spectromicroscopy of monolayer WS2 enabled by ultra-clean van der waals epitaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2D Materials 5, 045010 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [43] Ma, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Tailoring the optical properties of atomically-thin WS2 via ion irradiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nanoscale 9, 11027 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [44] Komsa, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' & Krasheninnikov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Engineering the electronic properties of two-dimensional transition metal dichalcogenides by introducing mirror twin boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3, 1600468 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [45] Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Pantelides, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', & Zhou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' ACS Nano 9, 5189 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [46] Thomas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Autonomous scanning probe microscopy investigations over WS2 and Au{111}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' npj Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 8, 99 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [47] Forti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Electronic properties of single-layer tungsten disulfide on epitaxial graphene on silicon carbide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nanoscale 9, 16412 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [48] Ristein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Mammadov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', & Seyller, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Origin of doping in quasi-free-standing graphene on silicon carbide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 108, 246104 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [49] Kuc, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Zibouche, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', & Heine, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' B 83, 245213 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [50] Bostwick, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Ohta, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Seyller, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Horn, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', & Rotenberg, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Quasiparticle dynamics in graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3, 36 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [51] Rosenzweig, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Karakachian, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Marchenko, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', üster, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' K, & Starke, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Overdoping graphene beyond the van Hove singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 125, 176403 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [52] Kot, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Band dispersion of graphene with structural defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' B 101, 235116 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 9 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1: WS2 Defect Introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (a) Scanning tunneling micrograph depicting pristine WS2 before Ar+ bombardment (Itunnel = 30 pA, Vsample = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Scale bar, 10 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (b) After the pristine sample is heated and exposed to an Ar+ sputter (Itunnel = 30 pA, Vsample = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 V), both VS and MTBs are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Scale bar, 2 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (c) Lattice structure is measured by ncAFM (Vsample = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 V), with a CO-functionalized tip, which showcases the SMTB that is placed next to a structural schematic of (d) of the MTB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Scale bar, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='25 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (e) Point spectroscopy, in the form of the LDOS, for unmodified WS2, VS, and an SMTB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 10 (a) (b) As-grown Ar+Bombardment@600°℃ (c) (d) tungsten carbon nigh sulfur SiC(0001) △f (Hz) (e) WS2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 dl/d (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=') Vs SMTB 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0 5 0 5 5 0 2 Bias (V)Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2: LDOS Mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Conductance maps (Vmodulation = 5 mV) performed across an SMTB show dual-line orbital behavior at (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='132 eV (LUS) and (b) -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='025 eV (HOS) that is spatially out of phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (c) Accumulated conductance maps across a single-line of the SMTB (Vmodulation = 5 mV) are further shown as a function of bias, where the number of nodes increase as bias voltage is increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Scale bars, 1 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Conductance maps (dI/dV) of the (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='047 eV (LUS) and (e) -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='047 eV (HOS) that are spatially in phase within a single-line AMGB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (f) Compiled conductance maps (Vmodulation = 5 mV) across the single-line AMGB are further shown, where the number of nodes decreases as the voltage is increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 11 SMTB LUS AMGB LUS (a) (d) v = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='047 v SMTB HOS AMGB HOS (b) (e) V= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='047 V (c) (f) VBias = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='132 V, LUs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='3 V, Hos-2 VBias VBias = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 V, LUS+1 V,HOS-1 VBias HOS VBiasFig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3: nARPES Band Structure Comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (a) Unmodified and (b) defective band structure of WS2 on graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The inset displays the WS2 (green) and the graphene (black) BZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The spectra are collected along the Γ-K orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' nARPES spectra of as-grown (c) and defective (d) crystals that are collected along the red line of the inset in panel (a), with respective MDCs at the EF shown in (e) and (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (g) EDCs overlapped with STS from unmodified and defective WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Dark blue and dark red are the STS signals collected on pristine WS2 and on an MTB, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Dashed green is the STS spectrum collected on an isolated sulfur vacancy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The light blue and light red lines are the EDCs collected at the K point of the BZ (dashed vertical lines in panels (a) and (b) respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 (a) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 x 1012 cm-2 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 x 1013 cm-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 (eV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='4 3-3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='8 E,(eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 (d) (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 E 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 k,(A-1) k, (A-1) (e) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 Intensity (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='U) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 k (A-1) k (A-1) STS (g) EDC As-grown WS2 (f) AS-grown WS2 Intensity (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='U) MTB Defective WS2 Intensity (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='U) S Vacancy I 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='3 E-E = (eV) k,(A-1)Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 4: Tomonoga Luttinger Liquid Spatial Dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (a) LDOS spectra collected from pristine WS2 to an MTB (Vmodulation = 5 mV, Iset = 150 pA) and then recorded in reverse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The as-measured VBM, CBM, HOS, and LUS are highlighted with relative positions to EF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (b) The process of charge transfer from graphene into an MTB that is able to host highly correlated electron states is depicted, where the EF of graphene is shifted and locally modified due to the presence of an MTB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 13 (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 CBM high LUS Sample bias (V) EE dl/dV (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 HOS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 low VBM 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 Distance (nm) (b) X sTS acquisition electron tungsten sulfur o carbonSupplemental Information for WS2 Band Gap Renormalization Induced by Tomonaga Luttinger Liquid Formation in Mirror Twin Boundaries SUPPLEMENTARY NOTES 1| Ar+ sputtering and SRIM simulations Monte Carlo simulations based on The Stopping and Range of Ions in Matter, SRIM simulations,1 were used to evaluate preparation conditions using Ar+ bombardment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The Transport of Ions in Matter (TRIM) calculation, which assumes amorphous targets, with 50,000 ions was determined to be sufficient for simulation convergence;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' between simulating 20,000 and 50,000 ions, the variation in the number of vacancies created was less than 2% for all possible atomic vacancies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The Ar+ energy was set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1 keV to gauge angle dependence and fixed at an angle of 60◦ to gauge energy dependence, where these values were chosen to be used experimentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We set the height of WS2 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='72 nm, the height of graphene to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='34 nm, and the height of SiC to 30 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2,3 Density, displacement energy, and surface binding energy values were matched to literature values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='4–6 Using the estimated argon flux of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5×1013 ions cm2s at 30 seconds of irradiation, we obtain a value of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 ions nm2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Each ion is predicted to induce 3 VS, or 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 VS nm2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Considering the local measurement of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='168 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='052 VS nm2 and MTB formation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='021 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='009 MTB nm2 with a length of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='37 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='87 nm (2 missing sulfur per 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='315 nm in symmetric mirror twin boundary (SMTB) and the asymmetric mirror glide boundary (AMGB)), we extract an upper bound value of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='4 Smissing nm2 and lower bound value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 Smissing nm2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' We use simulation results to estimate defect creation and local measurements to approximate defect density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2| Defect analysis An object class can be instantiated within Python, where each image can be loaded for analysis with a given size (nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Defects are selected initially by inspection, and local minima or maxima are calculated within a given pixel range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Each selected defect is then cross-checked and input into a graph, where density can be calculated by the number of defects within a the given area, assuming an equal N×N image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' class node(object): def __init__(self,position,value): self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='value=value self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='position=position def getPosition(self): return self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='position def getvalue(self): return self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='value def getNodeHash(self): return hash(str(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='position)+str(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='value)) def __str__(self): return str(’Pos:’+str(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='position)+’ Val:’+str(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='value)) 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='02721v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='mtrl-sci] 6 Jan 2023 class edge(object): def __init__(self,src,dest): self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='src = src self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='dest = dest def getSource(self): return self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='src def getDestination(self): return self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='dest def getWeight(self): return self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='dest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='getvalue() def __str__(self): return str(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='src.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='getPosition())+’-->’+str(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='dest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='getPosition()) class emap(object): def __init__(self): self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges = {} def addNode(self,node): if node in self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges: raise ValueError(’Duplicate node’) else: self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges[node]=[] def addEdge(self,edge): src = edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='getSource() dest = edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='getDestination() if not (src in self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges and dest in self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges): raise ValueError(’Node not in graph’) self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges[src].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='append(dest) def getChildrenof(self,node): return self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges[node] def hasNode(self,node): return node in self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges def display(self): for i in self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges: print(i) def getedgelen(self): return len(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='edges) class defect_map(object): def __init__(self): self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='len=0 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='images = [] self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='imsize = [] self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='density = [] def addimage(self,im,siz): self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='append(im) self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='imsize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='append(siz) self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='len += 1 def getlen(self): return self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='len def select_defects(self, win): 2 for idx in range(0,len(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='images)): outpts = selectdefects(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='images[idx],win,idx) dList = emap() nlist = [] k = 0 for x, y, z in outpts: mol=node([x,y],k) dList.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='addNode(mol) nlist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='append(mol) k += 1 visited = [] for i in nlist: visited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='append(i) for j in nlist: if j not in visited: dList.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='addEdge(edge(i,j)) self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='append(dList.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='getedgelen()) def getdensity(self): tmp = [] for i in range(0,len(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='density)): tmp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='append(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='density[i]/(self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='imsize[i]**2)) return tmp 3 SUPPLEMENTARY FIGURES Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 1: Defect Density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Defective density is calculated as the number of defects per unit area, where (a) annealed only samples show a low defect density, (b) sputtered with annealing produces a larger number of both MTBs and VS, and (c) sputtered with annealing plus an additional 30 minute anneal produces elongated MTBs with less VS (Itunnel = 30 pA, Vsample = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Scale bars, 4 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Each defect, across a large number of images over multiple samples and subsequent preparations, is selected by inspection and then by solving for the local minima or maxima within a given pixel window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 4 (a) (b) (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='44 Annealing @ 600 °℃ SAA Astep nm nm nm 0 WS,/EG-SiC(0001) Prep MTB (defects/nm2) Point Vacancies (defects/nm2) Anneal, 600 °C 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='010 +/- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='002 SAstep: Ar+ Bombardment, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='021 +/- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='168 +/- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='052 600°C SAAstep: Ar+ Bombardment, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='009 +/- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='004 +/- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='003 600 °C + 30 min anneal, 600Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 2: SRIM Simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (a) Results of SRIM simulations with 50000 ions for a (b) WS2/Graphene/SiC(0001) heterostructure, where Ar+ ions are expected to nominally interact with the TMD overlayer given the ion energy and angle of irradiation incidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Both (c) and (d) depict the number of vacancies produced over a given incidence angle and energy, where we use an energy of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1 keV and an angle of 60◦, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 5 (a) (b) lonImplantation WS2 Ar graphene 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 WS2 (d) Graphene 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 SiC(0001) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 IT S vacancies W vacancies Si vacancies 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 C vacancies lon 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 Vacancies/l 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 N 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 (c) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 Vacancies/lon 101 102 103 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 S vacancies lon Energy (ev) W vacancies 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 Si vacancies C vacancies 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 Sic 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 0 250 500 750 Ar (μm-1 ion-1), o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1 keV 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0 20 40 60 80 (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' )Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 3: MTB Structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (a) AMGB (or 4|4E) structure shown in both the z and y directions, where the MTB, described by an edge shifted by 1 2a (a=a1=a2), is highlighted in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (b) The SMTB (or 4|4P) structure shown in both the z and y directions, which is connected at chalcogen site link with opposing tungsten atoms, is highlighted in red for clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 6 (a) (b) tungsten sulfurSupplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 4: Atomic Force Imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (a) Schematic depicting the AMGB over graphene that is collected by (b) ncAFM with a CO functionalized tip (Vsample = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Scale bar, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='25 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Depressions near the AMGB reflect oxygen atoms within an otherwise unmodified WS2 lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 7 (b) high (a) △f (Hz) low tungsten carbon sulfur SiC(0001)Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 5: Differential Conductance Mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' dI/dV mapping (Vmodulation = 5 mV) over the spectra region shown for an SMTB on a jet color scale, where the energy is ramped from near the VBM of WS2 by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='05 V to the HOS gap opening of the MTB hosting a TLL, and then from the LUS to the CBM of WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Arrows indicate decreasing bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A 1D particle in a box behavior is evident, and orbitals of both the TLL and a VS can be visualized at respective energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 8 Vsample 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 dl/dv (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=') sample 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 SMTB WS2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0 Bias (V)Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 6: Differential Conductance Mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' dI/dV mapping (Vmodulation = 5 mV) over the spectra region shown for an AMGB on a jet color scale, where the energy is ramped from near the VBM of WS2 by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='05 V to the HOS, and then from the LUS to the CBM of WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Orbitals of the as-formed TLL can be visualized as a function of bias voltage, where arrows indicate decreasing bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 9 Vsample 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='25 dl/dv (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='00 sample 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='00 AMGB WS2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='0 0 Bias V)Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 7: Spatially Resolved Scanning Tunneling Spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Dense local density of states spectra collected along (a) an MTB (1x128x500 pixels) (Vmodulation = 5 mV, Iset = 150 pA) beginning at the starred point along the red line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' This is shown as a (b) function of bias and distance, where the (c) FT of this spectra gives rise to separate spin (blue) and charge (red) Fermi velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The relationship Kc = νs νc yields the Luttinger parameter of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='26 (a) nm 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='3 (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 Sample bias (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='3 5 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 0 x (nm) q (nm-1)Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 8: Gap Length Dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Band gaps are depicted across 8 MTBs, where each point represents the average of multiple reproducible data points, measured as a function of length (slope = 1644.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='9 ± 173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='7 meV·nm, offset = -47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 ± 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='4 meV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A linear relationship is shown across both SMTB and AMGB structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Fitting was performed using the lmfit package in Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='7 11 nm 14 13 12 11 10 6 8 160 140 Egap (meV) 120 100 80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='12 1/L (nm-1)Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 9: Constant-Current Density of States Decay Across an MTB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A power law dependence is measured across a connected (a) MTB defect that starts at the starred point along the red line, where (b) the exponential fit, over an extracted region of high intensity to lower intensity, gives an exponential parameter matching the Luttinger parameter of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Fitting was performed using the lmfit package in Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='7 12 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='68 (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='06 Topography Exponential Fitting nm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='03 N 0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='33 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='65 x (nm)Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 10: nARPES Polarization Investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' WS2 bands collected with linear vertical polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The horizontal line below E-EF indicate the top of the valence band for the defective crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 13 Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 11: Measured W and S Core Levels Spectra of As-grown and Defective WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (a) W 4 f 7/2 and 5/2 levels centered at 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='5 eV and 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='7 eV, respectively, and (b) S 2p 3/2 and 1/2 core levels centered at 161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='3 eV and 162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='4 eV, respectively, from the unmodified sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' (c) and (d) are relative to WS2 after SAstep, displaying two components (light and dark orange), with a relative shift of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='4 eV for W 4f peaks and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='2 eV for S 2p peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' REFERENCES [1] Ziegler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Ziegler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', & Biersack, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' SRIM – The stopping and range of ions in matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Methods Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' B: Beam Interact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' At.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 268, 1818 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [2] Mitterreiter, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' The role of chalcogen vacancies for atomic defect emission in MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 12, 3822 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [3] Fox, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Helium ion microscopy of graphene: beam damage, image quality and edge contrast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nanotechnology 24, 335702 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [4] Komsa, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 109, 035503 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [5] Susi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Isotope analysis in the transmission electron microscope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 7, 13040 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [6] Chang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Cho, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Gil, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', & Lee, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' A simple method to calculate the displacement damage cross section of silicon carbide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 46, 475 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' [7] Newville, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Stensitzki, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', Allen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=', & Ingargiola, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' https://lmfit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='io/lmfit-py/ (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=' 14 (a) (q) W 4f S 2p Intensity (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} +page_content=') (c) (d) "step 373635343332 31164163162161160159 Binding Energy (eV) Binding Energy (eV)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE0T4oBgHgl3EQf3ALu/content/2301.02721v1.pdf'} diff --git a/WtE0T4oBgHgl3EQfmQEQ/content/tmp_files/2301.02495v1.pdf.txt b/WtE0T4oBgHgl3EQfmQEQ/content/tmp_files/2301.02495v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..61c8776b0bb02222e40005576315af5b06527d6b --- /dev/null +++ b/WtE0T4oBgHgl3EQfmQEQ/content/tmp_files/2301.02495v1.pdf.txt @@ -0,0 +1,2639 @@ +arXiv:2301.02495v1 [nlin.SI] 6 Jan 2023 +B¨acklund transformation of the Geng-Xue system +Lihua Wu, Nianhua Li1 +School of Mathematical Sciences, Huaqiao University, Quanzhou, 362021, P. R. China. +Abstract +We construct a B¨acklund transformation for the Geng-Xue system with the +help of reciprocal and gauge transformations. Furthermore, we derive N- +B¨acklund transformation for the Geng-Xue system resorting to Bianchi’s +permutability. +As an application, we obtain some exact solutions of the +Geng-Xue system including multi-kink, bell-shaped soliton. Finally, we dis- +cuss B¨acklund transformations for the Degasperis-Procesi and the Novikov +equations, which are two reductions of the Geng-Xue system. +Mathematical Subject Classification: 37K10, 37K35, 37K40, 35C08 +Keywords: +Geng-Xue system, Degasperis-Procesi equation, Novikov +equation, B¨acklund transformation, exact solutions. +1. Introduction +The Camassa-Holm (CH) equation [1] +mt + umx + 2uxm = 0, +m = u − uxx, +(1) +arises as a model for long waves in shallow water by the asymptotic approx- +imation of Hamiltonian for Euler’s equations. It is a completely integrable +system since it has Lax pair with bi-Hamiltonian structure, and may be +solved by the B¨acklund transformation [2] as well as the inverse scattering +transformation [3, 4]. The CH equation can be linked to the first negative +flow of the KdV hierarchy by a reciprocal transformation [5]. One important +feature for the CH equation is admiting peakon solutions [6, 7, 8], which have +1Corresponding author. linianh@hqu.edu.cn +Preprint submitted to Elsevier +January 9, 2023 + +discontinuities in x-derivative but both one-sided derivatives exist and differ +only by a sign at the crest. Henceforth, integrable equations with peakon +solutions have attracted much attention in recent years [9]. +The Geng-Xue (GX) system [10] +mt + 3uxvm + uvmx = 0, +m = u − uxx, +nt + 3vxun + uvnx = 0, +n = v − vxx, +(2) +is a coupled integrable CH type system with cubic nonlinearity and admits +a Lax pair and associated bi-Hamiltonian structure [11]. It is reciprocally +connected with a first negative flow of a modified Boussinesq hierarchy [12]. +Lundmark and Szmigielski throughly studied inverse spectral problem and +got multi-peakon solutions of the GX system [13]. Very recently, multi-kink +solutions of the GX system were obtained by Darboux transformation [14]. +In addition, the GX system is closely related to the Degasperis-Procesi +(DP) equation [15] +mt + umx + 3uxm = 0, +m = u − uxx, +(3) +and the Novikov equation [16] +mt + u2mx + 3uuxm = 0, +m = u − uxx, +(4) +since they can be reduced from (2) as v = 1 and v = u, respectively. There +are many works on their Lax representations, bi-Hamiltonian structures, re- +ciprocal partners and exact solutions [17]-[27]. +B¨acklund transformations (BTs), originated from the differential geom- +etry, play an important role in the theory of integrable systems, such as +searching exact solutions, integrable discretization, as well as constructing +symmetries, etc. [28, 29, 30]. However, in view of the speciality of the spec- +tral problem for the CH type equations, it is hard to construct their BTss +directly. Recently, Rasin and Schiff discussed BT for the CH equation with +the help of reciprocal transformation and concluded that it involves not only +the dependent variables but also the independent spatial variables [2]. Later +on Mao, Liu et al construct BTs for the DP, the Novikov and the short pulse +equations [31, 32, 33, 34]. As far as we know, there is no results on the BT +of the GX system. The aim of this paper is to construct the N-BT of the +GX system. +The paper is arranged as follows. In section 2, we first introduce a recip- +rocal transformation to relate the GX system with an associated GX (aGX) +2 + +system, and further to a negative flow of the Boussinesq hierarchy by a gauge +transformation. With the aid of these two transformations, we get a BT for +the GX system from the Darboux transformation of the negative Boussinesq +flow. In section 3, using the Bianchi’s permutability, we derive 2 and N-BT +for the GX system. In section 4, we apply BT to obtain exact solutions for +the GX system such as multi-kink, bell-shaped soliton etc.. In section 5, the +BT for the DP equation and the Novikov equation are discussed. +2. B¨acklund transformation of the Geng-Xue system +According to Ref. [10], the GX system (2) admits the Lax pair +ψx = Uψ, +ψt = V ψ, +(5) +where ψ = (ψ1, ψ2, ψ3)T and +U = + + +0 +λm +1 +0 +0 +λn +1 +0 +0 + + , +V = + + +−uxv +ux +λ − λuvm +uxvx +v +λ +− 1 +λ2 + uxv − uvx +−λuvn − vx +λ +−uv +u +λ +uvx + + . +It was shown that the GX system has infinitely many conservation laws +[10, 12] in which the first one is +qt = (−uvq)x, +q = (mn) +1 +3. +This naturally defines a reciprocal transformation +dy = qdx − uvqdt, +dτ = dt. +(6) +Applying (6) to the Lax pair (5), we have +ψy = Fψ, +ψτ = Gψ, +(7) +where +F = + + +0 +λp +1 +q +0 +0 +λ q +p +1 +q +0 +0 + + , +G = + + +−uyvq +uyq +λ +uv + uyvyq2 +v +λ +uyvq − uvyq − 1 +λ2 +−vyq +λ +0 +u +λ +uvyq + + , +and p = +m +q . Direct calculation shows that the compatibility condition of +linear system (7) yields the aGX system +pτ = pq(uvy − 2uyv), +uyyq2 + uyqqy + pq − u = 0, +qτ = −q2(uv)y, +vyyq2 + qqyvy + p−1q2 − v = 0. +(8) +3 + +Eliminating ψ1, ψ2 from (7), we obtain a scalar spectral problem for the wave +function ψ3. Under a gauge transformation ψ3 = p +1 +3q− 2 +3φ, the scalar spec- +tral problem is converted to the classical spectral problem of the Boussinesq +hierarchy +(∂3 +y + Q1∂y + Q2)φ = (∂y − r)(∂y − s)(∂y + r + s)φ = λ2φ, +(9) +where +r = 2py +3p − qy +3q, +s = −py +3p − qy +3q − 1 +q. +(10) +With the aid of the classical DT of the Boussinesq hierarchy [35], we get a +DT for the aGX system (8). +Proposition 1. The Lax presentation (7) is covariant under the DT: +ψ[1] = T(λ1, a1, b1)ψ, +T(λ1, a1, b1) = + + +−a1 +c1 +λ(a2 +1−1) +λ1b1c1 +1 +c1 +0 +−1 +λb1 +λ1 +1 +c1 +0 +−a1 +c1 + + , +p[1] = q(a2 +1 − 1) +pb2 +1c1 +, +q[1] = a2 +1 − 1 +λ1pb1 +, +u[1] = 1 +c1 +(ua1 − uyq), +v[1] = +c1 +a2 +1 − 1(va1 − vyq − b1 +λ1 +), +(11) +where a1 = ϕ1 +ϕ3, b1 = ϕ2 +ϕ3, c1 = +� +|a2 +1 − 1|, and (ϕ1, ϕ2, ϕ3)T is a special solution +of (7) or (5) at λ = λ1. +To construct a BT for the GX system, it is important to observe that +1 +q[1] += 1 +q + +a1,y +a2 +1 − 1, +u[1]v[1] = uv + +a1,τ +a2 +1 − 1. +(12) +Taking (6) and (12) into account, we arrive at +dx[1] = 1 +q[1] +dy + u[1]v[1]dτ = d(x − 1 +2ln|a1 + 1 +a1 − 1|). +Integrating on both sides of this equation and choosing the integration con- +stant to be zero, we obtain +x[1] = x − 1 +2ln|a1 + 1 +a1 − 1|. +(13) +Given these preparations, the following proposition holds. +4 + +Proposition 2. The GX system admits a BT +x[1] = x − 1 +2ln|a1 + 1 +a1 − 1|, +t[1] = t, +u[1] = 1 +c1 +(ua1 − ux), +v[1] = +c1 +a2 +1 − 1(va1 − vx − a1,x + a2 +1 − 1 +λ2 +1m +), +(14) +where c1 = +� +|a2 +1 − 1|, and a1 is controlled by the system +a1,xx = (mx +m − a1)(a1x + a2 +1 − 1) − 2a1a1x + λ2 +1mn, +a1,t = ux − ua1 +λ2 +1m +(a1,x + a2 +1 − 1) − (uva1)x + uv + uxvx. +(15) +3. N-B¨acklund transformation of the Geng-Xue system +In this section, we shall first deduce a 2-BT for the GX system, and then +extend it to N-BT. To begin with, let us show the diagram of Bianchi’s +permutability as follows. +u[21], v[21] +u[12], v[12] +u, v +∥ +u[1], v[1] +u[2], v[2] +λ1, a1, b1 +λ2, a2, b2 +λ2, a12, b12 +λ1, a21, b21 +Figure 1: Bianchi permutability +Using this Bianchi’s permutability, we have +T(λ2, a12, b12)T(λ1, a1, b1) = T(λ1, a21, b21)T(λ2, a2, b2), +(16) +which leads to +a12 = λ2b2(a2 +1 − 1) + λ1b1(1 − a1a2) +λ1b1(a2 − a1) +, +a21 = λ1b1(a2 +2 − 1) + λ2b2(1 − a1a2) +λ2b2(a1 − a2) +, +b12 = (λ2b1 − λ1b2)c1 +λ1(a2 − a1) +, +b21 = λ1c2 +λ2c1 +b12, +c21 = (a2 +2 − 1)λ1b1c1 +(a2 +1 − 1)λ2b2c2 +c12. +Then, based on the Proposition 2, we have 2-BT for the GX system. The +main result is stated as follows. +5 + +Proposition 3. The GX system admits a 2-BT +x[12] = x − 1 +2ln|(a1 + 1)(a12 + 1) +(a1 − 1)(a12 − 1)|, +t[12] = t, +u[12] = +1 +c1c12 +[u(a1a12 + 1) − ux(a1 + a12) − a2 +1 − 1 +λ1b1 +], +v[12] = +c1c12 +(a2 +1 − 1)(a2 +12 − 1)[v(a1a12 + 1) − (vx + b1 +λ1 +)(a1 + a12)] +− +c1c12 +(a2 − a1)(a2 +12 − 1)( b1 +λ1 +− b2 +λ2 +). +(17) +Here c12 = +� +|a2 +12 − 1|, a2 = h1 +h3, b2 = h2 +h3, and (h1, h2, h3)T is a special solution +of (5) at λ = λ2. +Next, we will derive N-BT of the GX system. For convenience, let us +denote natural permutation from 1 to any positive integer N by � +N, i.e. +� +N = 12 · · ·N. Then, constructing the N-BT comes down to give compact +forms for x[ � +N], a[ � +N], u[ � +N] and v[ � +N]. In fact, it follows from Proposition 1 that +x[ � +N] = x − 1 +2ln|(a1 + 1)(a12 + 1)...(a � +N + 1) +(a1 − 1)(a12 − 1)...(a � +N − 1)|. +(18) +Since it’s not easy to obtain compact form for a[ � +N] directly, we define w � +N by +(a1 + 1)(a12 + 1)...(a � +N + 1) +(a1 − 1)(a12 − 1)...(a � +N − 1) = w � +N + 1 +w � +N − 1, +(19) +which implies that +a � +N = 1 − w � +N−1w � +N +w � +N − w � +N−1 +. +(20) +We first devote ourselves to arriving at a recurrence relation for w � +N to obtain +its expression of compact form, and hence for that of a � +N, x � +N, u � +N, v � +N. +Resorting to Bianchi’s permutability, we get the recurrence relations +a � +N = +(a2 +� +N−1 − 1)λNb � +N−2N + λN−1b � +N−1(1 − a � +N−2Na � +N−1) +λN−1b � +N−1(a � +N−2N − a � +N−1) +, +(21) +b � +N = λNb � +N−1 − λN−1b � +N−2N +λN−1(a � +N−2N − a � +N−1) c � +N−1, +(22) +6 + +where c � +N = +� +|a2 +� +N − 1|. Moreover, introducing +σN +� +N−1 = b � +N−2N +b � +N−1 +, +N ≥ 2, +(23) +and inserting (20) into (21), one infers +w � +N = +λNσN +� +N−1w � +N−1(w � +N−2N − w � +N−2) + λN−1w � +N−2N(w � +N−2 − w � +N−1) +λNσN +� +N−1(w � +N−2s − w � +N−2) + λN−1(w � +N−2 − w � +N−1) +, +(24) +or equivalently +σN +� +N−1 = λN−1 +λN +(w � +N−2 − w � +N−1)(w � +N−2N − w � +N) +(w � +N−2 − w � +N−2N)(w � +N−1 − w � +N). +(25) +We are now in a position to obtain determinant expressions for w � +N and +σN +� +N−1 . A natural idea is to guess their expressions by observation of explicit +formulae for N ≤ 3 and then prove them. In fact, it is not hard to show that +the first several members in (24) and (25) are +w1 = a1, +w12 = λ1b1a2 − λ2b2a1 +λ1b1 − λ2b2 +, +w123 = λ1b1(a3λ2 +2 − a2λ2 +3) + λ2b2(a1λ2 +3 − a3λ2 +1) + λ3b3(a2λ2 +1 − a1λ2 +2) +λ1b1(λ2 +2 − λ2 +3) + λ2b2(λ2 +3 − λ2 +1) + λ3b3(λ2 +1 − λ2 +2) +, +σ2 +1 = b2 +b1 +, +σ3 +12 = b13 +b12 += (λ3b1 − λ1b3)(a2 − a1) +(λ2b1 − λ1b2)(a3 − a1). +(26) +In view of (26), we introduce the following determinant +∆N = + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +������� +1 +a1 +λ1b1 +· · · +λ2k +1 +... +... +... +... +1 +aN +λNbN +· · · +λ2k +N +������� +, +N = 3k + 1, +������� +1 +a1 +λ1b1 +· · · +λ2k +1 a1 +... +... +... +... +1 +aN +λNbN +· · · +λ2k +N aN +������� +, +N = 3k + 2, +������� +1 +a1 +λ1b1 +· · · +λ2k+1 +1 +b1 +... +... +... +... +1 +aN +λNbN +· · · +λ2k+1 +N +bN +������� +, +N = 3k + 3, +(27) +7 + +for k ∈ N. +Theorem 1. The expressions for σN +� +N−1 and w � +N in terms of determinant ∆N +read +w � +N = AN +BN +, +N ≥ 1, +(28) +σN +� +N−1 = λN−1(AN−2BN−1 − AN−1BN−2)(CN−1BN − ANDN−1) +λN(AN−2DN−1 − CN−1BN−2)(AN−1BN − ANBN−1) , N ≥ 3,(29) +where +AN = ∆N+1 +� +N + 1 +1 +� +, +CN−1 = ∆N +� +N − 1 +1 +� +, +BN = ∆N+1 +� +N + 1 +2 +� +, +DN−1 = ∆N +� +N − 1 +2 +� +. +Here J +� i1 +i2 +· · · +ik +j1 +j2 +· · · +jk +� +denotes the determinant by removing i1, · · · , ik +rows and j1, · · · , jk columns from the determinant J. +To prove the theorem, we need two useful identities displayed in the +following Lemma. +Lemma 1. Assume that π is a (N + 2) × N matrix, χk are N + 2 order +column vectors. Then we have +1. The Pl¨ucker relation +|π, χ1, χ2||π, χ3, χ4| − |π, χ1, χ3||π, χ2, χ4| + |π, χ1, χ4||π, χ2, χ3| = 0. +2. The Jacobi identity +J × J +� +i1 +i2 +j1 +j2 +� += J +� +i1 +j1 +� +× J +� +i2 +j2 +� +− J +� +i1 +j2 +� +× J +� +i2 +j1 +� +. +Proof of Theorem 1: Here we only prove the case of N = 3k + 2 by +the method of mathematical induction, because the other two cases can be +verified similarly. +First, it is easy to check that both (28) and (29) are true for N ≤ 3. +Next, assume (28) and (29) hold for N − 1, our task is to verify them for N. +In view of (22) and (23), it is straightforward to know that +σN+1 +� +N += b � +N−1N+1 +b � +N += +a � +N−2N − a � +N−1 +a � +N−2N+1 − a � +N−1 +λN+1 − λN−1σN+1 +� +N−1 +λN − λN−1σN +� +N−1 +. +(30) +8 + +On the one hand, it follows from (20) that +a � +N−2N − a � +N−1 +a � +N−2N+1 − a � +N−1 += (w � +N−2N − w � +N−1)(w � +N−2 − w � +N−2N+1) +(w � +N−2N+1 − w � +N−1)(w � +N−2 − w � +N−2N) += (CN−1BN−1 − AN−1DN−1)(AN−2HN−1 − BN−2EN−1) +(EN−1BN−1 − AN−1HN−1)(AN−2DN−1 − CN−1BN−2)(31) +with +EN−1 = ∆N+1 +� N − 1 +N +1 +N + 1 +� +, +HN−1 = ∆N+1 +� N − 1 +N +2 +N + 1 +� +. +On the other hand, by inductive hypotheses, one infers +λN+1 − λN−1σN+1 +� +N−1 +λN − λN−1σN +� +N−1 += +λNR1 +λN+1R2 +(AN−2DN−1 − BN−2CN−1)(AN−1BN − ANBN−1) +(AN−2HN−1 − BN−2EN−1)(AN−1DN − BN−1CN), +(32) +where +R1 = λ2 +N+1(AN−2HN−1 − BN−2EN−1)(AN−1DN − CNBN−1) +−λ2 +N−1(AN−2BN−1 − AN−1BN−2)(EN−1DN − CNHN−1), +R2 = λ2 +N(AN−2DN−1 − BN−2CN−1)(AN−1BN − ANBN−1) +−λ2 +N−1(CN−1BN − ANDN−1)(AN−2BN−1 − AN−1BN−2). +Substituting (31) and (32) into (30), one has +σN+1 +� +N += +λN(AN−1BN − ANBN−1) +λN+1(AN−1DN − BN−1CN) +R1(CN−1BN−1 − AN−1DN−1) +R2(EN−1BN−1 − AN−1HN−1). +(33) +Before proceeding further, let us list some useful identities obtained from the +Jacobi identity and Pl¨ucker relation as follows +CN−1BN−1 − AN−1DN−1 = ∆N∆N +� +N − 1 +N +1 +2 +� +, +EN−1BN−1 − AN−1HN−1 = ∆N+1 +� +N +N + 1 +� +∆N +� +N − 1 +N +1 +2 +� +, +(34) +9 + +AN−1BN − ANBN−1 = ∆N∆N+1 +� +N +N + 1 +1 +2 +� +, +CN−1BN − ANDN−1 = ∆N∆N+1 +� +N − 1 +N + 1 +1 +2 +� +, +AN−1DN − CNBN−1 = ∆N+1 +� +N +N + 1 +� +∆N+1 +� +N +N + 1 +1 +2 +� +, +EN−1DN − CNHN−1 = ∆N+1 +� +N +N + 1 +� +∆N+1 +� +N − 1 +N +1 +2 +� +, +AN−2HN−1 − BN−2EN−1 = ∆N+1 +� N − 1 +N +N +N + 1 +� +∆N +� N − 1 +N +1 +2 +� +, +(35) +whose proofs will be given in appendix. With the help of (34) and (35), a +direct calculation gives rise to +σN+1 +� +N += +λN(AN−1BN − ANBN−1) +λN+1(AN−1DN − BN−1CN) +R3 +R4 +, +(36) +where +R3 = λ2 +N+1∆N+1 +� N − 1 +N +N +N + 1 +� +∆N+1 +� N +N + 1 +1 +2 +� +−λ2 +N−1∆N−1∆N+1 +� +N − 1 +N +1 +2 +� +, +R4 = λ2 +N∆N +� +N − 1 +N +� +∆N+1 +� +N +N + 1 +1 +2 +� +−λ2 +N−1∆N−1∆N+1 +� +N − 1 +N + 1 +1 +2 +� +. +Using the Jacobi identity, we have (proven in appendix) +R3 = +1 +λ2 +1λ2 +2···λ2 +N−2 ∆N+2 +� N +N + 2 +1 +2 +� +∆N+1 +� N − 1 +N +N + 1 +1 +2 +3 +� +, +R4 = +1 +λ2 +1λ2 +2···λ2 +N−2 ∆N+2 +� +N + 1 +N + 2 +1 +2 +� +∆N+1 +� +N − 1 +N +N + 1 +1 +2 +3 +� +. +(37) +10 + +Substituting (37) into (36) and noting the first two equalities in (35), we get +σN+1 +� +N += +λN(AN−1BN−ANBN−1)∆N+2 + + N +N + 2 +1 +2 + + +λN+1(AN−1DN−BN−1CN)∆N+2 + + N + 1 +N + 2 +1 +2 + + += +λN +λN+1 +(AN−1BN−ANBN−1)(CNBN+1−AN+1DN) +(AN−1DN−BN−1CN)(ANBN+1−BNAN+1), +(38) +which proves (29). +Furthermore, it follows from inductive hypotheses, (25), (34) and (35) +that +w � +N+1 = +λN+1σN+1 +� +N +w � +N(w � +N−1N+1 − w � +N−1) + λNw � +N−1N+1(w � +N−1 − w � +N) +λN+1σN+1 +� +N +(w � +N−1N+1 − w � +N−1) + λN(w � +N−1 − w � +N) += +(AN−1BN−ANBN−1)(CN BN+1−AN+1DN) +(AN−1DN−BN−1CN)(ANBN+1−BNAN+1) +AN +BN ( CN +DN − AN−1 +BN−1) + CN +DN ( AN−1 +BN−1 − AN +BN ) +(AN−1BN−ANBN−1)(CN BN+1−AN+1DN) +(AN−1DN−BN−1CN)(ANBN+1−BNAN+1)( CN +DN − AN−1 +BN−1 ) + AN−1 +BN−1 − AN +BN += +∆N+2 +� +N + 1 +N + 2 +1 +2 +� +∆N+1 +� +N +1 +� +− ∆N+2 +� +N +N + 2 +1 +2 +� +∆N+1 +� +N + 1 +1 +� +∆N+2 +� N + 1 +N + 2 +1 +2 +� +∆N+1 +� N +2 +� +− ∆N+2 +� N +N + 2 +1 +2 +� +∆N+1 +� N + 1 +2 +� += +AN+1 +� N + 1 +1 +� +AN+1 +� +N +N + 1 +� +− AN+1 +� N +1 +� +AN+1 +� N + 1 +N + 1 +� +BN+1 +� N + 1 +1 +� +BN+1 +� +N +N + 1 +� +− BN+1 +� N +1 +� +BN+1 +� N + 1 +N + 1 +� +Jacobi +====== +identity +AN+1AN+1 +� +N +1 +� +BN+1BN+1 +� +N +1 +� += AN+1 +BN+1 +, +which completes the proof of Theorem 1. +Now, according to Theorem 1, it directly infers from (20) that +a � +N = AN−1AN − BN−1BN +AN−1BN − BN−1AN +. +(39) +Thus, we may summarize what we have obtained as the following Theorem. +11 + +Theorem 2. The GX system admits the N-BT +x[ � +N] = x − 1 +2ln|AN + BN +AN − BN +|, +t[ � +N] = t, +u[ � +N] = 1 +c � +N +(u[ � +N−1]a � +N − +u[ � +N−1],x +x[ � +N−1],x +), +v[ � +N] = +c � +N +a2 +� +N − 1[v[ � +N−1]a � +N − +v[ � +N−1],x +x[ � +N−1],x +− +1 +λ2 +Nm[ � +N−1] +( +a � +N,x +x[ � +N−1],x ++ a2 +� +N − 1)], +(40) +where a � +N is given by (39), c � +N = +� +|a2 +� +N − 1|, and m � +N−1 = u � +N−1− +1 +x +� +[N−1],x( +u[ � +N−1],x +x[ � +N−1],x)x. +4. Exact solutions +As an application of the BT, we shall deduce some exact solutions of the +GX system. Choose u = u0, v = v0, u0v0 ̸= 0 as an initial solution of the GX +system. Let αj, βj, −αj − βj, ( 1 ≤ j ≤ N) be three roots of the equation +γ3 − γ − λ2 +ju0v0 = 0, and fj be solutions of the following system +ϕxxx − ϕx − λ2 +ju0v0ϕ = 0, +ϕt − 1 +λ2 +j +ϕxx + u0v0ϕx + 1 +λ2 +j +ϕ = 0, +(41) +which is a scalar form of (5) at λ = λj, u = u0, v = v0. +Example 1: 1-soliton solutions. +If 27λ4 +1u2 +0v2 +0 − 4 < 0, then α1, β1, −α1 − β1 are three different real roots. +We take +f1 = e +ξ1+η1 +2 +(eθ1 + δ1e−θ1), +where ξ1 = α1x − λ2 +1u2 +0v2 +0 +α2 +1 +t + ξ10, η1 = β1x − λ2 +1u2 +0v2 +0 +β2 +1 +t + η10, θ1 = +µ1 +2 [x + +u0v0(4−µ2 +1) +µ2 +1−1 +t] + θ10, µ1 = α1 − β1, δ1 = ±1, θ10 = 1 +2(ξ10 − η10), and ξ10, η10 are +two constants. For convenience, assume µ1 > 0 and let ν1 = α1 +β1, it infers +µ1 = +� +4 − 3ν2 +1. Then +a1 = (µ1 + ν1)eθ1 + δ1(ν1 − µ1)e−θ1 +2(eθ1 + δ1e−θ1) += +� ν1+µ1 tanh θ1 +2 +, +δ1 = 1, +ν1+µ1 coth θ1 +2 +, +δ1 = −1, +12 + +which together with Proposition 2 yields tanh type 1-soliton solution +x[1] = x − 1 +2 ln |ν1 + 2 + µ1 tanh θ1 +ν1 − 2 + µ1 tanh θ1 +|, +u[1] = +u0(ν1 + µ1 tanh θ1) +� +|(ν1 + µ1 tanh θ1)2 − 4| +, +v[1] = −v0ν1(ν2 +1 − 2 + µ1µ1 tanh θ1) +� +|(ν1 + µ1 tanh θ1)2 − 4| +(1 − ν2 +1)[(ν1 + µ1 tanh θ1)2 − 4] +, +(42) +and coth type 1-soliton solution +x[1] = x − 1 +2 ln |ν1 + 2 + µ1 coth θ1 +ν1 − 2 + µ1 coth θ1 +|, +u[1] = +u0(ν1 + µ1 coth θ1) +� +|(ν1 + µ1 coth θ1)2 − 4| +, +v[1] = −v0ν1(ν2 +1 − 2 + µ1ν1 coth θ1) +� +|(ν1 + µ1 coth θ1)2 − 4| +(1 − ν2 +1)[(ν1 + µ1 coth θ1)2 − 4] +. +(43) +It is easy to see that x[1] → ±∞ when x → ±∞ in (42) and (43). Further +analysis shows the map from x[1] to x in (42) is bijective and x[1], u[1], v[1] are +nonsingular when 1 < |ν1| < +2 +√ +3, while in (43) x[1], u[1], v[1] are singular for +any ν1. It infers that (42) gives smooth soliton solutions for 1 < |ν1| < +2 +√ +3 +and (43) gives singular solutions to which we do not pay more attention. The +profiles of the 1-soliton solutions (42) are shown in Fig. 2-3. +-100 +-50 +50 +100 +x[1] +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +u[1] (t[1]=0) +-100 +-50 +50 +100 +x[1] +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 +4.0 +v[1] (t[1]=0) +Figure 2: The profiles of smooth 1-soliton solution (42) at u0 = 1, v0 = 1, ν1 = 1.1. +Example 2: 2-soliton solutions and their interactions. +13 + +-100 +-50 +50 +100 +x[1] +-1.4 +-1� +� +-1.0 +-0� +� +-�� +� +-0.4 +u[1] (t[1]=0) +-100 +-50 +50 +100 +x[1] +1.0 +1.5 +2.0 +2.5 +3.0 +v[1] (t[1]=0) +Figure 3: The profiles of smooth 1-soliton solution (42) at u0 = 1, v0 = −1, ν1 = −1.12. +Applying the Proposition 3, we have 2-soliton solution +x[12] = x − 1 +2ln|(a1 + 1)(a12 + 1) +(a1 − 1)(a12 − 1)|, +t[12] = t, +u[12] = +1 +c1c12 +[u0(a1a12 + 1) − a2 +1 − 1 +λ1b1 +), +v[12] = +c1c12 +(a2 +1 − 1)(a2 +12 − 1)[v0(a1a12 + 1) − b1 +λ1 +(a1 + a12)] +− +c1c12 +(a2 − a1)(a2 +12 − 1)( b1 +λ1 +− b2 +λ2 +) +(44) +with c1 = +� +|a2 +1 − 1|, c12 = +� +|a2 +12 − 1|. We call (44) tanh-tanh type and +tanh-coth type 2-soliton solution respectively when +a1 = ν1 + µ1 tanh θ1 +2 +, +a2 = ν2 + µ2 tanh θ1 +2 +, +b1 = −ν1(ν1 − µ1 tanh θ1) +2λ1u0 +, +b2 = −ν2(ν2 − µ2 tanh θ2) +2λ2u0 +, +a12 = 4 − (ν1 + µ1 tanh θ1)(ν2 + µ2 tanh θ2) +2(ν2 − ν1 + µ2 tanh θ2 − µ1 tanh θ1) +− +ν2(ν2 − µ2 tanh θ2)[4 − (ν1 + µ1 tanh θ1)2] +2ν1(ν1 − µ1 tanh θ1)(ν2 − ν1 + µ2 tanh θ2 − µ1 tanh θ1), +14 + +and +a1 = ν1 + µ1 tanh θ1 +2 +, +a2 = ν2 + µ2 coth θ1 +2 +, +b1 = −ν1(ν1 − µ1 tanh θ1) +2λ1u0 +, +b2 = −ν2(ν2 − µ2 coth θ2) +2λ2u0 +, +a12 = 4 − (ν1 + µ1 tanh θ1)(ν2 + µ2 coth θ2) +2(ν2 − ν1 + µ2 coth θ2 − µ1 tanh θ1) +− +ν2(ν2 − µ2 coth θ2)[4 − (ν1 + µ1 tanh θ1)2] +2ν1(ν1 − µ1 tanh θ1)(ν2 − ν1 + µ2 coth θ2 − µ1 tanh θ1). +Here θ1 = +µ1 +2 [x + u0v0(4−µ2 +1) +µ2 +1−1 +t] + θ10, θ2 = +µ2 +2 [x + u0v0(4−µ2 +2) +µ2 +2−1 +t] + θ20, µ1 = +� +4 − 3ν2 +1, µ2 = +� +4 − 3ν2 +2, λ2 +1 = ν1(1−ν2 +1) +u0v0 +, λ2 +2 = ν2(1−ν2 +2) +u0v0 +, and ν1, ν2 are two +constants. +Analysis shows that tanh-tanh type 2-soliton solution gives smooth kink- +antikink or antikink-kink solution if 1 < |ν1|, |ν2| < +2 +√ +3, ν1ν2 < 0. Especially +and interestingly, one finds that the tanh-tanh type 2-soliton solution be- +comes bell-shaped 1-soliton solutions when ν1 = −ν2. Moreover, tanh-coth +type 2-soliton solution gives kink-kink or antikink-antikink solutions when +1 < |ν2| < |ν1| < +2 +√ +3, ν1ν2 > 0. The profiles of the 2-soliton solutions (44) +and their interactions are shown in Fig. 4-6. +-500 +-450 +-400 +-350 +x[12] +0.2 +0.3 +0.4 +0.5 +0.6 +u[12] (t[12]=-100) +-40 +-20 +20 +x[12] +0.35 +0.40 +0.45 +0.50 +0.55 +0.60 +u[12] (t[12]=-4) +400 +450 +500 +550 +x[12] +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +u[12] (t[12]=100) +-550 +-500 +-450 +-400 +-350 +x[12] +2 +3 +4 +5 +6 +v[12] (t[12]=-100) +-40 +-20 +20 +40 +60 +80 +x[12] +1.8 +2.0 +2.2 +2.4 +2.6 +2.8 +v[12] (t[12]=3) +350 +400 +450 +500 +550 +x[12] +1.0 +1.5 +2.0 +2.5 +v[12] (t[12]=100) +Figure 4: The antikink-kink and kink-antikink solutions at u0 = −1, v0 = −1, ν1 = +−1.12, ν2 = 1.14, θ10 = θ20 = 0. +15 + +-520 +-510 +-500 +-490 +-480 +-470 +-460 +x[12] +0.50 +0.55 +0.60 +u[12] (t[12]=-100) +-40 +-20 +20 +40 +x[12] +0.50 +0.55 +0.60 +u[12] (t[12]=0) +460 +480 +500 +520 +x[12] +0.50 +0.55 +0.60 +u[12] (t[12]=100) +-520 +-510 +-500 +-490 +-480 +-470 +-460 +x[12] +2.3 +2.4 +2.5 +2.6 +2.7 +2.8 +2.9 +v[12] (t[12]=-100) +-40 +-20 +20 +40 +x[12] +2.3 +2.4 +2.5 +2.6 +2.7 +2.8 +2.9 +v[12] (t[12]=0) +470 +480 +490 +500 +510 +520 +x[12] +2.3 +2.4 +2.5 +2.6 +2.7 +2.8 +2.9 +v[12] (t[12]=100) +Figure 5: The bell-shaped 1-soliton solution at u0 = −1, v0 = −1, ν1 = −ν2 = −1.12, θ10 = +θ20 = 0. +-650 +-600 +-550 +-500 +-450 +-400 +-350 +x[12] +0.0 +0.5 +1.0 +1.5 +2.0 +u[12], t[12]=-100 +-100 +-80 +-60 +-40 +x[12] +0.0 +0.5 +1.0 +1.5 +2.0 +u[12] (t[12]=-15) +350 +400 +450 +500 +550 +x[12] +0.0 +0.5 +1.0 +1.5 +2.0 +u[12] (t[12]=80) +-650 +-600 +-550 +-500 +-450 +-400 +-350 +x[12] +0 +2 +4 +6 +8 +10 +v[12], t[12]=-100 +-100 +-80 +-60 +-40 +x[12] +0 +2 +4 +6 +8 +10 +v[12], t[12]=-15 +400 +450 +500 +550 +600 +650 +700 +x[12] +0 +2 +4 +6 +8 +10 +v[12], t[12]=100 +Figure 6: The kink-kink and antikink-antikink solutions at u0 = 1, v0 = 1, ν1 = 1.13, ν2 = +1.1, θ10 = θ20 = 0. +5. B¨acklund transformations for the Degasperis-Procesi and Novikov +equations +5.1. The Degasperis-Procesi case +As we know, the GX system reduces to the DP equation as v = 1. There- +fore, we shall study BT for the DP equation. The DP equation (3) possesses +a Lax pair [19] +ψx = U1ψ, +ψt = V1ψ, +(45) +16 + +where ψ = (ψ1, ψ2, ψ3)T and +U1 = + + +0 +λm +1 +0 +0 +λ +1 +0 +0 + + , +V1 = + + +−ux +ux +λ − λum +0 +1 +λ +− 1 +λ2 + ux +−λu +−u +u +λ +0 + + . +Naturally, the reciprocal transformation (6) of the Geng-Xue system reduces +to that of the DP equation +dy = qdx − uqdt, +dτ = dt. +(46) +with q = m +1 +3. Applying this transformation, the Lax presentation (45) is +converted to +ψy = F1ψ, +ψτ = G1ψ, +(47) +where +F1 = + + +0 +λq2 +1 +q +0 +0 +λ +q +1 +q +0 +0 + + , +G1 = + + +−uyq +uyq +λ +u +1 +λ +uyq − 1 +λ2 +0 +0 +u +λ +0 + + . +The compatibility condition of Lax pair (47) yields the associated DP (aDP) +equation [17, 36] +qτ = −uyq2, +u − q3 − q(uyq)y = 0. +(48) +It is straightforward to verify that, under a gauge transformation χ = qψ2, +the scalar form of spectral problem in (47) is converted to +(∂3 +y + U1∂y + 1 +2U1y)χ = λ2 +1χ, +U1 = −2qyy +q + q2 +y − 1 +q2 +, +which is just the classical spectral problem of the KK hierarchy [35]. Making +use of the DT for the KK hierarchy, we get the following Proposition. +Proposition 4. The Lax pair (47) is covariant under the DT +ψ[1] = Tψ, +T = I + + + +(λ1σ1−σ2)(λ2 +1−σ2 +2) +λ2 +1−2λ1σ1σ2+σ2 +2 +σ2 +0 +0 +λσ2 +0 +0 +0 +λ1 + + + + +λ2 +λ +−λ2 +λ2 +1 +−λ +−λ2 +1 +λ2 +1 +−λ +−λ2 +1 + + T1, +q[1] = +q(λ2 +1−σ2 +2) +λ2 +1−2λ1σ1σ2+σ2 +2 , +u[1] = u + 2(λ2 +1uyhσ2−λ3 +1u+λ1σ1−σ2) +λ1(λ2 +1−σ2 +2) +, +(49) +17 + +or the DT +ψ[1] = ˜Tψ, +˜T = diag[−1, −1, 1]T, +q[1] = − +q(λ2 +1−σ2 +2) +λ2 +1−2λ1σ1σ2+σ2 +2 , +u[1] = −u + 2(σ2−λ1σ1+λ3 +1u−λ2 +1uyhσ2) +λ1(λ2 +1−σ2 +2) +, +(50) +where T1 = +2 +(λ2+λ2 +1)(λ2 +1−σ2 +2)diag[σ2, λ1σ1−σ2, λ1], σi = gi +g3, i = 1, 2, and (g1, g2, g3)T +is a special solution of the linear system (47) at λ = λ1. +Since the process is very similar, we just consider the second DT in Propo- +sition 4. It is easy to check that +1 +q[1] += 1 +q + +2ϑy +ϑ2 − 1, +u[1] = u + +2ϑτ +ϑ2 − 1, +ϑ = λ1 +σ2 +. +(51) +Then with the aid of (46), we obtain +dx[1] = d(x − ln|ϑ + 1 +ϑ − 1|), +which infers that +x[1] = x − ln|ϑ + 1 +ϑ − 1|. +Here the integration constant is taken to be zero. +Corollary 1. The DP equation has a BT of the form +x[1] = x − ln|ϑ + 1 +ϑ − 1|, +t[1] = t, +u[1] = u − 2ϑ +λ2 +1 ++ 2λ2 +1(u − uxϑ) − 2ϑϑx +λ2 +1(ϑ2 − 1) +, +(52) +where ϑ is determined by +ϑxx = λ2 +1m − 3ϑϑx + ϑ − ϑ3, +ϑt = u − (uϑ)x + λ−2 +1 (ϑ − ϑ3 − ϑϑx). +Remark: In fact, considering the first DT in Proposition 4, one may +get an equivalent BT to the one in [31], which are related by a = +f2 +2 p2 +� f2 +2 p2dy. +Moreover, one can also discuss the N-BT for the DP equation like Section 2 +which will not reproduce here. +18 + +5.2. The Novikov equation +Now we consider BT for the Novikov equation (4), which is another re- +duction of the Geng-Xue system as u = v. The Novikov equation admits the +following Lax pair [18] +ψx = U2ψ, +ψt = V2ψ, +(53) +where ψ = (ψ1, ψ2, ψ3)T and +U2 = + + +0 +λm +1 +0 +0 +λm +1 +0 +0 + + , +V2 = + + +−uux +ux +λ − λu2m +u2 +x +u +λ +− 1 +λ2 +−λu2m − ux +λ +−u2 +u +λ +uux + + . +In such a case, the reciprocal transformation (6) reduces to +dy = p2dx − u2p2dt, +dτ = dt, +(54) +with p = m +1 +3. This is a reciprocal transformation of the Novikov equation +which changes the Lax pair (53) to +ψy = F2ψ, +ψτ = G2ψ, +(55) +where +F2 = + + +0 +λp +1 +p2 +0 +0 +λp +1 +p2 +0 +0 + + , +G2 = + + +−uyup2 +uyp2 +λ +u2 + u2 +yp4 +u +λ +− 1 +λ2 +−uyp2 +λ +0 +u +λ +uyup2 + + . +The compatibility condition of (55) yields the associated Novikov (aNovikov) +equation [18, 37] +pτ = −p3uuy, +uyyp4 + 2p3pyuy + p3 − u = 0. +(56) +It is easy to show that the scalar spectral problem of Lax pair (55) with +respect to ψ2 is just that of the SK hierarchy +[∂3 +y − (pyy +p + 1 +p4)∂y]ψ2 = λ2ψ2. +(57) +With the help of DT for the SK hierarchy [35], the following Proposition +holds. +19 + +Proposition 5. The Lax pair (55) is covariant with respect to the DT +ψ[1] = Tψ, +T = diag[ +p[1] +p , 1, +p +p[1]]((λ2 + λ2 +1)I − + + +T11 +T12 +T13 +2λλ1 +σ2 +2λ2 +1 +−2λλ1 +σ1 +σ2 +−2 λ2 +1 +σ2 +2 +2 λλ1 +σ2 +2 λ2 +1σ1 +σ2 +2 + +) +p2 +[1] = p2|(1 − 2 σ1 +σ2 +2 )2 − +4 +σ4 +2 |, +u[1] = − p +p[1](u + 2p2uy−2uσ1 +σ2 +2 ++ +2 +λ1σ2). +(58) +where +T11 = 2 λ2 +1 +σ2 +2 (p2 p[1],y +p[1] − ppy − σ1) + 4p3 λ3 +1 +σ3 +2 , +T12 = 2 λλ1 +σ2 (σ1 − p2 p[1],y +p[1] + ppy) − 4λλ2 +1p3 +σ2 +2 +, +T13 = (λ2 + λ2 +1 − 2 λ2 +1σ1 +σ2 +2 )(2 λ1p3 +σ2 + p2 p[1],y +p[1] − ppy) + 2 λ2 +1σ2 +1 +σ2 +2 , +and σ1 = g1 +g3, σ2 = g2 +g3, (g1, g2, g3)T is a special solution of the linear system +(55) at λ = λ1. +Now, we shall establish a BT for the Novikov equation with the help of +reciprocal transformation (54). It infers from the Proposition 5 that +p2 +[1] = 4p2 +σ4 +2 +|ϑ2 − 1|, +ϑ = 1 +2σ2 +2 − σ1. +(59) +If ϑ2 − 1 > 0, direct calculation shows that +1 +p2 +[1] += 1 +p2 − +ϑy +ϑ2 − 1, +u2 +[1] = u2 − +ϑτ +ϑ2 − 1, +(60) +Substituting (60) into (54) and taking the integration constant to be zero, +we obtain +x[1] = x + 1 +2ln|ϑ + 1 +ϑ − 1|. +(61) +If ϑ2 − 1 < 0, a similar process gives rise to +x[1] = −x − 1 +2ln|ϑ + 1 +ϑ − 1|. +(62) +20 + +Corollary 2. A BT of the Novikov equation reads +x[1] = x + 1 +2ln|ϑ + 1 +ϑ − 1|, +t[1] = t, +u[1] = ± +1 +√ +ϑ2 − 1(uϑ + ux + η +λ1 +), +(63) +if ϑ2 − 1 > 0, and +x[1] = −x − 1 +2ln|ϑ + 1 +ϑ − 1|, +t[1] = t, +u[1] = ± +1 +√ +1 − ϑ2(uϑ + ux + η +λ1 +), +(64) +if ϑ2 − 1 < 0. Here θ = 1 +2η2 + ηx +η − λ1 +m +η and η is determined by +ηxx = λ1mx − η − λ1mη2 + (2η2 +x − 3λ1mηx + λ2 +1m2)/η, +ηt = −(u2 + u +λ1η)ηx − η(uux + 1 +λ2 +1 +) − ux +λ1 ++ um +η +− uη2 +λ1 +. +Remark: Comparing the BT (63) with the one in [32], we may show that +they are related by a = 2λ1p +σ2 . +6. Appendix: proofs of the identities (35) and (37) +In this section, we will give proofs of the identities (34), (35) and (37). +Actually, the (34) is the direct result of the Jacobi identity. Since proofs of +identities in (35) are similar, we only prove one of them, and so do (37). Here +we prove the first one in (35) for N = 3k + 2. For convenience, we define +⃗αN = (α1, ..., αN)T, +λk⃗αN = (λk +1α1, ..., λk +NαN)T, +⃗1N = (1, ..., 1)T, +(65) +21 + +and ⃗1N(i) as the column vector with the i-th element 1 and other elements +0. Then, using the Pl¨ucker relation, we compute +AN−1BN − ANBN−1 += +���⃗aN−1 +λ⃗bN−1 +· · · +λ2k⃗aN−1 +��� +���⃗1N +λ⃗bN +· · · +λ2k+1⃗bN +��� +− +���⃗aN +λ⃗bN +· · · +λ2k+1⃗bN +��� +���⃗1N−1 +λ⃗bN−1 +· · · +λ2k⃗aN−1 +��� += +���⃗aN +λ⃗bN +· · · +λ2k⃗aN +⃗1N(N) +��� +���⃗1N +λ⃗bN +· · · +λ2k+1⃗bN +��� +− +���⃗aN +λ⃗bN +· · · +λ2k+1⃗bN +��� +���⃗1N +λ⃗bN +· · · +λ2k⃗aN +⃗1N(N) +��� += +���⃗aN +λ⃗bN +· · · +λ2k⃗aN +⃗1N +��� +���⃗1N(N) +λ⃗bN +· · · +λ2k⃗aN +λ2k+1⃗bN +��� += ∆N∆N+1 +� N +N + 1 +1 +2 +� +. +Now, we proceed to prove the first one of (37) as N = 3k + 2. With the +aid of the Jacobi identity, we have +R3 = λ2 +N+1 +���� +⃗1N−2 +⃗aN−2 +· · · +λ2k⃗1N−2 +1 +aN+1 +· · · +λ2k +N+1 +���� +���λ⃗bN−1 +· · · +λ2k+1⃗bN−1 +��� +−λ2 +N−1 +��⃗1N−1 +⃗aN−1 +· · · +λ2k⃗1N−1 +�� +���� +λ⃗bN−2 +· · · +λ2k+1⃗bN−2 +λN+1bN+1 +· · · +λ2k+1 +N+1bN+1 +���� += +N−2 +� +i=1 +λ−2 +i { +���� +λ2⃗1N−2 +· · · +λ2k+2⃗1N−2 +λ2 +N+1 +· · · +λ2k+2 +N+1 +���� +���λ⃗bN−1 +· · · +λ2k+1⃗bN−1 +��� +− +��λ2⃗1N−1 +· · · +λ2k+2⃗1N−1 +�� +���� +λ⃗bN−2 +· · · +λ2k+1⃗bN−2 +λN+1bN+1 +· · · +λ2k+1 +N+1bN+1 +����} += +N−2 +� +i=1 +λ−2 +i {△N+2 +� +N − 1 +N +N + 2 +1 +2 +3 +� +△N+1 +� +N +N + 1 +1 +2 +� +−△N+2 +�N +N + 1 +N + 2 +1 +2 +3 +� +△N+1 +�N − 1 +N +1 +2 +� +} += +N−2 +� +i=1 +λ−2 +i {△N+2 +�N +N + 2 +N − 1 +1 +2 +3 +� +△N+2 +�N +N + 2 +N + 1 +1 +2 +N + 2 +� +−△N+2 +� +N +N + 2 +N + 1 +1 +2 +3 +� +△N+2 +� +N +N + 2 +N − 1 +1 +2 +N + 2 +� +} +22 + += +N−2 +� +i=1 +λ−2 +i △N+2 +� +N +N + 2 +1 +2 +� +△N+1 +� +N − 1 +N +N + 1 +1 +2 +3 +� +. +Acknowledgements +This work is partially supported by the National Natural Science Foun- +dation of China (Grant Nos. 12271190 and 11871232), and Youth Innovation +Foundation of Xiamen (project no. 3502Z20206011), +References +References +[1] R. Camassa and D. D. Holm, An integrable shallow water equation with +peaked solitons, Phys. Rev. Lett. 71 (1993) 1661-1664. +[2] A. G. Rasin and J. Schiff, B¨acklund transformations for the Camassa- +Holm equation, J. Nonlinear Sci. 27 (2017) 45-69. +[3] A. Constantin, On the scattering problem for the Camassa-Holm equa- +tion, Proc. R. Soc. London, Ser. A 457 (2001) 953-970. +[4] A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering trans- +form for the Camassa-Holm equation, Inverse Problems 22 (2006) 2197- +2207. +[5] B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear +equations: generalizations of the Casmassa-Holm equation, Phys. D 95 +(1996) 229-243. +[6] R. Beals, D. H. Sattinger and J. Szmigielski, Multi-peakons and a the- +orem of Stieltjes, Inverse Problems 15 (1999) L1-4. +[7] R. Beals, D. H. Sattinger and J. Szmigielski, Multipeakons and the +classical moment problem, Adv. Math. 154 (2000) 229-257. +[8] R. Beals, D. H. Sattinger and J. Szmigielski, Peakons, strings, and the +finite Toda lattice, Comm. Pure Appl. Math. 54 (2001) 91-106. +23 + +[9] N. Li, Q. P. Liu and Z. Popowicz, A four-component Camassa-Holm +type hierarchy, J. Geom. Phys. 85 (2014) 29-39. +[10] X. Geng and B. Xue, An extension of integrable peakon equations with +cubic nonlinearity, Nonlinearity 22 (2009) 1847-1856. +[11] N. Li and Q. P. Liu, On bi-Hamiltonian structure of two-component +Novikov equation, Phys. Lett. A 377 (2013) 257-261. +[12] N. Li and X. Niu, A reciprocal transformation for the Geng-Xue equa- +tion, J. Math. Phys. 55 (2014) 053505. +[13] H. Lundmark and J. Szmigielski, An inverse spectral problem related +to the Geng-Xue two-component peakon equation, Mem. Amer. Math. +Soc. 244 (2016) viii+87 pages. +[14] N. Li and Q. P. Liu, Smooth multisoliton solutions of a 2-component +peakon system with cubic nonlinearity, SIGMA 18 (2022), 066. +[15] A. Degasperis and M. Procesi, Asymptotic integrability in Symmetry +and Perturbation Theory edited by A. Degasperis and G. Gaeta, World +Scientific, Singapore, 1999, pp 23-37. +[16] V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: +Math. Theor. 42 (2009) 342002. +[17] A. N. W. Hone and J. P. Wang, Prolongation algebras and Hamiltonian +operators for peakon equations, Inverse Problems 19 (2003) 129-145. +[18] A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic +nonlinearity, J. Phys. A: Math. Theor. 41 (2008) 372002. +[19] A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equa- +tion with peakon solitons, Theor. Math. Phys. 133 (2002) 1463-1474. +[20] Y. Matsuno, Multisoliton solutions of the Degasperis-Procesi equation +and their peakon limit, Inverse problems, 21 (2005) 1553-1570. +[21] Y. Matsuno, Smooth multisoliton solutions and their peakon limit of +Novikov’s Camassa-Holm type equation with cubic nonlinearity, J. Phys. +A: Math. Theor. 46 (2013) 365203. +24 + +[22] N. Li, G. Wang and Y. Kuang, Multisoliton solutions of the Degasperis- +Procesi equation and its short-wave limit: Darboux transformation ap- +proach, Theor. Math. Phys. 203 (2020) 608-620. +[23] L. Wu, C. Li and N. Li, Soliton solutions to the Novikov equation and +a negative flow of the Novikov hierarchy, Appl. Math. Lett. 87 (2019) +134-140. +[24] A. Constantin and R. Ivanov, Dressing method for the Degasperis- +Procesi equation, Stud. Appl. Math. 138 (2017) 205-226. +[25] A. N. W. Hone, H. Lundmark and J. Szmigielski, Explicit multipeakon +solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type +equation, Dyn. PDE 6 (2009) 253-289. +[26] H. Lundmark and J. Szmigielski, +Multi-peakon solutions of the +Degasperis-Procesi equation, Inverse Problems 19 (2003) 1241-1245. +[27] H. Lundmark and J. Szmigielski, Degasperis-Procesi peakons and the +discrete cubic string, Int. Math. Res. Pap. 2005 (2005) 53-116. +[28] A.V. B¨acklund A V. Zur theorie der Fl¨achentransformationen, Math. +Ann. 1881, 19 (1881) 387-422. +[29] R. M. Miura, B¨acklund transformations, the inverse scattering method, +solitons, and their applications. Springer, New York, 1976. +[30] C. Rogers, W.K. Schief. B¨acklund and Darboux transformations: geom- +etry and modern applications in soliton theory. Cambridge University +Press, Cambridge, 2002. +[31] H. Mao and G. Wang, B¨acklund Transformations for the Degasperis- +Procesi Equation, Theor. Math. Phys. 203 (2020) 747-760. +[32] H. Mao, Novikov equation: B¨acklund transformation and applications, +Theor. Math. Phys. 206 (2021) 163-173. +[33] H. Mao, and Q. P. Liu, The short pulse equation: B¨acklund transfor- +mations and applications, Stud. Appl. Marh. 145 (2020) 791-811. +[34] S. Huang and H. Li, Darboux transformations of the Camassa-Holm +type systems, Chaos, Solitons and Fractals 157 (2022) 111910. +25 + +[35] S. B. Leble and N. V. Ustinov, Third order spectral problems: reductions +and Darboux transformations, Inverse Problems 10 (1994) 617-633. +[36] A. G. Rasin and J. Schiff, Unfamiliar aspects of B¨acklund transfor- +mations and an associated Degasperis-Procesi equation, Theor. Math. +Phys. 196 (2018) 1333-1346. +[37] A. G. Rasin and J. Schiff, A simple-looking relative of the Novikov, +Hirota-Satsuma and Sawada-Kotera equations, J. Nonlinear Math. +Phys. 26 (2019) 555-568. +26 + diff --git a/WtE0T4oBgHgl3EQfmQEQ/content/tmp_files/load_file.txt b/WtE0T4oBgHgl3EQfmQEQ/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2d601ed3cfba4a5f0a990cb295e4dda313376a3c --- /dev/null +++ b/WtE0T4oBgHgl3EQfmQEQ/content/tmp_files/load_file.txt @@ -0,0 +1,922 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf,len=921 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='02495v1 [nlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='SI] 6 Jan 2023 B¨acklund transformation of the Geng-Xue system Lihua Wu, Nianhua Li1 School of Mathematical Sciences, Huaqiao University, Quanzhou, 362021, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Abstract We construct a B¨acklund transformation for the Geng-Xue system with the help of reciprocal and gauge transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Furthermore, we derive N- B¨acklund transformation for the Geng-Xue system resorting to Bianchi’s permutability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' As an application, we obtain some exact solutions of the Geng-Xue system including multi-kink, bell-shaped soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Finally, we dis- cuss B¨acklund transformations for the Degasperis-Procesi and the Novikov equations, which are two reductions of the Geng-Xue system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Mathematical Subject Classification: 37K10, 37K35, 37K40, 35C08 Keywords: Geng-Xue system, Degasperis-Procesi equation, Novikov equation, B¨acklund transformation, exact solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Introduction The Camassa-Holm (CH) equation [1] mt + umx + 2uxm = 0, m = u − uxx, (1) arises as a model for long waves in shallow water by the asymptotic approx- imation of Hamiltonian for Euler’s equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' It is a completely integrable system since it has Lax pair with bi-Hamiltonian structure, and may be solved by the B¨acklund transformation [2] as well as the inverse scattering transformation [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The CH equation can be linked to the first negative flow of the KdV hierarchy by a reciprocal transformation [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' One important feature for the CH equation is admiting peakon solutions [6, 7, 8], which have 1Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' linianh@hqu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='cn Preprint submitted to Elsevier January 9, 2023 discontinuities in x-derivative but both one-sided derivatives exist and differ only by a sign at the crest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Henceforth, integrable equations with peakon solutions have attracted much attention in recent years [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The Geng-Xue (GX) system [10] mt + 3uxvm + uvmx = 0, m = u − uxx, nt + 3vxun + uvnx = 0, n = v − vxx, (2) is a coupled integrable CH type system with cubic nonlinearity and admits a Lax pair and associated bi-Hamiltonian structure [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' It is reciprocally connected with a first negative flow of a modified Boussinesq hierarchy [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Lundmark and Szmigielski throughly studied inverse spectral problem and got multi-peakon solutions of the GX system [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Very recently, multi-kink solutions of the GX system were obtained by Darboux transformation [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' In addition, the GX system is closely related to the Degasperis-Procesi (DP) equation [15] mt + umx + 3uxm = 0, m = u − uxx, (3) and the Novikov equation [16] mt + u2mx + 3uuxm = 0, m = u − uxx, (4) since they can be reduced from (2) as v = 1 and v = u, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' There are many works on their Lax representations, bi-Hamiltonian structures, re- ciprocal partners and exact solutions [17]-[27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' B¨acklund transformations (BTs), originated from the differential geom- etry, play an important role in the theory of integrable systems, such as searching exact solutions, integrable discretization, as well as constructing symmetries, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [28, 29, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' However, in view of the speciality of the spec- tral problem for the CH type equations, it is hard to construct their BTss directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Recently, Rasin and Schiff discussed BT for the CH equation with the help of reciprocal transformation and concluded that it involves not only the dependent variables but also the independent spatial variables [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Later on Mao, Liu et al construct BTs for the DP, the Novikov and the short pulse equations [31, 32, 33, 34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' As far as we know, there is no results on the BT of the GX system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The aim of this paper is to construct the N-BT of the GX system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The paper is arranged as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' In section 2, we first introduce a recip- rocal transformation to relate the GX system with an associated GX (aGX) 2 system, and further to a negative flow of the Boussinesq hierarchy by a gauge transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' With the aid of these two transformations, we get a BT for the GX system from the Darboux transformation of the negative Boussinesq flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' In section 3, using the Bianchi’s permutability, we derive 2 and N-BT for the GX system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' In section 4, we apply BT to obtain exact solutions for the GX system such as multi-kink, bell-shaped soliton etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='. In section 5, the BT for the DP equation and the Novikov equation are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' B¨acklund transformation of the Geng-Xue system According to Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [10], the GX system (2) admits the Lax pair ψx = Uψ, ψt = V ψ, (5) where ψ = (ψ1, ψ2, ψ3)T and U = \uf8ee \uf8f0 0 λm 1 0 0 λn 1 0 0 \uf8f9 \uf8fb , V = \uf8ee \uf8f0 −uxv ux λ − λuvm uxvx v λ − 1 λ2 + uxv − uvx −λuvn − vx λ −uv u λ uvx \uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' It was shown that the GX system has infinitely many conservation laws [10, 12] in which the first one is qt = (−uvq)x, q = (mn) 1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' This naturally defines a reciprocal transformation dy = qdx − uvqdt, dτ = dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (6) Applying (6) to the Lax pair (5), we have ψy = Fψ, ψτ = Gψ, (7) where F = \uf8ee \uf8f0 0 λp 1 q 0 0 λ q p 1 q 0 0 \uf8f9 \uf8fb , G = \uf8ee \uf8f0 −uyvq uyq λ uv + uyvyq2 v λ uyvq − uvyq − 1 λ2 −vyq λ 0 u λ uvyq \uf8f9 \uf8fb , and p = m q .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Direct calculation shows that the compatibility condition of linear system (7) yields the aGX system pτ = pq(uvy − 2uyv), uyyq2 + uyqqy + pq − u = 0, qτ = −q2(uv)y, vyyq2 + qqyvy + p−1q2 − v = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (8) 3 Eliminating ψ1, ψ2 from (7), we obtain a scalar spectral problem for the wave function ψ3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Under a gauge transformation ψ3 = p 1 3q− 2 3φ, the scalar spec- tral problem is converted to the classical spectral problem of the Boussinesq hierarchy (∂3 y + Q1∂y + Q2)φ = (∂y − r)(∂y − s)(∂y + r + s)φ = λ2φ, (9) where r = 2py 3p − qy 3q, s = −py 3p − qy 3q − 1 q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (10) With the aid of the classical DT of the Boussinesq hierarchy [35], we get a DT for the aGX system (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The Lax presentation (7) is covariant under the DT: ψ[1] = T(λ1, a1, b1)ψ, T(λ1, a1, b1) = \uf8ee \uf8ef\uf8f0 −a1 c1 λ(a2 1−1) λ1b1c1 1 c1 0 −1 λb1 λ1 1 c1 0 −a1 c1 \uf8f9 \uf8fa\uf8fb , p[1] = q(a2 1 − 1) pb2 1c1 , q[1] = a2 1 − 1 λ1pb1 , u[1] = 1 c1 (ua1 − uyq), v[1] = c1 a2 1 − 1(va1 − vyq − b1 λ1 ), (11) where a1 = ϕ1 ϕ3, b1 = ϕ2 ϕ3, c1 = � |a2 1 − 1|, and (ϕ1, ϕ2, ϕ3)T is a special solution of (7) or (5) at λ = λ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' To construct a BT for the GX system, it is important to observe that 1 q[1] = 1 q + a1,y a2 1 − 1, u[1]v[1] = uv + a1,τ a2 1 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (12) Taking (6) and (12) into account, we arrive at dx[1] = 1 q[1] dy + u[1]v[1]dτ = d(x − 1 2ln|a1 + 1 a1 − 1|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Integrating on both sides of this equation and choosing the integration con- stant to be zero, we obtain x[1] = x − 1 2ln|a1 + 1 a1 − 1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (13) Given these preparations, the following proposition holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 4 Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The GX system admits a BT x[1] = x − 1 2ln|a1 + 1 a1 − 1|, t[1] = t, u[1] = 1 c1 (ua1 − ux), v[1] = c1 a2 1 − 1(va1 − vx − a1,x + a2 1 − 1 λ2 1m ), (14) where c1 = � |a2 1 − 1|, and a1 is controlled by the system a1,xx = (mx m − a1)(a1x + a2 1 − 1) − 2a1a1x + λ2 1mn, a1,t = ux − ua1 λ2 1m (a1,x + a2 1 − 1) − (uva1)x + uv + uxvx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (15) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' N-B¨acklund transformation of the Geng-Xue system In this section, we shall first deduce a 2-BT for the GX system, and then extend it to N-BT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' To begin with, let us show the diagram of Bianchi’s permutability as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' u[21],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' v[21] u[12],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' v[12] u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' v ∥ u[1],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' v[1] u[2],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' v[2] λ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b1 λ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b2 λ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b12 λ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a21,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b21 Figure 1: Bianchi permutability Using this Bianchi’s permutability,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' we have T(λ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b12)T(λ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b1) = T(λ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a21,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b21)T(λ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (16) which leads to a12 = λ2b2(a2 1 − 1) + λ1b1(1 − a1a2) λ1b1(a2 − a1) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a21 = λ1b1(a2 2 − 1) + λ2b2(1 − a1a2) λ2b2(a1 − a2) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b12 = (λ2b1 − λ1b2)c1 λ1(a2 − a1) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b21 = λ1c2 λ2c1 b12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' c21 = (a2 2 − 1)λ1b1c1 (a2 1 − 1)λ2b2c2 c12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Then, based on the Proposition 2, we have 2-BT for the GX system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The main result is stated as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 5 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The GX system admits a 2-BT x[12] = x − 1 2ln|(a1 + 1)(a12 + 1) (a1 − 1)(a12 − 1)|, t[12] = t, u[12] = 1 c1c12 [u(a1a12 + 1) − ux(a1 + a12) − a2 1 − 1 λ1b1 ], v[12] = c1c12 (a2 1 − 1)(a2 12 − 1)[v(a1a12 + 1) − (vx + b1 λ1 )(a1 + a12)] − c1c12 (a2 − a1)(a2 12 − 1)( b1 λ1 − b2 λ2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (17) Here c12 = � |a2 12 − 1|, a2 = h1 h3, b2 = h2 h3, and (h1, h2, h3)T is a special solution of (5) at λ = λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Next, we will derive N-BT of the GX system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' For convenience, let us denote natural permutation from 1 to any positive integer N by � N, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' � N = 12 · · ·N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Then, constructing the N-BT comes down to give compact forms for x[ � N], a[ � N], u[ � N] and v[ � N].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' In fact, it follows from Proposition 1 that x[ � N] = x − 1 2ln|(a1 + 1)(a12 + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='(a � N + 1) (a1 − 1)(a12 − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='(a � N − 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (18) Since it’s not easy to obtain compact form for a[ � N] directly, we define w � N by (a1 + 1)(a12 + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='(a � N + 1) (a1 − 1)(a12 − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='(a � N − 1) = w � N + 1 w � N − 1, (19) which implies that a � N = 1 − w � N−1w � N w � N − w � N−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (20) We first devote ourselves to arriving at a recurrence relation for w � N to obtain its expression of compact form, and hence for that of a � N, x � N, u � N, v � N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Resorting to Bianchi’s permutability, we get the recurrence relations a � N = (a2 � N−1 − 1)λNb � N−2N + λN−1b � N−1(1 − a � N−2Na � N−1) λN−1b � N−1(a � N−2N − a � N−1) , (21) b � N = λNb � N−1 − λN−1b � N−2N λN−1(a � N−2N − a � N−1) c � N−1, (22) 6 where c � N = � |a2 � N − 1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Moreover, introducing σN � N−1 = b � N−2N b � N−1 , N ≥ 2, (23) and inserting (20) into (21), one infers w � N = λNσN � N−1w � N−1(w � N−2N − w � N−2) + λN−1w � N−2N(w � N−2 − w � N−1) λNσN � N−1(w � N−2s − w � N−2) + λN−1(w � N−2 − w � N−1) , (24) or equivalently σN � N−1 = λN−1 λN (w � N−2 − w � N−1)(w � N−2N − w � N) (w � N−2 − w � N−2N)(w � N−1 − w � N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (25) We are now in a position to obtain determinant expressions for w � N and σN � N−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' A natural idea is to guess their expressions by observation of explicit formulae for N ≤ 3 and then prove them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' In fact, it is not hard to show that the first several members in (24) and (25) are w1 = a1, w12 = λ1b1a2 − λ2b2a1 λ1b1 − λ2b2 , w123 = λ1b1(a3λ2 2 − a2λ2 3) + λ2b2(a1λ2 3 − a3λ2 1) + λ3b3(a2λ2 1 − a1λ2 2) λ1b1(λ2 2 − λ2 3) + λ2b2(λ2 3 − λ2 1) + λ3b3(λ2 1 − λ2 2) , σ2 1 = b2 b1 , σ3 12 = b13 b12 = (λ3b1 − λ1b3)(a2 − a1) (λ2b1 − λ1b2)(a3 − a1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (26) In view of (26), we introduce the following determinant ∆N = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ������� 1 a1 λ1b1 · · λ2k 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 1 aN λNbN · · λ2k N ������� , N = 3k + 1, ������� 1 a1 λ1b1 · · λ2k 1 a1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 1 aN λNbN · · λ2k N aN ������� , N = 3k + 2, ������� 1 a1 λ1b1 · · λ2k+1 1 b1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 1 aN λNbN · · λ2k+1 N bN ������� , N = 3k + 3, (27) 7 for k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The expressions for σN � N−1 and w � N in terms of determinant ∆N read w � N = AN BN , N ≥ 1, (28) σN � N−1 = λN−1(AN−2BN−1 − AN−1BN−2)(CN−1BN − ANDN−1) λN(AN−2DN−1 − CN−1BN−2)(AN−1BN − ANBN−1) , N ≥ 3,(29) where AN = ∆N+1 � N + 1 1 � , CN−1 = ∆N � N − 1 1 � , BN = ∆N+1 � N + 1 2 � , DN−1 = ∆N � N − 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Here J � i1 i2 · · ik j1 j2 · · jk � denotes the determinant by removing i1, · · · , ik rows and j1, · · · , jk columns from the determinant J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' To prove the theorem, we need two useful identities displayed in the following Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Assume that π is a (N + 2) × N matrix, χk are N + 2 order column vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Then we have 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The Pl¨ucker relation |π, χ1, χ2||π, χ3, χ4| − |π, χ1, χ3||π, χ2, χ4| + |π, χ1, χ4||π, χ2, χ3| = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The Jacobi identity J × J � i1 i2 j1 j2 � = J � i1 j1 � × J � i2 j2 � − J � i1 j2 � × J � i2 j1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Proof of Theorem 1: Here we only prove the case of N = 3k + 2 by the method of mathematical induction, because the other two cases can be verified similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' First, it is easy to check that both (28) and (29) are true for N ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Next, assume (28) and (29) hold for N − 1, our task is to verify them for N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' In view of (22) and (23), it is straightforward to know that σN+1 � N = b � N−1N+1 b � N = a � N−2N − a � N−1 a � N−2N+1 − a � N−1 λN+1 − λN−1σN+1 � N−1 λN − λN−1σN � N−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (30) 8 On the one hand, it follows from (20) that a � N−2N − a � N−1 a � N−2N+1 − a � N−1 = (w � N−2N − w � N−1)(w � N−2 − w � N−2N+1) (w � N−2N+1 − w � N−1)(w � N−2 − w � N−2N) = (CN−1BN−1 − AN−1DN−1)(AN−2HN−1 − BN−2EN−1) (EN−1BN−1 − AN−1HN−1)(AN−2DN−1 − CN−1BN−2)(31) with EN−1 = ∆N+1 � N − 1 N 1 N + 1 � , HN−1 = ∆N+1 � N − 1 N 2 N + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' On the other hand, by inductive hypotheses, one infers λN+1 − λN−1σN+1 � N−1 λN − λN−1σN � N−1 = λNR1 λN+1R2 (AN−2DN−1 − BN−2CN−1)(AN−1BN − ANBN−1) (AN−2HN−1 − BN−2EN−1)(AN−1DN − BN−1CN), (32) where R1 = λ2 N+1(AN−2HN−1 − BN−2EN−1)(AN−1DN − CNBN−1) −λ2 N−1(AN−2BN−1 − AN−1BN−2)(EN−1DN − CNHN−1), R2 = λ2 N(AN−2DN−1 − BN−2CN−1)(AN−1BN − ANBN−1) −λ2 N−1(CN−1BN − ANDN−1)(AN−2BN−1 − AN−1BN−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Substituting (31) and (32) into (30), one has σN+1 � N = λN(AN−1BN − ANBN−1) λN+1(AN−1DN − BN−1CN) R1(CN−1BN−1 − AN−1DN−1) R2(EN−1BN−1 − AN−1HN−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (33) Before proceeding further,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' let us list some useful identities obtained from the Jacobi identity and Pl¨ucker relation as follows CN−1BN−1 − AN−1DN−1 = ∆N∆N � N − 1 N 1 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' EN−1BN−1 − AN−1HN−1 = ∆N+1 � N N + 1 � ∆N � N − 1 N 1 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (34) 9 AN−1BN − ANBN−1 = ∆N∆N+1 � N N + 1 1 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' CN−1BN − ANDN−1 = ∆N∆N+1 � N − 1 N + 1 1 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' AN−1DN − CNBN−1 = ∆N+1 � N N + 1 � ∆N+1 � N N + 1 1 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' EN−1DN − CNHN−1 = ∆N+1 � N N + 1 � ∆N+1 � N − 1 N 1 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' AN−2HN−1 − BN−2EN−1 = ∆N+1 � N − 1 N N N + 1 � ∆N � N − 1 N 1 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (35) whose proofs will be given in appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' With the help of (34) and (35), a direct calculation gives rise to σN+1 � N = λN(AN−1BN − ANBN−1) λN+1(AN−1DN − BN−1CN) R3 R4 , (36) where R3 = λ2 N+1∆N+1 � N − 1 N N N + 1 � ∆N+1 � N N + 1 1 2 � −λ2 N−1∆N−1∆N+1 � N − 1 N 1 2 � , R4 = λ2 N∆N � N − 1 N � ∆N+1 � N N + 1 1 2 � −λ2 N−1∆N−1∆N+1 � N − 1 N + 1 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Using the Jacobi identity, we have (proven in appendix) R3 = 1 λ2 1λ2 2···λ2 N−2 ∆N+2 � N N + 2 1 2 � ∆N+1 � N − 1 N N + 1 1 2 3 � , R4 = 1 λ2 1λ2 2···λ2 N−2 ∆N+2 � N + 1 N + 2 1 2 � ∆N+1 � N − 1 N N + 1 1 2 3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (37) 10 Substituting (37) into (36) and noting the first two equalities in (35), we get σN+1 � N = λN(AN−1BN−ANBN−1)∆N+2 \uf8ee \uf8f0 N N + 2 1 2 \uf8f9 \uf8fb λN+1(AN−1DN−BN−1CN)∆N+2 \uf8ee \uf8f0 N + 1 N + 2 1 2 \uf8f9 \uf8fb = λN λN+1 (AN−1BN−ANBN−1)(CNBN+1−AN+1DN) (AN−1DN−BN−1CN)(ANBN+1−BNAN+1), (38) which proves (29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Furthermore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' it follows from inductive hypotheses,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (25),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (34) and (35) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='that ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N+1 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λN+1σN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N(w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−1N+1 − w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−1) + λNw � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−1N+1(w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−1 − w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λN+1σN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='(w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−1N+1 − w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−1) + λN(w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−1 − w � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='(AN−1BN−ANBN−1)(CN BN+1−AN+1DN) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='(AN−1DN−BN−1CN)(ANBN+1−BNAN+1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='AN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN ( CN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='DN − AN−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN−1) + CN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='DN ( AN−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN−1 − AN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='(AN−1BN−ANBN−1)(CN BN+1−AN+1DN) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='(AN−1DN−BN−1CN)(ANBN+1−BNAN+1)( CN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='DN − AN−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN−1 ) + AN−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN−1 − AN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='∆N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='∆N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='− ∆N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='∆N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='∆N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='∆N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='− ∆N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='∆N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='AN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='AN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='− AN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='AN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='− BN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='Jacobi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='====== ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='identity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='AN+1AN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN+1BN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='= AN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='BN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=',' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' which completes the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Now, according to Theorem 1, it directly infers from (20) that a � N = AN−1AN − BN−1BN AN−1BN − BN−1AN .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (39) Thus, we may summarize what we have obtained as the following Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 11 Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The GX system admits the N-BT x[ � N] = x − 1 2ln|AN + BN AN − BN |, t[ � N] = t, u[ � N] = 1 c � N (u[ � N−1]a � N − u[ � N−1],x x[ � N−1],x ), v[ � N] = c � N a2 � N − 1[v[ � N−1]a � N − v[ � N−1],x x[ � N−1],x − 1 λ2 Nm[ � N−1] ( a � N,x x[ � N−1],x + a2 � N − 1)], (40) where a � N is given by (39), c � N = � |a2 � N − 1|, and m � N−1 = u � N−1− 1 x � [N−1],x( u[ � N−1],x x[ � N−1],x)x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Exact solutions As an application of the BT, we shall deduce some exact solutions of the GX system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Choose u = u0, v = v0, u0v0 ̸= 0 as an initial solution of the GX system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Let αj, βj, −αj − βj, ( 1 ≤ j ≤ N) be three roots of the equation γ3 − γ − λ2 ju0v0 = 0, and fj be solutions of the following system ϕxxx − ϕx − λ2 ju0v0ϕ = 0, ϕt − 1 λ2 j ϕxx + u0v0ϕx + 1 λ2 j ϕ = 0, (41) which is a scalar form of (5) at λ = λj, u = u0, v = v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Example 1: 1-soliton solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' If 27λ4 1u2 0v2 0 − 4 < 0, then α1, β1, −α1 − β1 are three different real roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' We take f1 = e ξ1+η1 2 (eθ1 + δ1e−θ1), where ξ1 = α1x − λ2 1u2 0v2 0 α2 1 t + ξ10, η1 = β1x − λ2 1u2 0v2 0 β2 1 t + η10, θ1 = µ1 2 [x + u0v0(4−µ2 1) µ2 1−1 t] + θ10, µ1 = α1 − β1, δ1 = ±1, θ10 = 1 2(ξ10 − η10), and ξ10, η10 are two constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' For convenience, assume µ1 > 0 and let ν1 = α1 +β1, it infers µ1 = � 4 − 3ν2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Then a1 = (µ1 + ν1)eθ1 + δ1(ν1 − µ1)e−θ1 2(eθ1 + δ1e−θ1) = � ν1+µ1 tanh θ1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' δ1 = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' ν1+µ1 coth θ1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' δ1 = −1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 12 which together with Proposition 2 yields tanh type 1-soliton solution x[1] = x − 1 2 ln |ν1 + 2 + µ1 tanh θ1 ν1 − 2 + µ1 tanh θ1 |,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' u[1] = u0(ν1 + µ1 tanh θ1) � |(ν1 + µ1 tanh θ1)2 − 4| ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' v[1] = −v0ν1(ν2 1 − 2 + µ1µ1 tanh θ1) � |(ν1 + µ1 tanh θ1)2 − 4| (1 − ν2 1)[(ν1 + µ1 tanh θ1)2 − 4] ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (42) and coth type 1-soliton solution x[1] = x − 1 2 ln |ν1 + 2 + µ1 coth θ1 ν1 − 2 + µ1 coth θ1 |,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' u[1] = u0(ν1 + µ1 coth θ1) � |(ν1 + µ1 coth θ1)2 − 4| ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' v[1] = −v0ν1(ν2 1 − 2 + µ1ν1 coth θ1) � |(ν1 + µ1 coth θ1)2 − 4| (1 − ν2 1)[(ν1 + µ1 coth θ1)2 − 4] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (43) It is easy to see that x[1] → ±∞ when x → ±∞ in (42) and (43).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Further analysis shows the map from x[1] to x in (42) is bijective and x[1], u[1], v[1] are nonsingular when 1 < |ν1| < 2 √ 3, while in (43) x[1], u[1], v[1] are singular for any ν1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' It infers that (42) gives smooth soliton solutions for 1 < |ν1| < 2 √ 3 and (43) gives singular solutions to which we do not pay more attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The profiles of the 1-soliton solutions (42) are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 2-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 100 50 50 100 x[1] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='6 u[1] (t[1]=0) 100 50 50 100 x[1] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 v[1] (t[1]=0) Figure 2: The profiles of smooth 1-soliton solution (42) at u0 = 1, v0 = 1, ν1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Example 2: 2-soliton solutions and their interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 13 100 50 50 100 x[1] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 1� � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 0� � �� � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 u[1] (t[1]=0) 100 50 50 100 x[1] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 v[1] (t[1]=0) Figure 3: The profiles of smooth 1-soliton solution (42) at u0 = 1, v0 = −1, ν1 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Applying the Proposition 3, we have 2-soliton solution x[12] = x − 1 2ln|(a1 + 1)(a12 + 1) (a1 − 1)(a12 − 1)|, t[12] = t, u[12] = 1 c1c12 [u0(a1a12 + 1) − a2 1 − 1 λ1b1 ), v[12] = c1c12 (a2 1 − 1)(a2 12 − 1)[v0(a1a12 + 1) − b1 λ1 (a1 + a12)] − c1c12 (a2 − a1)(a2 12 − 1)( b1 λ1 − b2 λ2 ) (44) with c1 = � |a2 1 − 1|, c12 = � |a2 12 − 1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' We call (44) tanh-tanh type and tanh-coth type 2-soliton solution respectively when a1 = ν1 + µ1 tanh θ1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a2 = ν2 + µ2 tanh θ1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b1 = −ν1(ν1 − µ1 tanh θ1) 2λ1u0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b2 = −ν2(ν2 − µ2 tanh θ2) 2λ2u0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a12 = 4 − (ν1 + µ1 tanh θ1)(ν2 + µ2 tanh θ2) 2(ν2 − ν1 + µ2 tanh θ2 − µ1 tanh θ1) − ν2(ν2 − µ2 tanh θ2)[4 − (ν1 + µ1 tanh θ1)2] 2ν1(ν1 − µ1 tanh θ1)(ν2 − ν1 + µ2 tanh θ2 − µ1 tanh θ1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 14 and a1 = ν1 + µ1 tanh θ1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a2 = ν2 + µ2 coth θ1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b1 = −ν1(ν1 − µ1 tanh θ1) 2λ1u0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' b2 = −ν2(ν2 − µ2 coth θ2) 2λ2u0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' a12 = 4 − (ν1 + µ1 tanh θ1)(ν2 + µ2 coth θ2) 2(ν2 − ν1 + µ2 coth θ2 − µ1 tanh θ1) − ν2(ν2 − µ2 coth θ2)[4 − (ν1 + µ1 tanh θ1)2] 2ν1(ν1 − µ1 tanh θ1)(ν2 − ν1 + µ2 coth θ2 − µ1 tanh θ1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Here θ1 = µ1 2 [x + u0v0(4−µ2 1) µ2 1−1 t] + θ10, θ2 = µ2 2 [x + u0v0(4−µ2 2) µ2 2−1 t] + θ20, µ1 = � 4 − 3ν2 1, µ2 = � 4 − 3ν2 2, λ2 1 = ν1(1−ν2 1) u0v0 , λ2 2 = ν2(1−ν2 2) u0v0 , and ν1, ν2 are two constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Analysis shows that tanh-tanh type 2-soliton solution gives smooth kink- antikink or antikink-kink solution if 1 < |ν1|, |ν2| < 2 √ 3, ν1ν2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Especially and interestingly, one finds that the tanh-tanh type 2-soliton solution be- comes bell-shaped 1-soliton solutions when ν1 = −ν2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Moreover, tanh-coth type 2-soliton solution gives kink-kink or antikink-antikink solutions when 1 < |ν2| < |ν1| < 2 √ 3, ν1ν2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The profiles of the 2-soliton solutions (44) and their interactions are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 4-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 500 450 400 350 x[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='6 u[12] (t[12]=-100) 40 20 20 x[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='60 u[12] (t[12]=-4) 400 450 500 550 x[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 u[12] (t[12]=100) 550 500 450 400 350 x[12] 2 3 4 5 6 v[12] (t[12]=-100) 40 20 20 40 60 80 x[12] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='8 v[12] (t[12]=3) 350 400 450 500 550 x[12] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 v[12] (t[12]=100) Figure 4: The antikink-kink and kink-antikink solutions at u0 = −1, v0 = −1, ν1 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='12, ν2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='14, θ10 = θ20 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 15 520 510 500 490 480 470 460 x[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='60 u[12] (t[12]=-100) 40 20 20 40 x[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='60 u[12] (t[12]=0) 460 480 500 520 x[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='60 u[12] (t[12]=100) 520 510 500 490 480 470 460 x[12] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='9 v[12] (t[12]=-100) 40 20 20 40 x[12] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='9 v[12] (t[12]=0) 470 480 490 500 510 520 x[12] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='9 v[12] (t[12]=100) Figure 5: The bell-shaped 1-soliton solution at u0 = −1, v0 = −1, ν1 = −ν2 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='12, θ10 = θ20 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 650 600 550 500 450 400 350 x[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 u[12], t[12]=-100 100 80 60 40 x[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 u[12] (t[12]=-15) 350 400 450 500 550 x[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='0 u[12] (t[12]=80) 650 600 550 500 450 400 350 x[12] 0 2 4 6 8 10 v[12], t[12]=-100 100 80 60 40 x[12] 0 2 4 6 8 10 v[12], t[12]=-15 400 450 500 550 600 650 700 x[12] 0 2 4 6 8 10 v[12], t[12]=100 Figure 6: The kink-kink and antikink-antikink solutions at u0 = 1, v0 = 1, ν1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='13, ν2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1, θ10 = θ20 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' B¨acklund transformations for the Degasperis-Procesi and Novikov equations 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The Degasperis-Procesi case As we know, the GX system reduces to the DP equation as v = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' There- fore, we shall study BT for the DP equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The DP equation (3) possesses a Lax pair [19] ψx = U1ψ, ψt = V1ψ, (45) 16 where ψ = (ψ1, ψ2, ψ3)T and U1 = \uf8ee \uf8f0 0 λm 1 0 0 λ 1 0 0 \uf8f9 \uf8fb , V1 = \uf8ee \uf8f0 −ux ux λ − λum 0 1 λ − 1 λ2 + ux −λu −u u λ 0 \uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Naturally, the reciprocal transformation (6) of the Geng-Xue system reduces to that of the DP equation dy = qdx − uqdt, dτ = dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (46) with q = m 1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Applying this transformation, the Lax presentation (45) is converted to ψy = F1ψ, ψτ = G1ψ, (47) where F1 = \uf8ee \uf8f0 0 λq2 1 q 0 0 λ q 1 q 0 0 \uf8f9 \uf8fb , G1 = \uf8ee \uf8f0 −uyq uyq λ u 1 λ uyq − 1 λ2 0 0 u λ 0 \uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The compatibility condition of Lax pair (47) yields the associated DP (aDP) equation [17, 36] qτ = −uyq2, u − q3 − q(uyq)y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (48) It is straightforward to verify that, under a gauge transformation χ = qψ2, the scalar form of spectral problem in (47) is converted to (∂3 y + U1∂y + 1 2U1y)χ = λ2 1χ, U1 = −2qyy q + q2 y − 1 q2 , which is just the classical spectral problem of the KK hierarchy [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Making use of the DT for the KK hierarchy, we get the following Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The Lax pair (47) is covariant under the DT ψ[1] = Tψ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' T = I + \uf8ee \uf8ef\uf8f0 (λ1σ1−σ2)(λ2 1−σ2 2) λ2 1−2λ1σ1σ2+σ2 2 σ2 0 0 λσ2 0 0 0 λ1 \uf8f9 \uf8fa\uf8fb \uf8ee \uf8f0 λ2 λ −λ2 λ2 1 −λ −λ2 1 λ2 1 −λ −λ2 1 \uf8f9 \uf8fb T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' q[1] = q(λ2 1−σ2 2) λ2 1−2λ1σ1σ2+σ2 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' u[1] = u + 2(λ2 1uyhσ2−λ3 1u+λ1σ1−σ2) λ1(λ2 1−σ2 2) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (49) 17 or the DT ψ[1] = ˜Tψ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' ˜T = diag[−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' −1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 1]T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' q[1] = − q(λ2 1−σ2 2) λ2 1−2λ1σ1σ2+σ2 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' u[1] = −u + 2(σ2−λ1σ1+λ3 1u−λ2 1uyhσ2) λ1(λ2 1−σ2 2) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (50) where T1 = 2 (λ2+λ2 1)(λ2 1−σ2 2)diag[σ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' λ1σ1−σ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' λ1],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' σi = gi g3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' i = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' and (g1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' g2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' g3)T is a special solution of the linear system (47) at λ = λ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Since the process is very similar, we just consider the second DT in Propo- sition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' It is easy to check that 1 q[1] = 1 q + 2ϑy ϑ2 − 1, u[1] = u + 2ϑτ ϑ2 − 1, ϑ = λ1 σ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (51) Then with the aid of (46), we obtain dx[1] = d(x − ln|ϑ + 1 ϑ − 1|), which infers that x[1] = x − ln|ϑ + 1 ϑ − 1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Here the integration constant is taken to be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The DP equation has a BT of the form x[1] = x − ln|ϑ + 1 ϑ − 1|, t[1] = t, u[1] = u − 2ϑ λ2 1 + 2λ2 1(u − uxϑ) − 2ϑϑx λ2 1(ϑ2 − 1) , (52) where ϑ is determined by ϑxx = λ2 1m − 3ϑϑx + ϑ − ϑ3, ϑt = u − (uϑ)x + λ−2 1 (ϑ − ϑ3 − ϑϑx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Remark: In fact, considering the first DT in Proposition 4, one may get an equivalent BT to the one in [31], which are related by a = f2 2 p2 � f2 2 p2dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Moreover, one can also discuss the N-BT for the DP equation like Section 2 which will not reproduce here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 18 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The Novikov equation Now we consider BT for the Novikov equation (4), which is another re- duction of the Geng-Xue system as u = v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The Novikov equation admits the following Lax pair [18] ψx = U2ψ, ψt = V2ψ, (53) where ψ = (ψ1, ψ2, ψ3)T and U2 = \uf8ee \uf8f0 0 λm 1 0 0 λm 1 0 0 \uf8f9 \uf8fb , V2 = \uf8ee \uf8f0 −uux ux λ − λu2m u2 x u λ − 1 λ2 −λu2m − ux λ −u2 u λ uux \uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' In such a case, the reciprocal transformation (6) reduces to dy = p2dx − u2p2dt, dτ = dt, (54) with p = m 1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' This is a reciprocal transformation of the Novikov equation which changes the Lax pair (53) to ψy = F2ψ, ψτ = G2ψ, (55) where F2 = \uf8ee \uf8f0 0 λp 1 p2 0 0 λp 1 p2 0 0 \uf8f9 \uf8fb , G2 = \uf8ee \uf8ef\uf8f0 −uyup2 uyp2 λ u2 + u2 yp4 u λ − 1 λ2 −uyp2 λ 0 u λ uyup2 \uf8f9 \uf8fa\uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The compatibility condition of (55) yields the associated Novikov (aNovikov) equation [18, 37] pτ = −p3uuy, uyyp4 + 2p3pyuy + p3 − u = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (56) It is easy to show that the scalar spectral problem of Lax pair (55) with respect to ψ2 is just that of the SK hierarchy [∂3 y − (pyy p + 1 p4)∂y]ψ2 = λ2ψ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (57) With the help of DT for the SK hierarchy [35], the following Proposition holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 19 Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' The Lax pair (55) is covariant with respect to the DT ψ[1] = Tψ, T = diag[ p[1] p , 1, p p[1]]((λ2 + λ2 1)I − \uf8ee \uf8ef\uf8f0 T11 T12 T13 2λλ1 σ2 2λ2 1 −2λλ1 σ1 σ2 −2 λ2 1 σ2 2 2 λλ1 σ2 2 λ2 1σ1 σ2 2 \uf8f9 \uf8fa\uf8fb) p2 [1] = p2|(1 − 2 σ1 σ2 2 )2 − 4 σ4 2 |, u[1] = − p p[1](u + 2p2uy−2uσ1 σ2 2 + 2 λ1σ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (58) where T11 = 2 λ2 1 σ2 2 (p2 p[1],y p[1] − ppy − σ1) + 4p3 λ3 1 σ3 2 , T12 = 2 λλ1 σ2 (σ1 − p2 p[1],y p[1] + ppy) − 4λλ2 1p3 σ2 2 , T13 = (λ2 + λ2 1 − 2 λ2 1σ1 σ2 2 )(2 λ1p3 σ2 + p2 p[1],y p[1] − ppy) + 2 λ2 1σ2 1 σ2 2 , and σ1 = g1 g3, σ2 = g2 g3, (g1, g2, g3)T is a special solution of the linear system (55) at λ = λ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Now, we shall establish a BT for the Novikov equation with the help of reciprocal transformation (54).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' It infers from the Proposition 5 that p2 [1] = 4p2 σ4 2 |ϑ2 − 1|, ϑ = 1 2σ2 2 − σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (59) If ϑ2 − 1 > 0, direct calculation shows that 1 p2 [1] = 1 p2 − ϑy ϑ2 − 1, u2 [1] = u2 − ϑτ ϑ2 − 1, (60) Substituting (60) into (54) and taking the integration constant to be zero, we obtain x[1] = x + 1 2ln|ϑ + 1 ϑ − 1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (61) If ϑ2 − 1 < 0, a similar process gives rise to x[1] = −x − 1 2ln|ϑ + 1 ϑ − 1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' (62) 20 Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' A BT of the Novikov equation reads x[1] = x + 1 2ln|ϑ + 1 ϑ − 1|, t[1] = t, u[1] = ± 1 √ ϑ2 − 1(uϑ + ux + η λ1 ), (63) if ϑ2 − 1 > 0, and x[1] = −x − 1 2ln|ϑ + 1 ϑ − 1|, t[1] = t, u[1] = ± 1 √ 1 − ϑ2(uϑ + ux + η λ1 ), (64) if ϑ2 − 1 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Here θ = 1 2η2 + ηx η − λ1 m η and η is determined by ηxx = λ1mx − η − λ1mη2 + (2η2 x − 3λ1mηx + λ2 1m2)/η, ηt = −(u2 + u λ1η)ηx − η(uux + 1 λ2 1 ) − ux λ1 + um η − uη2 λ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Remark: Comparing the BT (63) with the one in [32], we may show that they are related by a = 2λ1p σ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Appendix: proofs of the identities (35) and (37) In this section, we will give proofs of the identities (34), (35) and (37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Actually, the (34) is the direct result of the Jacobi identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Since proofs of identities in (35) are similar, we only prove one of them, and so do (37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Here we prove the first one in (35) for N = 3k + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' For convenience, we define ⃗αN = (α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=', αN)T, λk⃗αN = (λk 1α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=', λk NαN)T, ⃗1N = (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=', 1)T, (65) 21 and ⃗1N(i) as the column vector with the i-th element 1 and other elements 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Then, using the Pl¨ucker relation, we compute AN−1BN − ANBN−1 = ���⃗aN−1 λ⃗bN−1 · · λ2k⃗aN−1 ��� ���⃗1N λ⃗bN · · λ2k+1⃗bN ��� − ���⃗aN λ⃗bN · · λ2k+1⃗bN ��� ���⃗1N−1 λ⃗bN−1 · · λ2k⃗aN−1 ��� = ���⃗aN λ⃗bN · · λ2k⃗aN ⃗1N(N) ��� ���⃗1N λ⃗bN · · λ2k+1⃗bN ��� − ���⃗aN λ⃗bN · · λ2k+1⃗bN ��� ���⃗1N λ⃗bN · · λ2k⃗aN ⃗1N(N) ��� = ���⃗aN λ⃗bN · · λ2k⃗aN ⃗1N ��� ���⃗1N(N) λ⃗bN · · λ2k⃗aN λ2k+1⃗bN ��� = ∆N∆N+1 � N N + 1 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Now, we proceed to prove the first one of (37) as N = 3k + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' With the aid of the Jacobi identity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' we have ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='R3 = λ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='⃗1N−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='⃗aN−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k⃗1N−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='aN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='���λ⃗bN−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k+1⃗bN−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='−λ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='��⃗1N−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='⃗aN−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k⃗1N−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ⃗bN−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k+1⃗bN−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λN+1bN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N+1bN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='i=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='i { ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2⃗1N−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k+2⃗1N−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='���λ⃗bN−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k+1⃗bN−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='��λ2⃗1N−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k+2⃗1N−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ⃗bN−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k+1⃗bN−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λN+1bN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='· · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ2k+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N+1bN+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='����} ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='i=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='i {△N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='△N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='−△N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='�N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='△N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='�N − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='} ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='i=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='i {△N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='�N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='△N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='�N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='−△N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='△N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='} ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='i=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='λ−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='i △N+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='△N+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='N + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Acknowledgements This work is partially supported by the National Natural Science Foun- dation of China (Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 12271190 and 11871232), and Youth Innovation Foundation of Xiamen (project no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 3502Z20206011), References References [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Camassa and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Holm, An integrable shallow water equation with peaked solitons, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 71 (1993) 1661-1664.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Rasin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Schiff, B¨acklund transformations for the Camassa- Holm equation, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Nonlinear Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 27 (2017) 45-69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Constantin, On the scattering problem for the Camassa-Holm equa- tion, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' London, Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' A 457 (2001) 953-970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Constantin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Gerdjikov and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Ivanov, Inverse scattering trans- form for the Camassa-Holm equation, Inverse Problems 22 (2006) 2197- 2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [5] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Casmassa-Holm equation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' D 95 (1996) 229-243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Beals, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Sattinger and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Szmigielski, Multi-peakons and a the- orem of Stieltjes, Inverse Problems 15 (1999) L1-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Beals, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Sattinger and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Szmigielski, Multipeakons and the classical moment problem, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 154 (2000) 229-257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Beals, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Sattinger and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Szmigielski, Peakons, strings, and the finite Toda lattice, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 54 (2001) 91-106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 23 [9] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Li, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Liu and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Popowicz, A four-component Camassa-Holm type hierarchy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 85 (2014) 29-39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [10] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Geng and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Xue, An extension of integrable peakon equations with cubic nonlinearity, Nonlinearity 22 (2009) 1847-1856.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [11] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Li and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Liu, On bi-Hamiltonian structure of two-component Novikov equation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' A 377 (2013) 257-261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [12] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Li and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Niu, A reciprocal transformation for the Geng-Xue equa- tion, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 55 (2014) 053505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Lundmark and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Szmigielski, An inverse spectral problem related to the Geng-Xue two-component peakon equation, Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 244 (2016) viii+87 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [14] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Li and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Liu, Smooth multisoliton solutions of a 2-component peakon system with cubic nonlinearity, SIGMA 18 (2022), 066.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Degasperis and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Procesi, Asymptotic integrability in Symmetry and Perturbation Theory edited by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Degasperis and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Gaeta, World Scientific, Singapore, 1999, pp 23-37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [16] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Novikov, Generalizations of the Camassa-Holm equation, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 42 (2009) 342002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Hone and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Wang, Prolongation algebras and Hamiltonian operators for peakon equations, Inverse Problems 19 (2003) 129-145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Hone and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Wang, Integrable peakon equations with cubic nonlinearity, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 41 (2008) 372002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Degasperis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Holm and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Hone, A new integrable equa- tion with peakon solitons, Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 133 (2002) 1463-1474.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit, Inverse problems, 21 (2005) 1553-1570.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [21] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Matsuno, Smooth multisoliton solutions and their peakon limit of Novikov’s Camassa-Holm type equation with cubic nonlinearity, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 46 (2013) 365203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 24 [22] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Wang and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Kuang, Multisoliton solutions of the Degasperis- Procesi equation and its short-wave limit: Darboux transformation ap- proach, Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 203 (2020) 608-620.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [23] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Wu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Li and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Li, Soliton solutions to the Novikov equation and a negative flow of the Novikov hierarchy, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 87 (2019) 134-140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Constantin and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Ivanov, Dressing method for the Degasperis- Procesi equation, Stud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 138 (2017) 205-226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Hone, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Lundmark and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Szmigielski, Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type equation, Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' PDE 6 (2009) 253-289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [26] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Lundmark and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems 19 (2003) 1241-1245.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [27] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Lundmark and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Szmigielski, Degasperis-Procesi peakons and the discrete cubic string, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Pap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 2005 (2005) 53-116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' B¨acklund A V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Zur theorie der Fl¨achentransformationen, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 1881, 19 (1881) 387-422.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [29] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Miura, B¨acklund transformations, the inverse scattering method, solitons, and their applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Springer, New York, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [30] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Rogers, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Schief.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' B¨acklund and Darboux transformations: geom- etry and modern applications in soliton theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Cambridge University Press, Cambridge, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [31] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Mao and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Wang, B¨acklund Transformations for the Degasperis- Procesi Equation, Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 203 (2020) 747-760.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [32] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Mao, Novikov equation: B¨acklund transformation and applications, Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 206 (2021) 163-173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [33] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Mao, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Liu, The short pulse equation: B¨acklund transfor- mations and applications, Stud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Marh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 145 (2020) 791-811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [34] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Huang and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Li, Darboux transformations of the Camassa-Holm type systems, Chaos, Solitons and Fractals 157 (2022) 111910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 25 [35] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Leble and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Ustinov, Third order spectral problems: reductions and Darboux transformations, Inverse Problems 10 (1994) 617-633.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Rasin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Schiff, Unfamiliar aspects of B¨acklund transfor- mations and an associated Degasperis-Procesi equation, Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 196 (2018) 1333-1346.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' [37] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Rasin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Schiff, A simple-looking relative of the Novikov, Hirota-Satsuma and Sawada-Kotera equations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Nonlinear Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 26 (2019) 555-568.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} +page_content=' 26' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf'} diff --git a/XNFLT4oBgHgl3EQfTi_1/content/2301.12046v1.pdf b/XNFLT4oBgHgl3EQfTi_1/content/2301.12046v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..fd876b120d6741fae5752e06925caf3f4e2e128f --- /dev/null +++ b/XNFLT4oBgHgl3EQfTi_1/content/2301.12046v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:36a0e34955c7dd229f6bb1779f2a5fb7c0485b852770f8c24b00219e41ef46a1 +size 7434591 diff --git a/XtE1T4oBgHgl3EQfcAQQ/vector_store/index.pkl b/XtE1T4oBgHgl3EQfcAQQ/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f891f17102304cb0d5e757ee07db42f4b6bd61d9 --- /dev/null +++ b/XtE1T4oBgHgl3EQfcAQQ/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:83310df9178192aa76486376799046eadf06b0915289690833ef4601fd45c34d +size 115212 diff --git a/Y9E0T4oBgHgl3EQf3wL_/content/tmp_files/2301.02731v1.pdf.txt b/Y9E0T4oBgHgl3EQf3wL_/content/tmp_files/2301.02731v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..984643a7ce36936e7dbe7ef7a8eaa718658618c6 --- /dev/null +++ b/Y9E0T4oBgHgl3EQf3wL_/content/tmp_files/2301.02731v1.pdf.txt @@ -0,0 +1,1888 @@ + + + +Attention-LSTM for Multivariate Traffic +State Prediction on Rural Roads +Elahe Sherafat1, Bilal Farooq1, Amir Hossein Karbasi2 +and Seyedehsan Seyedabrishami3 +1Laboratory of Innovations in Transportation, Toronto +Metropolitan University, Toronto, ON, Canada. +2Department of Civil Engineering, McMaster University, +Hamilton, ON, Canada. +3Faculty of Civil and Environmental Engineering, Tarbiat +Modares University, Tehran, Iran. + +Contributing authors: esherafat@torontomu.ca; +bilal.farooq@torontomu.ca; karbaa3@mcmaster.ca; +seyedabrishami@modares.ac.ir; + +Abstract +Accurate traffic volume and speed prediction have a wide range of appli- +cations in transportation. It can result in useful and timely information +for both travellers and transportation decision-makers. In this study, an +Attention based Long Sort-Term Memory model (A-LSTM) is proposed +to simultaneously predict traffic volume and speed in a critical rural +road segmentation which connects Tehran to Chalus, the most tourist +destination city in Iran. Moreover, this study compares the results of +the A-LSTM model with the Long Short-Term Memory (LSTM) model. +Both models show acceptable performance in predicting speed and flow. +However, the A-LSTM model outperforms the LSTM in 5 and 15-minute +intervals. In contrast, there is no meaningful difference between the two +models for the 30-minute time interval. By comparing the performance +of the models based on different time horizons, the 15-minute hori- +zon model outperforms the others by reaching the lowest Mean Square +Error (MSE) loss of 0.0032, followed by the 30 and 5-minutes horizons +with 0.004 and 0.0051, respectively. In addition, this study compares +the results of the models based on two transformations of temporal +categorical input variables, one-hot or cyclic, for the 15-minute time + + +1 + +2 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + +interval. The results demonstrate that both LSTM and A-LSTM with +cyclic feature encoding outperform those with one-hot feature encoding. +Keywords: Traffic state prediction, A-LSTM, deep learning, rural roads + + + +1 Introduction +Several major problems are associated with transportation networks, such as +traffic congestion, road safety, and high travel time variability. The develop- +ment of Intelligent Transportation Systems (ITS) was aimed at solving these +problems, operating as a vital part of traffic management and control [1]. +As a result of advancements in technology and the development of big data, +Artificial Intelligence (AI) methods, particularly deep learning methods, have +become an essential part of ITS for traffic management. A practical applica- +tion of AI is the prediction of short-term traffic patterns and speeds, which is +the basis for modern traffic management [2, 3]. +Short-term traffic flow and speed prediction allows traffic departments to +gain accurate and timely information to intervene ahead of time. Besides, trav- +ellers are able to set their departure time and plan their trip with increased +reliability, which leads to alleviating congestion. Moreover, to improve traffic +safety, short-term traffic flow prediction is of great social and economic impor- +tance [4]. Therefore, traffic flow and speed prediction models improve safety +and reduce congestion and its negative consequences, such as air pollution [5]. +Due to the importance of traffic flow and speed prediction, many +researchers have presented several models, such as statistical, machine learning, +and deep learning models, to predict traffic characteristics with high accuracy +[1, 3, 6–10]. Some of these studies predict traffic flow [1, 11, 12] and others speed +[13, 14]. There are a few studies that predict traffic flow and speed simultane- +ously [2, 15]. Besides, there can be seen several gaps in terms of simultaneous +prediction of traffic flow and speed. +These studies have mostly predicted traffic flow and speed in freeways and +urban networks [2, 12, 13] and only a few of them aim at rural roads [16, 17]. +However, accurate prediction of traffic characteristics in some rural segmen- +tations is important and challenging due to the following reasons. Firstly, the +travel behaviour on these roads differs from that of urban roads and depends +more on calendar variables. For example, congestion on rural roads deterio- +rates during the holidays [18]. Hence, the rural networks require specific traffic +analysis and prediction of their own. +The second reason is the traffic safety problem on these roads since they +account for many accident fatalities. For instance, rural roads accounted for +54% of all fatalities in the U.S. in 2012, despite 19% of the population living in +rural areas [19]. Thus, there is a need to develop models for accurate prediction +of traffic flow and speed, specifically on rural roads. + +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads +3 + +To the best of the authors’ knowledge, no study has predicted both flow and +speed on rural roads using a multivariate deep-learning model. Therefore, this +study aims to simultaneously predict traffic flow and speed on a rural highway +to fill these gaps. In this study, multivariate deep neural networks, established +on Attention-Based Long Short-Term Memory (A-LSTM) and Long Short- +Term Memory (LSTM) artificial neural networks, are presented to predict +traffic flow and speed simultaneously. The time-series cross-validation tech- +nique is deployed for training and validation of the models using the 5, 15, and +30 minutes time intervals. Besides, the data analysis is conducted to investigate +traffic behaviour in the rural segmentation of the case study. +As a case study, we utilized the data from the Karaj-Chalus rural highway, +a two-lane, two-way road connecting Tehran to Chalus in Iran. This rural high- +way has recurrent issues, which make it essential to control the traffic. Chalus +is one of Iran’s most popular holiday destinations due to its pleasant weather +and natural attractions. This rural highway can become highly congested and +even experiences blockage during the holidays as people from Tehran flock to +Chalus [20]. This, in turn, deteriorates the air pollution problem and damages +the environment. +Another problem is road safety, as several sharp curves go through the +rain forests and the narrowness and steep mountainous terrain, making the +road potentially dangerous [21]. In 2016, there were 855 road crashes with 37 +deaths on Karaj-Chalus rural highway [21]. Hence, accurate traffic flow and +speed prediction are essential to address these problems proactively. +The main contributions of this study are as follows: +• Developing a multi-output A-LSTM to simultaneously predict traffic flow +and speed on a rural highway. +• Comparing the performance of A-LSTM and LSTM in predicting traffic flow +and speed. +• Investigating the optimal temporal aggregation level for the model and its +effect on predictive performance. +• Based on the optimal time interval, comparing the performance of two +neural networks with the one-hot and cyclic transformation of time-series +categorical input variables. +The rest of this paper is organized as follows. Section 2 reviews the previ- +ous studies that deployed different methods to predict traffic flow and speed. +Section 3 explains the methodology; firstly, the preliminary notations are intro- +duced in section 3.1. The structure of the proposed A-LSTM is introduced in +Section 3.2, and the time-series cross-validation method is discussed in Section +3.3. In Section 4, the characteristics of the road segmentation, the dataset, +and the extracted features deployed in the study are discussed. Section 5 +demonstrates numerical experiments and results. Finally, Section 6 presents +the conclusions and suggestions for future studies. + +4 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + +2 Literature Review +Previous studies have predicted traffic flow and speed using a variety of +approaches such as statistical [6–8], machine learning [9, 10, 22–26], and +deep learning approaches [2, 12, 14–17, 27–32]. Regarding statistical methods, +Ahmed and Cook [6] first proposed an Auto-Regressive Integrated Moving +Average (ARIMA) model to predict freeway short-term traffic flow. Moreover, +there were other variants of the ARIMA model which aimed to improve the +performance of traffic flow prediction. For example, considering the fact that +the ARIMA model does not handle nonlinear traffic data, Van Der Voort et +al. [7] presented the KARIMA model that combined the Kohonen network +and ARIMA to solve the shortcoming of the ARIMA model by improving +short-term traffic flow prediction performance. Williams and Hoel [8] predicted +short-term traffic flow based on a seasonal ARIMA (SARIMA) model. +Statistical approaches utilize simple models with high computational com- +plexity, making them suitable for smooth and small sample data [33, 34]. +However, since traffic data contain nonlinear and stochastic properties, statis- +tical models perform unacceptably and consequently make traffic prediction +unreliable as a result [35]. In contrast, conventional machine learning methods +are able to capture better complex and nonlinear patterns in traffic data than +statistical models [36]. +Concerning machine learning approaches, Support Vector Machine (SVM) +and Support Vector Regression (SVR) models have been the most widely +deployed in previous studies. Their results showed that SVM and SVR models +outperformed statistical models [10, 22]. For example, Hong et al. [10] com- +bined a genetic algorithm and SVR model to create a model predicting traffic +flow which outperformed the SARIMA model. +Moreover, Hu et al. [22] deployed a hybrid Particle Swarm Optimization +(PSO)-SVR model for predicting traffic flow. This model is capable of reducing +model learning time by processing noisy data effectively. They showed that the +accuracy of the PSO-SVR model is higher than other models, such as SVM and +ARIMA. with regard to traffic speed prediction, Wang and Shi [9] developed a +hybrid model called C-WSVM for forecasting short-term traffic speed based on +SVM, regression theory, and chaos-wavelet Analysis. Their results illustrated +that although there is no significant difference between the performance of the +C-WSVM and SVM models, the C-WSVM model’s performance is better when +the traffic states change. Generally, machine learning models showed better +performance than statistical models. +In recent years, several studies have predicted traffic flow and speed based +on deep learning methods. On the one hand, the volume of traffic data has +increased due to the development of data collection technologies [3]. On the +other hand, deep learning methods have the potential for analyzing and fit- +ting big data with complexity and nonlinearity [1]. This encouraged many +researchers to apply deep learning methods for short-term traffic flow and +speed prediction. + +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads +5 + +Due to the time-series nature of traffic flow and speed data, Recurrent +Neural Networks (RNNs) have been widely used to predict traffic flow and +speed. These networks benefit from temporal memory functions, which make +them useful for dealing with time-series data [3]. Although RNNs struggle with +gradient vanishing problems, there are variants of them that can solve this +problem. Take LSTM and Gated Recurrent Units (GRU) neural networks as +examples. [37] utilized LSTM neural networks to predict traffic flow in freeway +networks. Their results show that the performance of the LSTM model is better +than the SVR model. +Moreover, some studies improved LSTM models. For instance, Ma et al. [12] +presented a model with an upgraded LSTM to improve short-term urban road +traffic flow prediction accuracy. First, this model has done a time-series analysis +on traffic flow data in order to create a reliable time-series [38]. Then traffic +flow data were fed into the upgraded model based on LSTM and bidirectional +LSTM neural networks. The results of this study illustrated that the proposed +model outperformed other models, such as the LSTM. +Tran et al. [14] proposed a deep learning approach that utilizes an LSTM +network with a hyper-parameter tuning in urban arterial roads to predict +short-term traffic speeds in parallel multi-lane roads. They [14] showed that the +performance of the updated version of LSTM outperformed ARIMA, multi- +layer perceptron (MLP), and Convolutional Neural Networks (CNNs) models. +Chen et al. [39] applied an attention-based LSTM model to predict traf- +fic flow in freeway and highway networks. They showed that this model +could improve the accuracy of traffic flow prediction. Wu et al. [13] proposed +an attention-based LSTM model in order to predict traffic speed in urban +networks. They demonstrated that the attention-based LSTM model could +improve the accuracy of traffic speed prediction compared with the LSTM +model. +In addition, based on multi-task learning models, Zhang et al. [2] presented +a multitask learning model with GRU neural networks to predict traffic flow +and speed simultaneously in a freeway network. Moreover, a multitask learn- +ing method based on graph convolutional networks (GCNs) and GRU neural +networks were applied by Buroni et al. [15] to predict traffic flow and speed +simultaneously on the freeway and urban road networks. The results of these +studies illustrate that multi-task learning models have the potential to improve +the accuracy of traffic flow and speed prediction. +Although several studies applied different methods to predict traffic flow +and speed, some key gaps exist in previous studies. First, there are only a +handful of studies that employed deep learning models to predict traffic flow +and speed based on a multi-task learning framework. The further point is that +these studies have used either freeway or urban traffic data, and to the best of +our knowledge, no study has simultaneously predicted flow and speed based +on rural road data. +In addition, it is important to apply traffic flow and speed prediction models +on rural roads because they help solve safety and congestion issues that occur + +6 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + +on rural roads, especially during holidays [18]. To fill these gaps, this study has +employed neural network models based on LSTM and A-LSTM for multivariate +prediction of traffic flow parameters, volume and average speed, on a rural +highway. +In this study, extracted 5-minute time interval data and 15 and 30-minute +aggregated data have been deployed for feature extraction, data analysis, train- +ing, and model evaluation. In addition, this study compared the performance +of simple LSTM and A-LSTM based on the three horizons and time-series +cross-validation. Furthermore, based on the best time interval, the performance +of the neural network based on one-hot and cyclic feature encoding of the +categorical variables is compared. + +3 Methodology +Deep learning models are the most popular machine learning methods and have +attracted researchers in industry and academia in the last decade. The reason +is their potential for dealing with complex data with nonlinearity. RNNs are +extensively deployed in traffic flow prediction due to their potential to capture +the time-series nature of traffic data. +In this study, we have developed our proposed multivariate A-LSTM to +simultaneously predict traffic volume and speed in a rural road segmentation. +Besides, we trained a simple LSTM as a baseline to investigate the promise of +the proposed A-LSTM deep neural network. +In this section, we first introduce the notation and define the problem in +Section 3.1. Then the proposed A-LSTM structure and its mathematics are +investigated in Section 3.2. The time-series cross-validation method used for +model training and evaluation is explained in Section 3.3. +The general framework of the study is shown in Figure 1. The raw data are +preprocessed, and handcrafted explanatory features are added to the dataset. +In this stage, the temporal variables are defined using either one-hot or cyclic +encoding mechanisms. The 5-minute interval data are aggregated into 15 and +30-minute interval datasets. All three sequences are fed into both LSTM and +A-LSTM to predict the volume and speed of the next time step. Besides, +we deployed a time-series cross-validation method to split the sequences and +model training and evaluation. + +3.1 Preliminaries and notation +Yt (V, S) denotes the traffic state at the time step t, which is made up of the +equivalent hourly volume (vehicle/hour) of vehicles passing a specific section +of the road, V ; and the average speed (kilometre/hour) of those vehicles, S, +for the time interval t. For i historical time intervals, the traffic state historical +data Hist can be denoted as Hist = {Y(t−i+1), Y(t−i+2)..., Yt}. +Our proposed network takes the volume and speed of five previous time +steps, Hit = {Yt−5, Yt−4..., Yt−1} according to Figure 3. Vector Xt ∈ R N +represents the feature vector for time t and includes features such as hour, + +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads +7 + +1 +season, and being a holiday, as explained in Table 2. The dimension R differs +based on the transformation method of temporal variables. +The network aims to predict the traffic features V and S while taking the +historical flow data of previous time steps, Hit , and the input feature of the +current time step, Xt, as the input. + +3.2 Attention-Based Long Short Term Memory +(A-LSTM) Structure +Generally, RNNs use building blocks at each time step that store hidden states, +the memory of the network. Using the memory, RNNs can keep track of traffic +information and temporal dependencies over time and predict the future traffic +state. Although, the simple RNN has the shortcoming of capturing long-term +dependencies due to the vanishing gradient problem. The LSTM variant pro- +posed to address the vanishing gradient problem of the simple RNN [1]. LSTM +neural networks are widely used and have shown great promise to predict traf- +fic flow and speed due to their potential to take the time-series nature of the +traffic parameters into account [40]. +We deployed the LSTM module in the structure of our proposed model. +The LSTM has the potential to take the historical data and capture the time +dependencies. It can memorize and store the information in the cell state +that connects hidden units in the sequence. The cell state is updated in each +building block using the forget, input, and output gates. During the learning +process, the weight and bias parameters of these gates are updated to generate +the traffic state in the next time step, as shown in Figure 2. +These gates decide what new information should be added to the cell state, +what needs to be deleted, and what the model will generate as the output. In +other words, it has the ability to read, write, save and delete information on +the cell state to best predict the traffic volume and speed in each time step +based on the time series variables from previous ones and the input features +from the current one. +To introduce our proposed model, we first explain the mathematics behind +each gate in the LSTM building blocks 2. Then, we discuss how the attention +mechanism improves the performance of the vanilla LSTM model. When the +cell state enters a building block unit, the forget gate decides whether to save +or delete information from previous time steps; that is to say, it selects the +optimal time lag for the input sequences [41]. The forget gate takes current +input xt, concatenation of Hit and Xt, and passes it through Equation 2 using +the sigmoid function Equation 1 as is illustrated in Figure 2. The output +updates the cell state using Equation 5. + +σ (t) = 1+ et. +(1) +ft = σ (Wf [ht−1, xt]+ bf ), +(2) + +8 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + + + + +Fig. 1: The study framework + +Raw data +One-hot feature +encoding +Datapre-processing +5MinuteTime +15MinuteTime +30Minute Time +intervaldata +intervaldata +interval data +Apply Deep Learning +Algorithms +Attentionbased +LSTM Model +LSTM model +Speed and flow +Speedand flow +prediction +prediction +Comparingthe +performanceoftwo +models based on +threetimeintervals +Selectingthebest +time interval +Cyclicfeature +encoding +Apply LSTMand +attentionbased +LSTM models +Speedandflow +prediction +Comparingthe +performance of twomodels +based on one-hot and cyclic +feature encodingAttention-LSTM for Multivariate Traffic State Prediction on Rural Roads +9 + + + +Fig. 2: A building block for a single time step in the LSTM architecture, +comprising input, forget, and output gates. + +Then the writing gate uses sigmoid and hyperbolic tangent as activation +functions and specific weights and biases (Wi, Bi & Wc, bc) to store new +information in the cell state based on Equations 3, 4, 5, and Figure 2. + +it = σ (Wi [ht−1, xt]+ bi), +(3) + +C˜t = tanh (Wc [ht−1, xt]+ bc), +(4) +Ct = ft × Ct−1 + it × C˜t +(5) +The same concatenated input is passed through the sigmoid function, +Equation 1 and parameters (Wo and bo) to create the hidden state of the +current timestep t based on Equations 6 and 7, Figure 2. + +ot = σ (wo [ht−1, xt]+ bo), +(6) + +ht = ot × tanh (Ct) +(7) +The hidden state provided in this section will be the argument for comput- +ing the alignment score in Equation 8 and the context vector in Equation 10 in +the attention mechanism. The attention mechanism introduced by Bahdanau +et al. [42] aimed at the fixed-length context vector problem in the RNNs. This +restricts RNNs’ predictive ability when dealing with long time-series sequences. +The attention mechanism could be integrated into any RNN to improve its +performance, especially when dealing with long sequences. +Simple RNNs and LSTM inherently have an encoding and decoding process +to map the input sequence to the output. The encoder maps the input sequence + +tanh +tanh10 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + +to the context vector, and the decoder takes the context vector to produce the +traffic flow parameters at time step t. When the attention mechanism is added +to the architecture, the encoder assigns weights to each time step so that the +generated context vector is a more efficient input for the decoder to generate +outputs. +These weights are tuned in the learning process so that the network pays +more attention (assigns more weight) to the information in a longer sequence, +which is important to predict current volume and speed. E.g., we could see a +specific pattern like existing a holiday just after a weekend in past sequences, +and by deploying the attention layer, we can recall the pattern when it hap- +pens in the current time step. The computation process comprises three main +computing steps: Alignment Scores, Weights, and Context vectors, Figure 3. + + + + + + +Fig. 3: The structure of proposed A-LSTM deep neural network + +YLE R20 +α +Output layer E R2 +Volume +rtE R20 +Speed +HN E R20 +H1 E R20 +H2 E R20 +T +Sigmoid +LSTM +LSTM +LSTM +X1E R24 +X2E R24 +X3E R24 +HiE R2x5 +Hi2 E R 2xs +Hi3E R 2xs +Tanh12 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + +t +3.2.1 Alignment Scores +The alignment score, et,i, indicates how well the output Vt and St align with +the input sequence elements. It is computed using the function a () of time +step t, which takes the decoder output of the previous time step, ot−1, and the +encoder hidden state, hi, as arguments in a feed-forward process. + +et,i = a (ot−1, hi) +(8) + +3.2.2 Weights +Weights, αt,i, are obtained from passing alignment scores computed from the +previous step through a softmax function, Equation 9. The weights indicate +where exactly the model should focus on the hidden state to better estimate +the traffic state at time t. Figure 3 shows the α on the top of the hidden states, +Hi. +α = softmax (et,i) +(9) + +3.2.3 Context Vector +Finally, the attention layer improves the model’s performance by using the +context vectors, rt, instead of hidden states, Ht, to generate the output by the +decoder, Figure 3. The context vector is computed as the weighted sum of all +the hidden states over t, Equation 10. +rt = L αt,ihi +(10) +i=1 + +This context vector is deployed to compute the final output of the LSTM +layer using the attention mechanism, YˆL = {Vˆt, Sˆt}, using Equation 11. +Yˆ = f (V × rt + bv) +(11) +The LSTM output would be represented as YˆL ∈ R20 and passes through +the hyperbolic tangent function, Figure 3. Finally, two neurons of a dense layer +will compute the normalized volume and speed using the sigmoid activation +function. The attention mechanism incorporates into the LSTM architecture +by mapping inputs to outputs in a forward direction during training, as dis- +cussed in detail. We deployed the ‘Adam’ optimizer and the ‘mean square error’ +loss function to compile the model. For training the model, we chose a batch +size of 128 based on a trial and error process. The total number of trainable +parameters of the network is 4,463 parameters. We found 100 as the number +of epochs that best guarantee learning and avoid overfitting based on results +in Section 5 and Figures 8a to 8f. +We trained and evaluated our proposed A-LSTM model, Figure 3.2 and +the vanilla LSTM model as a baseline to investigate the performance of the +proposed model. The split method, input variables type, and the sequences’ +intervals are discussed in Section 3.3. + +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads +13 + +For the input selection, we relied on data analysis results as well as the +trial and error procedure during training. Two representations of time-series +variables were deployed as input variables. In the first scenario, the cyclic +transformation of time-series features is deployed. Whereas the second uses the +one-hot representation. These features, along with five previous time steps of +output features, shaped the total number of 34 and 45 input variables in the +cyclic and one-hot transformation scenarios respectively. Hence the number of +input nodes and network structures differs based on the input dimension. + +3.3 Time-Series Cross-Validation +Unbiased and robust validation is essential for evaluating the performance of a +model. The cross-validation technique has demonstrated potential for tuning +the hyper-parameters, estimating the performance of the models, and selecting +the most generalized one [43]. K-fold cross-validation assumes observations +are independent of each other and that there is no correlation between them +through time. +On the other hand, the time-series cross-validation method takes the tem- +poral dependencies of records into account. Hence, we employed the time-series +cross-validation technique in this study to evaluate the performance of the +models in predicting the average speed and volume while taking into account +their time-series nature. Figure 4 illustrates three time-series cross-validation +sets that separate training sets from validation and testing. +In this method, the origin of the validation-test sets rolls forward and moves +the fixed length of it toward the end of the sequence. During this procedure, the +size of train sets increases, but the validation-test set size remains the same. +For example, for the 15-minute interval dataset, as demonstrated in Table 1, +the train sizes are 16,175, 32,348, and 48,521 for the split sets, while both +validation and test sets are of the same size of 8,086 in all three splits. That is +to say, the percentage of the train set size increases from 64% in the first split +to 75% in the last one for all intervals. + +14 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + + + + + +Fig. 4: Time-series cross-validation for splitting the train and validation-test +dataset. volume train sets (blue), speed train sets (red), volume validation-test +sets (orange), and speed validation-test sets (green), all for 15 minutes interval + +train test volume split +1.0 +Volume 0.5 +0.0 - +0 +5000 +10000 +15000 +20000 +25000 +30000 +train valid/test Speed split 1 +0.75 +0.25 +L. +0.00 +0 +5000 +1000015000 +2000025000 +30000 +train test volume split 2 +1.0 +Volume 0.5 +0.0 +0 +10000 +20000 +30000 +40000 +50000 +train valid/test Speed split 2 +0.75 +Speed(km/h)0.50 +0.25 +0.00 +0 +10000 +20000 +30000 +40000 +50000 +train test volume split 3 +1.0 +Volume 0.5 +0.0 +0 +10000 +20000 +30000 +40000 +50000 +60000 +train valid/test Speed split 3 +1.0 +Speed(km/h)0.5 +0.0 +0 +10000 +20000 +30000 +40000 +50000 +60000 +Set split +train +valid +test +train +valid +test +train +valid +test + + + + + + + + + + +Table 1: The sample size for time-series cross validation + +Sample size + + +Horizon (minutes) +5 +15 +30 + + + +1 +48091 +24044 +24044 +16175 +8086 +8087 +8118 +4057 +4057 +2 +96179 +24044 +24044 +32348 +8086 +8087 +16233 +4057 +4057 +3 +144267 +24044 +24044 +48521 +8086 +8086 +24348 +4057 +4057 + +16 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + +4 Case Study +This section first describes the rural road segment and its characteristics in +Section 4.1. Then, the dataset and extracted features used as input variables +are introduced in Section 4.2. +4.1 Data and road segment introduction +The data deployed for training and evaluating the proposed models in this +study are the 5-minute volume (vehicle/hour) and average speed (kilome- +tre/hour) of all kinds of vehicles passing a critical1 segmentation on a rural +road located in the north of Iran. Log-lasting blockage traffic state occurs in +this segmentation during holidays and weekends. Besides, the characteristics +of the road segment lead to low resilience and ability to be recovered from the +blockage state. +Since 2010, the loop detectors in the rural network of the country have +been collecting traffic data and reporting them online. Although the clean +and prepossessed data are openly accessed for one-hour time intervals on the +Road Maintenance and Transportation Organization (RMTO) website [44], +The clean and preprocessed 5-minute time interval data are not available. +Since in this study, we are interested in investigating the variation of traffic +flow parameters within one hour, the 5-minute interval raw traffic data were +obtained initially. The data include two years of traffic data, from the beginning +of 2018 to the end of 2019, just before starting the influence of the Covid +pandemic and imposed travel restrictions. After cleaning the raw data, the +handcrafted features were added to the database, and aggregated data were +prepared for 15 and 30 minutes intervals. +The specific segmentation is located on Chalus road and connects Chalus +to Tehran. Tehran is a polluted and crowded metropolis with 11,800 residents +per square kilometre. While, Chalus is the primary vacation destination city in +the country that is located only 145 kilometres from Tehran, Figure 5. Hence, +during the holidays and weekends, a considerable population flocks to this two- +way road that doesn’t have any physical barriers. This results in a long-lasting +blockage condition that increases the travel time up to four times compared +with free-flow travel time. +This situation makes policymakers block one flow direction to dedicate +both lanes to the reverse one by doubling the capacity to alleviate the blockage +state. This policy, in turn, leads to safety hazards. These uncertainties make +accurate traffic flow prediction of this rural segmentation the most challenging +among 3,000 road segmentations in the rural road network. +4.2 Handcrafted feature extraction +This study utilizes less than one-hour intervals, and explanatory features were +added to the raw database. Input features include time-related (month, day, + +1A critical road segmentation refers to long-lasting traffic congestion conditions existence in +this segmentation. + +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads +17 + + + + +Spring-summer-fall-winter; is used as both a + + +1-288; specify which 5-minute interval in a day; + + +1 if the interval is between 7 AM and 9 PM, 0 +otherwise. + + +season, and hour), calendar (day of week, holiday), weather, and flow-related +features. The features are introduced in Table 2. + +Table 2: Explanatory features introduction + +DateTime +Jalali and Lunar DateTime is added to extract +time-related features, e.g. holidays from the +available Gregorian DateTime in the raw +dataset. + +Day +1-31; is used as both a one-hot and cyclic +variable. +Day-of-week +Monday to Sunday; is used as both a one-hot +and cyclic variable. +Hour +1-24; is used as both a one-hot and cyclic +variable. +Day-night +1 if the interval is placed in the daytime, 0 +otherwise; based on sunset and sunrise. +Weather +Rainy-sunny-snowy; a one hot variable. + +Average-speed- +reverse +The normalized average speed (kilome- +tre/hour) in the reverse direction. + +One-way +1 if the vehicles are not allowed to use the road +for dedicating both lanes to the other direc- +tion. + +Traffic flow features of the opposite direction are extracted from the data +fusion of detectors. Volume and speed for the Chalus-Tehran direction are set +as target variables (due to less percentage of missing values), and those features +for the opposite direction (Tehran-Chalus) are used as input variables. Table +3 shows the correlation between target variables and the volume and speed of +the opposite direction. Besides, since to alleviate the blockage in some cases, +the road facilitates the traffic only in one direction, the two variables one-way +and double capacity are added to the dataset, as explained in Table 2. The box +plots of Figure 6 illustrate how the target variable, volume, differs based on + + + + + + +1 if the vehicles can ride in both lanes, and +the opposite direction is not allowed to use the +road, 0 otherwise. + +18 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + + + +Fig. 5: The network demonstration and position of the detector. The +detector is located in the path from Chalus to Tehran, just after the +Kandovan tunnel. The volume and average speed data of the reverse direction +(from Tehran to Chalus) have been used as input variables for the model. + +categories of each explanatory variable. The analysis is extensively discussed +in Section 5.1. + +5 Results +This section first illustrates the data analysis results and interprets them in +Section 5.1. Then the results of the A-LSTM and LSTM models during train- +ing and evaluation for both input scenarios and different time horizons are +illustrated and interpreted in Section 5.2. + +5.1 Data Analysis Result +In this study, data analysis is conducted to select the significant input vari- +ables to be fed into the neural network model. Besides, deployed data analysis +techniques address the black-box nature of neural networks by providing inter- +pretable results. To this end, Correlation analysis between numeric inputs +and target variables, volume and average speed is conducted as the results +are illustrated in Table 3. Besides, based on Figure 6, box plots are deployed +to investigate the relationship between categorical input variables and the +continuous output volume. +For each categorical variable, the distribution of volume is analyzed using +sets of side-by-side box plots for every level of each categorical variable. The +box plots in Figure 6 demonstrate the distribution of volume (vehicle/hour) +and take variables Jalali day, month, hour, 7-21, day-night, season, weather, + +12.5km +Sea +Chalus +Amol +Kuh-eTakht- +eSoleyman +Distance:149Km +Detector183170 +position:36.1°N,51.3°E +travel time in light traffic state: 3hrs and 15 minutes +Kah-eD +OParNatlonal +5,609m +Nazarabad +Karaj +SorkhehHesa +LChitga +Tehran +Shahr-eReyAttention-LSTM for Multivariate Traffic State Prediction on Rural Roads +19 + + +Table 3: Correlations between volume and speed for the target direction +(Chalus-Tehran) and the reverse direction (Tehran-Chalus) + + +Volume +Speed +Volume reverse +Speed reverse +Volume +1 +0.12 +0.29 +-0.1 +Speed +0.12 +1 +0.11 +0.34 +Volume reverse +0.29 +0.11 +1 +0.15 +Speed reverse +-0.1 +0.34 +0.15 +1 + +holiday, and day-of-week as a horizontal variable. The length and position of +boxes of different categories for each categorical variable explain the difference +in target variable distribution for each level of explenatory variables and the +amount of explanation they provide. +Based on Figure 6, considering Jalali day variable, there can not be noticed +much of differences in days of a Jalali month, so the input variable Jalali day +is insignificant. Jalali month plot, on the other hand, demonstrates a higher +amount of traffic volume in the first month and a continuous increase till the +peak in months 4-6. This increase in the volume in these two periods is rooted +in the new year holiday, which is 13 consecutive holidays, and the summer +holiday, respectively. The hour box plot shows the peak hour is at 4 P.M., and +the smooth curve demonstrates the meaningful and gradual changes in traffic +during the day. The 7-21 and day-night variables’ box plots also show tangible +differences that these two variables can make; plots show a higher average and +variation of traffic volume in a day than at night. +Regarding the day-of-week box plot, Friday and Saturday are experiencing +the highest amount of traffic. This result is consistent with expectations since +Thursdays and Fridays are the weekends in Iran. So it is expected to see a +higher amount of traffic volume on Fridays and Saturdays when travellers are +returning from their vacation to Tehran and Wednesdays and Thursdays in the +opposite direction for travellers flocking toward their recreational destination +(Chalus). +The holiday ’s plot shows that weekends experience a higher average volume +than calendar holidays and is found to be an informative variable. Although, for +weather data, interpretation is challenging since it is expected that considering +the danger that snow causes on any road with sharp curves and the hazard +of avalanches, the average volume for the snow level category is less than +others. In contrast, here, the reverse came true based on the plots. Although +the analysis results are found incompatible with the common expectation, the +variable weather is considered significant during the modelling process. Finally, +variables in Table 2 are deployed in the final model training. +5.2 Neural Network Results for Predicting Traffic Flow +Characteristics +This section demonstrates the results of multivariate traffic volume and aver- +age speed prediction using the LSTM and A-LSTM deep neural networks. +Moreover, the impact of different time horizons is investigated. Finally, there + +20 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + + + + +30 + + + + + + + + + + + + + +Table 4: Train, valid, and test set loss for LSTM and A-LSTM after 100 +epochs + +MSE loss × 1000 + + + + +LSTM +1 +41 +65 +40 +25 +43 +26 +33 +61 +31 + +LSTM +2 +44 +52 +52 +27 +30 +35 +32 +36 +43 + +LSTM +3 +44 +65 +60 +27 +44 +36 +32 +50 +47 + +Average +all +43 +61 +51 +26 +39 +32 +32 +49 +40 + +Attention +1 +40 +80 +41 +25 +45 +23 +23 +61 +31 + +Attention +2 +44 +51 +51 +27 +33 +34 +32 +36 +43 + +Attention +3 +44 +68 +53 +27 +47 +35 +32 +50 +47 + +Average +all +43 +66 +48 +26 +42 +30 +29 +49 +40 + + +will be a comparison between the performance of models based on cyclic and +categorical time-series variables. +As mentioned earlier in Section 3.3, we conducted the training for three +different split sets for unbiased validation. We trained A-LSTM and LSTm +models over all the horizons- 5, 15, and 30 minutes. The mean square error +loss function after 100 epochs is reported in Table 4. +The results show that A-LSTM outperforms LSTM concerning the test- +ing sets loss function for the longer sequences, 5 and 15 minutes intervals. In +contrast, for the validation sets of these two intervals, LSTM’s performance +is better. Regarding the 30-minute horizon, there is no meaningful difference +between the two architectures. However, the difference between the models’ +performance increases as the time horizon decreases toward the 5-minute inter- +val data. The reason is that the attention mechanism promises to perform +better and mitigate the weakness of recurrent neural networks for dealing with +longer sequences. +By comparing the performance of the models considering the time intervals +of the input sequences, there can be seen that the 15-minute accounts for the +minimum MSE with the value of 0.003 and 0.0032 for the A-LSTM and LSTM +models, respectively. Figure 7 shows the 5-minute interval experiences more +noise than other horizons. On the other hand, the 30-minute interval diagram +experiences the minimum noise but loses more information within each time +step compared with other horizons. Hence the 15-minute interval shows the +best performance since neither has the high amount of noise as the 5-minute +horizon has nor is too wide to lose a portion of the information as the 30- +minute horizon is. The prediction and actual value diagrams follow the same +trend through time in all three horizons for the A-LSTM model, Figure 7. This +indicates the overall acceptable performance of the model. +Figure 8 demonstrates the MSE loss function decrease for 100 epochs during +training for three different training and validation sets splits. According to +the diagrams, each split shows a specific and unique behaviour regarding the + +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads +21 + + + + + + + + + + + + + +decrease in loss values of the validation and training sets during the training +process. That is to say, the splits coming from the time-series cross-validation +method bring a significant difference in the evaluation of the model. Hence, +the method results in an unbiased evaluation and has increased the model’s +generalization. +All the results above were related to the models that have taken cyclic +time-series variables as inputs. Therefore, to investigate the impact of cyclic +variables, this study also compares the results of the models based on both +one-hot and cyclic time-series variables. +Table 5 compares results of models based on either one-hot or cyclic trans- +formation of the temporal input variables. According to the average row, both +LSTM and A-LSTM models perform better using cyclic variables for the test- +ing set. However, A-LSTM experiences more improvement when using cyclic +variables than the LSTM model. The average MSE loss function for the test +set decreases from 33 to 32, while the same amount reaches 30 for the A-LSTM +model using cyclic variables instead of one-hot ones. + +Table 5: Train, valid, and test set loss for LSTM and A-LSTM after 100 +epochs for the cyclic and one-hot transformation of input variables for +15-minute horizon + +MSE loss × 1000 + + + + +LSTM +1 +25 +42 +31 +25 +43 +26 + +LSTM +2 +27 +31 +32 +27 +30 +35 + +LSTM +3 +27 +45 +36 +27 +44 +36 + +Average +3 +26 +39 +33 +26 +39 +32 + +Attention +1 +25 +44 +30 +25 +45 +23 + +Attention +2 +27 +30 +33 +27 +33 +34 + +Attention +3 +27 +47 +37 +27 +47 +35 + +Average +3 +26 +40 +33 +26 +41 +30 + + +Figure 9 demonstrates scatter plots that compare observed and calculated +traffic parameters volume and average speed. Both models’ diagrams are based +on the third split of the A-LSTM. However, models in Figures 9a and 9b have +taken cyclic variables as inputs. In contrast, those in Figures 9c and 9d are +based on one-hot categorical variables. According to the figures, although both +scatter plots are aligned with the 45-degree line, cyclic variable-based models +fit and perform better than one-hot variables-based ones. + +22 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + + + + + + + + +Fig. 6: The box plots of predictors’ distribution with respect to volume +predicted variable + +160 +140 +120 +volumereverse +100 +80 +60 +40 +20 +0 +3 +5 +6 +8 +9 +10111213141516171819202122232425262728293031 +dayj160 ++ ++ +140 +120 +volumerevers +80 +60 +40 +20 - +8 +91011121314151617181920212223 +hour +160 +140 +120 +80 +60 +40 +20 +0 +sun +rain +snow +weather +160 +140 +120 +80 +09 +40 +20 +0- +Mon +Tues +Weds +Thurs +Fri +Sat +Sun +day_of_week160 +* +140 +120 +80 +09 +40 - +20 +1 +2 +E +6 +6 +- +10 +11 +12 +monthj +160 ++ ++ +140 +120 +2100 +rever +lumer +80 +60 +40 +20 +0- +0 +1 +7-21 +160 +140 +120 +rever +lumer +80 +60 +40 +20 +0- +0 +1 +day-night160 +140 +120 +volumereverse +100 +80 +60 +40 +20 +0 +notholiday +weekend holiday +holiday +HolidayAttention-LSTM for Multivariate Traffic State Prediction on Rural Roads +23 + + + +(a) Volume prediction for 5-minute time (b) Average speed prediction for 5-minute +interval + + +(c) Volume prediction for 15-minute time +interval + + +(e) Volume prediction for 30-minute time +interval +time interval + +(d) Average speed prediction for +15-minute time interval + +(f) Average speed prediction for +30-minute time interval +Fig. 7: The plots of volume and average speed actual observed values +(orange) versus the predicted values (blue) by the A-LSTM model for the +third time-series cross-validation split on the testing dataset of the 5, 15, and +30-minute traffic flow dataset. + +predict of attention based LSTM model +predict of attention based LSTM model +120 +predict volume +120 +predict speed +ground truth volume +grounf truth speed +100 +average speed(Km/hour) +100 +lume(veh/hour) +80 +80 +60 +60 +40 +40 +20 +20 +0 +0 +50 +100 +150 +200 +250 +0 +50 +100 +150 +200 +250 +time interval +time interval350 +predictofattentionbased +LSTMmode +predict volume +300 +qround truth volume +250 +(uno) +200 +lume( +150 +0100 +M +50 +0 +0 +10 +20 +30 +40 +50 +60 +70 +80predictofattentionbased +LSTM mode +500 +predict volume +ground truth volume +400 +volume(veh/hour) +300 +200 +100 +0 +10 +15 +20 +25 +30 +35 +40 +timeintervapredictofattentionbasedLSTMmode +80 +predict speed +70 +grounf truth speed +Lnou +60 +Km +50 +speed(I +40 +rage: +30 +20 +10 +0 +10 +20 +3040 +50 +60 +70 + 80predict +attentionpaseo +SIV +Imode +70 +speed(Km/hour) +60 +50 +average +40 +30 +predict speed +20 +grounf truth speed +0 +5 +10 +15 +20 +25 +30 +35 +4024 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + + + + + + + +(a) Attention model-set 1 +(b) LSTM model-set 1 + +(c) Attention model-set 2 +(d) LSTM model-set 2 + +(e) Attention model-set 3 +(f) LSTM model-set 3 +Fig. 8: Mean square error loss decrease during learning the LSTM (right +side) and A-LSTM (left side) for time-series cross-validation sets + +train & valid MSE during training +0.0200 +train loss attention model +validation loss attention model +0.0175 +0.0150 +0.0125 +0.0100 +ean +0.0075 +0.0050 +0.0025 +20 +40 +60 +80 +100 +epochtrain & valid MsE during training +train loss LSTM model +0.030 +validation loss LSTM model +0.025 +S5O1 J +0.020 +DS +0.015 +mean +0.010 +0.005 +0 +20 +40 +60 +80 +100 +epochtrain & valid MSE during training +train & valid MSE during training +train loss attention model +0.012 +train loss LSTM model +validation loss attention model +validation loss LSTM model +0.012 +0.010 +0.010 +square error loss +error +800°0 +0.008 +mean +0.006 +0.006 +0.004 +0.004 +0 +20 +40 +60 +80 +100 +0 +20 +40 +60 +80 +100 +epoch +epochtrain & valid MSE during training +train & valid MSE during training +train loss attention model +train loss LSTM model +validation loss attention model +0.012 +validation loss LSTM model +0.010 +loss +800°0 +error +0.008 +0.006 +mean +0.004 +0.004 +0 +20 +40 +60 +80 +100 +0 +20 +40 +60 +80 +100 +epoch +epochAttention-LSTM for Multivariate Traffic State Prediction on Rural Roads +25 + + + + + + + + + + + + + + +(a) Volume scatter plot for A-LSTM +using cyclic variables + + + +(c) Volume scatter plot for A-LSTM +using one-hot categorical variables +(b) Average speed scatter plot for +A-LSTM using cyclic variables + +(d) Average speed scatter plot for A- +LSTM using one-hot categorical variables +Fig. 9: The predicted versus true value for Volume (left side) and Average +Speed (right side) for the third split of the A-LSTM model based on cyclic +variables (on the top), and one-hot categorical variables (in the bottom) + +300 +wnJOA +250 +truth +200 +punoub +150 +rget +100 +50 +0 - +0 +50 +100 +150 +200 +250 +predict volume60 +50 +ads +40 +30 +20 +10 +0 +20 +30 +40 +50 +60 +predict speed350 +300 +aw +0A +250 +200 +pu +150 +a6. +100 +50 +D +0 +50 +100 +150 +200 +250 +predict volume80 +70 +60 +trutr +50 +pun +40 +30 +20 +10 +0 +10 +20 +OE +40 +50 +60 +predict speed26 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + +6 Conclusion +Prediction of traffic flow parameters plays a vital role in Transportation Engi- +neering and allows decision-makers to control and manage traffic in different +transportation networks. On the other hand, traffic flow and speed prediction +is an efficient tool that helps to reduce many traffic problems such as conges- +tion and consequently other related problems such as air pollution and traffic +safety issues. This paper aims to simultaneously predict traffic flow and speed +on a rural road in Iran. The prediction of traffic flow and speed in this rural +segmentation is crucial due to its unique characteristics, such as mountainous +and dangerous routes and long-lasting congestion situations. This study aggre- +gated 5-minute interval traffic data into 15 and 30-minute ones and deployed +them for multivariate prediction of traffic flow and average speed using the +LSTM and AB-LSMT models. +Generally, the results show the satisfying performance of both LSTM and +A-LSTM for multivariate prediction of time-series traffic parameters, speed +and volume, with a high level of nonlinearity and time dependencies. Moreover, +the results show that based on the test dataset, the performance of A-LSTM +is better than LSTM in 5 and 15-minute horizons. However, in the 30-minute +time interval, there is no magnitude difference between the two deep learning +models. It is worth mentioning that in the 5-minute time interval, the difference +between the two models is increased, and the rationale reason is that the +attention mechanism has the potential to improve performance and alleviate +recurrent neural networks’ weaknesses for dealing with longer sequences. Based +on time interval comparison, the 15-minute horizon-based model performs best +regarding two deep learning models’ results. +It can be realized that the 15-minute time interval performs better than +the 5 and 30-minute horizons because it has less noise than the 5-minute +interval and, simultaneously, contains more information than the 30-minute +interval. Finally, the study compares the performance of models based on two +transformations of time-series input variables, cyclic and one-hot encoding. +According to the results, models with cyclic variables outperform models with +one-hot variables encoding. +In addition, for future studies, multivariate traffic parameter prediction of +parallel paths using data from detectors in those segments and graph-based +deep neural networks is recommended. Besides, the Spatiotemporal dependen- +cies can be investigated using multiple detectors in one road. Future studies +can work on the performance of LSTM and A-LSTM in other transportation +networks, such as freeways and urban roads. Moreover, the different time inter- +val comparison can be investigated in other networks, such as highways and +freeways. + +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads +27 + +Data Availability Statement +The traffic data from around 3,000 detectors on rural roads in Iran can be +found open access on the Road Maintenance and Transportation Organiza- +tion (RMTO) website [44] for one-hour time intervals. The open-access data +include volume and average speed for each detector from 2010, as well as some +extracted features. RMTO has not open-accessed the 5-minute data that were +used in this study. The 5-minute raw data in 2018 came from detectors 183120 +and 183170, which are located in opposite directions at the same station. + +28 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + +References +[1] C. Ren, C. Chai, C. Yin, H. Ji, X. Cheng, G. Gao, H. Zhang, Short-term +traffic flow prediction: A method of combined deep learnings. Journal of +Advanced Transportation 2021 (2021) +[2] K. Zhang, L. Wu, Z. Zhu, J. Deng, A multitask learning model for traffic +flow and speed forecasting. IEEE Access 8, 80,707–80,715 (2020) +[3] C. Chai, C. Ren, C. Yin, H. Xu, Q. Meng, J. Teng, G. Gao, A multifeature +fusion short-term traffic flow prediction model based on deep learnings. +Journal of Advanced Transportation 2022 (2022) +[4] S. Li, Z. Zhang, Y. Liu, Z. Qin, A short-term traffic flow reliability +prediction method considering traffic safety. Mathematical Problems in +Engineering 2020 (2020) +[5] W. Alajali, W. Zhou, S. Wen, in 2018 IEEE SmartWorld, Ubiquitous Intel- +ligence & Computing, Advanced & Trusted Computing, Scalable Comput- +ing & Communications, Cloud & Big Data Computing, Internet of People +and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBD- +Com/IOP/SCI) (IEEE, 2018), pp. 812–820 +[6] M.S. Ahmed, A.R. Cook, Analysis of freeway traffic time-series data by +using Box-Jenkins techniques. 722 (1979) +[7] M. Van Der Voort, M. Dougherty, S. Watson, Combining kohonen maps +with arima time series models to forecast traffic flow. Transportation +Research Part C: Emerging Technologies 4(5), 307–318 (1996) +[8] B.M. Williams, L.A. Hoel, Modeling and forecasting vehicular traffic +flow as a seasonal arima process: Theoretical basis and empirical results. +Journal of transportation engineering 129(6), 664–672 (2003) +[9] J. Wang, Q. Shi, Short-term traffic speed forecasting hybrid model based +on chaos–wavelet analysis-support vector machine theory. Transportation +Research Part C: Emerging Technologies 27, 219–232 (2013) +[10] W.C. Hong, Y. Dong, F. Zheng, S.Y. Wei, Hybrid evolutionary algo- +rithms in a svr traffic flow forecasting model. Applied Mathematics and +Computation 217(15), 6733–6747 (2011) +[11] H. Zheng, F. Lin, X. Feng, Y. Chen, A hybrid deep learning model with +attention-based conv-lstm networks for short-term traffic flow prediction. +IEEE Transactions on Intelligent Transportation Systems 22(11), 6910– +6920 (2020) + +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads +29 + +[12] C. Ma, G. Dai, J. Zhou, Short-term traffic flow prediction for urban road +sections based on time series analysis and lstm_bilstm method. IEEE +Transactions on Intelligent Transportation Systems (2021) +[13] P. Wu, Z. Huang, Y. Pian, L. Xu, J. Li, K. Chen, A combined deep +learning method with attention-based lstm model for short-term traffic +speed forecasting. Journal of Advanced Transportation 2020 (2020) +[14] Q.H. Tran, Y.M. Fang, T.Y. Chou, T.V. Hoang, C.T. Wang, V.T. Vu, +T.L.H. Ho, Q. Le, M.H. Chen, et al., Short-term traffic speed forecasting +model for a parallel multi-lane arterial road using gps-monitored data +based on deep learning approach. Sustainability 14(10), 6351 (2022) +[15] G. Buroni, B. Lebichot, G. Bontempi, Ast-mtl: An attention-based multi- +task learning strategy for traffic forecasting. IEEE access 9, 77,359–77,370 +(2021) +[16] A. Rasaizadi, S. Seyedabrishami, M. Saniee Abadeh, Short-term predic- +tion of traffic state for a rural road applying ensemble learning process. +Journal of Advanced Transportation 2021 (2021) +[17] A. Rasaizadi, E. Sherafat, S. Seyedabrishami, Short-term prediction +of traffic state: Statistical approach versus machine learning approach. +Scientia Iranica 29(3), 1095–1106 (2022) +[18] A. Abdel-Rahim, M.P. Dixon, C.J. Bacon, A. Gonzalez, et al., Mea- +sures to alleviate congestion at rural intersections. Tech. rep., Idaho. +Transportation Department (2015) +[19] R.P. Godavarthy, E.R. Russell, High-risk rural road safety study and +determining the crash-reduction factors for high-risk rural-road usage. +Journal of transportation technologies 6(1), 1–8 (2016) +[20] IRNA. Chalus, unique perspective of beautiful road to north- +ern iran (2019). +URL https://en.irna.ir/news/83576230/ +Chalus-unique-perspective-of-beautiful-road-to-northern-Iran +[21] IRNA. Chalus road is a busy scenic drive in iran (2022). URL https: +//www.dangerousroads.org/asia/iran/328-chalus-road-iran.html +[22] W. Hu, L. Yan, K. Liu, H. Wang, in 2015 IEEE 21st International Con- +ference on Parallel and Distributed Systems (ICPADS) (IEEE, 2015), pp. +553–561 +[23] C. Li, P. Xu, Application on traffic flow prediction of machine learning +in intelligent transportation. Neural Computing and Applications 33(2), +613–624 (2021) + +30 +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads + +[24] H. Yan, Y. Qi, D.J. Yu, et al., Short-term traffic flow prediction based on +a hybrid optimization algorithm. Applied Mathematical Modelling 102, +385–404 (2022) +[25] B. Yao, C. Chen, Q. Cao, L. Jin, M. Zhang, H. Zhu, B. Yu, Short-term +traffic speed prediction for an urban corridor. Computer-Aided Civil and +Infrastructure Engineering 32(2), 154–169 (2017) +[26] T.D. Toan, V.H. Truong, Support vector machine for short-term traf- +fic flow prediction and improvement of its model training using nearest +neighbor approach. Transportation research record 2675(4), 362–373 +(2021) +[27] D. Yang, S. Li, Z. Peng, P. Wang, J. Wang, H. Yang, Mf-cnn: traffic flow +prediction using convolutional neural network and multi-features fusion. +IEICE TRANSACTIONS on Information and Systems 102(8), 1526–1536 +(2019) +[28] S. Ren, B. Yang, L. Zhang, Z. Li, in Proceedings of the 7th ACM +SIGSPATIAL International Workshop on Analytics for Big Geospatial +Data (2018), pp. 32–41 +[29] A. Karbasi, E. Sherafat, Short-term prediction of traffic flow based on +gated recurrent unit neural networks. National Conference on New Studies +and Findings in the Field of Civil Engineering, Architecture and Urban +Planning in Iran (2021) +[30] N.G. Polson, V.O. Sokolov, Deep learning for short-term traffic flow pre- +diction. Transportation Research Part C: Emerging Technologies 79, 1–17 +(2017) +[31] Y. Wu, H. Tan, L. Qin, B. Ran, Z. Jiang, A hybrid deep learning based +traffic flow prediction method and its understanding. Transportation +Research Part C: Emerging Technologies 90, 166–180 (2018) +[32] F. Rempe, P. Franeck, K. Bogenberger, On the estimation of traffic speeds +with deep convolutional neural networks given probe data. Transportation +research part C: emerging technologies 134, 103,448 (2022) +[33] X. Yin, G. Wu, J. Wei, Y. Shen, H. Qi, B. Yin, Deep learning on traffic +prediction: Methods, analysis and future directions. IEEE Transactions +on Intelligent Transportation Systems (2021) +[34] T. Kang, H. Wang, T. Wu, J. Peng, H. Jiang, A pagerank self- +attention network for traffic flow prediction. FRONTIERS IN ENERGY +RESEARCH 10 (2022) + +Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads +31 + +[35] A.A. Kashyap, S. Raviraj, A. Devarakonda, S.R. Nayak K, S. KV, S.J. +Bhat, Traffic flow prediction models–a review of deep learning techniques. +Cogent Engineering 9(1), 2010,510 (2022) +[36] Y. Hou, Z. Deng, H. Cui, Short-term traffic flow prediction with weather +conditions: based on deep learning algorithms and data fusion. Complex- +ity 2021 (2021) +[37] H. Shao, B.H. Soong, in 2016 IEEE region 10 conference (TENCON) +(IEEE, 2016), pp. 2986–2989 +[38] D.M. Ahmed, M.M. Hassan, R.J. Mstafa, A review on deep sequen- +tial models for forecasting time series data. Applied Computational +Intelligence and Soft Computing 2022 (2022) +[39] Q. Chen, W. Wang, X. Huang, H.n. Liang, Attention-based recurrent +neural network for traffic flow prediction. Journal of Internet Technology +21(3), 831–839 (2020) +[40] A. Parot, K. Michell, W.D. Kristjanpoller, Using artificial neural networks +to forecast exchange rate, including var-vecm residual analysis and pre- +diction linear combination. Intelligent Systems in Accounting, Finance +and Management 26(1), 3–15 (2019) +[41] X. Luo, D. Li, Y. Yang, S. Zhang, Spatiotemporal traffic flow prediction +with knn and lstm. Journal of Advanced Transportation 2019 (2019) +[42] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly +learning to align and translate. arXiv preprint arXiv:1409.0473 pp. 1–15 +(2014) +[43] D. Pavlyuk, Spatiotemporal cross-validation of urban traffic forecasting +models. Transportation research procedia 52, 179–186 (2021) +[44] RMTO. Road Maintenance and Transportation Organization(RMTO) +website traffic flow data in rural road of iran. https://141.ir/ (2022). +Accessed: 2022-09-04 + diff --git a/Y9E0T4oBgHgl3EQf3wL_/content/tmp_files/load_file.txt b/Y9E0T4oBgHgl3EQf3wL_/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c41f0ee9987fd680ad38319dc22f376085a91719 --- /dev/null +++ b/Y9E0T4oBgHgl3EQf3wL_/content/tmp_files/load_file.txt @@ -0,0 +1,1277 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf,len=1276 +page_content='Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads Elahe Sherafat1, Bilal Farooq1, Amir Hossein Karbasi2 and Seyedehsan Seyedabrishami3 1Laboratory of Innovations in Transportation, Toronto Metropolitan University, Toronto, ON, Canada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 2Department of Civil Engineering, McMaster University, Hamilton, ON, Canada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 3Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Contributing authors: esherafat@torontomu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='ca;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' bilal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='farooq@torontomu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='ca;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' karbaa3@mcmaster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='ca;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' seyedabrishami@modares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='ir;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Abstract Accurate traffic volume and speed prediction have a wide range of appli- cations in transportation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' It can result in useful and timely information for both travellers and transportation decision-makers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In this study, an Attention based Long Sort-Term Memory model (A-LSTM) is proposed to simultaneously predict traffic volume and speed in a critical rural road segmentation which connects Tehran to Chalus, the most tourist destination city in Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Moreover, this study compares the results of the A-LSTM model with the Long Short-Term Memory (LSTM) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Both models show acceptable performance in predicting speed and flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' However, the A-LSTM model outperforms the LSTM in 5 and 15-minute intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In contrast, there is no meaningful difference between the two models for the 30-minute time interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' By comparing the performance of the models based on different time horizons, the 15-minute hori- zon model outperforms the others by reaching the lowest Mean Square Error (MSE) loss of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0032, followed by the 30 and 5-minutes horizons with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='004 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0051, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In addition, this study compares the results of the models based on two transformations of temporal categorical input variables, one-hot or cyclic, for the 15-minute time 1 2 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The results demonstrate that both LSTM and A-LSTM with cyclic feature encoding outperform those with one-hot feature encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Keywords: Traffic state prediction, A-LSTM, deep learning, rural roads 1 Introduction Several major problems are associated with transportation networks, such as traffic congestion, road safety, and high travel time variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The develop- ment of Intelligent Transportation Systems (ITS) was aimed at solving these problems, operating as a vital part of traffic management and control [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' As a result of advancements in technology and the development of big data, Artificial Intelligence (AI) methods, particularly deep learning methods, have become an essential part of ITS for traffic management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' A practical applica- tion of AI is the prediction of short-term traffic patterns and speeds, which is the basis for modern traffic management [2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Short-term traffic flow and speed prediction allows traffic departments to gain accurate and timely information to intervene ahead of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, trav- ellers are able to set their departure time and plan their trip with increased reliability, which leads to alleviating congestion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Moreover, to improve traffic safety, short-term traffic flow prediction is of great social and economic impor- tance [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Therefore, traffic flow and speed prediction models improve safety and reduce congestion and its negative consequences, such as air pollution [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Due to the importance of traffic flow and speed prediction, many researchers have presented several models, such as statistical, machine learning, and deep learning models, to predict traffic characteristics with high accuracy [1, 3, 6–10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Some of these studies predict traffic flow [1, 11, 12] and others speed [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' There are a few studies that predict traffic flow and speed simultane- ously [2, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, there can be seen several gaps in terms of simultaneous prediction of traffic flow and speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' These studies have mostly predicted traffic flow and speed in freeways and urban networks [2, 12, 13] and only a few of them aim at rural roads [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' However, accurate prediction of traffic characteristics in some rural segmen- tations is important and challenging due to the following reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Firstly, the travel behaviour on these roads differs from that of urban roads and depends more on calendar variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' For example, congestion on rural roads deterio- rates during the holidays [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hence, the rural networks require specific traffic analysis and prediction of their own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The second reason is the traffic safety problem on these roads since they account for many accident fatalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' For instance, rural roads accounted for 54% of all fatalities in the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' in 2012, despite 19% of the population living in rural areas [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Thus, there is a need to develop models for accurate prediction of traffic flow and speed, specifically on rural roads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 3 To the best of the authors’ knowledge, no study has predicted both flow and speed on rural roads using a multivariate deep-learning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Therefore, this study aims to simultaneously predict traffic flow and speed on a rural highway to fill these gaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In this study, multivariate deep neural networks, established on Attention-Based Long Short-Term Memory (A-LSTM) and Long Short- Term Memory (LSTM) artificial neural networks, are presented to predict traffic flow and speed simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The time-series cross-validation tech- nique is deployed for training and validation of the models using the 5, 15, and 30 minutes time intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, the data analysis is conducted to investigate traffic behaviour in the rural segmentation of the case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' As a case study, we utilized the data from the Karaj-Chalus rural highway, a two-lane, two-way road connecting Tehran to Chalus in Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This rural high- way has recurrent issues, which make it essential to control the traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chalus is one of Iran’s most popular holiday destinations due to its pleasant weather and natural attractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This rural highway can become highly congested and even experiences blockage during the holidays as people from Tehran flock to Chalus [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This, in turn, deteriorates the air pollution problem and damages the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Another problem is road safety, as several sharp curves go through the rain forests and the narrowness and steep mountainous terrain, making the road potentially dangerous [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In 2016, there were 855 road crashes with 37 deaths on Karaj-Chalus rural highway [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hence, accurate traffic flow and speed prediction are essential to address these problems proactively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The main contributions of this study are as follows: • Developing a multi-output A-LSTM to simultaneously predict traffic flow and speed on a rural highway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' • Comparing the performance of A-LSTM and LSTM in predicting traffic flow and speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' • Investigating the optimal temporal aggregation level for the model and its effect on predictive performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' • Based on the optimal time interval, comparing the performance of two neural networks with the one-hot and cyclic transformation of time-series categorical input variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Section 2 reviews the previ- ous studies that deployed different methods to predict traffic flow and speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Section 3 explains the methodology;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' firstly, the preliminary notations are intro- duced in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The structure of the proposed A-LSTM is introduced in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2, and the time-series cross-validation method is discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In Section 4, the characteristics of the road segmentation, the dataset, and the extracted features deployed in the study are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Section 5 demonstrates numerical experiments and results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Finally, Section 6 presents the conclusions and suggestions for future studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 4 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 2 Literature Review Previous studies have predicted traffic flow and speed using a variety of approaches such as statistical [6–8], machine learning [9, 10, 22–26], and deep learning approaches [2, 12, 14–17, 27–32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Regarding statistical methods, Ahmed and Cook [6] first proposed an Auto-Regressive Integrated Moving Average (ARIMA) model to predict freeway short-term traffic flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Moreover, there were other variants of the ARIMA model which aimed to improve the performance of traffic flow prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' For example, considering the fact that the ARIMA model does not handle nonlinear traffic data, Van Der Voort et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [7] presented the KARIMA model that combined the Kohonen network and ARIMA to solve the shortcoming of the ARIMA model by improving short-term traffic flow prediction performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Williams and Hoel [8] predicted short-term traffic flow based on a seasonal ARIMA (SARIMA) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Statistical approaches utilize simple models with high computational com- plexity, making them suitable for smooth and small sample data [33, 34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' However, since traffic data contain nonlinear and stochastic properties, statis- tical models perform unacceptably and consequently make traffic prediction unreliable as a result [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In contrast, conventional machine learning methods are able to capture better complex and nonlinear patterns in traffic data than statistical models [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Concerning machine learning approaches, Support Vector Machine (SVM) and Support Vector Regression (SVR) models have been the most widely deployed in previous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Their results showed that SVM and SVR models outperformed statistical models [10, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' For example, Hong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [10] com- bined a genetic algorithm and SVR model to create a model predicting traffic flow which outperformed the SARIMA model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Moreover, Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [22] deployed a hybrid Particle Swarm Optimization (PSO)-SVR model for predicting traffic flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This model is capable of reducing model learning time by processing noisy data effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' They showed that the accuracy of the PSO-SVR model is higher than other models, such as SVM and ARIMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' with regard to traffic speed prediction, Wang and Shi [9] developed a hybrid model called C-WSVM for forecasting short-term traffic speed based on SVM, regression theory, and chaos-wavelet Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Their results illustrated that although there is no significant difference between the performance of the C-WSVM and SVM models, the C-WSVM model’s performance is better when the traffic states change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Generally, machine learning models showed better performance than statistical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In recent years, several studies have predicted traffic flow and speed based on deep learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' On the one hand, the volume of traffic data has increased due to the development of data collection technologies [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' On the other hand, deep learning methods have the potential for analyzing and fit- ting big data with complexity and nonlinearity [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This encouraged many researchers to apply deep learning methods for short-term traffic flow and speed prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 5 Due to the time-series nature of traffic flow and speed data, Recurrent Neural Networks (RNNs) have been widely used to predict traffic flow and speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' These networks benefit from temporal memory functions, which make them useful for dealing with time-series data [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Although RNNs struggle with gradient vanishing problems, there are variants of them that can solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Take LSTM and Gated Recurrent Units (GRU) neural networks as examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [37] utilized LSTM neural networks to predict traffic flow in freeway networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Their results show that the performance of the LSTM model is better than the SVR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Moreover, some studies improved LSTM models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' For instance, Ma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [12] presented a model with an upgraded LSTM to improve short-term urban road traffic flow prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' First, this model has done a time-series analysis on traffic flow data in order to create a reliable time-series [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Then traffic flow data were fed into the upgraded model based on LSTM and bidirectional LSTM neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The results of this study illustrated that the proposed model outperformed other models, such as the LSTM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Tran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [14] proposed a deep learning approach that utilizes an LSTM network with a hyper-parameter tuning in urban arterial roads to predict short-term traffic speeds in parallel multi-lane roads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' They [14] showed that the performance of the updated version of LSTM outperformed ARIMA, multi- layer perceptron (MLP), and Convolutional Neural Networks (CNNs) models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [39] applied an attention-based LSTM model to predict traf- fic flow in freeway and highway networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' They showed that this model could improve the accuracy of traffic flow prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [13] proposed an attention-based LSTM model in order to predict traffic speed in urban networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' They demonstrated that the attention-based LSTM model could improve the accuracy of traffic speed prediction compared with the LSTM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In addition, based on multi-task learning models, Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [2] presented a multitask learning model with GRU neural networks to predict traffic flow and speed simultaneously in a freeway network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Moreover, a multitask learn- ing method based on graph convolutional networks (GCNs) and GRU neural networks were applied by Buroni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [15] to predict traffic flow and speed simultaneously on the freeway and urban road networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The results of these studies illustrate that multi-task learning models have the potential to improve the accuracy of traffic flow and speed prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Although several studies applied different methods to predict traffic flow and speed, some key gaps exist in previous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' First, there are only a handful of studies that employed deep learning models to predict traffic flow and speed based on a multi-task learning framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The further point is that these studies have used either freeway or urban traffic data, and to the best of our knowledge, no study has simultaneously predicted flow and speed based on rural road data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In addition, it is important to apply traffic flow and speed prediction models on rural roads because they help solve safety and congestion issues that occur 6 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads on rural roads, especially during holidays [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' To fill these gaps, this study has employed neural network models based on LSTM and A-LSTM for multivariate prediction of traffic flow parameters, volume and average speed, on a rural highway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In this study, extracted 5-minute time interval data and 15 and 30-minute aggregated data have been deployed for feature extraction, data analysis, train- ing, and model evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In addition, this study compared the performance of simple LSTM and A-LSTM based on the three horizons and time-series cross-validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Furthermore, based on the best time interval, the performance of the neural network based on one-hot and cyclic feature encoding of the categorical variables is compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 3 Methodology Deep learning models are the most popular machine learning methods and have attracted researchers in industry and academia in the last decade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The reason is their potential for dealing with complex data with nonlinearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' RNNs are extensively deployed in traffic flow prediction due to their potential to capture the time-series nature of traffic data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In this study, we have developed our proposed multivariate A-LSTM to simultaneously predict traffic volume and speed in a rural road segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, we trained a simple LSTM as a baseline to investigate the promise of the proposed A-LSTM deep neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In this section, we first introduce the notation and define the problem in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Then the proposed A-LSTM structure and its mathematics are investigated in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The time-series cross-validation method used for model training and evaluation is explained in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The general framework of the study is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The raw data are preprocessed, and handcrafted explanatory features are added to the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In this stage, the temporal variables are defined using either one-hot or cyclic encoding mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The 5-minute interval data are aggregated into 15 and 30-minute interval datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' All three sequences are fed into both LSTM and A-LSTM to predict the volume and speed of the next time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, we deployed a time-series cross-validation method to split the sequences and model training and evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 Preliminaries and notation Yt (V, S) denotes the traffic state at the time step t, which is made up of the equivalent hourly volume (vehicle/hour) of vehicles passing a specific section of the road, V ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' and the average speed (kilometre/hour) of those vehicles, S, for the time interval t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' For i historical time intervals, the traffic state historical data Hist can be denoted as Hist = {Y(t−i+1), Y(t−i+2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=', Yt}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Our proposed network takes the volume and speed of five previous time steps, Hit = {Yt−5, Yt−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=', Yt−1} according to Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Vector Xt ∈ R N represents the feature vector for time t and includes features such as hour, Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 7 1 season, and being a holiday, as explained in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The dimension R differs based on the transformation method of temporal variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The network aims to predict the traffic features V and S while taking the historical flow data of previous time steps, Hit , and the input feature of the current time step, Xt, as the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 Attention-Based Long Short Term Memory (A-LSTM) Structure Generally, RNNs use building blocks at each time step that store hidden states, the memory of the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Using the memory, RNNs can keep track of traffic information and temporal dependencies over time and predict the future traffic state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Although, the simple RNN has the shortcoming of capturing long-term dependencies due to the vanishing gradient problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The LSTM variant pro- posed to address the vanishing gradient problem of the simple RNN [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' LSTM neural networks are widely used and have shown great promise to predict traf- fic flow and speed due to their potential to take the time-series nature of the traffic parameters into account [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' We deployed the LSTM module in the structure of our proposed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The LSTM has the potential to take the historical data and capture the time dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' It can memorize and store the information in the cell state that connects hidden units in the sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The cell state is updated in each building block using the forget, input, and output gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' During the learning process, the weight and bias parameters of these gates are updated to generate the traffic state in the next time step, as shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' These gates decide what new information should be added to the cell state, what needs to be deleted, and what the model will generate as the output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In other words, it has the ability to read, write, save and delete information on the cell state to best predict the traffic volume and speed in each time step based on the time series variables from previous ones and the input features from the current one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' To introduce our proposed model, we first explain the mathematics behind each gate in the LSTM building blocks 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Then, we discuss how the attention mechanism improves the performance of the vanilla LSTM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' When the cell state enters a building block unit, the forget gate decides whether to save or delete information from previous time steps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' that is to say, it selects the optimal time lag for the input sequences [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The forget gate takes current input xt, concatenation of Hit and Xt, and passes it through Equation 2 using the sigmoid function Equation 1 as is illustrated in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The output updates the cell state using Equation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' σ (t) = 1+ et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' (1) ft = σ (Wf [ht−1, xt]+ bf ), (2) 8 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 1: The study framework ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Raw ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='One-hot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='feature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='encoding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Datapre-processing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='5MinuteTime ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='15MinuteTime ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30Minute ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='intervaldata ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='intervaldata ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='interval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Apply ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Deep ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Learning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Algorithms ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Attentionbased ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Speed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='flow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Speedand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='flow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='prediction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='prediction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Comparingthe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='performanceoftwo ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='models ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='threetimeintervals ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Selectingthebest ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='interval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Cyclicfeature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='encoding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Apply ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTMand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='attentionbased ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='models ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Speedandflow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='prediction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Comparingthe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='performance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='twomodels ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='one-hot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='cyclic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='feature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='encodingAttention-LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Multivariate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Traffic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='State ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Prediction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Rural ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Roads ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 2: A building block for a single time step in the LSTM architecture, comprising input, forget, and output gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Then the writing gate uses sigmoid and hyperbolic tangent as activation functions and specific weights and biases (Wi, Bi & Wc, bc) to store new information in the cell state based on Equations 3, 4, 5, and Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' it = σ (Wi [ht−1, xt]+ bi), (3) C˜t = tanh (Wc [ht−1, xt]+ bc), (4) Ct = ft × Ct−1 + it × C˜t (5) The same concatenated input is passed through the sigmoid function, Equation 1 and parameters (Wo and bo) to create the hidden state of the current timestep t based on Equations 6 and 7, Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' ot = σ (wo [ht−1, xt]+ bo), (6) ht = ot × tanh (Ct) (7) The hidden state provided in this section will be the argument for comput- ing the alignment score in Equation 8 and the context vector in Equation 10 in the attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The attention mechanism introduced by Bahdanau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' [42] aimed at the fixed-length context vector problem in the RNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This restricts RNNs’ predictive ability when dealing with long time-series sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The attention mechanism could be integrated into any RNN to improve its performance, especially when dealing with long sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Simple RNNs and LSTM inherently have an encoding and decoding process to map the input sequence to the output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The encoder maps the input sequence tanh tanh10 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads to the context vector, and the decoder takes the context vector to produce the traffic flow parameters at time step t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' When the attention mechanism is added to the architecture, the encoder assigns weights to each time step so that the generated context vector is a more efficient input for the decoder to generate outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' These weights are tuned in the learning process so that the network pays more attention (assigns more weight) to the information in a longer sequence, which is important to predict current volume and speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=', we could see a specific pattern like existing a holiday just after a weekend in past sequences, and by deploying the attention layer, we can recall the pattern when it hap- pens in the current time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The computation process comprises three main computing steps: Alignment Scores, Weights, and Context vectors, Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 3: The structure of proposed A-LSTM deep neural network YLE R20 α Output layer E R2 Volume rtE R20 Speed HN E R20 H1 E R20 H2 E R20 T Sigmoid LSTM LSTM LSTM X1E R24 X2E R24 X3E R24 HiE R2x5 Hi2 E R 2xs Hi3E R 2xs Tanh12 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads t 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 Alignment Scores The alignment score, et,i, indicates how well the output Vt and St align with the input sequence elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' It is computed using the function a () of time step t, which takes the decoder output of the previous time step, ot−1, and the encoder hidden state, hi, as arguments in a feed-forward process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' et,i = a (ot−1, hi) (8) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 Weights Weights, αt,i, are obtained from passing alignment scores computed from the previous step through a softmax function, Equation 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The weights indicate where exactly the model should focus on the hidden state to better estimate the traffic state at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Figure 3 shows the α on the top of the hidden states, Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' α = softmax (et,i) (9) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 Context Vector Finally, the attention layer improves the model’s performance by using the context vectors, rt, instead of hidden states, Ht, to generate the output by the decoder, Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The context vector is computed as the weighted sum of all the hidden states over t, Equation 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' rt = L αt,ihi (10) i=1 This context vector is deployed to compute the final output of the LSTM layer using the attention mechanism, YˆL = {Vˆt, Sˆt}, using Equation 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yˆ = f (V × rt + bv) (11) The LSTM output would be represented as YˆL ∈ R20 and passes through the hyperbolic tangent function, Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Finally, two neurons of a dense layer will compute the normalized volume and speed using the sigmoid activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The attention mechanism incorporates into the LSTM architecture by mapping inputs to outputs in a forward direction during training, as dis- cussed in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' We deployed the ‘Adam’ optimizer and the ‘mean square error’ loss function to compile the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' For training the model, we chose a batch size of 128 based on a trial and error process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The total number of trainable parameters of the network is 4,463 parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' We found 100 as the number of epochs that best guarantee learning and avoid overfitting based on results in Section 5 and Figures 8a to 8f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' We trained and evaluated our proposed A-LSTM model, Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 and the vanilla LSTM model as a baseline to investigate the performance of the proposed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The split method, input variables type, and the sequences’ intervals are discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 13 For the input selection, we relied on data analysis results as well as the trial and error procedure during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Two representations of time-series variables were deployed as input variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In the first scenario, the cyclic transformation of time-series features is deployed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Whereas the second uses the one-hot representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' These features, along with five previous time steps of output features, shaped the total number of 34 and 45 input variables in the cyclic and one-hot transformation scenarios respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hence the number of input nodes and network structures differs based on the input dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 Time-Series Cross-Validation Unbiased and robust validation is essential for evaluating the performance of a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The cross-validation technique has demonstrated potential for tuning the hyper-parameters, estimating the performance of the models, and selecting the most generalized one [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' K-fold cross-validation assumes observations are independent of each other and that there is no correlation between them through time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' On the other hand, the time-series cross-validation method takes the tem- poral dependencies of records into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hence, we employed the time-series cross-validation technique in this study to evaluate the performance of the models in predicting the average speed and volume while taking into account their time-series nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Figure 4 illustrates three time-series cross-validation sets that separate training sets from validation and testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In this method, the origin of the validation-test sets rolls forward and moves the fixed length of it toward the end of the sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' During this procedure, the size of train sets increases, but the validation-test set size remains the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' For example, for the 15-minute interval dataset, as demonstrated in Table 1, the train sizes are 16,175, 32,348, and 48,521 for the split sets, while both validation and test sets are of the same size of 8,086 in all three splits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' That is to say, the percentage of the train set size increases from 64% in the first split to 75% in the last one for all intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 14 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 4: Time-series cross-validation for splitting the train and validation-test dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' volume train sets (blue), speed train sets (red), volume validation-test sets (orange), and speed validation-test sets (green), all for 15 minutes interval train test volume split 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 Volume 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 - 0 5000 10000 15000 20000 25000 30000 train valid/test Speed split 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='00 0 5000 1000015000 2000025000 30000 train test volume split 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 Volume 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 0 10000 20000 30000 40000 50000 train valid/test Speed split 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='75 Speed(km/h)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='00 0 10000 20000 30000 40000 50000 train test volume split 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 Volume 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 0 10000 20000 30000 40000 50000 60000 train valid/test Speed split 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 Speed(km/h)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 0 10000 20000 30000 40000 50000 60000 Set split train valid test train valid test train valid test ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Table 1: The sample size for time-series cross validation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Sample size ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Horizon (minutes) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='48091 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='24044 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='24044 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='16175 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='8086 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='8087 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='8118 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='4057 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='4057 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='96179 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='24044 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='24044 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='32348 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='8086 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='8087 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='16233 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='4057 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='4057 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='144267 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='24044 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='24044 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='48521 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='8086 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='8086 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='24348 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='4057 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='4057 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='16 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='4 Case Study This section first describes the rural road segment and its characteristics in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Then, the dataset and extracted features used as input variables are introduced in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 Data and road segment introduction The data deployed for training and evaluating the proposed models in this study are the 5-minute volume (vehicle/hour) and average speed (kilome- tre/hour) of all kinds of vehicles passing a critical1 segmentation on a rural road located in the north of Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Log-lasting blockage traffic state occurs in this segmentation during holidays and weekends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, the characteristics of the road segment lead to low resilience and ability to be recovered from the blockage state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Since 2010, the loop detectors in the rural network of the country have been collecting traffic data and reporting them online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Although the clean and prepossessed data are openly accessed for one-hour time intervals on the Road Maintenance and Transportation Organization (RMTO) website [44], The clean and preprocessed 5-minute time interval data are not available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Since in this study, we are interested in investigating the variation of traffic flow parameters within one hour, the 5-minute interval raw traffic data were obtained initially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The data include two years of traffic data, from the beginning of 2018 to the end of 2019, just before starting the influence of the Covid pandemic and imposed travel restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' After cleaning the raw data, the handcrafted features were added to the database, and aggregated data were prepared for 15 and 30 minutes intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The specific segmentation is located on Chalus road and connects Chalus to Tehran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Tehran is a polluted and crowded metropolis with 11,800 residents per square kilometre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' While, Chalus is the primary vacation destination city in the country that is located only 145 kilometres from Tehran, Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hence, during the holidays and weekends, a considerable population flocks to this two- way road that doesn’t have any physical barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This results in a long-lasting blockage condition that increases the travel time up to four times compared with free-flow travel time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This situation makes policymakers block one flow direction to dedicate both lanes to the reverse one by doubling the capacity to alleviate the blockage state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This policy, in turn, leads to safety hazards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' These uncertainties make accurate traffic flow prediction of this rural segmentation the most challenging among 3,000 road segmentations in the rural road network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 Handcrafted feature extraction This study utilizes less than one-hour intervals, and explanatory features were added to the raw database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Input features include time-related (month, day, 1A critical road segmentation refers to long-lasting traffic congestion conditions existence in this segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 17 Spring-summer-fall-winter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' is used as both a 1-288;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' specify which 5-minute interval in a day;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 1 if the interval is between 7 AM and 9 PM, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' season, and hour), calendar (day of week, holiday), weather, and flow-related features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The features are introduced in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Table 2: Explanatory features introduction DateTime Jalali and Lunar DateTime is added to extract time-related features, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' holidays from the available Gregorian DateTime in the raw dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Day 1-31;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' is used as both a one-hot and cyclic variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Day-of-week Monday to Sunday;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' is used as both a one-hot and cyclic variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hour 1-24;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' is used as both a one-hot and cyclic variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Day-night 1 if the interval is placed in the daytime, 0 otherwise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' based on sunset and sunrise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Weather Rainy-sunny-snowy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' a one hot variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Average-speed- reverse The normalized average speed (kilome- tre/hour) in the reverse direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' One-way 1 if the vehicles are not allowed to use the road for dedicating both lanes to the other direc- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Traffic flow features of the opposite direction are extracted from the data fusion of detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Volume and speed for the Chalus-Tehran direction are set as target variables (due to less percentage of missing values), and those features for the opposite direction (Tehran-Chalus) are used as input variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Table 3 shows the correlation between target variables and the volume and speed of the opposite direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, since to alleviate the blockage in some cases, the road facilitates the traffic only in one direction, the two variables one-way and double capacity are added to the dataset, as explained in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The box plots of Figure 6 illustrate how the target variable, volume, differs based on 1 if the vehicles can ride in both lanes, and the opposite direction is not allowed to use the road, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 18 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 5: The network demonstration and position of the detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The detector is located in the path from Chalus to Tehran, just after the Kandovan tunnel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The volume and average speed data of the reverse direction (from Tehran to Chalus) have been used as input variables for the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' categories of each explanatory variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The analysis is extensively discussed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 5 Results This section first illustrates the data analysis results and interprets them in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Then the results of the A-LSTM and LSTM models during train- ing and evaluation for both input scenarios and different time horizons are illustrated and interpreted in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 Data Analysis Result In this study, data analysis is conducted to select the significant input vari- ables to be fed into the neural network model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, deployed data analysis techniques address the black-box nature of neural networks by providing inter- pretable results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' To this end, Correlation analysis between numeric inputs and target variables, volume and average speed is conducted as the results are illustrated in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, based on Figure 6, box plots are deployed to investigate the relationship between categorical input variables and the continuous output volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' For each categorical variable, the distribution of volume is analyzed using sets of side-by-side box plots for every level of each categorical variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The box plots in Figure 6 demonstrate the distribution of volume (vehicle/hour) and take variables Jalali day, month, hour, 7-21, day-night, season, weather, 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='5km Sea Chalus Amol Kuh-eTakht- eSoleyman Distance:149Km Detector183170 position:36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1°N,51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3°E travel time in light traffic state: 3hrs and 15 minutes Kah-eD OParNatlonal 5,609m Nazarabad Karaj SorkhehHesa LChitga Tehran Shahr-eReyAttention-LSTM for Multivariate Traffic State Prediction on Rural Roads 19 Table 3: Correlations between volume and speed for the target direction (Chalus-Tehran) and the reverse direction (Tehran-Chalus) Volume Speed Volume reverse Speed reverse Volume 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 Speed 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='12 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='34 Volume reverse 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='11 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='15 Speed reverse 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='15 1 holiday, and day-of-week as a horizontal variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The length and position of boxes of different categories for each categorical variable explain the difference in target variable distribution for each level of explenatory variables and the amount of explanation they provide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Based on Figure 6, considering Jalali day variable, there can not be noticed much of differences in days of a Jalali month, so the input variable Jalali day is insignificant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Jalali month plot, on the other hand, demonstrates a higher amount of traffic volume in the first month and a continuous increase till the peak in months 4-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This increase in the volume in these two periods is rooted in the new year holiday, which is 13 consecutive holidays, and the summer holiday, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The hour box plot shows the peak hour is at 4 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=', and the smooth curve demonstrates the meaningful and gradual changes in traffic during the day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The 7-21 and day-night variables’ box plots also show tangible differences that these two variables can make;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' plots show a higher average and variation of traffic volume in a day than at night.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Regarding the day-of-week box plot, Friday and Saturday are experiencing the highest amount of traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This result is consistent with expectations since Thursdays and Fridays are the weekends in Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' So it is expected to see a higher amount of traffic volume on Fridays and Saturdays when travellers are returning from their vacation to Tehran and Wednesdays and Thursdays in the opposite direction for travellers flocking toward their recreational destination (Chalus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The holiday ’s plot shows that weekends experience a higher average volume than calendar holidays and is found to be an informative variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Although, for weather data, interpretation is challenging since it is expected that considering the danger that snow causes on any road with sharp curves and the hazard of avalanches, the average volume for the snow level category is less than others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In contrast, here, the reverse came true based on the plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Although the analysis results are found incompatible with the common expectation, the variable weather is considered significant during the modelling process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Finally, variables in Table 2 are deployed in the final model training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 Neural Network Results for Predicting Traffic Flow Characteristics This section demonstrates the results of multivariate traffic volume and aver- age speed prediction using the LSTM and A-LSTM deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Moreover, the impact of different time horizons is investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Finally,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' there 20 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 30 Table 4: Train,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' valid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' and test set loss for LSTM and A-LSTM after 100 epochs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='MSE loss × 1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Average ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='all ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Average ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='all ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='will be a comparison between the performance of models based on cyclic and categorical time-series variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' As mentioned earlier in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3, we conducted the training for three different split sets for unbiased validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' We trained A-LSTM and LSTm models over all the horizons- 5, 15, and 30 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The mean square error loss function after 100 epochs is reported in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The results show that A-LSTM outperforms LSTM concerning the test- ing sets loss function for the longer sequences, 5 and 15 minutes intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In contrast, for the validation sets of these two intervals, LSTM’s performance is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Regarding the 30-minute horizon, there is no meaningful difference between the two architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' However, the difference between the models’ performance increases as the time horizon decreases toward the 5-minute inter- val data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The reason is that the attention mechanism promises to perform better and mitigate the weakness of recurrent neural networks for dealing with longer sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' By comparing the performance of the models considering the time intervals of the input sequences, there can be seen that the 15-minute accounts for the minimum MSE with the value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='003 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0032 for the A-LSTM and LSTM models, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Figure 7 shows the 5-minute interval experiences more noise than other horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' On the other hand, the 30-minute interval diagram experiences the minimum noise but loses more information within each time step compared with other horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hence the 15-minute interval shows the best performance since neither has the high amount of noise as the 5-minute horizon has nor is too wide to lose a portion of the information as the 30- minute horizon is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The prediction and actual value diagrams follow the same trend through time in all three horizons for the A-LSTM model, Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This indicates the overall acceptable performance of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Figure 8 demonstrates the MSE loss function decrease for 100 epochs during training for three different training and validation sets splits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' According to the diagrams, each split shows a specific and unique behaviour regarding the Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 21 decrease in loss values of the validation and training sets during the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' That is to say, the splits coming from the time-series cross-validation method bring a significant difference in the evaluation of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hence, the method results in an unbiased evaluation and has increased the model’s generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' All the results above were related to the models that have taken cyclic time-series variables as inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Therefore, to investigate the impact of cyclic variables, this study also compares the results of the models based on both one-hot and cyclic time-series variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Table 5 compares results of models based on either one-hot or cyclic trans- formation of the temporal input variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' According to the average row, both LSTM and A-LSTM models perform better using cyclic variables for the test- ing set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' However, A-LSTM experiences more improvement when using cyclic variables than the LSTM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The average MSE loss function for the test set decreases from 33 to 32, while the same amount reaches 30 for the A-LSTM model using cyclic variables instead of one-hot ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Table 5: Train,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' valid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' and test set loss for LSTM and A-LSTM after 100 epochs for the cyclic and one-hot transformation of input variables for 15-minute horizon ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='MSE loss × 1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Average ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Average ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Figure 9 demonstrates scatter plots that compare observed and calculated traffic parameters volume and average speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Both models’ diagrams are based on the third split of the A-LSTM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' However, models in Figures 9a and 9b have taken cyclic variables as inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In contrast, those in Figures 9c and 9d are based on one-hot categorical variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' According to the figures, although both scatter plots are aligned with the 45-degree line, cyclic variable-based models fit and perform better than one-hot variables-based ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 22 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 6: The box plots of predictors’ distribution with respect to volume predicted variable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volumereverse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='10111213141516171819202122232425262728293031 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='dayj160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volumerevers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='91011121314151617181920212223 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='hour ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='sun ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='rain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='snow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='weather ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='09 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Mon ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Tues ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Weds ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Thurs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Fri ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Sat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Sun ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='day_of_week160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='* ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='09 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='monthj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='2100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='rever ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='lumer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='7-21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='rever ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='lumer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='day-night160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volumereverse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='notholiday ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='weekend ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='holiday ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='holiday ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='HolidayAttention-LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Multivariate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Traffic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='State ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Prediction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Rural ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Roads ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(a) Volume prediction for 5-minute time (b) Average speed prediction for 5-minute interval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(c) Volume prediction for 15-minute time interval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(e) Volume prediction for 30-minute time interval time interval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(d) Average speed prediction for 15-minute time interval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(f) Average speed prediction for 30-minute time interval Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 7: The plots of volume and average speed actual observed values (orange) versus the predicted values (blue) by the A-LSTM model for the third time-series cross-validation split on the testing dataset of the 5, 15, and 30-minute traffic flow dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='predict ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='predict ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='predict ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volume ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='predict ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='speed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='ground ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='truth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volume ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='grounf ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='truth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='speed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='average ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='speed(Km/hour) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='lume(veh/hour) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='interval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='interval350 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='predictofattentionbased ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTMmode ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='predict ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volume ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='qround ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='truth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volume ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(uno) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='lume( ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80predictofattentionbased ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='mode ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='predict ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volume ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='ground ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='truth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volume ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='volume(veh/hour) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='timeintervapredictofattentionbasedLSTMmode ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='predict ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='speed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='grounf ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='truth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='speed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Lnou ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Km ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='speed(I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='rage: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='3040 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='80predict ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='attentionpaseo ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='SIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Imode ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='speed(Km/hour) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='average ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='predict ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='speed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='grounf ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='truth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='speed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='4024 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Attention-LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Multivariate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Traffic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='State ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Prediction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Rural ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Roads ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(a) Attention model set 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(b) LSTM model set 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(c) Attention model set 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(d) LSTM model set 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='(e) Attention model-set 3 (f) LSTM model-set 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 8: Mean square error loss decrease during learning the LSTM (right side) and A-LSTM (left side) for time-series cross-validation sets train & valid MSE during training 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0200 train loss attention model validation loss attention model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0175 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0100 ean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0025 20 40 60 80 100 epochtrain & valid MsE during training train loss LSTM model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='030 validation loss LSTM model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='025 S5O1 J 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='020 DS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='015 mean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='005 0 20 40 60 80 100 epochtrain & valid MSE during training train & valid MSE during training train loss attention model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='012 train loss LSTM model validation loss attention model validation loss LSTM model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='010 square error loss error 800°0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='008 mean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='004 0 20 40 60 80 100 0 20 40 60 80 100 epoch epochtrain & valid MSE during training train & valid MSE during training train loss attention model train loss LSTM model validation loss attention model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='012 validation loss LSTM model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='010 loss 800°0 error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='006 mean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='004 0 20 40 60 80 100 0 20 40 60 80 100 epoch epochAttention-LSTM for Multivariate Traffic State Prediction on Rural Roads 25 (a) Volume scatter plot for A-LSTM using cyclic variables (c) Volume scatter plot for A-LSTM using one-hot categorical variables (b) Average speed scatter plot for A-LSTM using cyclic variables (d) Average speed scatter plot for A- LSTM using one-hot categorical variables Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 9: The predicted versus true value for Volume (left side) and Average Speed (right side) for the third split of the A-LSTM model based on cyclic variables (on the top), and one-hot categorical variables (in the bottom) 300 wnJOA 250 truth 200 punoub 150 rget 100 50 0 - 0 50 100 150 200 250 predict volume60 50 ads 40 30 20 10 0 20 30 40 50 60 predict speed350 300 aw 0A 250 200 pu 150 a6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 100 50 D 0 50 100 150 200 250 predict volume80 70 60 trutr 50 pun 40 30 20 10 0 10 20 OE 40 50 60 predict speed26 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 6 Conclusion Prediction of traffic flow parameters plays a vital role in Transportation Engi- neering and allows decision-makers to control and manage traffic in different transportation networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' On the other hand, traffic flow and speed prediction is an efficient tool that helps to reduce many traffic problems such as conges- tion and consequently other related problems such as air pollution and traffic safety issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This paper aims to simultaneously predict traffic flow and speed on a rural road in Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The prediction of traffic flow and speed in this rural segmentation is crucial due to its unique characteristics, such as mountainous and dangerous routes and long-lasting congestion situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' This study aggre- gated 5-minute interval traffic data into 15 and 30-minute ones and deployed them for multivariate prediction of traffic flow and average speed using the LSTM and AB-LSMT models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Generally, the results show the satisfying performance of both LSTM and A-LSTM for multivariate prediction of time-series traffic parameters, speed and volume, with a high level of nonlinearity and time dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Moreover, the results show that based on the test dataset, the performance of A-LSTM is better than LSTM in 5 and 15-minute horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' However, in the 30-minute time interval, there is no magnitude difference between the two deep learning models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' It is worth mentioning that in the 5-minute time interval, the difference between the two models is increased, and the rationale reason is that the attention mechanism has the potential to improve performance and alleviate recurrent neural networks’ weaknesses for dealing with longer sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Based on time interval comparison, the 15-minute horizon-based model performs best regarding two deep learning models’ results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' It can be realized that the 15-minute time interval performs better than the 5 and 30-minute horizons because it has less noise than the 5-minute interval and, simultaneously, contains more information than the 30-minute interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Finally, the study compares the performance of models based on two transformations of time-series input variables, cyclic and one-hot encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' According to the results, models with cyclic variables outperform models with one-hot variables encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' In addition, for future studies, multivariate traffic parameter prediction of parallel paths using data from detectors in those segments and graph-based deep neural networks is recommended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Besides, the Spatiotemporal dependen- cies can be investigated using multiple detectors in one road.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Future studies can work on the performance of LSTM and A-LSTM in other transportation networks, such as freeways and urban roads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Moreover, the different time inter- val comparison can be investigated in other networks, such as highways and freeways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 27 Data Availability Statement The traffic data from around 3,000 detectors on rural roads in Iran can be found open access on the Road Maintenance and Transportation Organiza- tion (RMTO) website [44] for one-hour time intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The open-access data include volume and average speed for each detector from 2010, as well as some extracted features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' RMTO has not open-accessed the 5-minute data that were used in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' The 5-minute raw data in 2018 came from detectors 183120 and 183170, which are located in opposite directions at the same station.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 28 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads References [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Ren, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chai, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Ji, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Cheng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Gao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhang, Short-term traffic flow prediction: A method of combined deep learnings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Journal of Advanced Transportation 2021 (2021) [2] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Deng, A multitask learning model for traffic flow and speed forecasting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' IEEE Access 8, 80,707–80,715 (2020) [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chai, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Ren, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Xu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Meng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Teng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Gao, A multifeature fusion short-term traffic flow prediction model based on deep learnings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Journal of Advanced Transportation 2022 (2022) [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Qin, A short-term traffic flow reliability prediction method considering traffic safety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Mathematical Problems in Engineering 2020 (2020) [5] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Alajali, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wen, in 2018 IEEE SmartWorld, Ubiquitous Intel- ligence & Computing, Advanced & Trusted Computing, Scalable Comput- ing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBD- Com/IOP/SCI) (IEEE, 2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 812–820 [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Ahmed, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Cook, Analysis of freeway traffic time-series data by using Box-Jenkins techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 722 (1979) [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Van Der Voort, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Dougherty, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Watson, Combining kohonen maps with arima time series models to forecast traffic flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Transportation Research Part C: Emerging Technologies 4(5), 307–318 (1996) [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Williams, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hoel, Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Journal of transportation engineering 129(6), 664–672 (2003) [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Shi, Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Transportation Research Part C: Emerging Technologies 27, 219–232 (2013) [10] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Dong, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zheng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wei, Hybrid evolutionary algo- rithms in a svr traffic flow forecasting model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Applied Mathematics and Computation 217(15), 6733–6747 (2011) [11] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zheng, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Lin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Feng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chen, A hybrid deep learning model with attention-based conv-lstm networks for short-term traffic flow prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' IEEE Transactions on Intelligent Transportation Systems 22(11), 6910– 6920 (2020) Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 29 [12] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Ma, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Dai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhou, Short-term traffic flow prediction for urban road sections based on time series analysis and lstm_bilstm method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' IEEE Transactions on Intelligent Transportation Systems (2021) [13] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Pian, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chen, A combined deep learning method with attention-based lstm model for short-term traffic speed forecasting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Journal of Advanced Transportation 2020 (2020) [14] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Tran, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Fang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hoang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wang, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Vu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Ho, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Le, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chen, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=', Short-term traffic speed forecasting model for a parallel multi-lane arterial road using gps-monitored data based on deep learning approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Sustainability 14(10), 6351 (2022) [15] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Buroni, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Lebichot, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Bontempi, Ast-mtl: An attention-based multi- task learning strategy for traffic forecasting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' IEEE access 9, 77,359–77,370 (2021) [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Rasaizadi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Seyedabrishami, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Saniee Abadeh, Short-term predic- tion of traffic state for a rural road applying ensemble learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Journal of Advanced Transportation 2021 (2021) [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Rasaizadi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Sherafat, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Seyedabrishami, Short-term prediction of traffic state: Statistical approach versus machine learning approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Scientia Iranica 29(3), 1095–1106 (2022) [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Abdel-Rahim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Dixon, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Bacon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Gonzalez, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=', Mea- sures to alleviate congestion at rural intersections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=', Idaho.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Transportation Department (2015) [19] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Godavarthy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Russell, High-risk rural road safety study and determining the crash-reduction factors for high-risk rural-road usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Journal of transportation technologies 6(1), 1–8 (2016) [20] IRNA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chalus, unique perspective of beautiful road to north- ern iran (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' URL https://en.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='irna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='ir/news/83576230/ Chalus-unique-perspective-of-beautiful-road-to-northern-Iran [21] IRNA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chalus road is a busy scenic drive in iran (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='dangerousroads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='org/asia/iran/328-chalus-road-iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='html [22] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wang, in 2015 IEEE 21st International Con- ference on Parallel and Distributed Systems (ICPADS) (IEEE, 2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 553–561 [23] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Xu, Application on traffic flow prediction of machine learning in intelligent transportation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Neural Computing and Applications 33(2), 613–624 (2021) 30 Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads [24] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Qi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=', Short-term traffic flow prediction based on a hybrid optimization algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Applied Mathematical Modelling 102, 385–404 (2022) [25] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chen, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Cao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Jin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yu, Short-term traffic speed prediction for an urban corridor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Computer-Aided Civil and Infrastructure Engineering 32(2), 154–169 (2017) [26] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Toan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Truong, Support vector machine for short-term traf- fic flow prediction and improvement of its model training using nearest neighbor approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Transportation research record 2675(4), 362–373 (2021) [27] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Peng, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yang, Mf-cnn: traffic flow prediction using convolutional neural network and multi-features fusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' IEICE TRANSACTIONS on Information and Systems 102(8), 1526–1536 (2019) [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Ren, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Li, in Proceedings of the 7th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 32–41 [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Karbasi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Sherafat, Short-term prediction of traffic flow based on gated recurrent unit neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' National Conference on New Studies and Findings in the Field of Civil Engineering, Architecture and Urban Planning in Iran (2021) [30] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Polson, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Sokolov, Deep learning for short-term traffic flow pre- diction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Transportation Research Part C: Emerging Technologies 79, 1–17 (2017) [31] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Tan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Qin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Ran, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Jiang, A hybrid deep learning based traffic flow prediction method and its understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Transportation Research Part C: Emerging Technologies 90, 166–180 (2018) [32] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Rempe, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Franeck, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Bogenberger, On the estimation of traffic speeds with deep convolutional neural networks given probe data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Transportation research part C: emerging technologies 134, 103,448 (2022) [33] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Shen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Qi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yin, Deep learning on traffic prediction: Methods, analysis and future directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' IEEE Transactions on Intelligent Transportation Systems (2021) [34] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Kang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Peng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Jiang, A pagerank self- attention network for traffic flow prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' FRONTIERS IN ENERGY RESEARCH 10 (2022) Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads 31 [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Kashyap, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Raviraj, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Devarakonda, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Nayak K, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' KV, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Bhat, Traffic flow prediction models–a review of deep learning techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Cogent Engineering 9(1), 2010,510 (2022) [36] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Deng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Cui, Short-term traffic flow prediction with weather conditions: based on deep learning algorithms and data fusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Complex- ity 2021 (2021) [37] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Shao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Soong, in 2016 IEEE region 10 conference (TENCON) (IEEE, 2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 2986–2989 [38] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Ahmed, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Hassan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Mstafa, A review on deep sequen- tial models for forecasting time series data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Applied Computational Intelligence and Soft Computing 2022 (2022) [39] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Chen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Liang, Attention-based recurrent neural network for traffic flow prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Journal of Internet Technology 21(3), 831–839 (2020) [40] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Parot, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Michell, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Kristjanpoller, Using artificial neural networks to forecast exchange rate, including var-vecm residual analysis and pre- diction linear combination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Intelligent Systems in Accounting, Finance and Management 26(1), 3–15 (2019) [41] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Luo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Zhang, Spatiotemporal traffic flow prediction with knn and lstm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Journal of Advanced Transportation 2019 (2019) [42] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Bahdanau, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Cho, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Bengio, Neural machine translation by jointly learning to align and translate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' arXiv preprint arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='0473 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' 1–15 (2014) [43] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Pavlyuk, Spatiotemporal cross-validation of urban traffic forecasting models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Transportation research procedia 52, 179–186 (2021) [44] RMTO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Road Maintenance and Transportation Organization(RMTO) website traffic flow data in rural road of iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' https://141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content='ir/ (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} +page_content=' Accessed: 2022-09-04' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Y9E0T4oBgHgl3EQf3wL_/content/2301.02731v1.pdf'} diff --git a/aNE5T4oBgHgl3EQfDg77/content/2301.05407v1.pdf b/aNE5T4oBgHgl3EQfDg77/content/2301.05407v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4bdc45043f2fcd76097cff31a64d96c9efb64798 --- /dev/null +++ b/aNE5T4oBgHgl3EQfDg77/content/2301.05407v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3e6551e33769b4d61c49f666e1e944be4c4bf12e2b022b3e4712e9bc25a56491 +size 550050 diff --git a/aNE5T4oBgHgl3EQfDg77/vector_store/index.faiss b/aNE5T4oBgHgl3EQfDg77/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..5ef87839cdeb873d7d89dfcd492d15677f737897 --- /dev/null +++ b/aNE5T4oBgHgl3EQfDg77/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ba4ac403b56d73fb6720c5114fca248817f0dc923a3429a986507e9831f86b83 +size 7536685 diff --git a/aNE5T4oBgHgl3EQfDg77/vector_store/index.pkl b/aNE5T4oBgHgl3EQfDg77/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..92a3107e0e877d62e4fc5b6015b4bb254a9e8d69 --- /dev/null +++ b/aNE5T4oBgHgl3EQfDg77/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0327cf1f416b578e293e590196eadabd773efac345287dd29a493c0dfea3329e +size 250683 diff --git a/atAyT4oBgHgl3EQfW_e5/content/tmp_files/2301.00175v1.pdf.txt b/atAyT4oBgHgl3EQfW_e5/content/tmp_files/2301.00175v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1a674b8567772406d5b6674909eb1484c11259b7 --- /dev/null +++ b/atAyT4oBgHgl3EQfW_e5/content/tmp_files/2301.00175v1.pdf.txt @@ -0,0 +1,4831 @@ +arXiv:2301.00175v1 [math.CO] 31 Dec 2022 +BOUNDED LITTLEWOOD IDENTITY RELATED TO ALTERNATING +SIGN MATRICES +ILSE FISCHER +Abstract. An identity that is reminiscent of the Littlewood identity plays a fundamen- +tal role in recent proofs of the facts that alternating sign triangles are equinumerous with +totally symmetric self-complementary plane partitions and that alternating sign trapezoids +are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We establish +a bounded version of a generalization of this identity. Further, we provide combinatorial +interpretations of both sides of the identity. +The ultimate goal would be to construct a +combinatorial proof of this identity (possibly via an appropriate variant of the Robinson- +Schensted-Knuth correspondence) and its unbounded version as this would improve the un- +derstanding of the relation between alternating sign trapezoids and plane partition objects. +1. Introduction +Littlewood’s identity reads as +(1.1) +∑ +λ +sλ(X1,... ,Xn) = +n +∏ +i=1 +1 +1 − Xi +∏ +1≤i σ(j). Moreover, S denotes the complement of S in {1,2,... ,n} ∖ {k}. +Comparing with (2.7), we multiply by (Xk(1+Xk) +Q+Xk +) +l +and take the sum over l. +∑ +σ,S +(−1)I(σ)+∣S∣ ∏ +i∈S +X−σ(i)+m+n +i +(1 + Xi)m+1(Q + Xi)σ(i)−m−1(Xi + r + Q)n−1−σ(i) +× ∏ +i∈S +Xσ(i) +i +(1 + Xi)σ(i)(Q + rXi + QXi)n−1−σ(i) +m +∑ +l=0 +(Xk(1 + Xk) +Q + Xk +) +l +∏ +i∈S +(Xi(1 + Xi) +Q + Xi +) +l +. + +8 +ILSE FISCHER +We evaluate the sum and rearrange some terms. +∑ +S +(−1)∣S∣1 − (Xk(1+Xk) +Q+Xk +) +m+1 +∏i∈S (Xi(1+Xi) +Q+Xi ) +m+1 +1 − Xk(1+Xk) +Q+Xk +∏i∈S +Xi(1+Xi) +Q+Xi +× ∏ +i∈S +Xm+n−1 +i +(1 + Xi)m+1(Q + Xi)−m(Xi + r + Q)n−2 ∏ +i∈S +Xi(1 + Xi)(Q + rXi + QXi)n−2 +× ∑ +σ +(−1)I(σ) ∏ +i∈S +(QX−1 +i )σ(i)−1(1 + QX−1 +i )σ(i)−1(Q + rQX−1 +i ++ Q2X−1 +i )−σ(i)+1 +× ∏ +i∈S +Xσ(i)−1 +i +(1 + Xi)σ(i)−1(Q + rXi + QXi)−σ(i)+1 +The inner sum is a Vandermonde determinant, which we evaluate. We obtain +∑ +S +(−1)∣S∣1 − (Xk(1+Xk) +Q+Xk +) +m+1 +∏i∈S (Xi(1+Xi) +Q+Xi ) +m+1 +1 − Xk(1+Xk) +Q+Xk +∏i∈S +Xi(1+Xi) +Q+Xi +× ∏ +i∈S +Xm+n−1 +i +(1 + Xi)m+1(Q + Xi)−m(Xi + r + Q)n−2 ∏ +i∈S +Xi(1 + Xi)(Q + rXi + QXi)n−2 +× +∏ +1≤i j. +Now we apply the following variant of RSK, which transforms a lexicographically ordered +two-line array such that no upper element is smaller than the corresponding lower element +into a semistandard Young tableau. +● As usual, we work through the columns of the two-line array from left to right. +● Suppose (j +i ), i ≤ j, is our current column. We use the usual RSK algorithm to insert +i in to the current tableau. +● If i < j, we additionally place j into the tableau as follows: Suppose that the insertion +of i ends with adding an entry to row r, then we add j to row r + 1 in the leftmost +column where there is no entry so far. +Example A.1. To give an example, observe that the symmetric matrix +A = +⎛ +⎜⎜⎜ +⎝ +1 +0 +2 +1 +0 +0 +1 +4 +2 +1 +2 +0 +1 +4 +0 +1 +⎞ +⎟⎟⎟ +⎠ + +36 +ILSE FISCHER +is equivalent to the following two-line array +( 1 +3 +3 +3 +3 +3 +4 +4 +4 +4 +4 +4 +1 +1 +1 +2 +3 +3 +1 +2 +2 +2 +2 +4 ) +and that the algorithm results in the following semistandard Young tableau. +1 +1 +1 +1 +2 +2 +2 +2 +4 +2 +3 +3 +3 +3 +4 +4 +3 +4 +4 +4 +Well-definedness of the algorithm. We argue that the resulting tableau is always a semis- +tandard Young tableau. For this, we need an observation that can be deduced from [Sta99, +Lemma 7.11.2 (b)], which says that if we insert a weakly increasing sequence of positive inte- +gers i1 ≤ i2 ≤ ... ≤ ir from left to right into a semistandard Young tableau, then the “insertion +path” of an earlier element lies strictly to the left of a later element. Moreover, for p < q, the +insertion path of ip ends in a row below and to the left of the end of the insertion path of iq, +or in the same row to the left of the end of the insertion path of iq. This implies that if the +ik’s are the bottom elements of the columns with top element j in the two line array, then, +if the insertion path of an ik with ik < j ends in row r, the elements in row 1,2,... ,r are in +{1,2,... ,j − 1}. +We show by induction on the number of elements in the tableau that our algorithm always +leads to a semistandard Young tableau. Now, if we insert the element i of the column (j +i) +using the classical RSK algorithm into the current semistandard Young tableau, then we +obtain another semistandard Young tableau, see [Sta99, Lemma 7.11.3]. Placing the top +element j in case j > i into the next row will also not destroy the columnstrictness as the +elements above the row of j are in {1,2,... ,j − 1}, as discussed in the previous paragraph. +Remark A.2. Note that from the proof of well-definedness it follows that we may also add +all top j’s at once after we have inserted the bottom entries of columns that have j’s as top +entries in our algorithm: Consider the skew shape λ/µ where µ is the shape of the tableau +that we had before the insertion of all these bottom entries and λ is the shape of the tableau +we obtain after the insertion (but not yet adding the j’s from the top row of the two-line +array) except that we exclude in the latter tableau all j’s that come from the bottom of the +two-line array. Now, if there are c cells in row r of the skew shape then we add c j’s in row +r + 1 to the semistandard Young tableaux with the bottom entries inserted, now including +also those that come from columns (j +j). This is because the cells of the skew shape are added +to the tableau in the course of insertion from bottom to top and within a row from left to +right. +Reverse algorithm. We construct the inverse algorithm inductively, where the induction +is with respect to the largest element in the tableau. Suppose n is the largest element in the +semistandard Young tableau, then we want to recover the part of the two-line array that has +n in the top row (which is an ending section of the array). Suppose +( n +n +... +n +i1 +i2 +... +is ) + +LITTLEWOOD IDENTITY +37 +is this section, which implies i1 ≤ i2 ≤ ... ≤ is, and let r be maximal with ir < n so that +ir+1 = ir+2 = ... = is = n. Now, from the algorithm it follows that s − r is just the number +n’s in the top row of the tableau and we can delete these elements. Again it follows from +[Sta99, Lemma 7.11.2 (b)] that we need to determine the number u of n’s in the second row, +remove them, and the apply the inverse bumping algorithm to the last u element in the first +row, from right to left (which means that we just remove them and put them in the bottom +row of the two-line array). We continue by counting (and removing) the n’s in the third row, +and, if v is this number, apply the inverse bumping to the last v elements in the second row, +from right to left. We work through the rows from top to bottom in this way. +Finally, we discover that this algorithm is just another description of the classical bijection. +Proposition A.3. The algorithm just described establishes the same bijection between sym- +metric n × n matrices A with non-negative integer entries and semistandard Young tableaux +with entries in {1,2,... ,n} as the classical one. +Sketch of proof. The proof is by induction with respect to n. For n = 1, there is nothing to +prove since the two algorithms coincide in this case. +We perform the step from n−1 to n. We can assume an,n = 0 since increasing an,n has the +same effect in both algorithms as in both cases we just add an,n columns (n +n) at the end of +the two-line arrays and apply the same procedure to these columns, in both cases at the end +of the algorithm. +Suppose B is the restriction of A to the first n − 1 rows and the first n − 1 columns. By +the induction hypothesis, we know that B is transformed into the same semistandard Young +tableau P under both algorithms. Moreover, let a be the two-line array that corresponds to +A in the classical algorithm and a′ be the initial section that disregards all columns with an +n in the top row. Clearly, we can obtain P also by applying RSK to the bottom row of a′ and +then deleting all n’s because the two-line array b that corresponds to B under the classical +algorithm is obtained from a′ by deleting all columns that have an n in the bottom row and +the n’s will never bump an element, but at most be bumped in final steps of insertions. Let +Q denote the semistandard Young tableau where the n’s are kept (i.e., what we obtain after +applying RSK to the bottom row of a′). +Now note that the final sections of the two-line array with n in the top row agree for both +two-line arrays, and denote it by s. Since we assume an,n = 0, the bottom row of s does not +contain any n. It is also clear that we will obtain the same tableau if we apply the following +two different procedures: Insert the bottom row of s to P, or, insert the bottom row of s to +Q and then delete the n’s. This is because P and Q agree on all entries different from n and +n’s are at most bumped in final steps in the second case. +This implies that the two procedures (namely, the “classical” one and the one that is the +subject of this section) result in the same two tableaux when disregarding the n’s. Therefore, +it remains to show that they also agree on the n’s. Now we use the fact that the positions of +the n’s (as for any other entry) can also be determined by considering the recording tableau +(which is due to the symmetry of the classical RSK algorithm), in particular we need to study +how the recording tableau is built up when adding s since this is the only time when n’s are +added to the recording tableau. These n’s are added in the final cells of the insertion paths +when inserting the bottom row of s into Q. Such an insertion path can either agree with the +corresponding insertion path in P or it has one additional step where an n gets bumped. As + +38 +ILSE FISCHER +we already know that up to the n’s we obtain the same tableaux in both cases, we are always +in the case that n’s are bumped and this proves the assertion. +□ +A.3. RSK in terms of Gelfand-Tsetlin patterns. It is well-known that semistandard +Young tableaux can be replaced by Gelfand-Tsetlin patterns in the definition of Schur poly- +nomials (and thus in the combinatorial interpretation of the left-hand sides of (1.1) and (1.6)) +as there is an easy bijective correspondence, which will be described next. This point of view +is valuable for us because the left-hand sides of our Littlewood-type identities can also be +interpreted combinatorially as generating functions of Gelfand-Tsetlin-pattern-type objects +(see Section 3). The purpose of the current section is to indicate how the classical RSK al- +gorithm works on (classical) Gelfand-Tsetlin patterns, with the hope that something similar +can be established for our variant (i.e., arrowed Gelfand-Tsetlin patterns, see Section 3.1). +A Gelfand-Tsetlin pattern is a finite triangular array of integers with centered rows as +follows +a1,1 +a2,1 +a2,2 +... +... +⋱ +an,1 +an,2 +... +an,n +such that we have a weak increase in ↗-direction as well as in ↘-direction, i.e., ai+1,j ≤ ai,j ≤ +ai+1,j+1, for all 1 ≤ j ≤ i ≤ n−1. The bijection between semistandard Young tableaux of shape +(λ1,λ2,... ,λn) (we allow zero entries here) and parts in {1,2,... ,n}, and Gelfand-Tsetlin +patterns with bottom row (λn,λn−1,... ,λ1) is as follows: reading the i-th row of a Gelfand- +Tsetlin pattern in reverse order gives a partition, and this is precisely the shape constituted +by the entries less than or equal to i in the corresponding semistandard Young tableau. Under +this bijection, the number of entries equal to i in the semistandard Young tableau is equal to +the difference of the i-th row sum and the (i − 1)-st row sum in the Gelfand-Tsetlin pattern. +Therefore, +s(λ1,...,λn)(X1,... ,Xn) = ∑ +n +∏ +i=1 +X +∑i +j=1 ai,j−∑i−1 +j=1 ai−1,j +i +, +where the sum is over all Gelfand-Tsetlin patterns (ai,j)1≤j≤i≤n with bottom row (λn,λn−1,... ,λ1). +To give an example, observe that the Gelfand-Tsetlin pattern corresponding to the follow- +ing semistandard Young tableaux +(A.1) +1 +1 +1 +2 +2 +3 +5 +2 +2 +4 +5 +7 +8 +4 +5 +5 +7 +8 +5 +6 +6 +8 +7 +8 + +LITTLEWOOD IDENTITY +39 +is +3 +2 +5 +0 +2 +6 +0 +1 +3 +6 +0 +1 +3 +4 +7 +0 +0 +3 +3 +4 +7 +0 +0 +1 +3 +4 +5 +7 +0 +0 +0 +2 +4 +5 +6 +7 +. +Now suppose we use the RSK algorithm to insert the integer m into a semistandard Young +tableau. On the corresponding Gelfand-Tsetlin pattern, we have to do the following. +● If the number n of rows of the pattern is less than m and the bottom row of the pattern +is k1,... ,kn, then we add rows of the form 0,... ,0,k1,... ,kn with the appropriate +number of 0’s until we have m rows. +● Now we start a path in the pattern that starts at the last entry in row m with (unit) +steps in ↘-direction or ↙-direction progressing from one entry to a neighboring entry +in this direction. The rule is as follows: Whenever the ↘-neighbor of the current entry +is equal to the current entry we extend our path to the next entry in ↘-direction, +otherwise we go to the next entry in ↙-direction. We continue with this path until +we reach the bottom row. +● Finally, we add 1 to all entries in the path. +To give an example, if we use RSK to insert 3 into the semistandard Young tableau from +(A.1), we obtain the following tableau, where the insertion path is indicated in red. +1 +1 +1 +2 +2 +3 +3 +2 +2 +4 +5 +5 +8 +4 +5 +5 +7 +7 +5 +6 +6 +8 +8 +7 +8 +On the corresponding Gelfand-Tsetlin pattern, we obtain the following. +3 +2 +5 +0 +2 +7 +0 +1 +3 +7 +0 +1 +3 +5 +7 +0 +0 +3 +3 +5 +7 +0 +0 +1 +3 +5 +5 +7 +0 +0 +0 +2 +5 +5 +6 +7 +It corresponds to the tableau with the 3 inserted. +Now suppose in our simplified algorithm to prove (1.1), we “insert” the column (j +i) into +the Gelfand-Tsetlin pattern. At this point, the Gelfand-Tsetlin pattern should have j rows. +Then we apply the algorithm just described to insert i into the pattern. To insert also j +(in case j /= i), add 1 to the entry immediately left of the entry that is the end of the path +that is induced by the insertion of i. Whenever we progress to the first column with j as top + +40 +ILSE FISCHER +element in the two-line array, we add one row to the Gelfand-Tsetlin by copying the current +bottom row and adding one 0 at the beginning. +A.4. The right-hand side of the bounded Littlewood identity (1.6). The irreducible +characters of the special orthogonal group SO2n+1(C) associated with the partition λ = +(λ1,... ,λn) are +soodd +λ (X1,... ,Xn) = +n +∏ +i=1 +Xn−1/2 +i +det1≤i,j≤n (X +−λj−n+j−1/2 +i +− X +λj+n−j+1/2 +i +) +(1 + [λn = 0])∏n +i=1(1 − Xi)∏1≤i a, the PQa +t for each type of +nucleus t is defined as +PQa +t = +|TP a +t | +|TP a +t | + 1 +2|FP a +t | + 1 +2|FN a +t | +� +�� +� +Detection Quality(DQ) +× +� +(xa +t ,ya +t )∈T P IoU(xa +t , ya +t ) +|TP a +t | +� +�� +� +Segmentation Quality(SQ) +(1) +Here, xt denotes a ground truth GT (GT) instance, yt denotes a +predicted instance, and IoU denotes intersection over union. A +unique pairing between a GT and predicted instance is derived +when setting the threshold a ≥ 0.5 for IoU(xa, ya), or by +using Hungarian matching for a < 0.5. This matching splits +all available instances of type t within an image into matched +pairs (TP), unmatched GT instances (FN) and unmatched +predicted instances (FP). In medical images, IoU is a harsh +criterion for problems that contain lots of small objects such +as nuclei [22]. However, for downstream analysis, often all +predicted nuclei are utilized rather than just a subset being +above a certain size. We extend mPQ+ by taking its average +across a range D = {a ∈ R; 0.0 ≤ a ≤ 0.5}. This is +synonymous to calculating the area under the curve (AUC), +thus we define +mPQ+AUC = +� 0.5 +0 +1 +T +�T =6 +t +PQ+a +t da +(2) +To reduce the computation cost, we sampled α with a step of +0.05 and used the trapezoidal rule to obtain the final results. +III. EXPERIMENTAL RESULTS +A. Dataset and Comparison Settings +Training Set: Participants in the CoNIC challenge utilized +the development set of the Lizard dataset [23] for training, val- +idating and selecting their models. In total, there are 431,913 +unique nuclei belonging to 6 nuclear categories originating +from 5 centers. +Testing Set: The challenge test set includes images taken from +12 different centers, where 11 of these are completely unseen +in the development set. Data from these 11 centers acted as +the external test set in the original Lizard publication [23]. The +remaining center comprises of additional data extracted from +a center that was already considered during training, but from +an independent cohort. In total, there exists 103,150 unique +nuclei belonging to 6 nuclear categories. +Comparison Settings: Images from both the Lizard dataset +and the testing set were prepared into sets of 256×256 image +patches [8]. To facilitate the discovery for new insights, the +selected teams from CoNIC provided a single model that +was trained, validated and selected based on a fixed split +of the Lizard dataset, provided by the organizers (80/20 for +training/validation). Analyses in this paper are based on these +models rather than the original submissions to the challenge. +Original, Control and Assessed: We denote Original as the +un-altered version of the test set. The whole slide images +from which these patches originated could be at different + +Morphological perturbations +Color perturbations +Prediction target +Backbone +Elastic + Radial & Distance +Brightness +EFPL-StarDist +U-Net +Inner & Outer +HED +MDC Berlin I IFP Bern +RGB +Blur +PathologyAl +EfficientNet +HSV +Arontier +Horizontal & Vertical +Noise +ciscNet +Contrast +ResNeXt +MBZUAI +Cutout +Cutmix +Denominator +Distance +ConvNeXt +None +Shear +None3 +Fig. 2. Changes in the mPQ+AUC of SoTA segmentation-based methods when varying the quality parameter in JPEG or WEBP +compression. +resolutions and compressed by different methods, we aimed +to align their information as much as possible before further +compressing the data. When shifting the color domain of +the test set, we found that neural style transfer[24] (neural +stylization) preserves the local characteristics of the images +the best at high resolution. We first created a Control version +of the test set by up-scaling the Original version to super- +resolution via ESRGAN [25] before resizing it back to original +resolution. By perturbing this process at various stages, we +obtained samples for assessing compression (compressing on +Control) and shifting color domains (at super-resolution). We +denote these versions of the test set as the Assessed. +B. Compression Perturbation +We evaluated two major lossy compression methods: JPEG +and WEBP. We show how the performance of the selected +methods varies across a range of compression qualities in +Fig. 2. Intuitively, a majority of the methods experience a +decrease in performance the more the images are compressed. +Interestingly, the Arontier team’s model had noticeable perfor- +mance gain at some compression levels compared to the Con- +trol results. From Fig. 1, we hypothesise this could be due to +the cutout [26] and cutmix [27] augmentations they employed +during training as they would introduce compression-like +artifacts. None of the other teams under evaluation employed +these augmentation techniques. +C. Color Perturbation +As each dataset occupies a region within a color space, visu- +alizing how the model performances vary in such a color space +is synonymous with approximating the theoretical robustness +range of such a model (obtained from a specific training +set) with respect to possible samples in the wild. Thus, by +identifying how these changes relate to the color distribution +of the training and testing set, may provide insights on which +aspect of these methods are important for generalization. To +ascertain that any such observations are not restricted to a +specific color space, we repeat our experiments in both the +HSV and CIELAB color spaces. +Color Domains. We represent the color of each image patch +by the mean of its pixel values within that color space. With +these values, we establish how the entire training and test set +is distributed in terms of Hue (H) and Saturation (S) for HSV +or Alpha (A) and Beta (B) for CIELAB in Fig. 3 via kernel +density estimation. Here, we observe that the center of the test +set in CIELAB is noticeably different from that of the training +set while they heavily overlap in HSV. +Color Sampling and Artificial Domain Shifting: Having +defined the color domains to be investigated qualitatively in +Fig. 3, further investigations required us shifting the test set to- +ward a color value in such domain while preserving the image +compositions. We achieved this by using stain-normalization +or by neural stylization. Both techniques however, require a +choice of reference image which represents the distribution of +the domain we want to shift our target image towards. +To obtain them, we started by simplifying each color space. +We restricted the value ranges of the axis within each color +space such that they encapsulate the training and testing set +distributions. We achieved this by setting H ∈ [240, 360], +S ∈ [0.0, 1.0] or A ∈ [0, 50], B ∈ [−40, 10] based on +Fig. 3. Afterward, along each axis and within these value +ranges, we quantized them into 16 steps, thus creating a +total of 256 sampling points (16×16) in HSV or CIELAB +respectively. In other words, we obtained 256 samples within +the training set which were closest to these 256 colors in +each color space. Specifically, by setting the V alue (V ) and +Luminance (L) to the mean value of the entire training set, +we correspondingly obtained unique images within the training + +EPFL-StarDist +0.2202 +MDC Berlin I IFP Bern +0.2251 +PathologyAl +mPQ+ +Arontier +0.1927 +ciscNet +0.2067 +MBZUAI +0.2028 +Denominator +0.1973 +15 +25 +35 +45 +55 +65 +75 +85 +95 +10 +20 +30 +40 +50 +60 +70 +80 +90 +JPEG Quality +WEBP Quality +25.04 +26.08 +26.66 +27.0327.31 +27.60 +27.96 +28.44 +29.16 +25.05 +25.80 +26.39 +26.85 +27.22 +27.53 +27.83 +28.36 +29.02 +Peak Signal to Noise Ratio (dB) +Peak Signal to Noise Ratio (dB) +0.74 +0.79 +0.82 +0.83 +0.84 +0.86 +0.87 +0.88 +0.90 +0.72 +0.77 +0.80 +0.82 +0.84 +0.85 +0.86 +0.88 +0.90 +Structural Similarity Index +Structural Similarity Index +-0.2 +-0.1 +0.0 +0.1 +0.2 +Differences w.r.t Control4 +Fig. 3. Color distribution of image patches within the CoNIC training and testing set using kernel density estimation in HSV and CIELAB +color space. +set that were the closest to each sampling point. Although +there were 256 sampling points, the nearer towards the edge +of the training distribution the sampling points became the +more likely they shared the same selected images. In such +cases, we only retained the ones that have smallest distance +within the color space, thus obtaining 101 references for HSV +and 108 for CIELAB. +Finally, because different color alteration methods behave +differently, in order to ensure the validity of the observed +phenomena, we also assessed the results obtained by using +three different methods: Ruifrok [28] and Vahadane [29] stain- +normalization and neural style transfer [24]. We provide the +sampled references and a standard testing sample with their +altered color in Fig. 4. Notice that each image in the figure +represents a quantized color range as describe above. Addi- +tionally, for some reference images, Vahadane did not produce +physically realistic samples (the teal colored images). For such +cases, we excluded these from our subsequent quantitative +analyses detailed in Fig. 5. +Reflected Performances: For each color alteration method, +we +compute +the +average +and +standard +deviation +of +mPQ+AUC across all versions of the testing set in each +color space and plot them in Fig. 5. We observed that Original +results are higher than that of the Control results. While all +methods suffered to varying degrees from the color shift, MDC +Bern | IFP Bern and Arontier were affected the least. Across +the two color spaces and three color shift techniques, they +had the overall smallest standard deviation and reduction in +performance. Interestingly, we found stain-normalization to be +detrimental to the model performances in general. However, +neural stylization was found to be the most stable (having the +smallest deviation). +We further show how these performance changes relate to +the choice of reference images for the MDC Bern | IFP Bern, +Arontier and Pathology AI teams in Fig. 6. In line with our +intuition, moving the color of the testing set toward the center +of the training distribution can potentially improve perfor- +mance, as reflected by PathologyAI. The reference images +that demonstrated the smallest reduction in performance (in +the case of stain-normalization) or improvement (with neural +style-transfer) are found in the center of the training distri- +bution. However, intriguingly, Arontier gained performance +when the testing set moved toward areas that are not heavily +populated within the training set. Meanwhile, MDC Bern | +IFP Bern performed well across the range of sampled color +references, with the exception of those being near the training +distribution edges. We surmised this is the reason for its large +deviation as seen in Fig. 5. Finally, in the context of this task, +Vahadane normalization in particular is shown to be highly +dependent on the choice of reference image i.e being at the +center of the training distribution, regardless of the models. +IV. CONCLUSIONS +We empirically show that SoTA segmentation-based meth- +ods are quite robust against compression artifacts. If lossy +compression is required, default parameters for JPEG (quality +75) and WEBP (quality 80) are sufficient. However, these +models are highly volatile with respect to color variations. +We find evidence that stain normalization improves model +generalization. Specifically, regardless of the choice of method + +Training Set +Testing Set +1.0 +1.0 +1.0 + 25 + 40 +0.8 +0.8 +0.8 +-20 +30 +0.6 +0.6 +0.6 +Count +Count +HSV +- 20 +10 +0.2 +0.2 +10 +0.2 +-5 +0.0 +0.0 +- 0 +0.0 +-0 +240 +260 +280 +300 +320 +340 +360 +0.70 +0.75 +0.80 +0.85 +0.90 +0.95 +1.00 +0.70 +0.75 +0.80 +0.85 +0.90 +0.95 +1.00 +Hue +Hue +anH +10 +10 +10 +35 +140 +30 +0 +0 +0 +-120 +25 +100 +-10 +-10 +-10 +20 +LAB +Beta +Beta +nod +15 +-20 +-20 +-20 + 60 +10 +- 40 +-30 +-30 +-30 +20 + 5 +-40 +-40 +- 0 +0 +10 +20 +30 +40 +50 +10 +20 +30 +40 +50 +10 +20 +30 +40 +50 +0 +0 +0 +Alpha +Alpha +Alpha5 +Fig. 4. Selected reference images within the training set and a test sample that has it color pulled toward the reference at the same location +in HSV and CIELAB color space. The color ranges in both color space are the same as in Fig. 3. +and color space, we show that stain normalization is more +likely to degrade performance than improve it. If altering the +color (or stain normalization) of the dataset is required, we +suggest using neural style transfer [24] as we found it to +provide the most consistent gain in performance. If using stain- +normalization, reference images should be from the central +area of the training distribution as we found this avoids the +outlier regions which resulted in substantial performance loss. +Finally, this work demonstrates that the generalization prob- +lem is a concern inspite of the improved performance of +computational pathology models in nuclear classification and +segmentation tasks achieved in recent years. Our findings high- +light the need for further investigations into the mechanism +behind these underlying problems. + +Selected References +Ruifrok +Vahadane +Neural Stylization +O +HSV +O +IELAB +D +O6 +Fig. 5. Changes in the mPQ+AUC when we artificially shifted the color of the test set using various methods. The box plots are the means +and standard deviations. +Fig. 6. Difference in the mPQ+AUC between the Control and the test set where its color was shifted w.r.t each sampled reference in +Fig. 4. + +Ruifrok +Neural Stylization +Vahadane +Denominator +. +MBZUAI +× +xI +ciscNet +0 +0 +HSV +Arontier +TIx +. +. +. +PathologyAl +. +xI +TI× +MDC Berlin I IFP Bern +X +. +KY× +EPFL-StarDist +. +0.15 +0.10 +0.20 +0.25 +0.15 +0.20 +0.25 +0.30 0.10 +0.15 +0.20 +0.25 +0.30 0.10 +0.30 +Denominator +MBZUAI +. +x1 +. +1× +0 +ciscNet +CIELAB +Arontier +PathologyAl +MDC Berlin I IFP Bern +X +Y× +EPFL-StarDist +. +. +0. 15 +0.25 +0.10 +0.20 +0.15 +0.25 +0.15 +0.25 +0.20 +0.30 0.10 +0.20 +0.30 0.10 +0.30 +. +Original +* +Control +AssessedRuifrok +Vahadane +Neural Stylization +Ruifrok +Vahadane +Neural Stylization +IFP Bern +1. +Berlin +MDCI +logyA +Patho +rontier +HSV +CIELAB +≤ -0.2 +0.0 +≥ 0.2 +Differences w.r.t Control7 +REFERENCES +[1] C. Elston and I. Ellis, “Pathological prognostic factors in breast +cancer. i. the value of histological grade in breast cancer: experience +from +a +large +study +with +long-term +follow-up,” +Histopathology, +vol. +19, +no. +5, +pp. +403–410, +1991. +[Online]. +Available: +https: +//onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2559.1991.tb00229.x +[2] L. M. Solis, C. Behrens, M. G. Raso, H. Y. Lin, H. Kadara, P. Yuan, +H. Galindo, X. Tang, J. J. Lee, N. Kalhor et al., “Histologic patterns +and molecular characteristics of lung adenocarcinoma associated with +clinical outcome,” Cancer, vol. 118, no. 11, pp. 2889–2899, 2012. +[3] K. D. Shield, J. Ferlay, A. Jemal, R. Sankaranarayanan, A. K. +Chaturvedi, F. Bray, and I. Soerjomataram, “The global incidence of lip, +oral cavity, and pharyngeal cancers by subsite in 2012,” CA: a cancer +journal for clinicians, vol. 67, no. 1, pp. 51–64, 2017. +[4] A. Fusi, L. Festino, G. Botti, G. V. Masucci, I. Melero, P. C. Lorigan, and +P. A. Ascierto, “Pd-l1 expression as a potential predictive biomarker.” +The Lancet. Oncology, vol. 16 13, pp. 1285–7, 2015. +[5] T. Yamaguchi, H. Mukai, F. Akiyama, K. Arihiro, S. Masuda, M. Kuro- +sumi, Y. Kodama, R. Horii, and H. Tsuda, “Inter-observer agreement +among pathologists in grading the pathological response to neoadjuvant +chemotherapy in breast cancer,” Breast Cancer, vol. 25, no. 1, pp. 118– +125, 2018. +[6] N. Kumar, R. Verma, D. Anand, Y. Zhou, O. F. Onder, E. Tsougenis, +H. Chen, P.-A. Heng, J. Li, Z. Hu et al., “A multi-organ nucleus +segmentation challenge,” IEEE transactions on medical imaging, vol. 39, +no. 5, pp. 1380–1391, 2019. +[7] R. Verma et al., “Monusac2020: A multi-organ nuclei segmentation +and classification challenge,” IEEE Transactions on Medical Imaging, +vol. 40, no. 12, pp. 3413–3423, 2021. +[8] S. Graham, M. Jahanifar, Q. D. Vu, G. Hadjigeorghiou, T. Leech, +D. R. J. Snead, S. e Ahmed Raza, F. A. Minhas, and N. M. +Rajpoot, “Conic: Colon nuclei identification and counting challenge +2022,” CoRR, vol. abs/2111.14485, 2021. [Online]. Available: https: +//arxiv.org/abs/2111.14485 +[9] W. Zhang, “Conic solution,” arXiv preprint arXiv:2203.03415, 2022. +[10] J. L. Rumberger, E. Baumann, P. Hirsch, and D. Kainmueller, “Panoptic +segmentation with highly imbalanced semantic labels,” arXiv preprint +arXiv:2203.11692, 2022. +[11] M. Weigert and U. Schmidt, “Nuclei segmentation and classification in +histopathology images with stardist for the conic challenge 2022,” arXiv +preprint arXiv:2203.02284, 2022. +[12] H. Azzuni, M. Ridzuan, M. Xu, and M. Yaqub, “Color space-based +hover-net for nuclei instance segmentation and classification,” arXiv +preprint arXiv:2203.01940, 2022. +[13] H. Ahn and Y. Hong, “Class-controlled copy-paste based cell segmen- +tation for conic challenge,” bioRxiv, 2022. +[14] M. B¨ohland, O. Neumann, M. P. Schilling, M. Reischl, R. Mikut, +K. L¨offler, and T. Scherr, “ciscnet–a single-branch cell instance seg- +mentation and classification network,” arXiv preprint arXiv:2202.13960, +2022. +[15] J. Li, C. Wang, B. Huang, and Z. Zhou, “Convnext-backbone +hovernet for nuclei segmentation and classification,” arXiv preprint +arXiv:2202.13560, 2022. +[16] K. Stacke, G. Eilertsen, J. Unger, and C. Lundstr¨om, “Measuring domain +shift for deep learning in histopathology,” IEEE journal of biomedical +and health informatics, vol. 25, no. 2, pp. 325–336, 2020. +[17] R. Yamashita, J. Long, S. Banda, J. Shen, and D. L. Rubin, “Learning +domain-agnostic visual representation for computational pathology using +medically-irrelevant style transfer augmentation,” IEEE Transactions on +Medical Imaging, vol. 40, no. 12, pp. 3945–3954, 2021. +[18] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, +and W. Brendel, “Imagenet-trained cnns are biased towards texture; +increasing shape bias improves accuracy and robustness,” CoRR, vol. +abs/1811.12231, 2018. [Online]. Available: http://arxiv.org/abs/1811. +12231 +[19] X. Ding, X. Zhang, Y. Zhou, J. Han, G. Ding, and J. Sun, “Scaling up +your kernels to 31x31: Revisiting large kernel design in cnns,” arXiv +preprint arXiv:2203.06717, 2022. +[20] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, +R. Desai, T. Zhu, S. Parajuli, M. Guo, D. Song, J. Steinhardt, and +J. Gilmer, “The many faces of robustness: A critical analysis of +out-of-distribution generalization,” CoRR, vol. abs/2006.16241, 2020. +[Online]. Available: https://arxiv.org/abs/2006.16241 +[21] A. Kirillov, K. He, R. B. Girshick, C. Rother, and P. Doll´ar, “Panoptic +segmentation,” CoRR, vol. abs/1801.00868, 2018. [Online]. Available: +http://arxiv.org/abs/1801.00868 +[22] Maier-Hein et al., “Metrics reloaded: Pitfalls and recommendations +for image analysis validation,” 2022. [Online]. Available: +https: +//arxiv.org/abs/2206.01653 +[23] S. Graham, M. Jahanifar, A. Azam, M. Nimir, Y.-W. Tsang, K. Dodd, +E. Hero, H. Sahota, A. Tank, K. Benes et al., “Lizard: A large-scale +dataset for colonic nuclear instance segmentation and classification,” +arXiv preprint arXiv:2108.11195, 2021. +[24] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of +artistic style,” CoRR, vol. abs/1508.06576, 2015. [Online]. Available: +http://arxiv.org/abs/1508.06576 +[25] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. C. Loy, +Y. Qiao, and X. Tang, “ESRGAN: enhanced super-resolution generative +adversarial networks,” CoRR, vol. abs/1809.00219, 2018. [Online]. +Available: http://arxiv.org/abs/1809.00219 +[26] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con- +volutional neural networks,” in International conference on machine +learning. +PMLR, 2019, pp. 6105–6114. +[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, +Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large +scale visual recognition challenge,” International journal of computer +vision, vol. 115, no. 3, pp. 211–252, 2015. +[28] A. C. Ruifrok, D. A. Johnston et al., “Quantification of histochemical +staining by color deconvolution,” Analytical and quantitative cytology +and histology, vol. 23, no. 4, pp. 291–299, 2001. +[29] A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, +K. Steiger, A. M. Schlitter, I. Esposito, and N. Navab, “Structure- +preserving color normalization and sparse stain separation for histolog- +ical images,” IEEE transactions on medical imaging, vol. 35, no. 8, pp. +1962–1971, 2016. + diff --git a/bNE1T4oBgHgl3EQfxAXP/content/tmp_files/load_file.txt b/bNE1T4oBgHgl3EQfxAXP/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ee08ae0dc76a90494429c9699c604d53c19f8e25 --- /dev/null +++ b/bNE1T4oBgHgl3EQfxAXP/content/tmp_files/load_file.txt @@ -0,0 +1,625 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf,len=624 +page_content='1 Nuclear Segmentation and Classification: On Color & Compression Generalization Quoc Dang Vu* Robert Jewsbury* Simon Graham Mostafa Jahanifar Shan E Ahmed Raza Fayyaz Minhas Abhir Bhalerao Nasir Rajpoot {quoc-dang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='vu, rob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='jewsbury, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='rajpoot}@warwick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='uk ∗ Joint first authors, contributed equally Abstract—Since the introduction of digital and computational pathology as a field, one of the major problems in the clinical application of algorithms has been the struggle to generalize well to examples outside the distribution of the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Existing work to address this in both pathology and natural images has focused almost exclusively on classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We explore and evaluate the robustness of the 7 best performing nuclear segmentation and classification models from the largest computational pathology challenge for this problem to date, the CoNIC challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We demonstrate that existing state-of-the-art (SoTA) models are robust towards compression artifacts but suffer substantial performance reduction when subjected to shifts in the color domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We find that using stain normalization to address the domain shift problem can be detrimental to the model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' On the other hand, neural style transfer is more consistent in improving test performance when presented with large color variations in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Index Terms—Computational Pathology, Robustness, Nuclei segmentation and classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' INTRODUCTION The spatial arrangement and morphology of nuclei are important signatures for identifying disease [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' In cancer, bio-markers such as tumor-infiltrating-lymphocytes [3] or Pro- grammed death-ligand 1 (PD-L1) combined positive score for response to immunotherapy [4] have been found to be highly correlated with patient survival.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' In spite of their supposed effectiveness, their adoption and use in clinical settings remain limited due to the high degree of inter and intra observer variation [5] of the derived scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' To overcome this limitation, many machine learning chal- lenges [6], [7] have been proposed in digital pathology to further the innovation of automating the identification and classification of nuclei instances in Haematoxylin & Eosin (HE) stained samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' The most recent and perhaps the largest challenge of its kind to date, with 704 participants in 96 teams, the Colon Nuclei Identification and Counting Challenge 2022 (CoNIC) [8], was able to identify several powerful deep-learning-based methods for these tasks [9], [10], [11], [12], [13], [14], [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' These methods achieved competitive performance even on an unseen, large scale cohort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' While Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='Vu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='Jewsbury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='Graham, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='Jahanifar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='Raza, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='Minhas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='Bhalerao and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='Rajpoot are from the Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='Rajpoot is also affiliated with The Alan Turing Institute, London, UK and the Department of Pathology, University Hospitals Coventry & Warwickshire, UK the results are promising, it is as yet unclear whether these methods are sufficient to achieve generalization across millions of nuclei in the wild for subsequent downstream analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' This question about generalization in the wild is somewhat synonymous with investigating the robustness of models with respect to the shift of input distribution (or domain shift).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' So far in digital pathology, such investigations have been limited mostly to patch-level classification tasks [16], [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Concurrent to these developments, in natural images, attempts to see how deep neural networks (DNNs) fare against various input alterations have uncovered several important insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' To name a few, existing DNNs have a shape and texture bias [18], this limits the model to reason further about the geometries of their learning targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Interestingly, this limitation relates to the commonly chosen 3×3 kernel [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' With this perspective, it is important to gain better insights about the existing state-of-the art (SoTA) segmentation-based methods for identification and classification of nuclear in- stances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Specifically, in this paper, we investigate how the performance of the top performing approaches in the CoNIC challenge are affected by perturbations to the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We focus on two forms of domain shift: artifacts introduced by com- pressing whole slide images and alteration of image colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We empirically show that: Upon the finalization of training, each approach has a virtual center of color distribution that is different from that of the training set;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Common augmentations employed during training may not improve robustness against color and morphological perturbations as practitioners might expect;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Stain normalization can be more detrimental to perfor- mance than beneficial and needs to be employed very carefully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' METHODOLOGY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Robustness Investigations As noted by [20], there is no widely accepted definition for robustness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' In this paper, we consider 2 aspects which determine how a sample domain becomes shifted compared to that of another sample and investigate how the performance of segmentation-based methods is affected in such cases: a) Compression related artifacts and b) Color variation between tissue, organs, diseases, scanning devices and staining proto- cols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='03418v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='IV] 9 Jan 2023 2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Summary of assessed segmentation methods from the CoNIC challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Significant aspects including the backbone network family, training augmentations related to color and compression (morphology) and prediction target are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Segmentation-based Methods We explored the top 7 performing models in the CoNIC challenge that use a segmentation-based approach: Denomina- tor [15], MBZUAI [12], ciscNet [14], Arontier [13], Patholo- gyAI [9], MDC Bern - IFP Berlin [10] and EFPL - Stardist [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We summarize various aspects of these approaches that can influence how the models fare against the alterations under investigation in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' All methods follow the encoder-decoder architecture paradigm and only EFPL - Stardist model was trained from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Evaluation Metrics The CoNIC challenge utilized a variant of panoptic quality (PQ) [21] for multi-class problems called mPQ+ to measure the performance of segmentation and classification of nuclei instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' At IoU(xa t , ya t ) > a, the PQa t for each type of nucleus t is defined as PQa t = |TP a t | |TP a t | + 1 2|FP a t | + 1 2|FN a t | � �� � Detection Quality(DQ) × � (xa t ,ya t )∈T P IoU(xa t , ya t ) |TP a t | � �� � Segmentation Quality(SQ) (1) Here, xt denotes a ground truth GT (GT) instance, yt denotes a predicted instance, and IoU denotes intersection over union.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' A unique pairing between a GT and predicted instance is derived when setting the threshold a ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='5 for IoU(xa, ya), or by using Hungarian matching for a < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' This matching splits all available instances of type t within an image into matched pairs (TP), unmatched GT instances (FN) and unmatched predicted instances (FP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' In medical images, IoU is a harsh criterion for problems that contain lots of small objects such as nuclei [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' However, for downstream analysis, often all predicted nuclei are utilized rather than just a subset being above a certain size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We extend mPQ+ by taking its average across a range D = {a ∈ R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0 ≤ a ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='5}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' This is synonymous to calculating the area under the curve (AUC), thus we define mPQ+AUC = � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='5 0 1 T �T =6 t PQ+a t da (2) To reduce the computation cost, we sampled α with a step of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='05 and used the trapezoidal rule to obtain the final results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' EXPERIMENTAL RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Dataset and Comparison Settings Training Set: Participants in the CoNIC challenge utilized the development set of the Lizard dataset [23] for training, val- idating and selecting their models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' In total, there are 431,913 unique nuclei belonging to 6 nuclear categories originating from 5 centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Testing Set: The challenge test set includes images taken from 12 different centers, where 11 of these are completely unseen in the development set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Data from these 11 centers acted as the external test set in the original Lizard publication [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' The remaining center comprises of additional data extracted from a center that was already considered during training, but from an independent cohort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' In total, there exists 103,150 unique nuclei belonging to 6 nuclear categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Comparison Settings: Images from both the Lizard dataset and the testing set were prepared into sets of 256×256 image patches [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' To facilitate the discovery for new insights, the selected teams from CoNIC provided a single model that was trained, validated and selected based on a fixed split of the Lizard dataset, provided by the organizers (80/20 for training/validation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Analyses in this paper are based on these models rather than the original submissions to the challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Original, Control and Assessed: We denote Original as the un-altered version of the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' The whole slide images from which these patches originated could be at different Morphological perturbations Color perturbations Prediction target Backbone Elastic Radial & Distance Brightness EFPL-StarDist U-Net Inner & Outer HED MDC Berlin I IFP Bern RGB Blur PathologyAl EfficientNet HSV Arontier Horizontal & Vertical Noise ciscNet Contrast ResNeXt MBZUAI Cutout Cutmix Denominator Distance ConvNeXt None Shear None3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Changes in the mPQ+AUC of SoTA segmentation-based methods when varying the quality parameter in JPEG or WEBP compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' resolutions and compressed by different methods, we aimed to align their information as much as possible before further compressing the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' When shifting the color domain of the test set, we found that neural style transfer[24] (neural stylization) preserves the local characteristics of the images the best at high resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We first created a Control version of the test set by up-scaling the Original version to super- resolution via ESRGAN [25] before resizing it back to original resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' By perturbing this process at various stages, we obtained samples for assessing compression (compressing on Control) and shifting color domains (at super-resolution).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We denote these versions of the test set as the Assessed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Compression Perturbation We evaluated two major lossy compression methods: JPEG and WEBP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We show how the performance of the selected methods varies across a range of compression qualities in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Intuitively, a majority of the methods experience a decrease in performance the more the images are compressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Interestingly, the Arontier team’s model had noticeable perfor- mance gain at some compression levels compared to the Con- trol results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 1, we hypothesise this could be due to the cutout [26] and cutmix [27] augmentations they employed during training as they would introduce compression-like artifacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' None of the other teams under evaluation employed these augmentation techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Color Perturbation As each dataset occupies a region within a color space, visu- alizing how the model performances vary in such a color space is synonymous with approximating the theoretical robustness range of such a model (obtained from a specific training set) with respect to possible samples in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Thus, by identifying how these changes relate to the color distribution of the training and testing set, may provide insights on which aspect of these methods are important for generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' To ascertain that any such observations are not restricted to a specific color space, we repeat our experiments in both the HSV and CIELAB color spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Color Domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We represent the color of each image patch by the mean of its pixel values within that color space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' With these values, we establish how the entire training and test set is distributed in terms of Hue (H) and Saturation (S) for HSV or Alpha (A) and Beta (B) for CIELAB in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 3 via kernel density estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Here, we observe that the center of the test set in CIELAB is noticeably different from that of the training set while they heavily overlap in HSV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Color Sampling and Artificial Domain Shifting: Having defined the color domains to be investigated qualitatively in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 3, further investigations required us shifting the test set to- ward a color value in such domain while preserving the image compositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We achieved this by using stain-normalization or by neural stylization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Both techniques however, require a choice of reference image which represents the distribution of the domain we want to shift our target image towards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' To obtain them, we started by simplifying each color space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We restricted the value ranges of the axis within each color space such that they encapsulate the training and testing set distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We achieved this by setting H ∈ [240, 360], S ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0] or A ∈ [0, 50], B ∈ [−40, 10] based on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Afterward, along each axis and within these value ranges, we quantized them into 16 steps, thus creating a total of 256 sampling points (16×16) in HSV or CIELAB respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' In other words, we obtained 256 samples within the training set which were closest to these 256 colors in each color space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Specifically, by setting the V alue (V ) and Luminance (L) to the mean value of the entire training set, we correspondingly obtained unique images within the training EPFL-StarDist 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2202 MDC Berlin I IFP Bern 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2251 PathologyAl mPQ+ Arontier 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='1927 ciscNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2067 MBZUAI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2028 Denominator 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='1973 15 25 35 45 55 65 75 85 95 10 20 30 40 50 60 70 80 90 JPEG Quality WEBP Quality 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='04 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='08 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='66 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='31 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='60 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='96 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='44 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='16 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='05 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='80 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='39 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='85 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='22 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='53 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='83 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='36 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='02 Peak Signal to Noise Ratio (dB) Peak Signal to Noise Ratio (dB) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='90 Structural Similarity Index Structural Similarity Index 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2 Differences w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='t Control4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Color distribution of image patches within the CoNIC training and testing set using kernel density estimation in HSV and CIELAB color space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' set that were the closest to each sampling point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Although there were 256 sampling points, the nearer towards the edge of the training distribution the sampling points became the more likely they shared the same selected images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' In such cases, we only retained the ones that have smallest distance within the color space, thus obtaining 101 references for HSV and 108 for CIELAB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Finally, because different color alteration methods behave differently, in order to ensure the validity of the observed phenomena, we also assessed the results obtained by using three different methods: Ruifrok [28] and Vahadane [29] stain- normalization and neural style transfer [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We provide the sampled references and a standard testing sample with their altered color in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Notice that each image in the figure represents a quantized color range as describe above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Addi- tionally, for some reference images, Vahadane did not produce physically realistic samples (the teal colored images).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' For such cases, we excluded these from our subsequent quantitative analyses detailed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Reflected Performances: For each color alteration method, we compute the average and standard deviation of mPQ+AUC across all versions of the testing set in each color space and plot them in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We observed that Original results are higher than that of the Control results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' While all methods suffered to varying degrees from the color shift, MDC Bern | IFP Bern and Arontier were affected the least.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Across the two color spaces and three color shift techniques, they had the overall smallest standard deviation and reduction in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Interestingly, we found stain-normalization to be detrimental to the model performances in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' However, neural stylization was found to be the most stable (having the smallest deviation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We further show how these performance changes relate to the choice of reference images for the MDC Bern | IFP Bern, Arontier and Pathology AI teams in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' In line with our intuition, moving the color of the testing set toward the center of the training distribution can potentially improve perfor- mance, as reflected by PathologyAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' The reference images that demonstrated the smallest reduction in performance (in the case of stain-normalization) or improvement (with neural style-transfer) are found in the center of the training distri- bution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' However, intriguingly, Arontier gained performance when the testing set moved toward areas that are not heavily populated within the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Meanwhile, MDC Bern | IFP Bern performed well across the range of sampled color references, with the exception of those being near the training distribution edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We surmised this is the reason for its large deviation as seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Finally, in the context of this task, Vahadane normalization in particular is shown to be highly dependent on the choice of reference image i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='e being at the center of the training distribution, regardless of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' CONCLUSIONS We empirically show that SoTA segmentation-based meth- ods are quite robust against compression artifacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' If lossy compression is required, default parameters for JPEG (quality 75) and WEBP (quality 80) are sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' However, these models are highly volatile with respect to color variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' We find evidence that stain normalization improves model generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Specifically, regardless of the choice of method Training Set Testing Set 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0 25 40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='8 20 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='6 Count Count HSV 20 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0 0 240 260 280 300 320 340 360 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='00 Hue Hue anH 10 10 10 35 140 30 0 0 0 120 25 100 10 10 10 20 LAB Beta Beta nod 15 20 20 20 60 10 40 30 30 30 20 5 40 40 0 0 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 0 0 0 Alpha Alpha Alpha5 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Selected reference images within the training set and a test sample that has it color pulled toward the reference at the same location in HSV and CIELAB color space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' The color ranges in both color space are the same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' and color space, we show that stain normalization is more likely to degrade performance than improve it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' If altering the color (or stain normalization) of the dataset is required, we suggest using neural style transfer [24] as we found it to provide the most consistent gain in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' If using stain- normalization, reference images should be from the central area of the training distribution as we found this avoids the outlier regions which resulted in substantial performance loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Finally, this work demonstrates that the generalization prob- lem is a concern inspite of the improved performance of computational pathology models in nuclear classification and segmentation tasks achieved in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Our findings high- light the need for further investigations into the mechanism behind these underlying problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Selected References Ruifrok Vahadane Neural Stylization O HSV O IELAB D O6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Changes in the mPQ+AUC when we artificially shifted the color of the test set using various methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' The box plots are the means and standard deviations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Difference in the mPQ+AUC between the Control and the test set where its color was shifted w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='t each sampled reference in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ruifrok Neural Stylization Vahadane Denominator .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' MBZUAI × xI ciscNet 0 0 HSV Arontier TIx .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' PathologyAl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' xI TI× MDC Berlin I IFP Bern X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' KY× EPFL-StarDist .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='30 Denominator MBZUAI .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 1× 0 ciscNet CIELAB Arontier PathologyAl MDC Berlin I IFP Bern X Y× EPFL-StarDist .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='30 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Original Control AssessedRuifrok Vahadane Neural Stylization Ruifrok Vahadane Neural Stylization IFP Bern 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Berlin MDCI logyA Patho rontier HSV CIELAB ≤ -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='0 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='2 Differences w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='t Control7 REFERENCES [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Elston and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ellis, “Pathological prognostic factors in breast cancer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' the value of histological grade in breast cancer: experience from a large study with long-term follow-up,” Histopathology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 403–410, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Available: https: //onlinelibrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='wiley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='com/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='1365-2559.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='tb00229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='x [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Solis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Behrens, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Raso, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Lin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Kadara, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Yuan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Galindo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Tang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Lee, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Kalhor et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=', “Histologic patterns and molecular characteristics of lung adenocarcinoma associated with clinical outcome,” Cancer, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 118, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 2889–2899, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Shield, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ferlay, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Jemal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Sankaranarayanan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Chaturvedi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Bray, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Soerjomataram, “The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012,” CA: a cancer journal for clinicians, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 51–64, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Fusi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Festino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Botti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Masucci, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Melero, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Lorigan, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ascierto, “Pd-l1 expression as a potential predictive biomarker.” The Lancet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Oncology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 16 13, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 1285–7, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Yamaguchi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Mukai, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Akiyama, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Arihiro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Masuda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Kuro- sumi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Kodama, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Horii, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Tsuda, “Inter-observer agreement among pathologists in grading the pathological response to neoadjuvant chemotherapy in breast cancer,” Breast Cancer, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 118– 125, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Kumar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Verma, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Anand, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Zhou, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Onder, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Tsougenis, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Chen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Heng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=', “A multi-organ nucleus segmentation challenge,” IEEE transactions on medical imaging, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 39, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 1380–1391, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Verma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=', “Monusac2020: A multi-organ nuclei segmentation and classification challenge,” IEEE Transactions on Medical Imaging, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 3413–3423, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Graham, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Jahanifar, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Vu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Hadjigeorghiou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Leech, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Snead, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' e Ahmed Raza, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Minhas, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Rajpoot, “Conic: Colon nuclei identification and counting challenge 2022,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' abs/2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='14485, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Available: https: //arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='org/abs/2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='14485 [9] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Zhang, “Conic solution,” arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='03415, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Rumberger, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Baumann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Hirsch, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Kainmueller, “Panoptic segmentation with highly imbalanced semantic labels,” arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='11692, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Weigert and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Schmidt, “Nuclei segmentation and classification in histopathology images with stardist for the conic challenge 2022,” arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='02284, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [12] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Azzuni, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ridzuan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Xu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Yaqub, “Color space-based hover-net for nuclei instance segmentation and classification,” arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='01940, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ahn and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Hong, “Class-controlled copy-paste based cell segmen- tation for conic challenge,” bioRxiv, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' B¨ohland, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Neumann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Schilling, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Reischl, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Mikut, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' L¨offler, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Scherr, “ciscnet–a single-branch cell instance seg- mentation and classification network,” arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='13960, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Huang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Zhou, “Convnext-backbone hovernet for nuclei segmentation and classification,” arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='13560, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [16] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Stacke, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Eilertsen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Unger, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Lundstr¨om, “Measuring domain shift for deep learning in histopathology,” IEEE journal of biomedical and health informatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 325–336, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Yamashita, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Long, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Banda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Shen, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Rubin, “Learning domain-agnostic visual representation for computational pathology using medically-irrelevant style transfer augmentation,” IEEE Transactions on Medical Imaging, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 3945–3954, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Geirhos, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Rubisch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Michaelis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Bethge, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Wichmann, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Brendel, “Imagenet-trained cnns are biased towards texture;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' increasing shape bias improves accuracy and robustness,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' abs/1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='12231, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='org/abs/1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 12231 [19] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ding, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Han, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ding, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Sun, “Scaling up your kernels to 31x31: Revisiting large kernel design in cnns,” arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='06717, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [20] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Hendrycks, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Basart, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Mu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Kadavath, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Wang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Dorundo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Desai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Zhu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Parajuli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Guo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Song, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Steinhardt, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Gilmer, “The many faces of robustness: A critical analysis of out-of-distribution generalization,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' abs/2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='16241, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='org/abs/2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='16241 [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Kirillov, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' He, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Girshick, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Rother, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Doll´ar, “Panoptic segmentation,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' abs/1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='00868, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='org/abs/1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='00868 [22] Maier-Hein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=', “Metrics reloaded: Pitfalls and recommendations for image analysis validation,” 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Available: https: //arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='org/abs/2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='01653 [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Graham, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Jahanifar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Azam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Nimir, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Tsang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Dodd, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Hero, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Sahota, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Tank, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Benes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=', “Lizard: A large-scale dataset for colonic nuclear instance segmentation and classification,” arXiv preprint arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='11195, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [24] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Gatys, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ecker, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Bethge, “A neural algorithm of artistic style,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' abs/1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='06576, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='org/abs/1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='06576 [25] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Yu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Gu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Dong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Loy, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Qiao, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Tang, “ESRGAN: enhanced super-resolution generative adversarial networks,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' abs/1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='00219, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='org/abs/1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content='00219 [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Tan and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Le, “Efficientnet: Rethinking model scaling for con- volutional neural networks,” in International conference on machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' PMLR, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 6105–6114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [27] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Russakovsky, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Deng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Su, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Krause, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Satheesh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ma, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Huang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Karpathy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Khosla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Bernstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=', “Imagenet large scale visual recognition challenge,” International journal of computer vision, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 115, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 211–252, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Ruifrok, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Johnston et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=', “Quantification of histochemical staining by color deconvolution,” Analytical and quantitative cytology and histology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 291–299, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Vahadane, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Peng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Sethi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Albarqouni, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Baust, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Steiger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Schlitter, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Esposito, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' Navab, “Structure- preserving color normalization and sparse stain separation for histolog- ical images,” IEEE transactions on medical imaging, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 35, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} +page_content=' 1962–1971, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf'} diff --git a/bNFPT4oBgHgl3EQfwTX3/content/tmp_files/2301.13163v1.pdf.txt b/bNFPT4oBgHgl3EQfwTX3/content/tmp_files/2301.13163v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..cef30466488c49fec48373177280a44b577517ae --- /dev/null +++ b/bNFPT4oBgHgl3EQfwTX3/content/tmp_files/2301.13163v1.pdf.txt @@ -0,0 +1,2777 @@ +Randomized GCUR decompositions +Zhengbang Cao∗ +Yimin Wei† +Pengpeng Xie‡ +Abstract +By exploiting the random sampling techniques, this paper derives an efficient randomized algo- +rithm for computing a generalized CUR decomposition, which provides low-rank approximations of +both matrices simultaneously in terms of some of their rows and columns. For large-scale data sets +that are expensive to store and manipulate, a new variant of the discrete empirical interpolation +method known as L-DEIM, which needs much lower cost and provides a significant acceleration +in practice, is also combined with the random sampling approach to further improve the efficiency +of our algorithm. Moreover, adopting the randomized algorithm to implement the truncation pro- +cess of restricted singular value decomposition (RSVD), combined with the L-DEIM procedure, +we propose a fast algorithm for computing an RSVD based CUR decomposition, which provides +a coordinated low-rank approximation of the three matrices in a CUR-type format simultaneously +and provides advantages over the standard CUR approximation for some applications. We establish +detailed probabilistic error analysis for the algorithms and provide numerical results that show the +promise of our approaches. +Keywords: generalized CUR decomposition; generalized SVD; restricted SVD; L-DEIM; random- +ized algorithm +Mathematics Subject Classification: 65F55, 15A23 +1 +Introduction +Identifying the underlying structure of a data matrix and extracting meaningful information is a +crucial problem in data analysis, and most efforts have been focused on manipulating, understanding +and interpreting large-scale data matrices. +In many cases, matrix factorization methods are em- +ployed for constructing parsimonious and informative representations to facilitate computation and +interpretation. A principal approach is the CUR decomposition [14, 30, 36, 44], which is a low-rank +approximation of a matrix A ∈ Rm×n of the form +A ≈ CUR, +(1.1) +where matrices C ∈ Rm×k and R ∈ Rk×n are subsets of the columns and rows, respectively, of the +original matrix A. The k × k matrix U is constructed to ensure that CUR is a good approximation +to A. The CUR factorization is an important tool for handling large-scale data sets, offering two +advantages over the rank-k singular value decomposition (SVD) A ≈ V SW T : when A is sparse, so +∗School +of +Mathematical +Sciences, +Ocean +University +of +China, +Qingdao +266100, +China. +E-Mail: +caozhengbang@stu.ouc.edu.cn +†School of Mathematical Sciences and and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, +Shanghai 200433, China. E-Mail: ymwei@fudan.edu.cn +‡Corresponding author (P. Xie). +School of Mathematical Sciences, Ocean University of China, Qingdao 266100, +China. E-Mail: xie@ouc.edu.cn. +1 +arXiv:2301.13163v1 [math.NA] 17 Jan 2023 + +too are C and R, unlike the matrices V and W of singular vectors; and the columns and rows that +comprise C and R are representative of the data (e.g., sparse, nonnegative, integer valued, etc.). +There is extensive work on CUR-type decompositions in both numerical linear algebra and the- +oretical computer science; see [7, 8, 20, 44]. Recently, in [17], Gidisu and Hochstenbach developed a +generalized CUR decomposition (GCUR) for matrix pair A and B with the same number of columns: +A is m×n, B is d×n and both are of full column rank, which can be viewed as a CUR decomposition +of A relative to B. The proposed factorization can be used in situations where a low-rank matrix +is perturbed with noise, where the covariance of the noise is not a multiple of the identity matrix. +Besides, it may also be appropriate for applications where one is interested in extracting the most +discriminative information from a data set of interest relative to another data set. Furthermore, in +recent times, real-world data sets often comprise different representations or views, which provide +information complementary to each other. The multi-view dimension reduction [50], and integration +of information from multiple views in multi-view learning is a rapidly growing direction in machine +learning which involves learning with multiple views to improve the generalization performance. Mo- +tivated by this, in [16], Gidisu and Hochstenbach developed a new coordinated CUR factorization of a +matrix triplet (A, B, G) of compatible dimensions, based on the restricted singular value decomposi- +tion (RSVD) [51]. This factorization was called an RSVD based CUR (RSVD-CUR) factorization. An +RSVD-CUR factorization as a tool for multi-view dimension reduction can cope with a two-view case. +In the same context, one can use an RSVD-CUR as a supervised feature selection technique in multil- +abel classification problems. It can also be applied for applications where the goal is to select a subset +of rows and columns of one data set relative to two other data sets. There are several index selection +strategies proposed in the literature for finding the subsets of the columns and rows while constructing +the GCUR and RSVD-CUR decomposition. Two sampling techniques employed in [16,17] are named +DEIM [4, 9] and L-DEIM [18], which are greedy deterministic procedures and simple to implement. +Specifically, as the inputs, the DEIM and L-DEIM require the generalized SVD (GSVD) of the matrix +pair (A, B) and the RSVD of the matrix triplet (A, B, G) for sampling when constructing the GCUR +and RSVD-CUR decomposition, respectively. The overall computational complexity of the algorithms +discussed in [16, 17] are dominated by the construction of the GSVD and the RSVD. However, in +practice, this cost can be prohibitively expensive, making it unsuitable for large-scale applications. +It is known that randomized algorithms [19, 29] facilitate the matrix decomposition procedure +not only by reducing the computational complexity of deterministic algorithms but also by reducing +the communication among different levels of memories, which is the main bottleneck in modern com- +puting environments and architectures for large-scale data matrices. Based on the framework in [19], +many computationally efficient methods for implementing large-scale matrix factorizations have been +proposed, analyzed, and implemented, such as [34,35,45,47]. Meanwhile, these well-established ran- +domized algorithms have been widely used for many practical applications, such as the least squares +problems [6, 49, 53] and Tikhonov regularization [33, 48]. Motivated by this success, in this work we +introduce the randomized schemes for efficiently computing the GCUR and the RSVD-CUR decompo- +sition. To be specific, there are two main computational stages involved in our randomized algorithms. +In the first stage, we use random projections to identify a subspace that captures most of the action +of the input matrix. Then we project the input matrix onto this subspace and get a reduced ma- +trix which is then manipulated deterministically to obtain the desired low-rank approximation of the +GSVD and RSVD. The second stage can be completed with well-established deterministic methods +DEIM and L-DEIM operating on the approximation obtained in the first stage to sample the columns +and rows of the original matrices. Compared with non-random approaches, our algorithms allow for a +comparable accuracy with much lower cost and will be more computationally efficient on large-scale +data. Details of the algorithm, theoretical analysis and numerical results are provided to show the +effectiveness of our approaches. +The rest of this paper is organized as follows. In Section 2, we first give a brief overview of the +2 + +GSVD and the RSVD, then we introduce some basic notation and describe several sampling techniques +including the DEIM and L-DEIM. Next, in Section 3, we present our randomized algorithms for +computing the GCUR factorization using the DEIM and L-DEIM procedure, where the probabilistic +error bound is also presented in detail. In Section 4, we first briefly review the literature on existing +algorithms for the computation of the RSVD, and develop an efficient method for computing this +decomposition. Then we develop randomized algorithms for computing the RSVD-CUR decomposition +based on the sampling procedure L-DEIM, along with detailed probabilistic error analysis. In Section +5, we test the performance of the proposed algorithms on several synthetic matrices and real-world +datasets. Finally, in Section 6, we end this paper with concluding remarks. +2 +Preliminaries +Throughout this paper, we use the MATLAB notation to index vectors and matrices, so that, +e.g., X(q, :) denotes the k rows of X whose indices are specified by the entries of the vector q ∈ Nk ++, +while X(:, p) denotes the k columns of X indexed by p. We denote the 2-norm by ∥ · ∥. A† denotes +the Moore-Penrose pseudoinverse [46] of A. +2.1 +GSVD and RSVD +We now give a brief introduction to the GSVD and RSVD which are the key building blocks of +the proposed algorithms. The original existence of GSVD was first introduced by Van Loan in [42]. +Paige and Saunders [31] later presented a more general formulation without any restrictions on the +dimensions except for both matrices to have the same number of columns, and other formulations and +contributions to the GSVD can be found in [2, 24, 37, 40, 43, 52]. In line with [17], in this paper, we +adopt the formulation proposed by Van Loan in [43]. Let A ∈ Rm×n and B ∈ Rd×n with both m ≥ n +and d ≥ n, then there exist orthogonal matrices U ∈ Rm×m, V ∈ Rd×d and a nonsingular Y ∈ Rn×n +such that +B = V ΣY T, Σ = diag(β1, . . . , βn), βi ∈ [0, 1] , +(2.1) +A = UΓY T, Γ = diag(γ1, . . . , γn), γi ∈ [0, 1] , +(2.2) +where γ2 +i + β2 +i = 1 and the ratios γi/βi are in a non-increasing order for i = 1, . . . , n. Further, +nonnegative number pairs {γi, βi}n +i=1 are actually the generalized singular values of the matrix pair +(A, B) as defined in [40], and the sensitivity of the generalized singular values of a matrix pair to +perturbations in the matrix elements was analyzed in [28,39,40]. +The RSVD [12, 51] is the factorization of a given matrix, relative to two other given matrices, +which can be interpreted as the ordinary singular value decomposition with different inner products +in the row and column spaces. Given a matrix triplet A ∈ Rm×n, B ∈ Rm×l and G ∈ Rd×n, with +ℓ ≥ d ≥ m ≥ n and we assume that B and G are of full rank. Following the formulation of the RSVD +proposed by Zha [51], there exist orthogonal matrices U ∈ Rl×l, V ∈ Rd×d and nonsingular matrices +Z ∈ Rm×m and W ∈ Rn×n such that +A = ZDAW T, B = ZDBU T, G = V DGW T, +(2.3) +or alternatively it can be expressed conveniently as +� A +B +G +� += +� Z +V +� � DA +DB +DG +� � W +U +�T +, +where DA ∈ Rm×n, DB ∈ Rm×l, and DG ∈ Rd×n are nonnegative diagonal matrices. +3 + +2.2 +Subset Selection Procedure +We now describe several tools for the subset selection that extract appropriate columns or rows +from matrices, that are the deterministic leverage score sampling procedure, the DEIM algorithm and +the L-DEIM algorithm. +Given A ∈ Rm×n with rank(A) ≥ k. Let Vk contain its k leading right singular vectors, and we +denote the ith row of Vk by [Vk]i,:. Then the rank-k leverage score of the ith column of A is defined as +ℓi = +���[Vk]i,: +��� +2 +, +i = 1, . . . , n. +The deterministic leverage score sampling procedure [27, 32] selects columns of A corresponding to +the indices of the largest leverage scores for a given k. From a practical perspective, this deterministic +algorithm is extremely simple to implement, but it does not admit provable performance guarantees. +The DEIM selection algorithm was first presented in [9] in the context of model order reduction for +nonlinear dynamical systems and is a discrete variant of the empirical interpolation method originally +proposed in [4]. To derive the method, we elaborate upon the interpolatory projectors. Given a full +column rank matrix V ∈ Rm×k and a set of distinct indices p, the interpolatory projector for p onto +the range of V Ran(V ) is +P = V (P TV )−1P T, +where P = I(:, p) ∈ Rm×k, provided P TV is invertible. In general, P is an oblique projector, and it +has an important property: for any vector x ∈ Rm, +(Px)(p) = P TPx = P TV +� +P TV +�−1 P Tx = P Tx = x(p), +(2.4) +so the projected vector Px matches x in the p entries. The DEIM algorithm processes the columns of +V sequentially starting with the first dominant singular vector. Each step processes the next singular +vector to produce the next index. The selected indices are used to compute the interpolatory projector +P. The next index is selected by removing the direction of the interpolatory projection in the previous +vectors from the subsequent one and finding the index of the entry with the largest magnitude in the +residual vector. See Algorithm 1 for details. +Algorithm 1 DEIM index selection [9] +Input: V ∈ Rm×k with k ≤ min(m, n). +Output: column index p ∈ Nk ++, with non-repeating entries, V ∈ Rm×k with k ≤ min(m, n). +1: v = V (:, 1). +2: p1 = argmax1≤i≤n |vi|. +3: for j = 2, . . . , k do +4: +v = V (:, j). +5: +c = V (p, 1 : j − 1)−1v(p). +6: +r = v − V (:, 1 : j − 1)c. +7: +pj = argmax1≤i≤m |ri|. +8: +p = +� +p +pj +� +. +9: end for +In [36], the DEIM algorithm was shown to be a viable index selection method for identifying the +most representative and influential subset of columns and rows that define a low-dimensional space of +the data. However, a notable limitation of this index selection algorithm is that the number of indices +that can be selected is limited to the number of available singular vectors. +4 + +Combining the strengths of deterministic leverage score sampling and the DEIM procedure, the +authors in [18] proposed a new variant of DEIM, called L-DEIM (Algorithm 2). This method allows +for the selection of a number of indices greater than the number of input singular vectors. As a result, +constructing a rank-k CUR decomposition of a matrix using the L-DEIM only requires �k singular +vectors where k > �k. To select the first �k indices, this method performs the original DEIM while +keeping the residual singular vector in each index selection step, which is the error between the input +singular vector and its approximation from interpolating the previous singular vectors at the selected +indices. Using the idea of the leverage scores, then it computes the 2-norm of the rows of the residual +singular vectors to select the additional k −�k indices. According to the conclusion summarized in [18], +the L-DEIM is computationally more efficient than the original DEIM, and the accuracy of both +methods may be comparable when the target rank k is at most twice the available �k singular vectors, +and empirically, we can set �k = k/2. Consequently, this novel selection procedure may be viewed as +an approach to reusing the same information to further improve the approximation. +Algorithm 2 L-DEIM index selection [18] +Input: V ∈ Rm×�k, target rank k with �k ≤ k ≤ min(m, n). +Output: column indices p ∈ Nk ++ with non-repeating entries. +1: for j = 1, . . . , �k do +2: +p(j) = argmax1≤i≤m |(V (:, j))i|. +3: +V (:, j + 1) = V (:, j + 1) − V (:, 1 : j) · (V (p, 1 : j)\V (p, j + 1)). +4: end for +5: Compute ℓi = ∥Vi:∥2 +for i = 1, . . . , m. +6: Sort ℓ in non-increasing order. +7: Remove entries in ℓ corresponding to the indices in p. +8: p′ = k − �k indices corresponding to k − �k largest entries of ℓ. +9: p = [p; p′]. +3 +Randomization for GCUR +In this section, we first give a brief introduction to the GCUR factorization. +Moreover, by +combining the random sampling techniques with the DEIM and L-DEIM procedures, we establish two +versions of efficient randomized algorithms for computing this factorization, along with the detailed +probabilistic error analysis for our approaches. +3.1 +GCUR +In [17], Gidisu and Hochstenbach developed a GCUR decomposition for two matrices A and B +with the same number of columns. The intuition behind this factorization is that we can view it as a +CUR decomposition of A relative to B, which is appropriate for applications where one is interested +in extracting the most discriminative information from a data set of interest relative to another data +set. Given a matrix pair (A, B), where A is m × n and B is d × n and both are of full column ranks +with m ≥ n and d ≥ n, then the rank-k GCUR decomposition of (A, B) is a matrix approximation of +A and B expressed as +A ≈ CAMARA = A(:, p) MA A(sA, :), +(3.1) +B ≈ CBMBRB = B(:, p) MB B(sB, :). +(3.2) +Here matrices CA and CB indexed by the vector p are the subset of the columns of A and B, capturing +the most relevant information of the original matrix. Selecting the same columns of A and B gives a +5 + +coupling between the decomposition of A and B. Meanwhile, RA and RB are formed by extracting k +rows from A and B, where the selected row indices are stored in the vectors sA and sB, respectively. +Given the row/column indices, the middle matrices MA and MB can be constructed in different ways +to satisfy certain desirable approximation properties. Following the work in [30, 36, 38], the authors +in [17] choose to construct the middle matrices MA and MB as +MA = C† +AAR† +A = (CT +ACA)−1CT +AART +A(RART +A)−1, +MB = C† +BBR† +B = (CT +BCB)−1CT +BBRT +B(RBRT +B)−1, +yielding the GCUR factorization that can be viewed as a two step process: first the columns of A are +projected onto the range of CA; then the result is projected onto the row space of RA: +(1) +X = CAC† +AA, (2) +CAMARA = XRAR† +A. +Both steps are optimal with respect to the two-norm error and as shown by Stewart [38], this option +minimizes ∥A − CAMARA∥ and ∥B − CBMBRB∥ for the given sampling indices. +In essence, this factorization is a generalization of the CUR decomposition. To be specific, when +B is square and nonsingular, the GCUR decomposition has a close connection with the CUR of AB−1. +Moreover, in the special case where B = I, the GCUR decomposition of A coincides with the CUR +decomposition of A in that the factors C and R of A are the same for both methods: (3.1) is equivalent +to (1.1). More generally, the GCUR is also applicable to rectangular matrices B, and still has a close +connection with the CUR decomposition of AB†. A more detailed discussion of the properties can +be found in [17, Proposition 4.2]. To build this decomposition, it is relevant to know the dominant +rows and columns of A and B in their rank-k approximations. Specifically, given a GSVD for matrix +pair of the form (2.2) and (2.1), the DEIM procedure uses U, V and Y to select the indices sA, sB +and p respectively. Algorithm 3 is a summary of this procedure, where the backslash operator is a +Matlab-type notation for solving linear systems and least-squares problems. +Algorithm 3 DEIM-type GCUR decomposition [17] +Input: A ∈ Rm×n and B ∈ Rm×n with m ≥ n and d ≥ n, desired rank k. +Output: A rank-k GCUR decomposition +A ≈ A(:, p) · MA · A(sA, :), B ≈ B(:, p) · MB · B(sB, :). +1: [U, V, Y ] = gsvd(A, B). +2: y = Y (:, 1). +3: p1 = argmax1≤i≤n |yi|. +4: for j = 2, . . . , k do +5: +y = Y (:, j). +6: +c = Y (p, 1 : j − 1)−1y(p). +7: +r = y − Y (:, 1 : j − 1)c. +8: +pj = argmax1≤i≤n |ri|. +9: +p = +� +p +pj +� +. +10: end for +11: Perform 2-9 on U and V to obtain the corresponding indices sA and sB. +12: MA = A(:, p)\ (A/A (sA, :)), MB = B(:, p)\ (B/B (sB, :)). +In terms of computational complexity, the computation of the GSVD requires O((m + n + d)n2), +while the DEIM procedure costs O((m + n + d)k2). Therefore, the overall complexity of Algorithm +3 is dominated by the construction of the GSVD. Nevertheless, this computational cost can be pro- +hibitively expensive when the dimensions are very large, making it difficult for large-scale applications. +To tackle the large-scale problems where a full GSVD may not be affordable, we turn to the randomized +6 + +algorithms [19, 45], which are typically computationally efficient and easy to implement. Moreover, +they have favorable numerical properties such as stability, and allow for restructuring computations +in ways that make them amenable to implementation in a variety of settings including parallel com- +putations. Following this success, and building on the random sampling techniques [19], we develop +randomized algorithms for efficiently computing the GCUR, and a more exhaustive treatment for our +randomized approaches-including pseudocode, and the detailed error analysis will be discussed in the +following work. +3.2 +Randomization for DEIM Based GCUR +As concluded in [19], the task of computing a low-rank approximation to a given matrix A can +be split naturally into two computational stages. The first stage is to construct a low-dimensional +subspace that captures the action of the input matrices, which can be executed very efficiently with +random sampling methods. In other words, we require a matrix Q for which +Q has orthonormal columns and A ≈ QQTA. +The second is to restrict the matrix to the subspace and then compute a standard factorization +(QR, SVD, etc.) of the reduced matrix, and it can be completed with well-established deterministic +methods. Here we wish to compute the approximate GSVD of the input pair (A, B), where A ∈ Rm×n, +B ∈ Rd×n with m ≥ n, such that +� B +A +� +≈ +� +B +QQTA +� += +� V +U +� � Σ +Γ +� +Y T. +(3.3) +This goal can be achieved after five simple steps [47]: +1. Generate an n × (k + p) Gaussian random matrix Ω; +2. Form the m × (k + p) matrix K = AΩ; +3. Compute the m × (k + p) orthonormal matrix Q via the QR factorization K = QR; +4. Compute the GSVD of (QTA, B): +� +B +QTA +� += +� V +W +� � Σ +Γ +� +Y T; +5. Form the m × (r + p) matrix U = QW. +By [19], the above operations generates (3.3) with the error E = A − QQTA saitisfying +∥E∥ ≤ +� +1 + 6 +� +(k + p)p log p +� +σk+1(A) + 3 +� +k + p +�� +j>k +σ2 +j (A) +(3.4) +with probability not less than 1 − 3p−p, where σj(A) is the jth largest singular value of A. Here p +is the oversampling parameter, which usually determines that small number of columns are added to +provide flexibility [19], and its selection is crucial for the effectiveness of the randomized algorithms. +The main computational cost for the randomized approach is the computation of GSVD for the much +smaller matrix pair (QTA, B). +Combining the randomized GSVD algorithm with the DEIM technique, we present our random- +ized algorithm for computing the GCUR decomposition in Algorithm 4. In this algorithm, we first +exploit the randomization techniques in [47] to accelerate the process of the GSVD to obtain the +generalized singular vectors. +Then we use the DEIM index selection procedure, operating on the +approximate generalized singular vector matrices to determine the selected columns and rows. We +note that we can parallelize the work in lines 7 to 15 since it consists of three independent runs of +7 + +Algorithm 4 DEIM based GCUR randomized algorithm [17] +Input: A ∈ Rm×n and B ∈ Rm×n with m ≥ n and d ≥ n, desired rank k, and the oversampling +parameter p. +Output: A rank-k GCUR decomposition +ˆA = A(:, p) · MA · A(sA, :), ˆB = B(:, p) · MB · B(sB, :). +1: Generate an n × (k + p) Gaussian random matrix Ω. +2: Form the m × (k + p) matrix K = AΩ. +3: Compute the m × (k + p) orthonormal matrix Q via the QR factorization K = QR. +4: Compute the GSVD of (B, QTA): +� +B +QTA +� += +� V +W +� � Σ +Γ +� +Y T. +5: Form the m × (r + p) matrix U = QW. +6: y = Y (:, 1). +7: p1 = argmax1≤i≤n |yi|. +8: for j = 2, . . . , k do +9: +y = Y (:, j). +10: +c = Y (p, 1 : j − 1)−1y(p). +11: +r = y − Y (:, 1 : j − 1)c. +12: +pj = argmax1≤i≤n |ri|. +13: +p = +� +p +pj +� +. +14: end for +15: Perform 2-9 on U and V to obtain the corresponding indices sA and sB. +16: Compute MA = A(:, p)\ (A/A (sA, :)), MB = B(:, p)\ (B/B (sB, :)). +DEIM. Also, as noted in [17], if we are only interested in approximating the matrix A from the pair +(A, B), we can omit the manipulation on V . Meanwhile, one can observe that the dominant cost of the +randomized algorithm lies in computing the GSVD of matrix pair (QTA, B), and it is much lower than +its counterpart in the non-random algorithm. Consequently, from a practical perspective, Algorithm +4 is extremely simple to implement and can greatly reduce the computational time. The following +work will give performance guarantees by quantifying the error of the rank-k GCUR decomposition +ˆA = CAMARA = A(:, p) · MA · A (sA, :) and ˆB = CBMBRB = B(:, p) · MB · B (sB, :). +Consistent with (2.2) and (2.1), let the number pairs {(γi, βi)}n +i=1 be the generalized singular +values of the matrix pair (A, B), where we we maintain the ratios γi/βi in a non-increasing order. As +described in Algorithm 4, the matrix pair (A, B) owns the approximate GSVD +QQTA = UΓY T +and +B = V ΣY T, +where Γ = diag(˜γ1, . . . , ˜γn), Σ = diag(˜β1, . . . , ˜βn), and the ratios ˜γi/˜βi are in a non-increasing order, +and the approximation error satisfies (3.4) with failure probability not exceeding 3p−p. Partition the +matrices: +U = +� +Uk +�U +� +, +V = +� +Vk +�V +� +, +Y = +� +Yk +�Y +� +, +(3.5) +Γ = diag +� +Γk, �Γ +� +, +Σ = diag +� +Σk, �Σ +� +, +(3.6) +where matrices Uk, Vk, and Yk contain the first k columns of U, V , and Y respectively. For our +analysis, instead of Y , we use its orthonormal QR factor H from the QR decomposition of Y : +� +Yk +�Y +� += Y = HT = +� +Hk +�H +� � Tk +T12 +0 +T22 +� += +� +HkTk +H �T +� +, +(3.7) +with �T = +� T12 +T22 +� +. This implies that QQTA = UkΓkY T +k + �U�Γ�Y T = UkΓkT T +k HT +k + �U�Γ �T THT. With +the above preparation, the following theorem derives the error bound for ∥A − ˆA∥. +8 + +Theorem 3.1. Suppose A ∈ Rm×n, B ∈ Rd×n and both are of full column rank, and let matrix +pair ( ˆA, ˆB) be a rank-k GCUR decomposition for matrix pair (A, B) computed by Algorithm 4. Let +Θk = (1 + 6 +� +(k + p)p log p)σk+1(A) + 3√k + p +�� +j>k σ2 +j (A), and ηk = +� +nk +3 2k + +� +mk +3 2k. Then +∥ ˆA − A∥ ≤ ηk +� +Θk + (∥A∥ + ∥B∥) +� +γk+1 +βk+1 ++ Θk +βk+1 +����� +� A +B +�†����� +�� +(3.8) +holds with probability not less than 1−3p−p, where the number pair (γk+1, βk+1) is defined in (2.1)and +(2.2), and both γi/βi and 1/βi are in a non-increasing order. +Proof. By the definition of MA, we have +A − CAMARA = A − CAC† +AAR† +ARA = (I − CAC† +A)A + CAC† +AA(I − R† +ARA). +Since CAC† +A is an orthogonal projection, it directly follows that +∥A − CAMARA∥ ≤∥(I − CAC† +A)A∥ + ∥A(I − R† +ARA)∥. +(3.9) +According to [36, Lemma 3.2], the column and row indices sA and p give the full rank matrices +CA = ASA and RA = P TA where SA = I(:, sA) and P = I(:, p). +Let P = P(HT +k P)−1HT +k and +S = Uk(ST +AUk)−1ST +A. Then using the result in [17, Proposition 4.7], we get +∥(I − CAC† +A)A∥ ≤ ∥A(I − P)∥, +∥A(I − R† +ARA)∥ ≤ ∥(I − S)A∥. +Note that U T +k Uk = I and HT +k Hk = I. Then according to [36, Lemma 4.1], we obtain that +∥(I − CAC† +A)A∥ ≤∥(HT +k P)−1∥∥A(I − HkHT +k )∥ +≤∥(HT +k P)−1∥ +� +∥E∥ + ∥QQTA +� +I − HkHT +k +� +∥ +� +, +(3.10) +where we use +��I − HkHT +k +�� = 1. Analogous operation gives that +∥A(I − R† +ARA)∥ ≤ ∥(ST +AUk)−1∥ +� +∥E∥ + ∥(I − UkU T +k )QQTA∥ +� +. +(3.11) +Note that +QQTAHkHT +k = +� +Uk +�U +� � Γk +0 +0 +�Γ +� � T T +k +0 +T T +12 +T T +22 +� � Ik +0 +� +HT +k += UkΓkT T +k HT +k + �U�ΓT T +12HT +k , +and hence, +QQTA +� +I − HkHT +k +� += �U�Γ �T THT − �U�ΓT T +12HT +k = �U�ΓT T +22 �HT. +Similarly, it holds that +� +I − UkU T +k +� +QQTA = QQTA − UkΓkY T +k = �U�Γ�Y T = �U�Γ �T T HT. +Therefore, +∥QQTA(I − HHT +k )∥ = ∥�U�ΓT T +22 �HT∥ ≤ ˜γk+1∥T22∥ ≤ ˜γk+1∥ �T∥, +(3.12) +∥(I − UkU T +k )QQTA∥ ≤ ˜γk+1∥ �T∥. +(3.13) +To bound ∥ �T∥, recall the result in [21, Theorem 2.3] that ∥Y ∥ ≤ ∥QQTA∥+∥B∥. Given the partitioning +and QR factorization of Y , we have +∥ �T∥ = ∥H �T∥ = ∥�Y ∥ ≤ ∥Y ∥ ≤ ∥QQTA∥ + ∥B∥ ≤ ∥A∥ + ∥B∥. +(3.14) +9 + +For the DEIM selection scheme, [36, Lemma 4.4] derives the bound +��� +� +HT +k P +�−1��� < +� +nk +3 2k, +and +��� +� +ST +AUk +�−1��� < +� +mk +3 2k. +(3.15) +Inserting (3.10)-(3.15) and into (3.9), we obtain +∥ ˆA − A∥ ≤ ηk (∥E∥ + ˜γk+1 (∥A∥ + ∥B∥)) , +(3.16) +where ˜γk+1 is the (k + 1)th diagonal entry of Γ with a non-increasing order. +Recall the perturbation results for the generalized singular values in [39, Theorem 3] +���˜γiβi − ˜βiγi +��� ≤ +���� +� E +F +����� · +����� +� A +B +�†����� , +1 ⩽ i ⩽ n, +where matrices E and F are the perturbations to A and B, respectively. Clearly, we have F = 0 for +our randomized algorithm. As a result, we have +˜γk+1 ≤ +1 +βk+1 +� +γk+1 + ∥E∥ · +����� +� A +B +�†����� +� +. +(3.17) +We finish the proof by combining (3.16), (3.17) and the probabilistic error bound (3.4). +Because the ratios γi/βi and 1/βi are maintained in a non-increasing order, the right-hand side of +(3.8) decreases as the target rank k increases. Note that the randomized GSVD algorithm provides +an exact decomposition of B, the error bound for ∥B − ˆB∥ in [17] still holds that +∥B − CBMBRB∥ ≤ ∥ +� +HT +k P +�−1 ∥ · ∥T22∥ + ∥ +� +ST +BVk +�−1 ∥ · ∥ �T∥ +≤ +� +∥ +� +HT +k P +�−1 ∥ + ∥ +� +ST +BVk +�−1 ∥ +� +· ∥ �T∥ +≤ +�� +nk +3 2k + +� +dk +3 2k +� +(∥A∥ + ∥B∥) . +Compared with the error bound of ∥A − CAMARA∥ under the non-random scheme in [17] that +∥A − CAMARA∥ ≤ γk+1(∥A∥ + ∥B∥) · ηk, +(3.8) involves a truncation term Θk due to the randomization of the GSVD, and consequently, our +randomized approach works well for matrices whose singular values exhibit some decay. +3.3 +Randomization for L-DEIM Based GCUR +To further improve the efficiency of our randomized algorithm, we now turn our gaze to combining +the random sampling methods with the L-DEIM algorithm, which we will see can yield acceptable +error bounds with high probability at a lower computational cost. We present this scheme in Algorithm +5 and give a similar probabilistic error estimate in Theorem 3.2. +Theorem 3.2. Let the matrix pair ( ˆA, ˆB) be a rank-�k GCUR approximation for pair (A, B) computed +by Algorithm 5. Suppose that Θ�k = +� +1 + 6 +� +(�k + p)p log p +� +σ�k+1(A) + 3 +� +�k + p +�� +j>�k σ2 +j (A), and +η�k = +� +n�k +3 2�k + +� +m�k +3 2�k, and then the following error bound +∥ ˆA − A∥ ≤ η�k +� +Θ�k + (∥A∥ + ∥B∥) +� +γ�k+1 +β�k+1 ++ Θ�k +β�k+1 +����� +� A +B +�†����� +�� +, +fails with probability not exceeding than 3p−p and γi/βi and 1/βi are in a non-increasing order. +10 + +Algorithm 5 L-DEIM based GCUR randomized algorithm +Input: A ∈ Rm×n and B ∈ Rm×n with m ≥ n and d ≥ n, desired rank k, the oversampling +parameter p and the specified parameter �k. +Output: A rank-k GCUR decomposition +ˆA = A(:, p) · MA · A(sA, :), ˆB = B(:, p) · MB · B(sB, :). +1: Generate an n × (�k + p) Gaussian random matrix Ω. +2: Form the m × (�k + p) matrix K = AΩ. +3: Compute the m × (�k + p) orthonormal matrix Q via the QR factorization K = QR. +4: Compute the GSVD of (QTA, B): +� +B +QTA +� += +� V +W +� � Σ +Γ +� +Y T. +5: Form the m × (�k + p) matrix U = QW. +6: for j = 1, . . . , �k do +7: +p(j) = argmax1≤i≤n |(Y (:, j))i|. +8: +Y (:, j + 1) = Y (:, j + 1) − Y (:, 1 : j) · (Y (s, 1 : j)\Y (p, j + 1)). +9: end for +10: Compute ℓi = ∥[Y ]i:∥2 +for i = 1, . . . , n. +11: Sort ℓ in non-increasing order. +12: Remove entries in ℓ corresponding to the indices in p. +13: p′ = k − �k indices corresponding to k − �k largest entries of ℓ. +14: p = [p; p′]. +15: Perform 6-14 on U and V to obtain the corresponding indices sA and sB. +16: Compute MA = A(:, p)\ (A/A (sA, :)), MB = B(:, p)\ (B/B (sB, :)). +4 +Randomization for RSVD-CUR +Real-world data sets often comprise different representations or views, which provide information +complementary to each other. The canonical correlation analysis (CCA) [26] is one of the most common +and useful techniques for multi-data processing. Motivated by the CCA, Gidisu and Hochstenbach [16] +generalized the DEIM-type CUR to a new coordinated CUR factorization of a matrix triplet (A, B, G) +of compatible dimensions based on the RSVD, which was called the RSVD-CUR decomposition. +Analogous to CCA, an RSVD-CUR factorization as a tool for multi-view dimension reduction can +cope with a two-view case. +Furthermore, in the same context, one can use an RSVD-CUR as a +supervised feature selection technique in multilabel classification problems and it can also applied +to cases where the the goal is to select a subset of rows and or columns of one data set relative +to two other data sets. In this section, we introduce new randomized algorithms for computing the +RSVD-CUR decomposition where we apply the L-DEIM scheme and the random sampling techniques. +Detailed error analysis which provides insight into the accuracy of the algorithms and the choice of +the algorithmic parameters is given. +4.1 +RSVD-CUR +We now give a brief overview of the RSVD-CUR of a matrix triplet (A, B, G) with A ∈ Rm×n +B ∈ Rm×ℓ, and G ∈ Rd×n (ℓ ≥ d ≥ m ≥ n) where B and G are of full rank. +Then a rank-k +RSVD-GCUR approximation of (A, B, G) is defined as +A ≈ CAMARA = AP MA STA, +B ≈ CBMBRB = BPB MB STB, +G ≈ CGMGRG = GP MG ST +GG. +(4.1) +11 + +Here S ∈ Rm×k, SG ∈ Rd×k, P ∈ Rn×k, and PB ∈ Rℓ×k are index selection matrices with some columns +of the identity that select rows and columns of the respective matrices. It is key that the same rows +of A and B are picked and the same columns of A and G are selected; this gives a coupling among +the decompositions. As a result, the RSVD-GCUR may be viewed as a CUR-type decomposition of +a matrix relative to two other matrices of compatible dimensions. +The matrices CA ∈ Rm×k, CB ∈ Rm×k, CG ∈ Rd×k and RA ∈ Rk×n, RB ∈ Rk×ℓ, RG ∈ Rk×n +are subsets of the columns and rows, respectively, of the given matrices. Let the vectors s, sG, p +and pB contain the indices of the selected rows and columns, such that S = I(:, s), SG = I(:, sG), +P = I(:, p), and PB = I(:, pB). In [16], the choice of s, sG, p and pB is guided by the knowledge +of the orthogonal and nonsingular matrices from the rank-k RSVD, where the DEIM and L-DEIM +algorithms are employed as the index selection strategies for finding the “best” row and column indices. +Specifically, suppose that the RSVD of (A, B, G) are available, as shown in (2.3). To construct a +DEIM-type RSVD-CUR decomposition of a matrix pair (A, B, G), given the target rank k, the DEIM +operates on the first k columns on matrices W, Z, U and V to obtain the corresponding indices p, +s, pB and sG. Moreover, by utilizing the L-DEIM, one can use at least the first k/2 vectors of W, +Z, U, and V to obtain the indices, with the approximation quality as good as that of the DEIM-type +RSVD-CUR, which is demonstrated numerically in [16]. +It is clear that both the DEIM and the L-DEIM type RSVD-CUR decompositions require the +inputs of the RSVD. Nevertheless, computing this factorization can be a significant computational +bottleneck in the large-scale applications. How to reduce this computational cost and still ensure the +accuracy of the approximation is our main concern. Next, we introduce the randomized schemes for +computing the RSVD-CUR decomposition, together with a detailed error analysis. +4.2 +Randomization for Restricted SVD +The computation of the RSVD is still an active field of research; see some recent works [11,54,55]. +The RSVD can be considered as a double GSVD [12]. We first compute the GSVD of (A, G), +A = U1Γ1Y T +1 , +G = V1 +� Σ1 +0d−n,n +� +Y T +1 , +and then we compute the GSVD of (BTU1, Σ−1 +1 ΓT +1 ), so that +BTU1 = U2Γ2Y T +2 , +Σ−1 +1 ΓT +1 = V2Σ2Y T +2 . +The above two steps can be summarized in (4.2). +� A +B +G +� += +� U1 +V1 +� � +� +Γ1 +U T +1 B +Σ1 +0d−n,n +� +� +� Y T +1 +I +� += +� U1 +V1 +� � +� +Γ1Σ−1 +1 +U T +1 B +I +0d−n,n +� +� +� Σ1Y T +1 +I +� += +� U1Y2 +V1 +� � +� +ΣT +2 +ΓT +2 +V2 +0d−n,n +� +� +� V T +2 Σ1Y T +1 +U T +2 +� += +� U1Y2 +V1 �V2 +� � +� +ΣT +2 ΓG +ΓT +2 +ΓG +0d−n,n +� +� +� Y1Σ1V2Γ−1 +G +U2 +�T +, +(4.2) +12 + +where �V2 = diag(V2, Id−n). Moreover, ΓG = diag (γ1, . . . , γn) ∈ Rn×n is a scaling matrix that one can +freely select (see, e.g., [55]), and critically, we keep the diagonal entries of Γ1 and Γ2 in non-decreasing +order while those of Σ1 and Σ2 are non-increasing. In accordance with (2.3), one can define +Z ≜ U1Y2, W ≜ Y1Σ1V2Γ−1 +G , V ≜ V1 �V2, U ≜ U2, +(4.3) +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +DA ≜ ΣT +2 ΓG = +� +���� +α1 +... +αn +0m−n,n +� +���� ∈ Rm×n, +DB ≜ ΓT +2 = +� +���� +β1 +... +0n,m−n +0n,l−m +βn +0m−n,n +Im−n +0m−n,l−m +� +���� ∈ Rm×l, +DG ≜ +� +ΓG +0d−n,n +� += +� +���� +γ1 +... +γn +0d−n,n +� +���� ∈ Rd×n. +Denote Σ2 = diag (σ1, . . . , σn) ∈ Rn×m. +Here we choose γi = +σi +√ +σ2 +i +1 for i = 1, . . . , n, which are +ordered non-increasingly ( since f(x) = x +� +x2 + 1 +�−1/2 is a strictly increasing function) and it implies +that αi = +σ2 +i +√ +σ2 +i +1. Given that β2 +i + σ2 +i = 1 from the second GSVD, we have that α2 +i + β2 +i + γ2 +i = 1 +for i = 1, . . . , n. Note that B and G are of full rank, 1 > αi ≥ αi+1 > 0, 1 > γi ≥ γi+1 > 0 and +0 < βi ≤ βi+1 < 1. +We now proceed to propose a fast randomized algorithm for computing the RSVD. The main idea +of our approach is to accelerate this computational process by exploiting the randomized GSVD algo- +rithm and its analysis relies heavily on the results introduced in Subsection 3.2. Firstly, an orthonormal +matrix H1 ∈ Rd×(k+p1) is generated to satisfy +��G − H1HT +1 G +�� ≤ cσk+1 with high probability, where +σk+1 is the (k + 1)th largest singular value of G and c is a constant depending on k and p1. Here +p1 is the oversampling parameter, which is used to provide flexibility [19]. According to (4.2), Σ1 is +required to be square, hence, here we fix that p1 = n−k. By performing the GSVD of [(HT +1 G)T, AT]T, +we get the approximate GSVD of [GT, AT]T, +� A +G +� +≈ +� +A +H1HT +1 G +� += +� U1 +V1 +� � Γ1 +Σ1 +� +Y T +1 . +(4.4) +When m ≫ n, the computational advantage of (4.4) becomes much more obvious. Furthermore, we +can formulate the approximate GSVD for the pair (BTU1, Σ−1 +1 ΓT +1 ) by performing the GSVD of the +small-scale matrix [(HT +2 BTU1)T, (Σ−1 +1 ΓT +1 )T]T, where H2 is a (k + p2) × n orthonormal matrix, and p2 +is also an oversampling parameter. Then we obtain +� BTU1 +Σ−1 +1 ΓT +1 +� +≈ +� H2HT +2 (BTU1) +Σ−1 +1 ΓT +1 +� += +� U2 +V2 +� � Γ2 +Σ2 +� +Y T +2 . +(4.5) +Finally, we can formulate the corresponding approximate RSVD of (A, B, G), +A = ZDAW T, +B ≈ ˜B = ZDBU T, +G ≈ ˜G = V DGW T. +(4.6) +13 + +To be more clear in presentation, the above process can be expressed as follows: +� A +B +G +� +≈ +� A +B +H1HT +1 G +� += +� U1 +V1 +� � Γ1 +U T +1 B +Σ1 +� � Y T +1 +I +� += +� U1 +V1 +� � Γ1Σ−1 +1 +U T +1 B +I +� � Σ1Y T +1 +I +� +≈ +� U1 +V1 +� � Γ1Σ−1 +1 +� +U T +1 B +� +H2HT +2 +I +� � Σ1Y T +1 +I +� += +� U1Y2 +V1 +� � ΣT +2 +ΓT +2 +V2 +� � V T +2 Σ1Y T +1 +U T +2 +� += +� U1Y2 +V1V2 +� � ΣT +2 ΓG +ΓT +2 +ΓG +� � Y1Σ1V2Γ−1 +G +U2 +�T +≜ +� Z +V +� � DA +DB +DG +� � W +U +�T +. +We summarize the details in Algorithm 6. Notice that (4.6) indicates that our randomized approach +provides an exact factorization for A, which is a direct consequence of (4.4), while it does not hold for +matrices B and G. We present a detailed analysis of the approximation error in the following theorem. +Theorem 4.1. Suppose that B ∈ Rm×l and G ∈ Rd×n with l ≥ d ≥ m ≥ n and p is an oversampling +parameter. Let ˜B and ˜G be the approximation of B and G computed by Algorithm 6, then +∥B − ˜B∥ ≤ +� +1 + 6 +� +(k + p)p log p +� +σk+1(B) + 3 +� +k + p +�� +j>k +σ2 +j (B), +(4.7) +∥G − ˜G∥ ≤ +� +1 + 6 +� +n(n − k) log(n − k) +� +σk+1(G) + 3 +� +n +� +j>k +σ2 +j (G) +(4.8) +hold with probability not less than 1 − 3p−p and 1 − (n − k)−(n−k) respectively. +Proof. Let EG and EB be the error matrices such that +G = V1Σ1Y T +1 + EG, +BTU1 = U2Γ2Y T +2 + EB, +Σ−1 +1 ΓT +1 = V2Σ2Y T +2 . +(4.9) +Inserting (4.3) and (4.9) into ˜B and ˜G, we have +B − ˜B = B − ZDBU T = B − (U1Y2)ΓT +2 U T +2 = B − U1(U T +1 B − ET +B) = U1ET +B, +G − ˜G = G − V DGW T = G − (V1V2)ΓG(Y1Σ1V2Γ−1 +G )T = G − V1Σ1Y T +1 = EG. +During randomization for the GSVD of (A, G), we set the oversampling parameter p′ = n − k. By the +probabilistic error bound (3.4), we have +∥G − ˜G∥ ≤ ∥EG∥ ≤ +� +1 + 6 +� +n(n − k) log(n − k) +� +σk+1(G) + 3 +� +n +� +j>k +σ2 +j (G), +which holds with probability not less than 1 − 3(n − k)−(n−k), and similarly +∥B − ˜B∥ ≤ ∥EB∥ ≤ +� +1 + 6 +� +(k + p)p log p +� +σk+1(U T +1 B) + 3 +� +k + p +�� +j>k +σ2 +j (U T +1 B) +≤ +� +1 + 6 +� +(k + p)p log p +� +σk+1(B) + 3 +� +k + p +�� +j>k +σ2 +j (B), +with probability not less than 1−p−p, where we apply the result in [23, Lemma 3.3.1] that σj(U T +1 B) ≤ +σj(B) when U1 is orthonormal. +14 + +Algorithm 6 Randomized RSVD algorithm +Input: A ∈ Rm×n, B ∈ Rm×ℓ, and G ∈ Rd×n, with with ℓ ≥ d ≥ m ≥ n, desired rank k, and the +oversampling parameter p. +Output: an RSVD of matrix triplet (A, B, G), +A = ZDAW T, B ≈ ZDBU T, G ≈ V DGW T. +1: Generate an n × n Gaussian random matrix Ω1. +2: Form the d × n matrix GΩ1. +3: Compute the d × n orthonormal matrix H1 via the QR factorization GΩ1 = H1R. +4: Compute the GSVD of (A, HT +1 G): +� +A +HT +1 G +� += +� U1 +˜V1 +� � Γ1 +Σ1 +� +Y T +1 . +5: Form the d × n orthonormal matrix V1 = H1 ˜V1. +6: Form the m × k2 matrix GΩ2. +7: Compute the (k2 + p) × n orthonormal matrix H2 via the QR factorization (BTU1)Ω2 = H2R. +8: Compute the GSVD of +� +HT +2 +� +BTU1 +� +, Σ−1 +1 ΓT +1 +� +: +� HT +2 +� +BTU1 +� +Σ−1 +1 ΓT +1 +� += +� ˜U2 +V2 +� � Γ2 +Σ2 +� +Y T +2 , where +Σ2 = diag (σ1, . . . , σn). +9: Form the (k2 + p) × k2 orthonormal matrix U2 = H2 ˜U2. +10: Form the diagonal matrix ΓG = diag(γ1, . . . , γn), γi = +σi +√ +σ2 +i +1. +11: Form the orthonormal matrices U = U2 ∈ R(k2+p)×k2, V = V1V2 ∈ Rd×k1, diagonal matrices +DA = ΣT +2 ΓG, DB = ΓT +2 , DG = ΓG, and the nonsingular matrices Z = U1Y2 ∈ Rm×m, W = +Y1Σ1V2Γ−1 +G ∈ Rn×n. +4.3 +Randomization for L-DEIM Based RSVD-CUR +Now we are ready to establish an efficient procedure for computing an approximate RSVD-CUR +decomposition, along with a theoretical analysis of its error bound. Given a matrix triplet (A, B, G), +with A ∈ Rm×n , B ∈ Rm×l, and G ∈ Rd×n (ℓ ≥ d ≥ m ≥ n) where B and G are of full rank. Our +approach provides a rank-k RSVD-CUR decomposition of the form (2.3), and the choice of indices s, +sG, p, and pB is guided by the knowledge of the orthonormal matrices and nonsingular matrices from +the approximation of the rank-�k RSVD, where �k ≤ k. The details are summarized in Algorithm 7. +The innovation of our approach has two aspects. First, we leverage the randomized algorithms +(Algorithm 6) to accomplish the truncation procedure of the RSVD, where the random sampling +technique can be used to identify a subspace that captures most of the action of a matrix. As a result, +a large-scale problem is projected randomly to a smaller subspace that contains the main information, +and then we apply the deterministic algorithm to the associated small-scale problem. Consequently, an +approximate rank-�k RSVD of the form (4.6) is obtained. Second, to further strengthen the efficiency of +our algorithm scheme, we adopt the L-DEIM method for sampling instead of the DEIM. As described +in Subsection 2.2, compared to the DEIM scheme, the L-DEIM procedure is computationally more +efficient and requires less than k input vectors to select the indices. +We now provide a rough error analysis that shows that the accuracy of the proposed algorithm +is closely associated with the error of the approximation RSVD. The analysis follows the results +in [16,17,36] with some necessary modifications. We begin by partitioning the matrices in (4.6) +U = +� +U�k +�U +� +, +V = +� +V�k +�V +� +, +W = +� +W�k +� +W +� +, +Z = +� +Z�k +�Z +� +, +DA = diag +� +DA�k, �DA +� +, +DB = diag +� +DB�k, �DB +� +, +DG = diag +� +DG�k, �DG +� +, +where �DA ∈ R(m−�k)×(n−�k), �DB ∈ R(m−�k)×(l−�k), and �DG ∈ R(d−�k)×(n−�k). As with the DEIM-type +GCUR method in [17], the lack of orthogonality of the basis vectors in W and Z from the RSVD +15 + +necessitates some additional work. Mimicking the techniques in [16], here we take a QR factorization +of W and Z to obtain an orthonormal basis to facilitate the analysis, +� +Z�k +�Z +� += Z = QZTZ = +� +QZ�k +�QZ +� � TZ�k +TZ12 +0 +TZ22 +� += +� +QZ�kTZ�k +QZ �TZ +� +, +� +W�k +� +W +� += W = QW TW = +� +QW�k +�QW +� � TW�k +TW12 +0 +TW22 +� += +� +QW�kTW�k +QW �TW +� +, +where we have denoted +�TZ := +� TZ12 +TZ22 +� +, +�TW := +� TW12 +TW22 +� +. +It is straightforward to check that +B = Z�kDBkU T +�k + �Z �DB �U T + EB = QZ�kTZ�kDB�kU T +�k + QZ �TZ �DB �U T + EB, +G = V�kDG�kW T +�k + �V �DG� +W T + EG = V�kDG�kT T +W�kQT +W�k + V�k �DG �T T +W QT +W + EG, +where EB and EG satisfy the probabilistic error bounds (4.7) and (4.8). Since Algorithm 6 provides +an exact decomposition of A, the error bound for A in [16, Proposition 2] +∥A − CAMARA∥ ≤ αk+1 · +� +� +� +n�k +3 2 +�k + +� +m�k +3 2 +�k +� +� · +��� �TW +��� +��� �TZ +��� , +(4.10) +still holds. Here αk+1 is the (k + 1)th diagonal entry of DA, which is ordered non-increasingly. The +following theorem roughly quantifies the error bounds for ∥B − CBMBRB∥ and ∥G − CGMGRG∥. +Theorem 4.2. Suppose that a rank-k RSVD-CUR decomposition for (A, B, G) of the form (4.1) +is produced by Algorithm 7, where S = I(:, s), SG = I(:, sG), P = I(:, p) and PB = I(:, pB) are +the index selection matrices, and p is the oversampling parameter. Let ηG = +� +n�k +3 2�k + +� +d�k +3 2�k, and +ηB = +� +l�k +3 2�k + +� +m�k +3 2�k. Then +∥G − CGMGRG∥ ≤ ηG · +� +∥EG∥ + +��� �TW +��� +� +, +∥B − CBMBRB∥ ≤ ηB · +� +∥EB∥ + +��� �TZ +��� +� +, +where +∥EG∥ ≤ +� +1 + 6 +� +n(n − �k) log(n − �k) +� +σ�k+1(G) + 3 +� +n +� +j>�k +σ2 +j (G), +∥EB∥ ≤ +� +1 + 6 +� +(�k + p)p log p +� +σ�k+1(B) + 3 +� +(�k + p) +� +j>�k +σ2 +j (B) +which hold with probability not less than 1 − (n − �k)−(n−�k) and 1 − 3p−p, respectively. +Proof. It suffices to prove the bound for ∥G−CGMGRG∥. Given the orthogonal projectors CGC† +G and +RGR† +G and compute MG = C† +GGR† +G, using the result in [30], we have +G − CGMGRG = G − CGC+ +GGR† +GRG = (I − CGC† +G)G + CGC† +GG(I − R† +GRG). +(4.11) +Then +∥G − CGMGRG∥ ≤ ∥(I − CGC† +G)G∥ + ∥G(I − R† +GRG)∥. +Given index selection matrix P from the L-DEIM scheme on matrix W�k, and suppose that QW�k +is an orthonormal basis for Ran(W�k). +We form P = P(QT +W�kP)†QT +W�k: an oblique projector with +16 + +P(W T +�k P)†W T +�k = P(QT +W�kP)†QT +W�k ( [9, Equation 3.6]) and we also have QT +W�kP = QT +W�kP(QT +W�kP)†QT +W�k = +QT +W�k, which implies QT +W�k(I − P) = 0. From [22, Lemmas 2 and 3], we obtain that +∥(I − CGC† +G)G∥ ≤ ∥G(I − P)∥ = ∥G(I − QW�kQT +W�k)(I − P)∥ ≤ ∥G(I − QW�kQT +W�k)∥∥I − P∥, +∥G(I − R† +GRG)∥ ≤ ∥(I − S)G∥ = ∥(I − S)(I − V�kV T +�k )G∥ ≤ ∥(I − S)∥∥(I − V�kV T +�k )G∥. +Since �k < r, P ̸= 0, P ̸= I and S ̸= 0, S ̸= I. By [41, Lemma 4.1], we have +∥I − P∥ = ∥P∥ = ∥(QT +W�kP)†∥, +∥I − S∥ = ∥S∥ = ∥(STV�k)†∥. +Using the partitioning of G, we have +GQW�kQT +W�k = +� +V�k +�V +� � DG�k +0 +0 +�DG +� � +T T +W�k +0 +T T +W12 +T T +W22 +� � I�k +0 +� +QT +W�k + EGQW�kQT +W�k += V�kDG�kT T +W�kQT +W�k + �V �DGT T +W12QT +W�k + EGQW�kQT +W�k, +and hence +G(I − QW�kQT +Wk) = �V �DG �T TQT − �V �DGT T +W12QT +W�k − EGQW�kQT +W�k = �V �DGT T +W22 �QT +W − EGQW�kQT +W�k. +This implies +∥G(I − QW�kQT +W�k)∥ ≤ γ�k+1 ∥TW22∥ + ∥EG∥ ≤ ∥TW22∥ + ∥EG∥ +and then +∥(I − CGC† +G)G∥ ≤ ∥G(I − QW�kQT +W�k)∥∥I − P∥ ≤ ∥(QT +W�kP)†∥ · (∥TW22∥ + ∥EG∥), +Similarly, we have +∥G(I − R† +GRG) ≤ ∥(STV�k)†∥ · (∥ �TW ∥ + ∥EG∥) ≤ ∥(STV�k)†∥ · (∥ �TW ∥ + ∥EG∥). +Then it follows that +∥G − CGMGRG∥ ≤ +� +∥(QT +W�kP)†∥ + ∥(STV�k)†∥ +� +· (∥ �TW ∥ + ∥EG∥). +Using the upper bounds [16] +∥(QT +W�kP)†∥ < +� +n�k +3 2 +�k, +∥(ST +GV�k)†∥ < +� +d�k +3 2 +�k. +and applying the probabilistic error bound (3.4), we obtain the desired result. +Comparing the results of the error bounds in Theorem 4.2 to [16, Theorem 4.3] that +∥G − CGMGRG∥ ≤ γk+1 · ηG · +��� �TW +��� , ∥B − CBMBRB∥ ≤ ηB · +��� �TZ +��� , +our results involve the item (1+6 +� +n(n − �k) log(n − �k))σ�k+1(G)+3 +� +n � +j>�k σ2 +j (G) in the error bound +of ∥G − CGMGRG∥ and the item (1 + 6 +� +(�k + p)p log p)σ�k+1(B) + 3 +� +�k + p +�� +j>�k σ2 +j (B) in the error +bound of ∥B − CBMBRB∥, respectively. +Therefore, our randomized algorithm works well for the +matrices whose singular values exhibit some decay. +17 + +Algorithm 7 L-DEIM based RSVD-CUR randomized algorithm +Input: A ∈ Rm×n, B ∈ Rm×l, and G ∈ Rd×n with l = d ≥ m ≥ n, desired rank k, the oversampling +parameter p and the specified parameter �k. +Output: A rank-k RSVD-CUR decomposition +A ≈ A(:, p) · MA · A(s, :), B ≈ B(:, pB) · MB · B(s, :), G ≈ G(:, p) · MG · G(sG, :). +1: Generate an n × n Gaussian random matrix Ω1. +2: Form the d × n matrix GΩ1. +3: Compute the d × n orthonormal matrix H1 via the QR factorization GΩ1 = H1R1. +4: Compute the GSVD of (HT +1 G, A): +� HT +1 G +A +� += +� ˜V1 +U1 +� � Σ1 +Γ1 +� +Y T +1 . +5: Form the n × n orthogonal matrix V1 = H1 ˜V1. +6: Generate an m × (�k + p) Gaussian random matrix Ω2. +7: Form the l × (�k + p) matrix (BTU1)Ω2. +8: Compute the l × (�k + p) orthonormal matrix H2 via the QR factorization (BTU1)Ω2 = H2R2. +9: Compute the GSVD of (HT +2 (BTU1), Σ−1 +1 ΓT +1 ): +� HT +2 (BTU1) +Σ−1 +1 ΓT +1 +� += +� ˜U2 +V2 +� � Γ2 +Σ2 +� +Y T +2 , where +Σ2 = diag (σ1, . . . , σn). +10: Form the l × (�k + p) orthonormal matrix U2 = H2 ˜U2. +11: Form the n × n diagonal matrix ΓG = diag(γ1, . . . , γn), γi = +σi +√ +σ2 +i +1. +12: Form the orthonormal matrices V = V1V2, U = U2 and nonsingular matrices Z = U1Y2 and +W = Y1Σ1V2Γ−1 +G . +13: for j = 1, . . . , �k do +14: +pB(j) = argmax1≤i≤l |(U(:, j))i|. +15: +U(:, j + 1) = U(:, j + 1) − U(:, 1 : j) · (U(pB, 1 : j)\U(pB, j + 1)). +16: end for +17: Compute ℓi = ∥[U]i:∥2 +for i = 1, . . . , l. +18: Sort ℓ in non-increasing order. +19: Remove entries in ℓ corresponding to the indices in pB. +20: p′ +B = k − �k indices corresponding to k − �k largest entries of ℓ. +21: pB = [pB; p′ +B]. +22: Perform 13-21 on W, Z and V to obtain the corresponding indices p, s and sG. +23: Compute MA = A(:, p)\ (A/A (sA, :)), MB = B(:, p)\ (B/B (sB, :)). +5 +Numerical Examples +In this section, we check the accuracy and the computational cost of our algorithms on several +synthetic and real-world datasets. In Example 5.1, we consider the case where the data matrix A is +corrupted by a random additive noise E and the covariance of this noise (the expectation of ETE) is not +a multiple of the identity matrix. [17, Experiment 5.1] demonstrates that using the SVD-based methods +without prewhitening the perturbed data yields less accurate approximation results of the original +matrix, while the GCUR technique gives a more accurate low-rank approximation. In Example 5.1 we +show that utilizing the randomized methods yields accurate approximation results compared to the +GCUR and causes a dramatic enhancement in the computing speed, which is especially noticeable for +large-scale matrices. For Examples 5.2 and 5.3, we consider testing the performance of the approaches +on a set with two data sets collected under different conditions, e.g., treatment and control experiment, +where the former has distinct variation caused by the treatment: signal-free and signal recordings with +the signal-free data set containing only noise. We are interested in exploring and identifying patterns +and discriminative features that are specific to one data set. Finally, in Example 5.4, we evaluate +the performance of the proposed randomized RSVD-CUR algorithm for reconstructing a data matrix +18 + +perturbed with nonwhite noise. All computations are carried out in MATLAB R2020a on a computer +with an AMD Ryzen 5 processor and 16 GB RAM. To facilitate the comparison between different +algorithms, we define the following acronyms. +1. DEIM-GCUR− implements the GCUR algorithm with column subset selection implemented +using the DEIM algorithm (Algorithm 1) labeled “DEIM-GCUR” (Algorithm 3). +2. R-GCUR − applies the randomized GCUR algorithm with column subset selection imple- +mented using either the DEIM algorithm labeled “R-DEIM-GCUR”, summarized in Algorithm 4, or +the L-DEIM algorithm (Algorithm 2) labeled “R-LDEIM-GCUR” as summarized in Algorithm 5. +3. +RSVD-CUR − implements the RSVD-CUR decomposition algorithm by using the DEIM +labeled “DEIM-RSVD-CUR”, as summarized in [16, Algorithm 3], or the L-DEIM algorithm, labeled +“LDEIM-RSVD-CUR”, as summarized in [16, Algorithm 4]. +4. R-LDEIM-RSVD-CUR − implements the randomized RSVD-CUR algorithm based on the +L-DEIM procedure labeled “R-LDEIM-RSVD-CUR” (Algorithm 7) to produce the RSVD-CUR de- +composition. +Example 5.1 This experiment is an adaptation of experiments in [21, Section 3.4.4], [17, Experiment +5.1] and [36, Example 6.1]. We build a matrix A ∈ Rm×n of the form +A = +10 +� +j=1 +2 +j xjyT +j + +50 +� +j=11 +1 +j xjyT +j , +where xj ∈ Rm and yj ∈ Rn are sparse vectors with random nonnegative entries (in MATLAB, +xj = sprand(m, 1, 0.025) and yj = sprand(n, 1, 0.025)). Following [17], we then perturb this matrix +with a noise matrix E ∈ Rm×n whose entries are correlated. Given AE = A + E, we evaluate and +compare the GCUR, R-GCUR algorithms and the CUR decomposition on AE in terms of recovering the +original matrix A. We present the numerical results for four noise levels; the noise E = ε ∥F∥ +∥A∥F, where +ε is the parameter for the noise level and F is a randomly generated correlated noise. Just as in [17], +we construct a correlated Gaussian noise E whose entries have zero mean and a Toeplitz covariance +structure, i.e., in MATLAB desired-cov(F)=toeplitz(0.990, . . . , 0.99n−1), B = chol(desired-cov(F)), +and F = randn(m, n) · B and ε ∈ {0.05, 0.1, 0.15, 0.2}. The performance is assessed based on the 2- +norm of the relative matrix approximation error, i.e., +Err = ∥A − �A∥/∥A∥, +where �A is the approximated low-rank matrix. +We first compare the accuracy of the GCUR algorithms with their randomized counterparts R- +GCUR and the standard DEIM-CUR decomposition for reconstructing the low-rank matrix A for +different noise levels. As inputs, we fix m = 10000, n = 300 and using the target rank k varies from +1 to 50, and the parameter contained in the L-DEIM procedure is �k = k/2. The relative errors are +plotted in Figure 1. +19 + +(a) ε = 0.2 +(b) ε = 0.15 +(c) ε = 0.1 +(d) ε = 0.05 +Figure 1: Accuracy of the R-GCUR approximations compared with the standard DEIM-CUR approx- +imation and the GCUR decomposition in recovering a sparse, nonnegative matrix A perturbed with +correlated Gaussian noise using exact Cholesky factor of the noise covariance. The relative errors as +a function of rank k for ε = 0.2, 0.15, 0.1, 0.05, respectively. +We observe that the GCUR and R-GCUR techniques achieve a comparable relative error. Consistent +with the results in [17], the R-GCUR algorithm performs significantly well under high noise. Besides, +we observe that, as k approaches rank(A), however, the relative errors of both the GCUR and the +R-GCUR do not decrease any more. [17] attributes this phenomenon to the fact that the relative error +is saturated by the noise, considering we pick the columns and rows of the noisy data. +The analysis of the proposed algorithms implies that our randomized algorithms are less expensive +compared to their deterministic counterparts. To illustrate this, we record the running time in seconds +(denoted as CPU) and the approximation quality Err of the GCUR and R-GCUR for reconstructing +matrix A for different noise levels ε = 0.2, 0.1, 0.05 as the dimension and the target rank k increase. +According to the conclusions summarized in [18], the L-DEIM procedure may be comparable to the +original DEIM method when the target rank k is at most twice the available �k singular vectors. +Therefore, here we set the parameter �k contained in the L-DEIM to be �k = k/2, and the oversampling +parameter p = 5. We record the results in Tables 1-3. It is clear from the running time that the +algorithms R-DEIM-GCUR and R-LDEIM-GCUR have a huge advantage in computing speed over +the non-random GCUR method, and the R-LDEIM-GCUR achieves the smallest running time among +the three sets of experiments. +20 + +Relative Error +0.55 +-DEIM-CUR +0.5 +O-DEIM-GCUR +0.45 +SVD +0.4 +△-R-DEIM-GCUR +0.35 +-→ - R-LDEIM-GCUR +.err. +0.3 +0.25 +0.2 +0.15 +0.1 +0.05 +0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +Rank[k]Relative Error +0.55 +-DEIM-CUR +0.5 +0-DEIM-GCUR +0.45 +-SVD +0.4 +A-R-DEIM-GCUR +0.35 +→ - R-LDEIM-GCUR +rel.err. +0.3 +0.25 +0.2 +0.15 +0.1 +0.05 +0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +Rank[k]Relative Error +0.5 +-DEIM-CUR +0-DEIM-GCUR +0.45 +-SVD +0.4 +△-R-DEIM-GCUR +0.35 +☆- R-LDEIM-GCUR +err. +0.3 +0.25 +0.2 +0.15 +0.1 +0.05 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +Rank[k]RelativeError +0.6 +-DEIM-CUR +0-DEIM-GCUR +0.5 +一SVD +A-R-DEIM-GCUR +0.4 +α- R-LDEIM-GCUR +rel.err. +0.3 +0.2 +0.1 +0 +0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +Rank[k]Table 1: Comparison of GCUR and randomized algorithms (R-DEIM-GCUR and R-LDEIM-GCUR) +in CPU and relative error as the dimension and the target rank k increase, with noise level ε = 0.2. +(m, n, k) +(10000, 200, 20) (50000, 200, 20) (100000, 500, 30) (200000, 1000, 40) +GCUR +Err +0.15725 +0.14842 +0.18058 +0.17292 +CPU +0.10197 +0.54697 +5.4971 +40.001 +R-DEIM-GCUR +Err +0.14524 +0.16584 +0.18260 +0.17772 +CPU +0.027867 +0.11137 +0.49037 +2.4217 +R-LDEIM-GCUR +Err +0.16173 +0.14640 +0.16955 +0.16758 +CPU +0.018809 +0.056930 +0.28019 +1.5563 +Table 2: Comparison of GCUR and randomized algorithms (R-DEIM-GCUR and R-LDEIM-GCUR) +in CPU and relative error as the dimension and the target rank k increase, with noise level ε = 0.1. +(m, n, k) +(10000, 1000, 30) (100000, 500, 30) (200000, 1000, 40) (200000, 1000, 50) +GCUR +Err +0.16493 +0.18058 +0.17292 +0.18699 +CPU +2.1302 +4.5977 +33.783 +51.365 +R-DEIM-GCUR +Err +0.16524 +0.18260 +0.17772 +0.18614 +CPU +0.56099 +0.47876 +2.0406 +3.7259 +R-LDEIM-GCUR +Err +0.16906 +0.16955 +0.16758 +0.172631 +CPU +0.50487 +0.27769 +1.2856 +1.5229 +Table 3: Comparison of GCUR and randomized algorithms (R-DEIM-GCUR and R-LDEIM-GCUR) +in CPU and relative error as the dimension and the target rank k increase, with noise level ε = 0.05. +(m, n, k) +(10000, 500, 20) (100000, 500, 30) (150000, 1000, 40) (200000, 1000, 50) +GCUR +Err +0.13828 +0.18058 +0.18230 +0.18699 +CPU +0.56859 +4.5496 +25.523 +32.360 +R-DEIM-GCUR +Err +0.13089 +0.18260 +0.17513 +0.18614 +CPU +0.10336 +0.48947 +1.8595 +2.6152 +R-LDEIM-GCUR +Err +0.13807 +0.16955 +0.17975 +0.17263 +CPU +0.079551 +0.28887 +1.0581 +1.4994 +Example 5.2 We now test our randomized algorithms on synthetic data sets, as created in [17, +Example 5.3] and [1], which give an intuition for settings where the CUR and GCUR resolve the +problem of subgroups. Consider a data set of interest (target data) A, containing 4m data points in +a 3d-dimensional feature space. This data set has four subgroups (blue, yellow, orange, and purple), +each of m data points. The first d columns for all 4m data points are randomly sampled from a normal +distribution with a mean of 0 and a variance of 100. The next d columns of two of the subgroups (blue +and orange) are randomly sampled from a normal distribution with a mean of 0 and a unit variance, +while the other two subgroups (yellow and purple) are randomly sampled from a normal distribution +with a mean of 6 and a unit variance. The last d columns of subgroups blue and yellow are sampled +from a normal distribution with a mean of 0 and a unit variance, and those of purple and orange are +sampled from a normal distribution with a mean of 3 and a unit variance. +Now we are interested in reducing the dimension of A and this can be implemented by the SVD +(principal component analysis). However, if we project the data onto the two leading right singular +vectors, we are unable to identify the subgroups because the variation along the first d columns is +significantly larger than in any other direction. +21 + +Following the operations in [17], we construct another data set B (a background data set), whose +first 10 columns are sampled from a normal distribution with a mean of 0 and a variance of 100. The +next 10 columns are sampled from a normal distribution with a mean of 0 and a variance of 9, and +the last d columns are sampled from a normal distribution with a mean of 0 and a unit variance. The +background data set should have the structure we would like to suppress in the target data, which +usually corresponds to the direction with high variance but not of interest for the data analysis [1]. +With this new data, one way to extract discriminative features for clustering the subgroups in A is +to maximize the variance of A while minimizing that of B, which leads to a trace ratio maximization +problem [10] +�U = +argmax +U∈Rn×k,UT U=Ik +Tr +�� +U T BT BU +�−1 � +U T AT AU +�� +, +where n = 3d. By doing this, the first dimensions are less likely to be selected because they also +have a high variance in data set B. Instead, the middle and last dimensions of A are likely to be +selected, as they have the dimensions with the lowest variance in B, thereby allowing us to separate +all four subgroups. +The solution �U to the above problem is given by the k right eigenvectors of +(BT B)−1AT A corresponding to the k largest eigenvalues (cf. [15, pp. 448–449]); this corresponds to +the (“largest”) right generalized singular vectors of (A, B). We perform two sets of experiments where +we set m = 2500, d = 200 and m = 25000 and d = 300, respectively. Figure 2 is a visualization +Figure 2: In the top figure, we visualize the data using the first two columns selected by CUR (left) +and GCUR (right), respectively. +In the bottom figure, we visualize the data using the first two +columns selected by the R-DEIM-GCUR (left) and R-LDEIM-GCUR (right). The lower-dimensional +representation of the data using the GCUR and R-GCUR methods clearly separates the four clusters, +while the DEIM based CUR method fails to do so. In this experiment, we set m = 2500, d = 200 and +k = 30. The input oversampling parameters for the R-DEIM-GCUR and R-LDEIM-GCUR are set to +be 70 and 100, respectively, and �k = k/2. +22 + +Visualizing data set A using CUR's first 2 important columns +40 +30 +important column +20 +10 +0 +puz +-10 +R +20 +-30 +-40 +-40 +-30 +-20 +-10 +0 +10 +20 +30 +40 +CUR1stimportantcolumnVisualizing data set A using GCUR's first 2 important columns +8 +column +4 +important +2nd +G +-6 +-8 +-6 +-4 +-2 +0 +2 +4 +6 +GCUR1stimportantcolumnVisualizing data set A using R-DEiM-GCUR's first 2 important columns +column +important +2nd +Y +6 +-8 +-6 +-4 +-2 +0 +2 +4 +6 +R-DEiM-GCUR1stimportantcolumnVisualizing data set A using R-LDEiM-GCUR's first 2 important columns +column +puz +R +EI +6 +-8 +-6 +-4 +-2 +0 +2 +4 +6 +8 +R-LDEIM-GCUR1stimportantcolumnof the data using the first two important columns selected using the algorithms DEIM-CUR, GCUR, +R-DEIM-GCUR and R-LDEM-GCUR for two of input matrix dimensions, respectively. It can be seen +that the GCUR and R-GCUR methods produce a much clearer subgroup separation than the CUR. +To a large extent, the GCUR and R-GCUR are able to differentiate the subgroups, while the CUR +fails to do so. In terms of the running time, for the case that m = 2500 and d = 200, the nonrandom +GCUR costs 1.4250 seconds while the R-DEIM-GCUR and R-LDEIM-GCUR spend 0.83059 seconds +and 0.82679 seconds. Meanwhile, for case that m = 25000 and d = 300, the nonrandom GCUR costs +1.4250 seconds while the R-DEIM-GCUR and R-LDEIM-GCUR spend 0.83059 seconds and 0.82679 +seconds. +Emulating the manipulations in [17], we investigate this further by comparing the performance +of subset selection via DEIM-CUR on A, and GCUR and the R-GCUR on (A, B) in identifying the +subgroup or class representatives of A; we select a subset of the columns of A and compare the +classification results of each method. We center the data sets by subtracting the mean of each column +from all the entries in that column. Given the class labels of the subgroups, we perform a 10-fold +cross validation, i.e., split the data points into 10 groups and for each unique group take the group +as test data and the rest as training [25, p. 181] and apply two classifiers on the reduced data set: +ECOC (Error-Correcting Output Codes) [13] and classification tree [3] using the functions fitcecoc +and fitctree with default parameters as implemented in MATLAB. It is evident from Table 4 that +the R-LDEIM-GCUR achieves the lowest classification error rate, using the ECOC and tree classifier, +while the standard DEIM-CUR method achieves the worst classification error rate. +Table 4: k-Fold loss is the average classification loss overall 10-fold using CUR, GCUR, and R-GCUR as +dimension reduction. The second and third columns give dimension information m1 = 2500, d1 = 200, +m2 = 3000, d2 = 200, and the information on the number of columns k = 30, selected from the data +set using GCUR and R-GCUR for the ECOC classifier, likewise for the fifth and sixth columns for +the tree classifier. +Method +k-Fold Loss +Method +k-Fold Loss +(m1, d1) (m2, d2) +(m1, d1) (m2, d2) +CUR+ECOC +0.7512 +0.7521 +CUR+Tree +0.7488 +0.7465 +GCUR+ECOC +0.0669 +0.0666 +GCUR+Tree +0.0986 +0.09758 +R-DEIM-GCUR+ECOC +0.06930 0.06700 R-DEIM-GCUR+Tree +0.1000 +0.09558 +R-LDEIM-GCUR+ECOC 0.06680 0.06358 R-LDEIM-GCUR+Tree 0.0980 +0.09691 +Example 5.3 Now we investigate the performance of the R-GCUR compared to the GCUR and the +CUR on higher-dimensional public data sets. Our experiment is adapted from [17, Experiment 5.4]. +The data sets consist of single-cell RNA expression levels of bone marrow mononuclear cells (BMMCs) +from an acute myeloid leukemia (AML) patient and two healthy individuals. We have data on the +BMMCs before stem-cell transplant and the BMMCs after stem-cell transplant. We preprocess the +data sets as described by the authors in [5] keeping the 1000 most variable genes measured across +all 16856 cells (patient-035: 4501 cells and two healthy individuals; one of 1985 cells and the other +of 2472 cells). The data from the two healthy patients are combined to create a background data +matrix of dimension 4457 × 1000, and we use the patient-035 data set as the target data matrix of +dimension 4501 × 1000. Both data matrices are sparse: The patient-035 data matrix has 1, 628, 174 +nonzeros, i.e., about 36% of all entries are nonzero, and the background data matrix has 1, 496, 229 +nonzeros, i.e., about 34% of all entries are nonzero. We are interested in exploring the differences in +the AML patient’s BMMC cells pre- and posttransplant. We perform CUR, GCUR, and R-GCUR on +the target data (AML patient-035) to see if we can capture the biologically meaningful information +relating to the treatment status. +For the GCUR and R-GCUR procedures, the background data +are taken into account. As evident in Figure 3, the GCUR and R-GCUR produce almost linearly +separable clusters which correspond to pre- and posttreatment cells, while both the R-DEIM-GCUR +23 + +and R-LDEIM-GCUR beat the GCUR in terms of the running time due to a much lower computational +cost, and specifically, the running time of the nonrandom GCUR algorithm is roughly twice that of +our randomized algorithms. Moreover, these methods evidently capture the biologically meaningful +information relating to the treatment and are more effective at separating the pre- and posttransplant +cell samples. For the CUR scheme, we observe that it does not give a discernible cluster of the pre- +and post transplant cells, and fail to separate the pre- and posttransplant cells. +Figure 3: Acute myeloid leukemia patient-035 scRNA-seq data. In the top figure, we visualize the +data using the first three genes selected by DEIM-CUR (top-left) and GCUR (top-right), and the +CUR does not effectively give a discernible cluster of the pre- and post transplant cells. In the bottom +figure, we visualize the data using the first three genes selected by R-DEIM-GCUR (bottom-left) +and R-LDEIM-GCUR (bottom-right), which both produce almost linearly separable clusters which +correspond to pre- and posttreatment cells. +Example 5.4 For our last experiment, we demonstrate the performance of randomized algorithm for +producing the RSVD-CUR decomposition. This test is an adaptation of [16, Experiment 1], which +considers a matrix perturbation problem of the form AE = A + BFG, where A ∈ Rm×n, matrices +B ∈ Rm×l, G ∈ Rd×n are noises distributed normally with mean 0 and unit variance, and our +goal is to reconstruct a low-rank matrix A from AE. We evaluate and compare a rank-k RSVD- +CUR decomposition of AE, obtained by the nonrandom RSVD-CUR algorithm and its counterpart +randomized algorithm, in terms of reconstructing matrix A and the running time. The approximation +quality of the decomposition is assessed by the relative matrix approximation error, i.e., ∥A− �A∥/∥A∥, +where �A is the reconstructed low-rank matrix. As an adaptation of the experiment in [36, Example +1] and [16, Experiment 1], we generate a rank-100 sparse nonnegative matrix A ∈ Rm×n of the form +24 + +Visualizing data set A using GCUR's first 3 important columns +6 +2 +0 +0 +2 +5 +4 +6 +10 +8 +10 +15Visualizing data set A using R-DEiM-GCUR's first 3 important columns +8 +6 +4 +2 +0 +-2 +0 +0 +5 +5 +10 +10 +15Visualizingdata set A usingR-LDEiM-GCUR'sfirst 3 important columns +8 +6 +4 +2 +22 +0 +0 +5 +2 +4 +10 +6 +8 +10 +15Visualizing data set A using CUR's first 3 important columns +15 +10 +5 +0 +-2 +0 +0 +2 +2 +4 +4 +6 +6 +8 +8 +10A = +10 +� +j=1 +2 +j xjyT +j + +100 +� +j=11 +1 +j xjyT +j +where xj ∈ Rm and xj ∈ Rn are random sparse vectors with nonnegative entries. We then perturb A +with a nonwhite noise matrix BFG [21]. The resulting perturbed matrix we use is of the form +AE = A + ε +∥A∥ +∥BFG∥BFG, +where ε is the noise level. Given each noise level ε ∈ {0.1, 0.15, 0.2}, we generate the RSVD-CUR +decomposition computed by the RSVD-CUR algorithms and the randomized algorithm for varying +dimensions and the target rank k values. Here we set the parameter �k, contained in the L-DEIM to +be �k = k/2 and �k = k, respectively. The corresponding results are displayed in Tables 5, 6 and 7, +where we can see that the randomized algorithms give comparable relative errors at substantially less +cost. It indicates that using the random sampling techniques and L-DEIM method leads to a dramatic +speed-up over classical approaches. +Table 5: Comparison of RSVD-CUR and randomized algorithms in CPU and relative error as the +dimension l, d, m, n ( we set m = n) and the target rank k increase, with noise level ε = 0.1. +(l, d, m, k) +(1000, 500, 100, 10)(5000, 1000, 100, 20)(7000, 2000, 200, 30) +DEIM-RSVD-CUR +Err +0.095573 +0.085198 +0.084425 +CPU +0.099726 +8.1768 +15.251 +LDEIM-RSVD-CUR +Err +0.11652 +0.094442 +0.083729 +CPU +0.098987 +8.5575 +15.886 +oversampling parameter +80 +500 +500 +R-LDEIM-RSVD-CUR +k = �k +Err +0.095573 +0.085198 +0.084425 +CPU +0.028330 +0.057914 +0.39295 +�k = k/2 Err +0.095573 +0.085198 +0.084425 +CPU +0.024517 +0.056423 +0.50397 +Table 6: Comparison of RSVD-CUR and randomized algorithms in CPU and relative error as the +dimension l, d, m, n ( we set m = n) and the target rank k increase, with noise level ε = 0.15. +(l, d, m, k) +(5000, 1000, 200, 20)(10000, 2000, 500, 30)(20000, 2000, 500, 40) +DEIM-RSVD-CUR +Err +0.13123 +0.15709 +0.14705 +CPU +7.5313 +62.594 +328.99 +LDEIM-RSVD-CUR +Err +0.13103 +0.16492 +0.15604 +CPU +7.3077 +61.396 +330.20 +oversampling parameter +500 +500 +500 +R-LDEIM-RSVD-CUR +k = �k +Err +0.13123 +0.15709 +0.14705 +CPU +0.33164 +3.0591 +2.7742 +�k = k/2 Err +0.13123 +0.15709 +0.14705 +CPU +0.34972 +2.5485 +2.9289 +25 + +Table 7: Comparison of RSVD-CUR and randomized algorithms in CPU and relative error as the +dimension l, d, m, n ( we set m = n) and the target rank k increase, with noise level ε = 0.2. +(l, d, m, k) +(5000, 1000, 100, 10)(10000, 1000, 500, 30)(7000, 2000, 200, 30) +DEIM-RSVD-CUR +Err +0.15325 +0.18345 +0.18429 +CPU +7.9139 +56.001 +384.17 +LDEIM-RSVD-CUR +Err +0.14943 +0.21517 +0.19300 +CPU +7.9627 +51.571 +357.91 +oversampling parameter +100 +500 +500 +R-LDEIM-RSVD-CUR +k = �k +Err +0.15325 +0.18345 +0.18429 +CPU +0.079395 +2.1681 +3.9116 +�k = k/2 Err +0.15325 +0.18345 +0.18429 +CPU +0.06830 +2.0079 +3.8923 +6 +Conclusion +In this paper, by combining the random sampling techniques with the L-DEIM method, we de- +velop new efficient randomized algorithms for computing the GCUR decomposition for matrix pairs +and the RSVD-CUR decomposition for matrix triplets with a given target rank. We also provided +the detailed probabilistic analysis for the proposed randomized algorithms. Theoretical analyses and +numerical examples illustrate that exploiting the randomized techniques results in a significant im- +provement in terms of the CPU time while keeping a high degree of accuracy. Finally, it is natural to +consider applying the L-DEIM for developing randomized algorithms that adaptively find a low rank +representation satisfying a given tolerance, which is beneficial when the target rank is not known in +advance, and it will be discussed in our future work. +Funding +Z. Cao is supported by the National Natural Science Foundation of China under Grant 11801534. +Y. Wei is supported by the National Natural Science Foundation of China under Grant 12271108 +and the Innovation Program of Shanghai Municipal Education Committee. P. Xie is supported by the +National Natural Science Foundation of China under Grants 12271108, 11801534 and the Fundamental +Research Funds for the Central Universities under Grant 202264006. +Declarations +The authors have not disclosed any competing interests. +Data Availability Statements +All datasets are publicly available. +26 + +References +[1] A. Abid, M. J. Zhang, V. K. Bagaria, and J. Zou, Exploring patterns enriched in a dataset +with contrastive principal component analysis, Nature Communications, 9 (2018), pp. 1–7. +[2] Z. Bai and J. W. Demmel, Computing the generalized singular value decomposition, SIAM +Journal on Scientific Computing, 14 (1993), pp. 1464–1486. +[3] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, A comparison of +decision tree ensemble creation techniques, IEEE Transactions on Pattern Analysis and Machine +Intelligence, 29 (2006), pp. 173–180. +[4] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ‘empirical interpola- +tion’ method: application to efficient reduced-basis discretization of partial differential equations, +Comptes Rendus Mathematique, 339 (2004), pp. 667–672. +[5] P. Boileau, N. S. Hejazi, and S. Dudoit, Exploring high-dimensional biological data with +sparse contrastive principal component analysis, Bioinformatics, 36 (2020), pp. 3422–3430. +[6] C. Boutsidis and P. Drineas, Random projections for the nonnegative least-squares problem, +Linear Algebra and Its Applications, 431 (2009), pp. 760–771. +[7] C. Boutsidis and D. P. Woodruff, Optimal CUR matrix decompositions, in Proceedings of +the forty-sixth annual ACM symposium on Theory of computing, 2014, pp. 353–362. +[8] H. Cai, K. Hamm, L. Huang, and D. Needell, Robust CUR decomposition: Theory and +imaging applications, SIAM Journal on Imaging Sciences, 14 (2021), pp. 1472–1503. +[9] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical +interpolation, SIAM Journal on Scientific Computing, 32 (2010), pp. 2737–2764. +[10] J. Chen, G. Wang, and G. B. Giannakis, Nonlinear dimensionality reduction for discrimina- +tive analytics of multiple datasets, IEEE Transactions on Signal Processing, 67 (2018), pp. 740– +752. +[11] D. Chu, L. De Lathauwer, and B. De Moor, On the computation of the restricted singular +value decomposition via the cosine-sine decomposition, SIAM Journal on Matrix Analysis and +Applications, 22 (2000), pp. 580–601. +[12] B. L. De Moor and G. H. Golub, The restricted singular value decomposition: properties and +applications, SIAM Journal on Matrix Analysis and Applications, 12 (1991), pp. 401–425. +[13] T. G. Dietterich and G. Bakiri, Solving multiclass learning problems via error-correcting +output codes, Journal of Artificial Intelligence Research, 2 (1994), pp. 263–286. +[14] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Relative-error CUR matrix decom- +positions, SIAM Journal on Matrix Analysis and Applications, 30 (2008), pp. 844–881. +[15] K. Fukunaga, Introduction to statistical pattern recognition, Elsevier, 2013. +[16] P. Y. Gidisu and M. E. Hochstenbach, RSVD-CUR decomposition for matrix triplets, +arXiv:2204.02113. 2022. +[17] P. Y. Gidisu and M. E. Hochstenbach, A generalized CUR decomposition for matrix pairs, +SIAM Journal on Mathematics of Data Science, 4 (2022), pp. 386–409. +27 + +[18] P. Y. Gidisu and M. E. Hochstenbach, A hybrid DEIM and leverage scores based method +for CUR index selection, Progress in Industrial Mathematics at ECMI 2021, (2022), pp. 147–153. +[19] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Proba- +bilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53 (2011), +pp. 217–288. +[20] K. Hamm and L. Huang, Perturbations of CUR decompositions, SIAM Journal on Matrix +Analysis and Applications, 42 (2021), pp. 351–375. +[21] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, Society for Industrial and Ap- +plied Mathematics, Philadelphia, PA, 1998. +[22] E. P. Hendryx, B. M. Rivi`ere, and C. G. Rusin, An extended DEIM algorithm for subset +selection and class identification, Machine Learning, 110 (2021), pp. 621–650. +[23] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, +Cambridge, 1991. +[24] J. Huang and Z. Jia, Two harmonic Jacobi-Davidson methods for computing a partial gener- +alized singular value decomposition of a large matrix pair, Journal of Scientific Computing, 93 +(2022). Article number: 41. +[25] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning, +vol. 112, Springer, 2013. +[26] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, Pearson Pren- +tice Hall, Upper Saddle River, NJ, sixth ed., 2007. +[27] I. T. Jolliffe, Discarding variables in a principal component analysis. i: Artificial data, Journal +of the Royal Statistical Society: Series C (Applied Statistics), 21 (1972), pp. 160–173. +[28] R.-C. Li, Bounds on perturbations of generalized singular values and of associated subspaces, +SIAM Journal on Matrix Analysis and Applications, 14 (1993), pp. 195–234. +[29] M. W. Mahoney, Randomized algorithms for matrices and data, Foundations and Trends® in +Machine Learning, 3 (2011), pp. 123–224. +[30] M. W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis, +Proceedings of the National Academy of Sciences, 106 (2009), pp. 697–702. +[31] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM +Journal on Numerical Analysis, 18 (1981), pp. 398–405. +[32] D. Papailiopoulos, A. Kyrillidis, and C. Boutsidis, Provable deterministic leverage score +sampling, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge +Discovery and Data Mining, 2014, pp. 997–1006. +[33] D. Rachkovskij and E. Revunova, A randomized method for solving discrete ill-posed prob- +lems, Cybernetics and Systems Analysis, 48 (2012), pp. 621–635. +[34] A. K. Saibaba, J. Hart, and B. van Bloemen Waanders, Randomized algorithms for +generalized singular value decomposition with application to sensitivity analysis, Numerical Linear +Algebra with Applications, 28 (2021). pp. e2364. +[35] A. K. Saibaba, J. Lee, and P. K. Kitanidis, Randomized algorithms for generalized hermitian +eigenvalue problems with application to computing Karhunen–Lo`eve expansion, Numerical Linear +Algebra with Applications, 23 (2016), pp. 314–339. +28 + +[36] D. C. Sorensen and M. Embree, A DEIM induced CUR factorization, SIAM Journal on +Scientific Computing, 38 (2016), pp. A1454–A1482. +[37] G. Stewart, Computing the CS decomposition of a partitioned orthonormal matrix, Numerische +Mathematik, 40 (1982), pp. 297–306. +[38] G. W. Stewart, Four algorithms for the the efficient computation of truncated pivoted QR +approximations to a sparse matrix, Numerische Mathematik, 83 (1999), pp. 313–323. +[39] J. G. Sun, On the perturbation of generalized singular values, Math. Numer. Sinica, 4 (1982), +pp. 229–233. +[40] J.-G. Sun, Perturbation analysis for the generalized singular value problem, SIAM Journal on +Numerical Analysis, 20 (1983), pp. 611–625. +[41] D. B. Szyld, The many proofs of an identity on the norm of oblique projections, Numerical +Algorithms, 42 (2006), pp. 309–323. +[42] C. F. Van Loan, Generalizing the singular value decomposition, SIAM Journal on Numerical +Analysis, 13 (1976), pp. 76–83. +[43] C. F. Van Loan, Computing the CS and the generalized singular value decompositions, Nu- +merische Mathematik, 46 (1985), pp. 479–491. +[44] S. Wang and Z. Zhang, Improving CUR matrix decomposition and the Nystr¨om approximation +via adaptive sampling, The Journal of Machine Learning Research, 14 (2013), pp. 2729–2769. +[45] W. Wei, H. Zhang, X. Yang, and X. Chen, Randomized generalized singular value decom- +position, Communications on Applied Mathematics and Computation, 3 (2021), pp. 137–156. +[46] Y. Wei, P. Stanimirovi´c, and M. Petkovi´c, Numerical and Symbolic Computations of Ggen- +eralized Inverses, Hackensack, NJ: World Scientific, 2018. +[47] Y. Wei, P. Xie, and L. Zhang, Tikhonov regularization and randomized GSVD, SIAM Journal +on Matrix Analysis and Applications, 37 (2016), pp. 649–675. +[48] H. Xiang and J. Zou, Regularization with randomized SVD for large-scale discrete inverse +problems, Inverse Problems, 29 (2013). Paper No. 085008. +[49] P. Xie, H. Xiang, and Y. Wei, Randomized algorithms for total least squares problems, Nu- +merical Linear Algebra with Applications, 26 (2019). e2219. +[50] C. Xu, D. Tao, and C. Xu, A survey on multi-view learning, arXiv:1304.5634. 2013. +[51] H. Zha, The restricted singular value decomposition of matrix triplets, SIAM Journal on Matrix +Analysis and Applications, 12 (1991), pp. 172–194. +[52] +, Computing the generalized singular values/vectors of large sparse or structured matrix pairs, +Numerische Mathematik, 72 (1996), pp. 391–417. +[53] L. Zhang and Y. Wei, Randomized core reduction for discrete ill-posed problem, Journal of +Computational and Applied Mathematics, 375 (2020). Paper No. 112797. +[54] L. Zhang, Y. Wei, and E. K.-w. Chu, Neural network for computing GSVD and RSVD, +Neurocomputing, 444 (2021), pp. 59–66. +[55] I. N. Zwaan, Towards a more robust algorithm for computing the restricted singular value de- +composition, arXiv:2002.04828. 2020. +29 + diff --git a/bNFPT4oBgHgl3EQfwTX3/content/tmp_files/load_file.txt b/bNFPT4oBgHgl3EQfwTX3/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9d1ad10f37adda4d95480f65141ebe142689facb --- /dev/null +++ b/bNFPT4oBgHgl3EQfwTX3/content/tmp_files/load_file.txt @@ -0,0 +1,1394 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf,len=1393 +page_content='Randomized GCUR decompositions Zhengbang Cao∗ Yimin Wei† Pengpeng Xie‡ Abstract By exploiting the random sampling techniques, this paper derives an efficient randomized algo- rithm for computing a generalized CUR decomposition, which provides low-rank approximations of both matrices simultaneously in terms of some of their rows and columns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' For large-scale data sets that are expensive to store and manipulate, a new variant of the discrete empirical interpolation method known as L-DEIM, which needs much lower cost and provides a significant acceleration in practice, is also combined with the random sampling approach to further improve the efficiency of our algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Moreover, adopting the randomized algorithm to implement the truncation pro- cess of restricted singular value decomposition (RSVD), combined with the L-DEIM procedure, we propose a fast algorithm for computing an RSVD based CUR decomposition, which provides a coordinated low-rank approximation of the three matrices in a CUR-type format simultaneously and provides advantages over the standard CUR approximation for some applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We establish detailed probabilistic error analysis for the algorithms and provide numerical results that show the promise of our approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Keywords: generalized CUR decomposition;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' generalized SVD;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' restricted SVD;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' L-DEIM;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' random- ized algorithm Mathematics Subject Classification: 65F55, 15A23 1 Introduction Identifying the underlying structure of a data matrix and extracting meaningful information is a crucial problem in data analysis, and most efforts have been focused on manipulating, understanding and interpreting large-scale data matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In many cases, matrix factorization methods are em- ployed for constructing parsimonious and informative representations to facilitate computation and interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' A principal approach is the CUR decomposition [14, 30, 36, 44], which is a low-rank approximation of a matrix A ∈ Rm×n of the form A ≈ CUR, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1) where matrices C ∈ Rm×k and R ∈ Rk×n are subsets of the columns and rows, respectively, of the original matrix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The k × k matrix U is constructed to ensure that CUR is a good approximation to A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The CUR factorization is an important tool for handling large-scale data sets, offering two advantages over the rank-k singular value decomposition (SVD) A ≈ V SW T : when A is sparse, so ∗School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' E-Mail: caozhengbang@stu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='ouc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='cn †School of Mathematical Sciences and and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Shanghai 200433, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' E-Mail: ymwei@fudan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='cn ‡Corresponding author (P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Xie).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' E-Mail: xie@ouc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='13163v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='NA] 17 Jan 2023 too are C and R, unlike the matrices V and W of singular vectors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' and the columns and rows that comprise C and R are representative of the data (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', sparse, nonnegative, integer valued, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' There is extensive work on CUR-type decompositions in both numerical linear algebra and the- oretical computer science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' see [7, 8, 20, 44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Recently, in [17], Gidisu and Hochstenbach developed a generalized CUR decomposition (GCUR) for matrix pair A and B with the same number of columns: A is m×n, B is d×n and both are of full column rank, which can be viewed as a CUR decomposition of A relative to B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The proposed factorization can be used in situations where a low-rank matrix is perturbed with noise, where the covariance of the noise is not a multiple of the identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Besides, it may also be appropriate for applications where one is interested in extracting the most discriminative information from a data set of interest relative to another data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Furthermore, in recent times, real-world data sets often comprise different representations or views, which provide information complementary to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The multi-view dimension reduction [50], and integration of information from multiple views in multi-view learning is a rapidly growing direction in machine learning which involves learning with multiple views to improve the generalization performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Mo- tivated by this, in [16], Gidisu and Hochstenbach developed a new coordinated CUR factorization of a matrix triplet (A, B, G) of compatible dimensions, based on the restricted singular value decomposi- tion (RSVD) [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' This factorization was called an RSVD based CUR (RSVD-CUR) factorization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' An RSVD-CUR factorization as a tool for multi-view dimension reduction can cope with a two-view case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In the same context, one can use an RSVD-CUR as a supervised feature selection technique in multil- abel classification problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It can also be applied for applications where the goal is to select a subset of rows and columns of one data set relative to two other data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' There are several index selection strategies proposed in the literature for finding the subsets of the columns and rows while constructing the GCUR and RSVD-CUR decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Two sampling techniques employed in [16,17] are named DEIM [4, 9] and L-DEIM [18], which are greedy deterministic procedures and simple to implement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Specifically, as the inputs, the DEIM and L-DEIM require the generalized SVD (GSVD) of the matrix pair (A, B) and the RSVD of the matrix triplet (A, B, G) for sampling when constructing the GCUR and RSVD-CUR decomposition, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The overall computational complexity of the algorithms discussed in [16, 17] are dominated by the construction of the GSVD and the RSVD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' However, in practice, this cost can be prohibitively expensive, making it unsuitable for large-scale applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It is known that randomized algorithms [19, 29] facilitate the matrix decomposition procedure not only by reducing the computational complexity of deterministic algorithms but also by reducing the communication among different levels of memories, which is the main bottleneck in modern com- puting environments and architectures for large-scale data matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Based on the framework in [19], many computationally efficient methods for implementing large-scale matrix factorizations have been proposed, analyzed, and implemented, such as [34,35,45,47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Meanwhile, these well-established ran- domized algorithms have been widely used for many practical applications, such as the least squares problems [6, 49, 53] and Tikhonov regularization [33, 48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Motivated by this success, in this work we introduce the randomized schemes for efficiently computing the GCUR and the RSVD-CUR decompo- sition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To be specific, there are two main computational stages involved in our randomized algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In the first stage, we use random projections to identify a subspace that captures most of the action of the input matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then we project the input matrix onto this subspace and get a reduced ma- trix which is then manipulated deterministically to obtain the desired low-rank approximation of the GSVD and RSVD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The second stage can be completed with well-established deterministic methods DEIM and L-DEIM operating on the approximation obtained in the first stage to sample the columns and rows of the original matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Compared with non-random approaches, our algorithms allow for a comparable accuracy with much lower cost and will be more computationally efficient on large-scale data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Details of the algorithm, theoretical analysis and numerical results are provided to show the effectiveness of our approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In Section 2, we first give a brief overview of the 2 GSVD and the RSVD, then we introduce some basic notation and describe several sampling techniques including the DEIM and L-DEIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Next, in Section 3, we present our randomized algorithms for computing the GCUR factorization using the DEIM and L-DEIM procedure, where the probabilistic error bound is also presented in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In Section 4, we first briefly review the literature on existing algorithms for the computation of the RSVD, and develop an efficient method for computing this decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then we develop randomized algorithms for computing the RSVD-CUR decomposition based on the sampling procedure L-DEIM, along with detailed probabilistic error analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In Section 5, we test the performance of the proposed algorithms on several synthetic matrices and real-world datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Finally, in Section 6, we end this paper with concluding remarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2 Preliminaries Throughout this paper, we use the MATLAB notation to index vectors and matrices, so that, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', X(q, :) denotes the k rows of X whose indices are specified by the entries of the vector q ∈ Nk +, while X(:, p) denotes the k columns of X indexed by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We denote the 2-norm by ∥ · ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' A† denotes the Moore-Penrose pseudoinverse [46] of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 GSVD and RSVD We now give a brief introduction to the GSVD and RSVD which are the key building blocks of the proposed algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The original existence of GSVD was first introduced by Van Loan in [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Paige and Saunders [31] later presented a more general formulation without any restrictions on the dimensions except for both matrices to have the same number of columns, and other formulations and contributions to the GSVD can be found in [2, 24, 37, 40, 43, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In line with [17], in this paper, we adopt the formulation proposed by Van Loan in [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Let A ∈ Rm×n and B ∈ Rd×n with both m ≥ n and d ≥ n, then there exist orthogonal matrices U ∈ Rm×m, V ∈ Rd×d and a nonsingular Y ∈ Rn×n such that B = V ΣY T, Σ = diag(β1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , βn), βi ∈ [0, 1] , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1) A = UΓY T, Γ = diag(γ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , γn), γi ∈ [0, 1] , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2) where γ2 i + β2 i = 1 and the ratios γi/βi are in a non-increasing order for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Further, nonnegative number pairs {γi, βi}n i=1 are actually the generalized singular values of the matrix pair (A, B) as defined in [40], and the sensitivity of the generalized singular values of a matrix pair to perturbations in the matrix elements was analyzed in [28,39,40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The RSVD [12, 51] is the factorization of a given matrix, relative to two other given matrices, which can be interpreted as the ordinary singular value decomposition with different inner products in the row and column spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given a matrix triplet A ∈ Rm×n, B ∈ Rm×l and G ∈ Rd×n, with ℓ ≥ d ≥ m ≥ n and we assume that B and G are of full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Following the formulation of the RSVD proposed by Zha [51], there exist orthogonal matrices U ∈ Rl×l, V ∈ Rd×d and nonsingular matrices Z ∈ Rm×m and W ∈ Rn×n such that A = ZDAW T, B = ZDBU T, G = V DGW T, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3) or alternatively it can be expressed conveniently as � A B G � = � Z V � � DA DB DG � � W U �T , where DA ∈ Rm×n, DB ∈ Rm×l, and DG ∈ Rd×n are nonnegative diagonal matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 Subset Selection Procedure We now describe several tools for the subset selection that extract appropriate columns or rows from matrices, that are the deterministic leverage score sampling procedure, the DEIM algorithm and the L-DEIM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given A ∈ Rm×n with rank(A) ≥ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Let Vk contain its k leading right singular vectors, and we denote the ith row of Vk by [Vk]i,:.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then the rank-k leverage score of the ith column of A is defined as ℓi = ���[Vk]i,: ��� 2 , i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The deterministic leverage score sampling procedure [27, 32] selects columns of A corresponding to the indices of the largest leverage scores for a given k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' From a practical perspective, this deterministic algorithm is extremely simple to implement, but it does not admit provable performance guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The DEIM selection algorithm was first presented in [9] in the context of model order reduction for nonlinear dynamical systems and is a discrete variant of the empirical interpolation method originally proposed in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To derive the method, we elaborate upon the interpolatory projectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given a full column rank matrix V ∈ Rm×k and a set of distinct indices p, the interpolatory projector for p onto the range of V Ran(V ) is P = V (P TV )−1P T, where P = I(:, p) ∈ Rm×k, provided P TV is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In general, P is an oblique projector, and it has an important property: for any vector x ∈ Rm, (Px)(p) = P TPx = P TV � P TV �−1 P Tx = P Tx = x(p), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4) so the projected vector Px matches x in the p entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The DEIM algorithm processes the columns of V sequentially starting with the first dominant singular vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Each step processes the next singular vector to produce the next index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The selected indices are used to compute the interpolatory projector P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The next index is selected by removing the direction of the interpolatory projection in the previous vectors from the subsequent one and finding the index of the entry with the largest magnitude in the residual vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' See Algorithm 1 for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Algorithm 1 DEIM index selection [9] Input: V ∈ Rm×k with k ≤ min(m, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Output: column index p ∈ Nk +, with non-repeating entries, V ∈ Rm×k with k ≤ min(m, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1: v = V (:, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2: p1 = argmax1≤i≤n |vi|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3: for j = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , k do 4: v = V (:, j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 5: c = V (p, 1 : j − 1)−1v(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 6: r = v − V (:, 1 : j − 1)c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 7: pj = argmax1≤i≤m |ri|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 8: p = � p pj � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 9: end for In [36], the DEIM algorithm was shown to be a viable index selection method for identifying the most representative and influential subset of columns and rows that define a low-dimensional space of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' However, a notable limitation of this index selection algorithm is that the number of indices that can be selected is limited to the number of available singular vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4 Combining the strengths of deterministic leverage score sampling and the DEIM procedure, the authors in [18] proposed a new variant of DEIM, called L-DEIM (Algorithm 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' This method allows for the selection of a number of indices greater than the number of input singular vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As a result, constructing a rank-k CUR decomposition of a matrix using the L-DEIM only requires �k singular vectors where k > �k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To select the first �k indices, this method performs the original DEIM while keeping the residual singular vector in each index selection step, which is the error between the input singular vector and its approximation from interpolating the previous singular vectors at the selected indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Using the idea of the leverage scores, then it computes the 2-norm of the rows of the residual singular vectors to select the additional k −�k indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' According to the conclusion summarized in [18], the L-DEIM is computationally more efficient than the original DEIM, and the accuracy of both methods may be comparable when the target rank k is at most twice the available �k singular vectors, and empirically, we can set �k = k/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Consequently, this novel selection procedure may be viewed as an approach to reusing the same information to further improve the approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Algorithm 2 L-DEIM index selection [18] Input: V ∈ Rm×�k, target rank k with �k ≤ k ≤ min(m, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Output: column indices p ∈ Nk + with non-repeating entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1: for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , �k do 2: p(j) = argmax1≤i≤m |(V (:, j))i|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3: V (:, j + 1) = V (:, j + 1) − V (:, 1 : j) · (V (p, 1 : j)\\V (p, j + 1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4: end for 5: Compute ℓi = ∥Vi:∥2 for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 6: Sort ℓ in non-increasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 7: Remove entries in ℓ corresponding to the indices in p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 8: p′ = k − �k indices corresponding to k − �k largest entries of ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 9: p = [p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' p′].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3 Randomization for GCUR In this section, we first give a brief introduction to the GCUR factorization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Moreover, by combining the random sampling techniques with the DEIM and L-DEIM procedures, we establish two versions of efficient randomized algorithms for computing this factorization, along with the detailed probabilistic error analysis for our approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 GCUR In [17], Gidisu and Hochstenbach developed a GCUR decomposition for two matrices A and B with the same number of columns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The intuition behind this factorization is that we can view it as a CUR decomposition of A relative to B, which is appropriate for applications where one is interested in extracting the most discriminative information from a data set of interest relative to another data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given a matrix pair (A, B), where A is m × n and B is d × n and both are of full column ranks with m ≥ n and d ≥ n, then the rank-k GCUR decomposition of (A, B) is a matrix approximation of A and B expressed as A ≈ CAMARA = A(:, p) MA A(sA, :), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1) B ≈ CBMBRB = B(:, p) MB B(sB, :).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2) Here matrices CA and CB indexed by the vector p are the subset of the columns of A and B, capturing the most relevant information of the original matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Selecting the same columns of A and B gives a 5 coupling between the decomposition of A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Meanwhile, RA and RB are formed by extracting k rows from A and B, where the selected row indices are stored in the vectors sA and sB, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given the row/column indices, the middle matrices MA and MB can be constructed in different ways to satisfy certain desirable approximation properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Following the work in [30, 36, 38], the authors in [17] choose to construct the middle matrices MA and MB as MA = C† AAR† A = (CT ACA)−1CT AART A(RART A)−1, MB = C† BBR† B = (CT BCB)−1CT BBRT B(RBRT B)−1, yielding the GCUR factorization that can be viewed as a two step process: first the columns of A are projected onto the range of CA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' then the result is projected onto the row space of RA: (1) X = CAC† AA, (2) CAMARA = XRAR† A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Both steps are optimal with respect to the two-norm error and as shown by Stewart [38], this option minimizes ∥A − CAMARA∥ and ∥B − CBMBRB∥ for the given sampling indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In essence, this factorization is a generalization of the CUR decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To be specific, when B is square and nonsingular, the GCUR decomposition has a close connection with the CUR of AB−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Moreover, in the special case where B = I, the GCUR decomposition of A coincides with the CUR decomposition of A in that the factors C and R of A are the same for both methods: (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1) is equivalent to (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' More generally, the GCUR is also applicable to rectangular matrices B, and still has a close connection with the CUR decomposition of AB†.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' A more detailed discussion of the properties can be found in [17, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To build this decomposition, it is relevant to know the dominant rows and columns of A and B in their rank-k approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Specifically, given a GSVD for matrix pair of the form (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1), the DEIM procedure uses U, V and Y to select the indices sA, sB and p respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Algorithm 3 is a summary of this procedure, where the backslash operator is a Matlab-type notation for solving linear systems and least-squares problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Algorithm 3 DEIM-type GCUR decomposition [17] Input: A ∈ Rm×n and B ∈ Rm×n with m ≥ n and d ≥ n, desired rank k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Output: A rank-k GCUR decomposition A ≈ A(:, p) · MA · A(sA, :), B ≈ B(:, p) · MB · B(sB, :).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1: [U, V, Y ] = gsvd(A, B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2: y = Y (:, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3: p1 = argmax1≤i≤n |yi|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4: for j = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , k do 5: y = Y (:, j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 6: c = Y (p, 1 : j − 1)−1y(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 7: r = y − Y (:, 1 : j − 1)c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 8: pj = argmax1≤i≤n |ri|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 9: p = � p pj � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 10: end for 11: Perform 2-9 on U and V to obtain the corresponding indices sA and sB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 12: MA = A(:, p)\\ (A/A (sA, :)), MB = B(:, p)\\ (B/B (sB, :)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In terms of computational complexity, the computation of the GSVD requires O((m + n + d)n2), while the DEIM procedure costs O((m + n + d)k2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Therefore, the overall complexity of Algorithm 3 is dominated by the construction of the GSVD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Nevertheless, this computational cost can be pro- hibitively expensive when the dimensions are very large, making it difficult for large-scale applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To tackle the large-scale problems where a full GSVD may not be affordable, we turn to the randomized 6 algorithms [19, 45], which are typically computationally efficient and easy to implement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Moreover, they have favorable numerical properties such as stability, and allow for restructuring computations in ways that make them amenable to implementation in a variety of settings including parallel com- putations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Following this success, and building on the random sampling techniques [19], we develop randomized algorithms for efficiently computing the GCUR, and a more exhaustive treatment for our randomized approaches-including pseudocode, and the detailed error analysis will be discussed in the following work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 Randomization for DEIM Based GCUR As concluded in [19], the task of computing a low-rank approximation to a given matrix A can be split naturally into two computational stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The first stage is to construct a low-dimensional subspace that captures the action of the input matrices, which can be executed very efficiently with random sampling methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In other words, we require a matrix Q for which Q has orthonormal columns and A ≈ QQTA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The second is to restrict the matrix to the subspace and then compute a standard factorization (QR, SVD, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=') of the reduced matrix, and it can be completed with well-established deterministic methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Here we wish to compute the approximate GSVD of the input pair (A, B), where A ∈ Rm×n, B ∈ Rd×n with m ≥ n, such that � B A � ≈ � B QQTA � = � V U � � Σ Γ � Y T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3) This goal can be achieved after five simple steps [47]: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Generate an n × (k + p) Gaussian random matrix Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Form the m × (k + p) matrix K = AΩ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Compute the m × (k + p) orthonormal matrix Q via the QR factorization K = QR;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Compute the GSVD of (QTA, B): � B QTA � = � V W � � Σ Γ � Y T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Form the m × (r + p) matrix U = QW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' By [19], the above operations generates (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3) with the error E = A − QQTA saitisfying ∥E∥ ≤ � 1 + 6 � (k + p)p log p � σk+1(A) + 3 � k + p �� j>k σ2 j (A) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4) with probability not less than 1 − 3p−p, where σj(A) is the jth largest singular value of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Here p is the oversampling parameter, which usually determines that small number of columns are added to provide flexibility [19], and its selection is crucial for the effectiveness of the randomized algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The main computational cost for the randomized approach is the computation of GSVD for the much smaller matrix pair (QTA, B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Combining the randomized GSVD algorithm with the DEIM technique, we present our random- ized algorithm for computing the GCUR decomposition in Algorithm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In this algorithm, we first exploit the randomization techniques in [47] to accelerate the process of the GSVD to obtain the generalized singular vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then we use the DEIM index selection procedure, operating on the approximate generalized singular vector matrices to determine the selected columns and rows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We note that we can parallelize the work in lines 7 to 15 since it consists of three independent runs of 7 Algorithm 4 DEIM based GCUR randomized algorithm [17] Input: A ∈ Rm×n and B ∈ Rm×n with m ≥ n and d ≥ n, desired rank k, and the oversampling parameter p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Output: A rank-k GCUR decomposition ˆA = A(:, p) · MA · A(sA, :), ˆB = B(:, p) · MB · B(sB, :).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1: Generate an n × (k + p) Gaussian random matrix Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2: Form the m × (k + p) matrix K = AΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3: Compute the m × (k + p) orthonormal matrix Q via the QR factorization K = QR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4: Compute the GSVD of (B, QTA): � B QTA � = � V W � � Σ Γ � Y T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 5: Form the m × (r + p) matrix U = QW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 6: y = Y (:, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 7: p1 = argmax1≤i≤n |yi|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 8: for j = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , k do 9: y = Y (:, j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 10: c = Y (p, 1 : j − 1)−1y(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 11: r = y − Y (:, 1 : j − 1)c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 12: pj = argmax1≤i≤n |ri|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 13: p = � p pj � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 14: end for 15: Perform 2-9 on U and V to obtain the corresponding indices sA and sB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 16: Compute MA = A(:, p)\\ (A/A (sA, :)), MB = B(:, p)\\ (B/B (sB, :)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' DEIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Also, as noted in [17], if we are only interested in approximating the matrix A from the pair (A, B), we can omit the manipulation on V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Meanwhile, one can observe that the dominant cost of the randomized algorithm lies in computing the GSVD of matrix pair (QTA, B), and it is much lower than its counterpart in the non-random algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Consequently, from a practical perspective, Algorithm 4 is extremely simple to implement and can greatly reduce the computational time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The following work will give performance guarantees by quantifying the error of the rank-k GCUR decomposition ˆA = CAMARA = A(:, p) · MA · A (sA, :) and ˆB = CBMBRB = B(:, p) · MB · B (sB, :).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Consistent with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1), let the number pairs {(γi, βi)}n i=1 be the generalized singular values of the matrix pair (A, B), where we we maintain the ratios γi/βi in a non-increasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As described in Algorithm 4, the matrix pair (A, B) owns the approximate GSVD QQTA = UΓY T and B = V ΣY T, where Γ = diag(˜γ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , ˜γn), Σ = diag(˜β1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , ˜βn), and the ratios ˜γi/˜βi are in a non-increasing order, and the approximation error satisfies (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4) with failure probability not exceeding 3p−p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Partition the matrices: U = � Uk �U � , V = � Vk �V � , Y = � Yk �Y � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5) Γ = diag � Γk, �Γ � , Σ = diag � Σk, �Σ � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6) where matrices Uk, Vk, and Yk contain the first k columns of U, V , and Y respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' For our analysis, instead of Y , we use its orthonormal QR factor H from the QR decomposition of Y : � Yk �Y � = Y = HT = � Hk �H � � Tk T12 0 T22 � = � HkTk H �T � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7) with �T = � T12 T22 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' This implies that QQTA = UkΓkY T k + �U�Γ�Y T = UkΓkT T k HT k + �U�Γ �T THT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' With the above preparation, the following theorem derives the error bound for ∥A − ˆA∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 8 Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Suppose A ∈ Rm×n, B ∈ Rd×n and both are of full column rank, and let matrix pair ( ˆA, ˆB) be a rank-k GCUR decomposition for matrix pair (A, B) computed by Algorithm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Let Θk = (1 + 6 � (k + p)p log p)σk+1(A) + 3√k + p �� j>k σ2 j (A), and ηk = � nk 3 2k + � mk 3 2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then ∥ ˆA − A∥ ≤ ηk � Θk + (∥A∥ + ∥B∥) � γk+1 βk+1 + Θk βk+1 ����� � A B �†����� �� (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8) holds with probability not less than 1−3p−p, where the number pair (γk+1, βk+1) is defined in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1)and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2), and both γi/βi and 1/βi are in a non-increasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' By the definition of MA, we have A − CAMARA = A − CAC† AAR† ARA = (I − CAC† A)A + CAC† AA(I − R† ARA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Since CAC† A is an orthogonal projection, it directly follows that ∥A − CAMARA∥ ≤∥(I − CAC† A)A∥ + ∥A(I − R† ARA)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='9) According to [36, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2], the column and row indices sA and p give the full rank matrices CA = ASA and RA = P TA where SA = I(:, sA) and P = I(:, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Let P = P(HT k P)−1HT k and S = Uk(ST AUk)−1ST A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then using the result in [17, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7], we get ∥(I − CAC† A)A∥ ≤ ∥A(I − P)∥, ∥A(I − R† ARA)∥ ≤ ∥(I − S)A∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Note that U T k Uk = I and HT k Hk = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then according to [36, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1], we obtain that ∥(I − CAC† A)A∥ ≤∥(HT k P)−1∥∥A(I − HkHT k )∥ ≤∥(HT k P)−1∥ � ∥E∥ + ∥QQTA � I − HkHT k � ∥ � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10) where we use ��I − HkHT k �� = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Analogous operation gives that ∥A(I − R† ARA)∥ ≤ ∥(ST AUk)−1∥ � ∥E∥ + ∥(I − UkU T k )QQTA∥ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='11) Note that QQTAHkHT k = � Uk �U � � Γk 0 0 �Γ � � T T k 0 T T 12 T T 22 � � Ik 0 � HT k = UkΓkT T k HT k + �U�ΓT T 12HT k , and hence, QQTA � I − HkHT k � = �U�Γ �T THT − �U�ΓT T 12HT k = �U�ΓT T 22 �HT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Similarly, it holds that � I − UkU T k � QQTA = QQTA − UkΓkY T k = �U�Γ�Y T = �U�Γ �T T HT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Therefore, ∥QQTA(I − HHT k )∥ = ∥�U�ΓT T 22 �HT∥ ≤ ˜γk+1∥T22∥ ≤ ˜γk+1∥ �T∥, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='12) ∥(I − UkU T k )QQTA∥ ≤ ˜γk+1∥ �T∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='13) To bound ∥ �T∥, recall the result in [21, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3] that ∥Y ∥ ≤ ∥QQTA∥+∥B∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given the partitioning and QR factorization of Y , we have ∥ �T∥ = ∥H �T∥ = ∥�Y ∥ ≤ ∥Y ∥ ≤ ∥QQTA∥ + ∥B∥ ≤ ∥A∥ + ∥B∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='14) 9 For the DEIM selection scheme, [36, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4] derives the bound ��� � HT k P �−1��� < � nk 3 2k, and ��� � ST AUk �−1��� < � mk 3 2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15) Inserting (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10)-(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15) and into (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='9), we obtain ∥ ˆA − A∥ ≤ ηk (∥E∥ + ˜γk+1 (∥A∥ + ∥B∥)) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16) where ˜γk+1 is the (k + 1)th diagonal entry of Γ with a non-increasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Recall the perturbation results for the generalized singular values in [39, Theorem 3] ���˜γiβi − ˜βiγi ��� ≤ ���� � E F ����� · ����� � A B �†����� , 1 ⩽ i ⩽ n, where matrices E and F are the perturbations to A and B, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Clearly, we have F = 0 for our randomized algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As a result, we have ˜γk+1 ≤ 1 βk+1 � γk+1 + ∥E∥ · ����� � A B �†����� � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17) We finish the proof by combining (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17) and the probabilistic error bound (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Because the ratios γi/βi and 1/βi are maintained in a non-increasing order, the right-hand side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8) decreases as the target rank k increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Note that the randomized GSVD algorithm provides an exact decomposition of B, the error bound for ∥B − ˆB∥ in [17] still holds that ∥B − CBMBRB∥ ≤ ∥ � HT k P �−1 ∥ · ∥T22∥ + ∥ � ST BVk �−1 ∥ · ∥ �T∥ ≤ � ∥ � HT k P �−1 ∥ + ∥ � ST BVk �−1 ∥ � ∥ �T∥ ≤ �� nk 3 2k + � dk 3 2k � (∥A∥ + ∥B∥) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Compared with the error bound of ∥A − CAMARA∥ under the non-random scheme in [17] that ∥A − CAMARA∥ ≤ γk+1(∥A∥ + ∥B∥) · ηk, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8) involves a truncation term Θk due to the randomization of the GSVD, and consequently, our randomized approach works well for matrices whose singular values exhibit some decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3 Randomization for L-DEIM Based GCUR To further improve the efficiency of our randomized algorithm, we now turn our gaze to combining the random sampling methods with the L-DEIM algorithm, which we will see can yield acceptable error bounds with high probability at a lower computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We present this scheme in Algorithm 5 and give a similar probabilistic error estimate in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Let the matrix pair ( ˆA, ˆB) be a rank-�k GCUR approximation for pair (A, B) computed by Algorithm 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Suppose that Θ�k = � 1 + 6 � (�k + p)p log p � σ�k+1(A) + 3 � �k + p �� j>�k σ2 j (A), and η�k = � n�k 3 2�k + � m�k 3 2�k, and then the following error bound ∥ ˆA − A∥ ≤ η�k � Θ�k + (∥A∥ + ∥B∥) � γ�k+1 β�k+1 + Θ�k β�k+1 ����� � A B �†����� �� , fails with probability not exceeding than 3p−p and γi/βi and 1/βi are in a non-increasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 10 Algorithm 5 L-DEIM based GCUR randomized algorithm Input: A ∈ Rm×n and B ∈ Rm×n with m ≥ n and d ≥ n, desired rank k, the oversampling parameter p and the specified parameter �k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Output: A rank-k GCUR decomposition ˆA = A(:, p) · MA · A(sA, :), ˆB = B(:, p) · MB · B(sB, :).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1: Generate an n × (�k + p) Gaussian random matrix Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2: Form the m × (�k + p) matrix K = AΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3: Compute the m × (�k + p) orthonormal matrix Q via the QR factorization K = QR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4: Compute the GSVD of (QTA, B): � B QTA � = � V W � � Σ Γ � Y T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 5: Form the m × (�k + p) matrix U = QW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 6: for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , �k do 7: p(j) = argmax1≤i≤n |(Y (:, j))i|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 8: Y (:, j + 1) = Y (:, j + 1) − Y (:, 1 : j) · (Y (s, 1 : j)\\Y (p, j + 1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 9: end for 10: Compute ℓi = ∥[Y ]i:∥2 for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 11: Sort ℓ in non-increasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 12: Remove entries in ℓ corresponding to the indices in p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 13: p′ = k − �k indices corresponding to k − �k largest entries of ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 14: p = [p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' p′].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 15: Perform 6-14 on U and V to obtain the corresponding indices sA and sB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 16: Compute MA = A(:, p)\\ (A/A (sA, :)), MB = B(:, p)\\ (B/B (sB, :)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4 Randomization for RSVD-CUR Real-world data sets often comprise different representations or views, which provide information complementary to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The canonical correlation analysis (CCA) [26] is one of the most common and useful techniques for multi-data processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Motivated by the CCA, Gidisu and Hochstenbach [16] generalized the DEIM-type CUR to a new coordinated CUR factorization of a matrix triplet (A, B, G) of compatible dimensions based on the RSVD, which was called the RSVD-CUR decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Analogous to CCA, an RSVD-CUR factorization as a tool for multi-view dimension reduction can cope with a two-view case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Furthermore, in the same context, one can use an RSVD-CUR as a supervised feature selection technique in multilabel classification problems and it can also applied to cases where the the goal is to select a subset of rows and or columns of one data set relative to two other data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In this section, we introduce new randomized algorithms for computing the RSVD-CUR decomposition where we apply the L-DEIM scheme and the random sampling techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Detailed error analysis which provides insight into the accuracy of the algorithms and the choice of the algorithmic parameters is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 RSVD-CUR We now give a brief overview of the RSVD-CUR of a matrix triplet (A, B, G) with A ∈ Rm×n B ∈ Rm×ℓ, and G ∈ Rd×n (ℓ ≥ d ≥ m ≥ n) where B and G are of full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then a rank-k RSVD-GCUR approximation of (A, B, G) is defined as A ≈ CAMARA = AP MA STA, B ≈ CBMBRB = BPB MB STB, G ≈ CGMGRG = GP MG ST GG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1) 11 Here S ∈ Rm×k, SG ∈ Rd×k, P ∈ Rn×k, and PB ∈ Rℓ×k are index selection matrices with some columns of the identity that select rows and columns of the respective matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It is key that the same rows of A and B are picked and the same columns of A and G are selected;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' this gives a coupling among the decompositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As a result, the RSVD-GCUR may be viewed as a CUR-type decomposition of a matrix relative to two other matrices of compatible dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The matrices CA ∈ Rm×k, CB ∈ Rm×k, CG ∈ Rd×k and RA ∈ Rk×n, RB ∈ Rk×ℓ, RG ∈ Rk×n are subsets of the columns and rows, respectively, of the given matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Let the vectors s, sG, p and pB contain the indices of the selected rows and columns, such that S = I(:, s), SG = I(:, sG), P = I(:, p), and PB = I(:, pB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In [16], the choice of s, sG, p and pB is guided by the knowledge of the orthogonal and nonsingular matrices from the rank-k RSVD, where the DEIM and L-DEIM algorithms are employed as the index selection strategies for finding the “best” row and column indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Specifically, suppose that the RSVD of (A, B, G) are available, as shown in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To construct a DEIM-type RSVD-CUR decomposition of a matrix pair (A, B, G), given the target rank k, the DEIM operates on the first k columns on matrices W, Z, U and V to obtain the corresponding indices p, s, pB and sG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Moreover, by utilizing the L-DEIM, one can use at least the first k/2 vectors of W, Z, U, and V to obtain the indices, with the approximation quality as good as that of the DEIM-type RSVD-CUR, which is demonstrated numerically in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It is clear that both the DEIM and the L-DEIM type RSVD-CUR decompositions require the inputs of the RSVD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Nevertheless, computing this factorization can be a significant computational bottleneck in the large-scale applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' How to reduce this computational cost and still ensure the accuracy of the approximation is our main concern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Next, we introduce the randomized schemes for computing the RSVD-CUR decomposition, together with a detailed error analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 Randomization for Restricted SVD The computation of the RSVD is still an active field of research;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' see some recent works [11,54,55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The RSVD can be considered as a double GSVD [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We first compute the GSVD of (A, G), A = U1Γ1Y T 1 , G = V1 � Σ1 0d−n,n � Y T 1 , and then we compute the GSVD of (BTU1, Σ−1 1 ΓT 1 ), so that BTU1 = U2Γ2Y T 2 , Σ−1 1 ΓT 1 = V2Σ2Y T 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The above two steps can be summarized in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' � A B G � = � U1 V1 � � � Γ1 U T 1 B Σ1 0d−n,n � � � Y T 1 I � = � U1 V1 � � � Γ1Σ−1 1 U T 1 B I 0d−n,n � � � Σ1Y T 1 I � = � U1Y2 V1 � � � ΣT 2 ΓT 2 V2 0d−n,n � � � V T 2 Σ1Y T 1 U T 2 � = � U1Y2 V1 �V2 � � � ΣT 2 ΓG ΓT 2 ΓG 0d−n,n � � � Y1Σ1V2Γ−1 G U2 �T , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2) 12 where �V2 = diag(V2, Id−n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Moreover, ΓG = diag (γ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , γn) ∈ Rn×n is a scaling matrix that one can freely select (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', [55]), and critically, we keep the diagonal entries of Γ1 and Γ2 in non-decreasing order while those of Σ1 and Σ2 are non-increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In accordance with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3), one can define Z ≜ U1Y2, W ≜ Y1Σ1V2Γ−1 G , V ≜ V1 �V2, U ≜ U2, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3) � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � DA ≜ ΣT 2 ΓG = � ���� α1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' αn 0m−n,n � ���� ∈ Rm×n, DB ≜ ΓT 2 = � ���� β1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 0n,m−n 0n,l−m βn 0m−n,n Im−n 0m−n,l−m � ���� ∈ Rm×l, DG ≜ � ΓG 0d−n,n � = � ���� γ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' γn 0d−n,n � ���� ∈ Rd×n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Denote Σ2 = diag (σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , σn) ∈ Rn×m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Here we choose γi = σi √ σ2 i +1 for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , n, which are ordered non-increasingly ( since f(x) = x � x2 + 1 �−1/2 is a strictly increasing function) and it implies that αi = σ2 i √ σ2 i +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given that β2 i + σ2 i = 1 from the second GSVD, we have that α2 i + β2 i + γ2 i = 1 for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Note that B and G are of full rank, 1 > αi ≥ αi+1 > 0, 1 > γi ≥ γi+1 > 0 and 0 < βi ≤ βi+1 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We now proceed to propose a fast randomized algorithm for computing the RSVD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The main idea of our approach is to accelerate this computational process by exploiting the randomized GSVD algo- rithm and its analysis relies heavily on the results introduced in Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Firstly, an orthonormal matrix H1 ∈ Rd×(k+p1) is generated to satisfy ��G − H1HT 1 G �� ≤ cσk+1 with high probability, where σk+1 is the (k + 1)th largest singular value of G and c is a constant depending on k and p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Here p1 is the oversampling parameter, which is used to provide flexibility [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' According to (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2), Σ1 is required to be square, hence, here we fix that p1 = n−k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' By performing the GSVD of [(HT 1 G)T, AT]T, we get the approximate GSVD of [GT, AT]T, � A G � ≈ � A H1HT 1 G � = � U1 V1 � � Γ1 Σ1 � Y T 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4) When m ≫ n, the computational advantage of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4) becomes much more obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Furthermore, we can formulate the approximate GSVD for the pair (BTU1, Σ−1 1 ΓT 1 ) by performing the GSVD of the small-scale matrix [(HT 2 BTU1)T, (Σ−1 1 ΓT 1 )T]T, where H2 is a (k + p2) × n orthonormal matrix, and p2 is also an oversampling parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then we obtain � BTU1 Σ−1 1 ΓT 1 � ≈ � H2HT 2 (BTU1) Σ−1 1 ΓT 1 � = � U2 V2 � � Γ2 Σ2 � Y T 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5) Finally, we can formulate the corresponding approximate RSVD of (A, B, G), A = ZDAW T, B ≈ ˜B = ZDBU T, G ≈ ˜G = V DGW T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6) 13 To be more clear in presentation, the above process can be expressed as follows: � A B G � ≈ � A B H1HT 1 G � = � U1 V1 � � Γ1 U T 1 B Σ1 � � Y T 1 I � = � U1 V1 � � Γ1Σ−1 1 U T 1 B I � � Σ1Y T 1 I � ≈ � U1 V1 � � Γ1Σ−1 1 � U T 1 B � H2HT 2 I � � Σ1Y T 1 I � = � U1Y2 V1 � � ΣT 2 ΓT 2 V2 � � V T 2 Σ1Y T 1 U T 2 � = � U1Y2 V1V2 � � ΣT 2 ΓG ΓT 2 ΓG � � Y1Σ1V2Γ−1 G U2 �T ≜ � Z V � � DA DB DG � � W U �T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We summarize the details in Algorithm 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Notice that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6) indicates that our randomized approach provides an exact factorization for A, which is a direct consequence of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4), while it does not hold for matrices B and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We present a detailed analysis of the approximation error in the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Suppose that B ∈ Rm×l and G ∈ Rd×n with l ≥ d ≥ m ≥ n and p is an oversampling parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Let ˜B and ˜G be the approximation of B and G computed by Algorithm 6, then ∥B − ˜B∥ ≤ � 1 + 6 � (k + p)p log p � σk+1(B) + 3 � k + p �� j>k σ2 j (B), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7) ∥G − ˜G∥ ≤ � 1 + 6 � n(n − k) log(n − k) � σk+1(G) + 3 � n � j>k σ2 j (G) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8) hold with probability not less than 1 − 3p−p and 1 − (n − k)−(n−k) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Let EG and EB be the error matrices such that G = V1Σ1Y T 1 + EG, BTU1 = U2Γ2Y T 2 + EB, Σ−1 1 ΓT 1 = V2Σ2Y T 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='9) Inserting (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='9) into ˜B and ˜G, we have B − ˜B = B − ZDBU T = B − (U1Y2)ΓT 2 U T 2 = B − U1(U T 1 B − ET B) = U1ET B, G − ˜G = G − V DGW T = G − (V1V2)ΓG(Y1Σ1V2Γ−1 G )T = G − V1Σ1Y T 1 = EG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' During randomization for the GSVD of (A, G), we set the oversampling parameter p′ = n − k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' By the probabilistic error bound (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4), we have ∥G − ˜G∥ ≤ ∥EG∥ ≤ � 1 + 6 � n(n − k) log(n − k) � σk+1(G) + 3 � n � j>k σ2 j (G), which holds with probability not less than 1 − 3(n − k)−(n−k), and similarly ∥B − ˜B∥ ≤ ∥EB∥ ≤ � 1 + 6 � (k + p)p log p � σk+1(U T 1 B) + 3 � k + p �� j>k σ2 j (U T 1 B) ≤ � 1 + 6 � (k + p)p log p � σk+1(B) + 3 � k + p �� j>k σ2 j (B), with probability not less than 1−p−p, where we apply the result in [23, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1] that σj(U T 1 B) ≤ σj(B) when U1 is orthonormal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 14 Algorithm 6 Randomized RSVD algorithm Input: A ∈ Rm×n, B ∈ Rm×ℓ, and G ∈ Rd×n, with with ℓ ≥ d ≥ m ≥ n, desired rank k, and the oversampling parameter p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Output: an RSVD of matrix triplet (A, B, G), A = ZDAW T, B ≈ ZDBU T, G ≈ V DGW T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1: Generate an n × n Gaussian random matrix Ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2: Form the d × n matrix GΩ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3: Compute the d × n orthonormal matrix H1 via the QR factorization GΩ1 = H1R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4: Compute the GSVD of (A, HT 1 G): � A HT 1 G � = � U1 ˜V1 � � Γ1 Σ1 � Y T 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 5: Form the d × n orthonormal matrix V1 = H1 ˜V1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 6: Form the m × k2 matrix GΩ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 7: Compute the (k2 + p) × n orthonormal matrix H2 via the QR factorization (BTU1)Ω2 = H2R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 8: Compute the GSVD of � HT 2 � BTU1 � , Σ−1 1 ΓT 1 � : � HT 2 � BTU1 � Σ−1 1 ΓT 1 � = � ˜U2 V2 � � Γ2 Σ2 � Y T 2 , where Σ2 = diag (σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , σn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 9: Form the (k2 + p) × k2 orthonormal matrix U2 = H2 ˜U2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 10: Form the diagonal matrix ΓG = diag(γ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , γn), γi = σi √ σ2 i +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 11: Form the orthonormal matrices U = U2 ∈ R(k2+p)×k2, V = V1V2 ∈ Rd×k1, diagonal matrices DA = ΣT 2 ΓG, DB = ΓT 2 , DG = ΓG, and the nonsingular matrices Z = U1Y2 ∈ Rm×m, W = Y1Σ1V2Γ−1 G ∈ Rn×n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3 Randomization for L-DEIM Based RSVD-CUR Now we are ready to establish an efficient procedure for computing an approximate RSVD-CUR decomposition, along with a theoretical analysis of its error bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given a matrix triplet (A, B, G), with A ∈ Rm×n , B ∈ Rm×l, and G ∈ Rd×n (ℓ ≥ d ≥ m ≥ n) where B and G are of full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Our approach provides a rank-k RSVD-CUR decomposition of the form (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3), and the choice of indices s, sG, p, and pB is guided by the knowledge of the orthonormal matrices and nonsingular matrices from the approximation of the rank-�k RSVD, where �k ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The details are summarized in Algorithm 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The innovation of our approach has two aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' First, we leverage the randomized algorithms (Algorithm 6) to accomplish the truncation procedure of the RSVD, where the random sampling technique can be used to identify a subspace that captures most of the action of a matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As a result, a large-scale problem is projected randomly to a smaller subspace that contains the main information, and then we apply the deterministic algorithm to the associated small-scale problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Consequently, an approximate rank-�k RSVD of the form (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6) is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Second, to further strengthen the efficiency of our algorithm scheme, we adopt the L-DEIM method for sampling instead of the DEIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As described in Subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2, compared to the DEIM scheme, the L-DEIM procedure is computationally more efficient and requires less than k input vectors to select the indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We now provide a rough error analysis that shows that the accuracy of the proposed algorithm is closely associated with the error of the approximation RSVD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The analysis follows the results in [16,17,36] with some necessary modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We begin by partitioning the matrices in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6) U = � U�k �U � , V = � V�k �V � , W = � W�k � W � , Z = � Z�k �Z � , DA = diag � DA�k, �DA � , DB = diag � DB�k, �DB � , DG = diag � DG�k, �DG � , where �DA ∈ R(m−�k)×(n−�k), �DB ∈ R(m−�k)×(l−�k), and �DG ∈ R(d−�k)×(n−�k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As with the DEIM-type GCUR method in [17], the lack of orthogonality of the basis vectors in W and Z from the RSVD 15 necessitates some additional work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Mimicking the techniques in [16], here we take a QR factorization of W and Z to obtain an orthonormal basis to facilitate the analysis, � Z�k �Z � = Z = QZTZ = � QZ�k �QZ � � TZ�k TZ12 0 TZ22 � = � QZ�kTZ�k QZ �TZ � , � W�k � W � = W = QW TW = � QW�k �QW � � TW�k TW12 0 TW22 � = � QW�kTW�k QW �TW � , where we have denoted �TZ := � TZ12 TZ22 � , �TW := � TW12 TW22 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It is straightforward to check that B = Z�kDBkU T �k + �Z �DB �U T + EB = QZ�kTZ�kDB�kU T �k + QZ �TZ �DB �U T + EB, G = V�kDG�kW T �k + �V �DG� W T + EG = V�kDG�kT T W�kQT W�k + V�k �DG �T T W QT W + EG, where EB and EG satisfy the probabilistic error bounds (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Since Algorithm 6 provides an exact decomposition of A, the error bound for A in [16, Proposition 2] ∥A − CAMARA∥ ≤ αk+1 · � � � n�k 3 2 �k + � m�k 3 2 �k � � · ��� �TW ��� ��� �TZ ��� , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10) still holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Here αk+1 is the (k + 1)th diagonal entry of DA, which is ordered non-increasingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The following theorem roughly quantifies the error bounds for ∥B − CBMBRB∥ and ∥G − CGMGRG∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Suppose that a rank-k RSVD-CUR decomposition for (A, B, G) of the form (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1) is produced by Algorithm 7, where S = I(:, s), SG = I(:, sG), P = I(:, p) and PB = I(:, pB) are the index selection matrices, and p is the oversampling parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Let ηG = � n�k 3 2�k + � d�k 3 2�k, and ηB = � l�k 3 2�k + � m�k 3 2�k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then ∥G − CGMGRG∥ ≤ ηG · � ∥EG∥ + ��� �TW ��� � , ∥B − CBMBRB∥ ≤ ηB · � ∥EB∥ + ��� �TZ ��� � , where ∥EG∥ ≤ � 1 + 6 � n(n − �k) log(n − �k) � σ�k+1(G) + 3 � n � j>�k σ2 j (G), ∥EB∥ ≤ � 1 + 6 � (�k + p)p log p � σ�k+1(B) + 3 � (�k + p) � j>�k σ2 j (B) which hold with probability not less than 1 − (n − �k)−(n−�k) and 1 − 3p−p, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It suffices to prove the bound for ∥G−CGMGRG∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given the orthogonal projectors CGC† G and RGR† G and compute MG = C† GGR† G, using the result in [30], we have G − CGMGRG = G − CGC+ GGR† GRG = (I − CGC† G)G + CGC† GG(I − R† GRG).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='11) Then ∥G − CGMGRG∥ ≤ ∥(I − CGC† G)G∥ + ∥G(I − R† GRG)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given index selection matrix P from the L-DEIM scheme on matrix W�k, and suppose that QW�k is an orthonormal basis for Ran(W�k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We form P = P(QT W�kP)†QT W�k: an oblique projector with 16 P(W T �k P)†W T �k = P(QT W�kP)†QT W�k ( [9, Equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6]) and we also have QT W�kP = QT W�kP(QT W�kP)†QT W�k = QT W�k, which implies QT W�k(I − P) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' From [22, Lemmas 2 and 3], we obtain that ∥(I − CGC† G)G∥ ≤ ∥G(I − P)∥ = ∥G(I − QW�kQT W�k)(I − P)∥ ≤ ∥G(I − QW�kQT W�k)∥∥I − P∥, ∥G(I − R† GRG)∥ ≤ ∥(I − S)G∥ = ∥(I − S)(I − V�kV T �k )G∥ ≤ ∥(I − S)∥∥(I − V�kV T �k )G∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Since �k < r, P ̸= 0, P ̸= I and S ̸= 0, S ̸= I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' By [41, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1], we have ∥I − P∥ = ∥P∥ = ∥(QT W�kP)†∥, ∥I − S∥ = ∥S∥ = ∥(STV�k)†∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Using the partitioning of G, we have GQW�kQT W�k = � V�k �V � � DG�k 0 0 �DG � � T T W�k 0 T T W12 T T W22 � � I�k 0 � QT W�k + EGQW�kQT W�k = V�kDG�kT T W�kQT W�k + �V �DGT T W12QT W�k + EGQW�kQT W�k, and hence G(I − QW�kQT Wk) = �V �DG �T TQT − �V �DGT T W12QT W�k − EGQW�kQT W�k = �V �DGT T W22 �QT W − EGQW�kQT W�k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' This implies ∥G(I − QW�kQT W�k)∥ ≤ γ�k+1 ∥TW22∥ + ∥EG∥ ≤ ∥TW22∥ + ∥EG∥ and then ∥(I − CGC† G)G∥ ≤ ∥G(I − QW�kQT W�k)∥∥I − P∥ ≤ ∥(QT W�kP)†∥ · (∥TW22∥ + ∥EG∥), Similarly, we have ∥G(I − R† GRG) ≤ ∥(STV�k)†∥ · (∥ �TW ∥ + ∥EG∥) ≤ ∥(STV�k)†∥ · (∥ �TW ∥ + ∥EG∥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Then it follows that ∥G − CGMGRG∥ ≤ � ∥(QT W�kP)†∥ + ∥(STV�k)†∥ � (∥ �TW ∥ + ∥EG∥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Using the upper bounds [16] ∥(QT W�kP)†∥ < � n�k 3 2 �k, ∥(ST GV�k)†∥ < � d�k 3 2 �k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' and applying the probabilistic error bound (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4), we obtain the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Comparing the results of the error bounds in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 to [16, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3] that ∥G − CGMGRG∥ ≤ γk+1 · ηG · ��� �TW ��� , ∥B − CBMBRB∥ ≤ ηB · ��� �TZ ��� , our results involve the item (1+6 � n(n − �k) log(n − �k))σ�k+1(G)+3 � n � j>�k σ2 j (G) in the error bound of ∥G − CGMGRG∥ and the item (1 + 6 � (�k + p)p log p)σ�k+1(B) + 3 � �k + p �� j>�k σ2 j (B) in the error bound of ∥B − CBMBRB∥, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Therefore, our randomized algorithm works well for the matrices whose singular values exhibit some decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 17 Algorithm 7 L-DEIM based RSVD-CUR randomized algorithm Input: A ∈ Rm×n, B ∈ Rm×l, and G ∈ Rd×n with l = d ≥ m ≥ n, desired rank k, the oversampling parameter p and the specified parameter �k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Output: A rank-k RSVD-CUR decomposition A ≈ A(:, p) · MA · A(s, :), B ≈ B(:, pB) · MB · B(s, :), G ≈ G(:, p) · MG · G(sG, :).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1: Generate an n × n Gaussian random matrix Ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2: Form the d × n matrix GΩ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3: Compute the d × n orthonormal matrix H1 via the QR factorization GΩ1 = H1R1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4: Compute the GSVD of (HT 1 G, A): � HT 1 G A � = � ˜V1 U1 � � Σ1 Γ1 � Y T 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 5: Form the n × n orthogonal matrix V1 = H1 ˜V1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 6: Generate an m × (�k + p) Gaussian random matrix Ω2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 7: Form the l × (�k + p) matrix (BTU1)Ω2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 8: Compute the l × (�k + p) orthonormal matrix H2 via the QR factorization (BTU1)Ω2 = H2R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 9: Compute the GSVD of (HT 2 (BTU1), Σ−1 1 ΓT 1 ): � HT 2 (BTU1) Σ−1 1 ΓT 1 � = � ˜U2 V2 � � Γ2 Σ2 � Y T 2 , where Σ2 = diag (σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , σn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 10: Form the l × (�k + p) orthonormal matrix U2 = H2 ˜U2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 11: Form the n × n diagonal matrix ΓG = diag(γ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , γn), γi = σi √ σ2 i +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 12: Form the orthonormal matrices V = V1V2, U = U2 and nonsingular matrices Z = U1Y2 and W = Y1Σ1V2Γ−1 G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 13: for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , �k do 14: pB(j) = argmax1≤i≤l |(U(:, j))i|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 15: U(:, j + 1) = U(:, j + 1) − U(:, 1 : j) · (U(pB, 1 : j)\\U(pB, j + 1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 16: end for 17: Compute ℓi = ∥[U]i:∥2 for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 18: Sort ℓ in non-increasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 19: Remove entries in ℓ corresponding to the indices in pB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 20: p′ B = k − �k indices corresponding to k − �k largest entries of ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 21: pB = [pB;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' p′ B].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 22: Perform 13-21 on W, Z and V to obtain the corresponding indices p, s and sG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 23: Compute MA = A(:, p)\\ (A/A (sA, :)), MB = B(:, p)\\ (B/B (sB, :)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 5 Numerical Examples In this section, we check the accuracy and the computational cost of our algorithms on several synthetic and real-world datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1, we consider the case where the data matrix A is corrupted by a random additive noise E and the covariance of this noise (the expectation of ETE) is not a multiple of the identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [17, Experiment 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1] demonstrates that using the SVD-based methods without prewhitening the perturbed data yields less accurate approximation results of the original matrix, while the GCUR technique gives a more accurate low-rank approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 we show that utilizing the randomized methods yields accurate approximation results compared to the GCUR and causes a dramatic enhancement in the computing speed, which is especially noticeable for large-scale matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' For Examples 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3, we consider testing the performance of the approaches on a set with two data sets collected under different conditions, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', treatment and control experiment, where the former has distinct variation caused by the treatment: signal-free and signal recordings with the signal-free data set containing only noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We are interested in exploring and identifying patterns and discriminative features that are specific to one data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Finally, in Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4, we evaluate the performance of the proposed randomized RSVD-CUR algorithm for reconstructing a data matrix 18 perturbed with nonwhite noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' All computations are carried out in MATLAB R2020a on a computer with an AMD Ryzen 5 processor and 16 GB RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To facilitate the comparison between different algorithms, we define the following acronyms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' DEIM-GCUR− implements the GCUR algorithm with column subset selection implemented using the DEIM algorithm (Algorithm 1) labeled “DEIM-GCUR” (Algorithm 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' R-GCUR − applies the randomized GCUR algorithm with column subset selection imple- mented using either the DEIM algorithm labeled “R-DEIM-GCUR”, summarized in Algorithm 4, or the L-DEIM algorithm (Algorithm 2) labeled “R-LDEIM-GCUR” as summarized in Algorithm 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' RSVD-CUR − implements the RSVD-CUR decomposition algorithm by using the DEIM labeled “DEIM-RSVD-CUR”, as summarized in [16, Algorithm 3], or the L-DEIM algorithm, labeled “LDEIM-RSVD-CUR”, as summarized in [16, Algorithm 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' R-LDEIM-RSVD-CUR − implements the randomized RSVD-CUR algorithm based on the L-DEIM procedure labeled “R-LDEIM-RSVD-CUR” (Algorithm 7) to produce the RSVD-CUR de- composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 This experiment is an adaptation of experiments in [21, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4], [17, Experiment 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1] and [36, Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We build a matrix A ∈ Rm×n of the form A = 10 � j=1 2 j xjyT j + 50 � j=11 1 j xjyT j , where xj ∈ Rm and yj ∈ Rn are sparse vectors with random nonnegative entries (in MATLAB, xj = sprand(m, 1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='025) and yj = sprand(n, 1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='025)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Following [17], we then perturb this matrix with a noise matrix E ∈ Rm×n whose entries are correlated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given AE = A + E, we evaluate and compare the GCUR, R-GCUR algorithms and the CUR decomposition on AE in terms of recovering the original matrix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We present the numerical results for four noise levels;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' the noise E = ε ∥F∥ ∥A∥F, where ε is the parameter for the noise level and F is a randomly generated correlated noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Just as in [17], we construct a correlated Gaussian noise E whose entries have zero mean and a Toeplitz covariance structure, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', in MATLAB desired-cov(F)=toeplitz(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='990, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='99n−1), B = chol(desired-cov(F)), and F = randn(m, n) · B and ε ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The performance is assessed based on the 2- norm of the relative matrix approximation error, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', Err = ∥A − �A∥/∥A∥, where �A is the approximated low-rank matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We first compare the accuracy of the GCUR algorithms with their randomized counterparts R- GCUR and the standard DEIM-CUR decomposition for reconstructing the low-rank matrix A for different noise levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As inputs, we fix m = 10000, n = 300 and using the target rank k varies from 1 to 50, and the parameter contained in the L-DEIM procedure is �k = k/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The relative errors are plotted in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 19 (a) ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 (b) ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15 (c) ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 (d) ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='05 Figure 1: Accuracy of the R-GCUR approximations compared with the standard DEIM-CUR approx- imation and the GCUR decomposition in recovering a sparse, nonnegative matrix A perturbed with correlated Gaussian noise using exact Cholesky factor of the noise covariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The relative errors as a function of rank k for ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='05, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We observe that the GCUR and R-GCUR techniques achieve a comparable relative error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Consistent with the results in [17], the R-GCUR algorithm performs significantly well under high noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Besides, we observe that, as k approaches rank(A), however, the relative errors of both the GCUR and the R-GCUR do not decrease any more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [17] attributes this phenomenon to the fact that the relative error is saturated by the noise, considering we pick the columns and rows of the noisy data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The analysis of the proposed algorithms implies that our randomized algorithms are less expensive compared to their deterministic counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To illustrate this, we record the running time in seconds (denoted as CPU) and the approximation quality Err of the GCUR and R-GCUR for reconstructing matrix A for different noise levels ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='05 as the dimension and the target rank k increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' According to the conclusions summarized in [18], the L-DEIM procedure may be comparable to the original DEIM method when the target rank k is at most twice the available �k singular vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Therefore, here we set the parameter �k contained in the L-DEIM to be �k = k/2, and the oversampling parameter p = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We record the results in Tables 1-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It is clear from the running time that the algorithms R-DEIM-GCUR and R-LDEIM-GCUR have a huge advantage in computing speed over the non-random GCUR method, and the R-LDEIM-GCUR achieves the smallest running time among the three sets of experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 20 Relative Error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='55 DEIM-CUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5 O-DEIM-GCUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='45 SVD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 △-R-DEIM-GCUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='35 → - R-LDEIM-GCUR .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='05 0 5 10 15 20 25 30 35 40 45 50 Rank[k]Relative Error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='55 DEIM-CUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5 0-DEIM-GCUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='45 SVD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 A-R-DEIM-GCUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='35 → - R-LDEIM-GCUR rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='05 0 5 10 15 20 25 30 35 40 45 50 Rank[k]Relative Error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5 DEIM-CUR 0-DEIM-GCUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='45 SVD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 △-R-DEIM-GCUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='35 ☆- R-LDEIM-GCUR err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='05 5 10 15 20 25 30 35 40 45 50 Rank[k]RelativeError 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 DEIM-CUR 0-DEIM-GCUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5 一SVD A-R-DEIM-GCUR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 α- R-LDEIM-GCUR rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 0 0 5 10 15 20 25 30 35 40 45 50 Rank[k]Table 1: Comparison of GCUR and randomized algorithms (R-DEIM-GCUR and R-LDEIM-GCUR) in CPU and relative error as the dimension and the target rank k increase, with noise level ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (m, n, k) (10000, 200, 20) (50000, 200, 20) (100000, 500, 30) (200000, 1000, 40) GCUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='14842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18058 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17292 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10197 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='54697 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4971 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='001 R-DEIM-GCUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='14524 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16584 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18260 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17772 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='027867 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='11137 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='49037 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4217 R-LDEIM-GCUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16173 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='14640 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16758 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='018809 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='056930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='28019 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5563 Table 2: Comparison of GCUR and randomized algorithms (R-DEIM-GCUR and R-LDEIM-GCUR) in CPU and relative error as the dimension and the target rank k increase, with noise level ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (m, n, k) (10000, 1000, 30) (100000, 500, 30) (200000, 1000, 40) (200000, 1000, 50) GCUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16493 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18058 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17292 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18699 CPU 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1302 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5977 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='783 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='365 R-DEIM-GCUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16524 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18260 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17772 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18614 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='56099 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='47876 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0406 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7259 R-LDEIM-GCUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16906 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16758 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='172631 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='50487 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='27769 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2856 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5229 Table 3: Comparison of GCUR and randomized algorithms (R-DEIM-GCUR and R-LDEIM-GCUR) in CPU and relative error as the dimension and the target rank k increase, with noise level ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (m, n, k) (10000, 500, 20) (100000, 500, 30) (150000, 1000, 40) (200000, 1000, 50) GCUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='13828 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18058 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18230 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18699 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='56859 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5496 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='523 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='360 R-DEIM-GCUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='13089 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18260 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17513 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18614 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10336 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='48947 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8595 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6152 R-LDEIM-GCUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='13807 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17263 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='079551 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='28887 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0581 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4994 Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 We now test our randomized algorithms on synthetic data sets, as created in [17, Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3] and [1], which give an intuition for settings where the CUR and GCUR resolve the problem of subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Consider a data set of interest (target data) A, containing 4m data points in a 3d-dimensional feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' This data set has four subgroups (blue, yellow, orange, and purple), each of m data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The first d columns for all 4m data points are randomly sampled from a normal distribution with a mean of 0 and a variance of 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The next d columns of two of the subgroups (blue and orange) are randomly sampled from a normal distribution with a mean of 0 and a unit variance, while the other two subgroups (yellow and purple) are randomly sampled from a normal distribution with a mean of 6 and a unit variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The last d columns of subgroups blue and yellow are sampled from a normal distribution with a mean of 0 and a unit variance, and those of purple and orange are sampled from a normal distribution with a mean of 3 and a unit variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Now we are interested in reducing the dimension of A and this can be implemented by the SVD (principal component analysis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' However, if we project the data onto the two leading right singular vectors, we are unable to identify the subgroups because the variation along the first d columns is significantly larger than in any other direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 21 Following the operations in [17], we construct another data set B (a background data set), whose first 10 columns are sampled from a normal distribution with a mean of 0 and a variance of 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The next 10 columns are sampled from a normal distribution with a mean of 0 and a variance of 9, and the last d columns are sampled from a normal distribution with a mean of 0 and a unit variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The background data set should have the structure we would like to suppress in the target data, which usually corresponds to the direction with high variance but not of interest for the data analysis [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' With this new data, one way to extract discriminative features for clustering the subgroups in A is to maximize the variance of A while minimizing that of B, which leads to a trace ratio maximization problem [10] �U = argmax U∈Rn×k,UT U=Ik Tr �� U T BT BU �−1 � U T AT AU �� , where n = 3d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' By doing this, the first dimensions are less likely to be selected because they also have a high variance in data set B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Instead, the middle and last dimensions of A are likely to be selected, as they have the dimensions with the lowest variance in B, thereby allowing us to separate all four subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The solution �U to the above problem is given by the k right eigenvectors of (BT B)−1AT A corresponding to the k largest eigenvalues (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [15, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 448–449]);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' this corresponds to the (“largest”) right generalized singular vectors of (A, B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We perform two sets of experiments where we set m = 2500, d = 200 and m = 25000 and d = 300, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Figure 2 is a visualization Figure 2: In the top figure, we visualize the data using the first two columns selected by CUR (left) and GCUR (right), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In the bottom figure, we visualize the data using the first two columns selected by the R-DEIM-GCUR (left) and R-LDEIM-GCUR (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The lower-dimensional representation of the data using the GCUR and R-GCUR methods clearly separates the four clusters, while the DEIM based CUR method fails to do so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In this experiment, we set m = 2500, d = 200 and k = 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The input oversampling parameters for the R-DEIM-GCUR and R-LDEIM-GCUR are set to be 70 and 100, respectively, and �k = k/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content="Visualizing data set A using CUR's first 2 important columns " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='important column ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='puz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content="CUR1stimportantcolumnVisualizing data set A using GCUR's first 2 important columns " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='column ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='important ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2nd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='G ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content="GCUR1stimportantcolumnVisualizing data set A using R-DEiM-GCUR's first 2 important columns " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='column ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='important ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2nd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content="R-DEiM-GCUR1stimportantcolumnVisualizing data set A using R-LDEiM-GCUR's first 2 important columns " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='column ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='puz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='EI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='R-LDEIM-GCUR1stimportantcolumnof the data using the first two important columns selected using the algorithms DEIM-CUR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' GCUR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' R-DEIM-GCUR and R-LDEM-GCUR for two of input matrix dimensions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It can be seen that the GCUR and R-GCUR methods produce a much clearer subgroup separation than the CUR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' To a large extent, the GCUR and R-GCUR are able to differentiate the subgroups, while the CUR fails to do so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In terms of the running time, for the case that m = 2500 and d = 200, the nonrandom GCUR costs 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4250 seconds while the R-DEIM-GCUR and R-LDEIM-GCUR spend 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='83059 seconds and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='82679 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Meanwhile, for case that m = 25000 and d = 300, the nonrandom GCUR costs 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4250 seconds while the R-DEIM-GCUR and R-LDEIM-GCUR spend 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='83059 seconds and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='82679 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Emulating the manipulations in [17], we investigate this further by comparing the performance of subset selection via DEIM-CUR on A, and GCUR and the R-GCUR on (A, B) in identifying the subgroup or class representatives of A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' we select a subset of the columns of A and compare the classification results of each method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We center the data sets by subtracting the mean of each column from all the entries in that column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given the class labels of the subgroups, we perform a 10-fold cross validation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', split the data points into 10 groups and for each unique group take the group as test data and the rest as training [25, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 181] and apply two classifiers on the reduced data set: ECOC (Error-Correcting Output Codes) [13] and classification tree [3] using the functions fitcecoc and fitctree with default parameters as implemented in MATLAB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It is evident from Table 4 that the R-LDEIM-GCUR achieves the lowest classification error rate, using the ECOC and tree classifier, while the standard DEIM-CUR method achieves the worst classification error rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Table 4: k-Fold loss is the average classification loss overall 10-fold using CUR, GCUR, and R-GCUR as dimension reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The second and third columns give dimension information m1 = 2500, d1 = 200, m2 = 3000, d2 = 200, and the information on the number of columns k = 30, selected from the data set using GCUR and R-GCUR for the ECOC classifier, likewise for the fifth and sixth columns for the tree classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Method k-Fold Loss Method k-Fold Loss (m1, d1) (m2, d2) (m1, d1) (m2, d2) CUR+ECOC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7512 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7521 CUR+Tree 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7465 GCUR+ECOC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0669 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0666 GCUR+Tree 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0986 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='09758 R-DEIM-GCUR+ECOC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='06930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='06700 R-DEIM-GCUR+Tree 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='09558 R-LDEIM-GCUR+ECOC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='06680 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='06358 R-LDEIM-GCUR+Tree 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0980 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='09691 Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3 Now we investigate the performance of the R-GCUR compared to the GCUR and the CUR on higher-dimensional public data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Our experiment is adapted from [17, Experiment 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The data sets consist of single-cell RNA expression levels of bone marrow mononuclear cells (BMMCs) from an acute myeloid leukemia (AML) patient and two healthy individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We have data on the BMMCs before stem-cell transplant and the BMMCs after stem-cell transplant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We preprocess the data sets as described by the authors in [5] keeping the 1000 most variable genes measured across all 16856 cells (patient-035: 4501 cells and two healthy individuals;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' one of 1985 cells and the other of 2472 cells).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The data from the two healthy patients are combined to create a background data matrix of dimension 4457 × 1000, and we use the patient-035 data set as the target data matrix of dimension 4501 × 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Both data matrices are sparse: The patient-035 data matrix has 1, 628, 174 nonzeros, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', about 36% of all entries are nonzero, and the background data matrix has 1, 496, 229 nonzeros, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', about 34% of all entries are nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We are interested in exploring the differences in the AML patient’s BMMC cells pre- and posttransplant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We perform CUR, GCUR, and R-GCUR on the target data (AML patient-035) to see if we can capture the biologically meaningful information relating to the treatment status.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' For the GCUR and R-GCUR procedures, the background data are taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As evident in Figure 3, the GCUR and R-GCUR produce almost linearly separable clusters which correspond to pre- and posttreatment cells, while both the R-DEIM-GCUR 23 and R-LDEIM-GCUR beat the GCUR in terms of the running time due to a much lower computational cost, and specifically, the running time of the nonrandom GCUR algorithm is roughly twice that of our randomized algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Moreover, these methods evidently capture the biologically meaningful information relating to the treatment and are more effective at separating the pre- and posttransplant cell samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' For the CUR scheme, we observe that it does not give a discernible cluster of the pre- and post transplant cells, and fail to separate the pre- and posttransplant cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Figure 3: Acute myeloid leukemia patient-035 scRNA-seq data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In the top figure, we visualize the data using the first three genes selected by DEIM-CUR (top-left) and GCUR (top-right), and the CUR does not effectively give a discernible cluster of the pre- and post transplant cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' In the bottom figure, we visualize the data using the first three genes selected by R-DEIM-GCUR (bottom-left) and R-LDEIM-GCUR (bottom-right), which both produce almost linearly separable clusters which correspond to pre- and posttreatment cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 For our last experiment, we demonstrate the performance of randomized algorithm for producing the RSVD-CUR decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' This test is an adaptation of [16, Experiment 1], which considers a matrix perturbation problem of the form AE = A + BFG, where A ∈ Rm×n, matrices B ∈ Rm×l, G ∈ Rd×n are noises distributed normally with mean 0 and unit variance, and our goal is to reconstruct a low-rank matrix A from AE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We evaluate and compare a rank-k RSVD- CUR decomposition of AE, obtained by the nonrandom RSVD-CUR algorithm and its counterpart randomized algorithm, in terms of reconstructing matrix A and the running time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The approximation quality of the decomposition is assessed by the relative matrix approximation error, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', ∥A− �A∥/∥A∥, where �A is the reconstructed low-rank matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' As an adaptation of the experiment in [36,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Example 1] and [16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Experiment 1],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' we generate a rank-100 sparse nonnegative matrix A ∈ Rm×n of the form ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content="Visualizing data set A using GCUR's first 3 important columns " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content="15Visualizing data set A using R-DEiM-GCUR's first 3 important columns " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content="15Visualizingdata set A usingR-LDEiM-GCUR'sfirst 3 important columns " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content="15Visualizing data set A using CUR's first 3 important columns " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10A = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='j=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='j xjyT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='j + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='j=11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='j xjyT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='where xj ∈ Rm and xj ∈ Rn are random sparse vectors with nonnegative entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We then perturb A with a nonwhite noise matrix BFG [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The resulting perturbed matrix we use is of the form AE = A + ε ∥A∥ ∥BFG∥BFG, where ε is the noise level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Given each noise level ε ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2}, we generate the RSVD-CUR decomposition computed by the RSVD-CUR algorithms and the randomized algorithm for varying dimensions and the target rank k values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Here we set the parameter �k, contained in the L-DEIM to be �k = k/2 and �k = k, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' The corresponding results are displayed in Tables 5, 6 and 7, where we can see that the randomized algorithms give comparable relative errors at substantially less cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' It indicates that using the random sampling techniques and L-DEIM method leads to a dramatic speed-up over classical approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Table 5: Comparison of RSVD-CUR and randomized algorithms in CPU and relative error as the dimension l, d, m, n ( we set m = n) and the target rank k increase, with noise level ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (l, d, m, k) (1000, 500, 100, 10)(5000, 1000, 100, 20)(7000, 2000, 200, 30) DEIM-RSVD-CUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='095573 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='085198 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='084425 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='099726 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1768 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='251 LDEIM-RSVD-CUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='11652 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='094442 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='083729 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='098987 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5575 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='886 oversampling parameter 80 500 500 R-LDEIM-RSVD-CUR k = �k Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='095573 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='085198 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='084425 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='028330 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='057914 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='39295 �k = k/2 Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='095573 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='085198 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='084425 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='024517 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='056423 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='50397 Table 6: Comparison of RSVD-CUR and randomized algorithms in CPU and relative error as the dimension l, d, m, n ( we set m = n) and the target rank k increase, with noise level ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (l, d, m, k) (5000, 1000, 200, 20)(10000, 2000, 500, 30)(20000, 2000, 500, 40) DEIM-RSVD-CUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='13123 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='14705 CPU 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5313 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='594 328.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='99 LDEIM-RSVD-CUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='13103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='16492 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15604 CPU 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='3077 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='396 330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='20 oversampling parameter 500 500 500 R-LDEIM-RSVD-CUR k = �k Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='13123 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='14705 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='33164 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0591 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='7742 �k = k/2 Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='13123 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='14705 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='34972 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5485 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='9289 25 Table 7: Comparison of RSVD-CUR and randomized algorithms in CPU and relative error as the dimension l, d, m, n ( we set m = n) and the target rank k increase, with noise level ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' (l, d, m, k) (5000, 1000, 100, 10)(10000, 1000, 500, 30)(7000, 2000, 200, 30) DEIM-RSVD-CUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18429 CPU 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='9139 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='001 384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='17 LDEIM-RSVD-CUR Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='14943 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='21517 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='19300 CPU 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='9627 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='571 357.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='91 oversampling parameter 100 500 500 R-LDEIM-RSVD-CUR k = �k Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18429 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='079395 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='1681 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='9116 �k = k/2 Err 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='15325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='18429 CPU 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='06830 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='0079 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='8923 6 Conclusion In this paper, by combining the random sampling techniques with the L-DEIM method, we de- velop new efficient randomized algorithms for computing the GCUR decomposition for matrix pairs and the RSVD-CUR decomposition for matrix triplets with a given target rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' We also provided the detailed probabilistic analysis for the proposed randomized algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Theoretical analyses and numerical examples illustrate that exploiting the randomized techniques results in a significant im- provement in terms of the CPU time while keeping a high degree of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Finally, it is natural to consider applying the L-DEIM for developing randomized algorithms that adaptively find a low rank representation satisfying a given tolerance, which is beneficial when the target rank is not known in advance, and it will be discussed in our future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Funding Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Cao is supported by the National Natural Science Foundation of China under Grant 11801534.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wei is supported by the National Natural Science Foundation of China under Grant 12271108 and the Innovation Program of Shanghai Municipal Education Committee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Xie is supported by the National Natural Science Foundation of China under Grants 12271108, 11801534 and the Fundamental Research Funds for the Central Universities under Grant 202264006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Declarations The authors have not disclosed any competing interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Data Availability Statements All datasets are publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 26 References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Abid, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zhang, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Bagaria, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zou, Exploring patterns enriched in a dataset with contrastive principal component analysis, Nature Communications, 9 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [2] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Bai and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Demmel, Computing the generalized singular value decomposition, SIAM Journal on Scientific Computing, 14 (1993), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1464–1486.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Banfield, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hall, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Bowyer, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Kegelmeyer, A comparison of decision tree ensemble creation techniques, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 173–180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Barrault, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Maday, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Nguyen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Patera, An ‘empirical interpola- tion’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, 339 (2004), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 667–672.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Boileau, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hejazi, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Dudoit, Exploring high-dimensional biological data with sparse contrastive principal component analysis, Bioinformatics, 36 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 3422–3430.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Boutsidis and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Drineas, Random projections for the nonnegative least-squares problem, Linear Algebra and Its Applications, 431 (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 760–771.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Boutsidis and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Woodruff, Optimal CUR matrix decompositions, in Proceedings of the forty-sixth annual ACM symposium on Theory of computing, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 353–362.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [8] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Cai, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hamm, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Huang, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Needell, Robust CUR decomposition: Theory and imaging applications, SIAM Journal on Imaging Sciences, 14 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 1472–1503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Chaturantabut and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing, 32 (2010), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2737–2764.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wang, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Giannakis, Nonlinear dimensionality reduction for discrimina- tive analytics of multiple datasets, IEEE Transactions on Signal Processing, 67 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 740– 752.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Chu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' De Lathauwer, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' De Moor, On the computation of the restricted singular value decomposition via the cosine-sine decomposition, SIAM Journal on Matrix Analysis and Applications, 22 (2000), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 580–601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [12] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' De Moor and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Golub, The restricted singular value decomposition: properties and applications, SIAM Journal on Matrix Analysis and Applications, 12 (1991), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 401–425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Dietterich and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Bakiri, Solving multiclass learning problems via error-correcting output codes, Journal of Artificial Intelligence Research, 2 (1994), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 263–286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [14] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Drineas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Mahoney, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Muthukrishnan, Relative-error CUR matrix decom- positions, SIAM Journal on Matrix Analysis and Applications, 30 (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 844–881.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [15] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Fukunaga, Introduction to statistical pattern recognition, Elsevier, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [16] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Gidisu and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hochstenbach, RSVD-CUR decomposition for matrix triplets, arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='02113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [17] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Gidisu and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hochstenbach, A generalized CUR decomposition for matrix pairs, SIAM Journal on Mathematics of Data Science, 4 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 386–409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 27 [18] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Gidisu and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hochstenbach, A hybrid DEIM and leverage scores based method for CUR index selection, Progress in Industrial Mathematics at ECMI 2021, (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 147–153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [19] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Halko, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Martinsson, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Tropp, Finding structure with randomness: Proba- bilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53 (2011), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 217–288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hamm and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Huang, Perturbations of CUR decompositions, SIAM Journal on Matrix Analysis and Applications, 42 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 351–375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [21] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hansen, Rank-Deficient and Discrete Ill-Posed Problems, Society for Industrial and Ap- plied Mathematics, Philadelphia, PA, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [22] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hendryx, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Rivi`ere, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Rusin, An extended DEIM algorithm for subset selection and class identification, Machine Learning, 110 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 621–650.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [23] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Horn and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Huang and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Jia, Two harmonic Jacobi-Davidson methods for computing a partial gener- alized singular value decomposition of a large matrix pair, Journal of Scientific Computing, 93 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Article number: 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [25] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' James, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Witten, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hastie, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Tibshirani, An introduction to statistical learning, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 112, Springer, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [26] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Johnson and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wichern, Applied Multivariate Statistical Analysis, Pearson Pren- tice Hall, Upper Saddle River, NJ, sixth ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [27] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Jolliffe, Discarding variables in a principal component analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' i: Artificial data, Journal of the Royal Statistical Society: Series C (Applied Statistics), 21 (1972), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 160–173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [28] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Li, Bounds on perturbations of generalized singular values and of associated subspaces, SIAM Journal on Matrix Analysis and Applications, 14 (1993), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 195–234.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Mahoney, Randomized algorithms for matrices and data, Foundations and Trends® in Machine Learning, 3 (2011), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 123–224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Mahoney and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Drineas, CUR matrix decompositions for improved data analysis, Proceedings of the National Academy of Sciences, 106 (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 697–702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [31] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Paige and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Saunders, Towards a generalized singular value decomposition, SIAM Journal on Numerical Analysis, 18 (1981), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 398–405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [32] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Papailiopoulos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Kyrillidis, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Boutsidis, Provable deterministic leverage score sampling, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 997–1006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [33] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Rachkovskij and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Revunova, A randomized method for solving discrete ill-posed prob- lems, Cybernetics and Systems Analysis, 48 (2012), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 621–635.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Saibaba, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Hart, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' van Bloemen Waanders, Randomized algorithms for generalized singular value decomposition with application to sensitivity analysis, Numerical Linear Algebra with Applications, 28 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' e2364.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Saibaba, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Lee, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Kitanidis, Randomized algorithms for generalized hermitian eigenvalue problems with application to computing Karhunen–Lo`eve expansion, Numerical Linear Algebra with Applications, 23 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 314–339.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 28 [36] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Sorensen and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Embree, A DEIM induced CUR factorization, SIAM Journal on Scientific Computing, 38 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' A1454–A1482.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [37] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Stewart, Computing the CS decomposition of a partitioned orthonormal matrix, Numerische Mathematik, 40 (1982), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 297–306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [38] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Stewart, Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix, Numerische Mathematik, 83 (1999), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 313–323.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [39] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Sun, On the perturbation of generalized singular values, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Sinica, 4 (1982), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 229–233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Sun, Perturbation analysis for the generalized singular value problem, SIAM Journal on Numerical Analysis, 20 (1983), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 611–625.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [41] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Szyld, The many proofs of an identity on the norm of oblique projections, Numerical Algorithms, 42 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 309–323.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [42] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Van Loan, Generalizing the singular value decomposition, SIAM Journal on Numerical Analysis, 13 (1976), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 76–83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [43] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Van Loan, Computing the CS and the generalized singular value decompositions, Nu- merische Mathematik, 46 (1985), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 479–491.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [44] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wang and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zhang, Improving CUR matrix decomposition and the Nystr¨om approximation via adaptive sampling, The Journal of Machine Learning Research, 14 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2729–2769.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [45] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wei, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Yang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Chen, Randomized generalized singular value decom- position, Communications on Applied Mathematics and Computation, 3 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 137–156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [46] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wei, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Stanimirovi´c, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Petkovi´c, Numerical and Symbolic Computations of Ggen- eralized Inverses, Hackensack, NJ: World Scientific, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [47] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wei, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Xie, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zhang, Tikhonov regularization and randomized GSVD, SIAM Journal on Matrix Analysis and Applications, 37 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 649–675.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [48] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Xiang and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zou, Regularization with randomized SVD for large-scale discrete inverse problems, Inverse Problems, 29 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 085008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [49] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Xie, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Xiang, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wei, Randomized algorithms for total least squares problems, Nu- merical Linear Algebra with Applications, 26 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' e2219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [50] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Xu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Tao, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Xu, A survey on multi-view learning, arXiv:1304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='5634.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [51] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zha, The restricted singular value decomposition of matrix triplets, SIAM Journal on Matrix Analysis and Applications, 12 (1991), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 172–194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [52] , Computing the generalized singular values/vectors of large sparse or structured matrix pairs, Numerische Mathematik, 72 (1996), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 391–417.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [53] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zhang and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wei, Randomized core reduction for discrete ill-posed problem, Journal of Computational and Applied Mathematics, 375 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 112797.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [54] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Wei, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='-w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Chu, Neural network for computing GSVD and RSVD, Neurocomputing, 444 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 59–66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' [55] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' Zwaan, Towards a more robust algorithm for computing the restricted singular value de- composition, arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content='04828.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} +page_content=' 29' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf'} diff --git a/cdE4T4oBgHgl3EQfPwyZ/content/tmp_files/2301.04976v1.pdf.txt b/cdE4T4oBgHgl3EQfPwyZ/content/tmp_files/2301.04976v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3e408f239292a04587d05b4ab44800c516bb5249 --- /dev/null +++ b/cdE4T4oBgHgl3EQfPwyZ/content/tmp_files/2301.04976v1.pdf.txt @@ -0,0 +1,1164 @@ +1 + +Shape2SAS – a web application to simulate small-angle scattering +data and pair distance distributions from user-defined shapes +Andreas Haahr Larsena*, Emre Brookesb, Martin Cramer Pedersenc and Jacob Judas +Kain Kirkensgaardc,d +a University of Copenhagen, Department of Neuroscience, Copenhagen, Denmark +b University of Montana, Missoula, Montana, USA +c University of Copenhagen, Niels Bohr Institute, Copenhagen, Denmark +d University of Copenhagen, Department of Food Science, Copenhagen, Denmark +* Corresponding author: andreas.larsen@sund.ku.dk + +Abstract +Shape2SAS is a web application that allows researchers and students to build intuition and +understanding of small-angle scattering. It is available at +https://somo.chem.utk.edu/shape2sas. The user defines a model of arbitrary shape by +combining geometrical subunits, and Shape2SAS then calculates and displays the scattering +intensity, the pair distance distribution as well as a visualization of the user-defined shape. +Simulated data with realistic noise are also generated. We demonstrate how Shape2SAS can +calculate and display the different scattering patterns for various geometrical shapes, such as +spheres and cylinders. We also demonstrate how the effect of structure factors can be +visualized. Finally, we show how multi-contrast particles can readily be generated, and how +the calculated scattering may be used to validate and visualize analytical models generated in +analysis software for fitting small-angle scattering data. + + +2 + +Introduction +We introduce Shape2SAS, a website for simulating small-angle scattering data and pair +distance distributions from various shapes. Shape2SAS is readily available as a web +application (https://somo.chem.utk.edu/shape2sas) implemented using the GenApp +framework [1] for constructing graphical user interfaces for scientific software. The user can +construct arbitrary shapes by combining geometrical subunits such as spheres, cylinders, +cubes, or ellipsoids. Each subunit is assigned an excess scattering length density (contrast), +and the small-angle scattering intensity is calculated for the specified shape composed of +these subunits. The website is particularly useful for educators when organizing introductory +or advanced courses in small-angle scattering data analysis. Due to its nature as a stand-alone +web application, the only requirement is a web browser. The program can likewise be used +when developing analytical form factors, as demonstrated in this paper. +Shape2SAS applies the method previously implemented in the program McSim [2,3], and has +a similar user input interface for generating and positioning shapes. The web application for +McSim is, however, no longer available, and additionally, the program was written in Fortran +and is not documented besides from the paper. Therefore, Shape2SAS is written in Python3 +to make it possible to adjust and maintain for a broader scope of developers, and the web +application is available via GenApp [1]. This allowed us to add several central features, +including direct comparison of two models and inclusion of structure factors. +Shape2SAS can be used in a tutorial, where the scattering from one or two different shapes +are calculated and compared. Parameters or models can be adjusted to get an intuitive feeling +for the effect of these. The simulated data can then be used as output from virtual +experiments used for further tutorials in (or tests of) programs for analysis of experimental +small-angle scattering data, e.g., programs for fitting analytical form factors, such as SasView +(https://www.sasview.org/), SASfit [4] or WillItFit [5], or programs for ab initio modelling +[6,7]. + + +3 + +Applied small-angle scattering theory +In this section, we provide the theoretical and computational basis for Shape2SAS, and +account for the implementation of this. + +Scattering from identical particles in solution +The scattering intensity from a diluted sample of identical particles in solution is given by the +Debye equation [6], a double sum over the 𝑁 scatterers in each particle: +𝐼(𝑞) = 𝑛 ( 𝛥𝑏!𝛥𝑏" +sin.𝑞𝑟!"0 +𝑞𝑟!" +# +!,"%& +, +where 𝑛 is the number density of the particles, 𝛥𝑏! is the excess scattering length of the 𝑗th +scatterer, 𝑟!" is the distance between the 𝑗th and 𝑘th scatterer and 𝑞 is the momentum transfer +𝑞 = 4𝜋sin (𝜃) 𝜆 +⁄ , where 2𝜃 is the scattering angle and 𝜆 is the wavelength of the incoming +X-ray or neutron beam. + +The pair distance distribution +By binning the scattering pairs after their pair distances, 𝑟, the double sum can be reduced to +a single sum over the number of bins: +𝐼(𝑞) = 𝑛 ( 𝑝' +#!"#$ +'%& +sin(𝑞𝑟') +𝑞𝑟' +, +where 𝑟' = <𝑖 − +& +(? 𝑑𝑟, and 𝑑𝑟 is the bin width. 𝑝' is the number of pairs in each bin, +weighted by the product of their excess scattering lengths: +𝑝' = ( 𝑓.𝑟!"0 +# +!,"%& +𝛥𝑏!𝛥𝑏", +where 𝑓.𝑟!"0 = F1, if (𝑖 − 1) ⋅ 𝑑𝑟 ≤ 𝑟!" < 𝑖 ⋅ 𝑑𝑟, +0, otherwise. +We assume point scatterers, so the effect of atomic form factors is neglected. This is also a +double sum, but unlike the Debye sum, sin(x)/x is not evaluated for each distance, only for +the binned histogram. + +4 + +The pair distance distribution 𝑝(𝑟) is the continuous limit of 𝑝 = {𝑝&, 𝑝(, … , 𝑝#!"#$}, as +𝑁)'*+ → ∞ and 𝑁 → ∞. In this limit, the contributions from the self-terms (𝑖 = 𝑗) are +negligible. Therefore, the self-terms are excluded from the sums in Shape2SAS, when +estimating 𝑝(𝑟) and 𝐼(𝑞), and 𝑝(0) = 0 is added to the distribution. +The user provides the scattering length densities as input, 𝛥𝜌' = 𝛥 𝑏' 𝑉' +⁄ +, where 𝑉' is the +effective volume of the 𝑖th scatterer. The point density is kept constant, so 𝑉' is also constant. +The calculated scattering is normalized with the forward scattering, so 𝐼(0) = 1. The output +is therefore the unitless form factor of the particle, 𝑃(𝑞), unless an optional structure factor is +selected (see section Structure factors). In this normalization step, the effective volumes of +the scatterers vanish, along with the number density. +The largest distance in the molecule, 𝐷,-., is given as output, along with the radius of +gyration: +𝑅/( = 1 +2 +∫ +𝑟(𝑝(𝑟)𝑑𝑟 +0%&' +1 +∫ +𝑝(𝑟)𝑑𝑟 +0%&' +1 +. +The output 𝑝(𝑟) is normalized, so the maximum is unity. + +Polydispersity +Polydispersity in a sample means that all molecules are not identical. There can be +polydispersity in size, aggregation number, in one axis or several axes, and polydispersity can +be approximated by assuming a Gaussian distribution over a parameter in a model. In +Shape2SAS, one general type of polydispersity is implemented: +𝑝2345(𝑟) ∝ \ +𝑝+(𝑟)𝑒 +6& +(7 86& +9()*+: +, +𝑣(𝑑𝑠, +&;<9()*+ +&6<9()*+ + +where 𝑠 is a scaling of all pair-distances in the user-defined shape. 𝑝+(𝑟) is the pair distance +distribution for the shape scaled with s, and 𝜎2345 is a relative polydispersity. 𝑣 = 𝑠< is a +relative (unitless) volume, which is included to account for the fact that the scattering from a +molecule is proportional to the square of the molecular volume. The relative volume is an +approximation and is only exact for spheres. The relative polydispersity, 𝜎2345, is an optional +user input in Shape2SAS and by default, there is no polydispersity. + +5 + +While this is an oversimplification of the many ways in which a sample can exhibit +polydispersity, the implementation is simple and allows users and students to explore the +consequences of polydispersity in small-angle scattering data. Additionally, it is +computationally efficient compared to the alternative of generating a series of structures +describing the desired polydispersity. + +Structure factors +Interparticle interactions can be expressed in the form of structure factors, and the scattering +intensity can be expressed as a product of the form factor and structure factor [4]: +𝐼(𝑞) ∝ 𝑃(𝑞) ⋅ 𝑆(𝑞). +So far, two structure factors are implemented in Shape2SAS: a hard-sphere structure factor +[7], describing interparticle repulsion, and a 2-dimensional fractal structure factor, describing +particle aggregation [8]. The decoupling approximation is also applied to account for non- +spherical or polydisperse particles [8,9]. Albeit such interparticle interactions would affect +the effective pair distance distribution, the program only applies the structure factor on the +calculated scattering intensity. That is, if a structure factor is opted for, the output 𝑝(𝑟) is +from a non-interacting molecule, whereas 𝐼(𝑞) is from a sample of interacting molecules. The +𝑝(𝑟) of the interacting molecules can, e.g., be generated in BayesApp [10], which is likewise +available as a web application in GenApp. + +Interface roughness +A composite particle can be modeled by combining geometrical subunits. If the subunits have +different contrasts, there may be discrepancies between the sharp boundaries between +subunits of the model and the softer and more fluent boundaries between components in the +actual particle. This can be amended by including a surface roughness in the model [11,12], +effectively smearing interfaces: +𝐼=3>/?(𝑞) = 𝐼(𝑞) ⋅ 𝑒6& +((A9-),, +where 𝜎C is a normal distributed smearing parameter. In Shape2SAS, surface roughness can +be included as an option, and like the structure factors, it only affects 𝐼(𝑞), not 𝑝(𝑟). + +6 + + +Simulated experimental noise +Shape2SAS outputs simulated data, 𝐼(𝑞), which is generated from the calculated scattering, +𝐼(𝑞), and empirically estimated errors [13]: +σ(𝑞) = 𝑠 ⋅ c5 ⋅ 10D + 𝐼(𝑞) +0.05 Å ⋅ 𝑞 +, +where 𝑠 is a scaling constant, that can be changed by the user to adjust the relative noise. The +constants 5 ⋅ 10D and 0.05 Å are chosen to imitate the noise of typical synchrotron SAXS +data. The simulated data, 𝐼+',(𝑞), are sampled from normal distributions with mean 𝐼(𝑞) and +standard deviations 𝜎(𝑞). + +7 + +Implementation +Architecture +The program is designed for ease of use and ease of maintenance. Input parameters are +provided via an online GUI (Figure 1). Inputs are read by a Python wrapper script. The +wrapper calls Python functions which perform the calculations and returns output files, plots, +and values to the wrapper. Finally, the wrapper returns the output to the GUI, which displays +them for the user. Thus, the program is modular, so functions can be altered, tested, +expanded, or added. + +Description of core functions +A core element of Shape2SAS is the Python function that generates points from a given +subunit. First, the limits of the geometric subunit are defined in either cartesian, polar or +spherical coordinates. Then, random, uniformly distributed points are generated in the +volume defined by the subunit. Lastly, if selected, the points are shifted to a new center of +mass. To ensure constant point density (see theory section), the volumes of the subunits are +first calculated, and the number of points inserted in each subunit is adjusted, so the point +density is constant. The total number of points in the model (composed of one or more +subunits) is 𝑁 = 5000. This number of points was chosen to balance precision and +computational cost, which goes as 𝑁(. With 5000 points, the calculated intensity is precisely +reproduced up to around 𝑞 = 0.2 Å-1, depending on the complexity and size of the user- +defined shape (Figure S1). In case of overlap, overlapping points are removed by default at +this stage, but they can be included and exploited in multi-contrast situations (see Example +3). +Another core element is the calculation of all distances in a model. This step is time- and +memory consuming and as such, one of the computational bottlenecks of the program. +However, using the NumPy [14] function meshgrid(), all distances between 5000 points are +calculated in less than a second on the GenApp server. Another computational bottleneck is +the calculation of 𝑝(𝑟). This is done using the NumPy function histogram(). When +polydispersity is included, several histograms are calculated, and in that case, Shape2SAS +uses the histogram1d( ) function (https://github.com/astrofrog/fast-histogram) which is faster + +8 + +than NumPy’s histogram(), but does not output 𝑟-values. A polydisperse 𝑝(𝑟) is thus +calculated in a few seconds. + +User interface +A key goal of the project was accessibility and ease of use. Therefore, the program is +implemented as a web application, meaning that no installation is required. This is optimal +for successful use in courses and tutorials. The program is part of the GenApp [1] vision for +making small-angle scattering software available for everyone. +The user builds up a model of a predefined set of geometric subunits, which currently +include: sphere, tri-axial ellipsoid, cylinder, disc, cube, cuboid, hollow sphere, hollow cube, +cylindrical ring and discoidal ring. The geometrical parameters of the subunits can then be +changed from the default values, along with their contrast and center of mass. A model +consists of the collected points in the volume spanned by the subunits. By default, points are +deleted from overlapping regions, but this is optional as mentioned above. If a structure factor +is selected, the scattering contribution from the structure factor will be displayed along with +the total scattering. +The user can choose to calculate 𝑝(𝑟) and 𝐼(𝑞) from an additional model, and the procedure +is the same as for the first model. The 𝑝(𝑟) and 𝐼(𝑞)from the two models are plotted together +in the GUI and can thus be directly compared without having to plot the data in third-party +software. The simulated data of Model 2 is scaled by 100 by default in the plot (Figure 1E), +but this scaling can be adjusted in the GUI. +All output data (𝑝(𝑟), 𝐼(𝑞) and 𝐼+',(𝑞)) as well as plots and 3D model for visualization, can +be downloaded from the web interface for further analysis, plotting, etc. + +Documentation and validation +All menus and input boxes in the GUI are described with a help text, which is shown by +hovering the mouse over that element. The source code is documented with extensive +comments in the code, including documentation of all functions. Central references are +provided directly in the GUI. + +9 + +Each model is visualized as a 3D point model using a Jmol (http://www.jmol.org/) plugin and +as 2D projections. The 3D model is also exported in the standard protein data bank (PDB) +format, for customizable visualization and rendering. +Shape2SAS models and structure factors were tested against analytical models, using +SasView (https://www.sasview.org). +Source code is available on GitHub (https://github.com/ehb54/GenApp-Shape2SAS) under +the GNU General Public License v3.0. + +10 + +Examples of use +The examples are designed to be relevant in the context of research as well as research-based +teaching. The first example showcases how Shape2SAS can be used for generating intuition +about small-angle scattering intensity of different shapes, and the second example +demonstrates the effect of inter-particle interactions. The last example demonstrates how +more complex particles can be built and how Shape2SAS can be utilized to test analytical +form factors. + +Example 1: Comparing scattering from different shapes +Shape2SAS can be used to quickly calculate and compare the 𝑝(𝑟) and 𝐼(𝑞)from various +geometrical bodies. One example is the scattering from a sphere with radius of 50 Å and a +cylinder with the same radius and length of 400 Å (Figure 1). Such an example could help a +student build intuition about the scattering and pair distance distribution functions for, e.g., +spherical, elongated or hollow bodies. Moreover, the 𝑅/ and Dmax are calculated and +displayed in the GUI for quick comparison. + +(a) + +Shape2SAS [1,2, Source code +q min [1/Angstrom] +0.001 +qmax [1/Angstrom] +0.5 +Number of points in q +400 +Relative noise +1 +Number of points in p(r) +100 +Model 1 +Excludeoverlapregions +Model 1 +a +6 +Delta SLD +x_com +y_com +z_com +Sphere +V +50 +1 +0 +0 +0 +Choose subunit +50 +1 +0 +0 +Choose subunit +50 +1 +Choose subunit +50 +1 +0 +Choose subunit +50 +Relative polydispersity +Structure factor +None +Interfaceroughness [Angstrom] +Model 2 (optional) +Exclude overlap regions +Model 2 (optional) +a +b +c +Delta SLD +x_com +y_com +z_com +Cylinder +50 +400 +1 +0 +0 +0 +Choose subunit +50 +1 +0 +0 +0 +Choose subunit +50 +1 +0 +0 +0 +Choose subunit +50 +1 +o +Choose subunit +50 +1 +0 +0 +0 +Relative polydispersity +0 +Structure factor +None +Interfaceroughness[Angstrom11 + + + +(b) + + (c) (d) (e) +Figure 1. Simulating scattering from a sphere (red) and a cylinder (blue) using +Shape2SAS. (a) GUI with input parameters. (b) 2D projections of the models. (c) Pair +distance distributions. (d) Calculated scattering. (e) Simulated scattering intensities with +noise. Plots are shown as they appear in Shape2SAS. + +Example 2: Hard-sphere structure factor +Shape2SAS can add inter-particle interactions to the scattering, using built-in structure +factors. One example is shown in Figure 2, where the scattering from a sample of ellipsoids +of revolution (minor axis 50 Å and major axis 100 Å) was calculated with and without + +pointmodel,(x,z),"front" +pointmodel, (y,z),"side" +pointmodel,(x,y),"bottom" +200 - +200 - +200 - +150 +150 +150 +100 - +100 +100 +50 - +50 - +50 - +N +0. +-50- +-50- +-50- +-100 +-100 +-100 +-150 +-150 +-150 +-200 +-200 +-200 +-200 +-100 +0 +100 +200 +200 +-100 +100 +200 +-200 +-100 +0 +100 +200 +x +y +xpointmodel,(x,z),"front" +pointmodel, (y,z),"side" +pointmodel,(x,y),"bottom" +200 +200 +200 +150 +150 +150 +100 +100 +100 +50 - +50 +50 - +N +0 +-50 - +50 +50 +-100- +-100- +-100 +-150 +-150 +-150 +-200 +-200 - +-200 +-200 +-100 +0 +100 +200 +-200 +-100 +0 +100 +200 +-200 +-100 +0 +100 +200 +x +y +xpair distance distribution function +calculated scattering,without noise +simulated scattering,withnoise +1.0 +100 +102 +10-1, +101 +0.8 - +100 +10-2 +0.6 - +10-1 +(μ)d +(b)I +10-2 +0.4 - +10-4 +10-3 +0.2 - +10-5 +10-4 +I(q), Model 1 +Isim(q), Model 1 +10-5 +0.0 +10-6 +I(q), Model 2 +Isim(q), Model 2, scaled by100 +0 +100 +200 +300 +400 +10-3 +10-2 +10-1 +10-3 +10-2 +10-1 +r [Angstrom] +q [1/Angstrom] +q [1/Angstrom]12 + +interparticle interaction, described by the hard-sphere structure factor and the decoupling +approximation, with a hard-sphere radius of 70 Å and volume fraction of 0.2. Such an +exercise could help students or researchers to understand the effect of structure factors and +recognize interparticle interactions in measured small-angle scattering data. + + +(a) (b) (c) +Figure 2. Scattering intensity from ellipsoids with and without interparticle repulsion. +(a) Pair distance distributions from two instances of an ellipsoid of revolution, without +interparticle repulsion. Insert: 2D projections of the ellipsoid along the minor and major axes. +(b) Calculated scattering intensity from the ellipsoids with and without interparticle repulsion. +(c) Simulated scattering, with noise. Interparticle repulsion was described by a hard-sphere +structure factor. + +Example 3: Validating analytical form factor +Shape2SAS can be used when developing analytical form factors or deriving new ones. By +generating the same shape in Shape2SAS as that of the analytical model, the simulated data +from Shape2SAS can be fitted. In this example, a core-shell cylinder was simulated (core +radius 20 Å, core length 360 Å, shell thickness 20 Å, core contrast -1 and shell contrast +1). +The example also showcases how multi-contrast particles can be generated in two ways in +Shape2SAS. In the first approach, the core-shell cylinder is generated by combining non- +overlapping subunits: a cylinder core, a hollow cylindrical shell, and two small cylinders with +shifted center of mass as end caps (Figure 3a). In the second approach, a large shell cylinder +and a smaller core cylinder are combined, and points from the shell cylinder are removed +Ellipsoid of revolution +minor axis 50 Å, +major axis 100 Å + +pair distance distribution function +calculated scattering,without noise +simulated scattering,withnoise +1.0 - +100 +102 +10-1, +0.8 - +100 +10-2, +0.6 - +10-3 +(μ)d +10-4 +0.4 - +10~5 +10-4 - +0.2 - +10-6 +S(q), Model 1 +I(q)=P(q)*S(q), Model 1 +10-6, +Isim(q), Model 1 +0.0 +10~7 +I(q), Model 2 +Isim(q), Model 2, scaled by +10 +0 +50 +100 +150 +200 +10-3 +10-2 +10~1 +10-3 +10-2 +10-1 +r [Angstrom] +q [1/Angstrom] +q [1/Angstrom]pointmodel, (x,z), "front" +pointmodel, (y.z), "side* +pointmodel, (x,y), "bottom +75 +75 +75 +50 +50 +50 +25 +25 +25 +25 +25 +-50 +50 +50 +-50 +-50 +5o +-50 +50pointmodel, (x,z), "front" +pointmodel, (y.z), "side* +pointmodel, (x.y), "bottom* +75 +75 +50 +50 +25 +25 +25 +-25 +-25 +50 +-50 +"50 +75 +75 +50 +50 +50 +50 +50 +5013 + +from the overlapping region (Figure 3b). Both result in the same model, 𝑝(𝑟) and 𝐼(𝑞) +(Figure 3c-d). If there is overlap, and exclusion of overlapping points is not opted for, then +the contrast in the overlap region will effectively be the sum of contrasts of the overlapping +subunits. +The simulated data were fitted with the analytical model core_shell_cylinder from SasView +(http://www.sasview.org/sasmodels/model/core_shell_cylinder.html). Data were well- +described by the model (Figure 3d) and the model parameters were refined to values +consistent with the input parameters (core radius 20.10 ± 0.07 Å, core length 363 ± 2 Å, shell +thickness 20.1 ± 0.1 Å, and shell contrast +0.97 ± 0.01). Errors are standard deviations. The +core contrast was fixed at -1, since the combination of fitting both core contrast, shell +contrasts and scaling gave high correlation between the parameters. +The demonstrated procedure can be valuable for testing new and more complex analytical +models [15], and for visualizing them as bead models. +This workflow is helpful when coding analytical models for the small-angle scattering from +molecules in solution. While analytical models are often ideal for implementation in a model +refinement framework (such as SasView), Shape2SAS offers a simple, graphical, and +intuitive manner for testing the implementation and its accuracy – in real space. + +(a) + +(b) + +Model 1 +Exclude overlap regions +Model 1 +Delta SLD +x_com +y_com +z_com +Cylinder +20 +20 +360 +-1 +Cylindrical ring +40 +20 +360 +1 +Cylinder +40 +40 +20 +1 +-190 +Cylinder +40 +40 +20 +1 +0 +190 +Choose subunit +50 +1 +Relative polydispersity +Structurefactor +None +Interface roughness [Angstrom] +0Model 1 +Excludeoverlapregions +Model 1 +b +c +Delta SLD +x_com +y_com +z_com +Cylinder +20 +20 +360 +-1 +0 +Cylinder +40 +40 +400 +1 +0 +Choose subunit +50 +1 +0 +Choose subunit +50 +1 +0 +Choose subunit +50 +1 +Relativepolydispersity +Structurefactor +None +Interfaceroughness[Angstrom]14 + + + (c) (d) +Figure 3. Core-shell cylinder data, simulated in Shape2SAS and fitted with an analytical +model. (a) Core-shell cylinder input, without use of exclusion. (b) Core-shell cylinder input, +using exclusion. (c) Pair distance distribution from Shape2SAS and 2D projections of the +simulated beads (red: positive contrast, green: negative contrast). (d) Simulated data were +fitted using the analytical model core_shell_cylinder from SasView. + +Core-shell cylinder +core radius 50 Å, core length 360 Å +shell thickness 20 Å +. . . . . . . . . . . . . . . . . . +. . . . . . . . . . . . . +. . . . +. . . . . . +. . + +pair distancedistributionfunction +calculated scattering,without noise +simulated scattering,withnoise +1.0 - +100 +I(q) +100 +I(q), simulated +0.8 - +10-1 +10-1 +0.6 - +10-2, +10-2 +(μ)d +(b)I +0.4 - +10-3 +10-3 +0.2 +10-4 +10-4, +0.0 +10-5, +105 +0 +100 +200 +300 +400 +10-3 +10-2 +10-1 +10-3 +10-2 +10-1 +r[Angstrom] +q [1/Angstrom] +q [1/Angstrom]100 +10-1 +10~2 +10-3 +10~4 +Fit: core-shell cylinder, x2=1.4 +10-5 +IsimfromShape2SAS +3 +6 +0 +-3 +10~3 +10~2 +10-1 +q [1/Angstrom]pointmodel,(x,z),"front" +pointmodel,(y,z),"side' +pointmodel,(x,y),"bottom" +150 +150 +150 +100 +100 +100 +50 - +50 +50 +N +0 +0 +50 - +50 +50 +-100 +-100 +-100 +-150 +-150 +-150 +-100 +0 +100 +-100 +0 +100 +-100 +100 +x +y +xpointmodel,(x,z),"front" +pointmodel,(y,z),"side" +pointmodel,(x,y),"bottom" +200 +200 +200 +150 +150 +150 +100 +100 +100 +50 - +50. +50 - +0 +N +0- +-50 - +-50 +-50- +-100 +-100 +-100 +-150 +-150 +-150 +200 +-200 +-200 +-200 +-100 +0 +100 +200 +-200 +-100 +0 +100 +200 +-200 +-100 +0 +100 +200 +x +y +x15 + +Discussion +Shape2SAS is useful for demonstrations and tutorials, which was showcased by three +examples: Example 1 compared the small-angle scattering intensity from a sphere with the +small-angle scattering intensity from a cylinder; Example 2 demonstrated the effect of +interparticle repulsion via a hard-sphere structure factor; and Example 3 showcased how +more advanced shapes can be built, with various excess scattering length densities and how +Shape2SAS can be used to test analytical form factors, while developing these. +We note that discrepancies between the simulated scattering and an analytical model can +occur from the stochastic nature of Shape2SAS (Figure 3d). Moreover, if polydispersity is +fitted, this is likely implemented differently in analytical models and may result in +discrepancies. +Shape2SAS is one among many programs for making virtual experiments [16], some of +which can also generate 2D X-ray [17,18] or neutron [19] scattering data. Shape2SAS +focuses on the data analysis step, after reduction from 2D to 1D data, and after eventual +buffer subtraction. Common for such virtual experiment software is the goal of preparing the +user for best use of valuable beamtime, and for helping the user to better understand and +analyze the measured data. +In principle, the Shape2SAS input parameters could be transformed into variable parameters, +and by addition of a scaling and a constant background, such a modified program could be +used for fitting. It has previously been shown that Monte Carlo bead modeling approaches are +useful in small-angle scattering analysis [20], especially for generating complicated models +that are difficult to describe through analytical form factors (e.g. perforated vesicles [21] or +protein-lipid complexes [22]). However, other programs, applying the same principles have +been developed with fitting in mind, including CDEF [23] and SPONGE +(https://github.com/bamresearch/sponge) and we recommend use of these for fitting. CDEF +applies the same principle of binning scattering pairs as Shape2SAS, whereas SPONGE +applies the Debye formula directly, making it more accurate at the cost of longer +computational times. When fitting actual data, we moreover encourage parametrizing the +model to reflect physical properties rather than geometrical, to better be able to constrain and +validate the refined parameters, e.g., with biophysical assays (see, e.g. [11,24]). This is not +possible in Shape2SAS and would typically have to be adjusted from case to case, which is + +16 + +easier without a GUI. Shape2SAS may, however, be downloaded, and thanks to the modular +architecture, functions can readily be reused by other users, to accommodate specific needs. +In summary, Shape2SAS makes small-angle scattering theory intuitive, visual, playful and +accessible for new and experienced users. + + +17 + +Acknowledgements +This work used the Extreme Science and Engineering Discovery Environment (XSEDE) [25], +which is supported by National Science Foundation Grant Number ACI-1548562 and utilized +Jetstream2 [26] at Indiana University through allocation TG-MCB17057 to EB. This work +benefited from CCP-SAS [27] software developed through a joint EPSRC (EP/K039121/1) +and NSF (CHE-1265821) grant. AHL was funded by the Lundbeck Foundation grant R347- +2020-2339. EB was funded by the National Institutes of Health, National Institute of General +Medical Sciences grant GM120600 and the National Science Foundation grant 1912444. The +authors would like to acknowledge Steen Hansen for valuable discussions and inspiration and +the students at various courses on scattering techniques at University of Copenhagen, who +have tested the program. + +References +1. +Savelyev, A.; Brookes, E. GenApp: Extensible Tool for Rapid Generation of Web and +Native GUI Applications. Futur. Gener. Comput. Syst. 2019, 94, 929–936, +doi:10.1016/j.future.2017.09.069. +2. +Hansen, S. Calculation of Small-Angle Scattering Profiles Using Monte Carlo +Simulation. J. Appl. Crystallogr. 1990, 23, 344–346, +doi:10.1107/s0021889890002801. +3. +Hansen, S. Update for BayesApp : A Web Site for Analysis of Small-Angle Scattering +Data. J. Appl. Crystallogr. 2014, 47, 1469–1471, doi:10.1107/S1600576714013156. +4. +Breßler, I.; Kohlbrecher, J.; Thünemann, A.F. SASfit: A Tool for Small-Angle +Scattering Data Analysis Using a Library of Analytical Expressions. J. Appl. +Crystallogr. 2015, 48, 1587–1598, doi:10.1107/S1600576715016544. +5. +Pedersen, M.C.; Arleth, L.; Mortensen, K. WillItFit: A Framework for Fitting of +Constrained Models to Small-Angle Scattering Data. J. Appl. Crystallogr. 2013, 46, +1894–1898, doi:10.1107/S0021889813026022. +6. +Debye, P. Zerstreuung von Röntgentstrahlen. Ann. Phys. 1915, 351, 809–823. +7. +Kinning, D.J.; Thomas, E.L. Hard-Sphere Interactions Between Spherical Domains in +Diblock Copolymers. Macromolecules 1984, 17, 1712–1718, + +18 + +doi:10.1021/ma00139a013. +8. +Larsen, A.H.; Pedersen, J.S.; Arleth, L. Assessment of Structure Factors for Analysis +of Small-Angle Scattering Data from Desired or Undesired Aggregates. J. Appl. +Crystallogr. 2020, 53, 991–1005, doi:10.1107/s1600576720006500. +9. +Kotlarchyk, M.; Chen, S.H. Analysis of Small Angle Neutron Scattering Spectra from +Polydisperse Interacting Colloids. J. Chem. Phys. 1983, 79, 2461–2469, +doi:10.1063/1.446055. +10. +Hansen, S. BayesApp: A Web Site for Indirect Transformation of Small-Angle +Scattering Data. J. Appl. Crystallogr. 2012, 45, 566–567, +doi:10.1107/S0021889812014318. +11. +Skar-Gislinge, N.; Arleth, L. Small-Angle Scattering from Phospholipid Nanodiscs: +Derivation and Refinement of a Molecular Constrained Analytical Model Form Factor. +Phys. Chem. Chem. Phys. 2011, 13, 3161–3170, doi:10.1039/c0cp01074j. +12. +Als-Nielsen, J. Synchrotron X-Ray Studies of Liquid-Vapor Interfaces. Physica 1986, +140A, 376–389. +13. +Sedlak, S.M.; Bruetzel, L.K.; Lipfert, J. Quantitative Evaluation of Statistical Errors in +Small-Angle X-Ray Scattering Measurements. J. Appl. Crystallogr. 2017, 50, 621– +630, doi:10.1107/S1600576717003077. +14. +Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; +Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array +Programming with NumPy. Nature 2020, 585, 357–362, doi:10.1038/s41586-020- +2649-2. +15. +Jakubauskas, D.; Kowalewska, Ł.; Sokolova, A. V.; Garvey, C.J.; Mortensen, K.; +Jensen, P.E.; Kirkensgaard, J.J.K. Ultrastructural Modeling of Small Angle Scattering +from Photosynthetic Membranes. Sci. Rep. 2019, 9, 1–13, doi:10.1038/s41598-019- +55423-0. +16. +Lefmann, K.; Willendrup, P.K.; Udby, L.; Lebech, B.; Mortensen, K.; Birk, J.O.; +Klenø, K.; Knudsen, E.; Christiansen, P.; Saroun, J.; et al. Virtual Experiments: The +Ultimate Aim of Neutron Ray-Tracing Simulations. J. Neutron Res. 2008, 16, 97–111, +doi:10.1080/10238160902819684. + +19 + +17. +Knudsen, B.E.; Prodi, A.; Willendrup, P.K.; Lefmann, K. Component Manual for the +X-Ray-Tracing Package McXtrace, Version 1.0_rc1. 2012, 1538, 1–72. +18. +Franke, D.; Hajizadeh, N.R.; Svergun, D.I. Simulation of Small-Angle X-Ray +Scattering Data of Biological Macromolecules in Solution. J. Appl. Crystallogr. 2020, +53, 536–539, doi:10.1107/S1600576720000527. +19. +Willendrup, P.K.; Lefmann, K. McStas (Ii): An Overview of Components, Their Use, +and Advice for User Contributions. J. Neutron Res. 2021, 23, 7–27, doi:10.3233/JNR- +200186. +20. +Pedersen, J.S. Monte Carlo Simulation Techniques Applied in the Analysis of Small- +Angle Scattering Data from Colloidal and Polymer Systems. In Neutrons, X-rays and +Light: Scattering Methods Applied to Soft Condensed Matter; Lindner, P., Zemb, T., +Eds.; Elsevier: Amsterdam, 2002; pp. 381–390 ISBN 0-444-51122-9. +21. +Pedersen, J.S.; Oliveira, C.L.P.; Hübschmann, H.B.; Arleth, L.; Manniche, S.; Kirkby, +N.; Nielsen, H.M. Structure of Immune Stimulating Complex Matrices and Immune +Stimulating Complexes in Suspension Determined by Small-Angle X-Ray Scattering. +Biophys. J. 2012, 102, 2372–2380, doi:10.1016/j.bpj.2012.03.071. +22. +Pedersen, M.C.; Johansen, N.T.; Roche, J.; Järvå, M.; Törnroth-Horsefield, S.; Arleth, +L. Refining Structural Models of Membrane Proteins with Disordered Domains in +Phospholipid Nanodiscs. bioRxiv 2022, 2022.10.28.512841, +doi:10.1101/2022.10.28.512841. +23. +Deumer, J.; Pauw, B.R.; Marguet, S.; Skroblin, D.; Taché, O.; Krumrey, M.; +Gollwitzer, C. Small-Angle X-Ray Scattering: Characterization of Cubic Au +Nanoparticles Using Debye’s Scattering Formula. J. Appl. Crystallogr. 2022, 55, 993– +1001, doi:10.1107/S160057672200499X. +24. +Larsen, A.H.; Arleth, L.; Hansen, S. Analysis of Small-Angle Scattering Data Using +Model Fitting and Bayesian Regularization. J. Appl. Crystallogr. 2018, 51, 1151– +1161, doi:10.1107/S1600576718008956. +25. +Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, +V.; Lathrop, S.; | D.L.; Peterson, G.D.; et al. XSEDE: Accelerating Scientific +Discovery. Comput. Sci. Eng. 2014, 16, 62–74. + +20 + +26. +Hancock, D.Y.; Fischer, J.; Lowe, J.M.; Snapp-Childs, W.; Pierce, M.; Marru, S.; +Coulter, J.E.; Vaughn, M.; Beck, B.; Merchant, N.; et al. Jetstream2: Accelerating +Cloud Computing via Jetstream. In Proceedings of the Practice and Experience in +Advanced Research Computing (PEARC ’21); New York, 2021; pp. 1–8. +27. +Perkins, S.J.; Wright, D.W.; Zhang, H.; Brookes, E.H.; Chen, J.; Irving, T.C.; Krueger, +S.; Barlow, D.J.; Edler, K.J.; Scott, D.J.; et al. Atomistic Modelling of Scattering Data +in the Collaborative Computational Project for Small Angle Scattering (CCP-SAS). J. +Appl. Crystallogr. 2016, 49, 1861–1875, doi:10.1107/S160057671601517X. + + +21 + +Supplementary figures + +Figure S1. Precision of Shape2SAS when using 5000 points. Calculated pair distance +distribution and intensity for five repeated simulations. (a) Sphere with radius 20 Å (b) +Sphere with radius 50 Å. (c) Dumbbell composed of a cylinder with radius 50 Å and length +200 Å, and two spheres of radius 20 Å, with their center of mass shifted ±125 Å. + +pointmodel,(x,z),"front" +pointmodel, (y,z), "side" +pointmodel,(x,y),"bottom" +150 +150 +150 +100 +100 +100 +50 - +50 - +50 - +N +0- +0 +0 +-50 - +50 +-50- +-100- +-100- +-100- +-150 +-150 +-150 +-100 +100 +-100 +0 +100 +-100 +0 +100 +x +y +x15 +10 +15pointmodel, (x,z), "front" +pointmodel, (y.z), "side" +pointmodel, (x,y), "bottom" +20 / +20 +20 +15 +15 +15 +10 - +10 +10 +5 +5 +5 +N +0 - +0 +5 + +-5 +5 +10 +10 +10 +15 , +15 +15 +20 +20 +20 +20 +10 +10 +20 +20 +10 +10 +20 +20 +10 +0 +10 +20 +x \ No newline at end of file diff --git a/cdE4T4oBgHgl3EQfPwyZ/content/tmp_files/load_file.txt b/cdE4T4oBgHgl3EQfPwyZ/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..0128efcfe424b1c27007f6a0e602662b3ac349b4 --- /dev/null +++ b/cdE4T4oBgHgl3EQfPwyZ/content/tmp_files/load_file.txt @@ -0,0 +1,947 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf,len=946 +page_content='1 Shape2SAS – a web application to simulate small-angle scattering data and pair distance distributions from user-defined shapes Andreas Haahr Larsena*,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Emre Brookesb,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Martin Cramer Pedersenc and Jacob Judas Kain Kirkensgaardc,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='d a University of Copenhagen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Department of Neuroscience,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Copenhagen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Denmark b University of Montana,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Missoula,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Montana,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' USA c University of Copenhagen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Niels Bohr Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Copenhagen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Denmark d University of Copenhagen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Department of Food Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Copenhagen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Denmark Corresponding author: andreas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='larsen@sund.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='ku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='dk Abstract Shape2SAS is a web application that allows researchers and students to build intuition and understanding of small-angle scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' It is available at https://somo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='utk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='edu/shape2sas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The user defines a model of arbitrary shape by combining geometrical subunits, and Shape2SAS then calculates and displays the scattering intensity, the pair distance distribution as well as a visualization of the user-defined shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Simulated data with realistic noise are also generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' We demonstrate how Shape2SAS can calculate and display the different scattering patterns for various geometrical shapes, such as spheres and cylinders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' We also demonstrate how the effect of structure factors can be visualized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Finally, we show how multi-contrast particles can readily be generated, and how the calculated scattering may be used to validate and visualize analytical models generated in analysis software for fitting small-angle scattering data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2 Introduction We introduce Shape2SAS, a website for simulating small-angle scattering data and pair distance distributions from various shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Shape2SAS is readily available as a web application (https://somo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='utk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='edu/shape2sas) implemented using the GenApp framework [1] for constructing graphical user interfaces for scientific software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The user can construct arbitrary shapes by combining geometrical subunits such as spheres, cylinders, cubes, or ellipsoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Each subunit is assigned an excess scattering length density (contrast), and the small-angle scattering intensity is calculated for the specified shape composed of these subunits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The website is particularly useful for educators when organizing introductory or advanced courses in small-angle scattering data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Due to its nature as a stand-alone web application, the only requirement is a web browser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The program can likewise be used when developing analytical form factors, as demonstrated in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Shape2SAS applies the method previously implemented in the program McSim [2,3], and has a similar user input interface for generating and positioning shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The web application for McSim is, however, no longer available, and additionally, the program was written in Fortran and is not documented besides from the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Therefore, Shape2SAS is written in Python3 to make it possible to adjust and maintain for a broader scope of developers, and the web application is available via GenApp [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This allowed us to add several central features, including direct comparison of two models and inclusion of structure factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Shape2SAS can be used in a tutorial, where the scattering from one or two different shapes are calculated and compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Parameters or models can be adjusted to get an intuitive feeling for the effect of these.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The simulated data can then be used as output from virtual experiments used for further tutorials in (or tests of) programs for analysis of experimental small-angle scattering data, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=', programs for fitting analytical form factors, such as SasView (https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='sasview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='org/), SASfit [4] or WillItFit [5], or programs for ab initio modelling [6,7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 3 Applied small-angle scattering theory In this section, we provide the theoretical and computational basis for Shape2SAS, and account for the implementation of this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Scattering from identical particles in solution The scattering intensity from a diluted sample of identical particles in solution is given by the Debye equation [6], a double sum over the 𝑁 scatterers in each particle: 𝐼(𝑞) = 𝑛 ( 𝛥𝑏!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='𝛥𝑏" sin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='𝑞𝑟!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' "0 𝑞𝑟!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='" # !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=',"%& , where 𝑛 is the number density of the particles, 𝛥𝑏!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' is the excess scattering length of the 𝑗th scatterer, 𝑟!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='" is the distance between the 𝑗th and 𝑘th scatterer and 𝑞 is the momentum transfer 𝑞 = 4𝜋sin (𝜃) 𝜆 ⁄ , where 2𝜃 is the scattering angle and 𝜆 is the wavelength of the incoming X-ray or neutron beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=" The pair distance distribution By binning the scattering pairs after their pair distances, 𝑟, the double sum can be reduced to a single sum over the number of bins: 𝐼(𝑞) = 𝑛 ( 𝑝' #!" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' "#$ \'%& sin(𝑞𝑟\') 𝑞𝑟\' , where 𝑟\' = <𝑖 − & (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 𝑑𝑟, and 𝑑𝑟 is the bin width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=" 𝑝' is the number of pairs in each bin, weighted by the product of their excess scattering lengths: 𝑝' = ( 𝑓." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='𝑟!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' "0 # !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=',"%& 𝛥𝑏!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='𝛥𝑏", where 𝑓.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='𝑟!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' "0 = F1, if (𝑖 − 1) ⋅ 𝑑𝑟 ≤ 𝑟!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='" < 𝑖 ⋅ 𝑑𝑟, 0, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' We assume point scatterers, so the effect of atomic form factors is neglected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This is also a double sum, but unlike the Debye sum, sin(x)/x is not evaluated for each distance, only for the binned histogram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 4 The pair distance distribution 𝑝(𝑟) is the continuous limit of 𝑝 = {𝑝&, 𝑝(, … , 𝑝#!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' "#$}, as 𝑁)\'*+ → ∞ and 𝑁 → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In this limit, the contributions from the self-terms (𝑖 = 𝑗) are negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Therefore, the self-terms are excluded from the sums in Shape2SAS, when estimating 𝑝(𝑟) and 𝐼(𝑞), and 𝑝(0) = 0 is added to the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=" The user provides the scattering length densities as input, 𝛥𝜌' = 𝛥 𝑏' 𝑉' ⁄ , where 𝑉' is the effective volume of the 𝑖th scatterer." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=" The point density is kept constant, so 𝑉' is also constant." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The calculated scattering is normalized with the forward scattering, so 𝐼(0) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The output is therefore the unitless form factor of the particle, 𝑃(𝑞), unless an optional structure factor is selected (see section Structure factors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In this normalization step, the effective volumes of the scatterers vanish, along with the number density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The largest distance in the molecule, 𝐷,-.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=", is given as output, along with the radius of gyration: 𝑅/( = 1 2 ∫ 𝑟(𝑝(𝑟)𝑑𝑟 0%&' 1 ∫ 𝑝(𝑟)𝑑𝑟 0%&' 1 ." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The output 𝑝(𝑟) is normalized, so the maximum is unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Polydispersity Polydispersity in a sample means that all molecules are not identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' There can be polydispersity in size, aggregation number, in one axis or several axes, and polydispersity can be approximated by assuming a Gaussian distribution over a parameter in a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In Shape2SAS, one general type of polydispersity is implemented: 𝑝2345(𝑟) ∝ \\ 𝑝+(𝑟)𝑒 6& (7 86& 9()*+: , 𝑣(𝑑𝑠, &;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='<9()*+ &6<9()*+ where 𝑠 is a scaling of all pair-distances in the user-defined shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 𝑝+(𝑟) is the pair distance distribution for the shape scaled with s, and 𝜎2345 is a relative polydispersity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 𝑣 = 𝑠< is a relative (unitless) volume, which is included to account for the fact that the scattering from a molecule is proportional to the square of the molecular volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The relative volume is an approximation and is only exact for spheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The relative polydispersity, 𝜎2345, is an optional user input in Shape2SAS and by default, there is no polydispersity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 5 While this is an oversimplification of the many ways in which a sample can exhibit polydispersity, the implementation is simple and allows users and students to explore the consequences of polydispersity in small-angle scattering data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Additionally, it is computationally efficient compared to the alternative of generating a series of structures describing the desired polydispersity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Structure factors Interparticle interactions can be expressed in the form of structure factors, and the scattering intensity can be expressed as a product of the form factor and structure factor [4]: 𝐼(𝑞) ∝ 𝑃(𝑞) ⋅ 𝑆(𝑞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' So far, two structure factors are implemented in Shape2SAS: a hard-sphere structure factor [7], describing interparticle repulsion, and a 2-dimensional fractal structure factor, describing particle aggregation [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The decoupling approximation is also applied to account for non- spherical or polydisperse particles [8,9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Albeit such interparticle interactions would affect the effective pair distance distribution, the program only applies the structure factor on the calculated scattering intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' That is, if a structure factor is opted for, the output 𝑝(𝑟) is from a non-interacting molecule, whereas 𝐼(𝑞) is from a sample of interacting molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The 𝑝(𝑟) of the interacting molecules can, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=', be generated in BayesApp [10], which is likewise available as a web application in GenApp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Interface roughness A composite particle can be modeled by combining geometrical subunits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' If the subunits have different contrasts, there may be discrepancies between the sharp boundaries between subunits of the model and the softer and more fluent boundaries between components in the actual particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This can be amended by including a surface roughness in the model [11,12], effectively smearing interfaces: 𝐼=3>/?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (𝑞) = 𝐼(𝑞) ⋅ 𝑒6& ((A9-),, where 𝜎C is a normal distributed smearing parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In Shape2SAS, surface roughness can be included as an option, and like the structure factors, it only affects 𝐼(𝑞), not 𝑝(𝑟).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 6 Simulated experimental noise Shape2SAS outputs simulated data, 𝐼(𝑞), which is generated from the calculated scattering, 𝐼(𝑞), and empirically estimated errors [13]: σ(𝑞) = 𝑠 ⋅ c5 ⋅ 10D + 𝐼(𝑞) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='05 Å ⋅ 𝑞 , where 𝑠 is a scaling constant, that can be changed by the user to adjust the relative noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The constants 5 ⋅ 10D and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='05 Å are chosen to imitate the noise of typical synchrotron SAXS data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=" The simulated data, 𝐼+',(𝑞), are sampled from normal distributions with mean 𝐼(𝑞) and standard deviations 𝜎(𝑞)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 7 Implementation Architecture The program is designed for ease of use and ease of maintenance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Input parameters are provided via an online GUI (Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Inputs are read by a Python wrapper script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The wrapper calls Python functions which perform the calculations and returns output files, plots, and values to the wrapper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Finally, the wrapper returns the output to the GUI, which displays them for the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Thus, the program is modular, so functions can be altered, tested, expanded, or added.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Description of core functions A core element of Shape2SAS is the Python function that generates points from a given subunit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' First, the limits of the geometric subunit are defined in either cartesian, polar or spherical coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Then, random, uniformly distributed points are generated in the volume defined by the subunit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Lastly, if selected, the points are shifted to a new center of mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' To ensure constant point density (see theory section), the volumes of the subunits are first calculated, and the number of points inserted in each subunit is adjusted, so the point density is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The total number of points in the model (composed of one or more subunits) is 𝑁 = 5000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This number of points was chosen to balance precision and computational cost, which goes as 𝑁(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' With 5000 points, the calculated intensity is precisely reproduced up to around 𝑞 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='2 Å-1, depending on the complexity and size of the user- defined shape (Figure S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In case of overlap, overlapping points are removed by default at this stage, but they can be included and exploited in multi-contrast situations (see Example 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Another core element is the calculation of all distances in a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This step is time- and memory consuming and as such, one of the computational bottlenecks of the program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' However, using the NumPy [14] function meshgrid(), all distances between 5000 points are calculated in less than a second on the GenApp server.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Another computational bottleneck is the calculation of 𝑝(𝑟).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This is done using the NumPy function histogram().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' When polydispersity is included, several histograms are calculated, and in that case, Shape2SAS uses the histogram1d( ) function (https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='com/astrofrog/fast-histogram) which is faster 8 than NumPy’s histogram(), but does not output 𝑟-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' A polydisperse 𝑝(𝑟) is thus calculated in a few seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' User interface A key goal of the project was accessibility and ease of use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Therefore, the program is implemented as a web application, meaning that no installation is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This is optimal for successful use in courses and tutorials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The program is part of the GenApp [1] vision for making small-angle scattering software available for everyone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The user builds up a model of a predefined set of geometric subunits, which currently include: sphere, tri-axial ellipsoid, cylinder, disc, cube, cuboid, hollow sphere, hollow cube, cylindrical ring and discoidal ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The geometrical parameters of the subunits can then be changed from the default values, along with their contrast and center of mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' A model consists of the collected points in the volume spanned by the subunits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' By default, points are deleted from overlapping regions, but this is optional as mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' If a structure factor is selected, the scattering contribution from the structure factor will be displayed along with the total scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The user can choose to calculate 𝑝(𝑟) and 𝐼(𝑞) from an additional model, and the procedure is the same as for the first model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The 𝑝(𝑟) and 𝐼(𝑞)from the two models are plotted together in the GUI and can thus be directly compared without having to plot the data in third-party software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The simulated data of Model 2 is scaled by 100 by default in the plot (Figure 1E), but this scaling can be adjusted in the GUI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=" All output data (𝑝(𝑟), 𝐼(𝑞) and 𝐼+',(𝑞)) as well as plots and 3D model for visualization, can be downloaded from the web interface for further analysis, plotting, etc." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Documentation and validation All menus and input boxes in the GUI are described with a help text, which is shown by hovering the mouse over that element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The source code is documented with extensive comments in the code, including documentation of all functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Central references are provided directly in the GUI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 9 Each model is visualized as a 3D point model using a Jmol (http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='jmol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='org/) plugin and as 2D projections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The 3D model is also exported in the standard protein data bank (PDB) format, for customizable visualization and rendering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Shape2SAS models and structure factors were tested against analytical models, using SasView (https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='sasview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='org).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Source code is available on GitHub (https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='com/ehb54/GenApp-Shape2SAS) under the GNU General Public License v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 10 Examples of use The examples are designed to be relevant in the context of research as well as research-based teaching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The first example showcases how Shape2SAS can be used for generating intuition about small-angle scattering intensity of different shapes, and the second example demonstrates the effect of inter-particle interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The last example demonstrates how more complex particles can be built and how Shape2SAS can be utilized to test analytical form factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Example 1: Comparing scattering from different shapes Shape2SAS can be used to quickly calculate and compare the 𝑝(𝑟) and 𝐼(𝑞)from various geometrical bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' One example is the scattering from a sphere with radius of 50 Å and a cylinder with the same radius and length of 400 Å (Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Such an example could help a student build intuition about the scattering and pair distance distribution functions for, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=', spherical, elongated or hollow bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Moreover, the 𝑅/ and Dmax are calculated and displayed in the GUI for quick comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (a) Shape2SAS [1,2, Source code q min [1/Angstrom] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='001 qmax [1/Angstrom] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Number of points in q ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Relative noise ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Number of points in p(r) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Model 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Excludeoverlapregions ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Model 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Delta SLD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='x_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='y_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='z_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Sphere ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Relative polydispersity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Structure factor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='None ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Interfaceroughness [Angstrom] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Model 2 (optional) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Exclude overlap regions ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Model 2 (optional) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='c ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Delta SLD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='x_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='y_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='z_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Cylinder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='o ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Relative polydispersity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Structure factor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='None ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Interfaceroughness[Angstrom11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(c) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(d) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(e) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Simulating scattering from a sphere (red) and a cylinder (blue) using Shape2SAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (a) GUI with input parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (b) 2D projections of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (c) Pair distance distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (d) Calculated scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (e) Simulated scattering intensities with noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Plots are shown as they appear in Shape2SAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Example 2: Hard-sphere structure factor Shape2SAS can add inter-particle interactions to the scattering, using built-in structure factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' One example is shown in Figure 2, where the scattering from a sample of ellipsoids of revolution (minor axis 50 Å and major axis 100 Å) was calculated with and without pointmodel,(x,z),"front" pointmodel, (y,z),"side" pointmodel,(x,y),"bottom" 200 - 200 - 200 - 150 150 150 100 - 100 100 50 - 50 - 50 - N 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 50- 50- 50- 100 100 100 150 150 150 200 200 200 200 100 0 100 200 200 100 100 200 200 100 0 100 200 x y xpointmodel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='z),"' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='front" pointmodel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='z),"' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='side" pointmodel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='y),"' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='bottom" 200 200 200 150 150 150 100 100 100 50 - 50 50 - N 0 50 - 50 50 100- 100- 100 150 150 150 200 200 - 200 200 100 0 100 200 200 100 0 100 200 200 100 0 100 200 x y xpair distance distribution function calculated scattering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='without noise simulated scattering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='withnoise 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 100 102 10-1, 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='8 - 100 10-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='6 - 10-1 (μ)d (b)I 10-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='4 - 10-4 10-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='2 - 10-5 10-4 I(q), Model 1 Isim(q), Model 1 10-5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 10-6 I(q), Model 2 Isim(q), Model 2, scaled by100 0 100 200 300 400 10-3 10-2 10-1 10-3 10-2 10-1 r [Angstrom] q [1/Angstrom] q [1/Angstrom]12 interparticle interaction, described by the hard-sphere structure factor and the decoupling approximation, with a hard-sphere radius of 70 Å and volume fraction of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Such an exercise could help students or researchers to understand the effect of structure factors and recognize interparticle interactions in measured small-angle scattering data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (a) (b) (c) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Scattering intensity from ellipsoids with and without interparticle repulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (a) Pair distance distributions from two instances of an ellipsoid of revolution, without interparticle repulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Insert: 2D projections of the ellipsoid along the minor and major axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (b) Calculated scattering intensity from the ellipsoids with and without interparticle repulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (c) Simulated scattering, with noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Interparticle repulsion was described by a hard-sphere structure factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Example 3: Validating analytical form factor Shape2SAS can be used when developing analytical form factors or deriving new ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' By generating the same shape in Shape2SAS as that of the analytical model, the simulated data from Shape2SAS can be fitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In this example, a core-shell cylinder was simulated (core radius 20 Å, core length 360 Å, shell thickness 20 Å, core contrast -1 and shell contrast +1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The example also showcases how multi-contrast particles can be generated in two ways in Shape2SAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In the first approach, the core-shell cylinder is generated by combining non- overlapping subunits: a cylinder core, a hollow cylindrical shell, and two small cylinders with shifted center of mass as end caps (Figure 3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In the second approach, a large shell cylinder and a smaller core cylinder are combined, and points from the shell cylinder are removed Ellipsoid of revolution minor axis 50 Å, major axis 100 Å pair distance distribution function calculated scattering,without noise simulated scattering,withnoise 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 - 100 102 10-1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='8 - 100 10-2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='6 - 10-3 (μ)d 10-4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='4 - 10~5 10-4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='2 - 10-6 S(q), Model 1 I(q)=P(q)*S(q), Model 1 10-6, Isim(q), Model 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 10~7 I(q), Model 2 Isim(q), Model 2, scaled by 10 0 50 100 150 200 10-3 10-2 10~1 10-3 10-2 10-1 r [Angstrom] q [1/Angstrom] q [1/Angstrom]pointmodel, (x,z), "front" pointmodel, (y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='z), "side* pointmodel, (x,y), "bottom 75 75 75 50 50 50 25 25 25 25 25 50 50 50 50 50 5o 50 50pointmodel, (x,z), "front" pointmodel, (y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='z), "side* pointmodel, (x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='y), "bottom* 75 75 50 50 25 25 25 25 25 50 50 "50 75 75 50 50 50 50 50 5013 from the overlapping region (Figure 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Both result in the same model, 𝑝(𝑟) and 𝐼(𝑞) (Figure 3c-d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' If there is overlap, and exclusion of overlapping points is not opted for, then the contrast in the overlap region will effectively be the sum of contrasts of the overlapping subunits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The simulated data were fitted with the analytical model core_shell_cylinder from SasView (http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='sasview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='org/sasmodels/model/core_shell_cylinder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='html).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Data were well- described by the model (Figure 3d) and the model parameters were refined to values consistent with the input parameters (core radius 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='07 Å, core length 363 ± 2 Å, shell thickness 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 Å, and shell contrast +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='97 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Errors are standard deviations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The core contrast was fixed at -1, since the combination of fitting both core contrast, shell contrasts and scaling gave high correlation between the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The demonstrated procedure can be valuable for testing new and more complex analytical models [15], and for visualizing them as bead models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This workflow is helpful when coding analytical models for the small-angle scattering from molecules in solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' While analytical models are often ideal for implementation in a model refinement framework (such as SasView), Shape2SAS offers a simple, graphical, and intuitive manner for testing the implementation and its accuracy – in real space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Model 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Exclude overlap regions ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Model 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Delta SLD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='x_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='y_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='z_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Cylinder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='360 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Cylindrical ring ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='360 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Cylinder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='190 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Cylinder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='190 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Relative polydispersity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Structurefactor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='None ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Interface roughness [Angstrom] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0Model 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Excludeoverlapregions ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Model 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='c ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Delta SLD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='x_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='y_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='z_com ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Cylinder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='360 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Cylinder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Choose subunit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Relativepolydispersity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Structurefactor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='None ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Interfaceroughness[Angstrom]14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(c) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='(d) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Core-shell cylinder data, simulated in Shape2SAS and fitted with an analytical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (a) Core-shell cylinder input, without use of exclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (b) Core-shell cylinder input, using exclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (c) Pair distance distribution from Shape2SAS and 2D projections of the simulated beads (red: positive contrast, green: negative contrast).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (d) Simulated data were fitted using the analytical model core_shell_cylinder from SasView.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Core-shell cylinder core radius 50 Å, core length 360 Å shell thickness 20 Å .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' pair distancedistributionfunction calculated scattering,without noise simulated scattering,withnoise 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 - 100 I(q) 100 I(q), simulated 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='8 - 10-1 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='6 - 10-2, 10-2 (μ)d (b)I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='4 - 10-3 10-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='2 10-4 10-4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0 10-5, 105 0 100 200 300 400 10-3 10-2 10-1 10-3 10-2 10-1 r[Angstrom] q [1/Angstrom] q [1/Angstrom]100 10-1 10~2 10-3 10~4 Fit: core-shell cylinder, x2=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='4 10-5 IsimfromShape2SAS 3 6 0 3 10~3 10~2 10-1 q [1/Angstrom]pointmodel,(x,z),"front" pointmodel,(y,z),"side\' pointmodel,(x,y),"bottom" 150 150 150 100 100 100 50 - 50 50 N 0 0 50 - 50 50 100 100 100 150 150 150 100 0 100 100 0 100 100 100 x y xpointmodel,(x,z),"front" pointmodel,(y,z),"side" pointmodel,(x,y),"bottom" 200 200 200 150 150 150 100 100 100 50 - 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 50 - 0 N 0- 50 - 50 50- 100 100 100 150 150 150 200 200 200 200 100 0 100 200 200 100 0 100 200 200 100 0 100 200 x y x15 Discussion Shape2SAS is useful for demonstrations and tutorials, which was showcased by three examples: Example 1 compared the small-angle scattering intensity from a sphere with the small-angle scattering intensity from a cylinder;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Example 2 demonstrated the effect of interparticle repulsion via a hard-sphere structure factor;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' and Example 3 showcased how more advanced shapes can be built, with various excess scattering length densities and how Shape2SAS can be used to test analytical form factors, while developing these.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' We note that discrepancies between the simulated scattering and an analytical model can occur from the stochastic nature of Shape2SAS (Figure 3d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Moreover, if polydispersity is fitted, this is likely implemented differently in analytical models and may result in discrepancies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Shape2SAS is one among many programs for making virtual experiments [16], some of which can also generate 2D X-ray [17,18] or neutron [19] scattering data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Shape2SAS focuses on the data analysis step, after reduction from 2D to 1D data, and after eventual buffer subtraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Common for such virtual experiment software is the goal of preparing the user for best use of valuable beamtime, and for helping the user to better understand and analyze the measured data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In principle, the Shape2SAS input parameters could be transformed into variable parameters, and by addition of a scaling and a constant background, such a modified program could be used for fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' It has previously been shown that Monte Carlo bead modeling approaches are useful in small-angle scattering analysis [20], especially for generating complicated models that are difficult to describe through analytical form factors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' perforated vesicles [21] or protein-lipid complexes [22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' However, other programs, applying the same principles have been developed with fitting in mind, including CDEF [23] and SPONGE (https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='com/bamresearch/sponge) and we recommend use of these for fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' CDEF applies the same principle of binning scattering pairs as Shape2SAS, whereas SPONGE applies the Debye formula directly, making it more accurate at the cost of longer computational times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' When fitting actual data, we moreover encourage parametrizing the model to reflect physical properties rather than geometrical, to better be able to constrain and validate the refined parameters, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=', with biophysical assays (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' [11,24]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This is not possible in Shape2SAS and would typically have to be adjusted from case to case, which is 16 easier without a GUI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Shape2SAS may, however, be downloaded, and thanks to the modular architecture, functions can readily be reused by other users, to accommodate specific needs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In summary, Shape2SAS makes small-angle scattering theory intuitive, visual, playful and accessible for new and experienced users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 17 Acknowledgements This work used the Extreme Science and Engineering Discovery Environment (XSEDE) [25], which is supported by National Science Foundation Grant Number ACI-1548562 and utilized Jetstream2 [26] at Indiana University through allocation TG-MCB17057 to EB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' This work benefited from CCP-SAS [27] software developed through a joint EPSRC (EP/K039121/1) and NSF (CHE-1265821) grant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' AHL was funded by the Lundbeck Foundation grant R347- 2020-2339.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' EB was funded by the National Institutes of Health, National Institute of General Medical Sciences grant GM120600 and the National Science Foundation grant 1912444.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' The authors would like to acknowledge Steen Hansen for valuable discussions and inspiration and the students at various courses on scattering techniques at University of Copenhagen, who have tested the program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Savelyev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Brookes, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' GenApp: Extensible Tool for Rapid Generation of Web and Native GUI Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Futur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Gener.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2019, 94, 929–936, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='069.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Hansen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Calculation of Small-Angle Scattering Profiles Using Monte Carlo Simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 1990, 23, 344–346, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/s0021889890002801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Hansen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Update for BayesApp : A Web Site for Analysis of Small-Angle Scattering Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2014, 47, 1469–1471, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/S1600576714013156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Breßler, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Kohlbrecher, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Thünemann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' SASfit: A Tool for Small-Angle Scattering Data Analysis Using a Library of Analytical Expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2015, 48, 1587–1598, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/S1600576715016544.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Pedersen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Arleth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Mortensen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' WillItFit: A Framework for Fitting of Constrained Models to Small-Angle Scattering Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2013, 46, 1894–1898, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/S0021889813026022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Debye, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Zerstreuung von Röntgentstrahlen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 1915, 351, 809–823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Kinning, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Thomas, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Hard-Sphere Interactions Between Spherical Domains in Diblock Copolymers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Macromolecules 1984, 17, 1712–1718, 18 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1021/ma00139a013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Larsen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Pedersen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Arleth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Assessment of Structure Factors for Analysis of Small-Angle Scattering Data from Desired or Undesired Aggregates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2020, 53, 991–1005, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/s1600576720006500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Kotlarchyk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Analysis of Small Angle Neutron Scattering Spectra from Polydisperse Interacting Colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 1983, 79, 2461–2469, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='446055.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Hansen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' BayesApp: A Web Site for Indirect Transformation of Small-Angle Scattering Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2012, 45, 566–567, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/S0021889812014318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Skar-Gislinge, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Arleth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Small-Angle Scattering from Phospholipid Nanodiscs: Derivation and Refinement of a Molecular Constrained Analytical Model Form Factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2011, 13, 3161–3170, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1039/c0cp01074j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Als-Nielsen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Synchrotron X-Ray Studies of Liquid-Vapor Interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Physica 1986, 140A, 376–389.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Sedlak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Bruetzel, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Lipfert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Quantitative Evaluation of Statistical Errors in Small-Angle X-Ray Scattering Measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2017, 50, 621– 630, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/S1600576717003077.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Harris, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Millman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' van der Walt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Gommers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Virtanen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Cournapeau, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Wieser, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Taylor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Berg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Smith, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Array Programming with NumPy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Nature 2020, 585, 357–362, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1038/s41586-020- 2649-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Jakubauskas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Kowalewska, Ł.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Sokolova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Garvey, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Mortensen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Jensen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Kirkensgaard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Ultrastructural Modeling of Small Angle Scattering from Photosynthetic Membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2019, 9, 1–13, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1038/s41598-019- 55423-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Lefmann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Willendrup, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Udby, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Lebech, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Mortensen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Birk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Klenø, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Knudsen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Christiansen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Saroun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Virtual Experiments: The Ultimate Aim of Neutron Ray-Tracing Simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Neutron Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2008, 16, 97–111, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1080/10238160902819684.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 19 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Knudsen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Prodi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Willendrup, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Lefmann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Component Manual for the X-Ray-Tracing Package McXtrace, Version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='0_rc1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2012, 1538, 1–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Franke, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Hajizadeh, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Svergun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Simulation of Small-Angle X-Ray Scattering Data of Biological Macromolecules in Solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2020, 53, 536–539, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/S1600576720000527.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Willendrup, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Lefmann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' McStas (Ii): An Overview of Components, Their Use, and Advice for User Contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Neutron Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2021, 23, 7–27, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='3233/JNR- 200186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Pedersen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Monte Carlo Simulation Techniques Applied in the Analysis of Small- Angle Scattering Data from Colloidal and Polymer Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Lindner, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=', Zemb, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=', Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Elsevier: Amsterdam, 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 381–390 ISBN 0-444-51122-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Pedersen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Oliveira, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Hübschmann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Arleth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Manniche, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Kirkby, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Nielsen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Structure of Immune Stimulating Complex Matrices and Immune Stimulating Complexes in Suspension Determined by Small-Angle X-Ray Scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Biophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2012, 102, 2372–2380, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='bpj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Pedersen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Johansen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Roche, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Järvå, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Törnroth-Horsefield, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Arleth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Refining Structural Models of Membrane Proteins with Disordered Domains in Phospholipid Nanodiscs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' bioRxiv 2022, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='512841, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1101/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='512841.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Deumer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Pauw, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Marguet, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Skroblin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Taché, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Krumrey, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Gollwitzer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Small-Angle X-Ray Scattering: Characterization of Cubic Au Nanoparticles Using Debye’s Scattering Formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2022, 55, 993– 1001, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/S160057672200499X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Larsen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Arleth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Hansen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Analysis of Small-Angle Scattering Data Using Model Fitting and Bayesian Regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2018, 51, 1151– 1161, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/S1600576718008956.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Towns, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Cockerill, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Dahan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Foster, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Gaither, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Grimshaw, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Hazlewood, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Lathrop, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' | D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Peterson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' XSEDE: Accelerating Scientific Discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2014, 16, 62–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 20 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Hancock, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Fischer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Lowe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Snapp-Childs, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Pierce, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Marru, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Coulter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Vaughn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Beck, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Merchant, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Jetstream2: Accelerating Cloud Computing via Jetstream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' In Proceedings of the Practice and Experience in Advanced Research Computing (PEARC ’21);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' New York, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Perkins, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Wright, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Brookes, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Irving, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Krueger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Barlow, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Edler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Scott, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Atomistic Modelling of Scattering Data in the Collaborative Computational Project for Small Angle Scattering (CCP-SAS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Crystallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 2016, 49, 1861–1875, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='1107/S160057671601517X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' 21 Supplementary figures Figure S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Precision of Shape2SAS when using 5000 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' Calculated pair distance distribution and intensity for five repeated simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (a) Sphere with radius 20 Å (b) Sphere with radius 50 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' (c) Dumbbell composed of a cylinder with radius 50 Å and length 200 Å, and two spheres of radius 20 Å, with their center of mass shifted ±125 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content=' pointmodel,(x,z),"front" pointmodel, (y,z), "side" pointmodel,(x,y),"bottom" 150 150 150 100 100 100 50 - 50 - 50 - N 0- 0 0 50 - 50 50- 100- 100- 100- 150 150 150 100 100 100 0 100 100 0 100 x y x15 10 15pointmodel, (x,z), "front" pointmodel, (y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} +page_content='z), "side" pointmodel, (x,y), "bottom" 20 / 20 20 15 15 15 10 - 10 10 5 5 5 N 0 - 0 5 + 5 5 10 10 10 15 , 15 15 20 20 20 20 10 10 20 20 10 10 20 20 10 0 10 20 x' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf'} diff --git a/cdFAT4oBgHgl3EQf5x5t/vector_store/index.pkl b/cdFAT4oBgHgl3EQf5x5t/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f98b8dd0303f09d52d2f1a40396f285f56e470fb --- /dev/null +++ b/cdFAT4oBgHgl3EQf5x5t/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af4e346380519bede1b5e76602ea9e8aae2bf6fe6ffa0e70460bceafcb1d0c58 +size 172430 diff --git a/dNE3T4oBgHgl3EQfGgn0/content/2301.04316v1.pdf b/dNE3T4oBgHgl3EQfGgn0/content/2301.04316v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..38a2ad16d540d9ba6e147b78f4dea3d6d631ea00 --- /dev/null +++ b/dNE3T4oBgHgl3EQfGgn0/content/2301.04316v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1ec53980e28a20d02747d672144836918648e53648c66d3b355cd42340378229 +size 629187 diff --git a/dNE3T4oBgHgl3EQfGgn0/vector_store/index.faiss b/dNE3T4oBgHgl3EQfGgn0/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..36e46072cfc50671d58f29d131a53ae8bd41615f --- /dev/null +++ b/dNE3T4oBgHgl3EQfGgn0/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4ee06ec19e4cf42f9f096d150bdae61f0744ab2dae0739baa9f2c82b2c49d27f +size 2162733 diff --git a/dNE3T4oBgHgl3EQfGgn0/vector_store/index.pkl b/dNE3T4oBgHgl3EQfGgn0/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..c5f6a69ddb9aa51ca74c279c455dec80b3acb071 --- /dev/null +++ b/dNE3T4oBgHgl3EQfGgn0/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d03c47e3ac66f4a1ea710640358835f9f972d385c6b69b681dfa43d81c77e3c9 +size 87124 diff --git a/etE3T4oBgHgl3EQffAo5/vector_store/index.pkl b/etE3T4oBgHgl3EQffAo5/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..9b73271a6f82a45926aabbf9c2c3933fc184cc58 --- /dev/null +++ b/etE3T4oBgHgl3EQffAo5/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f804a48dd0c8e043813e30c5fb2e7d487a41298f2ccd29cd3caf9b7f137ad278 +size 247992 diff --git a/etFRT4oBgHgl3EQfVTd7/content/2301.13539v1.pdf b/etFRT4oBgHgl3EQfVTd7/content/2301.13539v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d31754d8a3940187afa29f539e57e5fb253e619a --- /dev/null +++ b/etFRT4oBgHgl3EQfVTd7/content/2301.13539v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:171f6635de1ee179e334b1916f587dd84382d5a3aca31c12c341f532169039db +size 3339714 diff --git a/etFRT4oBgHgl3EQfVTd7/vector_store/index.faiss b/etFRT4oBgHgl3EQfVTd7/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..85128e90dd814b8f0b8b4ea1ad9f74c1c8968823 --- /dev/null +++ b/etFRT4oBgHgl3EQfVTd7/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:03d5e15dd0f8e8fea8f9a2a4cdb90f962a2816db048d241e25bd5d768455bd96 +size 11272237 diff --git a/etFRT4oBgHgl3EQfVTd7/vector_store/index.pkl b/etFRT4oBgHgl3EQfVTd7/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d09cbde321f7100e97ebbc53a7bcd7326bc26376 --- /dev/null +++ b/etFRT4oBgHgl3EQfVTd7/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:524cc1621de66d2d21f116885172a35979de3c37fcb436271b5f90d71aa64a07 +size 320835 diff --git a/h9FJT4oBgHgl3EQfWSwL/content/tmp_files/2301.11516v1.pdf.txt b/h9FJT4oBgHgl3EQfWSwL/content/tmp_files/2301.11516v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..62744283503ad75944ccb9942b246c954d1ca532 --- /dev/null +++ b/h9FJT4oBgHgl3EQfWSwL/content/tmp_files/2301.11516v1.pdf.txt @@ -0,0 +1,1713 @@ +Is Embodied Interaction Beneficial? +A Study on Navigating Network +Visualizations +Journal Title +XX(X):1–14 +©The Author(s) 2016 +Reprints and permission: +sagepub.co.uk/journalsPermissions.nav +DOI: 10.1177/ToBeAssigned +www.sagepub.com/ +SAGE +Helen H. Huang1, Hanspeter Pfister1, and Yalong Yang2 +Abstract +Network visualizations are commonly used to analyze relationships in various contexts, such as social, biological, and +geographical interactions. To efficiently explore a network visualization, the user needs to quickly navigate to different +parts of the network and analyze local details. Recent advancements in display and interaction technologies inspire +new visions for improved visualization and interaction design. Past research into network design has identified some +key benefits to visualizing networks in 3D versus 2D. However, little work has been done to study the impact of varying +levels of embodied interaction on network analysis. We present a controlled user study that compared four network +visualization environments featuring conditions and hardware that leveraged different amounts of embodiment and +visual perception ranging from a 2D visualization desktop environment with a standard mouse to a 3D visualization +virtual reality environment. We measured the accuracy, speed, perceived workload, and preferences of 20 participants +as they completed three network analytic tasks, each of which required unique navigation and substantial effort to +complete. For the task that required participants to iterate over the entire visualization rather than focus on a specific +area, we found that participants were more accurate using a VR HMD and a trackball mouse than conventional desktop +settings. From a workload perspective, VR was generally considered the least mentally demanding and least frustrating +to use in two of our three tasks. It was also preferred and ranked as the most effective and visually appealing condition +overall. However, using VR to compare two side-by-side networks was difficult, and it was similar to or slower than +other conditions in two of the three tasks. Overall, the accuracy and workload advantages of conditions with greater +embodiment in specific tasks suggest promising opportunities to create more effective environments in which to analyze +network visualizations. +Keywords +virtual reality, immersive analytics, interaction, navigation, embodiment, node-link diagram, network visualization +Introduction +The ability to navigate to different parts of a visualization +is an essential component of visual data analytics1. Navi- +gation techniques for visualizations have been extensively +studied in the visualization and human-computer interaction +communities, mainly for visualizations on flat 2D screens2. +In those traditional computing setups, most analysts use a +mouse as an input device to pan around the visualization +and zoom in and out to check details. More recent display +and interaction devices allow us to navigate visualizations in +more interactive and embodied ways. These newer combina- +tions of displays and devices can bring potential benefits such +as reduced cognitive load because they enable greater direct +navigation and reorientation of the visualization 3, which we +will refer to as graph “manipulation”. +There is growing interest in using immersive environments +(i.e., virtual and augmented reality, or VR/AR) for data +visualization4,5. Two motivations are often reported for +the use of immersive visualization. First, we can render +stereoscopic 3D visualizations in VR/AR. While some data +visualizations such as pie charts are negatively impacted +using 3D, others such as network visualizations see +advantages including reduced visual clutter6–9. Second, +we can perform direct, embodied manipulation in VR/AR. +When using the typical mouse and 2D screen, the physical +interaction space is separated from the digital display space, +meaning a user must manipulate a tangible, physical device +to interact with the intangible digital graphics on the screen. +However, in VR/AR, the interaction and display space are +the same physical space, potentially reducing cognitive load +by removing the cost of context-switching between physical +and digital spaces. +The benefits of using 3D visualizations over 2D ones +have been well studied, with existing research finding +that scatterplots10,11, network visualizations9, and some +geographic visualizations12,13 are more effective in 3D than +in 2D. Conversely, the benefit of direct manipulation and +greater embodiment in VR/AR has been less explored. +There are two studies that are most relevant to our work. +In one study, Bach et al.11 also compared a spectrum +of experimental conditions including desktop, tablet AR, +and HoloLense conditions, with a focus on 3D scatterplots +1John A. Paulson School of Engineering and Applied Sciences, Harvard +University, USA +2Department of Computer Science, Virginia Tech, USA +Corresponding author: +Yalong Yang, Immersion & Visualization Lab, Department of Computer +Science, Virginia Tech, Blacksburg, VA, 24060, USA. +Email: yalongyang@vt.edu +Prepared using sagej.cls [Version: 2017/01/17 v1.20] +arXiv:2301.11516v1 [cs.HC] 27 Jan 2023 + +2 +Journal Title XX(X) +Figure 1. Tested conditions in our user study with key characteristics: (a) 2D network visualization displayed on a 2D screen with a +standard mouse, (b) 3D network visualization on a 2D screen with a standard mouse, (c) 3D network visualization on a 2D screen +with a trackball mouse, (d) 3D network visualization in virtual reality with hand-held controllers. +rather than networks. However, their tasks only involved +mark-based interactions, which are less intuitive than +embodied interactions. In another study, Kraus et al.10 again +compared 3D scatterplots on a 2D screen to those in VR +environments with different sizes. However, participants +could only move around the visualization in VR and were +not able to manipulate the visualizations in an embodied +way. While physical movement is a way to navigate around +a visualization in an immersive environment, it introduces +more physical workload and is restrained by the physical +space available14, so relying solely on movement to navigate +a visualization may not be ideal. Both of these studies +lacked the element of embodied interaction, which allows for +direct manipulation of objects and provides a more intuitive, +life-like experience while reducing the physical movement +involved in analyzing a visualization. +To fill this gap, we studied the effect of embodied +interaction through different display and interaction +devices on navigating network visualizations. We were +interested in how different commercialized devices offer +graph visualization manipulation and how their different +capabilities influence people’s performance in visualization +navigation. Specifically, we compared four conditions in +a controlled user study (see Figure 1): 2D and 3D +network visualizations with a standard mouse, 3D network +visualization with a trackball mouse, and 3D visualizations +with a VR head-mounted display (HMD) and corresponding +controllers. While there was little embodiment difference +between the two conditions using a standard mouse, the +trackball mouse had more embodiment than a standard +mouse because the physical trackball acted as a tangible +direct proxy for the 3D visualizations. Rotating the trackball +provided a closer match between the 3D interaction and +the 3D display space. The VR environment had even +more embodiment, as users could directly manipulate +visualizations using 6D tracked controllers (i.e., 3D position +and 3D rotation) similarly to manipulating real-life objects. +We chose network visualizations as the data visualization to +study because they require a significant amount of navigation +effort in many analytic tasks and have been less studied with +different interaction and display devices. +In our study we asked 20 participants to complete the +following three fundamental analytic tasks we derived from +related work6–9,15–17 and widely-accepted visualization task +taxonomies10,11,18,19: (1) identify the common nodes between +two nodes in a visualization (Common), (2) count the number +of triangles in a visualization (Count), and (3) compare +two network visualizations (Compare). In each task, we +measured the accuracy, speed, perceived workload, and +preferences of the participant, and we found that using +a trackball mouse and VR HMD was more accurate in +Count but required more time than a standard mouse in +Common. In addition, participants struggled in VR when +comparing two side-by-side network visualizations, resulting +in long completion times and low accuracy. From a workload +perspective, participants found 3D network visualization to +be less mentally demanding and frustrating when compared +to 2D alternatives. Participants found the trackball mouse +to be more mentally and physically demanding than a +standard mouse, and VR was generally considered to be +the least mentally demanding and frustrating for Common +and Count, though the opposite was true for Compare. +After collecting participant preferences on the aesthetics +and effectiveness of the different conditions, we found that +participants ranked the typical desktop set up with a standard +mouse and 2D network visualization to be the least visually +appealing and effective, while participants ranked VR to +be the overall most effective and aesthetically pleasing +condition. The combination of all our results suggests that +design and interaction improvements can be made to the way +modern network visualization analysis is conducted to help +analysts better navigate network diagrams. +Related Work +Visualization navigation. To efficiently explore a visualiza- +tion, the user must be able to easily navigate to different parts +of the visualization and inspect local details. Several inter- +action approaches such as focus+context, overview+detail, +and pan&zoom have emerged to support visualization navi- +gation, and they have been extensively studied for 2D visual- +izations2,20,21. Conversely, interaction approaches with more +immersive visualizations have been less widely explored, +though some work in this area has indeed been done. +Yang et al.22 compared overview+detail and pan&zoom +interfaces for 3D scatterplots in VR. Although they did +not come to a conclusion on which condition performed +better, they did find that participants preferred the pan&zoom +interface. Similarly, Drogemuller et al.16 compared three +locomotion methods and the overview+detail (or Worlds-In- +Miniature) techniques for network visualizations. However, +they only considered room-sized visualizations in VR, which +are uncommon in current visual analytics workflows. Lages +and Bowman14 studied more realistic analytics conditions +by comparing the effectiveness between manipulating a +Prepared using sagej.cls + +Low Embodiment +High Embodiment +(a) 2D Vis+Mouse +(b) 3D Vis+Mouse +(c) 3D Vis+Trackball +(d) 3D Vis+VR +十 2 DOF ++ 2 DOF +圣 3 DOF + 6DOF +X Body Mvmt +X Body Mvmt +X Body Mvmt +Body Mvmt +X Stereoscopic +X Stereoscopic +X Stereoscopic +Stereoscopic +X Tangibility +V Tangibility +Tangibility +X Tangibility +2D Vis. Dimension +3D Vis. Dimension +3D Vis. Dimension +3D Vis. Dimension3 +visualization and moving around a visualization, and they +found that some participants performed better by manipu- +lating the graph view than physically moving around the +graph. Walking is one of several primary ways that 3D User +Interfaces (3DUI) and Virtual Reality have allowed users to +navigate and move through 3D immersive space, as classified +by Laviola et al.23. +We chose to use the pan&zoom manipulation technique +for two main reasons. First, it is a more widely used +navigation method and is seen in software such as Google +Maps and digital image viewers, lowering the barrier to +using it in our study. Second, the pan&zoom technique can +be similarly replicated across the different devices used in +our study. Using a more intuitive and familiar navigation +technique allowed participants’ performance to be more +directly impacted by the level of embodiment provided by the +devices in our four conditions, rather than by any difficulty +with understanding a new navigation method. +2D, 3D, and immersive network visualizations. Node- +link diagrams are the most common and intuitive methods +of displaying network visualizations. Researchers have +extensively studied different layout algorithms for creating +node-link diagrams24,25, and force-directed layouts are one +of the most widely used methods due to their simple +implementation and their mitigation of link crossings within +a network. As a result, we used a force-directed layout to +produce the node-link diagrams for our user study. Despite +the mitigated link crossings in a force-directed layout, 2D +node-link diagrams in a limited display space such as a +computer screen can result in visual clutter that makes it +difficult for the viewer to perceive information effectively8. +On the other hand, with one extra dimension, visualizing +networks in 3D has the potential to address or at least +alleviate this issue. A series of user studies has confirmed +the advantages of 3D over 2D displays in displaying node- +link diagrams, with the most representative studies being +from Ware et al.6–8, Greffard et al.26,27 and Alper et al.28. +However, due to the occlusion and perspective distortion +found in 3D visualizations, it is essential that users can easily +change their viewing position and direction while intuitively +manipulate the digital graph view5,8. In VR, Kwon et al.9 +implemented an egocentric layout to show networks with +clusters. With this layout, they found network visualizations +performed better in VR than on a 2D screen, especially +with difficult tasks. Cordeil et al.29 compared network +visualization in VR and on a CAVE screen for collaborative +analysis, where they found VR had advantages in completion +time. Kotlarek et al.17 compared 3D immersive network +visualizations with their 2D desktop alternatives and found +that VR contributed to better interpretation of the network +structure, while 2D resulted in better spatial memory. +However, in those studies, participants could not manipulate +their views, which is considered an important feature for +immersive visualization. Those studies also only considered +the comparison between a limited number of devices. Kraus +et al.30 provided a comprehensive review of visualizations +in immersive environments. Specifically, as they pointed +out, there is a large design space to explore for immersive +network visualizations. To expand on all this existing +research, we designed our study to focus on the effect of +embodied view manipulation on graph navigation, and we +compared four computing environments that cover a wider +range of the embodiment spectrum than devices used in other +studies. +3D interactions with a standard mouse. Interacting with +2D visualizations has traditionally involved using a mouse +to point, select, and manipulate the view. However, when +interacting with 3D visualizations, using a standard mouse +poses an issue due to the mouse’s limited DOF. Chen +et al.31 used a standard mouse to compare different 3D +interaction methods and found that the “virtual sphere” +method performed best. It simulates a 3D Vis+Trackball by +encasing the 3D view in an invisible sphere that a standard +mouse can then drag to rotate. The “virtual sphere” method +(also known as orbit control) has been widely used in +commercial applications such as CAD and was thus used in +our study (Figure 1(b)). Of note, though, is that extra mental +effort is expected to map 2D Vis+Mouse movements to a 3D +virtual sphere due to the inconsistency in DOF between the +input device and digital object. +Tangible proxies for 3D interaction. Tangible 3D input +devices can reduce the additional mental effort of a 2D +Vis+Mouse and better facilitate 3D interaction than 3D +Vis+Mouse. Various studies have confirmed the benefits of +using 3D input devices as physical proxies32–38. Meanwhile, +Hand19 and Besanc¸on et al.18 provided comprehensive +reviews of such 3D devices. However, many tangible 3D +input devices (e.g., those ones in37–39) are customized for +studies and not easily accessible to ordinary users. Thus, +in our study, we chose to test a broadly available trackball +mouse as our proxy. While the interaction is similar to +that of the “virtual sphere”, the trackball mouse differs +from a standard mouse by providing a tangible 3D ball +(instead of a virtual ball) that rotates the 3D object on +the screen exactly how the physical trackball in a user’s +hand rotates (Figure 1(c)). The 3D Vis+Trackball condition +increases embodiment over the 3D Vis+Mouse condition by +directly mapping 3D interactions to 3D views. However, the +interaction space (i.e., the desk’s surface) is still spatially +separated from the display space (i.e., the screen), which +introduces some extra cognitive load. +Immersive +VR +interactions. +Commercial +VR +head- +mounted displays (HMDs) provide a fully immersive +experience at an affordable cost. They allow the user to see +stereoscopic 3D views and to manipulate them with 6-DOF +hand-held controllers (see Figure 1(d)), which most closely +follows the “what you do is what happens” paradigm40. +Specific to immersive node-link diagrams, Sorger et al. +explored interactions to study egocentric views of network +visualizations41,42 and Drogemuller et al.16 studied different +locomotion methods for navigating immersive network +visualizations. However, their studies did not directly +compare +immersive +environments +to +other +computing +environments. Meanwhile, some studies have found benefits +to +using +VR +over +the +conventional +2D +Vis+Mouse +display environments with different visualizations such +as scatterplots10,11,43, network visualization9,44, space-time +cubes13, and visual channels45. As far as we know, though, +no study has compared VR to a condition with a 3D input +device on a 2D display (our 3D Vis+Trackball condition) for +network visualizations. +Prepared using sagej.cls + +4 +Journal Title XX(X) +Rationale And Experimental Conditions +Initially, the use of 3D for visualizations was not commonly +appreciated in the literature46. However, a series of more +recent studies have provided empirical evidence for the +benefits of 3D over 2D, especially with improving display +and interaction technologies. As pointed out by Marriott +et al47: “it is time to reconsider the value of 3D for +information visualization.” So, based on previous work, +we used 3D network visualizations in three of our testing +conditions, namely 3D Vis with a mouse (3D Vis+Mouse), a +trackball mouse (3D Vis+Trackball), and VR (3D Vis+VR). +By comparing these three different environments, we aimed +to investigate the effect of different levels of embodiment +(in terms of display and device) on navigating a network +visualization. Notably, we also included a condition using +2D network visualization to both confirm the benefits of +using 3D visualizations over 2D ones in our tasks and enrich +empirical knowledge of the comparisons between 2D and 3D +network visualizations. +To systematically investigate embodiment, we reviewed +previous studies6–9,15 and taxonomies on visualization inter- +action10,11,18,19, and identified five fine-grained properties of +embodiment: +Visualization Dimension—whether the network visual- +izations are rendered in 2D or 3D. +DOF (i.e., Degree of Freedom)—the extent of the input +device’s rotational and translational freedom of movement. +Body Movement—whether the user could leverage body +movement to change view point and direction. +Stereoscopy—whether the display enabled a stable depth +perception of head-tracking stereoscopic visuals. +Tangibility—whether the user could tangibly interact with +the visualization either through a physical proxy of the +visualization or a 3D virtual representation of it as if +touching the visualization itself. Tangibility using a proxy +would be considered a weaker form of tangibility than +tangibility using virtual reality controllers to manipulate a +graph view. +Testing the effect of every single property was not feasible, +as it would result in too many conditions for participants in +the study. However, using these five properties, we imagined +a general spectrum of environments with varying levels +of embodiment based on the number of properties they +encapsulated. Environments with more limited DOF, less +body movement, no stereoscopy, less tangibility, and only +2D visualizations were considered to give the user low +embodiment whereas environments that allowed for more +DOF, greater body movement involvement, stereoscopy, +more tangibility, and that featured 3D visualizations were +considered more embodied. To most reasonably decide on +the environments along the spectrum we would use for the +study, we decided to follow Bach et al.’s strategy11 and +chose easily accessible hardware environments with different +numbers of the five properties and therefore different levels +of embodiment ( Figure 1). One of our key goals for this +project was to conduct research that could be applicable +to the general public, which is why we emphasized the +importance of choosing accessible hardware devices even +if they were located at intervals along the spectrum of +environments that were not exactly equal. +The following were our four computing environments: +2D Vis+Mouse: used a standard mouse with 2 DOF +as the input device and a 2D monitor to render the +visualizations. The network visualizations were rendered in +2D and participants used the mouse to pan&zoom with +the views. To pan, the user could left-click and drag the +visualization around the screen. To zoom, they would use the +scroll wheel on the mouse. +3D Vis+Mouse: used the same setup as 2D Vis+Mouse but +rendered 3D network visualizations rather than 2D diagrams +and used the aforementioned “virtual sphere” method31. +Left-click and drag were used to rotate the 3D visualization +while right-click and drag would pan the visualization +around the screen. To zoom, the user would still use the scroll +wheel like in 2D Vis+Mouse. +3D Vis+Trackball: used a 2D monitor to render 3D +network visualizations. Instead of using a traditional +computer mouse, 3D Vis+Trackball used a trackball mouse +that was a stationary device with a physical ball that +a user rotated with their hand, allowing for 3-DOF. 3D +Vis+Trackball featured two modes. Cursor mode was the +default mode and allowed users to rotate the physical +trackball to move the cursor. Upon a left click, the trackball +would enter rotation mode, where rotating the trackball +rotated the 3D graph. To zoom, the user used the trackball +mouse’s scroll ring. +3D Vis+VR: used a head-mounted display (HMD) to +render stereoscopic 3D visuals and two hand-held VR +controllers to provide direct, 6-DOF manipulation. Users +could use the controllers to grab, move, and reorient the +visualizations to find the desired information by pointing +both controllers at the visualization, pressing the trigger +buttons on the front of the controllers, and moving their +hands in the same logical direction. To zoom, we used the +built-in zoom implementation from the MRTK package48, +which contains a standard zoom implementation used in +many other commercial and open-source platforms, such +as SteamVR, Oculus, and VRTK. Participants could not +only pinch-to-zoom the graph by grabbing two parts +of the graph and moving both hands closer or farther +apart while holding the triggers, but they could also +bring the visualizations closer to themselves. To make +solution selections, participants could use the trigger on +one controller to select a node while hovering over it +(for Common and Compare). In addition to manipulating +the graph view, participants could freely move around +the diagram to effectively inspect different parts of the +visualization. +One major difference between this condition and the other +conditions on the desktop was the view box. While the view +boxes of the graphs in the desktop environments occupied +almost the entire screen, they were still limited by the size of +the screen. As a result, parts of the graph would not be seen if +the user zoomed in closely on other areas of the graph. This +characteristic was much less obvious in the VR environment. +Despite still having graphs rendered in a specific bounding +box area in the virtual environment, the VR environment +allowed the entire virtual space around the user to essentially +become the “screen”. Consequently, users could enlarge the +graph to be much closer and bigger without “cutting off” +any parts of it within the environment. However, there was +Prepared using sagej.cls + +5 +still a view limitation within VR known as the field of view +(FOV) of the VR headset, which is a concept that represents +the amount of a virtual world a user can see at once. For the +Oculus Quest 2, the FOV is 89 degrees. So, even though the +entire graph in VR could be seen if the user moved their head, +unlike on a computer screen, only parts of the graph would +be visible at once to a user if the graph were too close in the +virtual environment. We decided not to include explicit view +boxes in 3D Vis+VR like on the computer screen to allow +users to experience the natural differences between using VR +and desktop environments. +Other Design Choices. We used a standard force-directed +layout algorithm implemented in d3js* and its extension† to +calculate the node positions for all network visualizations, +both in 2D and 3D, given the popularity and wide use of +this method. We used the default option from the algorithms +to render the starting perspectives of the 3D node-link +diagrams. We also used a standard white HTML background +for conditions in the desktop environments and the default +MRTK48 scene in the virtual reality environment. +In addition, we considered other interesting design areas +related to the idea of controllers versus gestures, haptics, +and manipulation versus movement, to name a few. In the +end, our decisions to use controllers, not implement input +device haptics, and allow for movement were all based on +precedent work we studied, a desire to create the most +seamless user experience (e.g. VR HMDs are more sensitive +to controller actions than gestures), and our goal of using +conditions that are generally more accessible to the general +public (e.g. devices using haptics are not as widely available +as commercial HMDs without haptics). +User Study Design +In this section, we explain the details of our setup, +participants, procedure, tasks, data generation, measures, and +hypotheses of our controlled user study. +Experimental Setup +2D Vis+Mouse, 3D Vis+Mouse, and 3D Vis+Trackball used +a 23.8” 2D flat screen with a resolution of 2560×1440. 2D +Vis+Mouse and 3D Vis+Mouse used a standard mouse. 3D +Vis+Trackball used a Kensington orbit trackball mouse. 3D +Vis+VR used an Oculus Quest 2 HMD with a resolution of +1832×1920 per eye paired with its two hand-held controllers +as input devices. To reduce the complexity and avoid the +potential confounding effect, sensitivity settings were fixed +for all devices. Participants were not given the option to +customize input device sensitivity (e.g., mouse speed). +Participants +We recruited 20 participants, 12 male and eight female, +through university mailing lists to complete the study. All +20 were undergraduate students from a wide range of STEM +and non-STEM majors, with 6 participants majoring in +Computer Science. All participants were between 18 and 24 +years old, and all had either normal or corrected-to-normal +vision. Regarding experience with a mouse, all but one +participant noted significant experience. The one participant +without significant mouse experience indicated between 0 +and 10 hours of lifetime mouse use and primarily used a +laptop touchpad instead. Regarding trackball experience, 16 +participants had never used a trackball before, two had used +one for fewer than ten hours, and two used a trackball either +daily or for at least more than 20 hours in their lifetime. +Regarding VR experience, four participants had never used a +VR HMD before, 15 had used it for fewer than ten hours and +sometimes only in the context of basic Google Cardboard +devices, and one had used VR between ten and 20 hours. +Procedure +The experiment followed a within-subject design. We used a +Latin square design to determine the order of the conditions +each user would use to complete the study. This was done +to mitigate learning effects. Each participant completed 24 +study trials: 4 conditions × 3 tasks × 2 study trials. Each +participant also completed the same number of training trials +to ensure they understood the task and were familiar with +the conditions before conducting the study trials. The study +was conducted in-person and took on average two hours per +participant. We compensated each participant with a $20 gift +card. +To begin the study, participants were given a brief +introduction to the experiment. They were then asked to +complete the tasks in the order of Common, Count, and +Compare. For each task, participants were first presented +two practice trials to ensure that they were familiar with +the visualization, interaction, and task before being given +their two official study trials. When introduced to new +conditions, participants completed a short training session +that explained and demonstrated the device setup. After +each task, participants filled out a survey adapted from +NASA’s Task Load Index49 to rate the four conditions. +We also asked participants to provide verbal feedback +highlighting the positives and negatives associated with +each condition for that task. After completing all three +tasks, participants completed a post-study survey where they +ranked the conditions overall for effectiveness and aesthetics +and provided demographic information. +Conducting in-person user studies and recruiting partici- +pants during the pandemic was extremely challenging. We +strictly followed COVID-19 policies to ensure participants’ +and investigators’ safety, e.g., we ensured a two-hour gap +between sessions and sanitized all devices before and after +each session. +Tasks and Data +To better understand the effect of embodiment, we selected +our Common, Count, and Compare tasks because they +required substantial interaction effort. We referenced the +network visualization task taxonomy by Lee et al.50 +and relevant user studies9,15–17,51 to choose these three +representative tasks, which follow the design space of +visualization tasks by Schulz et al.52 to cover targets in +different levels of detail. +∗https://github.com/d3/d3-force +†https://github.com/vasturiano/d3-force-3d +Prepared using sagej.cls + +6 +Journal Title XX(X) +Figure 2. Users performed three different graph tasks in our study. (a) Find the common nodes between two highlighted nodes, (b) +count the number of triangles in a graph, (c) find the missing nodes between two side-by-side graphs. Above are examples of 3D +graphs used in each task. +We now describe the details of our three chosen tasks. +All study stimuli are also included in the supplementary +materials. +Common: Find the common node neighbors between +two highlighted nodes. This task investigated the ability of +different testing conditions to enable participants to closely +explore a given part of the node-link diagram. Participants +first had to navigate to the part of the network visualization +with the two highlighted nodes, then identify the nodes that +were linked to (i.e. common to and neighbors with) both +highlighted nodes. This is a common connection topology +task and has been used by Kwon et al.9. +In more detail, when participants began each trial for +this task, the internal timer (invisible to the participants) +would start and participants would be shown a network +visualization with two of its nodes highlighted blue. +Participants needed to find the nodes that were connected +to both highlighted nodes and click them. After clicking on +a node, the node would turn red and would be considered +part of the participant’s answer. If participants changed their +minds, they could click on the node again to return it to its +original color and remove it from their final answer. When +they were sure of their selections, participants would then +click a ”Done” button on the page which would lock in their +selections, stop the internal timer, and move them to the next +page. +Given the density of nodes, this task required participants +to exert effort zooming in on the area with the two +highlighted nodes and rotating the graph (when applicable) +to identify neighbors and confirm assumptions. Each study +trial had 60 nodes separated into three even-sized clusters, +with two to three common nodes per trial. The probability +that a link existed between two nodes was 0.2 within a cluster +and 0.05 between clusters. +Count: Count the number of triangles in a network +visualization. Users were asked to count all triangles +formed by the nodes and links in a visualization, which +targeted the importance of finding cliques or strongly +connected components in a network. This task investigated +both navigation and spatial memory capabilities offered by +the different testing conditions. Drogemuller et al.16 and +Cordeil et al.15 used this task in their user studies as +well. Here, participants needed to iterate over the entire +network visualization and identify each triangle without +double counting the same triangle from different angles. +Once they were certain of the number, they would click +an “input number” button on the page that would stop the +internal timer and move them to a new page, which removed +the visualization and displayed only a number slider. Using +the slider, participants would indicate the number of triangles +they counted and then click another button to submit their +answer, without the time taken to use the slider counted +toward their completion time. +In terms of the effort needed for this task, Count required +participants to exert effort when dynamically rotating the +diagram in smooth and logical ways to properly count every +triangle in the graph. Each study trial had eight nodes in one +cluster with either 15 or 17 links between nodes. We also +controlled the number of triangles within the range of six to +11. Our internal test revealed significant mental and physical +fatigue for any larger or more complex network for this task. +Compare: Find the missing nodes between two side- +by-side network visualizations. Participants were given two +identical network visualizations but with four nodes and their +Prepared using sagej.cls + +Common +Count +Compare +2D Vis+Mouse +3D Vis+Mouse / +3D Vis+Trackball +3D Vis+VR7 +corresponding links removed in the right one. Their task was +to identify the missing nodes in the left visualization. This +task required participants to fully inspect the information of +two node-link diagrams and was used by Kotlarek et al17. +More specifically, users saw two diagrams placed side- +by-side where the rotation, position, and scale (or zoom +level) of these two diagrams were synchronized such +that manipulating the left diagram would cause the same +manipulation of the right diagram. Same as in the Common +task, participants clicked on a node to select or unselect it as +one of their answers, and clicking the node changed the node +color from its original black color to red or from red back +to black. Once participants were satisfied with their choices, +they clicked a “Done” button on the page to submit their +selections and stop the internal timer. +Given the density of nodes, we initially believed this +task required participants to exert effort zooming in on and +rotating the graphs (when applicable) to find missing nodes +and links. Each study trial had 100 nodes roughly separated +into 3 even-sized clusters. The probability that a link existed +between two nodes was 0.12 within a cluster and 0.02 +between clusters. +To generate realistic data throughout all of our tasks, we +used the stochastic block model53 to create network data +with clusters, which are ubiquitous in social, biological, and +geographical applications. During data generation, we pre- +determined the number of nodes, the number of clusters, +and the probability that a link would exist between any +two nodes in the graph. We conducted multiple internal +tests to determine the optimal combination of node and link +probabilities, taking into account the cognitive load burden +for network visualizations54 and the benefits of stereo and +motion cues on acceptable data size7. +Measures +We measured time from the instance the visualization was +fully rendered to when the internal timer would stop. +We measured accuracy by dividing the number of correct +responses by the total number of trials. We measured +workload by using an adapted version of NASA’s Task Load +Index49 to rate the four conditions in the areas of mental +demand, physical demand, temporal demand, overall effort, +frustration, and perceived personal performance for each +task. The subjective ratings were recorded on a Likert 7-point +scale. Finally, at the end of the study, participants were asked +to rank the conditions in terms of overall effectiveness and +general aesthetics. +Hypotheses +We developed our hypotheses based on our literature survey +and our analysis of the four testing environments along the +five main dimensions. +H2D−3D−V is: By comparing 2D Vis+Mouse and 3D +Vis+Mouse, we wanted to confirm the benefits of using 3D +for network visualizations. These two conditions share the +same display and interaction devices. The only distinction is +the dimension of visualization rendered on the screen. We +expected 3D Vis+Mouse to outperform 2D Vis+Mouse, as +rendering network visualizations in 3D may reduce visual +clutter to allow users to navigate to targets more effectively. +Htangibility: By comparing 3D Vis+Mouse and 3D +Vis+Trackball, we wanted to verify the benefits of tangibility +in navigating network visualizations. The only difference +between the two conditions is whether the condition provides +tangible interactions. We expected 3D Vis+Trackball to +outperform 3D Vis+Mouse because, with a physical proxy, +trackball users can more intuitively map their desired 3D +rotations in digital space to the real 3D movement of +their physical trackball. Since a standard mouse lacks this +functionality, it requires higher context-switching costs. +Hdirect−interaction: By comparing 3D Vis+VR to other +conditions, we wanted to identify whether there were real +benefits to using direct interaction in VR, which was +our most embodied condition in our study. We expected +3D Vis+VR to outperform other conditions because with +stereoscopic vision and 6DOF tracked controllers, users had +an identical display and interaction space that could allow +them to directly manipulate 3D objects in their view and +possibly increase their efficiency. +Results +We used linear mixed-effect modeling55 on the logarithmic +transformation of completion time, which we found to +meet the normality assumption. Compared to repeated +measure ANOVA, linear mixed modeling is capable of +modeling more than two levels of independent variables +and does not have the constraint of sphericity56. We +modeled all independent variables and their interactions +as fixed effects. A within-subject design with random +intercepts was used for all models. We evaluated the +significance of the inclusion of an independent variable +or interaction terms using a log-likelihood ratio. We +then performed Tukey’s HSD post-hoc tests for pairwise +comparisons using the least square means57. We used +predicted vs. residual and Q—Q plots to graphically evaluate +the homoscedasticity and normality of the Pearson residuals +respectively. For accuracy, ratings, and rankings that did +meet the normality assumption, we used a Friedman test +to evaluate the effect of the independent variable, as +well as a Wilcoxon-Nemenyi-McDonald-Thompson test for +pairwise comparisons. Significance values are reported for +p < .05(∗), p < .01(∗∗), and p < .001(∗ ∗ ∗), respectively, +abbreviated by the number of stars in parentheses. +Results for time and accuracy are shown in Figure 3. +Figure 4 presents participants’ task load index responses, +and Figure 5 demonstrates participants’ overall effectiveness +and aesthetics ranking of the four conditions. We report on +the rejections and acceptances of our hypotheses in each +task and share the feedback from our participants for each +condition. All detailed statistical results are presented in a +supplementary document. +2D vs. 3D network visualizations +We did +not find +significant differences +between 2D +Vis+Mouse and 3D Vis+Mouse in time and accuracy for +all three tested tasks. 3D Vis+Mouse (82.5%, CI=14.2% +in Common and 32.5%, CI=13.1% in Count) tended to +be more accurate than 2D Vis+Mouse (62.5%, CI=18.3% +in Common and 17.5%, CI=12.0% in Count), but not +by a statistically significant amount. Since 2D Vis+Mouse +Prepared using sagej.cls + +8 +Journal Title XX(X) +% +0 +% +25 +% +50 +% +75 +% +100 +Accuracy (%) +Common +Count +% +0 +% +25 +% +50 +% +75 +% +100 +Accuracy (%) +Compare +% +0 +% +25 +% +50 +% +75 +% +100 +Accuracy (%) +0 +25 +50 +75 +100 +Time (s) +0 +25 +50 +75 +100 +Time (s) +0 +100 +200 +300 +Time (s) +2D Vis+Mouse +3D Vis+Mouse +3D Vis+Trackball +3D VIS+VR +Accuracy (percentage): +Time (seconds) +shows A was significantly more accurate/faster than B, with +A +B +������������ < 0.05 +0.05 ≤ ������������ ≤ 0.1 +Figure 3. Results for time (seconds) and accuracy (percent +average) by task. Error bars are for 95% confidence intervals. +and 3D Vis+Mouse had similar performance, we rejected +H2D−3D−V is in terms of time and accuracy. +In terms of workload, participants found that 2D +Vis+Mouse required more effort (∗ in Common and ∗∗ in +Count) and resulted in more frustration (∗ in Common and +∗∗ in Count) compared to 3D Vis+Mouse in Common and +Count. Participants also felt more mental demand in 2D +Vis+Mouse than in 3D Vis+Mouse for Count (∗∗). Since +participants rated 3D Vis+Mouse to be subjectively more +effective in some perspectives, we accepted H2D−3D−V is in +task load index ratings. +For overall perceptual rankings, participants ranked 3D +Vis+Mouse over 2D Vis+Mouse for effectiveness (∗∗) and +aesthetics (∗ ∗ ∗). Thus, we accepted H2D−3D−V is in the +subjective rankings. +In summary, our quantitative results show a similar +performance between 2D Vis+Mouse and 3D Vis+Mouse. +However subjectively, participants found that 3D Vis+Mouse +required less workload compared to 2D Vis+Mouse. +The effect of tangibility +Again, we defined tangibility as the environment’s ability to +allow the user to more naturally “touch” or manipulate the +visualization, whether in the form of a physical proxy or a +3D virtual representation. We found that 3D Vis+Trackball +(57.5%, CI=10.0%) was marginally more accurate than 3D +Vis+Mouse (32.5%, CI=13.1%) in Count (p = 0.1), but +that 3D Vis+Mouse (50.1s, CI=10.5s) was faster than 3D +Vis+Trackball (59.5s, 13.1s) in Common. As a result, for +these quantitative measures, we only accepted Htangibility +in Count and rejected it for other tasks. +Workload-wise, participants found 3D Vis+Trackball to be +more mentally demanding (∗) and requiring of more effort +than 3D Vis+Mouse (∗∗) in Common. 3D Vis+Trackball was +also reported to need more effort in Compare (∗∗). Thus, +we rejected Htangibility according to these task load index +ratings. +The overall rankings did not reveal any significant +difference between 3D Vis+Trackball and 3D Vis+Mouse, so +we rejected Htangibility in rankings. +In summary, we found that 3D Vis+Trackball was more +accurate in one task but slower in another task, and it +Figure 4. Ratings indicated by participants on a 7-point Likert +scale. The bars represent the distribution of scores across all +subcategories, and bars closer to the left represent lower +workload in the green to pink series, while bars closer to the left +represent lower success in the red to blue series. Brackets +indicate significances for p < 0.05. +generally required a higher workload compared to 3D +Vis+Mouse as reported by users. +Is direct interaction beneficial? +We found that 3D Vis+VR (62.5%, CI=14.6%) was more +accurate than 3D Vis+Mouse (∗, 32.5%, CI=13.1%) and +2D Vis+Mouse (∗ ∗ ∗, 17.5%, CI=12.0%) in Count. +However, 3D Vis+VR (87.0s, CI=17.8S) was slower than +3D Vis+Mouse (∗∗, 58.5s, CI=10.2s) and 2D Vis+Mouse +(∗, 63.4s, CI=9.9s) in Common and significantly slower +(276.8s, CI=62.9S) than other conditions in Compare +(all ∗ ∗ ∗). Thus, for quantitative measures, we accepted +Hdirect−interaction in Count but rejected it for the other two +tasks. +3D Vis+VR performed well in terms of workload in +two tasks. We found that participants perceived less mental +demand, temporal demand, frustration, and overall effort in +3D Vis+VR than in 2D Vis+Mouse or 3D Vis+Trackball in +Common (all at least ∗). 3D Vis+VR also had benefits in +mental demand, effort, frustration, and performance over 2D +Vis+Mouse, and on frustration and performance over 3D +Vis+Trackball in Count (all at least ∗). Participants did +find that 3D Vis+VR required more physical effort than 2D +Vis+Mouse in Common and 3D Vis+Mouse in Common and +Count, but this was merited given that the VR HMDs and +controllers naturally allowed for more embodied interactions +with the networks. +3D Vis+VR did not perform as well with Compare, where +it was ranked the lowest in all workload categories. So, +for task load index ratings, we accepted Hdirect−interaction +for perceived mentally demand, effort, frustration, and +performance in Common and Count, and we rejected +Hdirect−interaction for physical demand in these two tasks. +Prepared using sagej.cls + +Common +Count +Compare +Low +1 +High +3 +2D Vis+Mouse +Mental +3D Vis+Mouse +3D Vis+Trackball +3D Vis+VR +2D Vis+Mouse +Physical +3D Vis+Mouse +3DVis+Trackball +3D Vis+VR +2D Vis+Mouse +Temporal +3D Vis+Mouse +3DVis+Trackball +3D Vis+VR +2D Vis+Mouse +Effort +3D Vis+Mouse +3DVis+Trackball +3D Vis+VR +Frustration +2D Vis+Mouse +3DVis+Mouse +3D Vis+Trackball +3D Vis+VR +Low +12 +High +2D Vis+Mouse +3D Vis+Mouse +3D Vis+Trackball +3D Vis+VR +100% 50% 0% 50% 100% 100% 50% 0% 50% 100% 100% 50% 0% 50% 100%9 +Figure 5. Participant rankings of the four conditions from most +to least effective (left) and aesthetic (right) when working with +node-link diagrams in general. Brackets indicate significance for +p < 0.05. +We also reject Hdirect−interaction for Compare more +generally. +In terms of overall rankings, participants ranked 3D +Vis+VR over 2D Vis+Mouse for effectiveness (∗∗). 3D +Vis+VR was also ranked higher than all other conditions for +aesthetics (all ∗∗), allowing us to accept Hdirect−interaction +in the subjective rankings. +In summary, 3D Vis+VR was more accurate than other +conditions in one task, but slower in another task. 3D +Vis+VR demonstrated a reduced working load in perceived +mentally demand, effort, frustration, and performance, but +required more physical movement. Furthermore, we found +3D Vis+VR had a similar performance to 3D Vis+Trackball +in Common and Compare, but subjective ratings revealed +a preference for 3D Vis+VR over 3D Vis+Trackball from +participants in these tasks. We also found that 3D Vis+VR +was clearly not suitable for a task such as Compare. +Qualitative Feedback +We asked participants to give feedback on the pros and +cons of each design. We clustered comments into groups for +each condition. In this subsection, we share representative +feedback along with the number of participants who +mentioned a similar concept. +2D Vis+Mouse: In Common, participants voiced frustra- +tion with occlusion, as it was not always clear whether a link +was connected to a certain node or simply being occluded by +that node on the way to another node. In situations like this, +working with a 2D graph decreased trial accuracy because +there was no way for users to reorient the graph and validate +their answers. As a result, users prioritized their speed over +their accuracy. 2D Vis+Mouse was ranked as one of the worst +conditions for Common. +In Count, participants found 2D Vis+Mouse to be +extremely difficult. The 2D quality of the graph prevented +them from having a clear understanding and mental +picture of the graph’s structure. One user specifically +mentioned “In 2D, it was harder to see the subgraphs +like you can in 3D”. Because these subgraphs represent +potentially important relationships among network elements, +this feedback suggests that 2D graphs may not be ideal for +tasks involving a thorough understanding of a network’s +structure. Another interesting insight from participants was +that the data felt inherently 3D in the Count task, so seeing +it in its 2D form for 2D Vis+Mouse was frustrating and +confusing. One user said, “clearly, this was a 2D image +trying to represent something 3D”, another noted, “You’re +trying to imagine what it might be in 3D”, and yet another +admitted that they “tried to make a 3D figure in [their] head +with the 2D figure”. This was an unexpected result because +we hypothesized that users would already be accustomed to +seeing 2D graphs and therefore counting subgraphs within +them. In reality, user feedback and the nearly unanimous +fourth place ranking among users show that 2D Vis+Mouse +still has serious disadvantages for structure-related tasks. +In Compare, it was surprising to see 2D Vis+Mouse’s +popularity, as we expected it to be the least favored condition +for this task. However, unlike in Count, users noted that they +“approached this problem as a 2D problem”. They likened +the side-by-side graphs to photos or images they needed to +compare, and the most popular strategy was to interact with +the graph as little as possible. +3D Vis+Mouse: In general, 3D Vis+Mouse performed +as expected in rankings and feedback compared to the +other conditions. In Common, the 3D nature of the graph +allowed users to rotate it to check their node selections. As +a result, occlusion was much less of a problem in all 3D +graphs, not just in 3D Vis+Mouse. Almost every participant +mentioned that the mouse was already what they were most +familiar with, so with the added benefit of 3D graphs, they +did not need to think too hard about their answers before +submission. With the newer technology (e.g. trackball and +VR HMD), they constantly needed to remind themselves of +which command performed which function. +In Count, users expressed how much easier it was to +complete the task with a 3D object, but a major difference +between users was whether they found the mouse or +the trackball to be the most intuitive for 3D object/view +manipulation. Many users noted the importance of rotating +the graph for this task as they would if they counted the +faces of a tangible object. For the participants who found the +trackball more intuitive than the mouse, they attributed this +perception to the fact that the movements they made with a +mouse were 2D movements (movements on a flat, 2D plane), +yet the result was a 3D rotation in the graph. +In Compare, a couple of users mentioned that having a +third dimension was not as beneficial or harmful for the task. +Since the predominant strategy was to compare still graphs +instead of interacting with them, the ability to rotate the +graph in 3D was not always needed. Many stated that 3D +Vis+Mouse and 3D Vis+Trackball were comparable in this +task since so little graph interaction was needed. +3D Vis+Trackball: In Common, as well as throughout +all tasks, many users described the experience of using +the trackball as “fluid”. For many participants, the smooth +rotation of the ball in 3D space and the resulting effects on +the digital 3D graph were very intuitive. Users expressed that +they benefited from the impression of tangibly feeling the +3D nature of the graph with the trackball. Along those lines, +users claimed that “you actually feel like you’re spinning +the graph” and “it’s a good approximation for what you’re +trying to do on the screen”. Not all users felt comfortable +using the trackball, though, with many attributing their +qualms to their complete inexperience with such a device and +the fact that they needed to switch between rotation modes +and cursor modes on the trackball. Due to their unfamiliarity, +many users said that they needed to think actively about +Prepared using sagej.cls + +Effectiveness +Aesthetics +20 +Ranking +15 +4th +3rd +10 +2nd +5 +1st +0 +2DVis+ +3DVis+ +3D Vis+ +3DVis+ +2DVis+ +3D Vis+ +3D Vis+ +3DVis+ +Mouse +Mouse +Trackball +VR +Mouse +Mouse +Trackball +VR +IL10 +Journal Title XX(X) +every move they made, making the experience less seamless +compared to that with a mouse. +In Count, many of the limitations of the trackball were +no longer applicable, which accounts for the improvements +in time and accuracy compared to other conditions. One +of the biggest learning curves with trackball is relearning +how to move a cursor. Since users did not need to select +any nodes in this task, they could stay in the trackball’s +rotation mode and only use the cursor to proceed to the next +page. This also helped reduce any confusion from needing +to switch between rotation and cursor modes several times, +as is necessary for the other two tasks. When users could +focus on the rotational function of trackballs that make them +more immersive than a traditional mouse, feedback on the +3D Vis+Trackball condition became more positive. +In Compare, most users felt like 3D Vis+Mouse and 3D +Vis+Trackball were comparable since they did not use much +graph interaction. +Given that it was a new type of input device for most +participants and not quite as exciting as virtual reality, +3D Trackball’s relatively low ranking is in line with +expectations. +3D Vis+VR: User feedback for 3D Vis+VR contained +several +compelling +themes +that +made +this +condition +extremely popular in users’ rankings, with 14 out of 20 users +ranking it first in Common and 16 out of 20 ranking it first in +Count. +In Common, two key themes throughout the feedback were +(1) embodiment and presence, and (2) network tangibility. +Embodiment and presence encompass comments about +feeling immersed in the virtual space and the data. More +than half of the participants mentioned enjoying the ability +to move around and specifically move into the graph, which +gave them a deeper understanding of the network and its +connections. As participants completed tasks in VR, we were +able to see the virtual environment through their point of +view by casting the Oculus Quest 2 headset to a laptop +screen. Unlike in the other three conditions, in 3D Vis+VR +participants had much more freedom to use head and body +movements to complete the tasks, making the screen cast of +their actions in VR even more insightful. What we observed +was that users tended to prefer to stay in place when first +entering the virtual environment and use their two controllers +to pull the visualization toward them and/or pinch-to-zoom +to examine local details. Only then would they begin to +significantly leverage body movements such as moving their +head or walking around or ”through” the visualization to +examine it from slightly different angles. Comments about +movement included: +• “You do the rotations of the object, but you can also +move yourself without having to rotate the entire graph +again. When you rotate a whole object, you have a +whole new object to understand. You can just know an +object in VR and then move around the [object] you +already know.” +• “Moving my head was the most intuitive, even more +so than using the mouse to rotate things.” +• “In the other conditions I just wanted to stick my head +into the graph and when I got to the VR part, I could +actually do that!” +Embodiment ties in with the second theme of network +tangibility, which was often stated as a reason for why 3D +Vis+VR felt so intuitive. Many users felt like completing +this condition was most like manipulating a real, physical +object in “everyday life”, and this perception added to the +immersive feel of VR. +There were several common downsides to 3D Vis+VR +for this task. One was the precision necessary to point and +select a node, which required hand-eye coordination and was +difficult for participants with hand tremors. +In Count, similarly to what we saw with 3D Vis+Trackball, +many of the downsides of 3D Vis+VR were no longer as +applicable because node selection was not necessary. Many +of the themes in this task were the same as those in Common, +but a new theme that stood out was that to some users, 3D +graphs only truly seemed 3D in VR, and 3D graphs on a 2D +screen still seemed inherently 2D. This task encouraged this +observation because many users leveraged head movements +to help them quickly and effortlessly count triangles in +different parts of the graph. This is not possible with a +3D graph on a 2D screen, where every small change in +perspective requires a new click and drag movement. One +user did disagree with this idea and said that the VR and 3D +conditions were all equivalents, and another expressed that +“[t]he VR gets tiring faster. You get drained faster than if +you were using the mouse”. +Finally, in Compare, users strongly disliked 3D Vis+VR. +The most common issue, which nearly every participant +shared, was misaligned perspectives. Because the graphs +were 3D objects, standing in-between them meant that you +were looking at the cluster of nodes and links from slightly +different angles when looking at the left and right graphs. +The graphs themselves looked sufficiently different from +these separate angles. Comparing the two at once proved to +be frustrating and difficult, as seen in the 3D Vis+VR time +and accuracy levels in Figure 3. +Discussion +Summary of the results: which is the winner? We had +mixed results for different tasks. In Common, 3D Vis+Mouse +was overall the best performing condition. It had a similar +time performance to 2D Vis+Mouse and was faster than 3D +Vis+Trackball and 3D Vis+VR. Participants also perceived +3D Vis+Mouse to be more effective than 2D Vis+Mouse. +In Count, 3D Vis+VR overall had the best performance. +Its accuracy was similar to 3D Vis+Trackball’s and was +higher than that of 2D Vis+Mouse and 3D Vis+Mouse. +Subjectively, participants also preferred 3D Vis+VR over 3D +Vis+Trackball. In Compare, 2D Vis+Mouse demonstrated +marginal benefits over other conditions. 3D Vis+VR had +the worst performance, while the other three conditions +performed +similarly +in +terms +of +time +and +accuracy. +2D Vis+Mouse was rated slightly better than the other +two desktop conditions in physical demand, effort, and +frustration. We discuss the potential reasons for all these +findings in the remainder of this section. +Is embodied interaction beneficial? It depends on the +nature of the task. In Common, participants were only +required to investigate a small portion of the network +visualization. Being more embodied did not bring significant +Prepared using sagej.cls + +11 +benefits and in fact likely introduced more overhead. +In Count, participants had to iterate over the entire +graph, which required more intensive interactions and +greater predictability of graph manipulation. This task also +required participants to interpret the complex geometry +of the network to identify all possible triangles. Such a +task is better supported by more embodied conditions, as +participants can more easily observe the network from +different viewing angles. This finding about tasks like +Count aligns with a study by Kotlarek et al.17, which +found that network visualization in VR performed better than +2D network visualization for interpreting network structure. +In Compare, participants were asked to work with two +graphs. For visual comparison, short-term memory plays +an important role. Rendering networks in 3D may result in +more information for participants to memorize. In addition, +viewing two items in any natural 3D environment will +produce perspective distortion as an individual will look +at the items from slightly different angles. This distortion +also exists in VR, and participants noted that it seriously +affected their performance in Compare. In summary, more +embodied conditions are better for tasks that are interaction +intensive and require the users to frequently manipulate +the visualization in order to inspect it from different +perspectives. On the other hand, embodied interaction was +not ideal for tasks that require memorization in our study. +The anticipated effect of embodied interaction has been +reported in many other applications5,18,19, and we now +provide extra empirical knowledge about it within the +context of navigating network visualizations. +Should we use 3D for network visualization? Previous +studies found rendering networks in 3D reduces visual +clutter and better facilitates a user’s ability to complete +visual analytics tasks6–9. We confirmed this finding in +Common and Count. The benefit of 3D was primarily +reflected in participants’ accuracy scores, which were lower +with 2D network visualizations for these two tasks. We +believe that the main reason for lower accuracy with 2D +visualizations was the inevitable node/edge overlaps in +2D visual representations, which introduced ambiguities in +interpreting network connectivity. Notably, such a limitation +with 2D not only existed in visualizing large network data +(as tested in Common with 60 nodes) but also in small data +(as tested in Count with only eight nodes). +In addition, 3D network visualizations allowed partici- +pants to inspect network connectivity from different viewing +angles. The connectivity could be ambiguous from one per- +spective, but participants had the opportunity to inspect and +confirm it from different viewing directions by rotating the +graph. While participants could also zoom in on the overlaps +to inspect visual ambiguities in 2D network visualizations, +zooming in and out made participants lose track of the +context. As a result, they were likely to miss or re-count +certain areas of the graph, which could be one of the reasons +for their low accuracy in 2D. We anticipated that the zooming +interactions in 2D resulted in higher context-switching costs +than rotating in 3D network visualizations. +An alternative way to confirm connectivity within a 2D +network visualization is to allow participants to drag around +the nodes of the graph. However, performing such interaction +would likely increase completion time in our tasks and +possibly also increase perceived task loads. We did not +include this alternative method in 2D Vis+Mouse as we +wanted to focus on navigation interactions. To achieve this +goal, we needed to keep all interactions consistent across +conditions (e.g., just pan&zoom). +Our results demonstrated the limitation of showing +detailed network connectivity with 2D network visualiza- +tions, and future studies are needed to investigate the effect of +providing extra interactions for 2D network visualizations on +overcoming such a limitation. Despite not being efficient in +showing detailed network connectivity, 2D network visual- +ization performed better than 3D ones in Compare. For this +tested task, changing the viewing perspectives in 3D network +visualizations introduced a heavier working memory load, as +participants needed to re-interpret two visualizations every +time after rotating. Thus, we believe 2D network visualiza- +tions had a better performance because they induced less +overhead of this kind. +In summary, we found that both 2D and 3D visualizations +have their own advantages: 3D network visualizations have +the capacity to clearly present detailed network connectivity, +and 2D network visualizations are likely to lower the +working memory load during detailed visual comparison. +Tangibility vs. familiarity. The trackball mouse is designed +to be optimized for ergonomics and accuracy. When used +properly and with familiarity, it allows for smaller, more +precise movements compared to the large, rapid movements +possible with a traditional mouse. In our study, 3D +Vis+Trackball demonstrated some advantages in accuracy +over a traditional mouse in Count, but the trackball mouse +was slower in Common. We believe that participants were +more accurate with a trackball mouse because the intuitive +interaction with the trackball better allowed them to confirm +their answers. +However, the extra interaction introduced more comple- +tion time. Another reason for the longer completion time +could have also been due to unfamiliarity with a trackball +mouse. Although many participants commented that the +trackball mouse made intuitive sense, they reported high +amounts of workload with the trackball. When designing +interactive visualization systems, we should consider the +trade-off between the benefits of tangibility and the issues +with unfamiliarity when using devices such as a track- +ball mouse. Interestingly, while few participants had strong +familiarity with VR devices, the broader participant group +did not rank 3D Vis+VR as requiring a high workload as +they did with the trackball. Consequently, we argue that a +VR HMD is easier and more intuitive to use than a trackball +mouse. +Perspective distortion from stereoscopic vision degrades +the performance of certain tasks. We identified two +potential reasons for the poor performance with 3D Vis+VR +specifically in Compare. First, although the rotation, +position, and scale of the two node-link diagrams were +synchronized, the VR environment allowed for natural +perspective distortion in Compare that prevented the viewer +from effectively comparing the diagrams from the same +viewing angle. The effect of perspective distortion has +been discussed in textbooks46, and we provide preliminary +affirmation in our study. While this may seem like a +limitation, we believe this finding emphasizes an important +Prepared using sagej.cls + +12 +Journal Title XX(X) +aspect and consideration of using virtual reality in certain +contexts. +Secondly, while large display size is generally considered +an advantage, it made Compare more challenging in VR. +Moving too closely to one graph prevented users from +simultaneously seeing the other graph, making comparison +difficult. Alternatively, scaling (“zooming”) in too much on +one graph also scaled the other graph, entangling the graphs +and inhibiting easy comparison. This kind of entanglement +did not happen in our limited desktop display space, where +artificial view boxes helped “crop out” parts of the graph +outside of the boxes. +Conclusion and Future Work +We compared four experimental conditions across three +network analytic tasks with 20 participants in a controlled +user study. We found that there is no condition that can +always outperform other conditions in all tested tasks. +The more embodied conditions are more suitable for +interaction-intensive tasks that require users to constantly +manipulate the visualization. This is because rendering +network visualizations in 3D alleviates the issue of visual +clutter and improves a user’s ability to identify geometric +structures. However, rendering network visualizations in +2D is likely better for tasks involving graph comparison +because it requires less short-term memory usage from users. +Ultimately, our results provide some initial evidence for +empirical knowledge related to the effect of embodiment on +navigating network visualization, as well as some general +guidelines for selecting display and interaction devices when +working with these graphs. +In future studies, we hope to recruit participants with +significant trackball or VR experience to investigate the +effects of device unfamiliarity and novelty, as we recognized +that our participants were far more familiar with the +standard mouse than the trackball mouse or VR HMD. For +example, we will specifically target users in the carpal tunnel +syndrome (CTS) community, as its community members are +used to trackballs to alleviate wrist pain. It also should be +acknowledged that participants might be sensitive to input +settings. Future studies should investigate methodologies to +customize the optimal settings for each participant before +proceeding to the tasks. In addition, due to the difficulty of +comparing two diagrams in VR, we will potentially use an +egocentric design to slant the graphs toward the user in VR +and reduce natural perspective distortion. A similar design +has been considered for arranging small multiples58. We also +intend to test different network layout algorithms and more +interactions (e.g., highlighting, brushing, and filtering) in the +future. +This study is meant as a first assessment of different +commercialized devices. Although we have identified some +benefits of tangible user interfaces for visualization, we only +used simple devices that were widely available. We believe +more sophisticated customized tangible devices could be +more effective for certain types of tasks, such as the ones +in37–39, and those devices could be interesting to test in future +studies. Additionally, the design space of embodiment on +desktop and in VR is huge. We only tested four conditions +that we considered as the most accessible in this study. +Considering the various input and display modalities (e.g., +bare-hand interaction on desktop and mouse interaction in +VR59), there is a need to study the spectrum of embodiment +in more fine-grained levels for more nuanced insights. +Acknowledgements +We would like to thank our reviewers for their valuable comments. +We would also like to thank all of our user study participants for +their time and feedback. This work was partially supported by NSF +grant III-2107328. +References +1. Keim D, Andrienko G, Fekete JD et al. +Visual Analytics: +Definition, Process, and Challenges. In Kerren A, Stasko JT, +Fekete JD et al. (eds.) Information Visualization, volume 4950. +Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. pp. 154– +175. DOI:10.1007/978-3-540-70956-5 7. +2. Cockburn A, Karlson A and Bederson B. +A review of +overview+detail, zooming, and focus+context interfaces. ACM +computing surveys 2009; : 1–31. +3. Dourish P. Where the action is: the foundations of embodied +interaction. 1. mit press paperback ed ed. A Bradford book, +Cambridge, Mass. London: MIT Press, 2004. +4. Marai GE, Forbes AG and Johnson A. +Interdisciplinary +immersive analytics at the electronic visualization laboratory: +Lessons learned and upcoming challenges. In 2016 Workshop +on Immersive Analytics (IA). pp. 54–59. +5. Ens B, Bach B, Cordeil M et al. +Grand Challenges in +Immersive Analytics. +In Proceedings of the 2021 CHI +Conference on Human Factors in Computing Systems. pp. 1– +17. +6. Ware C and Franck G. Viewing a graph in a virtual reality +display is three times as good as a 2d diagram. In Proceedings +of 1994 IEEE Symposium on Visual Languages. pp. 182–183. +7. Ware C and Mitchell P. Reevaluating stereo and motion cues +for visualizing graphs in three dimensions. +In Proceedings +of the 2nd Symposium on Applied Perception in Graphics and +Visualization. APGV ’05, p. 51–58. +8. Ware C and Mitchell P. Visualizing graphs in three dimensions. +ACM Transactions on Applied Perception (TAP) 2008; 5(1): 1– +15. +9. Kwon OH, Muelder C, Lee K et al. +A Study of Layout, +Rendering, and Interaction Methods for Immersive Graph +Visualization. +IEEE Transactions on Visualization and +Computer Graphics 2016; 22(7): 1802–1815. +10. Kraus M, Weiler N, Oelke D et al. The Impact of Immersion +on Cluster Identification Tasks. +IEEE Transactions on +Visualization and Computer Graphics 2020; 26(1): 525–535. +11. Bach B, Sicat R, Beyer J et al. The hologram in my hand: +How effective is interactive exploration of 3d visualizations in +immersive tangible augmented reality? IEEE Transactions on +Visualization and Computer Graphics 2018; 24: 457–467. +12. Yang Y, Dwyer T, Marriott K et al. +Tilt Map: Interactive +Transitions Between Choropleth Map, Prism Map and Bar +Chart in Immersive Environments. +IEEE Transactions on +Visualization and Computer Graphics 2020; : 1–1. +13. Filho JAW, Stuerzlinger W and Nedel L. +Evaluating an +Immersive Space-Time Cube Geovisualization for Intuitive +Trajectory +Data +Exploration. +IEEE +Transactions +on +Visualization and Computer Graphics 2020; 26(1): 514–524. +Prepared using sagej.cls + +13 +14. Lages WS and Bowman DA. +Move the Object or Move +Myself? Walking vs. Manipulation for the Examination of +3D Scientific Data. +Frontiers in ICT 2018; 5: 15. +DOI: +10.3389/fict.2018.00015. +15. Cordeil M, Dwyer T, Klein K et al. Immersive Collaborative +Analysis of Network Connectivity: CAVE-style or Head- +Mounted Display? +IEEE Transactions on Visualization and +Computer Graphics 2017; 23(1): 441–450. +16. Drogemuller A, Cunningham A, Walsh J et al. +Examining +virtual reality navigation techniques for 3D network visuali- +sations. Journal of Computer Languages 2020; 56: 100937. +17. Kotlarek J, Kwon OH, Ma KL et al. +A Study of Mental +Maps in Immersive Network Visualization. +In 2020 IEEE +Pacific Visualization Symposium (PacificVis). Tianjin, China: +IEEE. +ISBN 978-1-72815-697-2, pp. 1–10. +DOI:10.1109/ +PacificVis48177.2020.4722. +18. Besanc¸on L, Ynnerman A, Keefe DF et al. The State of the Art +of Spatial Interfaces for 3D Visualization. Computer Graphics +Forum 2021; 40(1): 293–326. +19. Hand C. A Survey of 3D Interaction Techniques. Computer +Graphics Forum 1997; 16(5): 269–281. +20. Tominski C, Gladisch S, Kister U et al. A survey on interactive +lenses in visualization. In EuroVis (STARs). pp. 1–20. DOI: +10.2312/EUROVISSTAR.20141172. +21. Tominski C, Gladisch S, Kister U et al. +Interactive Lenses +for Visualization: An Extended Survey. Computer Graphics +Forum 2017; 36(6): 173–200. DOI:10.1111/cgf.12871. +22. Yang Y, Cordeil M, Beyer J et al. Embodied Navigation in +Immersive Abstract Data Visualization: Is Overview+Detail or +Zooming Better for 3D Scatterplots? IEEE Transactions on +Visualization and Computer Graphics 2021; 27(2): 1214–1224. +23. LaViola Jr JJ, Kruijff E, McMahan RP et al. 3D user interfaces: +theory and practice. Addison-Wesley Professional, 2017. +24. D´ıaz J, Petit J and Serna M. A survey of graph layout problems. +ACM Computing Surveys 2002; 34(3): 313–356. +25. Tamassia R. Handbook of graph drawing and visualization. +CRC press, 2013. +26. Greffard N, Picarougne F and Kuntz P. +Visual community +detection: An evaluation of 2d, 3d perspective and 3d +stereoscopic displays. In International Symposium on Graph +Drawing. Springer, pp. 215–225. +27. Greffard N, Picarougne F and Kuntz P. Beyond the classical +monoscopic 3d in graph analytics: an experimental study of +the impact of stereoscopy. +In 2014 IEEE VIS International +Workshop on 3DVis (3DVis). IEEE, pp. 19–24. +28. Alper B, Hollerer T, Kuchera-Morin J et al. +Stereoscopic +highlighting: 2d graph visualization on stereo displays. IEEE +Transactions on Visualization and Computer Graphics 2011; +17(12): 2325–2333. +29. Cordeil M, Cunningham A, Dwyer T et al. Imaxes: Immersive +axes as embodied affordances for interactive multivariate data +visualisation. +In Proceedings of the 30th Annual ACM +Symposium on User Interface Software and Technology. UIST +’17. ISBN 9781450349819, p. 71–83. +30. Kraus M, Fuchs J, Sommer B et al. Immersive analytics with +abstract 3d visualizations: A survey. In Computer Graphics +Forum, volume 41. Wiley Online Library, pp. 201–229. +31. Chen M, Mountford SJ and Sellen A. A study in interactive +3-D rotation using 2-D control devices. +ACM SIGGRAPH +Computer Graphics 1988; 22(4): 121–129. +32. Feick M, Bateman S, Tang A et al. Tangi: Tangible Proxies +For Embodied Object Exploration And Manipulation In Virtual +Reality. In 2020 IEEE International Symposium on Mixed and +Augmented Reality (ISMAR). ISBN 978-1-72818-508-8, pp. +195–206. +33. Dinh HQ, Walker N, Hodges LF et al. +Evaluating the +importance of multi-sensory input on memory and the sense of +presence in virtual environments. In Proceedings IEEE Virtual +Reality (Cat. No. 99CB36316). IEEE, pp. 222–228. +34. Hoffman HG. Physically touching virtual objects using tactile +augmentation enhances the realism of virtual environments. In +IEEE VR Annual International Symposium. IEEE, pp. 59–63. +35. Reinhardt D and Hurtienne J. The Impact of Tangible Props on +Gaming Performance and Experience in Gestural Interaction. +In Proceedings of the Twelfth International Conference on +Tangible, Embedded, and Embodied Interaction. ISBN 978- +1-4503-5568-1, pp. 638–646. +36. Besanc¸on L, Issartel P, Ammi M et al. Mouse, Tactile, and +Tangible Input for 3D Manipulation. +In Proceedings of the +Conference on Human Factors in Computing Systems. ISBN +978-1-4503-4655-9, pp. 4727–4740. +37. Englmeier D, Schonewald I, Butz A et al. +Feel the +Globe: Enhancing the Perception of Immersive Spherical +Visualizations with Tangible Proxies. +In 2019 IEEE +Conference on Virtual Reality and 3D User Interfaces (VR). +ISBN 978-1-72811-377-7, pp. 1693–1698. +38. Englmeier D, Dorner J, Butz A et al. A Tangible Spherical +Proxy for Object Manipulation in Augmented Reality. In IEEE +VR. ISBN 978-1-72815-608-8, pp. 221–229. +39. Satriadi KA, Smiley J, Ens B et al. Tangible globes for data +visualisation in augmented reality. +In CHI Conference on +Human Factors in Computing Systems. pp. 1–16. +40. Bowman D, Coquillart S, Froehlich B et al. 3D User Interfaces: +New Directions and Perspectives. IEEE Computer Graphics +and Applications 2008; 28(6): 20–36. +41. Sorger J, Waldner M, Knecht W et al. Immersive analytics of +large dynamic networks via overview and detail navigation. In +2019 IEEE International Conference on Artificial Intelligence +and Virtual Reality (AIVR). IEEE, pp. 144–1447. +42. Sorger J, Arleo A, K´an P et al. Egocentric network exploration +for immersive analytics. +In Computer Graphics Forum, +volume 40. Wiley Online Library, pp. 241–252. +43. Filho JAW, Freitas C and Nedel L. VirtualDesk: A Comfortable +and Efficient Immersive Information Visualization Approach. +Computer Graphics Forum 2018; 37(3): 415–426. +44. Huang YJ, Fujiwara T, Lin YX et al. A gesture system for +graph visualization in virtual reality environments. +In 2017 +IEEE Pacific Visualization Symposium. pp. 41–45. +45. Whitlock M, Smart S and Szafir DA. Graphical perception for +immersive analytics. In 2020 IEEE Conference on VR and 3D +User Interfaces. pp. 616–625. +46. Munzner T. Visualization analysis and design. CRC press, +2014. +47. Marriott K, Schreiber F, Dwyer T et al. Immersive analytics. +Number 11190 in Lecture notes in computer science, 2018. +ISBN 978-3-030-01388-2 978-3-030-01387-5. +48. Microsoft. Mixed reality toolkit, 2021. +49. Hart SG and Staveland LE. +Development of nasa-tlx (task +load index): Results of empirical and theoretical research. In +Advances in psychology, volume 52. Elsevier, 1988. pp. 139– +183. +Prepared using sagej.cls + +14 +Journal Title XX(X) +50. Lee B, Plaisant C, Parr CS et al. Task taxonomy for graph +visualization. +In Proceedings of the 2006 AVI workshop +on BEyond time and errors novel evaluation methods for +information visualization - BELIV ’06. +ISBN 978-1-59593- +562-5, p. 1. +51. Yoghourdjian V, Archambault D, Diehl S et al. Exploring the +limits of complexity: A survey of empirical studies on graph +visualisation. Visual Informatics 2018; 2(4): 264–282. +52. Schulz H, Nocke T, Heitzler M et al. +A Design Space of +Visualization Tasks. IEEE Transactions on Visualization and +Computer Graphics 2013; 19(12): 2366–2375. +53. Holland PW, Laskey KB and Leinhardt S. +Stochastic +blockmodels: First steps. Social Networks 1983; 5(2): 109– +137. +54. Yoghourdjian V, Yang Y, Dwyer T et al. +Scalability of +network visualisation from a cognitive load perspective. IEEE +transactions on visualization and computer graphics 2020; +27(2): 1677–1687. +55. Bates D, M¨achler M, Bolker B et al. +Fitting linear mixed- +effects models using lme4. +Journal of Statistical Software +2015; 67(1). DOI:10.18637/jss.v067.i01. +56. Field A, Miles J and Field Z. Discovering statistics using R. +Sage publications, 2012. +57. Lenth RV. +Least-squares means: The R Package lsmeans. +Journal of Statistical Software 2016; 69(1). DOI:10.18637/jss. +v069.i01. +58. Liu J, Prouzeau A, Ens B et al. +Design and Evaluation of +Interactive Small Multiples Data Visualisation in Immersive +Spaces. In 2020 IEEE Conference on Virtual Reality and 3D +User Interfaces (VR). ISBN 978-1-72815-608-8, pp. 588–597. +59. Zhou Q, Fitzmaurice G and Anderson F. +In-depth mouse: +Integrating desktop mouse into virtual reality. +In CHI +Conference on Human Factors in Computing Systems. pp. 1– +17. +Prepared using sagej.cls + diff --git a/h9FJT4oBgHgl3EQfWSwL/content/tmp_files/load_file.txt b/h9FJT4oBgHgl3EQfWSwL/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d2bbc9357cd0536bfff11ef19147b01b1fd8769b --- /dev/null +++ b/h9FJT4oBgHgl3EQfWSwL/content/tmp_files/load_file.txt @@ -0,0 +1,988 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf,len=987 +page_content='Is Embodied Interaction Beneficial?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A Study on Navigating Network Visualizations Journal Title XX(X):1–14 ©The Author(s) 2016 Reprints and permission: sagepub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='uk/journalsPermissions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='nav DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1177/ToBeAssigned www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='sagepub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='com/ SAGE Helen H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Huang1, Hanspeter Pfister1, and Yalong Yang2 Abstract Network visualizations are commonly used to analyze relationships in various contexts, such as social, biological, and geographical interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To efficiently explore a network visualization, the user needs to quickly navigate to different parts of the network and analyze local details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Recent advancements in display and interaction technologies inspire new visions for improved visualization and interaction design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Past research into network design has identified some key benefits to visualizing networks in 3D versus 2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, little work has been done to study the impact of varying levels of embodied interaction on network analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We present a controlled user study that compared four network visualization environments featuring conditions and hardware that leveraged different amounts of embodiment and visual perception ranging from a 2D visualization desktop environment with a standard mouse to a 3D visualization virtual reality environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We measured the accuracy, speed, perceived workload, and preferences of 20 participants as they completed three network analytic tasks, each of which required unique navigation and substantial effort to complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For the task that required participants to iterate over the entire visualization rather than focus on a specific area, we found that participants were more accurate using a VR HMD and a trackball mouse than conventional desktop settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' From a workload perspective, VR was generally considered the least mentally demanding and least frustrating to use in two of our three tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' It was also preferred and ranked as the most effective and visually appealing condition overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, using VR to compare two side-by-side networks was difficult, and it was similar to or slower than other conditions in two of the three tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Overall, the accuracy and workload advantages of conditions with greater embodiment in specific tasks suggest promising opportunities to create more effective environments in which to analyze network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Keywords virtual reality, immersive analytics, interaction, navigation, embodiment, node-link diagram, network visualization Introduction The ability to navigate to different parts of a visualization is an essential component of visual data analytics1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Navi- gation techniques for visualizations have been extensively studied in the visualization and human-computer interaction communities, mainly for visualizations on flat 2D screens2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In those traditional computing setups, most analysts use a mouse as an input device to pan around the visualization and zoom in and out to check details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' More recent display and interaction devices allow us to navigate visualizations in more interactive and embodied ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' These newer combina- tions of displays and devices can bring potential benefits such as reduced cognitive load because they enable greater direct navigation and reorientation of the visualization 3, which we will refer to as graph “manipulation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' There is growing interest in using immersive environments (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', virtual and augmented reality, or VR/AR) for data visualization4,5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Two motivations are often reported for the use of immersive visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' First, we can render stereoscopic 3D visualizations in VR/AR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' While some data visualizations such as pie charts are negatively impacted using 3D, others such as network visualizations see advantages including reduced visual clutter6–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Second, we can perform direct, embodied manipulation in VR/AR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' When using the typical mouse and 2D screen, the physical interaction space is separated from the digital display space, meaning a user must manipulate a tangible, physical device to interact with the intangible digital graphics on the screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, in VR/AR, the interaction and display space are the same physical space, potentially reducing cognitive load by removing the cost of context-switching between physical and digital spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The benefits of using 3D visualizations over 2D ones have been well studied, with existing research finding that scatterplots10,11, network visualizations9, and some geographic visualizations12,13 are more effective in 3D than in 2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Conversely, the benefit of direct manipulation and greater embodiment in VR/AR has been less explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' There are two studies that are most relevant to our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In one study, Bach et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='11 also compared a spectrum of experimental conditions including desktop, tablet AR, and HoloLense conditions, with a focus on 3D scatterplots 1John A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Paulson School of Engineering and Applied Sciences, Harvard University, USA 2Department of Computer Science, Virginia Tech, USA Corresponding author: Yalong Yang, Immersion & Visualization Lab, Department of Computer Science, Virginia Tech, Blacksburg, VA, 24060, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Email: yalongyang@vt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='edu Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls [Version: 2017/01/17 v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='20] arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='11516v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='HC] 27 Jan 2023 2 Journal Title XX(X) Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tested conditions in our user study with key characteristics: (a) 2D network visualization displayed on a 2D screen with a standard mouse, (b) 3D network visualization on a 2D screen with a standard mouse, (c) 3D network visualization on a 2D screen with a trackball mouse, (d) 3D network visualization in virtual reality with hand-held controllers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' rather than networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, their tasks only involved mark-based interactions, which are less intuitive than embodied interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In another study, Kraus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='10 again compared 3D scatterplots on a 2D screen to those in VR environments with different sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, participants could only move around the visualization in VR and were not able to manipulate the visualizations in an embodied way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' While physical movement is a way to navigate around a visualization in an immersive environment, it introduces more physical workload and is restrained by the physical space available14, so relying solely on movement to navigate a visualization may not be ideal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Both of these studies lacked the element of embodied interaction, which allows for direct manipulation of objects and provides a more intuitive, life-like experience while reducing the physical movement involved in analyzing a visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To fill this gap, we studied the effect of embodied interaction through different display and interaction devices on navigating network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We were interested in how different commercialized devices offer graph visualization manipulation and how their different capabilities influence people’s performance in visualization navigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Specifically, we compared four conditions in a controlled user study (see Figure 1): 2D and 3D network visualizations with a standard mouse, 3D network visualization with a trackball mouse, and 3D visualizations with a VR head-mounted display (HMD) and corresponding controllers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' While there was little embodiment difference between the two conditions using a standard mouse, the trackball mouse had more embodiment than a standard mouse because the physical trackball acted as a tangible direct proxy for the 3D visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Rotating the trackball provided a closer match between the 3D interaction and the 3D display space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The VR environment had even more embodiment, as users could directly manipulate visualizations using 6D tracked controllers (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', 3D position and 3D rotation) similarly to manipulating real-life objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We chose network visualizations as the data visualization to study because they require a significant amount of navigation effort in many analytic tasks and have been less studied with different interaction and display devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In our study we asked 20 participants to complete the following three fundamental analytic tasks we derived from related work6–9,15–17 and widely-accepted visualization task taxonomies10,11,18,19: (1) identify the common nodes between two nodes in a visualization (Common), (2) count the number of triangles in a visualization (Count), and (3) compare two network visualizations (Compare).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In each task, we measured the accuracy, speed, perceived workload, and preferences of the participant, and we found that using a trackball mouse and VR HMD was more accurate in Count but required more time than a standard mouse in Common.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In addition, participants struggled in VR when comparing two side-by-side network visualizations, resulting in long completion times and low accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' From a workload perspective, participants found 3D network visualization to be less mentally demanding and frustrating when compared to 2D alternatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants found the trackball mouse to be more mentally and physically demanding than a standard mouse, and VR was generally considered to be the least mentally demanding and frustrating for Common and Count, though the opposite was true for Compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' After collecting participant preferences on the aesthetics and effectiveness of the different conditions, we found that participants ranked the typical desktop set up with a standard mouse and 2D network visualization to be the least visually appealing and effective, while participants ranked VR to be the overall most effective and aesthetically pleasing condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The combination of all our results suggests that design and interaction improvements can be made to the way modern network visualization analysis is conducted to help analysts better navigate network diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Related Work Visualization navigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To efficiently explore a visualiza- tion, the user must be able to easily navigate to different parts of the visualization and inspect local details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Several inter- action approaches such as focus+context, overview+detail, and pan&zoom have emerged to support visualization navi- gation, and they have been extensively studied for 2D visual- izations2,20,21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Conversely, interaction approaches with more immersive visualizations have been less widely explored, though some work in this area has indeed been done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='22 compared overview+detail and pan&zoom interfaces for 3D scatterplots in VR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Although they did not come to a conclusion on which condition performed better, they did find that participants preferred the pan&zoom interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Similarly, Drogemuller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='16 compared three locomotion methods and the overview+detail (or Worlds-In- Miniature) techniques for network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, they only considered room-sized visualizations in VR, which are uncommon in current visual analytics workflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Lages and Bowman14 studied more realistic analytics conditions by comparing the effectiveness between manipulating a Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls Low Embodiment High Embodiment (a) 2D Vis+Mouse (b) 3D Vis+Mouse (c) 3D Vis+Trackball (d) 3D Vis+VR 十 2 DOF + 2 DOF 圣 3 DOF 6DOF X Body Mvmt X Body Mvmt X Body Mvmt Body Mvmt X Stereoscopic X Stereoscopic X Stereoscopic Stereoscopic X Tangibility V Tangibility Tangibility X Tangibility 2D Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Dimension 3D Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Dimension 3D Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Dimension 3D Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Dimension3 visualization and moving around a visualization, and they found that some participants performed better by manipu- lating the graph view than physically moving around the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Walking is one of several primary ways that 3D User Interfaces (3DUI) and Virtual Reality have allowed users to navigate and move through 3D immersive space, as classified by Laviola et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We chose to use the pan&zoom manipulation technique for two main reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' First, it is a more widely used navigation method and is seen in software such as Google Maps and digital image viewers, lowering the barrier to using it in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Second, the pan&zoom technique can be similarly replicated across the different devices used in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Using a more intuitive and familiar navigation technique allowed participants’ performance to be more directly impacted by the level of embodiment provided by the devices in our four conditions, rather than by any difficulty with understanding a new navigation method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 2D, 3D, and immersive network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Node- link diagrams are the most common and intuitive methods of displaying network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Researchers have extensively studied different layout algorithms for creating node-link diagrams24,25, and force-directed layouts are one of the most widely used methods due to their simple implementation and their mitigation of link crossings within a network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' As a result, we used a force-directed layout to produce the node-link diagrams for our user study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Despite the mitigated link crossings in a force-directed layout, 2D node-link diagrams in a limited display space such as a computer screen can result in visual clutter that makes it difficult for the viewer to perceive information effectively8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' On the other hand, with one extra dimension, visualizing networks in 3D has the potential to address or at least alleviate this issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A series of user studies has confirmed the advantages of 3D over 2D displays in displaying node- link diagrams, with the most representative studies being from Ware et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='6–8, Greffard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='26,27 and Alper et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, due to the occlusion and perspective distortion found in 3D visualizations, it is essential that users can easily change their viewing position and direction while intuitively manipulate the digital graph view5,8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In VR, Kwon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='9 implemented an egocentric layout to show networks with clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' With this layout, they found network visualizations performed better in VR than on a 2D screen, especially with difficult tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Cordeil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='29 compared network visualization in VR and on a CAVE screen for collaborative analysis, where they found VR had advantages in completion time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Kotlarek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='17 compared 3D immersive network visualizations with their 2D desktop alternatives and found that VR contributed to better interpretation of the network structure, while 2D resulted in better spatial memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, in those studies, participants could not manipulate their views, which is considered an important feature for immersive visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Those studies also only considered the comparison between a limited number of devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Kraus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='30 provided a comprehensive review of visualizations in immersive environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Specifically, as they pointed out, there is a large design space to explore for immersive network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To expand on all this existing research, we designed our study to focus on the effect of embodied view manipulation on graph navigation, and we compared four computing environments that cover a wider range of the embodiment spectrum than devices used in other studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D interactions with a standard mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Interacting with 2D visualizations has traditionally involved using a mouse to point, select, and manipulate the view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, when interacting with 3D visualizations, using a standard mouse poses an issue due to the mouse’s limited DOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='31 used a standard mouse to compare different 3D interaction methods and found that the “virtual sphere” method performed best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' It simulates a 3D Vis+Trackball by encasing the 3D view in an invisible sphere that a standard mouse can then drag to rotate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The “virtual sphere” method (also known as orbit control) has been widely used in commercial applications such as CAD and was thus used in our study (Figure 1(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Of note, though, is that extra mental effort is expected to map 2D Vis+Mouse movements to a 3D virtual sphere due to the inconsistency in DOF between the input device and digital object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tangible proxies for 3D interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tangible 3D input devices can reduce the additional mental effort of a 2D Vis+Mouse and better facilitate 3D interaction than 3D Vis+Mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Various studies have confirmed the benefits of using 3D input devices as physical proxies32–38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Meanwhile, Hand19 and Besanc¸on et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='18 provided comprehensive reviews of such 3D devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, many tangible 3D input devices (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', those ones in37–39) are customized for studies and not easily accessible to ordinary users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Thus, in our study, we chose to test a broadly available trackball mouse as our proxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' While the interaction is similar to that of the “virtual sphere”, the trackball mouse differs from a standard mouse by providing a tangible 3D ball (instead of a virtual ball) that rotates the 3D object on the screen exactly how the physical trackball in a user’s hand rotates (Figure 1(c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The 3D Vis+Trackball condition increases embodiment over the 3D Vis+Mouse condition by directly mapping 3D interactions to 3D views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, the interaction space (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', the desk’s surface) is still spatially separated from the display space (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', the screen), which introduces some extra cognitive load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Immersive VR interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Commercial VR head- mounted displays (HMDs) provide a fully immersive experience at an affordable cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' They allow the user to see stereoscopic 3D views and to manipulate them with 6-DOF hand-held controllers (see Figure 1(d)), which most closely follows the “what you do is what happens” paradigm40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Specific to immersive node-link diagrams, Sorger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' explored interactions to study egocentric views of network visualizations41,42 and Drogemuller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='16 studied different locomotion methods for navigating immersive network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, their studies did not directly compare immersive environments to other computing environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Meanwhile, some studies have found benefits to using VR over the conventional 2D Vis+Mouse display environments with different visualizations such as scatterplots10,11,43, network visualization9,44, space-time cubes13, and visual channels45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' As far as we know, though, no study has compared VR to a condition with a 3D input device on a 2D display (our 3D Vis+Trackball condition) for network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls 4 Journal Title XX(X) Rationale And Experimental Conditions Initially, the use of 3D for visualizations was not commonly appreciated in the literature46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, a series of more recent studies have provided empirical evidence for the benefits of 3D over 2D, especially with improving display and interaction technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' As pointed out by Marriott et al47: “it is time to reconsider the value of 3D for information visualization.” So, based on previous work, we used 3D network visualizations in three of our testing conditions, namely 3D Vis with a mouse (3D Vis+Mouse), a trackball mouse (3D Vis+Trackball), and VR (3D Vis+VR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' By comparing these three different environments, we aimed to investigate the effect of different levels of embodiment (in terms of display and device) on navigating a network visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Notably, we also included a condition using 2D network visualization to both confirm the benefits of using 3D visualizations over 2D ones in our tasks and enrich empirical knowledge of the comparisons between 2D and 3D network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To systematically investigate embodiment, we reviewed previous studies6–9,15 and taxonomies on visualization inter- action10,11,18,19, and identified five fine-grained properties of embodiment: Visualization Dimension—whether the network visual- izations are rendered in 2D or 3D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' DOF (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', Degree of Freedom)—the extent of the input device’s rotational and translational freedom of movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Body Movement—whether the user could leverage body movement to change view point and direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Stereoscopy—whether the display enabled a stable depth perception of head-tracking stereoscopic visuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tangibility—whether the user could tangibly interact with the visualization either through a physical proxy of the visualization or a 3D virtual representation of it as if touching the visualization itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tangibility using a proxy would be considered a weaker form of tangibility than tangibility using virtual reality controllers to manipulate a graph view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Testing the effect of every single property was not feasible, as it would result in too many conditions for participants in the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, using these five properties, we imagined a general spectrum of environments with varying levels of embodiment based on the number of properties they encapsulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Environments with more limited DOF, less body movement, no stereoscopy, less tangibility, and only 2D visualizations were considered to give the user low embodiment whereas environments that allowed for more DOF, greater body movement involvement, stereoscopy, more tangibility, and that featured 3D visualizations were considered more embodied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To most reasonably decide on the environments along the spectrum we would use for the study, we decided to follow Bach et al.’s strategy11 and chose easily accessible hardware environments with different numbers of the five properties and therefore different levels of embodiment ( Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' One of our key goals for this project was to conduct research that could be applicable to the general public, which is why we emphasized the importance of choosing accessible hardware devices even if they were located at intervals along the spectrum of environments that were not exactly equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The following were our four computing environments: 2D Vis+Mouse: used a standard mouse with 2 DOF as the input device and a 2D monitor to render the visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The network visualizations were rendered in 2D and participants used the mouse to pan&zoom with the views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To pan, the user could left-click and drag the visualization around the screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To zoom, they would use the scroll wheel on the mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+Mouse: used the same setup as 2D Vis+Mouse but rendered 3D network visualizations rather than 2D diagrams and used the aforementioned “virtual sphere” method31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Left-click and drag were used to rotate the 3D visualization while right-click and drag would pan the visualization around the screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To zoom, the user would still use the scroll wheel like in 2D Vis+Mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+Trackball: used a 2D monitor to render 3D network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Instead of using a traditional computer mouse, 3D Vis+Trackball used a trackball mouse that was a stationary device with a physical ball that a user rotated with their hand, allowing for 3-DOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+Trackball featured two modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Cursor mode was the default mode and allowed users to rotate the physical trackball to move the cursor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Upon a left click, the trackball would enter rotation mode, where rotating the trackball rotated the 3D graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To zoom, the user used the trackball mouse’s scroll ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+VR: used a head-mounted display (HMD) to render stereoscopic 3D visuals and two hand-held VR controllers to provide direct, 6-DOF manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Users could use the controllers to grab, move, and reorient the visualizations to find the desired information by pointing both controllers at the visualization, pressing the trigger buttons on the front of the controllers, and moving their hands in the same logical direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To zoom, we used the built-in zoom implementation from the MRTK package48, which contains a standard zoom implementation used in many other commercial and open-source platforms, such as SteamVR, Oculus, and VRTK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants could not only pinch-to-zoom the graph by grabbing two parts of the graph and moving both hands closer or farther apart while holding the triggers, but they could also bring the visualizations closer to themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To make solution selections, participants could use the trigger on one controller to select a node while hovering over it (for Common and Compare).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In addition to manipulating the graph view, participants could freely move around the diagram to effectively inspect different parts of the visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' One major difference between this condition and the other conditions on the desktop was the view box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' While the view boxes of the graphs in the desktop environments occupied almost the entire screen, they were still limited by the size of the screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' As a result, parts of the graph would not be seen if the user zoomed in closely on other areas of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This characteristic was much less obvious in the VR environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Despite still having graphs rendered in a specific bounding box area in the virtual environment, the VR environment allowed the entire virtual space around the user to essentially become the “screen”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Consequently, users could enlarge the graph to be much closer and bigger without “cutting off” any parts of it within the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, there was Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls 5 still a view limitation within VR known as the field of view (FOV) of the VR headset, which is a concept that represents the amount of a virtual world a user can see at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For the Oculus Quest 2, the FOV is 89 degrees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' So, even though the entire graph in VR could be seen if the user moved their head, unlike on a computer screen, only parts of the graph would be visible at once to a user if the graph were too close in the virtual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We decided not to include explicit view boxes in 3D Vis+VR like on the computer screen to allow users to experience the natural differences between using VR and desktop environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Other Design Choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We used a standard force-directed layout algorithm implemented in d3js* and its extension† to calculate the node positions for all network visualizations, both in 2D and 3D, given the popularity and wide use of this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We used the default option from the algorithms to render the starting perspectives of the 3D node-link diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We also used a standard white HTML background for conditions in the desktop environments and the default MRTK48 scene in the virtual reality environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In addition, we considered other interesting design areas related to the idea of controllers versus gestures, haptics, and manipulation versus movement, to name a few.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In the end, our decisions to use controllers, not implement input device haptics, and allow for movement were all based on precedent work we studied, a desire to create the most seamless user experience (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' VR HMDs are more sensitive to controller actions than gestures), and our goal of using conditions that are generally more accessible to the general public (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' devices using haptics are not as widely available as commercial HMDs without haptics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' User Study Design In this section, we explain the details of our setup, participants, procedure, tasks, data generation, measures, and hypotheses of our controlled user study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Experimental Setup 2D Vis+Mouse, 3D Vis+Mouse, and 3D Vis+Trackball used a 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='8” 2D flat screen with a resolution of 2560×1440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 2D Vis+Mouse and 3D Vis+Mouse used a standard mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+Trackball used a Kensington orbit trackball mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+VR used an Oculus Quest 2 HMD with a resolution of 1832×1920 per eye paired with its two hand-held controllers as input devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To reduce the complexity and avoid the potential confounding effect, sensitivity settings were fixed for all devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants were not given the option to customize input device sensitivity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', mouse speed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants We recruited 20 participants, 12 male and eight female, through university mailing lists to complete the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' All 20 were undergraduate students from a wide range of STEM and non-STEM majors, with 6 participants majoring in Computer Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' All participants were between 18 and 24 years old, and all had either normal or corrected-to-normal vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Regarding experience with a mouse, all but one participant noted significant experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The one participant without significant mouse experience indicated between 0 and 10 hours of lifetime mouse use and primarily used a laptop touchpad instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Regarding trackball experience, 16 participants had never used a trackball before, two had used one for fewer than ten hours, and two used a trackball either daily or for at least more than 20 hours in their lifetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Regarding VR experience, four participants had never used a VR HMD before, 15 had used it for fewer than ten hours and sometimes only in the context of basic Google Cardboard devices, and one had used VR between ten and 20 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Procedure The experiment followed a within-subject design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We used a Latin square design to determine the order of the conditions each user would use to complete the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This was done to mitigate learning effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Each participant completed 24 study trials: 4 conditions × 3 tasks × 2 study trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Each participant also completed the same number of training trials to ensure they understood the task and were familiar with the conditions before conducting the study trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The study was conducted in-person and took on average two hours per participant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We compensated each participant with a $20 gift card.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To begin the study, participants were given a brief introduction to the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' They were then asked to complete the tasks in the order of Common, Count, and Compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For each task, participants were first presented two practice trials to ensure that they were familiar with the visualization, interaction, and task before being given their two official study trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' When introduced to new conditions, participants completed a short training session that explained and demonstrated the device setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' After each task, participants filled out a survey adapted from NASA’s Task Load Index49 to rate the four conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We also asked participants to provide verbal feedback highlighting the positives and negatives associated with each condition for that task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' After completing all three tasks, participants completed a post-study survey where they ranked the conditions overall for effectiveness and aesthetics and provided demographic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Conducting in-person user studies and recruiting partici- pants during the pandemic was extremely challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We strictly followed COVID-19 policies to ensure participants’ and investigators’ safety, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', we ensured a two-hour gap between sessions and sanitized all devices before and after each session.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tasks and Data To better understand the effect of embodiment, we selected our Common, Count, and Compare tasks because they required substantial interaction effort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We referenced the network visualization task taxonomy by Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='50 and relevant user studies9,15–17,51 to choose these three representative tasks, which follow the design space of visualization tasks by Schulz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='52 to cover targets in different levels of detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ∗https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='com/d3/d3-force †https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='com/vasturiano/d3-force-3d Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls 6 Journal Title XX(X) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Users performed three different graph tasks in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' (a) Find the common nodes between two highlighted nodes, (b) count the number of triangles in a graph, (c) find the missing nodes between two side-by-side graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Above are examples of 3D graphs used in each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We now describe the details of our three chosen tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' All study stimuli are also included in the supplementary materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Common: Find the common node neighbors between two highlighted nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This task investigated the ability of different testing conditions to enable participants to closely explore a given part of the node-link diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants first had to navigate to the part of the network visualization with the two highlighted nodes, then identify the nodes that were linked to (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' common to and neighbors with) both highlighted nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This is a common connection topology task and has been used by Kwon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In more detail, when participants began each trial for this task, the internal timer (invisible to the participants) would start and participants would be shown a network visualization with two of its nodes highlighted blue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants needed to find the nodes that were connected to both highlighted nodes and click them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' After clicking on a node, the node would turn red and would be considered part of the participant’s answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' If participants changed their minds, they could click on the node again to return it to its original color and remove it from their final answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' When they were sure of their selections, participants would then click a ”Done” button on the page which would lock in their selections, stop the internal timer, and move them to the next page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Given the density of nodes, this task required participants to exert effort zooming in on the area with the two highlighted nodes and rotating the graph (when applicable) to identify neighbors and confirm assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Each study trial had 60 nodes separated into three even-sized clusters, with two to three common nodes per trial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The probability that a link existed between two nodes was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2 within a cluster and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='05 between clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Count: Count the number of triangles in a network visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Users were asked to count all triangles formed by the nodes and links in a visualization, which targeted the importance of finding cliques or strongly connected components in a network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This task investigated both navigation and spatial memory capabilities offered by the different testing conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Drogemuller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='16 and Cordeil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='15 used this task in their user studies as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Here, participants needed to iterate over the entire network visualization and identify each triangle without double counting the same triangle from different angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Once they were certain of the number, they would click an “input number” button on the page that would stop the internal timer and move them to a new page, which removed the visualization and displayed only a number slider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Using the slider, participants would indicate the number of triangles they counted and then click another button to submit their answer, without the time taken to use the slider counted toward their completion time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In terms of the effort needed for this task, Count required participants to exert effort when dynamically rotating the diagram in smooth and logical ways to properly count every triangle in the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Each study trial had eight nodes in one cluster with either 15 or 17 links between nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We also controlled the number of triangles within the range of six to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Our internal test revealed significant mental and physical fatigue for any larger or more complex network for this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Compare: Find the missing nodes between two side- by-side network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants were given two identical network visualizations but with four nodes and their Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls Common Count Compare 2D Vis+Mouse 3D Vis+Mouse / 3D Vis+Trackball 3D Vis+VR7 corresponding links removed in the right one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Their task was to identify the missing nodes in the left visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This task required participants to fully inspect the information of two node-link diagrams and was used by Kotlarek et al17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' More specifically, users saw two diagrams placed side- by-side where the rotation, position, and scale (or zoom level) of these two diagrams were synchronized such that manipulating the left diagram would cause the same manipulation of the right diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Same as in the Common task, participants clicked on a node to select or unselect it as one of their answers, and clicking the node changed the node color from its original black color to red or from red back to black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Once participants were satisfied with their choices, they clicked a “Done” button on the page to submit their selections and stop the internal timer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Given the density of nodes, we initially believed this task required participants to exert effort zooming in on and rotating the graphs (when applicable) to find missing nodes and links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Each study trial had 100 nodes roughly separated into 3 even-sized clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The probability that a link existed between two nodes was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='12 within a cluster and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='02 between clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To generate realistic data throughout all of our tasks, we used the stochastic block model53 to create network data with clusters, which are ubiquitous in social, biological, and geographical applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' During data generation, we pre- determined the number of nodes, the number of clusters, and the probability that a link would exist between any two nodes in the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We conducted multiple internal tests to determine the optimal combination of node and link probabilities, taking into account the cognitive load burden for network visualizations54 and the benefits of stereo and motion cues on acceptable data size7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Measures We measured time from the instance the visualization was fully rendered to when the internal timer would stop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We measured accuracy by dividing the number of correct responses by the total number of trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We measured workload by using an adapted version of NASA’s Task Load Index49 to rate the four conditions in the areas of mental demand, physical demand, temporal demand, overall effort, frustration, and perceived personal performance for each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The subjective ratings were recorded on a Likert 7-point scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Finally, at the end of the study, participants were asked to rank the conditions in terms of overall effectiveness and general aesthetics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Hypotheses We developed our hypotheses based on our literature survey and our analysis of the four testing environments along the five main dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' H2D−3D−V is: By comparing 2D Vis+Mouse and 3D Vis+Mouse, we wanted to confirm the benefits of using 3D for network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' These two conditions share the same display and interaction devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The only distinction is the dimension of visualization rendered on the screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We expected 3D Vis+Mouse to outperform 2D Vis+Mouse, as rendering network visualizations in 3D may reduce visual clutter to allow users to navigate to targets more effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Htangibility: By comparing 3D Vis+Mouse and 3D Vis+Trackball, we wanted to verify the benefits of tangibility in navigating network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The only difference between the two conditions is whether the condition provides tangible interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We expected 3D Vis+Trackball to outperform 3D Vis+Mouse because, with a physical proxy, trackball users can more intuitively map their desired 3D rotations in digital space to the real 3D movement of their physical trackball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Since a standard mouse lacks this functionality, it requires higher context-switching costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Hdirect−interaction: By comparing 3D Vis+VR to other conditions, we wanted to identify whether there were real benefits to using direct interaction in VR, which was our most embodied condition in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We expected 3D Vis+VR to outperform other conditions because with stereoscopic vision and 6DOF tracked controllers, users had an identical display and interaction space that could allow them to directly manipulate 3D objects in their view and possibly increase their efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Results We used linear mixed-effect modeling55 on the logarithmic transformation of completion time, which we found to meet the normality assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Compared to repeated measure ANOVA, linear mixed modeling is capable of modeling more than two levels of independent variables and does not have the constraint of sphericity56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We modeled all independent variables and their interactions as fixed effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A within-subject design with random intercepts was used for all models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We evaluated the significance of the inclusion of an independent variable or interaction terms using a log-likelihood ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We then performed Tukey’s HSD post-hoc tests for pairwise comparisons using the least square means57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We used predicted vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' residual and Q—Q plots to graphically evaluate the homoscedasticity and normality of the Pearson residuals respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For accuracy, ratings, and rankings that did meet the normality assumption, we used a Friedman test to evaluate the effect of the independent variable, as well as a Wilcoxon-Nemenyi-McDonald-Thompson test for pairwise comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Significance values are reported for p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='05(∗), p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='01(∗∗), and p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='001(∗ ∗ ∗), respectively, abbreviated by the number of stars in parentheses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Results for time and accuracy are shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Figure 4 presents participants’ task load index responses, and Figure 5 demonstrates participants’ overall effectiveness and aesthetics ranking of the four conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We report on the rejections and acceptances of our hypotheses in each task and share the feedback from our participants for each condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' All detailed statistical results are presented in a supplementary document.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 2D vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D network visualizations We did not find significant differences between 2D Vis+Mouse and 3D Vis+Mouse in time and accuracy for all three tested tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+Mouse (82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5%, CI=14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2% in Common and 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5%, CI=13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1% in Count) tended to be more accurate than 2D Vis+Mouse (62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5%, CI=18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3% in Common and 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5%, CI=12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='0% in Count), but not by a statistically significant amount.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Since 2D Vis+Mouse Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls 8 Journal Title XX(X) % 0 % 25 % 50 % 75 % 100 Accuracy (%) Common Count % 0 % 25 % 50 % 75 % 100 Accuracy (%) Compare % 0 % 25 % 50 % 75 % 100 Accuracy (%) 0 25 50 75 100 Time (s) 0 25 50 75 100 Time (s) 0 100 200 300 Time (s) 2D Vis+Mouse 3D Vis+Mouse 3D Vis+Trackball 3D VIS+VR Accuracy (percentage): Time (seconds) shows A was significantly more accurate/faster than B, with A B ������������ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='05 ≤ ������������ ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Results for time (seconds) and accuracy (percent average) by task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Error bars are for 95% confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' and 3D Vis+Mouse had similar performance, we rejected H2D−3D−V is in terms of time and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In terms of workload, participants found that 2D Vis+Mouse required more effort (∗ in Common and ∗∗ in Count) and resulted in more frustration (∗ in Common and ∗∗ in Count) compared to 3D Vis+Mouse in Common and Count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants also felt more mental demand in 2D Vis+Mouse than in 3D Vis+Mouse for Count (∗∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Since participants rated 3D Vis+Mouse to be subjectively more effective in some perspectives, we accepted H2D−3D−V is in task load index ratings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For overall perceptual rankings, participants ranked 3D Vis+Mouse over 2D Vis+Mouse for effectiveness (∗∗) and aesthetics (∗ ∗ ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Thus, we accepted H2D−3D−V is in the subjective rankings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In summary, our quantitative results show a similar performance between 2D Vis+Mouse and 3D Vis+Mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However subjectively, participants found that 3D Vis+Mouse required less workload compared to 2D Vis+Mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The effect of tangibility Again, we defined tangibility as the environment’s ability to allow the user to more naturally “touch” or manipulate the visualization, whether in the form of a physical proxy or a 3D virtual representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We found that 3D Vis+Trackball (57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5%, CI=10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='0%) was marginally more accurate than 3D Vis+Mouse (32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5%, CI=13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1%) in Count (p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1), but that 3D Vis+Mouse (50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1s, CI=10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5s) was faster than 3D Vis+Trackball (59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5s, 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1s) in Common.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' As a result, for these quantitative measures, we only accepted Htangibility in Count and rejected it for other tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Workload-wise, participants found 3D Vis+Trackball to be more mentally demanding (∗) and requiring of more effort than 3D Vis+Mouse (∗∗) in Common.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+Trackball was also reported to need more effort in Compare (∗∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Thus, we rejected Htangibility according to these task load index ratings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The overall rankings did not reveal any significant difference between 3D Vis+Trackball and 3D Vis+Mouse, so we rejected Htangibility in rankings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In summary, we found that 3D Vis+Trackball was more accurate in one task but slower in another task, and it Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Ratings indicated by participants on a 7-point Likert scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The bars represent the distribution of scores across all subcategories, and bars closer to the left represent lower workload in the green to pink series, while bars closer to the left represent lower success in the red to blue series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Brackets indicate significances for p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' generally required a higher workload compared to 3D Vis+Mouse as reported by users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Is direct interaction beneficial?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We found that 3D Vis+VR (62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5%, CI=14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='6%) was more accurate than 3D Vis+Mouse (∗, 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5%, CI=13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1%) and 2D Vis+Mouse (∗ ∗ ∗, 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5%, CI=12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='0%) in Count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, 3D Vis+VR (87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='0s, CI=17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='8S) was slower than 3D Vis+Mouse (∗∗, 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='5s, CI=10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2s) and 2D Vis+Mouse (∗, 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='4s, CI=9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='9s) in Common and significantly slower (276.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='8s, CI=62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='9S) than other conditions in Compare (all ∗ ∗ ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Thus, for quantitative measures, we accepted Hdirect−interaction in Count but rejected it for the other two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+VR performed well in terms of workload in two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We found that participants perceived less mental demand, temporal demand, frustration, and overall effort in 3D Vis+VR than in 2D Vis+Mouse or 3D Vis+Trackball in Common (all at least ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+VR also had benefits in mental demand, effort, frustration, and performance over 2D Vis+Mouse, and on frustration and performance over 3D Vis+Trackball in Count (all at least ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants did find that 3D Vis+VR required more physical effort than 2D Vis+Mouse in Common and 3D Vis+Mouse in Common and Count, but this was merited given that the VR HMDs and controllers naturally allowed for more embodied interactions with the networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+VR did not perform as well with Compare, where it was ranked the lowest in all workload categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' So, for task load index ratings, we accepted Hdirect−interaction for perceived mentally demand, effort, frustration, and performance in Common and Count, and we rejected Hdirect−interaction for physical demand in these two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Common ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Count ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Compare ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='High ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Mental ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+Trackball ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+VR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Physical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3DVis+Trackball ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+VR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Temporal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3DVis+Trackball ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+VR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Effort ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3DVis+Trackball ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+VR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Frustration ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3DVis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+Trackball ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+VR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='High ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+Mouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+Trackball ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3D Vis+VR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='100% 50% 0% 50% 100% 100% 50% 0% 50% 100% 100% 50% 0% 50% 100%9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participant rankings of the four conditions from most to least effective (left) and aesthetic (right) when working with node-link diagrams in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Brackets indicate significance for p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We also reject Hdirect−interaction for Compare more generally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In terms of overall rankings, participants ranked 3D Vis+VR over 2D Vis+Mouse for effectiveness (∗∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+VR was also ranked higher than all other conditions for aesthetics (all ∗∗), allowing us to accept Hdirect−interaction in the subjective rankings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In summary, 3D Vis+VR was more accurate than other conditions in one task, but slower in another task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+VR demonstrated a reduced working load in perceived mentally demand, effort, frustration, and performance, but required more physical movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Furthermore, we found 3D Vis+VR had a similar performance to 3D Vis+Trackball in Common and Compare, but subjective ratings revealed a preference for 3D Vis+VR over 3D Vis+Trackball from participants in these tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We also found that 3D Vis+VR was clearly not suitable for a task such as Compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Qualitative Feedback We asked participants to give feedback on the pros and cons of each design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We clustered comments into groups for each condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In this subsection, we share representative feedback along with the number of participants who mentioned a similar concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 2D Vis+Mouse: In Common, participants voiced frustra- tion with occlusion, as it was not always clear whether a link was connected to a certain node or simply being occluded by that node on the way to another node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In situations like this, working with a 2D graph decreased trial accuracy because there was no way for users to reorient the graph and validate their answers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' As a result, users prioritized their speed over their accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 2D Vis+Mouse was ranked as one of the worst conditions for Common.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Count, participants found 2D Vis+Mouse to be extremely difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The 2D quality of the graph prevented them from having a clear understanding and mental picture of the graph’s structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' One user specifically mentioned “In 2D, it was harder to see the subgraphs like you can in 3D”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Because these subgraphs represent potentially important relationships among network elements, this feedback suggests that 2D graphs may not be ideal for tasks involving a thorough understanding of a network’s structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Another interesting insight from participants was that the data felt inherently 3D in the Count task, so seeing it in its 2D form for 2D Vis+Mouse was frustrating and confusing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' One user said, “clearly, this was a 2D image trying to represent something 3D”, another noted, “You’re trying to imagine what it might be in 3D”, and yet another admitted that they “tried to make a 3D figure in [their] head with the 2D figure”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This was an unexpected result because we hypothesized that users would already be accustomed to seeing 2D graphs and therefore counting subgraphs within them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In reality, user feedback and the nearly unanimous fourth place ranking among users show that 2D Vis+Mouse still has serious disadvantages for structure-related tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Compare, it was surprising to see 2D Vis+Mouse’s popularity, as we expected it to be the least favored condition for this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, unlike in Count, users noted that they “approached this problem as a 2D problem”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' They likened the side-by-side graphs to photos or images they needed to compare, and the most popular strategy was to interact with the graph as little as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+Mouse: In general, 3D Vis+Mouse performed as expected in rankings and feedback compared to the other conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Common, the 3D nature of the graph allowed users to rotate it to check their node selections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' As a result, occlusion was much less of a problem in all 3D graphs, not just in 3D Vis+Mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Almost every participant mentioned that the mouse was already what they were most familiar with, so with the added benefit of 3D graphs, they did not need to think too hard about their answers before submission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' With the newer technology (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' trackball and VR HMD), they constantly needed to remind themselves of which command performed which function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Count, users expressed how much easier it was to complete the task with a 3D object, but a major difference between users was whether they found the mouse or the trackball to be the most intuitive for 3D object/view manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Many users noted the importance of rotating the graph for this task as they would if they counted the faces of a tangible object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For the participants who found the trackball more intuitive than the mouse, they attributed this perception to the fact that the movements they made with a mouse were 2D movements (movements on a flat, 2D plane), yet the result was a 3D rotation in the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Compare, a couple of users mentioned that having a third dimension was not as beneficial or harmful for the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Since the predominant strategy was to compare still graphs instead of interacting with them, the ability to rotate the graph in 3D was not always needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Many stated that 3D Vis+Mouse and 3D Vis+Trackball were comparable in this task since so little graph interaction was needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+Trackball: In Common, as well as throughout all tasks, many users described the experience of using the trackball as “fluid”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For many participants, the smooth rotation of the ball in 3D space and the resulting effects on the digital 3D graph were very intuitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Users expressed that they benefited from the impression of tangibly feeling the 3D nature of the graph with the trackball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Along those lines, users claimed that “you actually feel like you’re spinning the graph” and “it’s a good approximation for what you’re trying to do on the screen”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Not all users felt comfortable using the trackball, though, with many attributing their qualms to their complete inexperience with such a device and the fact that they needed to switch between rotation modes and cursor modes on the trackball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Due to their unfamiliarity, many users said that they needed to think actively about Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls Effectiveness Aesthetics 20 Ranking 15 4th 3rd 10 2nd 5 1st 0 2DVis+ 3DVis+ 3D Vis+ 3DVis+ 2DVis+ 3D Vis+ 3D Vis+ 3DVis+ Mouse Mouse Trackball VR Mouse Mouse Trackball VR IL10 Journal Title XX(X) every move they made, making the experience less seamless compared to that with a mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Count, many of the limitations of the trackball were no longer applicable, which accounts for the improvements in time and accuracy compared to other conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' One of the biggest learning curves with trackball is relearning how to move a cursor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Since users did not need to select any nodes in this task, they could stay in the trackball’s rotation mode and only use the cursor to proceed to the next page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This also helped reduce any confusion from needing to switch between rotation and cursor modes several times, as is necessary for the other two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' When users could focus on the rotational function of trackballs that make them more immersive than a traditional mouse, feedback on the 3D Vis+Trackball condition became more positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Compare, most users felt like 3D Vis+Mouse and 3D Vis+Trackball were comparable since they did not use much graph interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Given that it was a new type of input device for most participants and not quite as exciting as virtual reality, 3D Trackball’s relatively low ranking is in line with expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+VR: User feedback for 3D Vis+VR contained several compelling themes that made this condition extremely popular in users’ rankings, with 14 out of 20 users ranking it first in Common and 16 out of 20 ranking it first in Count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Common, two key themes throughout the feedback were (1) embodiment and presence, and (2) network tangibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Embodiment and presence encompass comments about feeling immersed in the virtual space and the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' More than half of the participants mentioned enjoying the ability to move around and specifically move into the graph, which gave them a deeper understanding of the network and its connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' As participants completed tasks in VR, we were able to see the virtual environment through their point of view by casting the Oculus Quest 2 headset to a laptop screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Unlike in the other three conditions, in 3D Vis+VR participants had much more freedom to use head and body movements to complete the tasks, making the screen cast of their actions in VR even more insightful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' What we observed was that users tended to prefer to stay in place when first entering the virtual environment and use their two controllers to pull the visualization toward them and/or pinch-to-zoom to examine local details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Only then would they begin to significantly leverage body movements such as moving their head or walking around or ”through” the visualization to examine it from slightly different angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Comments about movement included: “You do the rotations of the object, but you can also move yourself without having to rotate the entire graph again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' When you rotate a whole object, you have a whole new object to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' You can just know an object in VR and then move around the [object] you already know.” “Moving my head was the most intuitive, even more so than using the mouse to rotate things.” “In the other conditions I just wanted to stick my head into the graph and when I got to the VR part, I could actually do that!”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Embodiment ties in with the second theme of network tangibility, which was often stated as a reason for why 3D Vis+VR felt so intuitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Many users felt like completing this condition was most like manipulating a real, physical object in “everyday life”, and this perception added to the immersive feel of VR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' There were several common downsides to 3D Vis+VR for this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' One was the precision necessary to point and select a node, which required hand-eye coordination and was difficult for participants with hand tremors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Count, similarly to what we saw with 3D Vis+Trackball, many of the downsides of 3D Vis+VR were no longer as applicable because node selection was not necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Many of the themes in this task were the same as those in Common, but a new theme that stood out was that to some users, 3D graphs only truly seemed 3D in VR, and 3D graphs on a 2D screen still seemed inherently 2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This task encouraged this observation because many users leveraged head movements to help them quickly and effortlessly count triangles in different parts of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This is not possible with a 3D graph on a 2D screen, where every small change in perspective requires a new click and drag movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' One user did disagree with this idea and said that the VR and 3D conditions were all equivalents, and another expressed that “[t]he VR gets tiring faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' You get drained faster than if you were using the mouse”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Finally, in Compare, users strongly disliked 3D Vis+VR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The most common issue, which nearly every participant shared, was misaligned perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Because the graphs were 3D objects, standing in-between them meant that you were looking at the cluster of nodes and links from slightly different angles when looking at the left and right graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The graphs themselves looked sufficiently different from these separate angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Comparing the two at once proved to be frustrating and difficult, as seen in the 3D Vis+VR time and accuracy levels in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Discussion Summary of the results: which is the winner?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We had mixed results for different tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Common, 3D Vis+Mouse was overall the best performing condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' It had a similar time performance to 2D Vis+Mouse and was faster than 3D Vis+Trackball and 3D Vis+VR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Participants also perceived 3D Vis+Mouse to be more effective than 2D Vis+Mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Count, 3D Vis+VR overall had the best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Its accuracy was similar to 3D Vis+Trackball’s and was higher than that of 2D Vis+Mouse and 3D Vis+Mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Subjectively, participants also preferred 3D Vis+VR over 3D Vis+Trackball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Compare, 2D Vis+Mouse demonstrated marginal benefits over other conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D Vis+VR had the worst performance, while the other three conditions performed similarly in terms of time and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 2D Vis+Mouse was rated slightly better than the other two desktop conditions in physical demand, effort, and frustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We discuss the potential reasons for all these findings in the remainder of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Is embodied interaction beneficial?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' It depends on the nature of the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Common, participants were only required to investigate a small portion of the network visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Being more embodied did not bring significant Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls 11 benefits and in fact likely introduced more overhead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Count, participants had to iterate over the entire graph, which required more intensive interactions and greater predictability of graph manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This task also required participants to interpret the complex geometry of the network to identify all possible triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Such a task is better supported by more embodied conditions, as participants can more easily observe the network from different viewing angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This finding about tasks like Count aligns with a study by Kotlarek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='17, which found that network visualization in VR performed better than 2D network visualization for interpreting network structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Compare, participants were asked to work with two graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For visual comparison, short-term memory plays an important role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Rendering networks in 3D may result in more information for participants to memorize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In addition, viewing two items in any natural 3D environment will produce perspective distortion as an individual will look at the items from slightly different angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This distortion also exists in VR, and participants noted that it seriously affected their performance in Compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In summary, more embodied conditions are better for tasks that are interaction intensive and require the users to frequently manipulate the visualization in order to inspect it from different perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' On the other hand, embodied interaction was not ideal for tasks that require memorization in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The anticipated effect of embodied interaction has been reported in many other applications5,18,19, and we now provide extra empirical knowledge about it within the context of navigating network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Should we use 3D for network visualization?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Previous studies found rendering networks in 3D reduces visual clutter and better facilitates a user’s ability to complete visual analytics tasks6–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We confirmed this finding in Common and Count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The benefit of 3D was primarily reflected in participants’ accuracy scores, which were lower with 2D network visualizations for these two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We believe that the main reason for lower accuracy with 2D visualizations was the inevitable node/edge overlaps in 2D visual representations, which introduced ambiguities in interpreting network connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Notably, such a limitation with 2D not only existed in visualizing large network data (as tested in Common with 60 nodes) but also in small data (as tested in Count with only eight nodes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In addition, 3D network visualizations allowed partici- pants to inspect network connectivity from different viewing angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The connectivity could be ambiguous from one per- spective, but participants had the opportunity to inspect and confirm it from different viewing directions by rotating the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' While participants could also zoom in on the overlaps to inspect visual ambiguities in 2D network visualizations, zooming in and out made participants lose track of the context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' As a result, they were likely to miss or re-count certain areas of the graph, which could be one of the reasons for their low accuracy in 2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We anticipated that the zooming interactions in 2D resulted in higher context-switching costs than rotating in 3D network visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' An alternative way to confirm connectivity within a 2D network visualization is to allow participants to drag around the nodes of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, performing such interaction would likely increase completion time in our tasks and possibly also increase perceived task loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We did not include this alternative method in 2D Vis+Mouse as we wanted to focus on navigation interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' To achieve this goal, we needed to keep all interactions consistent across conditions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', just pan&zoom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Our results demonstrated the limitation of showing detailed network connectivity with 2D network visualiza- tions, and future studies are needed to investigate the effect of providing extra interactions for 2D network visualizations on overcoming such a limitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Despite not being efficient in showing detailed network connectivity, 2D network visual- ization performed better than 3D ones in Compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For this tested task, changing the viewing perspectives in 3D network visualizations introduced a heavier working memory load, as participants needed to re-interpret two visualizations every time after rotating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Thus, we believe 2D network visualiza- tions had a better performance because they induced less overhead of this kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In summary, we found that both 2D and 3D visualizations have their own advantages: 3D network visualizations have the capacity to clearly present detailed network connectivity, and 2D network visualizations are likely to lower the working memory load during detailed visual comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tangibility vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' familiarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The trackball mouse is designed to be optimized for ergonomics and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' When used properly and with familiarity, it allows for smaller, more precise movements compared to the large, rapid movements possible with a traditional mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In our study, 3D Vis+Trackball demonstrated some advantages in accuracy over a traditional mouse in Count, but the trackball mouse was slower in Common.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We believe that participants were more accurate with a trackball mouse because the intuitive interaction with the trackball better allowed them to confirm their answers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, the extra interaction introduced more comple- tion time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Another reason for the longer completion time could have also been due to unfamiliarity with a trackball mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Although many participants commented that the trackball mouse made intuitive sense, they reported high amounts of workload with the trackball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' When designing interactive visualization systems, we should consider the trade-off between the benefits of tangibility and the issues with unfamiliarity when using devices such as a track- ball mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Interestingly, while few participants had strong familiarity with VR devices, the broader participant group did not rank 3D Vis+VR as requiring a high workload as they did with the trackball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Consequently, we argue that a VR HMD is easier and more intuitive to use than a trackball mouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Perspective distortion from stereoscopic vision degrades the performance of certain tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We identified two potential reasons for the poor performance with 3D Vis+VR specifically in Compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' First, although the rotation, position, and scale of the two node-link diagrams were synchronized, the VR environment allowed for natural perspective distortion in Compare that prevented the viewer from effectively comparing the diagrams from the same viewing angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The effect of perspective distortion has been discussed in textbooks46, and we provide preliminary affirmation in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' While this may seem like a limitation, we believe this finding emphasizes an important Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls 12 Journal Title XX(X) aspect and consideration of using virtual reality in certain contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Secondly, while large display size is generally considered an advantage, it made Compare more challenging in VR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Moving too closely to one graph prevented users from simultaneously seeing the other graph, making comparison difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Alternatively, scaling (“zooming”) in too much on one graph also scaled the other graph, entangling the graphs and inhibiting easy comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This kind of entanglement did not happen in our limited desktop display space, where artificial view boxes helped “crop out” parts of the graph outside of the boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Conclusion and Future Work We compared four experimental conditions across three network analytic tasks with 20 participants in a controlled user study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We found that there is no condition that can always outperform other conditions in all tested tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The more embodied conditions are more suitable for interaction-intensive tasks that require users to constantly manipulate the visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This is because rendering network visualizations in 3D alleviates the issue of visual clutter and improves a user’s ability to identify geometric structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' However, rendering network visualizations in 2D is likely better for tasks involving graph comparison because it requires less short-term memory usage from users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Ultimately, our results provide some initial evidence for empirical knowledge related to the effect of embodiment on navigating network visualization, as well as some general guidelines for selecting display and interaction devices when working with these graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In future studies, we hope to recruit participants with significant trackball or VR experience to investigate the effects of device unfamiliarity and novelty, as we recognized that our participants were far more familiar with the standard mouse than the trackball mouse or VR HMD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' For example, we will specifically target users in the carpal tunnel syndrome (CTS) community, as its community members are used to trackballs to alleviate wrist pain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' It also should be acknowledged that participants might be sensitive to input settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Future studies should investigate methodologies to customize the optimal settings for each participant before proceeding to the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In addition, due to the difficulty of comparing two diagrams in VR, we will potentially use an egocentric design to slant the graphs toward the user in VR and reduce natural perspective distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A similar design has been considered for arranging small multiples58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We also intend to test different network layout algorithms and more interactions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', highlighting, brushing, and filtering) in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This study is meant as a first assessment of different commercialized devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Although we have identified some benefits of tangible user interfaces for visualization, we only used simple devices that were widely available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We believe more sophisticated customized tangible devices could be more effective for certain types of tasks, such as the ones in37–39, and those devices could be interesting to test in future studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Additionally, the design space of embodiment on desktop and in VR is huge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We only tested four conditions that we considered as the most accessible in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Considering the various input and display modalities (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=', bare-hand interaction on desktop and mouse interaction in VR59), there is a need to study the spectrum of embodiment in more fine-grained levels for more nuanced insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Acknowledgements We would like to thank our reviewers for their valuable comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' We would also like to thank all of our user study participants for their time and feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' This work was partially supported by NSF grant III-2107328.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Keim D, Andrienko G, Fekete JD et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Visual Analytics: Definition, Process, and Challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Kerren A, Stasko JT, Fekete JD et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=') Information Visualization, volume 4950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 154– 175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' DOI:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1007/978-3-540-70956-5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Cockburn A, Karlson A and Bederson B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A review of overview+detail, zooming, and focus+context interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ACM computing surveys 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' : 1–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Dourish P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Where the action is: the foundations of embodied interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' mit press paperback ed ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A Bradford book, Cambridge, Mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' London: MIT Press, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Marai GE, Forbes AG and Johnson A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Interdisciplinary immersive analytics at the electronic visualization laboratory: Lessons learned and upcoming challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In 2016 Workshop on Immersive Analytics (IA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 54–59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Ens B, Bach B, Cordeil M et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Grand Challenges in Immersive Analytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 1– 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Ware C and Franck G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Viewing a graph in a virtual reality display is three times as good as a 2d diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Proceedings of 1994 IEEE Symposium on Visual Languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 182–183.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Ware C and Mitchell P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Reevaluating stereo and motion cues for visualizing graphs in three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' APGV ’05, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 51–58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Ware C and Mitchell P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Visualizing graphs in three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ACM Transactions on Applied Perception (TAP) 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 5(1): 1– 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Kwon OH, Muelder C, Lee K et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A Study of Layout, Rendering, and Interaction Methods for Immersive Graph Visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Transactions on Visualization and Computer Graphics 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 22(7): 1802–1815.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Kraus M, Weiler N, Oelke D et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The Impact of Immersion on Cluster Identification Tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Transactions on Visualization and Computer Graphics 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 26(1): 525–535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Bach B, Sicat R, Beyer J et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The hologram in my hand: How effective is interactive exploration of 3d visualizations in immersive tangible augmented reality?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Transactions on Visualization and Computer Graphics 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 24: 457–467.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Yang Y, Dwyer T, Marriott K et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive Environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Transactions on Visualization and Computer Graphics 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' : 1–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Filho JAW, Stuerzlinger W and Nedel L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Evaluating an Immersive Space-Time Cube Geovisualization for Intuitive Trajectory Data Exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Transactions on Visualization and Computer Graphics 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 26(1): 514–524.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls 13 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Lages WS and Bowman DA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Move the Object or Move Myself?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Walking vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Manipulation for the Examination of 3D Scientific Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Frontiers in ICT 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 5: 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='3389/fict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='00015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Cordeil M, Dwyer T, Klein K et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Immersive Collaborative Analysis of Network Connectivity: CAVE-style or Head- Mounted Display?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Transactions on Visualization and Computer Graphics 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 23(1): 441–450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Drogemuller A, Cunningham A, Walsh J et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Examining virtual reality navigation techniques for 3D network visuali- sations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Journal of Computer Languages 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 56: 100937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Kotlarek J, Kwon OH, Ma KL et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A Study of Mental Maps in Immersive Network Visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In 2020 IEEE Pacific Visualization Symposium (PacificVis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tianjin, China: IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 978-1-72815-697-2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' DOI:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1109/ PacificVis48177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='4722.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Besanc¸on L, Ynnerman A, Keefe DF et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The State of the Art of Spatial Interfaces for 3D Visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Computer Graphics Forum 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 40(1): 293–326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Hand C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A Survey of 3D Interaction Techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Computer Graphics Forum 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 16(5): 269–281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tominski C, Gladisch S, Kister U et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A survey on interactive lenses in visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In EuroVis (STARs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 1–20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='2312/EUROVISSTAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='20141172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tominski C, Gladisch S, Kister U et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Interactive Lenses for Visualization: An Extended Survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Computer Graphics Forum 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 36(6): 173–200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' DOI:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='1111/cgf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='12871.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Yang Y, Cordeil M, Beyer J et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Embodied Navigation in Immersive Abstract Data Visualization: Is Overview+Detail or Zooming Better for 3D Scatterplots?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Transactions on Visualization and Computer Graphics 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 27(2): 1214–1224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' LaViola Jr JJ, Kruijff E, McMahan RP et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D user interfaces: theory and practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Addison-Wesley Professional, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' D´ıaz J, Petit J and Serna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A survey of graph layout problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ACM Computing Surveys 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 34(3): 313–356.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tamassia R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Handbook of graph drawing and visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' CRC press, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Greffard N, Picarougne F and Kuntz P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Visual community detection: An evaluation of 2d, 3d perspective and 3d stereoscopic displays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In International Symposium on Graph Drawing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Springer, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 215–225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Greffard N, Picarougne F and Kuntz P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Beyond the classical monoscopic 3d in graph analytics: an experimental study of the impact of stereoscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In 2014 IEEE VIS International Workshop on 3DVis (3DVis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 19–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Alper B, Hollerer T, Kuchera-Morin J et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Stereoscopic highlighting: 2d graph visualization on stereo displays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Transactions on Visualization and Computer Graphics 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 17(12): 2325–2333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Cordeil M, Cunningham A, Dwyer T et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Imaxes: Immersive axes as embodied affordances for interactive multivariate data visualisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' UIST ’17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 9781450349819, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 71–83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Kraus M, Fuchs J, Sommer B et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Immersive analytics with abstract 3d visualizations: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Computer Graphics Forum, volume 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Wiley Online Library, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 201–229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Chen M, Mountford SJ and Sellen A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A study in interactive 3-D rotation using 2-D control devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ACM SIGGRAPH Computer Graphics 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 22(4): 121–129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Feick M, Bateman S, Tang A et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tangi: Tangible Proxies For Embodied Object Exploration And Manipulation In Virtual Reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 978-1-72818-508-8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 195–206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Dinh HQ, Walker N, Hodges LF et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Proceedings IEEE Virtual Reality (Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 99CB36316).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 222–228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Hoffman HG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Physically touching virtual objects using tactile augmentation enhances the realism of virtual environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In IEEE VR Annual International Symposium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 59–63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Reinhardt D and Hurtienne J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' The Impact of Tangible Props on Gaming Performance and Experience in Gestural Interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 978- 1-4503-5568-1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 638–646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Besanc¸on L, Issartel P, Ammi M et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Mouse, Tactile, and Tangible Input for 3D Manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Proceedings of the Conference on Human Factors in Computing Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 978-1-4503-4655-9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 4727–4740.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Englmeier D, Schonewald I, Butz A et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Feel the Globe: Enhancing the Perception of Immersive Spherical Visualizations with Tangible Proxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 978-1-72811-377-7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 1693–1698.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Englmeier D, Dorner J, Butz A et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A Tangible Spherical Proxy for Object Manipulation in Augmented Reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In IEEE VR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 978-1-72815-608-8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 221–229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Satriadi KA, Smiley J, Ens B et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Tangible globes for data visualisation in augmented reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In CHI Conference on Human Factors in Computing Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Bowman D, Coquillart S, Froehlich B et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 3D User Interfaces: New Directions and Perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Computer Graphics and Applications 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 28(6): 20–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Sorger J, Waldner M, Knecht W et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Immersive analytics of large dynamic networks via overview and detail navigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 144–1447.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Sorger J, Arleo A, K´an P et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Egocentric network exploration for immersive analytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Computer Graphics Forum, volume 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Wiley Online Library, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 241–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Filho JAW, Freitas C and Nedel L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' VirtualDesk: A Comfortable and Efficient Immersive Information Visualization Approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Computer Graphics Forum 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 37(3): 415–426.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Huang YJ, Fujiwara T, Lin YX et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A gesture system for graph visualization in virtual reality environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In 2017 IEEE Pacific Visualization Symposium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 41–45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Whitlock M, Smart S and Szafir DA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Graphical perception for immersive analytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In 2020 IEEE Conference on VR and 3D User Interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 616–625.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Munzner T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Visualization analysis and design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' CRC press, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Marriott K, Schreiber F, Dwyer T et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Immersive analytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Number 11190 in Lecture notes in computer science, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 978-3-030-01388-2 978-3-030-01387-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Mixed reality toolkit, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Hart SG and Staveland LE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Development of nasa-tlx (task load index): Results of empirical and theoretical research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Advances in psychology, volume 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Elsevier, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 139– 183.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls 14 Journal Title XX(X) 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Lee B, Plaisant C, Parr CS et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Task taxonomy for graph visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In Proceedings of the 2006 AVI workshop on BEyond time and errors novel evaluation methods for information visualization - BELIV ’06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 978-1-59593- 562-5, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Yoghourdjian V, Archambault D, Diehl S et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Exploring the limits of complexity: A survey of empirical studies on graph visualisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Visual Informatics 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 2(4): 264–282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Schulz H, Nocke T, Heitzler M et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' A Design Space of Visualization Tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE Transactions on Visualization and Computer Graphics 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 19(12): 2366–2375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Holland PW, Laskey KB and Leinhardt S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Stochastic blockmodels: First steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Social Networks 1983;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 5(2): 109– 137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Yoghourdjian V, Yang Y, Dwyer T et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Scalability of network visualisation from a cognitive load perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' IEEE transactions on visualization and computer graphics 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 27(2): 1677–1687.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Bates D, M¨achler M, Bolker B et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Fitting linear mixed- effects models using lme4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Journal of Statistical Software 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 67(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' DOI:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='18637/jss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='v067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='i01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Field A, Miles J and Field Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Discovering statistics using R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Sage publications, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Lenth RV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Least-squares means: The R Package lsmeans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Journal of Statistical Software 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 69(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' DOI:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='18637/jss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' v069.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='i01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Liu J, Prouzeau A, Ens B et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Design and Evaluation of Interactive Small Multiples Data Visualisation in Immersive Spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' ISBN 978-1-72815-608-8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 588–597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Zhou Q, Fitzmaurice G and Anderson F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In-depth mouse: Integrating desktop mouse into virtual reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' In CHI Conference on Human Factors in Computing Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' 1– 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content=' Prepared using sagej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} +page_content='cls' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf'} diff --git a/hNE1T4oBgHgl3EQfzQVT/content/tmp_files/2301.03442v1.pdf.txt b/hNE1T4oBgHgl3EQfzQVT/content/tmp_files/2301.03442v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3be04e3efdd2a792f8957cd5a57b00b2eb20b42f --- /dev/null +++ b/hNE1T4oBgHgl3EQfzQVT/content/tmp_files/2301.03442v1.pdf.txt @@ -0,0 +1,1061 @@ +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 1 +Chapter 1 +Twenty-five years of exoplanet discoveries: +The exoplanet hosts +B´arbara Rojas-Ayala +Instituto de Alta Investigaci´on, Universidad de Tarapac´a, +Casilla 7D, Arica, Chile, +brojasayala@uta.cl +For centuries, humanity wondered if there were other worlds like ours in +the Universe. For about a quarter of a century, we have known that plan- +etary systems exist around other stars, and more than 3800 exoplanetary +systems have been discovered so far. However, the large majority of the +exoplanets remain invisible to us since we usually infer their presence +by their effect on their star. The chapter is devoted to stellar hosts and +their characteristics, emphasizing their description by discovery method +and links between the properties of the host stars and their planets. The +star-planet connection is vital to constrain the theories on the formation +and evolution of planetary systems, including our own. +Contents +1. +The relevance of the properties of the planet hosts . . . . . . . . . . . . . . . . +2 +2. +Characteristics of the confirmed stellar hosts up to October 2021 . . . . . . . . +4 +2.1. Radial velocity hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5 +2.2. Transit hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5 +2.3. Direct imaging hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 +2.4. Microlensing Hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 +2.5. The sky distribution of the planet hosts . . . . . . . . . . . . . . . . . . . +7 +3. +Links between the properties of the host stars and their planets +. . . . . . . . +8 +3.1. Occurrence rates per star type +. . . . . . . . . . . . . . . . . . . . . . . . +8 +3.2. Correlations with metallicity +. . . . . . . . . . . . . . . . . . . . . . . . . +11 +3.3. Correlations with stellar mass . . . . . . . . . . . . . . . . . . . . . . . . . +12 +3.4. Chemical signatures of planet formation . . . . . . . . . . . . . . . . . . . +14 +4. +Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15 +Bibliography +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +16 +1 +arXiv:2301.03442v1 [astro-ph.EP] 9 Jan 2023 + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 2 +2 +B. Rojas-Ayala +1. The relevance of the properties of the planet hosts +The discovery of new worlds has been inevitably linked to studying the stars +for the past twenty-five years. The most successful detection methods for +planets (radial velocity and transit techniques) measure the effect on the +star caused by the exoplanet, not the exoplanet itself. Hence, the properties +of those new worlds are derived from the observables and the properties of +their host stars. For example, radial velocity semi-amplitude K, +K ≈ +� 2πG +PM 2⋆ +� 1 +3 Mplanet sin i +√ +1 − e2 +, +(1) +and transit depth δtra, +δtra ≈ +�Rplanet +R⋆ +�2 � +1 − Iplanet(ttra) +I⋆ +� +, +(2) +are observables from the radial velocity and transit techniques. To obtain +the properties of the bulk properties of the exoplanets,Rplanet and Mplanet, +we need to know the bulk properties of the star, R⋆ and M⋆, respectively. +The properties of host stars are needed because: +• we want to know how planet formation works and what determines +their evolution, +• we make target selection for exoplanet searches (e.g., input catalogs +for space-based missions) +• we want to ensure that what we are measuring is due to a planet +around the star and not a false positive (e.g., activity, rotation). +Fig. 1 shows exoplanets with mass and radius estimates in the NASA +Exoplanet Archive up to October 30th 2021, along with mass-radius rela- +tionships for planets with pure iron, rock (Mg2SiO4) and water ice composi- +tions from Seager et al. (2007) and pure hydrogen composition from Fortney +et al. (2007). The Mass-Radius diagram for the discovered planets shows us +the diversity of worlds being found and makes plain evident the necessity +to improve the precision of their mass and radius to constrain their compo- +sition. Over the past years, stable spectrographs and space telescopes have +provided exquisite data to measure the observables precisely, but it is not +enough for some hosts because the uncertainties on their masses and sizes +are pretty significant. Therefore, the exact exoplanet flavor will depend on +how well we know the bulk properties of the host star. + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 3 +The exoplanet hosts +3 +0:1 +1 +10 +100 +1000 +Planet mass [M©] +0 +5 +10 +15 +20 +25 +Planet radius [R©] +Hydrogen +Water +Rock +Iron +Exoplanets ¡ 2021=10=30 +Fig. 1. +M-R relation: observations vs. theoretical data. The circles correspond to the +planets up to October 30th 2021, while the solid lines represent mass-radius relations for +different planetary compositions. +The most fundamental property of a star is its mass. However, masses +are not easy to directly measure for most stars. We can get precise masses +for stars in binary systems, and if they are eclipsing binaries, we can get +their accurate sizes. Stellar sizes can be obtained from interferometry if +the star is relatively bright and we know how far the star is from us (e.g., +from their Hipparcos/GAIA parallaxes). Asteroseismology is a powerful +tool for insights into the stellar interior and obtaining the stellar mass, +radius, and ages with high precision if the star pulsates. +In particular, +all of the above becomes more challenging for the low-mass stars due to +their low luminosities and lack of detected pulsations in photometric and +spectroscopic data up-to-date. Since the large majority of planet hosts do +not satisfy the conditions above, the exoplanet community has relied mainly +on the atmospheric stellar parameters (Teff , [M/H] and log g) estimates of +their bulk properties. For example, you can get a precise estimate of the +Teff of the star from high-resolution spectra, and if you know its parallax +and luminosity, you can derive its radius. Then, from the estimate of the +star’s surface gravity, you can obtain its mass. Stellar evolution models +have been beneficial in deriving masses and sizes of stars from atmospheric +stellar parameters. + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 4 +4 +B. Rojas-Ayala +1000 +2000 +5000 +104 +2£104 +EffectiveTemperature [K] +¡6 +¡5 +¡4 +¡3 +¡2 +¡1 +0 +1 +2 +3 +log(Luminosity [L¯]) +All Planet Hosts ¡ 2021=10=30 +Fig. 2. +The planet hosts with luminosity and effective temperature estimates from the +NASA Exoplanet Archive up to October 30th 2021. +2. Characteristics of the confirmed stellar hosts up to Octo- +ber 2021 +According to the NASA Exoplanet Archive, up to October 30th 2021, there +were 4451 planets in 3378 systems. The NASA Exoplanet Archive is an +astronomical catalog and data service that collects and cross-correlates rel- +evant information on exoplanetary systems such as stellar, exoplanet, and +discovery/characterization data. Thus, it serves as a census of exoplanetary +systems constantly being updated and available to all. Unfortunately, not +all the confirmed planet hosts in the NASA Exoplanet Archive are fully +characterized, meaning they are missing estimates of effective temperature, +metallicity, surface gravity, mass, radius, and/or luminosity. In fact, the +Hertzsprung-Russell diagram constructed with the data available up to Oc- +tober 30th in the archive shows only 3247 hosts out of the 3378 systems. +About 4% of the hosts do not have effective temperature and/or luminosity +estimations. Fig. 2 shows a couple of peculiar hosts, such as white dwarfs +and hot subdwarfs, since most hosts are main sequence, subgiant, and giant +stars. The lack of specific stellar parameters for the planet host is somewhat +related to the detection technique involved in the exoplanet discovery. + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 5 +The exoplanet hosts +5 +5000 +10000 +EffectiveTemperature [K] +¡4 +¡3 +¡2 +¡1 +0 +1 +2 +3 +log(Luminosity [L¯]) +Radial Velocity Hosts ¡ 2021=10=30 +Fig. 3. +The stars with planets found with the radial velocity technique in the NASA +Exoplanet Archive up to October 30th 2021 are shown in purple. +2.1. Radial velocity hosts +The locations of the hosts discovered by the radial velocity (RV) technique +are shown in Fig. 3. +The RV technique makes it easier to find planets +around main-sequence (GK) stars and (sub)giant stars (bright/slow) since +relatively bright stars provide high signal-to-noise observations. It is harder +to find planets around F and earlier stars because of the lack of absorption +lines to analyze the data correctly. It is also more challenging to find planets +around young stars due to their activity and variability. Stellar activity can +be a problematic signal to remove from the data. Spots, plages, convection, +and pulsations can induce RV signals to reach amplitudes larger than a +planet’s signal. However, RV observations with near-infrared spectrographs +have facilitated the discovery of planets around M dwarfs and young stars. +2.2. Transit hosts +The locations of the hosts discovered by the transit technique are shown in +Fig. 4. The transit technique works best in bright, small, and inactive stars. +Small stars are an advantage for the transit technique because the drop in +luminosity is proportional to the ratio between the size of the planet and +the star. It is easier to find planets around GK dwarfs, and bright M dwarfs +since relatively bright stars provide high signal-to-noise observations. It is + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 6 +6 +B. Rojas-Ayala +5000 +10000 +EffectiveTemperature [K] +¡4 +¡3 +¡2 +¡1 +0 +1 +2 +3 +log(Luminosity [L¯]) +Transits Hosts ¡ 2021=10=30 +Fig. 4. +The stars with planets found with the transits technique in the NASA Exoplanet +Archive up to October 30th 2021 are shown in pink. +harder to find planets around evolved stars since they are too large. It is +also harder to find planets around young stars because of their variability. +Most of the transit hosts in Fig. 4 were discovered by the Kepler and K2 +missions. +2.3. Direct imaging hosts +The locations in the Hertzsprung-Russell diagram of the hosts discovered by +the direct imaging technique are shown in Fig. 5. This technique performs +best around nearby and young stars. It is easier to find planets around +young A stars and nearby young associations because the worlds are still +contracting and, therefore, are brighter than in systems where the host has +reached the main-sequence branch. On the other hand, it is harder to find +planets around evolved and main-sequence stars because of the luminosity +contrast between the host and the exoplanet. +2.4. Microlensing Hosts +The microlensing technique detects the effect of an unseen planetary system +on the light emitted by a distant star. +The host star and planets act +as lenses, and the distant star gets magnified. +This technique performs +best in stars in front of dense stellar regions (e.g., galactic bulge). It is + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 7 +The exoplanet hosts +7 +5000 +10000 +EffectiveTemperature [K] +¡4 +¡3 +¡2 +¡1 +0 +1 +2 +3 +log(Luminosity [L¯]) +Direct Imaging Hosts ¡ 2021=10=30 +Fig. 5. +The stars with planets found with the direct imaging technique in the NASA +Exoplanet Archive up to October 30th 2021 are shown in yellow. +easier to find planets around M dwarfs since they are the most abundant +type of star; it is harder to find planets in nearby stars. The hosts are +difficult to characterize since they remain unseen or cannot be resolved. +Microlensing hosts, therefore, are part of the stars that do not show up +in the Hertzsprung-Russell diagram in Fig. 2. Stellar mass and distance +estimates are a result of the fitting of the magnification curve. All hosts have +masses less than 1.3 solar masses, as shown in Fig. 6. Effective temperatures +for the star can be estimated from its mass, assuming that it is a main- +sequence star. +2.5. The sky distribution of the planet hosts +The techniques cover different regions of the Milky Way due to the perfor- +mance characteristics listed in the above sections. +In a two-dimensional representation of the sky, the radial velocity planet +hosts cover roughly all radial ascensions and declinations, as seen in Fig. 7. +The transit hosts are also found everywhere in the projected 2D sky; how- +ever, they also bring out the Kepler and K2 fields since they cluster in +those locations. The imaging hosts highlight where the young associations +are found, while the majority of the microlensing hosts are located towards +the bulge of the Milky Way. + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 8 +8 +B. Rojas-Ayala +0:5 +1:0 +1:5 +2:0 +Mass [M¯] +0 +1000 +2000 +3000 +4000 +5000 +6000 +7000 +8000 +Distance [pc] +Microlensing Hosts ¡ 2021=10=30 +Fig. 6. +The stars with planets found with the microlensing technique in the NASA +Exoplanet Archive up to October 30th 2021 are shown in green. +In a three-dimensional representation, the limitations on the distance +of the discovery methods become evident (Fig. 8). At 5pc, only systems +discovered by the radial velocity show up, excluding the sun (Fig. 8(a)). +At 20pc, the RV systems dominate, but transit and direct imaging sys- +tems start to show up (Fig. 8(b)). At 100 pc, the RV systems begin to be +encapsulated by the transit systems. At 500 pc, the transit systems dom- +inate, the contribution of the Kepler mission can be clearly seen as a cone +that extends from the center, and the first microlensing system appears +(Fig. 8(c)). The planetary systems found by the microlensing technique +dominate at distances larger than ∼ 1000 pc towards the center of the +Galaxy(Fig. 8(d)). +3. Links between the properties of the host stars and their +planets +3.1. Occurrence rates per star type +Each detection technique favors the discovery of planets around stars with +specific characteristics. Hence, to answer how common are rocky or gaseous +planets are around particular groups of stars, we need to consider the limi- +tations of such techniques and reach a certain level of completeness for each +survey. This is why occurrence rates papers started to appear roughly 10 + +*+ ++August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 9 +The exoplanet hosts +9 +0h00 +6h00 +12h00 +12h00 +18h00 +18h00 +¡90 +¡60 +¡60 +¡30 +¡30 +30 +30 +60 +60 +90 +All planet hosts +Radial Velocity +Transits +Direct Imaging +Microlensing +. +Fig. 7. +The two-dimensional projection of the positions of all planet hosts in the NASA +Exoplanet Archive up to October 30th 2021, color-coded by the discovery technique. +years after discovering 51 Peg b. Although the occurrence rates obtained +from the detection methods may differ in the exact number, they are con- +sistent in that M dwarfs have higher occurrence rates of rocky planets than +FGK stars. Planet occurrence rates get updated almost every year, consid- +ering different samples that do get more complete as the searches continue. +A list of articles related to planet occurrence rates can be found in the +NASA Exoplanet Archive (footnote ) +3.1.1. Examples from RV surveys +The RV surveys with the HARPS and CORALIE spectrographs concluded +that more than 50% of the solar-type stars host at least one planet of any +mass with periods up to 100 days (Mayor et al. 2011). For planets with +orbital periods less than 50 days and minimum masses between 3 and 30 +M⊕, the occurrence rate is estimated between 15% and 27% (Howard et al. +2010; Mayor et al. 2011). Bonfils et al. (2013) estimated that about 40% +of the red dwarf stars have a super-Earth orbiting in their habitable zone, +and that about 12% of the red dwarfs are expected to have giant planets + +:*.* +2 +**++ +!: +.:+ +.: ++* +++ +++ ++ +* +*+ +* +* +. ++ +* +* +t. +.: ++ ++ ++ ++* ++* ++ +: +* +* ++* +. +++ ++* ++ +.: +: ++ +: +++ +++ ++ +* ++*. +4 ++ +++** +*+ ++ ++++*August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 10 +10 +B. Rojas-Ayala +(100-1000 M⊕) from their M dwarf survey with HARPS. Using Lick data, +Reffert et al. (2015) concluded that the occurrence rate of giant planets +in giant stars (2.7 to 5.0 M⊙) is less than 1.6%. Grandjean et al. (2021) +estimated an occurrence rate of giant planets with periods lower than 1000 +days of ∼ 1% for young stars. +3.1.2. Examples from Transit surveys +Howard et al. (2012) concluded with the first results from the brightest half +sample of the Kepler Mission that early M dwarfs were 7 times more likely +to have a planet with an orbital period below 50 days than the hottest +stars in the sample. Hsu et al. (2020) estimated occurrence rates of ∼ 4 +or ∼ 8 planets per M dwarfs considering sizes between 0.5 to 4 R⊕ and +periods between 0.5 and 256 days. By considering only the planets with +sizes between 0.75 and 1.5 R⊕ in the habitable zone of their stars, the +occurrence rate is between 0.03 to 0.40 considering orbital periods between +237 and 500 days for FGK dwarfs (Hsu et al. 2019) and is 0.33 considering +periods between 0.5 and 256 days for M dwarfs (Hsu et al. 2020). +3.1.3. Examples from Direct Imaging surveys +If all spectral types surveyed are considered (B stars to M dwarfs), most +works conclude that the occurrence rate is close to ∼ 1% for the most +massive planets (∼ 0.5-13 Mjup) at distances from few tens AU up to a few +hundred AU covered by the direct imaging technique (e.g. Bowler 2016; +Naud et al. 2017). If masses consistent with brown-dwarfs (up to 20 Mjup) +and larger distances are considered (up to 5000 AU), Baron et al. (2019) +estimated an occurrence rate frequency of f = 0.11+0.11 +−0.05 using data from +several direct imaging surveys. +3.1.4. Examples from Microlensing surveys +Shvartzvald et al. (2016) found that about 55% of microlensed stars host +a snowline planet, and that Neptunes were about 10 times more common +than Jupiter-mass planets, using OGLE, MOA, and WISE data. However, +from twenty years of OGLE survey data, Poleski et al. (2021) found a higher +occurrence rate, estimating that, on average, every microlensing star hosts +at least 1 giant planet at separations from ∼5 AU to ∼15 AU. + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 11 +The exoplanet hosts +11 +3.2. Correlations with metallicity +3.2.1. Giant planet - metallicity correlation +Soon after 51 Peg b and 3 other giant planets discoveries, Gonzalez (1997) +analyzed the hosts’ high-resolution spectra concluding they had a higher +average metallicity than field stars hosting no planets. This led to what +is known as the giant planet-metallicity correlation: the higher the star’s +metallicity, the higher the probability of the star hosting a giant planet, +as Fig. 9 shows. Although Gonzalez (1997) proposed that pollution from +infall material in the stellar convective envelope was the reason behind this +correlation, it has been established that the metallicity of the host reflects +the abundance of solids in the primordial cloud that formed the planetary +system (Santos et al. 2004; Fischer & Valenti 2005). The existence of this +correlation favors the core-accretion model for planet formation, wherein +disks with a higher metallic content, rocky and icy cores can form early +enough to allow for runaway accretion to form giant planets before the +dissipation of the disks happens, unlike the lower-metallicity disks (Pollack +et al. 1996; Ida & Lin 2004; Mordasini et al. 2012). The exact functionality +of the relation is still a matter of study, especially in the metal-poor regime +where samples are still small to further constrain the occurrence rates of +giants (Mortier et al. 2013; Adibekyan 2019; Boley et al. 2021) +The original giant planet-metallicity correlation was limited to FGK +stars since solar-like stars were the preferred targets of the first RV surveys +(Santos et al. 2003, 2004; Fischer & Valenti 2005). However, it was soon +evident that the correlation did hold for other stars. The few M dwarfs +with giant planets discovered by the RV method showed a higher average +metallicity when compared with field stars as well (e.g. Bonfils et al. 2007; +Rojas-Ayala et al. 2012; Terrien et al. 2012; Maldonado et al. 2020). Gi- +ant stars with giant planets also showed higher average metallicities when +compared with giants without planets, with an overabundance of planets +around giant stars with iron metallicity of ∼ −0.3 dex (Reffert et al. 2015; +Jones et al. 2016). +The spectroscopic characterization of Kepler host stars corroborated +that large planets (Rp > 4 R⊕) are preferentially found around metal-rich +stars (e.g. Buchhave et al. 2012, 2014; Schlaufman 2015). Results from wide- +field ground-based surveys have found that hot Jupiters preferentially orbit +metal-rich stars as well, concluding that probably all giants are formed by a +similar process, but hot Jupiters have different migration histories (Osborn +& Bayliss 2020). + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 12 +12 +B. Rojas-Ayala +Unlike the giant planets, rocky and icy planets are not preferentially +found around metal-rich stars (e.g. Sousa et al. 2008; Ghezzi et al. 2010). +However, Wang & Fischer (2015) found a ”Universal” planet-metallicity +connection for solar-type stars: terrestrial, gas-dwarf, and gas-giant planets +occur more frequently in metal-rich stars, but the dependence on metallicity +for terrestrial and gas-dwarf planets is lower than for gas giants. +3.2.2. Planet distance/period - metallicity trend +Several works find trends in stellar metallicity with the orbital period or +distance distributions of small and giant planets (e.g. Beaug´e & Nesvorn´y +2013; Dawson et al. 2015). +For example, the occurrence rate of Kepler +sub-Neptunes with orbital periods below 10 days as a function of metal- +licity is three times higher for stars with super-solar metallicity (Mulders +et al. 2016). Furthermore, planets with masses between 10 M⊕ and 4 Mjup +orbiting metal-poor stars exhibit longer periods than those orbiting metal- +rich stars (Adibekyan et al. 2013). If the host’s metallicity is a proxy of +the metal content in the disks, the above results may indicate that planets +form farther out from their stars in metal-poor disks or that they form later +and do not migrate as inward as planets in metal-rich disks. +3.3. Correlations with stellar mass +The mass is the most fundamental property of a star since it determines its +whole evolution. As planetary searches extended and samples grew, it was +found that stellar mass may play a role in the type of planets that a star can +host. Radial velocity surveys soon unraveled the scarcity of giant planets +around the most petite stars in their samples. Giant planets with periods of +few days should have been easier to discover than rocky planets around red +dwarfs, given the favorable mass ratio for detection if they existed. If giant +planets were indeed necessary for the evolution of intelligent organisms in +a planetary system, as Wetherill (1994), and Laws et al. (2003) speculated, +then a decrease in the incidence of radial velocity giant companions around +red dwarfs could have enormous implications for the search of civilizations, +since they are the majority of the stars in the Galaxy. Endl et al. (2006) also +found a lower frequency of close-in giant planets for M dwarfs from a sample +of 90 red dwarfs with RV data from several spectrographs and concluded +that their results confirmed theoretical predictions by Ida & Lin (2004) and +Laughlin et al. (2004) about the formation of giants by core-accretion + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 13 +The exoplanet hosts +13 +Johnson et al. (2010) calculated a functional form of the likelihood of a +star (within a mass range from 0.2 to 1.9M M⊙ to harbor a giant planet +as a function of mass and metallicity, using more than 1000 stars observed +by the California Planet Survey. Johnson et al. (2010) found that at solar +metallicity, the giant planet occurrence rise from 3% around M dwarfs to +14% around A stars, and concluded that, if disk masses correlate with stellar +mass, this was strong supporting evidence of the core accretion model of +planet formation from cool dwarfs to intermediate-mass subgiants. +Radial velocity surveys also found correlations with mass for giant stars. +Reffert et al. (2015) and Jones et al. (2016) found that the planet occurrence +rate of close-in Jovians increases with stellar mass up to 2 M⊙ for giant +stars, but it decreases rapidly and is consistent with zero at ∼ 3 M⊙, as +shown in Fig. 10. Reffert et al. (2015) propose that stars massive than 2.5 +M⊙ may lack giants planets at few AU because their snow line is further +out, where gas densities and Kepler velocities are smaller, slowing down +growth rates and increasing migration time scales that combine with a +shorter lifetime of the protostellar disk, prevent these stars from forming +close-in giant planets that would be observable today. +There is a consensus regarding Neptunes and the sub-Neptune popu- +lation that they occur more frequently around M dwarfs than FGK stars. +Using the Kepler discoveries with periods between 2 to 50 days, Mulders +et al. (2015) estimated that for minor planets (< 3 R⊕), their occurrence +rate was higher for M dwarfs, but at larger planet radii (> 4 R⊕), the +trend reverses, and more giant planets become more common around sun- +like stars. These empirical results agree with model calculations, where the +core-accretion scenario shows no difficulties in forming low-mass planets +around red dwarfs and even predicts more Neptunes in short orbits around +M dwarfs than G dwarfs (Laughlin et al. 2004; Ida & Lin 2004) +Recently, a correlation between protoplanetary disks gaps and stellar +mass was found with ALMA observations of 500 young systems. van der +Marel & Mulders (2021) found that higher mass stars in the sample have +relatively more disks with gaps than lower mass stars and that the frequency +of the gapped disks matches the observed frequency of giant planets at dif- +ferent stellar masses. If the openings are formed by planets of Neptune +mass and above (i.e., giant planets), and they migrate inwards, this result +is consistent with the stellar mass - giant planet correlation from exoplanet +surveys. The correlation also applies to low-mass stars: disks without gaps +are compact, and without giant planets, the dust will drift inwards, pro- +viding the necessary conditions for forming more minor, rocky planets with + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 14 +14 +B. Rojas-Ayala +short periods, consistent with the observations of sub-Neptunes mentioned +above. Therefore, the mass of host stars can directly relate the exoplanet +to its planet-forming environment. +3.4. Chemical signatures of planet formation +It is often assumed that a star and its planets form together from the +same cloud and have similar compositions. There is a good match in the +abundance of refractory elements between the sun and the most primitive +and undifferentiated meteorites in our solar system, the CI carbonaceous +chondrites (Asplund et al. 2009). Therefore, the atmospheric abundances +of refractory elements (such as Mg, Si, Ca, Ni, and Fe) of solar-type stars +can be considered a proxy of the composition of the protoplanetary disk. +The chemical elements in the disk condensate at different temperatures and +therefore condensate at distinct regions of the disk, separating themselves +from the gas as dust, while the protostar continues accreting gas. Refrac- +tory elements have high condensation temperatures and condensate close to +the star-forming rocky planetesimals, while the volatile elements have low +condensation temperatures, forming icy planetesimals further away from +the star. +Chemical signatures related to the content of refractory elements in +the atmosphere of stars have been searched using high-res, high signal-to- +noise spectroscopic data to obtain high precisions in the measurement of +element abundances. Mel´endez et al. (2009) used a differential method to +get precisions of ∼ 0.01 dex on solar twins to find that the sun was peculiar, +having lower refractory abundances than the average of the solar twins, and +proposing that the missing refractories were used to form rocky material in +the solar system. Bedell et al. (2018) extended the sample of Mel´endez et al. +(2009) up to 79 solar twins, finding that the sun indeed has a deficiency +in refractory material relative to more than 80% of the sample, suggesting +that it could be a possible signpost for planetary systems like the solar +system in the other refractory poor solar twins. Carlos et al. (2019) found +that the sun also has the lowest lithium abundance compared to the solar +twins of the same age, and the most lithium-depleted solar twins were also +depleted of refractory elements. The lack of refractory elements or different +chemical compositions in planet hosts has been observed in binary systems, +such as 16 Cygni (giant planet, +Ram´ırez et al. 2011; Nissen et al. 2017; +Maia et al. 2019), ζ2 Reticuli (debris disk, Saffe et al. 2016), WASP-94 (hot +Jupiter, Teske et al. 2016a) and HD 133131 (Teske et al. 2016b). + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 15 +The exoplanet hosts +15 +The overabundance of refractory elements and lithium in the atmo- +spheres of stars has been linked to planetary formation, however, as a sign- +post of planetary accretion or engulfment in stars without detected planets. +This is the case of a comoving pair analyzed in Oh et al. (2018), where it +is suggested that one of the components accreted 15 M⊕ of rocky mate- +rial after birth to explain the enhancing of refractory elements and lithium +found in its atmosphere. In a recent study, Spina et al. (2021) analyzed 107 +binary systems of Sun-like stars with similar effective temperatures and sur- +face gravities, concluding that the discrepancies in chemical abundances in +the binary systems favored the planet engulfment scenario and estimating +that it occurs in about a quarter of all sun-like stars. Pollution or engulf- +ment of differentiated material has also been observed in the atmospheres +of white dwarfs (e.g Zuckerman et al. 2010; Bonsor et al. 2021) +Recently, a correlation between the compositions of rocky exoplanets +and their host stars was found. +By concentrating only on planets with +masses below 10 M⊕ but avoiding mini-Neptunes, Adibekyan et al. (2021) +found that the iron content of rocky planets (inferred from their estimated +density) correlates with the iron content of the star, which reflects the +iron content of the protoplanetary disk. However, it is not a one-to-one +correlation as was expected. Instead, the planets are more enhanced in +iron than their host stars. The reason behind this is still unknown, but +Adibekyan et al. (2021) suggest that it can be related to rocky lines (con- +densation/sublimation lines of refractory materials) in the disk where the +fraction of iron can be enhanced, as described in Aguichine et al. (2020). +4. Conclusions +The planet discovery techniques and methods prove different types of stars +and distinct areas of our neighborhood and populations of the Galaxy. +For most of the planetary systems known to date, all that we can see are +the stars; hence, we need to know the stars in detail to obtain the exact +bulk properties of the exoplanets and their orbital parameters, calculate +the occurrence rates, and infer how the formation and evolution of the +planetary systems occurred. +The stellar mass and metallicity are quantities showing connections with +specific types of exoplanets in the stars surveyed. These two quantities are +believed to depict the amount of material and the composition of the cloud +that formed the planetary system. Knowing them in detail makes it possible +to assume specific disk characteristics, figure out how relevant the initial + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 16 +16 +B. Rojas-Ayala +conditions are for the formation of planets, and find possible explanations +for the planetary systems that don’t follow the expected trends. +Regarding the metallicity of the stars, hosts of giant planets on average +have higher metallicities than field stars (i.e., are metal-rich stars), a result +known as the giant planet-metallicity correlation that supports the core +accretion scenario for planet formation. On the other hand, the hosts of +only small planets exhibit a wide range of metallicities. Furthermore, if we +consider the orbital period of the planets and metallicity, we find that Nep- +tunes and super-Earths with short periods are found preferentially around +metal-rich stars, while sub-Neptunes to giants with longer periods are found +preferentially around metal-poor stars. +Regarding the mass of the stars, the current samples of exoplanetary +systems show that the occurrence rate of giant planets increases as stellar +mass increases, however only up to 2 M⊙, where it decreases as stellar +mass increases. The occurrence rate of sub-Neptunes increases as stellar +mass decreases. +Regarding chemical signatures of planet formation, works have found +the sun peculiar compared with samples of solar twins, being poor in re- +fractory elements and lithium. The overabundance of refractory elements +and lithium in the atmospheres of stars has been proposed as a signpost of +planetary engulfment in stars without detected planets. +The star-planet connection is an area in constant review, where newer +discoveries allow the recognition and constraining of the physical processes +involved in the formation and evolution of planetary systems. Therefore, +it should not be surprising that the relationships presented in this chapter +become increasingly specific concerning the characteristics and detection +method of the system or exoplanet in question or modified to include new +observations, which allow new connections to be found. +References +Adibekyan, V. 2019, Geosciences, 9, 105 +Adibekyan, V., Dorn, C., Sousa, S. G., et al. 2021, Science, 374, 330 +Adibekyan, V. Z., Figueira, P., Santos, N. C., et al. 2013, A&A, 560, A51 +Aguichine, A., Mousis, O., Devouard, B., & Ronnet, T. 2020, ApJ, 901, 97 +Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481 +Baron, F., Lafreni`ere, D., Artigau, ´E., et al. 2019, AJ, 158, 187 +Beaug´e, C. & Nesvorn´y, D. 2013, ApJ, 763, 12 +Bedell, M., Bean, J. L., Mel´endez, J., et al. 2018, ApJ, 865, 68 +Boley, K. M., Wang, J., Zinn, J. C., et al. 2021, AJ, 162, 85 + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 17 +The exoplanet hosts +17 +Bonfils, X., Delfosse, X., Udry, S., et al. 2013, A&A, 549, A109 +Bonfils, X., Mayor, M., Delfosse, X., et al. 2007, A&A, 474, 293 +Bonsor, A., Jofr´e, P., Shorttle, O., et al. 2021, MNRAS, 503, 1877 +Bowler, B. P. 2016, PASP, 128, 102001 +Buchhave, L. A., Bizzarro, M., Latham, D. W., et al. 2014, Nature, 509, 593 +Buchhave, L. A., Latham, D. W., Johansen, A., et al. 2012, Nature, 486, 375 +Carlos, M., Mel´endez, J., Spina, L., et al. 2019, MNRAS, 485, 4052 +Dawson, R. I., Chiang, E., & Lee, E. J. 2015, MNRAS, 453, 1471 +Endl, M., Cochran, W. D., K¨urster, M., et al. 2006, ApJ, 649, 436 +Fischer, D. A. & Valenti, J. 2005, ApJ, 622, 1102 +Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661 +Ghezzi, L., Cunha, K., Smith, V. V., et al. 2010, ApJ, 720, 1290 +Gonzalez, G. 1997, MNRAS, 285, 403 +Grandjean, A., Lagrange, A. M., Meunier, N., et al. 2021, A&A, 650, A39 +Howard, A. W., Marcy, G. W., Bryson, S. T., et al. 2012, ApJS, 201, 15 +Howard, A. W., Marcy, G. W., Johnson, J. A., et al. 2010, Science, 330, 653 +Hsu, D. C., Ford, E. B., Ragozzine, D., & Ashby, K. 2019, AJ, 158, 109 +Hsu, D. C., Ford, E. B., & Terrien, R. 2020, MNRAS, 498, 2249 +Ida, S. & Lin, D. N. C. 2004, ApJ, 604, 388 +Johnson, J. A., Aller, K. M., Howard, A. W., & Crepp, J. R. 2010, PASP, 122, +905 +Jones, M. I., Jenkins, J. S., Brahm, R., et al. 2016, A&A, 590, A38 +Laughlin, G., Bodenheimer, P., & Adams, F. C. 2004, ApJ, 612, L73 +Laws, C., Gonzalez, G., Walker, K. M., et al. 2003, AJ, 125, 2664 +Maia, M. T., Mel´endez, J., Lorenzo-Oliveira, D., Spina, L., & Jofr´e, P. 2019, +A&A, 628, A126 +Maldonado, J., Micela, G., Baratella, M., et al. 2020, A&A, 644, A68 +Mayor, M., Marmier, M., Lovis, C., et al. 2011, arXiv e-prints, arXiv:1109.2497 +Mel´endez, J., Asplund, M., Gustafsson, B., & Yong, D. 2009, ApJ, 704, L66 +Mordasini, C., Alibert, Y., Klahr, H., & Henning, T. 2012, A&A, 547, A111 +Mortier, A., Santos, N. C., Sousa, S. G., et al. 2013, A&A, 557, A70 +Mulders, G. D., Pascucci, I., & Apai, D. 2015, ApJ, 798, 112 +Mulders, G. D., Pascucci, I., Apai, D., Frasca, A., & Molenda- ˙Zakowicz, J. 2016, +AJ, 152, 187 +Naud, M.-E., Artigau, ´E., Doyon, R., et al. 2017, AJ, 154, 129 +Nissen, P. E., Silva Aguirre, V., Christensen-Dalsgaard, J., et al. 2017, A&A, 608, +A112 +Oh, S., Price-Whelan, A. M., Brewer, J. M., et al. 2018, ApJ, 854, 138 +Osborn, A. & Bayliss, D. 2020, MNRAS, 491, 4481 +Poleski, R., Skowron, J., Mr´oz, P., et al. 2021, Acta Astron., 71, 1 +Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. 1996, Icarus, 124, 62 +Ram´ırez, I., Mel´endez, J., Cornejo, D., Roederer, I. U., & Fish, J. R. 2011, ApJ, +740, 76 +Reffert, S., Bergmann, C., Quirrenbach, A., Trifonov, T., & K¨unstler, A. 2015, +A&A, 574, A116 +Rojas-Ayala, B., Covey, K. R., Muirhead, P. S., & Lloyd, J. P. 2012, ApJ, 748, + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 18 +18 +B. Rojas-Ayala +93 +Saffe, C., Flores, M., Jaque Arancibia, M., Buccino, A., & Jofr´e, E. 2016, A&A, +588, A81 +Santos, N. C., Israelian, G., & Mayor, M. 2004, A&A, 415, 1153 +Santos, N. C., Israelian, G., Mayor, M., Rebolo, R., & Udry, S. 2003, A&A, 398, +363 +Schlaufman, K. C. 2015, ApJ, 799, L26 +Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ, 669, +1279 +Shvartzvald, Y., Maoz, D., Udalski, A., et al. 2016, MNRAS, 457, 4089 +Sousa, S. G., Santos, N. C., Mayor, M., et al. 2008, A&A, 487, 373 +Spina, L., Sharma, P., Mel´endez, J., et al. 2021, Nature Astronomy +Terrien, R. C., Mahadevan, S., Bender, C. F., et al. 2012, ApJ, 747, L38 +Teske, J. K., Khanal, S., & Ram´ırez, I. 2016a, ApJ, 819, 19 +Teske, J. K., Shectman, S. A., Vogt, S. S., et al. 2016b, AJ, 152, 167 +van der Marel, N. & Mulders, G. D. 2021, AJ, 162, 28 +Wang, J. & Fischer, D. A. 2015, AJ, 149, 14 +Wetherill, G. W. 1994, Ap&SS, 212, 23 +Zuckerman, B., Melis, C., Klein, B., Koester, D., & Jura, M. 2010, ApJ, 722, 725 + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 19 +The exoplanet hosts +19 +¡5 ¡4 ¡3 ¡2 ¡1 +0 +1 +2 +3 +4 +5 +Y +¡5 ¡4 ¡3 ¡2 ¡1 +0 +1 +2 +3 +4 +5 +X +¡5 ¡4 ¡3 ¡2 ¡1 +0 +1 +2 +3 +4 +5 +Z +Radial Velocity +(a) 5 pc +¡20 +¡10 +0 +10 +20 +Y +¡20 +¡10 +0 +10 +20 +X +¡20 +¡10 +0 +10 +20 +Z +Radial Velocity +Transits +Direct Imaging +(b) 20 pc +¡400 +¡200 +0 +200 +400 +Y +¡400 +¡200 +0 +200 +400 +X +¡400 +¡200 +0 +200 +400 +Z +Radial Velocity +Transits +Direct Imaging +Microlensing +(c) 500 pc +¡4000 +¡2000 +0 +2000 +4000 +Y +0 +2000 +4000 +6000 +8000 +X +¡4000 +¡2000 +0 +2000 +4000 +Z +Radial Velocity +Transits +Direct Imaging +Microlensing +(d) All systems +Fig. 8. +The three-dimensional positions of all planet hosts in the NASA Exoplanet +Archive up to October 30th 2021, color-coded by the discovery technique. + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 20 +20 +B. Rojas-Ayala +Fig. 9. +The planet-metallicity correlation: The iron metallicity distributions for planet +host stars (hashed histogram) compared with the distributions of a volume-limited sam- +ple of stars (upper-left) and of all the stars in the CORALIE program with at least 5 +radial-velocity measurements (lower left). The percentage of planet hosts found amid the +stars in the CORALIE sample as a function of stellar metallicity is shown in the lower- +right plot. Credit: Santos et al., A&A, 415, 1153, 2004, reproduced with permission +©ESO. + +August 2022 +1:42 +ws-rv9x6 +Planetary Systems Now +brojasayala +page 21 +The exoplanet hosts +21 +Fig. 10. +The planet- stellar mass correlation: Planet occurrence rate as a function of +stellar mass for giant stars, ignoring the effect of stellar metallicity. The filled histogram +shows secure planets, whereas the open histogram includes planet candidates as well. +The solid line denotes the best fit to the mass dependence of the giant planet occurrence +rate computed for solar metallicity. The black dots correspond to the same model, but +the true metallicity distribution within each bin has been taken into account. Credit: +Reffert et al., A&A, 574, A116, 2015, reproduced with permission ©ESO. + +35 +planets +30 +candidateplanets +Eq. 3, bin mean +Eq. 3, [Fe/H] = 0 +25 +rate +occurrence +20 +15 +planet +10 +5 +3 +stellar mass [Msun] \ No newline at end of file diff --git a/hNE1T4oBgHgl3EQfzQVT/content/tmp_files/load_file.txt b/hNE1T4oBgHgl3EQfzQVT/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8644a2338a4afced24c4d562a2075540acd42e62 --- /dev/null +++ b/hNE1T4oBgHgl3EQfzQVT/content/tmp_files/load_file.txt @@ -0,0 +1,1180 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf,len=1179 +page_content='August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 1 Chapter 1 Twenty-five years of exoplanet discoveries: The exoplanet hosts B´arbara Rojas-Ayala Instituto de Alta Investigaci´on, Universidad de Tarapac´a, Casilla 7D, Arica, Chile, brojasayala@uta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='cl For centuries, humanity wondered if there were other worlds like ours in the Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' For about a quarter of a century, we have known that plan- etary systems exist around other stars, and more than 3800 exoplanetary systems have been discovered so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' However, the large majority of the exoplanets remain invisible to us since we usually infer their presence by their effect on their star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The chapter is devoted to stellar hosts and their characteristics, emphasizing their description by discovery method and links between the properties of the host stars and their planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The star-planet connection is vital to constrain the theories on the formation and evolution of planetary systems, including our own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The relevance of the properties of the planet hosts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Characteristics of the confirmed stellar hosts up to October 2021 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Radial velocity hosts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Transit hosts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Direct imaging hosts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Microlensing Hosts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The sky distribution of the planet hosts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Links between the properties of the host stars and their planets .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Occurrence rates per star type .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Correlations with metallicity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Correlations with stellar mass .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 12 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Chemical signatures of planet formation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 14 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Conclusions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 15 Bibliography .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 16 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='03442v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='EP] 9 Jan 2023 August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 2 2 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The relevance of the properties of the planet hosts The discovery of new worlds has been inevitably linked to studying the stars for the past twenty-five years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The most successful detection methods for planets (radial velocity and transit techniques) measure the effect on the star caused by the exoplanet, not the exoplanet itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Hence, the properties of those new worlds are derived from the observables and the properties of their host stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' For example, radial velocity semi-amplitude K, K ≈ � 2πG PM 2⋆ � 1 3 Mplanet sin i √ 1 − e2 , (1) and transit depth δtra, δtra ≈ �Rplanet R⋆ �2 � 1 − Iplanet(ttra) I⋆ � , (2) are observables from the radial velocity and transit techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' To obtain the properties of the bulk properties of the exoplanets,Rplanet and Mplanet, we need to know the bulk properties of the star, R⋆ and M⋆, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The properties of host stars are needed because: we want to know how planet formation works and what determines their evolution, we make target selection for exoplanet searches (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', input catalogs for space-based missions) we want to ensure that what we are measuring is due to a planet around the star and not a false positive (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', activity, rotation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 1 shows exoplanets with mass and radius estimates in the NASA Exoplanet Archive up to October 30th 2021, along with mass-radius rela- tionships for planets with pure iron, rock (Mg2SiO4) and water ice composi- tions from Seager et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2007) and pure hydrogen composition from Fortney et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The Mass-Radius diagram for the discovered planets shows us the diversity of worlds being found and makes plain evident the necessity to improve the precision of their mass and radius to constrain their compo- sition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Over the past years, stable spectrographs and space telescopes have provided exquisite data to measure the observables precisely, but it is not enough for some hosts because the uncertainties on their masses and sizes are pretty significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Therefore, the exact exoplanet flavor will depend on how well we know the bulk properties of the host star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 3 The exoplanet hosts 3 0:1 1 10 100 1000 Planet mass [M©] 0 5 10 15 20 25 Planet radius [R©] Hydrogen Water Rock Iron Exoplanets ¡ 2021=10=30 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' M-R relation: observations vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' theoretical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The circles correspond to the planets up to October 30th 2021, while the solid lines represent mass-radius relations for different planetary compositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The most fundamental property of a star is its mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' However, masses are not easy to directly measure for most stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' We can get precise masses for stars in binary systems, and if they are eclipsing binaries, we can get their accurate sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Stellar sizes can be obtained from interferometry if the star is relatively bright and we know how far the star is from us (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', from their Hipparcos/GAIA parallaxes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Asteroseismology is a powerful tool for insights into the stellar interior and obtaining the stellar mass, radius, and ages with high precision if the star pulsates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' In particular, all of the above becomes more challenging for the low-mass stars due to their low luminosities and lack of detected pulsations in photometric and spectroscopic data up-to-date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Since the large majority of planet hosts do not satisfy the conditions above, the exoplanet community has relied mainly on the atmospheric stellar parameters (Teff , [M/H] and log g) estimates of their bulk properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' For example, you can get a precise estimate of the Teff of the star from high-resolution spectra, and if you know its parallax and luminosity, you can derive its radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Then, from the estimate of the star’s surface gravity, you can obtain its mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Stellar evolution models have been beneficial in deriving masses and sizes of stars from atmospheric stellar parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 4 4 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala 1000 2000 5000 104 2£104 EffectiveTemperature [K] ¡6 ¡5 ¡4 ¡3 ¡2 ¡1 0 1 2 3 log(Luminosity [L¯]) All Planet Hosts ¡ 2021=10=30 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The planet hosts with luminosity and effective temperature estimates from the NASA Exoplanet Archive up to October 30th 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Characteristics of the confirmed stellar hosts up to Octo- ber 2021 According to the NASA Exoplanet Archive, up to October 30th 2021, there were 4451 planets in 3378 systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The NASA Exoplanet Archive is an astronomical catalog and data service that collects and cross-correlates rel- evant information on exoplanetary systems such as stellar, exoplanet, and discovery/characterization data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Thus, it serves as a census of exoplanetary systems constantly being updated and available to all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Unfortunately, not all the confirmed planet hosts in the NASA Exoplanet Archive are fully characterized, meaning they are missing estimates of effective temperature, metallicity, surface gravity, mass, radius, and/or luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' In fact, the Hertzsprung-Russell diagram constructed with the data available up to Oc- tober 30th in the archive shows only 3247 hosts out of the 3378 systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' About 4% of the hosts do not have effective temperature and/or luminosity estimations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2 shows a couple of peculiar hosts, such as white dwarfs and hot subdwarfs, since most hosts are main sequence, subgiant, and giant stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The lack of specific stellar parameters for the planet host is somewhat related to the detection technique involved in the exoplanet discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 5 The exoplanet hosts 5 5000 10000 EffectiveTemperature [K] ¡4 ¡3 ¡2 ¡1 0 1 2 3 log(Luminosity [L¯]) Radial Velocity Hosts ¡ 2021=10=30 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The stars with planets found with the radial velocity technique in the NASA Exoplanet Archive up to October 30th 2021 are shown in purple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Radial velocity hosts The locations of the hosts discovered by the radial velocity (RV) technique are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The RV technique makes it easier to find planets around main-sequence (GK) stars and (sub)giant stars (bright/slow) since relatively bright stars provide high signal-to-noise observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' It is harder to find planets around F and earlier stars because of the lack of absorption lines to analyze the data correctly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' It is also more challenging to find planets around young stars due to their activity and variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Stellar activity can be a problematic signal to remove from the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Spots, plages, convection, and pulsations can induce RV signals to reach amplitudes larger than a planet’s signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' However, RV observations with near-infrared spectrographs have facilitated the discovery of planets around M dwarfs and young stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Transit hosts The locations of the hosts discovered by the transit technique are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The transit technique works best in bright, small, and inactive stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Small stars are an advantage for the transit technique because the drop in luminosity is proportional to the ratio between the size of the planet and the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' It is easier to find planets around GK dwarfs, and bright M dwarfs since relatively bright stars provide high signal-to-noise observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' It is August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 6 6 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala 5000 10000 EffectiveTemperature [K] ¡4 ¡3 ¡2 ¡1 0 1 2 3 log(Luminosity [L¯]) Transits Hosts ¡ 2021=10=30 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The stars with planets found with the transits technique in the NASA Exoplanet Archive up to October 30th 2021 are shown in pink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' harder to find planets around evolved stars since they are too large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' It is also harder to find planets around young stars because of their variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Most of the transit hosts in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 4 were discovered by the Kepler and K2 missions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Direct imaging hosts The locations in the Hertzsprung-Russell diagram of the hosts discovered by the direct imaging technique are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' This technique performs best around nearby and young stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' It is easier to find planets around young A stars and nearby young associations because the worlds are still contracting and, therefore, are brighter than in systems where the host has reached the main-sequence branch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' On the other hand, it is harder to find planets around evolved and main-sequence stars because of the luminosity contrast between the host and the exoplanet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Microlensing Hosts The microlensing technique detects the effect of an unseen planetary system on the light emitted by a distant star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The host star and planets act as lenses, and the distant star gets magnified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' This technique performs best in stars in front of dense stellar regions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', galactic bulge).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' It is August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 7 The exoplanet hosts 7 5000 10000 EffectiveTemperature [K] ¡4 ¡3 ¡2 ¡1 0 1 2 3 log(Luminosity [L¯]) Direct Imaging Hosts ¡ 2021=10=30 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The stars with planets found with the direct imaging technique in the NASA Exoplanet Archive up to October 30th 2021 are shown in yellow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' easier to find planets around M dwarfs since they are the most abundant type of star;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' it is harder to find planets in nearby stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The hosts are difficult to characterize since they remain unseen or cannot be resolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Microlensing hosts, therefore, are part of the stars that do not show up in the Hertzsprung-Russell diagram in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Stellar mass and distance estimates are a result of the fitting of the magnification curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' All hosts have masses less than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3 solar masses, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Effective temperatures for the star can be estimated from its mass, assuming that it is a main- sequence star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The sky distribution of the planet hosts The techniques cover different regions of the Milky Way due to the perfor- mance characteristics listed in the above sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' In a two-dimensional representation of the sky, the radial velocity planet hosts cover roughly all radial ascensions and declinations, as seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The transit hosts are also found everywhere in the projected 2D sky;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' how- ever, they also bring out the Kepler and K2 fields since they cluster in those locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The imaging hosts highlight where the young associations are found, while the majority of the microlensing hosts are located towards the bulge of the Milky Way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 8 8 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala 0:5 1:0 1:5 2:0 Mass [M¯] 0 1000 2000 3000 4000 5000 6000 7000 8000 Distance [pc] Microlensing Hosts ¡ 2021=10=30 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The stars with planets found with the microlensing technique in the NASA Exoplanet Archive up to October 30th 2021 are shown in green.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' In a three-dimensional representation, the limitations on the distance of the discovery methods become evident (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' At 5pc, only systems discovered by the radial velocity show up, excluding the sun (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 8(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' At 20pc, the RV systems dominate, but transit and direct imaging sys- tems start to show up (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 8(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' At 100 pc, the RV systems begin to be encapsulated by the transit systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' At 500 pc, the transit systems dom- inate, the contribution of the Kepler mission can be clearly seen as a cone that extends from the center, and the first microlensing system appears (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 8(c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The planetary systems found by the microlensing technique dominate at distances larger than ∼ 1000 pc towards the center of the Galaxy(Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 8(d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Links between the properties of the host stars and their planets 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Occurrence rates per star type Each detection technique favors the discovery of planets around stars with specific characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Hence, to answer how common are rocky or gaseous planets are around particular groups of stars, we need to consider the limi- tations of such techniques and reach a certain level of completeness for each survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' This is why occurrence rates papers started to appear roughly 10 + +August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 9 The exoplanet hosts 9 0h00 6h00 12h00 12h00 18h00 18h00 ¡90 ¡60 ¡60 ¡30 ¡30 30 30 60 60 90 All planet hosts Radial Velocity Transits Direct Imaging Microlensing .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The two-dimensional projection of the positions of all planet hosts in the NASA Exoplanet Archive up to October 30th 2021, color-coded by the discovery technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' years after discovering 51 Peg b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Although the occurrence rates obtained from the detection methods may differ in the exact number, they are con- sistent in that M dwarfs have higher occurrence rates of rocky planets than FGK stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Planet occurrence rates get updated almost every year, consid- ering different samples that do get more complete as the searches continue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' A list of articles related to planet occurrence rates can be found in the NASA Exoplanet Archive (footnote ) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Examples from RV surveys The RV surveys with the HARPS and CORALIE spectrographs concluded that more than 50% of the solar-type stars host at least one planet of any mass with periods up to 100 days (Mayor et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' For planets with orbital periods less than 50 days and minimum masses between 3 and 30 M⊕, the occurrence rate is estimated between 15% and 27% (Howard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Mayor et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Bonfils et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2013) estimated that about 40% of the red dwarf stars have a super-Earth orbiting in their habitable zone, and that about 12% of the red dwarfs are expected to have giant planets :*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' * 2 **++ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' : .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' :+ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' : +* ++ ++ + + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' + t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' : + + + +* +* + : +* .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' ++ +* + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' : : + : ++ ++ + +*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 4 + ++** + + +++*August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 10 10 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala (100-1000 M⊕) from their M dwarf survey with HARPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Using Lick data, Reffert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2015) concluded that the occurrence rate of giant planets in giant stars (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='7 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 M⊙) is less than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='6%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Grandjean et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2021) estimated an occurrence rate of giant planets with periods lower than 1000 days of ∼ 1% for young stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Examples from Transit surveys Howard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2012) concluded with the first results from the brightest half sample of the Kepler Mission that early M dwarfs were 7 times more likely to have a planet with an orbital period below 50 days than the hottest stars in the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Hsu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2020) estimated occurrence rates of ∼ 4 or ∼ 8 planets per M dwarfs considering sizes between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5 to 4 R⊕ and periods between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5 and 256 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' By considering only the planets with sizes between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='75 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5 R⊕ in the habitable zone of their stars, the occurrence rate is between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='03 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='40 considering orbital periods between 237 and 500 days for FGK dwarfs (Hsu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2019) and is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='33 considering periods between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5 and 256 days for M dwarfs (Hsu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Examples from Direct Imaging surveys If all spectral types surveyed are considered (B stars to M dwarfs), most works conclude that the occurrence rate is close to ∼ 1% for the most massive planets (∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5-13 Mjup) at distances from few tens AU up to a few hundred AU covered by the direct imaging technique (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Bowler 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Naud et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' If masses consistent with brown-dwarfs (up to 20 Mjup) and larger distances are considered (up to 5000 AU), Baron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2019) estimated an occurrence rate frequency of f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='05 using data from several direct imaging surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Examples from Microlensing surveys Shvartzvald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2016) found that about 55% of microlensed stars host a snowline planet, and that Neptunes were about 10 times more common than Jupiter-mass planets, using OGLE, MOA, and WISE data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' However, from twenty years of OGLE survey data, Poleski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2021) found a higher occurrence rate, estimating that, on average, every microlensing star hosts at least 1 giant planet at separations from ∼5 AU to ∼15 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 11 The exoplanet hosts 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Correlations with metallicity 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Giant planet - metallicity correlation Soon after 51 Peg b and 3 other giant planets discoveries, Gonzalez (1997) analyzed the hosts’ high-resolution spectra concluding they had a higher average metallicity than field stars hosting no planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' This led to what is known as the giant planet-metallicity correlation: the higher the star’s metallicity, the higher the probability of the star hosting a giant planet, as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 9 shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Although Gonzalez (1997) proposed that pollution from infall material in the stellar convective envelope was the reason behind this correlation, it has been established that the metallicity of the host reflects the abundance of solids in the primordial cloud that formed the planetary system (Santos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Fischer & Valenti 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The existence of this correlation favors the core-accretion model for planet formation, wherein disks with a higher metallic content, rocky and icy cores can form early enough to allow for runaway accretion to form giant planets before the dissipation of the disks happens, unlike the lower-metallicity disks (Pollack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Ida & Lin 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Mordasini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The exact functionality of the relation is still a matter of study, especially in the metal-poor regime where samples are still small to further constrain the occurrence rates of giants (Mortier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Adibekyan 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Boley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2021) The original giant planet-metallicity correlation was limited to FGK stars since solar-like stars were the preferred targets of the first RV surveys (Santos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2003, 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Fischer & Valenti 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' However, it was soon evident that the correlation did hold for other stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The few M dwarfs with giant planets discovered by the RV method showed a higher average metallicity when compared with field stars as well (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Bonfils et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Terrien et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Maldonado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Gi- ant stars with giant planets also showed higher average metallicities when compared with giants without planets, with an overabundance of planets around giant stars with iron metallicity of ∼ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3 dex (Reffert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The spectroscopic characterization of Kepler host stars corroborated that large planets (Rp > 4 R⊕) are preferentially found around metal-rich stars (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Buchhave et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2012, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Schlaufman 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Results from wide- field ground-based surveys have found that hot Jupiters preferentially orbit metal-rich stars as well, concluding that probably all giants are formed by a similar process, but hot Jupiters have different migration histories (Osborn & Bayliss 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 12 12 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala Unlike the giant planets, rocky and icy planets are not preferentially found around metal-rich stars (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Sousa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Ghezzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' However, Wang & Fischer (2015) found a ”Universal” planet-metallicity connection for solar-type stars: terrestrial, gas-dwarf, and gas-giant planets occur more frequently in metal-rich stars, but the dependence on metallicity for terrestrial and gas-dwarf planets is lower than for gas giants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Planet distance/period - metallicity trend Several works find trends in stellar metallicity with the orbital period or distance distributions of small and giant planets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Beaug´e & Nesvorn´y 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Dawson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' For example, the occurrence rate of Kepler sub-Neptunes with orbital periods below 10 days as a function of metal- licity is three times higher for stars with super-solar metallicity (Mulders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Furthermore, planets with masses between 10 M⊕ and 4 Mjup orbiting metal-poor stars exhibit longer periods than those orbiting metal- rich stars (Adibekyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' If the host’s metallicity is a proxy of the metal content in the disks, the above results may indicate that planets form farther out from their stars in metal-poor disks or that they form later and do not migrate as inward as planets in metal-rich disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Correlations with stellar mass The mass is the most fundamental property of a star since it determines its whole evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' As planetary searches extended and samples grew, it was found that stellar mass may play a role in the type of planets that a star can host.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Radial velocity surveys soon unraveled the scarcity of giant planets around the most petite stars in their samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Giant planets with periods of few days should have been easier to discover than rocky planets around red dwarfs, given the favorable mass ratio for detection if they existed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' If giant planets were indeed necessary for the evolution of intelligent organisms in a planetary system, as Wetherill (1994), and Laws et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2003) speculated, then a decrease in the incidence of radial velocity giant companions around red dwarfs could have enormous implications for the search of civilizations, since they are the majority of the stars in the Galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Endl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2006) also found a lower frequency of close-in giant planets for M dwarfs from a sample of 90 red dwarfs with RV data from several spectrographs and concluded that their results confirmed theoretical predictions by Ida & Lin (2004) and Laughlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2004) about the formation of giants by core-accretion August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 13 The exoplanet hosts 13 Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2010) calculated a functional form of the likelihood of a star (within a mass range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='9M M⊙ to harbor a giant planet as a function of mass and metallicity, using more than 1000 stars observed by the California Planet Survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2010) found that at solar metallicity, the giant planet occurrence rise from 3% around M dwarfs to 14% around A stars, and concluded that, if disk masses correlate with stellar mass, this was strong supporting evidence of the core accretion model of planet formation from cool dwarfs to intermediate-mass subgiants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Radial velocity surveys also found correlations with mass for giant stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Reffert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2015) and Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2016) found that the planet occurrence rate of close-in Jovians increases with stellar mass up to 2 M⊙ for giant stars, but it decreases rapidly and is consistent with zero at ∼ 3 M⊙, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Reffert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2015) propose that stars massive than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5 M⊙ may lack giants planets at few AU because their snow line is further out, where gas densities and Kepler velocities are smaller, slowing down growth rates and increasing migration time scales that combine with a shorter lifetime of the protostellar disk, prevent these stars from forming close-in giant planets that would be observable today.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' There is a consensus regarding Neptunes and the sub-Neptune popu- lation that they occur more frequently around M dwarfs than FGK stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Using the Kepler discoveries with periods between 2 to 50 days, Mulders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2015) estimated that for minor planets (< 3 R⊕), their occurrence rate was higher for M dwarfs, but at larger planet radii (> 4 R⊕), the trend reverses, and more giant planets become more common around sun- like stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' These empirical results agree with model calculations, where the core-accretion scenario shows no difficulties in forming low-mass planets around red dwarfs and even predicts more Neptunes in short orbits around M dwarfs than G dwarfs (Laughlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Ida & Lin 2004) Recently, a correlation between protoplanetary disks gaps and stellar mass was found with ALMA observations of 500 young systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' van der Marel & Mulders (2021) found that higher mass stars in the sample have relatively more disks with gaps than lower mass stars and that the frequency of the gapped disks matches the observed frequency of giant planets at dif- ferent stellar masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' If the openings are formed by planets of Neptune mass and above (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', giant planets), and they migrate inwards, this result is consistent with the stellar mass - giant planet correlation from exoplanet surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The correlation also applies to low-mass stars: disks without gaps are compact, and without giant planets, the dust will drift inwards, pro- viding the necessary conditions for forming more minor, rocky planets with August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 14 14 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala short periods, consistent with the observations of sub-Neptunes mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Therefore, the mass of host stars can directly relate the exoplanet to its planet-forming environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Chemical signatures of planet formation It is often assumed that a star and its planets form together from the same cloud and have similar compositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' There is a good match in the abundance of refractory elements between the sun and the most primitive and undifferentiated meteorites in our solar system, the CI carbonaceous chondrites (Asplund et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Therefore, the atmospheric abundances of refractory elements (such as Mg, Si, Ca, Ni, and Fe) of solar-type stars can be considered a proxy of the composition of the protoplanetary disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The chemical elements in the disk condensate at different temperatures and therefore condensate at distinct regions of the disk, separating themselves from the gas as dust, while the protostar continues accreting gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Refrac- tory elements have high condensation temperatures and condensate close to the star-forming rocky planetesimals, while the volatile elements have low condensation temperatures, forming icy planetesimals further away from the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Chemical signatures related to the content of refractory elements in the atmosphere of stars have been searched using high-res, high signal-to- noise spectroscopic data to obtain high precisions in the measurement of element abundances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Mel´endez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2009) used a differential method to get precisions of ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='01 dex on solar twins to find that the sun was peculiar, having lower refractory abundances than the average of the solar twins, and proposing that the missing refractories were used to form rocky material in the solar system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Bedell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2018) extended the sample of Mel´endez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2009) up to 79 solar twins, finding that the sun indeed has a deficiency in refractory material relative to more than 80% of the sample, suggesting that it could be a possible signpost for planetary systems like the solar system in the other refractory poor solar twins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Carlos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2019) found that the sun also has the lowest lithium abundance compared to the solar twins of the same age, and the most lithium-depleted solar twins were also depleted of refractory elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The lack of refractory elements or different chemical compositions in planet hosts has been observed in binary systems, such as 16 Cygni (giant planet, Ram´ırez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Nissen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Maia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2019), ζ2 Reticuli (debris disk, Saffe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016), WASP-94 (hot Jupiter, Teske et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016a) and HD 133131 (Teske et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 15 The exoplanet hosts 15 The overabundance of refractory elements and lithium in the atmo- spheres of stars has been linked to planetary formation, however, as a sign- post of planetary accretion or engulfment in stars without detected planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' This is the case of a comoving pair analyzed in Oh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2018), where it is suggested that one of the components accreted 15 M⊕ of rocky mate- rial after birth to explain the enhancing of refractory elements and lithium found in its atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' In a recent study, Spina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2021) analyzed 107 binary systems of Sun-like stars with similar effective temperatures and sur- face gravities, concluding that the discrepancies in chemical abundances in the binary systems favored the planet engulfment scenario and estimating that it occurs in about a quarter of all sun-like stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Pollution or engulf- ment of differentiated material has also been observed in the atmospheres of white dwarfs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='g Zuckerman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Bonsor et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2021) Recently, a correlation between the compositions of rocky exoplanets and their host stars was found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' By concentrating only on planets with masses below 10 M⊕ but avoiding mini-Neptunes, Adibekyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2021) found that the iron content of rocky planets (inferred from their estimated density) correlates with the iron content of the star, which reflects the iron content of the protoplanetary disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' However, it is not a one-to-one correlation as was expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Instead, the planets are more enhanced in iron than their host stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The reason behind this is still unknown, but Adibekyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2021) suggest that it can be related to rocky lines (con- densation/sublimation lines of refractory materials) in the disk where the fraction of iron can be enhanced, as described in Aguichine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Conclusions The planet discovery techniques and methods prove different types of stars and distinct areas of our neighborhood and populations of the Galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' For most of the planetary systems known to date, all that we can see are the stars;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' hence, we need to know the stars in detail to obtain the exact bulk properties of the exoplanets and their orbital parameters, calculate the occurrence rates, and infer how the formation and evolution of the planetary systems occurred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The stellar mass and metallicity are quantities showing connections with specific types of exoplanets in the stars surveyed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' These two quantities are believed to depict the amount of material and the composition of the cloud that formed the planetary system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Knowing them in detail makes it possible to assume specific disk characteristics, figure out how relevant the initial August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 16 16 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala conditions are for the formation of planets, and find possible explanations for the planetary systems that don’t follow the expected trends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Regarding the metallicity of the stars, hosts of giant planets on average have higher metallicities than field stars (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', are metal-rich stars), a result known as the giant planet-metallicity correlation that supports the core accretion scenario for planet formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' On the other hand, the hosts of only small planets exhibit a wide range of metallicities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Furthermore, if we consider the orbital period of the planets and metallicity, we find that Nep- tunes and super-Earths with short periods are found preferentially around metal-rich stars, while sub-Neptunes to giants with longer periods are found preferentially around metal-poor stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Regarding the mass of the stars, the current samples of exoplanetary systems show that the occurrence rate of giant planets increases as stellar mass increases, however only up to 2 M⊙, where it decreases as stellar mass increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The occurrence rate of sub-Neptunes increases as stellar mass decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Regarding chemical signatures of planet formation, works have found the sun peculiar compared with samples of solar twins, being poor in re- fractory elements and lithium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The overabundance of refractory elements and lithium in the atmospheres of stars has been proposed as a signpost of planetary engulfment in stars without detected planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The star-planet connection is an area in constant review, where newer discoveries allow the recognition and constraining of the physical processes involved in the formation and evolution of planetary systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Therefore, it should not be surprising that the relationships presented in this chapter become increasingly specific concerning the characteristics and detection method of the system or exoplanet in question or modified to include new observations, which allow new connections to be found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' References Adibekyan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2019, Geosciences, 9, 105 Adibekyan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Dorn, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Sousa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2021, Science, 374, 330 Adibekyan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Figueira, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Santos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2013, A&A, 560, A51 Aguichine, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mousis, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Devouard, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Ronnet, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2020, ApJ, 901, 97 Asplund, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Grevesse, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Sauval, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Scott, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2009, ARA&A, 47, 481 Baron, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Lafreni`ere, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Artigau, ´E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2019, AJ, 158, 187 Beaug´e, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' & Nesvorn´y, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2013, ApJ, 763, 12 Bedell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Bean, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mel´endez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2018, ApJ, 865, 68 Boley, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Zinn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2021, AJ, 162, 85 August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 17 The exoplanet hosts 17 Bonfils, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Delfosse, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Udry, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2013, A&A, 549, A109 Bonfils, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mayor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Delfosse, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2007, A&A, 474, 293 Bonsor, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Jofr´e, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Shorttle, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2021, MNRAS, 503, 1877 Bowler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016, PASP, 128, 102001 Buchhave, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Bizzarro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Latham, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2014, Nature, 509, 593 Buchhave, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Latham, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Johansen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2012, Nature, 486, 375 Carlos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mel´endez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Spina, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2019, MNRAS, 485, 4052 Dawson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Chiang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Lee, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2015, MNRAS, 453, 1471 Endl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Cochran, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', K¨urster, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2006, ApJ, 649, 436 Fischer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' & Valenti, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2005, ApJ, 622, 1102 Fortney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Marley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Barnes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2007, ApJ, 659, 1661 Ghezzi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Cunha, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Smith, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2010, ApJ, 720, 1290 Gonzalez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 1997, MNRAS, 285, 403 Grandjean, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Lagrange, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Meunier, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2021, A&A, 650, A39 Howard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Marcy, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Bryson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2012, ApJS, 201, 15 Howard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Marcy, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Johnson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2010, Science, 330, 653 Hsu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Ford, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Ragozzine, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Ashby, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2019, AJ, 158, 109 Hsu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Ford, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Terrien, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2020, MNRAS, 498, 2249 Ida, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' & Lin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2004, ApJ, 604, 388 Johnson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Aller, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Howard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Crepp, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2010, PASP, 122, 905 Jones, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Jenkins, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Brahm, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016, A&A, 590, A38 Laughlin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Bodenheimer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Adams, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2004, ApJ, 612, L73 Laws, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Gonzalez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Walker, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2003, AJ, 125, 2664 Maia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mel´endez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Lorenzo-Oliveira, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Spina, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Jofr´e, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2019, A&A, 628, A126 Maldonado, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Micela, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Baratella, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2020, A&A, 644, A68 Mayor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Marmier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Lovis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2011, arXiv e-prints, arXiv:1109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2497 Mel´endez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Asplund, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Gustafsson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Yong, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2009, ApJ, 704, L66 Mordasini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Alibert, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Klahr, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Henning, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2012, A&A, 547, A111 Mortier, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Santos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Sousa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2013, A&A, 557, A70 Mulders, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Pascucci, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Apai, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2015, ApJ, 798, 112 Mulders, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Pascucci, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Apai, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Frasca, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Molenda- ˙Zakowicz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016, AJ, 152, 187 Naud, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Artigau, ´E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Doyon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2017, AJ, 154, 129 Nissen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Silva Aguirre, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Christensen-Dalsgaard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2017, A&A, 608, A112 Oh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Brewer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2018, ApJ, 854, 138 Osborn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' & Bayliss, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2020, MNRAS, 491, 4481 Poleski, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Skowron, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mr´oz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2021, Acta Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', 71, 1 Pollack, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Hubickyj, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Bodenheimer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 1996, Icarus, 124, 62 Ram´ırez, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mel´endez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Cornejo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Roederer, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Fish, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2011, ApJ, 740, 76 Reffert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Bergmann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Quirrenbach, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Trifonov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & K¨unstler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2015, A&A, 574, A116 Rojas-Ayala, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Covey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Muirhead, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Lloyd, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2012, ApJ, 748, August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 18 18 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala 93 Saffe, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Flores, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Jaque Arancibia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Buccino, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Jofr´e, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016, A&A, 588, A81 Santos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Israelian, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Mayor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2004, A&A, 415, 1153 Santos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Israelian, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mayor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Rebolo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Udry, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2003, A&A, 398, 363 Schlaufman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2015, ApJ, 799, L26 Seager, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Kuchner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Hier-Majumder, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Militzer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2007, ApJ, 669, 1279 Shvartzvald, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Maoz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Udalski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016, MNRAS, 457, 4089 Sousa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Santos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mayor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2008, A&A, 487, 373 Spina, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Sharma, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mel´endez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2021, Nature Astronomy Terrien, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Mahadevan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Bender, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2012, ApJ, 747, L38 Teske, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Khanal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Ram´ırez, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016a, ApJ, 819, 19 Teske, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Shectman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Vogt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2016b, AJ, 152, 167 van der Marel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' & Mulders, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2021, AJ, 162, 28 Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' & Fischer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2015, AJ, 149, 14 Wetherill, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 1994, Ap&SS, 212, 23 Zuckerman, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Melis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Klein, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', Koester, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', & Jura, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 2010,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' ApJ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 722,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 725 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='August 2022 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1:42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='ws-rv9x6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Planetary Systems Now ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='brojasayala ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='page 19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='The exoplanet hosts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡5 ¡4 ¡3 ¡2 ¡1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡5 ¡4 ¡3 ¡2 ¡1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡5 ¡4 ¡3 ¡2 ¡1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Radial Velocity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='(a) 5 pc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Radial Velocity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Transits ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Direct Imaging ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='(b) 20 pc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Radial Velocity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Transits ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Direct Imaging ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Microlensing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='(c) 500 pc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡4000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='6000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='8000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡4000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='¡2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='4000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Radial Velocity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Transits ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Direct Imaging ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Microlensing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='(d) All systems ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The three-dimensional positions of all planet hosts in the NASA Exoplanet Archive up to October 30th 2021, color-coded by the discovery technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 20 20 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Rojas-Ayala Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The planet-metallicity correlation: The iron metallicity distributions for planet host stars (hashed histogram) compared with the distributions of a volume-limited sam- ple of stars (upper-left) and of all the stars in the CORALIE program with at least 5 radial-velocity measurements (lower left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The percentage of planet hosts found amid the stars in the CORALIE sample as a function of stellar metallicity is shown in the lower- right plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Credit: Santos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', A&A, 415, 1153, 2004, reproduced with permission ©ESO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' August 2022 1:42 ws-rv9x6 Planetary Systems Now brojasayala page 21 The exoplanet hosts 21 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The planet- stellar mass correlation: Planet occurrence rate as a function of stellar mass for giant stars, ignoring the effect of stellar metallicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The filled histogram shows secure planets, whereas the open histogram includes planet candidates as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The solid line denotes the best fit to the mass dependence of the giant planet occurrence rate computed for solar metallicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' The black dots correspond to the same model, but the true metallicity distribution within each bin has been taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' Credit: Reffert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=', A&A, 574, A116, 2015, reproduced with permission ©ESO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 35 planets 30 candidateplanets Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3, bin mean Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} +page_content=' 3, [Fe/H] = 0 25 rate occurrence 20 15 planet 10 5 3 stellar mass [Msun]' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf'} diff --git a/itAzT4oBgHgl3EQf4v7P/content/tmp_files/2301.01850v1.pdf.txt b/itAzT4oBgHgl3EQf4v7P/content/tmp_files/2301.01850v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..aa9a7099e3007c6e44d05fa1beacdd76a5ce3333 --- /dev/null +++ b/itAzT4oBgHgl3EQf4v7P/content/tmp_files/2301.01850v1.pdf.txt @@ -0,0 +1,792 @@ +IEEE Copyright Notice + +© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained +for all other uses, in any current or future media, including reprinting/republishing this material for +advertising or promotional purposes, creating new collective works, for resale or redistribution to +servers or lists, or reuse of any copyrighted component of this work in other works + + + + + +Accepted to be published in: The 69th Annual Reliability and Maintainability Symposium, January +23-26, 2023, FL, USA. + + + + + + + + + + +Bayesian Weapon System Reliability Modeling with Cox-Weibull +Neural Network +Benny Cheng*, PhD, Naval Surface Warfare Center- Corona +Michael Potter*, MS, Naval Surface Warfare Center – Corona +* Denotes equal contributions +Key Words: Neural Network, Cox-Weibull, Bayesian, Weibull, Reliability Modeling +ABSTRACT +We propose to integrate weapon system features (such as +weapon system manufacturer, deployment time and location, +storage time and location, etc.) into a parameterized Cox- +Weibull [1] reliability model via a neural network, like +DeepSurv [2], to improve predictive maintenance. In parallel, +we develop an alternative Bayesian model by parameterizing +the Weibull parameters with a neural network and employing +dropout methods such as Monte-Carlo (MC)-dropout for +comparative purposes. Due to data collection procedures in +weapon system testing we employ a novel interval-censored +log-likelihood which incorporates Monte-Carlo Markov Chain +(MCMC) [3] sampling of the Weibull parameters during +gradient descent optimization. We compare classification +metrics such as receiver operator curve (ROC), area under the +curve (AUC), and F scores and show that our model generally +outperforms traditional powerful models such as XGBoost as +well as the current standard conditional Weibull probability +density estimation model. +1 INTRODUCTION +Survival Analysis techniques are ubiquitous in medical +applications for survival curve estimation from clinical trials, +treatment recommendations to extend life expectancy, and +covariate exploration, to name a few [1,4,5,6]. Recent trends in +Machine Learning/Artificial Intelligence (ML/AI) have +transitioned from standard survival models such as the linear +Cox proportional hazards model to deep nonlinear Cox +proportional hazards models to capture the increasingly +complex relationships between covariates [2,7, 8]. +In the case of weapon systems, current failure time +reliability modeling practices utilize only a few features, such +as the weapon age and the last time since recertification test +(tslrt). As a case study of incorporating more informative +features, we assume a nonhomogeneous Poisson process +(NHPP) and model the reliability of a weapon system as a +Bayesian Weibull probability model with said features, where +the posterior of the Weibull parameters is estimated with +Monte-Carlo Markov Chain (MCMC) sampling with carefully +chosen prior distributions on the parameters. +Understanding population failure statistics via Weibull +model parameters is important, but this formulation alone can +lead to less-than-optimal individual predictive maintenance +because many likely important features are not incorporated, +such as weapon manufacturers, times at location, storage +locations, and so on. To address these issues, we use our +Weibull inductive bias (including the deployed population +failure statistics) and incorporate informative weapon systems +features via a Cox-Weibull survival analysis that uses a neural +network to integrate the complex weapon system features. To +the best of our knowledge, we are the first to develop Bayesian +Deep Cox-Weibull reliability models for weapon systems in the +Navy. +The paper is organized as follows: section 3 discusses the +data formulation and notation for our weapon system dataset. +Section 4 describes our novel model architecture and the +comparative baseline models. Section 5 outlines how we +formulate a Bayesian model with the Neural Network aspect, +and section 6 outlines how we train the aforementioned models. +Section 7 and section 8 highlight our results compared to +benchmark Survival Analysis models, and section 9 outlines +future work. +2 RELATED WORK +The current predominant practice in failure time reliability +modeling with multiple features involve linear regressions of +the covariates as parameters of the reliability model [9,10]. For +example, a popular method with Weibull (scale, shape) +parameters (𝜆, 𝑐)is to incorporate the features 𝑥 as 𝜆 = 𝜆(𝑥) = +𝑒𝑥𝑇𝛽, where 𝛽 are additional parameters to be estimated. +Similar techniques are applied for other common models such +as logistic and Poisson reliability models [11]. Proportional +hazard (PH) models for reliability are less common and found +mostly in medical applications to survival data [12]. All of these +models are very much limited by the number of features that +they can handle, and with only a handful of significant +covariates at most. Furthermore, for Bayesian inference, +assigning priors to all the feature parameters is quite +impractical. With hundreds of features that are available for +analysis, it is natural to approach this task from an ML/AI +perspective. +3 NOTATION AND DATA FORMULATION +• +X: matrix +• +x: vector + +• +x: scalar +• +𝑑𝑖𝑎𝑔([1,2, … , 𝑁]) = [ +1 +0 +0 +0 +⋱ +0 +0 +0 +𝑁 +] +• +{}: set +• +𝒙𝒊: individual record of data ∈ ℝ1×𝑑 +• +𝑇: random variable denoting weapon system time to failure +The weapon system dataset contains n samples and follows +a +relational +form += (𝑿 ∈ ℝ𝒏×𝒅, 𝒚 ∈ {0,1}𝑛×1, 𝒕𝟏 ∈ +ℝ𝒏×𝟏, 𝒕𝟐 ∈ ℝ𝑛×1) , where 𝑿 denotes the matrix of d- +dimensional features of all samples. Each binary scalar element +of labels y denotes a weapon system functionality test 𝒚𝒊 ∈ +{0,1}, where 1 denotes failure and 0 denotes pass. The weapon +system total age is denoted by 𝑡2𝑖 ∈ [0, ∞], and the time interval +the weapon system is in the fleet between recertification tests +(the outbound test and the inbound test) is denoted by tslrt. The +age of the weapon system at the previous recertification test is +then 𝑡1 = 𝑡2 − 𝑡𝑠𝑙𝑟𝑡, where 𝑡1𝑖 ∈ [0, ∞]. An example timeline +of the weapon system data collection is shown in Figure 1, +where 𝑡1 = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 and 𝑡2 = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑏𝑜𝑢𝑛𝑑. Due to +nature of the data collection process, our data is interval +censored (and right censored) because we do not know when +the weapon system failed between the current outbound and +current inbound test. A dataset sample (𝒙𝒊, 𝑦𝒊) denotes the +measured features and test result of a specific weapon system at +time 𝑡2𝑖. We have over 250 continuous, ordinal, and categorical +features as inputs for n>10000 samples. More details of the +weapon system may not be disclosed due to the sensitive nature +of Navy systems. +When training the neural network to learn the Cox-Weibull +reliability model, the data is batched for gradient descent, where +a batch of data is denoted as 𝑿𝒃 = {(𝒙𝒊, 𝒚𝒊, 𝑡1𝑖, 𝑡2𝑖): 𝑖~𝐷} where +𝑖 is randomly sampled with replacement from the dataset until +|𝑿𝒃| = batch size 𝑏. + +4 SURVIVAL ANALYSIS FOR COX-WEIBULL MODEL +We formulate the initial probability that the weapon system +will pass the test up to time 𝑡2 via the Weibull probability +density function (pdf) in Equation (1): + +𝑆0(𝑡2) = 𝑝[𝑇 > 𝑡2] = 𝑒−(𝜆𝑡2)𝑐, + + (1) + +where 𝜆,𝑐 are the rate and shape parameters of the Weibull pdf, +respectively. +We incorporate weapon system features at time 𝑡2, such as +time at sea, manufacturer, time inbound, to formulate a non- +linear Cox-Weibull survival model [13,2] given by Equation +(2): + +𝑝[𝑇 > 𝑡2|𝒙] = 𝑆0(𝑡2)𝑒𝐻𝜽(𝒙) = 𝑒−(𝜆𝑡2)𝑐𝑒𝐻𝜽(𝒙) , +(2) + +where 𝐻𝜽 is a shallow fully-connected Neural Network, and we +denote 𝑠𝑐𝑜𝑟𝑒 = 𝐻𝜽(𝒙). +We formulate a conditional Cox-Weibull survival model +(Equation (3)) to ensure that we only consider the time related +to the weapon system circulating in the fleet, and not in +storage/maintenance, as a weapon system is fixed and retested +for certification until pass at 𝑡1. + +𝑝[𝑇 > 𝑡2|𝑇 > 𝑡1, 𝒙] = 𝑒(𝑡1𝑐−𝑡2𝑐)𝜆𝑐𝑒𝐻𝜽(𝒙) +(3) + +To classify individual weapon systems as pass or fail at time 𝑡2, +we threshold the conditional survival probability as: + +𝑦̂ = 𝑝[𝑇 > 𝑡2|𝑇 > 𝑡1, 𝒙] > .5 + + (4) + +Following the Anderson-Gill recurrent event method, we +assume no specific dependence structure among the recurrent +intra-weapon system events, and therefore, our model assumes +that each unique weapon system has a risk for a 𝑗𝑡ℎ failure from +𝑡 = 0 onwards irrespective of whether a (𝑗 − 1)𝑡ℎ event has +already been observed [14,15,16]. Thus, for each unique +weapon system, we assume that the instantaneous risk to +experience an event at time 𝑡 remains the same irrespective of +whether previous events have occurred or not, which is a +common technique in conditional or marginal survival models +for machinery. Therefore, we say recurrent events are assumed +to be conditionally independent given the features at time 𝑡, +motivated by the fact that at recertification time, weapon +systems are fixed/adjusted to act as if the event (failure/issues) +has never occurred and the history is encompassed in the +features; this is also a Markovian assumption. + +5 NEURAL NETWORK ARCHITECTURES +We have two formulations for the Neural Network: 1. the +Weibull parameters λ, c are estimated via MCMC posterior +sampling or maximum likelihood (Figure 2) which we denote +as MCMC Cox-Weibull, and 2. the Weibull parameters are +estimated by another Neural Network (Figure 3) which we +denote as Monte-Carlo(MC)-Dropout Cox-Weibull. + + MCMC Posterior Sampling: We use the No-U-Turn +Sampler [17] for MCMC sampling of the posterior on the +Weibull parameters 𝜆,𝑐 (Equation (5)) with a burn-in of 2000 +samples and default number of draws (500) with good results. +The MCMC posterior samples are generated prior to gradient +descent optimization of the neural network, where the number +of samples needed is 𝑁 = # 𝐵𝑎𝑡𝑐ℎ𝑒𝑠 × # 𝐸𝑝𝑜𝑐ℎ𝑠. +Figure 1. Weapon System Lifecycle, where the green plus +indicates a passed test, and a red x denotes a failure + +test not recorded in dataset (refresh) +x +tprevious +t +current +t current +inbound +outbound +inbound +T +儿 +The weapon system is +tslrt +taken out of the fleet for +maintenance/storage +The weapon system is +injected into the fleet +The posterior on the Weibull parameters is given by: + +𝑝[𝜆, 𝑐|𝐷𝑎𝑡𝑎]~𝑝[𝐷𝑎𝑡𝑎|𝜆, 𝑐]𝑝[𝑐]𝑝[𝜆|𝑐] +(5) + +Due to the proprietary nature of Navy weapon systems, we +cannot disclose the prior distributions. The 𝑠𝑐𝑜𝑟𝑒 is calculated +from a shallow Neural Network 𝐻𝜽. + +MC-Dropout: Rather than using MCMC sampling to acquire +the Weibull parameters, we develop a multi-task Neural +Network (Figure 3) that simultaneously predicts the Weibull +parameters 𝜆 , 𝑐 and the 𝑠𝑐𝑜𝑟𝑒. MC-Dropout Cox-Weibull has +a base sequence of fully connected layers 𝐻𝚯, a task branch 𝐻𝜙 +that estimates the Weibull parameters, and a 𝑠𝑐𝑜𝑟𝑒 branch 𝐻𝜽. +The base branch outputs a latent feature representation, 𝑧 = +𝐻𝚯(𝑥), that is input to each task branch. +Prior to every fully connected layer in the Neural Network, +we add dropout (𝑝𝑙), where 𝑝𝑙 denotes the dropout rate for layer +𝑙 in the Neural Network. Since we assume there are true +underlying Weibull parameters 𝜆, 𝑐 that generates the +pass/failure data as a function of time, we average the 𝜆𝑖, 𝑐𝑖 +generated for each weapon system sample 𝒙𝒊 in the batch to +produce population wide statistics. + +𝐻𝝓(𝒁𝒃) = 𝝀𝒃, 𝒄𝒃 ; 𝝀𝒃, 𝒄𝒃 ∈ ℝ𝒃×𝟏 +(6) +[𝜆, 𝑐] = [𝝀𝒃 +̅̅̅, 𝒄𝒃 +̅̅̅] ∈ ℝ𝟏×𝟐 + +(7) + +Unlike the traditional Cox-partial log likelihood objective +function used to optimize Cox-Weibull survival models, which +conveniently drops the Weibull parameters from the +optimization +formulation, +MC-Dropout +Cox-Weibull +optimization includes the parametrized Weibull parameters. + +Dropout: [18] has shown that by adding dropout before every +fully-connected layer in a Neural Network that the Neural +Network objective function may approximate a Bayesian +Gaussian Process and provide confidence intervals for each +prediction. Let us denote 𝚽 = {𝝓, 𝜽, 𝚯} as all the neural +network parameters. Then, + +𝑴~𝑑𝑖𝑎𝑔 ({𝑘𝑙𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑙)}𝑗=1 +# 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑙) (8) +𝚽′𝒍 = 𝚽𝒍 + 𝑴 + + +(9) +Furthermore, we assume a small weight decay is employed +which appears from the prior distribution on the weights +(Equation (10)), where 𝛼 controls the strength of the weight +decay. +𝑝(𝚽) = 𝑁 (0, +1 +𝛼 𝐼) + +(10) + +Then, [18] shows that the prior distribution and dropout +combine to form a variational approximation for a Bayesian +Gaussian Process, where adding dropout gives a variational +approximation on the intractable posterior on the Neural +Network weight distribution. Despite the approximating +distribution being a sum of two-point masses, where each point +mass has zero variance, the mixture does not have zero +variance. Thus, the variance of the Bernoulli random variable +being transformed through the Neural Network enables +complex distributions over the score, 𝐻Φ′(𝑥) [18]. +6 BAYESIAN INFERENCE +As suggested by the model architecture names, we have +two methods for developing Bayesian models: MCMC +posterior sampling on the Weibull parameters, using dropout +before every fully connected layer in the neural network, or +combining MCMC posterior sampling and dropout. + +During inference time, we employ Bayesian Model +Averaging (BMA) with respect to the Weibull parameters +and/or the Neural Network weights (𝚽 = {𝛉, 𝚯} from here on) +for more robust predictions (Equations (11-12)). + +𝑝𝐵𝑀𝐴[𝑦 = 1|𝒙𝒏𝒆𝒘, 𝑡1 𝑛𝑒𝑤, 𝑡2 𝑛𝑒𝑤 ] = +∫ 𝑝(𝑦 = 1|𝚽, 𝜆, 𝑐, 𝒙𝒏𝒆𝒘, 𝑡1 𝑛𝑒𝑤, 𝑡2 𝑛𝑒𝑤)𝑝(𝚽|𝐷)𝑝(𝜆, 𝑐|𝐷) 𝑑𝚽𝑑𝜆 𝑑𝑐 (11) + +≈ +1 +𝑁 ∑ +𝑝(𝑦|𝚽′𝒊, 𝜆𝑖, 𝑐𝑖, 𝒙𝑛𝑒𝑤, 𝑡1 𝑛𝑒𝑤, 𝑡2 𝑛𝑒𝑤) +𝑁 +𝑖=1 + += +1 +𝑁 ∑ +1 − 𝑒(𝑡1 𝑛𝑒𝑤 +𝑐𝑖 +−𝑡2 𝑛𝑒𝑤 +𝑐𝑖 +)𝜆𝑖 +𝑐𝑖𝑒 +𝐻𝚽𝑖 +′(𝒙𝒏𝒆𝒘) +𝑁 +𝑖=1 + +(12) + + +Figure 3. MCMC Cox-Weibull Model Architecture + + +Figure 2. MC-Dropout Cox-Weibull Model Architecture + +X +arkovChain(CorrelatedSamplesfrc +二 +Rejected Proposal +RBx1 +Cox-Weibull Loss Function +L(a,C,scorei,tit2i,y)三 +Softplus +Average Across axis 0 +Cox-Weibull Loss Function +L(a,c,scorei,tii,t2iyi)7 TRAINING +We partition the training and test data into an 80%-20% +split respectively, and then use 20% of the training data as the +validation data for early stopping during stochastic gradient +descent (SGD). We stratify the data partitions by the binned +weapon system age and the recertification test results. We keep +a running window average of 5 epochs on the validation ROC- +AUC and stop at the highest average ROC-AUC. We use a large +batch size of 512 to increase the likelihood of sampling negative +samples in each batch due to the highly unbalanced distribution +of labels in the dataset, and the ADAM optimizer for the log +likelihood optimization. The MCMC + MC-Dropout Cox- +Weibull architecture consists of three hidden layers (50-25-25 +neurons) with Leaky ReLU activations except at the last hidden +layer, and a dropout rate of 0.01. MC-Dropout Cox-Weibull’s +has a base branch of two hidden layers (50-25 neurons) with +Leaky ReLU activations, a task branch of one hidden layer (25 +neurons) with a softplus activation (𝜆 ≥ 0, 𝑐 ≥ 0), and a 𝑠𝑐𝑜𝑟𝑒 +branch with a hidden layer (25 neuron), and a dropout rate of +0.1. + +The log-likelihood objective function (we write for the +combination of MCMC + Dropout) is cross-entropy (CE) with +𝑃(𝑦 = 1) equal to Equation (3) and ℓ2 regularization on the +Neural Network weights 𝚽: + +𝑚𝑖𝑛 +𝚽 −(∑ 𝐵𝐶𝐸 (𝑝𝐵𝑀𝐴(𝑦𝑖 = 1|𝒙𝑖,𝑡1 𝑖, 𝑡2 𝑖), 𝑦𝑖) +𝑖 +− +𝛼 +2 ‖𝚽‖𝟐 +𝟐) +(13) + +where BCE is the binary cross entropy. + +Depending on the model architecture selected, small +modifications on Equation (13) are made such as how 𝜆, 𝑐 are +calculated and the set of Neural Network weights 𝚽 containing +a combination of {𝝓, 𝜽, 𝚯}. +8 RESULTS +All the results in Table 1 are calculated as the mean percent +change with respect to the conditional Weibull pdf (𝑉1) to 𝑉2: + +%Δ = +(𝑉2−𝑉1) +|𝑉1| +× 100 + +(14) + +All results were averaged over 10 runs, with each run having a +different data partition (and random number seed. Compared to +the current practice of conditional Weibull pdf, we show that +MCMC posterior sampling and MC-Dropout parameterizing a +Cox-Weibull survival model (𝜆, 𝑐 are sampled from MCMC, +not 𝐻𝝓) gives superior performance with respect to all metrics. +Moreover, our approach leads to large gains in all positive class +metrics, along with equal performance in all negative class +metrics when comparing to the state-of-the-art XGBoost +classifier and stochastic variational inference mean field +approximation (SVI MFA). We follow [1] to formulate the +Weibull regression model for survival analysis as a comparison +baseline and minimize the ELBO using stochastic gradient +descent. As the dataset contains an order of magnitude fewer +fail test results compared to pass test results, and therefore, +having a higher precision, recall, and F score for the positive +class is critical. We have slightly lower ROC-AUC and +Precision-Recall (PR)-AUC compared to XGBoost. That said, +when subject matter experts (SMEs) select a subset of important +features (approximately 20 features from the 250 features), the +ROC-AUC and PR-AUC become higher than XGBoost (Table +2). As expected, all methods outperform the conditional +Weibull pdf, because the conditional Weibull pdf only uses +weapon system age and tslrt as features. +We generate survival curves (Figure 4), and show that +introducing features induces a lower reliability over time than +the conditioned Weibull probability density without features, +which is expected according to SMEs. + +Table 1 - Relative Percent Change with Respect to the +conditional Weibull pdf. Bold is best, underline is second best. +Model +P1 +R1 +F1 +P0 +R0 +F0 +ROC +AUC +PR +AUC +𝑪𝒕𝒅 +Conditional +Weibull +pdf +0 +0 +0 +0 +0 +0 +0 +0 +0 +MCMC +369.44 +16.67 +16.67 +0 +1.01 +0.62 +9.83 +42.43 +5.69 +MC- +Dropout +-100 +-100 +-100 +0 +1.01 +0.62 +5.61 +16.30 +- +2.10 +MCMC + +MC- +Dropout +344.44 +16.67 +16.67 +0 +1.01 +0.62 +9.84 +43.82 +5.75 +XGBoost +-100 +-100 +-100 +0 +1.01 +0.62 +12.8 +52.05 +2.19 +SVI MFA +547.22 +-33.33 +-33.33 +0 +1.01 +0.62 +6.13 +19.65 +0.19 + + +Figure 4. Survival Curves for conditional Weibull pdf and +MCMC + MC-Dropout Cox-Weibull Model on the subset of +selected features +Table 2 - ROC-AUC and PR-AUC for subset of selected features for +Relative Percent Change with Respect to the conditional Weibull pdf. +Bold is best, underline is second best. +Model +ROC +AUC +PR +AUC +Conditional Weibull pdf +0 +0 +MCMC +12.77 +54.29 +MC-Dropout +6.27 +15.91 + +COX-WEIBULL NN +MCMC +20-80 Quantiles COX-WEIBULL NN +Survival Probability +TimeMCMC + MC-Dropout +12.79 +54.54 +XGBoost +11.9 +46.10 +SVI MFA +11.84 +78.86 + + +Furthermore, we evaluate a time-dependent concordance +index 𝐶𝑡𝑑 (equation (15)) [7] to see if randomly selected pairs +in our data where the weapon system with the shorter observed +failure time has a higher probability of failure predicted by the +model. We follow Somers'd method which treats ties in time as +incomparable, but pairs tied in probability of failure as .5 counts +[19]: + +𝐶𝑡𝑑 += +∑ +(1 +2 𝕀[𝑓𝑖(𝒙𝑖, Δ𝑗) = 𝑓𝑗(𝒙𝑗,Δ𝑗)] + 𝕀[𝑓𝑖(𝒙𝑖, Δ𝑗) < 𝑓𝑗(𝒙𝑗,Δ𝑗)]) 𝕀[Δ𝑖 > Δ𝑗]𝑦𝑗 +𝑖≠𝑗 +∑ +𝕀[Δ𝑖 > Δ𝑗]𝑦𝑗 +𝑖≠𝑗 + +≈ 𝑃(𝑓𝑖(𝒙𝑖, Δ𝑗) < 𝑓𝑗(𝒙𝑗, Δ𝑗)|Δ𝑖 > Δ𝑗), +(15) + +where Δ is with respect to tslrt (and is halved if the weapon +system +event +is +a +failure), +𝑓𝑖(𝒙𝑖, Δ𝑗) = +𝑃(𝑇 < 𝑡𝑖 + Δ𝑗|𝑇 > 𝑡𝑖, 𝒙𝑖), and 𝑦𝑗 = 1 if a failure event occurs +and 0 otherwise. We evaluate the time-dependent concordance +index with respect to the baseline conditional Weibull pdf +(Table 2). We note that XGBoost may be lower in time +dependent concordance index due to how ties in score are +counted, since XGBoost does not use the time variable in many +leaf splits and does not have a continuous spectrum for +probability predictions. Furthermore, when many features were +used for SVI MFA, there was convergence issues leading to +worse than expected performance. This may be from the +variance in computing the ELBO and consequentially the +gradients from particle sampling. +Since Neural Networks are considered black-boxes with +little interpretability, we +implement SHaply Additive +exPlanations (SHAP) [20] to understand which features of our +dataset are globally important for model classification (Figure +5). + +Figure 5. SHapley Additive exPlanations (SHAP) Feature +Importance Plot for MCMC + MC-Dropout Cox-Weibull +Model +The top four input features are in alignment with our Navy +SMEs beliefs. +9 CONCLUSION +We successfully incorporated weapon system features in +reliability models while ensuring the weapon system reliability +model is Bayesian on the Neural Network weights and the +Weibull parameters. We significantly improve weapon systems +predictive maintenance metrics from the previous reliability +methods, and even outperform XGBoost which is the default +classifier of choice for relational databases. +10 FUTURE WORK +There are several directions we wish to explore in future +work to improve our model design and performance. Currently, +since the weapon system is repaired in maintenance/storage and +not released back into the population unless it has passed +recertification test, our conditional survival model assumes the +weapon system did not fail up to 𝑡1. To improve this +assumption, correlating repeated failures for the same weapon +system, we can add a multiplicative exponential term to the +failure rate 𝜆 such that after every “refresh” at certification the +failure rate increases: + +𝜆′ = (𝛽)|{𝑖 :𝑎𝑙𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑓𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑚𝑖𝑠𝑠𝑖𝑙𝑒 ∩ 𝑡𝑖<𝑡2}|𝜆 (15) + +which creates an accelerated failure model with 𝛽 > 1. +Alternatively, the introduction of an improved design to fix the +failure mode can result in a lower failure rate, with 0< 𝛽 < 1. +Model training stability could be improved by optimizing +the hyperparameter search, reducing the number of categorical +feature noise which may lead to overfitting and extremely +sparse features, and improving numerical computation for +backpropagation by re-parametrization tricks of the Neural +Network or objective function. +The most interesting future work we will develop is how to +model the intra-individual correlation between repeat events +and/or use time-dependent covariate analysis. This complicates +the model formulation and may deviate from less complex +proportional hazard models +11 SOFTWARE +All code was written in Python using python packages +MLFlow, PyTorch, NumPy, Pandas, PyMC, sklearn, lifelines, +scikit-survival, pyro, shap, and xgboost. +ACKNOWLEDGEMENTS +Michael Potter and Dr. Benny Cheng were funded by +Naval Innovative Science & Engineering (NISE) 6.1 basic +research funding. We would like to thank the anonymous +referees for their detailed comments and improvements to the +paper, and to Nicole Chik and Edward Schuberg for their +reviews. We additionally thank Van Nguyen for continued +support and leadership. +REFERENCES +1. Joseph G Ibrahim, "Bayesian Survival Analysis." Springer +Series In Statistics, p31-35, 2010. +2. J. +Katzman, +“DeepSurv: +Personalized +Treatment + +Manufacturers +Ship Weapon +System +Is Stored OnRecommender System Using A Cox Proportional Hazards +Deep Neural Network”, International Conference of +Machine Learning Computational Biology Workshop, +2016. +3. D. Gamerman, “Markov Chain Monte Carlo”, Chapman & +Hall, CRC, 2002. +4. Thomas R. Fleming, “Counting Processes and Survival +Analysis”, Wiley Series in Probability and Statistics, 1991 +5. Louis L. Nguyen, “Rutherford’s Vascular Surgery and +Endovascular Therapy, Chapter Epidemiology and +Research Methedology”, Elsevier ClinicalKey, 2019. +6. H.D. Tolley, “Forensic Epidemiology Principles and +Practice. Chapter 10 – Survival Analysis”, Academic +Press, 2016. +7. C. Lee, “Dynamic-DeepHit: A Deep Learning Approach +for Dynamic Survival Analysis with Competing Risks +based on Longitudinal Data”, IEEE Transactions on +Biomedical Engineering, February 2019. +8. Changhee Lee, “DeepHit: A Deep Learning Approach to +Survival Analysis with Competing Risks”, Association for +the Advancement of Artificial Intelligence (AAAI) +Proceedings, February 2018. +9. Frank E Harrell, Jr.,”Regression Modeling Strategies With +Applications to Linear Models, Logistic and Original +Regression and Survival Analysis (Second Edition)”, +Springer Series in Statistics, 2015. +10. D. R. Cox, “Regression Models and Life-Tables”, Journal +of the Royal Statistcal Society: Series B Volume 34, Issue +2 p. 187-202, January 1972. +11. M. S. Hamada, A. G. Wilson, C. S. Reese, H. F. Martz, +“Bayesian Reliability”, Springer, 2010. +12. M. J. Crowder, A.C. Kimber, R. L. Smith, and T. J. +Sweeting, “Statistical Analysis of Reliability Data”, +Chapman & Hall, CRC, 1991. +13. G. Rodriguez, WWS 509 – Generalized Linear Statistical +Models, Princeton, 2016 Chapter 7. +14. A. Buhler, “Comparison of Time-to-First-Event and +Recurrent Event Methods in Multiple Sclerosis Trials,” +Ulm University Faculty Of Mathematics and Economics. +15. L. D Amorim, “Modelling recurrent events: a tutorial for +analysis in epidemiology,” International Journal of +Epidemiology, February 2018. +16. A. Ozga, “A systematic comparison of recurrent event +models for application to composite endpoints,” BMC +Medical Research Methodology, January 2018. +17. M. D. Hoffman, “The No-U-Turn Sampler: Adaptively +Setting Path Lengths in Hamiltonian Monte Carlo,” +Journal of Machine Learning Research 15, 2014, pp 1351- +1381. +18. Y. Gal, “Dropout as a Bayesian Approximation: +Representing Model Uncertainty in Deep Learning”, +Proceedings of the 33rd International Conference on +Machine Learning,” New York, USA, 2016. +19. Ross L Prentice, "A qualitative discrepancy between +censored data rank tests." Biometrics, 35(4):861-867, 1979 +20. Christoph Molnar, “Interpretable Machine Learning: A +Guide for Making Black Box Models Explainable, Second +Edition”, 2019 +BIOGRAPHIES +Michael L. Potter, MS, +Department Acquisition Readiness 43 +Naval Surface Warfare Center - Corona +1999 Fourth St +Norco, California 92860 USA + +e-mail: michael.l.potter40.civ@us.navy.mil + +Michael Potter has worked as an Electronics Engineer at the +Naval Surface Warfare Center – Corona Division for over a +year developing Machine Learning models. He has earned his +bachelors and masters degree in Electrical and Computer +Engineering at Northeastern University in 2020, and his +second masters degree at the University of California Los +Angeles in Electrical and Computer Engineering in 2022. +Michael Potter’s research interests are in recommendation +systems, computer vision, linear dynamics, and deep learning. + +Benny N. Cheng, PhD +Department Acquisition Readiness 43 +Naval Surface Warfare Center - Corona +1999 Fourth St +Norco, California 92860 USA +e-mail: benny.n.cheng.civ@us.navy.mil +Benny Cheng is a senior Scientist at the Naval Surface +Warfare Center, Corona Division, a component of the Naval +Sea Systems Command, and is the US Navy's only +independent analysis and assessment center. He earned his +doctoral degree in Mathematics at the Massachusetts Institute +of Technology in 1987, a doctoral degree in Applied Statistics +at the University of California, Santa Barbara in 1995, and his +bachelor’s degree at the University of California, Berkeley. +Prior to this position, he was a scientist at the NASA Jet +Propulsion Laboratory conducting research in spectral analysis +and oceanography. Dr. Cheng’s current research activities are +centered mainly on reliability and reliability engineering + + diff --git a/itAzT4oBgHgl3EQf4v7P/content/tmp_files/load_file.txt b/itAzT4oBgHgl3EQf4v7P/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a93239616ecbd6dfb1acb2d16d9846a4681b112c --- /dev/null +++ b/itAzT4oBgHgl3EQf4v7P/content/tmp_files/load_file.txt @@ -0,0 +1,261 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf,len=260 +page_content='IEEE Copyright Notice © 2023 IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Personal use of this material is permitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works Accepted to be published in: The 69th Annual Reliability and Maintainability Symposium, January 23-26, 2023, FL, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Bayesian Weapon System Reliability Modeling with Cox-Weibull Neural Network Benny Cheng*, PhD, Naval Surface Warfare Center- Corona Michael Potter*, MS, Naval Surface Warfare Center – Corona Denotes equal contributions Key Words: Neural Network, Cox-Weibull, Bayesian, Weibull, Reliability Modeling ABSTRACT We propose to integrate weapon system features (such as weapon system manufacturer, deployment time and location, storage time and location, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=') into a parameterized Cox- Weibull [1] reliability model via a neural network, like DeepSurv [2], to improve predictive maintenance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' In parallel, we develop an alternative Bayesian model by parameterizing the Weibull parameters with a neural network and employing dropout methods such as Monte-Carlo (MC)-dropout for comparative purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Due to data collection procedures in weapon system testing we employ a novel interval-censored log-likelihood which incorporates Monte-Carlo Markov Chain (MCMC) [3] sampling of the Weibull parameters during gradient descent optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We compare classification metrics such as receiver operator curve (ROC), area under the curve (AUC), and F scores and show that our model generally outperforms traditional powerful models such as XGBoost as well as the current standard conditional Weibull probability density estimation model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 1 INTRODUCTION Survival Analysis techniques are ubiquitous in medical applications for survival curve estimation from clinical trials, treatment recommendations to extend life expectancy, and covariate exploration, to name a few [1,4,5,6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Recent trends in Machine Learning/Artificial Intelligence (ML/AI) have transitioned from standard survival models such as the linear Cox proportional hazards model to deep nonlinear Cox proportional hazards models to capture the increasingly complex relationships between covariates [2,7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' In the case of weapon systems, current failure time reliability modeling practices utilize only a few features, such as the weapon age and the last time since recertification test (tslrt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' As a case study of incorporating more informative features, we assume a nonhomogeneous Poisson process (NHPP) and model the reliability of a weapon system as a Bayesian Weibull probability model with said features, where the posterior of the Weibull parameters is estimated with Monte-Carlo Markov Chain (MCMC) sampling with carefully chosen prior distributions on the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Understanding population failure statistics via Weibull model parameters is important, but this formulation alone can lead to less-than-optimal individual predictive maintenance because many likely important features are not incorporated, such as weapon manufacturers, times at location, storage locations, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' To address these issues, we use our Weibull inductive bias (including the deployed population failure statistics) and incorporate informative weapon systems features via a Cox-Weibull survival analysis that uses a neural network to integrate the complex weapon system features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' To the best of our knowledge, we are the first to develop Bayesian Deep Cox-Weibull reliability models for weapon systems in the Navy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' The paper is organized as follows: section 3 discusses the data formulation and notation for our weapon system dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Section 4 describes our novel model architecture and the comparative baseline models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Section 5 outlines how we formulate a Bayesian model with the Neural Network aspect, and section 6 outlines how we train the aforementioned models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Section 7 and section 8 highlight our results compared to benchmark Survival Analysis models, and section 9 outlines future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 2 RELATED WORK The current predominant practice in failure time reliability modeling with multiple features involve linear regressions of the covariates as parameters of the reliability model [9,10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' For example, a popular method with Weibull (scale, shape) parameters (𝜆, 𝑐)is to incorporate the features 𝑥 as 𝜆 = 𝜆(𝑥) = 𝑒𝑥𝑇𝛽, where 𝛽 are additional parameters to be estimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Similar techniques are applied for other common models such as logistic and Poisson reliability models [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Proportional hazard (PH) models for reliability are less common and found mostly in medical applications to survival data [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' All of these models are very much limited by the number of features that they can handle, and with only a handful of significant covariates at most.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Furthermore, for Bayesian inference, assigning priors to all the feature parameters is quite impractical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' With hundreds of features that are available for analysis, it is natural to approach this task from an ML/AI perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 3 NOTATION AND DATA FORMULATION X: matrix x: vector x: scalar 𝑑𝑖𝑎𝑔([1,2, … , 𝑁]) = [ 1 0 0 0 ⋱ 0 0 0 𝑁 ] {}: set 𝒙𝒊: individual record of data ∈ ℝ1×𝑑 𝑇: random variable denoting weapon system time to failure The weapon system dataset contains n samples and follows a relational form = (𝑿 ∈ ℝ𝒏×𝒅, 𝒚 ∈ {0,1}𝑛×1, 𝒕𝟏 ∈ ℝ𝒏×𝟏, 𝒕𝟐 ∈ ℝ𝑛×1) , where 𝑿 denotes the matrix of d- dimensional features of all samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Each binary scalar element of labels y denotes a weapon system functionality test 𝒚𝒊 ∈ {0,1}, where 1 denotes failure and 0 denotes pass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' The weapon system total age is denoted by 𝑡2𝑖 ∈ [0, ∞], and the time interval the weapon system is in the fleet between recertification tests (the outbound test and the inbound test) is denoted by tslrt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' The age of the weapon system at the previous recertification test is then 𝑡1 = 𝑡2 − 𝑡𝑠𝑙𝑟𝑡, where 𝑡1𝑖 ∈ [0, ∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' An example timeline of the weapon system data collection is shown in Figure 1, where 𝑡1 = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 and 𝑡2 = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑏𝑜𝑢𝑛𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Due to nature of the data collection process, our data is interval censored (and right censored) because we do not know when the weapon system failed between the current outbound and current inbound test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' A dataset sample (𝒙𝒊, 𝑦𝒊) denotes the measured features and test result of a specific weapon system at time 𝑡2𝑖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We have over 250 continuous, ordinal, and categorical features as inputs for n>10000 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' More details of the weapon system may not be disclosed due to the sensitive nature of Navy systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' When training the neural network to learn the Cox-Weibull reliability model, the data is batched for gradient descent, where a batch of data is denoted as 𝑿𝒃 = {(𝒙𝒊, 𝒚𝒊, 𝑡1𝑖, 𝑡2𝑖): 𝑖~𝐷} where 𝑖 is randomly sampled with replacement from the dataset until |𝑿𝒃| = batch size 𝑏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 4 SURVIVAL ANALYSIS FOR COX-WEIBULL MODEL We formulate the initial probability that the weapon system will pass the test up to time 𝑡2 via the Weibull probability density function (pdf) in Equation (1): 𝑆0(𝑡2) = 𝑝[𝑇 > 𝑡2] = 𝑒−(𝜆𝑡2)𝑐, (1) where 𝜆,𝑐 are the rate and shape parameters of the Weibull pdf, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We incorporate weapon system features at time 𝑡2, such as time at sea, manufacturer, time inbound, to formulate a non- linear Cox-Weibull survival model [13,2] given by Equation (2): 𝑝[𝑇 > 𝑡2|𝒙] = 𝑆0(𝑡2)𝑒𝐻𝜽(𝒙) = 𝑒−(𝜆𝑡2)𝑐𝑒𝐻𝜽(𝒙) , (2) where 𝐻𝜽 is a shallow fully-connected Neural Network, and we denote 𝑠𝑐𝑜𝑟𝑒 = 𝐻𝜽(𝒙).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We formulate a conditional Cox-Weibull survival model (Equation (3)) to ensure that we only consider the time related to the weapon system circulating in the fleet, and not in storage/maintenance, as a weapon system is fixed and retested for certification until pass at 𝑡1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 𝑝[𝑇 > 𝑡2|𝑇 > 𝑡1, 𝒙] = 𝑒(𝑡1𝑐−𝑡2𝑐)𝜆𝑐𝑒𝐻𝜽(𝒙) (3) To classify individual weapon systems as pass or fail at time 𝑡2, we threshold the conditional survival probability as: 𝑦̂ = 𝑝[𝑇 > 𝑡2|𝑇 > 𝑡1, 𝒙] > .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='5 (4) Following the Anderson-Gill recurrent event method, we assume no specific dependence structure among the recurrent intra-weapon system events, and therefore, our model assumes that each unique weapon system has a risk for a 𝑗𝑡ℎ failure from 𝑡 = 0 onwards irrespective of whether a (𝑗 − 1)𝑡ℎ event has already been observed [14,15,16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Thus, for each unique weapon system, we assume that the instantaneous risk to experience an event at time 𝑡 remains the same irrespective of whether previous events have occurred or not, which is a common technique in conditional or marginal survival models for machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Therefore, we say recurrent events are assumed to be conditionally independent given the features at time 𝑡, motivated by the fact that at recertification time, weapon systems are fixed/adjusted to act as if the event (failure/issues) has never occurred and the history is encompassed in the features;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' this is also a Markovian assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 5 NEURAL NETWORK ARCHITECTURES We have two formulations for the Neural Network: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' the Weibull parameters λ, c are estimated via MCMC posterior sampling or maximum likelihood (Figure 2) which we denote as MCMC Cox-Weibull, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' the Weibull parameters are estimated by another Neural Network (Figure 3) which we denote as Monte-Carlo(MC)-Dropout Cox-Weibull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' MCMC Posterior Sampling: We use the No-U-Turn Sampler [17] for MCMC sampling of the posterior on the Weibull parameters 𝜆,𝑐 (Equation (5)) with a burn-in of 2000 samples and default number of draws (500) with good results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' The MCMC posterior samples are generated prior to gradient descent optimization of the neural network, where the number of samples needed is 𝑁 = # 𝐵𝑎𝑡𝑐ℎ𝑒𝑠 × # 𝐸𝑝𝑜𝑐ℎ𝑠.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Weapon System Lifecycle,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' where the green plus indicates a passed test,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' and a red x denotes a failure test not recorded in dataset (refresh) x tprevious t current t current inbound outbound inbound T 儿 The weapon system is tslrt taken out of the fleet for maintenance/storage The weapon system is injected into the fleet The posterior on the Weibull parameters is given by: 𝑝[𝜆,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 𝑐|𝐷𝑎𝑡𝑎]~𝑝[𝐷𝑎𝑡𝑎|𝜆,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 𝑐]𝑝[𝑐]𝑝[𝜆|𝑐] (5) Due to the proprietary nature of Navy weapon systems,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' we cannot disclose the prior distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' The 𝑠𝑐𝑜𝑟𝑒 is calculated from a shallow Neural Network 𝐻𝜽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' MC-Dropout: Rather than using MCMC sampling to acquire the Weibull parameters, we develop a multi-task Neural Network (Figure 3) that simultaneously predicts the Weibull parameters 𝜆 , 𝑐 and the 𝑠𝑐𝑜𝑟𝑒.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' MC-Dropout Cox-Weibull has a base sequence of fully connected layers 𝐻𝚯, a task branch 𝐻𝜙 that estimates the Weibull parameters, and a 𝑠𝑐𝑜𝑟𝑒 branch 𝐻𝜽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' The base branch outputs a latent feature representation, 𝑧 = 𝐻𝚯(𝑥), that is input to each task branch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Prior to every fully connected layer in the Neural Network, we add dropout (𝑝𝑙), where 𝑝𝑙 denotes the dropout rate for layer 𝑙 in the Neural Network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Since we assume there are true underlying Weibull parameters 𝜆, 𝑐 that generates the pass/failure data as a function of time, we average the 𝜆𝑖, 𝑐𝑖 generated for each weapon system sample 𝒙𝒊 in the batch to produce population wide statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 𝐻𝝓(𝒁𝒃) = 𝝀𝒃, 𝒄𝒃 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 𝝀𝒃, 𝒄𝒃 ∈ ℝ𝒃×𝟏 (6) [𝜆, 𝑐] = [𝝀𝒃 ̅̅̅, 𝒄𝒃 ̅̅̅] ∈ ℝ𝟏×𝟐 (7) Unlike the traditional Cox-partial log likelihood objective function used to optimize Cox-Weibull survival models, which conveniently drops the Weibull parameters from the optimization formulation, MC-Dropout Cox-Weibull optimization includes the parametrized Weibull parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Dropout: [18] has shown that by adding dropout before every fully-connected layer in a Neural Network that the Neural Network objective function may approximate a Bayesian Gaussian Process and provide confidence intervals for each prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Let us denote 𝚽 = {𝝓, 𝜽, 𝚯} as all the neural network parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Then, 𝑴~𝑑𝑖𝑎𝑔 ({𝑘𝑙𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑙)}𝑗=1 # 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑙) (8) 𝚽′𝒍 = 𝚽𝒍 𝑴 (9) Furthermore, we assume a small weight decay is employed which appears from the prior distribution on the weights (Equation (10)), where 𝛼 controls the strength of the weight decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 𝑝(𝚽) = 𝑁 (0, 1 𝛼 𝐼) (10) Then, [18] shows that the prior distribution and dropout combine to form a variational approximation for a Bayesian Gaussian Process, where adding dropout gives a variational approximation on the intractable posterior on the Neural Network weight distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Despite the approximating distribution being a sum of two-point masses, where each point mass has zero variance, the mixture does not have zero variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Thus, the variance of the Bernoulli random variable being transformed through the Neural Network enables complex distributions over the score, 𝐻Φ′(𝑥) [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 6 BAYESIAN INFERENCE As suggested by the model architecture names, we have two methods for developing Bayesian models: MCMC posterior sampling on the Weibull parameters, using dropout before every fully connected layer in the neural network, or combining MCMC posterior sampling and dropout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' During inference time, we employ Bayesian Model Averaging (BMA) with respect to the Weibull parameters and/or the Neural Network weights (𝚽 = {𝛉, 𝚯} from here on) for more robust predictions (Equations (11-12)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 𝑝𝐵𝑀𝐴[𝑦 = 1|𝒙𝒏𝒆𝒘, 𝑡1 𝑛𝑒𝑤, 𝑡2 𝑛𝑒𝑤 ] = ∫ 𝑝(𝑦 = 1|𝚽, 𝜆, 𝑐, 𝒙𝒏𝒆𝒘, 𝑡1 𝑛𝑒𝑤, 𝑡2 𝑛𝑒𝑤)𝑝(𝚽|𝐷)𝑝(𝜆, 𝑐|𝐷) 𝑑𝚽𝑑𝜆 𝑑𝑐 (11) ≈ 1 𝑁 ∑ 𝑝(𝑦|𝚽′𝒊, 𝜆𝑖, 𝑐𝑖, 𝒙𝑛𝑒𝑤, 𝑡1 𝑛𝑒𝑤, 𝑡2 𝑛𝑒𝑤) 𝑁 𝑖=1 = 1 𝑁 ∑ 1 − 𝑒(𝑡1 𝑛𝑒𝑤 𝑐𝑖 −𝑡2 𝑛𝑒𝑤 𝑐𝑖 )𝜆𝑖 𝑐𝑖𝑒 𝐻𝚽𝑖 ′(𝒙𝒏𝒆𝒘) 𝑁 𝑖=1 (12) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' MCMC Cox-Weibull Model Architecture Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' MC-Dropout Cox-Weibull Model Architecture X arkovChain(CorrelatedSamplesfrc 二 Rejected Proposal RBx1 Cox-Weibull Loss Function L(a,C,scorei,tit2i,y)三 Softplus Average Across axis 0 Cox-Weibull Loss Function L(a,c,scorei,tii,t2iyi)7 TRAINING We partition the training and test data into an 80%-20% split respectively, and then use 20% of the training data as the validation data for early stopping during stochastic gradient descent (SGD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We stratify the data partitions by the binned weapon system age and the recertification test results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We keep a running window average of 5 epochs on the validation ROC- AUC and stop at the highest average ROC-AUC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We use a large batch size of 512 to increase the likelihood of sampling negative samples in each batch due to the highly unbalanced distribution of labels in the dataset, and the ADAM optimizer for the log likelihood optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' The MCMC + MC-Dropout Cox- Weibull architecture consists of three hidden layers (50-25-25 neurons) with Leaky ReLU activations except at the last hidden layer, and a dropout rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' MC-Dropout Cox-Weibull’s has a base branch of two hidden layers (50-25 neurons) with Leaky ReLU activations, a task branch of one hidden layer (25 neurons) with a softplus activation (𝜆 ≥ 0, 𝑐 ≥ 0), and a 𝑠𝑐𝑜𝑟𝑒 branch with a hidden layer (25 neuron), and a dropout rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' The log-likelihood objective function (we write for the combination of MCMC + Dropout) is cross-entropy (CE) with 𝑃(𝑦 = 1) equal to Equation (3) and ℓ2 regularization on the Neural Network weights 𝚽: 𝑚𝑖𝑛 𝚽 −(∑ 𝐵𝐶𝐸 (𝑝𝐵𝑀𝐴(𝑦𝑖 = 1|𝒙𝑖,𝑡1 𝑖, 𝑡2 𝑖), 𝑦𝑖) 𝑖 − 𝛼 2 ‖𝚽‖𝟐 𝟐) (13) where BCE is the binary cross entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Depending on the model architecture selected, small modifications on Equation (13) are made such as how 𝜆, 𝑐 are calculated and the set of Neural Network weights 𝚽 containing a combination of {𝝓, 𝜽, 𝚯}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 8 RESULTS All the results in Table 1 are calculated as the mean percent change with respect to the conditional Weibull pdf (𝑉1) to 𝑉2: %Δ = (𝑉2−𝑉1) |𝑉1| × 100 (14) All results were averaged over 10 runs, with each run having a different data partition (and random number seed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Compared to the current practice of conditional Weibull pdf, we show that MCMC posterior sampling and MC-Dropout parameterizing a Cox-Weibull survival model (𝜆, 𝑐 are sampled from MCMC, not 𝐻𝝓) gives superior performance with respect to all metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Moreover, our approach leads to large gains in all positive class metrics, along with equal performance in all negative class metrics when comparing to the state-of-the-art XGBoost classifier and stochastic variational inference mean field approximation (SVI MFA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We follow [1] to formulate the Weibull regression model for survival analysis as a comparison baseline and minimize the ELBO using stochastic gradient descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' As the dataset contains an order of magnitude fewer fail test results compared to pass test results, and therefore, having a higher precision, recall, and F score for the positive class is critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We have slightly lower ROC-AUC and Precision-Recall (PR)-AUC compared to XGBoost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' That said, when subject matter experts (SMEs) select a subset of important features (approximately 20 features from the 250 features), the ROC-AUC and PR-AUC become higher than XGBoost (Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' As expected, all methods outperform the conditional Weibull pdf, because the conditional Weibull pdf only uses weapon system age and tslrt as features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We generate survival curves (Figure 4), and show that introducing features induces a lower reliability over time than the conditioned Weibull probability density without features, which is expected according to SMEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Table 1 - Relative Percent Change with Respect to the conditional Weibull pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Bold is best, underline is second best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Model P1 R1 F1 P0 R0 F0 ROC AUC PR AUC 𝑪𝒕𝒅 Conditional Weibull pdf 0 0 0 0 0 0 0 0 0 MCMC 369.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='44 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='67 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='67 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='62 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='83 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='43 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='69 MC- Dropout 100 100 100 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='62 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='61 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='30 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='10 MCMC + MC- Dropout 344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='44 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='67 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='67 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='62 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='84 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='82 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='75 XGBoost 100 100 100 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='62 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='05 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='19 SVI MFA 547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='22 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='33 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='33 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='62 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='13 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='19 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Survival Curves for conditional Weibull pdf and MCMC + MC-Dropout Cox-Weibull Model on the subset of selected features Table 2 - ROC-AUC and PR-AUC for subset of selected features for Relative Percent Change with Respect to the conditional Weibull pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Bold is best, underline is second best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Model ROC AUC PR AUC Conditional Weibull pdf 0 0 MCMC 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='77 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='29 MC-Dropout 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='27 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='91 COX-WEIBULL NN MCMC 20-80 Quantiles COX-WEIBULL NN Survival Probability TimeMCMC + MC-Dropout 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='79 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='54 XGBoost 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='9 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='10 SVI MFA 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='84 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='86 Furthermore, we evaluate a time-dependent concordance index 𝐶𝑡𝑑 (equation (15)) [7] to see if randomly selected pairs in our data where the weapon system with the shorter observed failure time has a higher probability of failure predicted by the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=" We follow Somers'd method which treats ties in time as incomparable, but pairs tied in probability of failure as ." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='5 counts [19]: 𝐶𝑡𝑑 = ∑ (1 2 𝕀[𝑓𝑖(𝒙𝑖, Δ𝑗) = 𝑓𝑗(𝒙𝑗,Δ𝑗)] + 𝕀[𝑓𝑖(𝒙𝑖, Δ𝑗) < 𝑓𝑗(𝒙𝑗,Δ𝑗)]) 𝕀[Δ𝑖 > Δ𝑗]𝑦𝑗 𝑖≠𝑗 ∑ 𝕀[Δ𝑖 > Δ𝑗]𝑦𝑗 𝑖≠𝑗 ≈ 𝑃(𝑓𝑖(𝒙𝑖, Δ𝑗) < 𝑓𝑗(𝒙𝑗, Δ𝑗)|Δ𝑖 > Δ𝑗), (15) where Δ is with respect to tslrt (and is halved if the weapon system event is a failure), 𝑓𝑖(𝒙𝑖, Δ𝑗) = 𝑃(𝑇 < 𝑡𝑖 + Δ𝑗|𝑇 > 𝑡𝑖, 𝒙𝑖), and 𝑦𝑗 = 1 if a failure event occurs and 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We evaluate the time-dependent concordance index with respect to the baseline conditional Weibull pdf (Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We note that XGBoost may be lower in time dependent concordance index due to how ties in score are counted, since XGBoost does not use the time variable in many leaf splits and does not have a continuous spectrum for probability predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Furthermore, when many features were used for SVI MFA, there was convergence issues leading to worse than expected performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' This may be from the variance in computing the ELBO and consequentially the gradients from particle sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Since Neural Networks are considered black-boxes with little interpretability, we implement SHaply Additive exPlanations (SHAP) [20] to understand which features of our dataset are globally important for model classification (Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' SHapley Additive exPlanations (SHAP) Feature Importance Plot for MCMC + MC-Dropout Cox-Weibull Model The top four input features are in alignment with our Navy SMEs beliefs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 9 CONCLUSION We successfully incorporated weapon system features in reliability models while ensuring the weapon system reliability model is Bayesian on the Neural Network weights and the Weibull parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We significantly improve weapon systems predictive maintenance metrics from the previous reliability methods, and even outperform XGBoost which is the default classifier of choice for relational databases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 10 FUTURE WORK There are several directions we wish to explore in future work to improve our model design and performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Currently, since the weapon system is repaired in maintenance/storage and not released back into the population unless it has passed recertification test, our conditional survival model assumes the weapon system did not fail up to 𝑡1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' To improve this assumption, correlating repeated failures for the same weapon system, we can add a multiplicative exponential term to the failure rate 𝜆 such that after every “refresh” at certification the failure rate increases: 𝜆′ = (𝛽)|{𝑖 :𝑎𝑙𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑓𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑚𝑖𝑠𝑠𝑖𝑙𝑒 ∩ 𝑡𝑖<𝑡2}|𝜆 (15) which creates an accelerated failure model with 𝛽 > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Alternatively, the introduction of an improved design to fix the failure mode can result in a lower failure rate, with 0< 𝛽 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Model training stability could be improved by optimizing the hyperparameter search, reducing the number of categorical feature noise which may lead to overfitting and extremely sparse features, and improving numerical computation for backpropagation by re-parametrization tricks of the Neural Network or objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' The most interesting future work we will develop is how to model the intra-individual correlation between repeat events and/or use time-dependent covariate analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' This complicates the model formulation and may deviate from less complex proportional hazard models 11 SOFTWARE All code was written in Python using python packages MLFlow, PyTorch, NumPy, Pandas, PyMC, sklearn, lifelines, scikit-survival, pyro, shap, and xgboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' ACKNOWLEDGEMENTS Michael Potter and Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Benny Cheng were funded by Naval Innovative Science & Engineering (NISE) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='1 basic research funding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We would like to thank the anonymous referees for their detailed comments and improvements to the paper, and to Nicole Chik and Edward Schuberg for their reviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' We additionally thank Van Nguyen for continued support and leadership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' REFERENCES 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Joseph G Ibrahim, "Bayesian Survival Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='" Springer Series In Statistics, p31-35, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Katzman, “DeepSurv: Personalized Treatment Manufacturers Ship Weapon System Is Stored OnRecommender System Using A Cox Proportional Hazards Deep Neural Network”, International Conference of Machine Learning Computational Biology Workshop, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Gamerman, “Markov Chain Monte Carlo”, Chapman & Hall, CRC, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Thomas R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Fleming, “Counting Processes and Survival Analysis”, Wiley Series in Probability and Statistics, 1991 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Louis L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Nguyen, “Rutherford’s Vascular Surgery and Endovascular Therapy, Chapter Epidemiology and Research Methedology”, Elsevier ClinicalKey, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Tolley, “Forensic Epidemiology Principles and Practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Chapter 10 – Survival Analysis”, Academic Press, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Lee, “Dynamic-DeepHit: A Deep Learning Approach for Dynamic Survival Analysis with Competing Risks based on Longitudinal Data”, IEEE Transactions on Biomedical Engineering, February 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Changhee Lee, “DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks”, Association for the Advancement of Artificial Intelligence (AAAI) Proceedings, February 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Frank E Harrell, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=',”Regression Modeling Strategies With Applications to Linear Models, Logistic and Original Regression and Survival Analysis (Second Edition)”, Springer Series in Statistics, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Cox, “Regression Models and Life-Tables”, Journal of the Royal Statistcal Society: Series B Volume 34, Issue 2 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 187-202, January 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Hamada, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Wilson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Reese, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Martz, “Bayesian Reliability”, Springer, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Crowder, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Kimber, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Smith, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Sweeting, “Statistical Analysis of Reliability Data”, Chapman & Hall, CRC, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Rodriguez, WWS 509 – Generalized Linear Statistical Models, Princeton, 2016 Chapter 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Buhler, “Comparison of Time-to-First-Event and Recurrent Event Methods in Multiple Sclerosis Trials,” Ulm University Faculty Of Mathematics and Economics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' D Amorim, “Modelling recurrent events: a tutorial for analysis in epidemiology,” International Journal of Epidemiology, February 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Ozga, “A systematic comparison of recurrent event models for application to composite endpoints,” BMC Medical Research Methodology, January 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Hoffman, “The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo,” Journal of Machine Learning Research 15, 2014, pp 1351- 1381.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Gal, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning”, Proceedings of the 33rd International Conference on Machine Learning,” New York, USA, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Ross L Prentice, "A qualitative discrepancy between censored data rank tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='" Biometrics, 35(4):861-867, 1979 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Christoph Molnar, “Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, Second Edition”, 2019 BIOGRAPHIES Michael L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Potter, MS, Department Acquisition Readiness 43 Naval Surface Warfare Center - Corona 1999 Fourth St Norco, California 92860 USA e-mail: michael.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='potter40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='civ@us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='navy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='mil Michael Potter has worked as an Electronics Engineer at the Naval Surface Warfare Center – Corona Division for over a year developing Machine Learning models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' He has earned his bachelors and masters degree in Electrical and Computer Engineering at Northeastern University in 2020, and his second masters degree at the University of California Los Angeles in Electrical and Computer Engineering in 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Michael Potter’s research interests are in recommendation systems, computer vision, linear dynamics, and deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Benny N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Cheng, PhD Department Acquisition Readiness 43 Naval Surface Warfare Center - Corona 1999 Fourth St Norco, California 92860 USA e-mail: benny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='cheng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='civ@us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content='navy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content="mil Benny Cheng is a senior Scientist at the Naval Surface Warfare Center, Corona Division, a component of the Naval Sea Systems Command, and is the US Navy's only independent analysis and assessment center." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' He earned his doctoral degree in Mathematics at the Massachusetts Institute of Technology in 1987, a doctoral degree in Applied Statistics at the University of California, Santa Barbara in 1995, and his bachelor’s degree at the University of California, Berkeley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Prior to this position, he was a scientist at the NASA Jet Propulsion Laboratory conducting research in spectral analysis and oceanography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} +page_content=' Cheng’s current research activities are centered mainly on reliability and reliability engineering' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf'} diff --git a/j9AyT4oBgHgl3EQf_Pqt/content/tmp_files/2301.00906v1.pdf.txt b/j9AyT4oBgHgl3EQf_Pqt/content/tmp_files/2301.00906v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..e49f496e6ef81b4c0d17c88899eadbaa5c3d6993 --- /dev/null +++ b/j9AyT4oBgHgl3EQf_Pqt/content/tmp_files/2301.00906v1.pdf.txt @@ -0,0 +1,1451 @@ + +1 +Effects of opposite atoms on electronic structure and optical absorption +of two-dimensional hexagonal boron nitride + +You-Zhao Lan*1 + +Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and +Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China + +Abstract +We perform the first-principles many-body GW and Bethe-Salpeter equation (BSE) calculations on the +two-dimensional hexagonal boron nitride (2D-hBN) to explore the effects of opposite atoms on the electronic +structure and linear one-photon absorption (OPA). Five AA- and AB-stacked bilayer and eight AAB-stacked +trilayer structures are considered. The AAB-stacked trilayer hBN (TL-BN) structures are constructed by +mixing the AA- and AB-stacked bilayer hBN (BL-BN). We show that the GW approximation gives rise to +different types (i.e., indirect or direct) of fundamental band gaps from the independent particle approximation +for all structures except those dominated by the B–B opposite. The stacking modes dominated by the B–B +opposite have a direct fundamental band gap in both approximations. The OPA spectra are calculated by +solving the Bethe-Salpeter equation combined with the GW quasi-particle correction. Strong absorption peaks +are found for most structures in the deep-ultraviolet region. The binding energy and Davydov splitting of +excitons of TL-BN strongly depend on the opposite atoms and are related to the role of the stacking BL-BN +substructure. Finally, taking the six-layer and below AB-stacked structures as examples, we show that the +B–B opposite unit is helpful in constructing the turbostratic-phase-like stacking structures with a direct +fundamental band gap which are more suitable for optoelectronic applications. + +1. Introduction +The electronic structure and optical property of the two-dimensional hexagonal boron nitride (2D-hBN) +have attracted much attention 1–13 in recent years. Experimental and theoretical studies have consistently +shown that 2D-hBN has a wide bandgap, but there are contradictions on the size and type of fundamental +band gap (FBG) (i.e., indirect or direct), even for the monolayer BN (ML-BN) that has been widely studied +7,14–16. For ML-BN, the density functional theory (DFT) calculations predict the FBGs with a range of 4.2 – + +1 Corresponding author: lyzhao@zjnu.cn + + +2 +4.7 eV between the valence band maximum (VBM) at the K point and the conduction band minimum (CBM) +at various points (K, M, or Γ point) 7,14,15. The GW approximation (GWA) calculations dramatically increase +the energy gap by ~ 2.5 eV and also lead to a change of FBG from direct to indirect 7,15. A recent +experimental study confirmed a direct FBG of ~ 6.1 eV for ML-BN by using the reflectance and +photoluminescence experiments in the deep-ultraviolet region 2. Similarly, for the bulk hBN, the energy band +structure strongly depends on the stacking mode 12,17,18. The FBG ranges from 3.1 to 4.5 eV based on the +DFT/PBE and DFT/LDA calculations 17,18. Direct and indirect FBGs are also theoretically found in different +stacking modes, similar to the experimental studies 19,20. +For few-layer hBN (FL-BN) structures, which have more adjustable parameters, such as stacking mode +and layer number, they have more changeable electronic structure properties than ML-BN and bulk hBN +4,7,13,21–23. For example, for the AA′- and AB-stacked structures, the FBG changes from direct to indirect as +the structure changes from ML-BN to FL-BN 13. The AA′-stacked bilayer has distinctly different excitonic +response from the AB-stacked one 4. As an increase of the number of layers, the emission peaks exhibit a +monotonic blue-shift 21. The measurements of optical second harmonic generation show strong enhancement +in the AB-stacked structure relative to monolayer and AA′-stacked bilayer, though similar linear absorption +spectra were measured for these three structures 22. Theoretical calculations 7 on the AA′-stacked FL-BNs up +to five layers show that the excitonic spectra are resolved by surface and inner excitons and interesting +Davydov splitting. Under biaxial strain, the size and type of FBG of BL-BN are tunable 24, which indicates +possibly various applications in electronic and optoelectronic devices. +Note that most studies focus on the singly ordered stacking modes, such as AA′ and AB stackings, while +the randomly stacked and disordered phase, namely turbostratic (t-BN) phase, was found in experiments sixty +years ago 25–27. Recently, Mengle and Kioupakisa 23 studied five t-BN structures containing ten randomly +chosen layers and found that the t-BN structures had a quasi-direct FBG which only allows weakly direct +optical transitions. The random stacking breaks the symmetry of originally ordered FL-BN, which further +results in changes in electronic structures and optical properties. Obviously, the random stacking combined +with a change of the layer number will lead to a large number of FL-BNs. In particular, there can be a great +variety of assignments of opposite atoms in these structures, which leads to some new unknown +structure-property relations. Meanwhile, as mentioned above, FL-BN can have direct or indirect FBG +depending on the stacking mode. Different stacking modes can lead to different opposite atoms, then to +different interlayer interactions, and ultimately to different energy bands with direct or indirect FBG. It is + + +3 +beneficial to filter out the direct-gap FL-BN because materials with direct FBG have higher optical efficiency +in optoelectronic applications, such as light emitting diodes and semiconductor laser. + +In this work, to explore the effect of opposite atoms on properties, we select five bilayer BN structures +(i.e., two AA and three AB stackings) and eight AAB-stacked trilayer BN (TL-BN) structures formed by +mixing AA and AB stacking modes, and calculate their electronic structures and linear optical properties. All +possible atomic opposites are considered in these stackings. The electronic structures are calculated within +both the independent particle approximation (IPA) and the GWA. The linear one-photon absorption (OPA) +spectra are calculated by solving the Bethe-Salpeter equation (BSE) combined with the GWA quasi-particle +correction. Based on the results of BL- and TL-BN structures, we further explore the t-BN-like randomly +AB-stacked six-layer structures to filter out the structures with a direct FBG. +In Section 2, we describe the computational details including geometry and GW+BSE calculations. In +Section 3, we discuss the calculated electronic structures and OPA and construct the FL-BN structures which +have a direct FBG based on the B–B opposite substructure. Conclusions are given in Section 4. + +2. Computational methods +2.1 Geometry +The two-dimensional bilayer (BL-) and trilayer (TL-) hexagonal BN structures with different stacking +modes are shown in Fig. 1. We consider AA and AB-stacked bilayer structures and their mixture to form the +trilayer structures. The AB-stacked structures mean two layers overlap with one set of atoms facing each other. +In terms of different sets of opposite atoms, there are three AB stackings labeled by AB-NN, AB-BN, and +AB-BB. The AA-stacked structures mean two layers overlap with all atoms facing each other. We constructed +two AA stackings labeled by AA-NN and AA-BN. Note that AA-NN can be also called by AA-BB. For +mixture of AA and AB stackings, we constructed eight structures in terms of different opposite atoms, i.e., +AAB-BNN, AAB-NBB, AAB-BNB, AAB-BBB, AAB-NNN, AAB-NNB, AAB-BBN, and AAB-NBN. The +definition of labels is given in the figure caption. Hereafter, for simplicity, we call trilayer structures by +opposite atoms only, namely BNN, NBB, BNB, etc. +The initial structures were constructed based on the bulk hBN structure 28. As a reference, we optimized +the bulk hBN by using the same method and obtained the structure parameters (a = b = 2.503 Å, c = 6.681Å) +which are in agreement with the experimental parameters 28 (a = b = 2.498Å, c = 6.636Å). All the structures +were optimized using the DFT within the GGA-PBE approximation combined with the pseudopotential plane + + +4 +wave method, as implemented in the PWSCF code. 29 A k-point mesh of 6×6×1, a force threshold of 0.01 +eV/Å, and a stress threshold of 0.02 GPa were used for the optimizations. The relaxation of the unit cell was +included in optimizations. The optimized lattice parameters are shown in Fig. 1. A vacuum spacing larger +than 13 Å was used to ensure negligible interaction between the slabs. The van der Waals interaction was +taken into account by using the Tkatchenko-Scheffler (TS) dispersion corrections 30. The interlayer distances +and cell parameters of all optimized structures are given as inset tables in Fig. 1. + +Figure 1. The optimized structures (side and top views) of BL- and TL-BN. The labels of BL-BN are defined by +AB-XY and AA-XY, where X and Y are the opposite atoms at positions 1 and 2, respectively. For example, +AB-NN and AA-BN are shown explicitly. The labels of TL-BN are similarly defined by AAB-XYZ, where X, Y, +and Z are opposite atoms at positions 2, 4, and 6, respectively. For example, AAB-BBB is shown explicitly. +The inset tables list the interlayer distances, cell parameters, and atoms at selected positions of all optimized +structures. + +2.2 GW+BSE calculations +Since the DFT within the GGA-PBE approximation usually underestimates the energy gap of materials, +we performed the many-body GWA (one-shot level or G0W0) calculations to correct the energy bands. The +GWA calculations were based on the plasmon pole approximation as implemented in the Yambo package 31 +which reads the band structures and wave functions of ground state calculated within the IPA as implemented + +13 +B +Typee +(A)b (A) b +a=p() c() +VB-ИW +BV +Wolv obi2 +sre.8 +5'202 +18°200 +B +B +VV-BB +8et.8 +202.s +1800e +B +B +B +VB-BB +3'310 +202.s +18'5] +B +B +VB-BИ +228.8 +202.s +est.81 +R +V +B +b +VB-V +ert.8 +5*20寸 +18'85e +V +B +B +5 +8 +4 +B +elgdsI +(A) b +=p() +c(7) +emos bns enoidieogVVB-BBB +. +VB-VBV +108.8 ++08.8 +5'20+ +VVB-BB ++88.8 +3°2e +5°20 +50°200 +B +VI +B +VVB-VVB +3'323 +3°4e +5204 +50'4e8 +B +B +VVB-MM +3°ee +3°40 +J20寸 +258.05 +B +B +VVB-BBB +3°3J+ +3°410 +5204 +50'3e +B +B +VB +VVB-BVB +ro8.8 +3'3e +5°20+ +S0'S2 +B +B +B +sb +VVB-VBB +3'300 +8+8.8 +5*20+ +5O'OSO +B +B +VVB-BИV +3°42 +8e8.8 +5°204 +50'250 +B +B +B +M +5 +in the PWSCF code. 29 The GGA-PBE combined with the pseudopotential plane wave method was used to +calculate the ground state. The convergence tests were performed on the ML-BN which has been widely +studied 3,5,11,13,32–34. Three parameters, namely k-grid, response block size in polarizability matrix, and the +number of empty states in dielectric function, were considered. As shown in table S1, we obtain the +converged G0W0 energy gaps for both an indirect energy gap of 6.57 eV between the K point and the Γ point +and a direct energy gap of 7.24 eV at the K point, in agreement with previous calculations 3,13,32. The +corresponding three parameters are 30×30×1, 10 Ry, and 200 empty states, respectively. Finally, for BL-BN +and TL-BN, we used the 30×30×1, 10 Ry, and 300 empty states in the G0W0 calculations, which produced the +G0W0 gaps within an accuracy of ~0.03 eV. + +We calculated the optical spectra based on the solution of the BSE: 35 +( +) +' ' ' +' ' ' +' ' ' +S +S +S +S +ck +vk +vck +eh +v c k +vck +k v c +E +E +A +vck K +v c k +A +A +− ++ += Ω +∑ + (1) +The excited state S is given by the linear combination of independent-particle excitations |vck> (i.e., valence +band |vk> to conduction band |ck>) as +, , +, , +c v k +S +c v k +S +A +vck += ∑ + (2) +The interaction kernel Keh includes the screened Coulomb interaction between electrons and holes, and the +exchange interaction, which includes the so-called local-field effect. When the Keh is ignored, Eq.1 reduces to +independent particle excitations. We used the Coulomb cutoff technique 36–38 and the corresponding length +cutoff was set to a slightly smaller value than the c lattice parameter (Fig. 1) of supercell. In this case, we +prefer to use the imaginary part of two-dimensional polarizability to understand the optical absorption of +materials 36. The two-dimensional polarizability is defined by 37,39: +2 +1 +4 +D +Lε +χ +π +− += + (3) +, where L is the effective thickness, which is assumed to c lattice parameter (Fig. 1), and ε is the dielectric +constant. The imaginary part (ε2) of ε can be understood by 36: +( ) +( +) +( +) +2 +2 +2 +2 +0 +, , +8 +lim +S +iq r +S +vck +q +S +c v k +A +v k +q e +ck +q +π +ε +ω +δ +ω +η +− +→ += +− +Ω − +− +∑ ∑ +� + (4) +, where η is the damping factor and set to 0.1 eV. +For the BSE calculation, we also carried out the convergence tests on the k-grid and the IPA bands used +to construct the electron-hole basis (eh-basis) of the BSE kernel (Keh). Other parameters (i.e., response block +size in polarizability matrix and the number of empty states in dielectric function) are the same as those used + + +6 +in the G0W0 calculations. Since the valence and conduction band dispersions based on the IPA are somewhat +different from those based on the GWA (see Fig. 2 below), we used a quasi-particle correction for the entire +energy band, rather than a simple scissor correction. As an example, convergence tests on k-grids and +eh-basis were performed on ML-BN, while convergence tests on eh-basis were performed on AA-BN and +BNN, and corresponding results are shown in Fig. S1. A k-grid of 30×30×1 leads to a good convergence for +the first and second absorption peaks. For the fixed 30×30×1 k-grid, the highest four valence bands and the +lowest four conduction bands are enough to obtain the converged first two (see 1–8 of ML-BN and 5–12 of +AA-BN) or three (see 9–16 of BNN) absorption peaks. This is due to that these absorption peaks mainly arise +from the transitions between the valence and conduction bands near the Fermi level (see below). Finally, we +adopt the 30×30×1 k-grid for all BSE calculations and the eh-basis of 5–12 and 9–16 for BL-BN and TL-BN, +respectively. + +3. Results and discussion +3.1 Band structures +Figure 2 shows the band structures of BL-BN and TL-BN based on the IPA and GWA calculations. For +comparison, the band structure of ML-BN is included. First, from IPA to GWA, the type of the FBG changes +significantly. For ML-BN (Fig. 2a), the IPA yields a direct FBG at K point, while the GWA yields an indirect +one between K and Γ points, in agreement with previous reports 7,14–16. There are two possible reasons for +inconsistency in the type of FBG between IPA and GWA. One is that the lowest unoccupied conduction band +(LUCB) along the M-K path is very flat and the conduction band bottoms (CBBs) at Γ and K points have +only a small energy difference of 20 meV. The other pointed by Blase et al.32 is that the self-energy correction +in ML-BN is strongly k-point dependent and has more effect on the K and M points than the Γ point. This +inconsistency also exists in the band structures of BL-BN and TL-BN. For example, for AB-BN (Fig. 2d), the +IPA yields very close K – K (4.59 eV) and K – M (4.54 eV) gaps, while the GWA results in an indirect K – Γ +gap of 6.31 eV. A similar case occurs in the band structure of NNB (Fig. 2m) which has very close K – K +(4.05 eV) and K – M (4.09 eV) gaps within the IPA and has an indirect K – Γ gap of 5.50 eV within the GWA. +Note that for five BL-BN structures considered here, Mengle and Kioupakis 23 has also calculated the band +structures by using the G0W0 method. Comparing our results with theirs, we observe qualitative consistency +but some quantitative differences due to differences in computational parameters, such as k-grid and vacuum +spacing in supercell. Overall, the GWA does not change the relative magnitude of the CBBs at M and K + + +7 +points, but changes the CBB at Γ point relative to those at M and K points. + + +Figure 2. Band structures of ML-, BL-, and TL-BN based on the IPA (blue solid line) and GWA (red dash line) +calculations. The energy gaps between the conduction band minimum and the valence band maximum are +shown by arrows and values. The valence band maximum is set to zero. + +Second, for BL-BN, we observe that the stackings with only B–B (AB-BB) and N–N (AB-NN) opposites +separately have a direct and indirect FBG, and that those with B–N (AB-BN and AA-BN) or with both B–B +and N–N (AA-BB) have an indirect FBG. The AB-BB (Fig. 2e) with only B–B opposite has direct FBGs of +4.14 and 6.32 eV within the IPA and GWA, respectively. In the band structure of AB-BB, the M-K path shows +a strong dispersion. The AB-NN with only N–N opposite (Fig. 2f) has an indirect FBG within the IPA and +GWA. The AA-BB with both the B–B and N–N opposites (Fig. 2c) has a direct FBG within the IPA but an +indirect one within the GWA. The AB-BN with only B–N opposite (Fig. 2d) has an indirect FBG within the +IPA and GWA. Similar to the ML-BN (Fig. 2a), the AA-BB and AB-BN also have a relatively flat M-K path +(e.g., see gaps of 4.54 and 4.59 eV in Fig. 2d) and a close CBB energy at K and Γ points. For ease of +understanding, Fig. 3a shows the scheme of dependence of M-K path on the opposite atoms. As shown in Fig. +2, for BL-BN, the highest occupied valence band (HOVB) of all five structures exhibit a similar M-K path +with a higher energy at K point than M point, which is illustrated as the bottom line in Fig. 3a. The valence + +EUGL& (GA) ++:14 +08.8 +4'00. +4102.2'20 +4'42 +35 +03 +2(6) +() +J0 +VB-BИ +VB-BB +VB-W +VVB-WMM +VVB-BИИ +VVB-WB +VVB-BИB +M +K +M +K +M +K +K +M +K +M +K +MWF-BИ +VV-BИ +VV-BB +VVB-VBB +VVB-BBB +VVB-BBИ +VVB-WBИ +WK +L L +WK +L L +WK +L +L +WK +LL +WK +L L +WK +L L +WK +-JO +-2 +EUGLEa +41 ++22412.e42 +4'13. +00.0 +4'14 +er.8 +4'ed +20.t +4'40 +00.0 +02F +8 +band maximum (VBM) locates at K point. However, the dispersion of the LUCB along M-K path strongly +depends on the opposite atoms. The N–N and B–B opposites separately lead to a dispersion with a higher (red +line in Fig. 3a) and lower (blue line in Fig. 3a) energy at K point than M point; thus the AB-BB (Fig. 2e) has a +direct FBG while the AB-NN (Fig. 2f) has an indirect one. For B–N or B–B + N–N, the mixture of B–N +interactions results in a relatively flat dispersion (yellow and green lines in Fig. 3a). + + +Figure 3. (a) Scheme of dependence of M-K path on the opposite atoms. (b) Charge density distributions of +HOVB and LUCB at M and K points for BL-BN. + +To elucidate the different dispersions of M-K path, we examine the charge density distributions (Fig. 3b) +of HOVB and LUCB at M and K points for all five BL-BN structures. As shown in Fig. 3b, the HOVBs of all +BL-BNs are derived from the pz state of N atom and hardly from that of B atom, and thus the HOVBs of all +BL-BNs have a similar dispersion (Fig. 2). In contrast, the LUCBs of all BL-BNs are very different and +strongly depend on the opposite atoms. The LUCB of AA-BB, with both B–B and N–N opposites, is more +like that of AB-BB than AB-NN, that is, LUCBs of AA-BB and AB-BB at M and K points are derived from +the pz state of directly opposite B atoms while the LUCB of AB-NN at K point are derive from the pz state of +diagonally opposite B atoms. Thus, the M-K path of AA-BB is relative flat but trends to that of AB-BB with a +higher energy at M point than K point [see blue and yellow lines in Fig. 3a and gaps of 4.13 (K–M) and 4.07 +(K–K) eV in Fig. 2c]. The LUCB of AA-BN is more like that of AB-NN than AB-BB, and thus the M-K path +of AA-BN is relative flat but trends to that of AB-NN with a lower energy at M point than K point [see red +and green lines in Fig. 3a and gaps of 4.55 (K–M) and 4.75 (K–K) eV in Fig. 2b]. Finally, the M-K path of +AB-BN is relative flat but trends to that of AB-NN [see gaps of 4.54 (K–M) and 4.59 (K–K) eV in Fig. 2d] +because the lower layer of LUCB of AB-BN is almost the same as that of AB-NN. + +--M +B--B +B--И +B--B+M-M +B--B+V-- +B--M +TNCB +y--M +B--B +(d) +VV-BB +(s) +V-AA +VB-BB +VB-ИM +VB-BИB +V +M +K +M +K +M +K +M +K +M +K +M +K +O +Mav +HOAB +9 +Finally, for TL-BN, the band structures of all eight structures are shown in Figs. 2(g–n). Overall, the band +structures of TL-BN have very similar characteristics to those of BL-BN. All the TL-BN structures have +similar valence band dispersions, and thus the difference in FBG depends on the conduction band dispersion. +Since the VBM of all TL-BN structures locates at K point, the FBG will be determined by the CBB at M, K, +or Γ point. Meanwhile, the type of FBG of TL-BN also dramatically depends on the opposite atoms. We note +that the effect of the mixture of AA and AB stackings on the type of FBG. The substacking with B–B opposite +is helpful in forming the direct FBG. For example, NBB formed by mixing the AB-BB and AA-BN has a +direct FBG (Fig. 2g). AB-BB has a direct FBG with CBM at K point (Fig. 2e), while AA-BN has an indirect +FBG with CBM at M point (Fig. 2b), which leads to a direct FBG at K point for NBB. Again, BNB (Fig. 2n) +is formed by mixing AA-BN and AB-BN. Since both substackings have an indirect FBG (see Fig. 2b and Fig. +2d), BNB ultimately has an indirect FBG. The BBB structure with two B–B opposites has a direct FBG. +Moreover, for structures with the largest number of B–B opposites, the GWA correction does not change the +type of FBG (Fig. 2e and Fig. 2h). For other structures, the GWA corrections mostly change the type of FBG +or the position of CBM. In subsection 3.3, based on the B–B opposite substacking, we will further discuss the +construction of the FL-BN with a direct FBG. + +3.2 Absorption spectra +Figure 4 shows the OPA spectra along the in-plane direction of ML-BN and five BL-BN structures. For +ML-BN, our calculated spectrum is consistent with previous reports 7 in terms of line shape and peak +positions. To understand the spectra, we list in table 1 the transition energies and corresponding optical +activities of the first two excitons of ML-BN and BL-BN. We calculated the binding energies (Eb) based on +the direct G0W0 gap at K point because the vertical transition is considered here and the contributions to these +excitons mainly come from transitions near K point 3,7. In table 1, we also list the Davydov splitting 40,41 +energy (Eds) of BL-BN which is the energy difference between the first and second excitons. For AA-BN, it +has been shown 7 that the first and second excitons mainly stem from the first exciton of ML-BN. For other +four bilayer structures, we obtain similar Davydov splitting behaviors. Based on Fig. 4 and table 1, we can +first see that the excitons of BL-BN exhibit large binding energies, but significantly lower than that of +ML-BN, mainly due to the increased screening in the bilayer structure 7,42,43. The first exciton of ML-BN +locates at 5.25 eV and has a binding energy of 2.03 eV, in agreement with previous reports 7,44. The binding +energies of the first exciton of five bilayer structures show an order of AB-BB < AA-BB < AB-NN ≈ AB-BN + + +10 +< AA-BN. In this order, the structures with the B-B opposite (i.e., AB-BB and AA-BB) have a relatively +small binding energy, and that those with the B-N opposite have a relatively large binding energy. +Furthermore, as shown in table 1, the binding energy of the first exciton of AA-BN is 1.78 eV in agreement +with the Paleari et al.’s report 7 in which they theoretically investigated the effects of the number of layers on +the binding energies of excitonic states based on the same stacking as AA-BN. They showed that the binding +energy of the first exciton of the pentalayer structure reduced to 1.32 eV which is close to those of the first +excitons of AB-BB (1.38 eV) and AA-BB (1.43 eV). This implies that the electronic screening environment +of the bilayer structures with the B-B opposite should be comparable to that of pentalayer AA-BN structures. +Thus, the B-B opposite may have a stronger electronic screening than the B-N opposite. + + +Figure 4. (a and b) Absorption spectra (i.e., imaginary part of polarizability, Imχ) along the in-plane direction +of ML-BN and BL-BN calculated using the GW+BSE method. The GW direct gaps at K point are indicated by +the vertical lines. The transition energy of the first bright exciton is indicated by arrow. (c and d) PDOS per +layer of AB-BN and AA-BB. + +EUGLA (GA) +EUGL入 (GA) +2.8 +40 +42 +0.2 +2.2 +0.0 +2.0 +0.F +2.F +0.8 +0.8- +0.S- +0.1- +0.0 +0.1 +0.5 +0.8 +0 +0.0 +TO +JO +5.0 +Vses +8 +5O +0'4 +8S.F IF.0 IS.0 +SD +25.2 +d +3 +30 +0.0 +c1.2 +VB-BИ +WT-BИ +40 +81.2 +8.0 +JgAGI. B +H-AA +(c) +(g) +VB-ИИ +A 19sl +20 +0.1EUGLBA (GA) +EUGLA (GA) +2.c +40 +2.4 +0.2 +2.2 +0.0 +2.0 +0.F +2.F +0.8 +0.8- +-50 +0.1- +0.0 +0.1 +0.5 +0.8 +0 +0.0 +JO +5.0 +Vsets +5O +0'4 +68.0 58.0 +SD +4'2 +00.r +0.0 +3 +30 +H-AA +VB-BИ +40 +2'3J +8.0 +85.2 +JSΛGI B +VB-BB +(b) +(p) +И-AA +A 19sl +0.1 +11 + +Table 1. Transition energies (eV) and corresponding optical activities (d = dark or br = bright) of the first +two excitons of ML-BN and BL-BN. The binding energies (eV) based on the direct G0W0 gap at K point are +given in parenthesis. For example, the Davydov splitting (Eds +12/eV) is the energy difference between the first +and second excitons. The transitions based on the IPA bands have a major contribution to the excitons. +Excitons +ML-BN (D3h) +AB-BB (D3d) +AB-NN (D3d) +AA-BB (D3h) +AB-BN (C3v) +AA-BN (D3d) +1 (×2) a +5.25 (2.03, br) b +4.95 (1.38, d) +5.09 (1.62, d) +4.78 (1.43, d) +5.24 (1.59, br) +5.28 (1.78, d) +2 (×2) + +4.96 (1.37, br) +5.15 (1.55, br) +5.18 (1.03, br) +5.28 (1.55, br) +5.31 (1.75, br) +Eds +12 + +0.01 +0.06 +0.40 +0.04 +0.03 +1 (×2) a +4→5 (4.69) c +7→9 (4.14) +8→9 (4.14) +8→9 (4.47) +8→10(4.47) +8→9 (4.07) +7→9 (4.69) +7→9 (4.75) +8→9 (4.72) +2 (×2) + +7→9 (4.14) +8→9 (4.14) +8→9 (4.47) +8→10(4.47) +7→9 (4.45) +8→10 (4.73) +7→9 (4.75) +8→9 (4.72) +a “×2” means double degenerate. +b transition energy (binding energy, optical activity). +c band 4 to band 5 with the transition energy of 4.69 eV. + +Second, the absorption spectra are very similar in terms of line shapes and peak positions for BL-BN with +the same opposite atoms, though they have different electronic energy gaps. For example, the G0W0 gaps of +AA-BN and AB-BN (Fig. 4b) are 7.06 and 6.83 eV, respectively. Both of them have strong absorption peaks +at ~5.30 eV and ~6.1 eV. A similar case occurs for the AB-NN and AA-BB/NN (Fig. 4a) with the same N–N +opposite atoms. We can also see that the absorption spectra of AB-BB are significantly different from those of +other four bilayer structures in terms of line shapes and peak positions, especially the position of the strongest +absorption peak. This absorption peak locates at 4.95 eV, which is distinctly lower than 5.20 ± 0.10 eV of +other four bilayer structures. So, the AB-BB could be distinguished from other four bilayer structures by the +absorption spectra. +Third, the AA-BB has the smallest Eb but the largest Eds among five bilayer structures. To understand the +large Eds of AA-BB, we examine the weight (i.e., |Ac,v,k|2) of contributions defined in Eq. 2 for the first and +second excitons. Table 1 lists the IPA transitions at K point with the weight larger than 0.02. For example, for +ML-BN, the IPA transition from 4 (HOVB) to 5 (LUCB) has a major contribution to the first bright exciton, +in agreement with previous report 7. All the bilayer structures except AA-BB have a small Eds +12. For AB-BB, +AB-NN, and AA-BN, the small Eds +12 may be due to that two excitons stem from the same IPA transitions. For + + +12 +AB-BN, which also has a small Eds +12 (0.04 eV), the major IPA transitions are 7→9 and 8→10 for two +excitons, respectively. According to the PDOS (Fig. 4c), we find that these two transitions belong to the +intralayer transition (i.e. 7→9 from B layer, 8→10 from A layer). Meanwhile, the difference in these two IPA +transition energies is 0.04 eV (4.73 – 4.69) that is equal to the Eds +12. Now, we go back to the AA-BB with the +largest Eds +12. The first and second excitons originate mainly from the IPA transitions of 8→9 and 7→9, +respectively. According to the PDOS (Fig. 4d), we find that each layer almost has the same contribution to the +transition (i.e. both layers contribute to the bands 7, 8, and 9). Thus, the large Eds +12 is mainly due to the +difference in the IPA transition channels, that is, the energy difference of 0.38 eV between bands 7 and 8 is +very close to the Eds +12 of 0.40 eV. + +Now, we turn to TL-BN, as shown in Fig. 5, all the trilayer structures have a strong absorption peak at +about 5 eV, and, to some degrees, inherit the characteristics of the absorption spectrum of the bilayer +substructure. To understand these absorption peaks, we list in table 2 the information for the first three +excitons of all the trilayer structures. The first three excitons are bright. Similar to BL-BN, all the first three +excitons are double degenerate and related to the first exciton of each monolayer. Based on Fig. 5 and table 2, +we first observe strong absorption peaks at 4.95 and 5.01 eV for NBB and BBB, respectively, which may be +related to the AB-BB substructure with the lowest absorption peak at 4.95 eV (Fig. 4b). The BBN has a strong +absorption peak at 5.23 eV because the substructures AA-BB and AB-BN have strong absorption peaks at +5.18 eV (Fig. 4a) and 5.28 eV (Fig. 4b), respectively. As shown in table 2, the binding energies of the first +exciton of eight trilayer structures have an order of BBB (1.13) < NNB (1.21) < NNN (1.24) < NBB (1.30) < +BBN (1.35) < BNB (1.52) < NBN (1.56) < BNN (1.60). In this order, we also find that the structures with the +B-B opposite have a relatively small binding energy, which is obviously shown in BBB formed by AA-BB +and AB-BB substructures. The substructure with the B-N opposite dramatically increases the binding energy +owing to the weak electronic screening mentioned above. For example, the binding energy increases by 0.17 +eV from BBN to BNB. In these two trilayer structures, the difference in the structures is AA-stacked +substructure which changes from AA-BB/NN to AA-BN, and note that the AA-BN has the largest binding +energy for the first two excitons (table 1). + + + +13 + +Figure 5. Absorption spectra (i.e., imaginary part of polarizability, Imχ) along the in-plane direction of +TL-BN calculated using the GW+BSE method. The GW direct gaps at K point are indicated by the vertical +lines. The transition energy of the first bright exciton is indicated by arrow. + +Table 2. Transition energies (eV) of the first three excitons (all are bright) of TL-BN. The binding energies (eV) +based on the direct gap at K point are given in parenthesis. All the structures have C3v symmetry. The Eds +12(eV) +is the Davydov splitting between the first and second excitons, and the Eds +23(eV) is the Davydov splitting +between the second and third excitons. The transitions based on the IPA bands have a major contribution to +the excitons. +Excitons NNB +NNN +BBN +BBB +BNN +BNB +NBB +NBN +1 (×2) a +4.73 (1.21) +4.69 (1.24) +4.71 (1.35) +4.59 (1.13) +5.01 (1.60) +5.16 (1.52) +4.89 (1.30) +5.22 (1.56) +2 (×2) +5.18 (0.76) +5.04 (0.89) +5.17 (0.89) +4.84 (0.88) +5.12 (1.49) +5.21 (1.47) +4.99 (1.20) +5.23 (1.55) +3 (×2) +5.21 (0.73) +5.09 (0.84) +5.23 (0.83) +5.01 (0.71) +5.23 (1.38) +5.25 (1.43) +5.24 (0.95) +5.36 (1.42) +Eds +12 +0.45 +0.35 +0.46 +0.25 +0.11 +0.05 +0.10 +0.01 +Eds +23 +0.03 +0.05 +0.05 +0.17 +0.11 +0.04 +0.25 +0.13 +1 (×2) a +12→13(4.05) 12→13(3.97) 12→13(4.05) 12→13(3.79) 12→13(4.48) 11→14(4.73) +12→13(4.14) 10→13(4.70) +12→14(4.75) +2 (×2) +10→13(4.44) 12→14(4.40) 10→13(4.45) 11→13(3.98) 12→14(4.48) 12→15(4.75) 10→13(4.19) 10→13(4.70) +12→14(4.75) +3 (×2) +11→13(4.14) +11→13(4.24) +11→14(4.70) +10→13(4.19) 11→15(4.75) 10→13(4.74) 10→14(4.76) 11→15(4.78) +a “×2” means double degenerate. + + +Second, the magnitude of two Davydov splitting energies (Eds +12 and Eds +23) of the trilayer structures is +closely related to that of Eds +12 of the bilayer substructures. As shown in table 1, the Eds +12 of five bilayer +structures can be ordered by AA-BB (0.40) > AB-NN (0.06) > AB-BN (0.04) ≈ AA-BN (0.03) > AB-BB + +EUGL (GA) +EUGL (GA) +2.8 +4'0 +42 +0.2 +2.2 +0.0 +2.0 +0.F +0.8 2.F +2.8 +40 +2.+ +0.2 +2.2 +0.0 +2.0 +0.F +2.r +0.8 +0 +0 +53 +JO +JO +ce. +80.0 Q1.0 . +sr.c +SD +5O +5O +Q:Q +8r.0 +te.c +10.2 +2.00 +2'51 WMM +SI.c +BBИ +30 +ИИB +30 +ИBИ +2s.c +BИB +BBB +(6) +ИBB +(p) +BИИ +40 +40 +14 +(0.01). From table 2, we can see that the trilayer structures (NNB and BBN), containing the AA-BB/NN and +AB-BN substructures, have relatively large Eds +12 but relatively small Eds +23. For NNB and BBN, the Eds +12 is +0.45 and 0.46 eV, respectively, which is even larger than that of AA-BB (0.40 eV in table 1). This is due to a +large Eds +12 (0.40 eV) of AA-BB/NN and a small one (0.04 eV) of AB-BN. A similar case occurs for BBN +which has the Eds +12 and Eds +23 of 0.35 and 0.05 eV, respectively. Both BNB and NBN have relatively small +Eds +12 and Eds +23 because they contain the AA-BN and AB-BN substructures with relatively small Eds +12 (i.e. 0.03 +and 0.04, respectively). Interestingly, for BBB containing the AA-BB/NN and AB-BB substructures, the +AA-BB substructure has the largest Eds +12 (0.40 eV) among the five bilayer structures while the AB-BB +substructure has the smallest Eds +12 (0.01 eV), which leads to similar values of Eds +12 (0.25 eV) and Eds +23 (0.17 +eV). +Finally, according to the IP transition contributions to excitons, we can see that the Eds values of excitons +of TL-BN also depend on the IP transition energies strongly, similar to those of BL-BN. For example, a large +Eds +12 (0.45 eV) of NNB is related to a large difference in transition energies between 10→13 (4.44 eV) and +12→13 (4.05 eV) transitions. The Eds +12 and Eds +23 of BNB have similar values (0.05 and 0.04 eV, respectively) +because the IP transitions with major contributions have very similar transition energies (~ 4.74 eV). + +3.3 Direct FBG based on the B–B opposite substructure +As shown above, the B–B opposite makes the multilayer BN structures trend to having a direct FBG (Figs. +2c, 2e, 2g, 2h, and 2i). Particularly, for AB-BB (Fig. 2e) and AAB-BBB (Fig. 2h), which have as many B–B +opposites as possible, the FBG is direct within both the IPA and GWA. However, the N–N opposite results in +an indirect FBG gap (Figs. 2f, 2k, and 2l). In this section, we explore the effect of the N–N opposite on the +FBG of the B–B opposite structures to show that the reservation of the B–B opposite substructure plays an +important role in forming the direct FBG. For this purpose, we construct a series of six-layer structures by +inserting the N–N opposite into the six-layer AB-BB structure and keep at least a B–B opposite in these +AB-stacked structures. These structures are labeled by the order of the opposite atoms, similar to those shown +in Fig. 1. As an example, the geometry of BNNBBB is given in Fig. 6k. We calculated their energy band +structures within the IPA, and the results are shown in Figs. 6(a–j). + + + +15 + +Figure 6. (a–j) Band structures of six-layer BN structures based on the IPA calculations. The labels (e.g., +NNBBBB and BNNBBB) are defined by the directly opposite atoms. (k) Geometry of BNNBBB. + + +As shown in Fig. 6a, the six-layer AB-stacked structure with B–B opposite (BBBBBB) has a direct FBG +of 3.64 eV at K point. By inserting N–N opposite into the BBBBBB, the structure gradually transforms from +direct FBG (Figs. 6a–6c, 6e, and 6f) to indirect one (Figs. 6g–6j) as the number of N–N opposites increases. +The structures with one N–N opposite at different insertion positions have a direct FGB (Figs. 6b, 6c, and 6e) +because two or three B–B opposites are reserved in the structure. A consecutive B–B opposite unit is essential +for the structure to have a direct FGB, as shown in Figs, 6b, 6c, 6e, and 6f whose corresponding structures +have BBB unit. On the contrary, consecutive N–N opposites (Figs. 6g and 6i) make the structure exhibit an +indirect FBG. To understand these behaviors, we show in Fig.7 the PDOS of several selected six-layers. The +conduction band edges of BNNNBB (Fig. 7d) and NBBBNN (Fig. 7e) mainly come from NNN and BBB +units, respectively, which leads to indirect and direct FBG in corresponding structures. For NNNBBB (Fig. +7b), NNN and BBB competitively contribute to the conduction band edge, and the result is that NNNBBB +exhibit a direct FBG determined by the BBB unit. +Meanwhile, we can see that the inner layers have more effects on the band edge than the outer layers, + +M +K +WK +M +K +M +M +K +S +EUGL入 +(V) +4 +QWWWBBB +BMИBB +MBBИM +MMMBBM +WMWMBB +M +K +LL +W K +LL +WK +LL +WK +LL +WK +5 +(D) +0 +Q +16 +because the inner layers interact with two sides, which possibly leads to a larger dispersion of energy band. +For example, in both BBNNBB and NNBBNN, the B–N opposites of inner layers play a major role in +determining the type of FBG. As shown in Figs. 2b, 2d, and 3a, the bilayer structures with the B–N opposite +have a relative flat M–K path and a slightly indirect FGB, which leads to a slightly indirect FBG in both +BBNNBB (Fig. 6d) and NNBBNN (Fig. 6h). Similarly, for BNNNBB (Fig. 7d) and NBBBNN (Fig. 7e), the +inner NNN and BBB units also determine the type of FBG (the former is indirect and the latter is direct). +Interestingly, our present finding is very applicable to the ten-layer t-BN reported by Mengle and Kioupakis 23. +Although they only show a representative t-BN structure (Fig. 3a of Ref23) consisting of ten randomly chosen +layers, we can see from this structure that two inner BBB units lead the structure to having a direct FBG. + + +Figure 7. PDOS of selected six structures based on the pz orbitals of B and N atoms. L1 represents the first +layer, L2 represents the second layer, and so on. The atomic labels in the legends indicate the directly +opposite atoms in the six-layer structure. + +More examples, we show in Fig. S2 the band structures of selected AB-stacked four- and five-layer +structures. As expected, the BBBNN and NBBBN with a BBB unit have a direct FGB, while the BBNNN and +BNNNB with a NNN unit have an indirect one. The NBBNN with not only a inner B–B opposite but also +B–N and N–N opposites exhibit a relative flat M-K path and have a slightly direct FBG at K point, a similar +case occurs for BNNBB which has a slightly indirect FBG. The BBNN with not only B–B opposite but also + +EUGLA (GN) +EUGLEA (GA) +EUGLEN (G) +3'0 +3'2 +4'0 +42 +3'0 +2.8 +4'0 +4'2 +3'0 +3'2 +4'0 +42 +0.0 +0.0 +0.0 +1.0 +BWWWBB +1.0 +WBBBWW +1.0 +BBWИBB +5.0 +Voleotste +5.0 +5.0 +BI +WrI +BI +0'3 +urs +0'3 +BIS +0'3 +BrS +MF3 +Br3 +Wr3 +0'4 +0'4 +B +0'4 +I +Br2 +r2 +Br2 +Bre +(g) +(G) +wre +Bre +(t) +02 +2.0 +02EUGLA (GN) +EUGLEA (GA) +EUGLEN (G) +3'0 +3'2 +4'0 +42 +3'0 +2.8 +4'0 +4'2 +3'0 +3'2 +4'0 +42 +0.0 +0.0 +0.0 +1.0 +BBBBBB +1.0 +BBB +1.0 +WWBBWM +BFI +BrI +WrI +2.0 +BrS +.0 +BIS +2.0 +wrs +B3 +Br3 +B3 +0'4 +BI +0'4 +0'4 +BI +Br2 +wr2 +wr? +(s) +(p) +(c) +BTe +wre +wre +2.0 +.0 +.0 +17 +N–N or N–B opposite has a slightly direct FBG at K point. Finally, BBNBB has an obvious direct FBG at K +points which is determined by two B–B opposites, though two N–B opposites locate in inner layer. Thus, the +B–B opposite plays a crucial role in determining the type of FBG. + +4. Conclusions +We have performed the first-principles many-body GW and BSE calculations on the BL-BN and +AAB-stacked TL-BN structures. The size and type of FBG strongly depend on the opposite atoms. Structures +dominated by the B–B opposite are expected to have a direct FBG. The B–B opposite makes the stacking +have a relative small binding energy of exciton, and thus the corresponding structures have a stronger +electronic screening than those with the B–N and N–N opposites. The Davydov splitting energies of excitons +of TL-BN are closely related to those of BL-BN substructure, which implies the Davydov splittings of FL-BN +could be understood on the basis of those of substructure. All the structures have similar dispersion of valence +band edge, and thus the intrinsic FBG is mainly determined by the conduction band edge whose dispersion +depends on the type of opposite atoms in FL-BN. For t-BN or FL-BN, to obtain the structure with a direct +FBG, we should construct the B–B opposite as many as possible and preferably locate them in the inner layer +because the B–B opposite can make the structure have a direct FBG at K point. Our findings not only show a +new structure-property relationship but also provide a useful reference for experimentally designing FL-BNs +with a direct FBG which are more suitable for optoelectronic applications in deep ultraviolet region. + +Acknowledgements + +We appreciate the financial support from Natural Science Foundation of China Project 21303164. + +References: +1 B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev. Lett. 96, 026402 (2006). +2 C. Elias, P. Valvin, T. Pelini, A. Summerfield, C.J. Mellor, T.S. Cheng, L. Eaves, C.T. Foxon, P.H. Beton, +S.V. Novikov, B. Gil, and G. Cassabois, Nat. Commun. 10, 2639 (2019). +3 T. Galvani, F. Paleari, H.P.C. Miranda, A. Molina-Sánchez, L. Wirtz, S. Latil, H. Amara, and F. mboxçelse +çfiois Ducastelle, Phys. Rev. B 94, 125303 (2016). +4 J.C.G. Henriques, B. Amorim, R.M. Ribeiro, and N.M.R. Peres, Phys. Rev. B 105, 115421 (2022). +5 J.C.G. Henriques, G.B. Ventura, C.D.M. Fernandes, and N.M.R. Peres, J. Phys.: Condens. Matter 32, 025304 + + +18 +(2019). +6 H. Liu, Y. Li, Y.S. You, S. Ghimire, T.F. Heinz, and D.A. Reis, Nat. Phys. 13, 262 (2017). +7 F. Paleari, T. Galvani, H. Amara, F. Ducastelle, A. Molina-Sánchez, and L. Wirtz, 2D Mater. 5, 045017 +(2018). +8 R.M. Ribeiro and N.M.R. Peres, Phys. Rev. B 83, 235312 (2011). +9 A. Rousseau, L. Ren, A. Durand, P. Valvin, B. Gil, K. Watanabe, T. Taniguchi, B. Urbaszek, X. Marie, C. +Robert, and G. Cassabois, Nano Lett. 21, 10133 (2021). +10 Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, M.S. +Dresselhaus, L.-J. Li, and J. Kong, Nano Lett. 10, 4134 (2010). +11 L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, and +P.M. Ajayan, Nano Lett. 10, 3209 (2010). +12 L. Sponza, H. Amara, C. Attaccalite, S. Latil, T. Galvani, F. Paleari, L. Wirtz, and F. mboxçelse çfiois +Ducastelle, Phys. Rev. B 98, 125206 (2018). +13 D. Wickramaratne, L. Weston, and C.G. Van de Walle, J. Phys. Chem. C 122, 25524 (2018). +14 H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, and S. Ciraci, Phys. Rev. B 80, +155453 (2009). +15 N. Berseneva, A. Gulans, A.V. Krasheninnikov, and R.M. Nieminen, Phys. Rev. B 87, 035404 (2013). +16 J. Zhang, R. Sun, D. Ruan, M. Zhang, Y. Li, K. Zhang, F. Cheng, Z. Wang, and Z.-M. Wang, J. Appl. Phys. +128, 100902 (2020). +17 L. Liu, Y.P. Feng, and Z.X. Shen, Phys. Rev. B 68, 104102 (2003). +18 N. Ooi, A. Rairkar, L. Lindsley, and J.B. Adams, J. Phys.: Condens. Matter 18, 97 (2005). +19 G. Cassabois, P. Valvin, and B. Gil, Nat. Photonics 10, 262 (2016). +20 K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3, 404 (2004). +21 X.Z. Du, M.R. Uddin, J. Li, J.Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 110, 092102 (2017). +22 C.-J. Kim, L. Brown, M.W. Graham, R. Hovden, R.W. Havener, P.L. McEuen, D.A. Muller, and J. Park, +Nano Lett. 13, 5660 (2013). +23 K.A. Mengle and E. Kioupakis, APL Mater. 7, 021106 (2019). +24 Y. Fujimoto and S. Saito, Phys. Rev. B 94, 245427 (2016). +25 S. Alkoy, C. Toy, T. Gönül, and A. Tekin, J. Eur. Ceram. Soc. 17, 1415 (1997). +26 T. Kobayashi, S. Tashiro, T. Sekine, and T. Sato, Chem. Mater. 9, 233 (1997). + + +19 +27 J. Thomas, N.E. Weston, and T.E. O’Connor, J. Am. Chem. Soc. 84, 4619 (1962). +28 O.O. Kurakevych and V.L. Solozhenko, Acta Crystallographica Section C 63, i80 (2007). +29 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. +Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. +Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. +Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and +R.M. Wentzcovitch, J Phys : Condens Matter 21, 395502 (2009). +30 A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009). +31 D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri, E. Cannuccia, P. Melo, M. Marsili, F. Paleari, +A. Marrazzo, G. Prandini, P. Bonfà, M.O. Atambo, F. Affinito, M. Palummo, A. Molina-Sánchez, C. Hogan, +M. Grning, D. Varsano, and A. Marini, J. Phys.: Condens. Matter 31, 325902 (2019). +32 X. Blase, A. Rubio, S.G. Louie, and M.L. Cohen, Phys. Rev. B 51, 6868 (1995). +33 K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. +Dresselhaus, T. Palacios, and J. Kong, Nano Lett. 12, 161 (2012). +34 Y. Lin, T.V. Williams, T.-B. Xu, W. Cao, H.E. Elsayed-Ali, and J.W. Connell, J. Phys. Chem. C 115, 2679 +(2011). +35 M. Rohlfing and S.G. Louie, Phys. Rev. B 62, 4927 (2000). +36 F. Hüser, T. Olsen, and K.S. Thygesen, Phys. Rev. B 88, 245309 (2013). +37 F.A. Rasmussen, P.S. Schmidt, K.T. Winther, and K.S. Thygesen, Phys. Rev. B 94, 155406 (2016). +38 C.A. Rozzi, D. Varsano, A. Marini, E.K.U. Gross, and A. Rubio, Phys. Rev. B 73, 205119 (2006). +39 P. Cudazzo, I.V. Tokatly, and A. Rubio, Phys. Rev. B 84, 085406 (2011). +40 A.S. Davydov, Theory Molecular Excitons, 1st ed. (Springer US, 1971). +41 E.F. Sheka, Mol. Cryst. Liq. Cryst. 29, 323 (1975). +42 Y.-Z. Lan, Comput. Mat. Sci. 138, 213 (2017). +43 L. Yang, J. Deslippe, C.-H. Park, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 103, 186802 (2009). +44 A. Kirchhoff, T. Deilmann, P. Krüger, and M. Rohlfing, Phys. Rev. B 106, 045118 (2022). + + + + + +1 +Effects of opposite atoms on electronic structure and optical absorption +of two-dimensional hexagonal boron nitride + +You-Zhao Lan*1 + +Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and +Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China + +Table S1. Convergence tests of the energy gap of ML-hBN based on the change of the number of empty states, +response block size, and k-grid. 1 Ry = 13.6 eV. + +Number of empty states : 200; response block size : 5 Ry +k-grids +18×18×1 +24×24×1 +30×30×1 +36×36×1 +Gap at K (eV) +7.32 +7.27 +7.24 +7.24 +Global gap (eV) +6.63 +6.49 +6.44 +6.41 + +k-grid: 30×30×1; response block size : 5 Ry +Number of empty states +100 +200 +300 +400 +Gap at K (eV) +7.25 +7.24 +7.24 +7.25 +Global gap (eV) +6.29 +6.41 +6.43 +6.45 + +Number of empty states : 200; k-grid : 30×30×1 +Response block size (Ry) 5 +8 +10 +13 +Gap at K (eV) +7.24 +7.25 +7.28 +7.29 +Global gap (eV) +6.41 +6.52 +6.57 +6.59 + + + +1 Corresponding author: lyzhao@zjnu.cn + + +2 + +Figure S1. The dependence on the k-grid and eh-basis of the imaginary part of two-dimensional polarizability +(Imχ2D) of ML-BN, AA-BN, and AAB-BNN. The legend of “5–12” is defined on the basis of the index of +bands of IPA. For example, in the case of AA-BN with 16 valence electrons occupying 8 valence bands, it +indicates that the highest four valence bands and the lowest four conduction bands are included in the BSE +calculation. + + +EUGL (GA) +EUGL (GA) +2.8 +40 +42 +0.2 +2.2 +0.0 +2.0 +0.F +c.F +0.8 +2.8 +40 +2.t +0.2 +2.2 +0.0 +2.0 +0.F +c.F +0.8 +0 +2 +2 +JO +J0 +SD +SDJ +J() +J() +12 +J-JQ +J-JS +0-JQ +5O +k-alig:30x30x +5O +3-JJ +JO-JQ +VA-AA +-JS +JI-e +52 +52EUGLA (GA) +EUGL (GA) +32 40 42 +20 +c.c +0.0 +2.0 +10 +0.8 2.F +32 40 42 +0.c +.C +0.0 +.0 +10 +0.82.F +0 +0 +2 +2 +SD +SD +1(m) +1(0) ( +JO +30X30XJ +4-2 +Ix+Sx+s +3-J0 +8 +Ix81x81 :br19- +Ix8Ix8I +8-8 +WI-BИ +JSXJSXJ +WF-BИ +J-8 +3 + +Figure S2. Band structures of selected four- and five-layer AB-stacked structures. + + +M +LL +WK +LL +WK +LL +WK +LL +WK +0 +4 +(6) +8BBИИ +BИИB +BBИ +BBИBB +BИИИB +M +K +LL +WK +LL +K +LL +WK +LL +WK +0 +EUGL&> ( +(Va) +4 +8 \ No newline at end of file diff --git a/j9AyT4oBgHgl3EQf_Pqt/content/tmp_files/load_file.txt b/j9AyT4oBgHgl3EQf_Pqt/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..77c211f4767a17723d1ecb183cae07d968a756e0 --- /dev/null +++ b/j9AyT4oBgHgl3EQf_Pqt/content/tmp_files/load_file.txt @@ -0,0 +1,1301 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf,len=1300 +page_content='1 Effects of opposite atoms on electronic structure and optical absorption of two-dimensional hexagonal boron nitride You-Zhao Lan*1 Key Laboratory of the Ministry of Education for Advanced Catalysis Materials,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' College of Chemistry and Life Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Zhejiang Normal University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Jinhua,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Zhejiang,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 321004,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' China Abstract We perform the first-principles many-body GW and Bethe-Salpeter equation (BSE) calculations on the two-dimensional hexagonal boron nitride (2D-hBN) to explore the effects of opposite atoms on the electronic structure and linear one-photon absorption (OPA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Five AA- and AB-stacked bilayer and eight AAB-stacked trilayer structures are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The AAB-stacked trilayer hBN (TL-BN) structures are constructed by mixing the AA- and AB-stacked bilayer hBN (BL-BN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' We show that the GW approximation gives rise to different types (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', indirect or direct) of fundamental band gaps from the independent particle approximation for all structures except those dominated by the B–B opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The stacking modes dominated by the B–B opposite have a direct fundamental band gap in both approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The OPA spectra are calculated by solving the Bethe-Salpeter equation combined with the GW quasi-particle correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Strong absorption peaks are found for most structures in the deep-ultraviolet region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The binding energy and Davydov splitting of excitons of TL-BN strongly depend on the opposite atoms and are related to the role of the stacking BL-BN substructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Finally, taking the six-layer and below AB-stacked structures as examples, we show that the B–B opposite unit is helpful in constructing the turbostratic-phase-like stacking structures with a direct fundamental band gap which are more suitable for optoelectronic applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Introduction The electronic structure and optical property of the two-dimensional hexagonal boron nitride (2D-hBN) have attracted much attention 1–13 in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Experimental and theoretical studies have consistently shown that 2D-hBN has a wide bandgap, but there are contradictions on the size and type of fundamental band gap (FBG) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', indirect or direct), even for the monolayer BN (ML-BN) that has been widely studied 7,14–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For ML-BN, the density functional theory (DFT) calculations predict the FBGs with a range of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 – 1 Corresponding author: lyzhao@zjnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='cn 2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='7 eV between the valence band maximum (VBM) at the K point and the conduction band minimum (CBM) at various points (K, M, or Γ point) 7,14,15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The GW approximation (GWA) calculations dramatically increase the energy gap by ~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='5 eV and also lead to a change of FBG from direct to indirect 7,15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' A recent experimental study confirmed a direct FBG of ~ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 eV for ML-BN by using the reflectance and photoluminescence experiments in the deep-ultraviolet region 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Similarly, for the bulk hBN, the energy band structure strongly depends on the stacking mode 12,17,18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The FBG ranges from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='5 eV based on the DFT/PBE and DFT/LDA calculations 17,18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Direct and indirect FBGs are also theoretically found in different stacking modes, similar to the experimental studies 19,20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For few-layer hBN (FL-BN) structures, which have more adjustable parameters, such as stacking mode and layer number, they have more changeable electronic structure properties than ML-BN and bulk hBN 4,7,13,21–23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, for the AA′- and AB-stacked structures, the FBG changes from direct to indirect as the structure changes from ML-BN to FL-BN 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The AA′-stacked bilayer has distinctly different excitonic response from the AB-stacked one 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As an increase of the number of layers, the emission peaks exhibit a monotonic blue-shift 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The measurements of optical second harmonic generation show strong enhancement in the AB-stacked structure relative to monolayer and AA′-stacked bilayer, though similar linear absorption spectra were measured for these three structures 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Theoretical calculations 7 on the AA′-stacked FL-BNs up to five layers show that the excitonic spectra are resolved by surface and inner excitons and interesting Davydov splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Under biaxial strain, the size and type of FBG of BL-BN are tunable 24, which indicates possibly various applications in electronic and optoelectronic devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Note that most studies focus on the singly ordered stacking modes, such as AA′ and AB stackings, while the randomly stacked and disordered phase, namely turbostratic (t-BN) phase, was found in experiments sixty years ago 25–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Recently, Mengle and Kioupakisa 23 studied five t-BN structures containing ten randomly chosen layers and found that the t-BN structures had a quasi-direct FBG which only allows weakly direct optical transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The random stacking breaks the symmetry of originally ordered FL-BN, which further results in changes in electronic structures and optical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Obviously, the random stacking combined with a change of the layer number will lead to a large number of FL-BNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In particular, there can be a great variety of assignments of opposite atoms in these structures, which leads to some new unknown structure-property relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Meanwhile, as mentioned above, FL-BN can have direct or indirect FBG depending on the stacking mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Different stacking modes can lead to different opposite atoms, then to different interlayer interactions, and ultimately to different energy bands with direct or indirect FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' It is 3 beneficial to filter out the direct-gap FL-BN because materials with direct FBG have higher optical efficiency in optoelectronic applications, such as light emitting diodes and semiconductor laser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In this work, to explore the effect of opposite atoms on properties, we select five bilayer BN structures (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', two AA and three AB stackings) and eight AAB-stacked trilayer BN (TL-BN) structures formed by mixing AA and AB stacking modes, and calculate their electronic structures and linear optical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' All possible atomic opposites are considered in these stackings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The electronic structures are calculated within both the independent particle approximation (IPA) and the GWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The linear one-photon absorption (OPA) spectra are calculated by solving the Bethe-Salpeter equation (BSE) combined with the GWA quasi-particle correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Based on the results of BL- and TL-BN structures, we further explore the t-BN-like randomly AB-stacked six-layer structures to filter out the structures with a direct FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In Section 2, we describe the computational details including geometry and GW+BSE calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In Section 3, we discuss the calculated electronic structures and OPA and construct the FL-BN structures which have a direct FBG based on the B–B opposite substructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Conclusions are given in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Computational methods 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 Geometry The two-dimensional bilayer (BL-) and trilayer (TL-) hexagonal BN structures with different stacking modes are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' We consider AA and AB-stacked bilayer structures and their mixture to form the trilayer structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The AB-stacked structures mean two layers overlap with one set of atoms facing each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In terms of different sets of opposite atoms, there are three AB stackings labeled by AB-NN, AB-BN, and AB-BB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The AA-stacked structures mean two layers overlap with all atoms facing each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' We constructed two AA stackings labeled by AA-NN and AA-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Note that AA-NN can be also called by AA-BB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For mixture of AA and AB stackings, we constructed eight structures in terms of different opposite atoms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', AAB-BNN, AAB-NBB, AAB-BNB, AAB-BBB, AAB-NNN, AAB-NNB, AAB-BBN, and AAB-NBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The definition of labels is given in the figure caption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Hereafter, for simplicity, we call trilayer structures by opposite atoms only, namely BNN, NBB, BNB, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The initial structures were constructed based on the bulk hBN structure 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As a reference, we optimized the bulk hBN by using the same method and obtained the structure parameters (a = b = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='503 Å, c = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='681Å) which are in agreement with the experimental parameters 28 (a = b = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='498Å, c = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='636Å).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' All the structures were optimized using the DFT within the GGA-PBE approximation combined with the pseudopotential plane 4 wave method, as implemented in the PWSCF code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 29 A k-point mesh of 6×6×1, a force threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='01 eV/Å, and a stress threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='02 GPa were used for the optimizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The relaxation of the unit cell was included in optimizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The optimized lattice parameters are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' A vacuum spacing larger than 13 Å was used to ensure negligible interaction between the slabs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The van der Waals interaction was taken into account by using the Tkatchenko-Scheffler (TS) dispersion corrections 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The interlayer distances and cell parameters of all optimized structures are given as inset tables in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The optimized structures (side and top views) of BL- and TL-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The labels of BL-BN are defined by AB-XY and AA-XY, where X and Y are the opposite atoms at positions 1 and 2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, AB-NN and AA-BN are shown explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The labels of TL-BN are similarly defined by AAB-XYZ, where X, Y, and Z are opposite atoms at positions 2, 4, and 6, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, AAB-BBB is shown explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The inset tables list the interlayer distances, cell parameters, and atoms at selected positions of all optimized structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 GW+BSE calculations Since the DFT within the GGA-PBE approximation usually underestimates the energy gap of materials, we performed the many-body GWA (one-shot level or G0W0) calculations to correct the energy bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The GWA calculations were based on the plasmon pole approximation as implemented in the Yambo package 31 which reads the band structures and wave functions of ground state calculated within the IPA as implemented 13 B Typee (A)b (A) b a=p() c() VB-ИW BV Wolv obi2 sre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 5'202 18°200 B B VV-BB 8et." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="s 1800e B B B VB-BB 3'310 202." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="s 18'5] B B VB-BИ 228." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='s est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='81 R V B b VB-V ert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 5*20寸 18'85e V B B 5 8 4 B elgdsI (A) b =p() c(7) emos bns enoidieogVVB-BBB ." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' VB-VBV 108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 +08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 5'20+ VVB-BB +88." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 3°2e 5°20 50°200 B VI B VVB-VVB 3'323 3°4e 5204 50'4e8 B B VVB-MM 3°ee 3°40 J20寸 258." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="05 B B VVB-BBB 3°3J+ 3°410 5204 50'3e B B VB VVB-BVB ro8." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 3'3e 5°20+ S0'S2 B B B sb VVB-VBB 3'300 8+8." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 5*20+ 5O'OSO B B VVB-BИV 3°42 8e8." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 5°204 50'250 B B B M 5 in the PWSCF code." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 29 The GGA-PBE combined with the pseudopotential plane wave method was used to calculate the ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The convergence tests were performed on the ML-BN which has been widely studied 3,5,11,13,32–34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Three parameters, namely k-grid, response block size in polarizability matrix, and the number of empty states in dielectric function, were considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As shown in table S1, we obtain the converged G0W0 energy gaps for both an indirect energy gap of 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='57 eV between the K point and the Γ point and a direct energy gap of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24 eV at the K point, in agreement with previous calculations 3,13,32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The corresponding three parameters are 30×30×1, 10 Ry, and 200 empty states, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Finally, for BL-BN and TL-BN, we used the 30×30×1, 10 Ry, and 300 empty states in the G0W0 calculations, which produced the G0W0 gaps within an accuracy of ~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='03 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=" We calculated the optical spectra based on the solution of the BSE: 35 ( ) ' ' ' ' ' ' ' ' ' S S S S ck vk vck eh v c k vck k v c E E A vck K v c k A A − + = Ω ∑ (1) The excited state S is given by the linear combination of independent-particle excitations |vck> (i." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', valence band |vk> to conduction band |ck>) as , , , , c v k S c v k S A vck = ∑ (2) The interaction kernel Keh includes the screened Coulomb interaction between electrons and holes, and the exchange interaction, which includes the so-called local-field effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' When the Keh is ignored, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 reduces to independent particle excitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' We used the Coulomb cutoff technique 36–38 and the corresponding length cutoff was set to a slightly smaller value than the c lattice parameter (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 1) of supercell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In this case, we prefer to use the imaginary part of two-dimensional polarizability to understand the optical absorption of materials 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The two-dimensional polarizability is defined by 37,39: 2 1 4 D Lε χ π − = (3) , where L is the effective thickness, which is assumed to c lattice parameter (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 1), and ε is the dielectric constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The imaginary part (ε2) of ε can be understood by 36: ( ) ( ) ( ) 2 2 2 2 0 , , 8 lim S iq r S vck q S c v k A v k q e ck q π ε ω δ ω η − → = − Ω − − ∑ ∑ � (4) , where η is the damping factor and set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For the BSE calculation, we also carried out the convergence tests on the k-grid and the IPA bands used to construct the electron-hole basis (eh-basis) of the BSE kernel (Keh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Other parameters (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', response block size in polarizability matrix and the number of empty states in dielectric function) are the same as those used 6 in the G0W0 calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Since the valence and conduction band dispersions based on the IPA are somewhat different from those based on the GWA (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2 below), we used a quasi-particle correction for the entire energy band, rather than a simple scissor correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As an example, convergence tests on k-grids and eh-basis were performed on ML-BN, while convergence tests on eh-basis were performed on AA-BN and BNN, and corresponding results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' A k-grid of 30×30×1 leads to a good convergence for the first and second absorption peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For the fixed 30×30×1 k-grid, the highest four valence bands and the lowest four conduction bands are enough to obtain the converged first two (see 1–8 of ML-BN and 5–12 of AA-BN) or three (see 9–16 of BNN) absorption peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' This is due to that these absorption peaks mainly arise from the transitions between the valence and conduction bands near the Fermi level (see below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Finally, we adopt the 30×30×1 k-grid for all BSE calculations and the eh-basis of 5–12 and 9–16 for BL-BN and TL-BN, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Results and discussion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 Band structures Figure 2 shows the band structures of BL-BN and TL-BN based on the IPA and GWA calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For comparison, the band structure of ML-BN is included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' First, from IPA to GWA, the type of the FBG changes significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For ML-BN (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2a), the IPA yields a direct FBG at K point, while the GWA yields an indirect one between K and Γ points, in agreement with previous reports 7,14–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' There are two possible reasons for inconsistency in the type of FBG between IPA and GWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' One is that the lowest unoccupied conduction band (LUCB) along the M-K path is very flat and the conduction band bottoms (CBBs) at Γ and K points have only a small energy difference of 20 meV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The other pointed by Blase et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='32 is that the self-energy correction in ML-BN is strongly k-point dependent and has more effect on the K and M points than the Γ point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' This inconsistency also exists in the band structures of BL-BN and TL-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, for AB-BN (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2d), the IPA yields very close K – K (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='59 eV) and K – M (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='54 eV) gaps, while the GWA results in an indirect K – Γ gap of 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='31 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' A similar case occurs in the band structure of NNB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2m) which has very close K – K (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='05 eV) and K – M (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='09 eV) gaps within the IPA and has an indirect K – Γ gap of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='50 eV within the GWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Note that for five BL-BN structures considered here, Mengle and Kioupakis 23 has also calculated the band structures by using the G0W0 method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Comparing our results with theirs, we observe qualitative consistency but some quantitative differences due to differences in computational parameters, such as k-grid and vacuum spacing in supercell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Overall, the GWA does not change the relative magnitude of the CBBs at M and K 7 points, but changes the CBB at Γ point relative to those at M and K points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Band structures of ML-, BL-, and TL-BN based on the IPA (blue solid line) and GWA (red dash line) calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The energy gaps between the conduction band minimum and the valence band maximum are shown by arrows and values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The valence band maximum is set to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Second, for BL-BN, we observe that the stackings with only B–B (AB-BB) and N–N (AB-NN) opposites separately have a direct and indirect FBG, and that those with B–N (AB-BN and AA-BN) or with both B–B and N–N (AA-BB) have an indirect FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The AB-BB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2e) with only B–B opposite has direct FBGs of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='14 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='32 eV within the IPA and GWA, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In the band structure of AB-BB, the M-K path shows a strong dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The AB-NN with only N–N opposite (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2f) has an indirect FBG within the IPA and GWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The AA-BB with both the B–B and N–N opposites (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2c) has a direct FBG within the IPA but an indirect one within the GWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The AB-BN with only B–N opposite (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2d) has an indirect FBG within the IPA and GWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Similar to the ML-BN (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2a), the AA-BB and AB-BN also have a relatively flat M-K path (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', see gaps of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='54 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='59 eV in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2d) and a close CBB energy at K and Γ points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For ease of understanding, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3a shows the scheme of dependence of M-K path on the opposite atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2, for BL-BN, the highest occupied valence band (HOVB) of all five structures exhibit a similar M-K path with a higher energy at K point than M point, which is illustrated as the bottom line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The valence EUGL& (GA) +:14 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 4'00." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="2'20 4'42 35 03 2(6) () J0 VB-BИ VB-BB VB-W VVB-WMM VVB-BИИ VVB-WB VVB-BИB M K M K M K K M K M K MWF-BИ VV-BИ VV-BB VVB-VBB VVB-BBB VVB-BBИ VVB-WBИ WK L L WK L L WK L L WK LL WK L L WK L L WK JO 2 EUGLEa 41 +22412." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="e42 4'13." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="0 4'14 er." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 4'ed 20." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="t 4'40 00." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 02F 8 band maximum (VBM) locates at K point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' However, the dispersion of the LUCB along M-K path strongly depends on the opposite atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The N–N and B–B opposites separately lead to a dispersion with a higher (red line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3a) and lower (blue line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3a) energy at K point than M point;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' thus the AB-BB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2e) has a direct FBG while the AB-NN (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2f) has an indirect one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For B–N or B–B + N–N, the mixture of B–N interactions results in a relatively flat dispersion (yellow and green lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' (a) Scheme of dependence of M-K path on the opposite atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' (b) Charge density distributions of HOVB and LUCB at M and K points for BL-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' To elucidate the different dispersions of M-K path, we examine the charge density distributions (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3b) of HOVB and LUCB at M and K points for all five BL-BN structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3b, the HOVBs of all BL-BNs are derived from the pz state of N atom and hardly from that of B atom, and thus the HOVBs of all BL-BNs have a similar dispersion (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In contrast, the LUCBs of all BL-BNs are very different and strongly depend on the opposite atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The LUCB of AA-BB, with both B–B and N–N opposites, is more like that of AB-BB than AB-NN, that is, LUCBs of AA-BB and AB-BB at M and K points are derived from the pz state of directly opposite B atoms while the LUCB of AB-NN at K point are derive from the pz state of diagonally opposite B atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Thus, the M-K path of AA-BB is relative flat but trends to that of AB-BB with a higher energy at M point than K point [see blue and yellow lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3a and gaps of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='13 (K–M) and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='07 (K–K) eV in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2c].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The LUCB of AA-BN is more like that of AB-NN than AB-BB, and thus the M-K path of AA-BN is relative flat but trends to that of AB-NN with a lower energy at M point than K point [see red and green lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3a and gaps of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='55 (K–M) and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='75 (K–K) eV in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Finally, the M-K path of AB-BN is relative flat but trends to that of AB-NN [see gaps of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='54 (K–M) and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='59 (K–K) eV in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2d] because the lower layer of LUCB of AB-BN is almost the same as that of AB-NN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' --M B--B B--И B--B+M-M B--B+V-- B--M TNCB y--M B--B (d) VV-BB (s) V-AA VB-BB VB-ИM VB-BИB V M K M K M K M K M K M K O Mav HOAB 9 Finally, for TL-BN, the band structures of all eight structures are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2(g–n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Overall, the band structures of TL-BN have very similar characteristics to those of BL-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' All the TL-BN structures have similar valence band dispersions, and thus the difference in FBG depends on the conduction band dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Since the VBM of all TL-BN structures locates at K point, the FBG will be determined by the CBB at M, K, or Γ point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Meanwhile, the type of FBG of TL-BN also dramatically depends on the opposite atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' We note that the effect of the mixture of AA and AB stackings on the type of FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The substacking with B–B opposite is helpful in forming the direct FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, NBB formed by mixing the AB-BB and AA-BN has a direct FBG (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' AB-BB has a direct FBG with CBM at K point (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2e), while AA-BN has an indirect FBG with CBM at M point (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2b), which leads to a direct FBG at K point for NBB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Again, BNB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2n) is formed by mixing AA-BN and AB-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Since both substackings have an indirect FBG (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2b and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2d), BNB ultimately has an indirect FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The BBB structure with two B–B opposites has a direct FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Moreover, for structures with the largest number of B–B opposites, the GWA correction does not change the type of FBG (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2e and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For other structures, the GWA corrections mostly change the type of FBG or the position of CBM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='3, based on the B–B opposite substacking, we will further discuss the construction of the FL-BN with a direct FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 Absorption spectra Figure 4 shows the OPA spectra along the in-plane direction of ML-BN and five BL-BN structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For ML-BN, our calculated spectrum is consistent with previous reports 7 in terms of line shape and peak positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' To understand the spectra, we list in table 1 the transition energies and corresponding optical activities of the first two excitons of ML-BN and BL-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' We calculated the binding energies (Eb) based on the direct G0W0 gap at K point because the vertical transition is considered here and the contributions to these excitons mainly come from transitions near K point 3,7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In table 1, we also list the Davydov splitting 40,41 energy (Eds) of BL-BN which is the energy difference between the first and second excitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For AA-BN, it has been shown 7 that the first and second excitons mainly stem from the first exciton of ML-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For other four bilayer structures, we obtain similar Davydov splitting behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Based on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4 and table 1, we can first see that the excitons of BL-BN exhibit large binding energies, but significantly lower than that of ML-BN, mainly due to the increased screening in the bilayer structure 7,42,43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The first exciton of ML-BN locates at 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='25 eV and has a binding energy of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='03 eV, in agreement with previous reports 7,44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The binding energies of the first exciton of five bilayer structures show an order of AB-BB < AA-BB < AB-NN ≈ AB-BN 10 < AA-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In this order, the structures with the B-B opposite (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', AB-BB and AA-BB) have a relatively small binding energy, and that those with the B-N opposite have a relatively large binding energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Furthermore, as shown in table 1, the binding energy of the first exciton of AA-BN is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='78 eV in agreement with the Paleari et al.’s report 7 in which they theoretically investigated the effects of the number of layers on the binding energies of excitonic states based on the same stacking as AA-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' They showed that the binding energy of the first exciton of the pentalayer structure reduced to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='32 eV which is close to those of the first excitons of AB-BB (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='38 eV) and AA-BB (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='43 eV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' This implies that the electronic screening environment of the bilayer structures with the B-B opposite should be comparable to that of pentalayer AA-BN structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Thus, the B-B opposite may have a stronger electronic screening than the B-N opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' (a and b) Absorption spectra (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', imaginary part of polarizability, Imχ) along the in-plane direction of ML-BN and BL-BN calculated using the GW+BSE method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The GW direct gaps at K point are indicated by the vertical lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The transition energy of the first bright exciton is indicated by arrow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' (c and d) PDOS per layer of AB-BN and AA-BB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' EUGLA (GA) EUGL入 (GA) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 40 42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='S- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 TO JO 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="0 Vses 8 5O 0'4 8S." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F IF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 IS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 SD 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 d 3 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 c1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 VB-BИ WT-BИ 40 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 JgAGI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B H-AA (c) (g) VB-ИИ A 19sl 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1EUGLBA (GA) EUGLA (GA) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='c 40 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8- 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 JO 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="0 Vsets 5O 0'4 68." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="0 SD 4'2 00." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='r 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="0 3 30 H-AA VB-BИ 40 2'3J 8." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 JSΛGI B VB-BB (b) (p) И-AA A 19sl 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 11 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Transition energies (eV) and corresponding optical activities (d = dark or br = bright) of the first two excitons of ML-BN and BL-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The binding energies (eV) based on the direct G0W0 gap at K point are given in parenthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, the Davydov splitting (Eds 12/eV) is the energy difference between the first and second excitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The transitions based on the IPA bands have a major contribution to the excitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Excitons ML-BN (D3h) AB-BB (D3d) AB-NN (D3d) AA-BB (D3h) AB-BN (C3v) AA-BN (D3d) 1 (×2) a 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='25 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='03, br) b 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='95 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='38, d) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='09 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='62, d) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='78 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='43, d) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='59, br) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='28 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='78, d) 2 (×2) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='96 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='37, br) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='15 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='55, br) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='18 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='03, br) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='28 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='55, br) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='31 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='75, br) Eds 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='03 1 (×2) a 4→5 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='69) c 7→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='14) 8→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='14) 8→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='47) 8→10(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='47) 8→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='07) 7→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='69) 7→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='75) 8→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='72) 2 (×2) 7→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='14) 8→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='14) 8→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='47) 8→10(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='47) 7→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='45) 8→10 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='73) 7→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='75) 8→9 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='72) a “×2” means double degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' b transition energy (binding energy, optical activity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' c band 4 to band 5 with the transition energy of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='69 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Second, the absorption spectra are very similar in terms of line shapes and peak positions for BL-BN with the same opposite atoms, though they have different electronic energy gaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, the G0W0 gaps of AA-BN and AB-BN (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4b) are 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='06 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='83 eV, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Both of them have strong absorption peaks at ~5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='30 eV and ~6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='1 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' A similar case occurs for the AB-NN and AA-BB/NN (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4a) with the same N–N opposite atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' We can also see that the absorption spectra of AB-BB are significantly different from those of other four bilayer structures in terms of line shapes and peak positions, especially the position of the strongest absorption peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' This absorption peak locates at 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='95 eV, which is distinctly lower than 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='20 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='10 eV of other four bilayer structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' So, the AB-BB could be distinguished from other four bilayer structures by the absorption spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Third, the AA-BB has the smallest Eb but the largest Eds among five bilayer structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' To understand the large Eds of AA-BB, we examine the weight (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', |Ac,v,k|2) of contributions defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2 for the first and second excitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Table 1 lists the IPA transitions at K point with the weight larger than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, for ML-BN, the IPA transition from 4 (HOVB) to 5 (LUCB) has a major contribution to the first bright exciton, in agreement with previous report 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' All the bilayer structures except AA-BB have a small Eds 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For AB-BB, AB-NN, and AA-BN, the small Eds 12 may be due to that two excitons stem from the same IPA transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For 12 AB-BN, which also has a small Eds 12 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='04 eV), the major IPA transitions are 7→9 and 8→10 for two excitons, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' According to the PDOS (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4c), we find that these two transitions belong to the intralayer transition (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 7→9 from B layer, 8→10 from A layer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Meanwhile, the difference in these two IPA transition energies is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='04 eV (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='73 – 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='69) that is equal to the Eds 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Now, we go back to the AA-BB with the largest Eds 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The first and second excitons originate mainly from the IPA transitions of 8→9 and 7→9, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' According to the PDOS (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4d), we find that each layer almost has the same contribution to the transition (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' both layers contribute to the bands 7, 8, and 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Thus, the large Eds 12 is mainly due to the difference in the IPA transition channels, that is, the energy difference of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='38 eV between bands 7 and 8 is very close to the Eds 12 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='40 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Now, we turn to TL-BN, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 5, all the trilayer structures have a strong absorption peak at about 5 eV, and, to some degrees, inherit the characteristics of the absorption spectrum of the bilayer substructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' To understand these absorption peaks, we list in table 2 the information for the first three excitons of all the trilayer structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The first three excitons are bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Similar to BL-BN, all the first three excitons are double degenerate and related to the first exciton of each monolayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Based on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 5 and table 2, we first observe strong absorption peaks at 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='95 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='01 eV for NBB and BBB, respectively, which may be related to the AB-BB substructure with the lowest absorption peak at 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='95 eV (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The BBN has a strong absorption peak at 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='23 eV because the substructures AA-BB and AB-BN have strong absorption peaks at 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='18 eV (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4a) and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='28 eV (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4b), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As shown in table 2, the binding energies of the first exciton of eight trilayer structures have an order of BBB (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='13) < NNB (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='21) < NNN (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24) < NBB (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='30) < BBN (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='35) < BNB (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='52) < NBN (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='56) < BNN (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='60).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In this order, we also find that the structures with the B-B opposite have a relatively small binding energy, which is obviously shown in BBB formed by AA-BB and AB-BB substructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The substructure with the B-N opposite dramatically increases the binding energy owing to the weak electronic screening mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, the binding energy increases by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='17 eV from BBN to BNB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In these two trilayer structures, the difference in the structures is AA-stacked substructure which changes from AA-BB/NN to AA-BN, and note that the AA-BN has the largest binding energy for the first two excitons (table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 13 Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Absorption spectra (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', imaginary part of polarizability, Imχ) along the in-plane direction of TL-BN calculated using the GW+BSE method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The GW direct gaps at K point are indicated by the vertical lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The transition energy of the first bright exciton is indicated by arrow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Transition energies (eV) of the first three excitons (all are bright) of TL-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The binding energies (eV) based on the direct gap at K point are given in parenthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' All the structures have C3v symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The Eds 12(eV) is the Davydov splitting between the first and second excitons, and the Eds 23(eV) is the Davydov splitting between the second and third excitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The transitions based on the IPA bands have a major contribution to the excitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Excitons NNB NNN BBN BBB BNN BNB NBB NBN 1 (×2) a 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='73 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='21) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='69 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='71 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='35) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='59 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='13) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='01 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='60) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='16 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='52) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='89 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='30) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='22 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='56) 2 (×2) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='18 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='76) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='04 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='89) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='17 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='89) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='84 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='88) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='12 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='49) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='21 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='47) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='99 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='20) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='23 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='55) 3 (×2) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='21 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='73) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='09 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='84) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='23 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='83) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='01 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='71) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='23 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='38) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='25 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='43) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='95) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='36 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='42) Eds 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='01 Eds 23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='13 1 (×2) a 12→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='05) 12→13(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='97) 12→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='05) 12→13(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='79) 12→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='48) 11→14(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='73) 12→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='14) 10→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='70) 12→14(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='75) 2 (×2) 10→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='44) 12→14(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='40) 10→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='45) 11→13(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='98) 12→14(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='48) 12→15(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='75) 10→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='19) 10→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='70) 12→14(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='75) 3 (×2) 11→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='14) 11→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24) 11→14(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='70) 10→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='19) 11→15(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='75) 10→13(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='74) 10→14(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='76) 11→15(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='78) a “×2” means double degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Second, the magnitude of two Davydov splitting energies (Eds 12 and Eds 23) of the trilayer structures is closely related to that of Eds 12 of the bilayer substructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As shown in table 1, the Eds 12 of five bilayer structures can be ordered by AA-BB (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='40) > AB-NN (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='06) > AB-BN (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='04) ≈ AA-BN (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='03) > AB-BB EUGL (GA) EUGL (GA) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 4'0 42 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 40 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='+ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='r 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 0 0 53 JO JO ce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 Q1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' sr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='c SD 5O 5O Q:Q 8r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 te.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='c 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="00 2'51 WMM SI." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='c BBИ 30 ИИB 30 ИBИ 2s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='c BИB BBB (6) ИBB (p) BИИ 40 40 14 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' From table 2, we can see that the trilayer structures (NNB and BBN), containing the AA-BB/NN and AB-BN substructures, have relatively large Eds 12 but relatively small Eds 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For NNB and BBN, the Eds 12 is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='45 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='46 eV, respectively, which is even larger than that of AA-BB (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='40 eV in table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' This is due to a large Eds 12 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='40 eV) of AA-BB/NN and a small one (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='04 eV) of AB-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' A similar case occurs for BBN which has the Eds 12 and Eds 23 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='35 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='05 eV, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Both BNB and NBN have relatively small Eds 12 and Eds 23 because they contain the AA-BN and AB-BN substructures with relatively small Eds 12 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='03 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='04, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Interestingly, for BBB containing the AA-BB/NN and AB-BB substructures, the AA-BB substructure has the largest Eds 12 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='40 eV) among the five bilayer structures while the AB-BB substructure has the smallest Eds 12 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='01 eV), which leads to similar values of Eds 12 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='25 eV) and Eds 23 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='17 eV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Finally, according to the IP transition contributions to excitons, we can see that the Eds values of excitons of TL-BN also depend on the IP transition energies strongly, similar to those of BL-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, a large Eds 12 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='45 eV) of NNB is related to a large difference in transition energies between 10→13 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='44 eV) and 12→13 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='05 eV) transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The Eds 12 and Eds 23 of BNB have similar values (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='05 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='04 eV, respectively) because the IP transitions with major contributions have very similar transition energies (~ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='74 eV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='3 Direct FBG based on the B–B opposite substructure As shown above, the B–B opposite makes the multilayer BN structures trend to having a direct FBG (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2c, 2e, 2g, 2h, and 2i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Particularly, for AB-BB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2e) and AAB-BBB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2h), which have as many B–B opposites as possible, the FBG is direct within both the IPA and GWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' However, the N–N opposite results in an indirect FBG gap (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2f, 2k, and 2l).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' In this section, we explore the effect of the N–N opposite on the FBG of the B–B opposite structures to show that the reservation of the B–B opposite substructure plays an important role in forming the direct FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For this purpose, we construct a series of six-layer structures by inserting the N–N opposite into the six-layer AB-BB structure and keep at least a B–B opposite in these AB-stacked structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' These structures are labeled by the order of the opposite atoms, similar to those shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As an example, the geometry of BNNBBB is given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' We calculated their energy band structures within the IPA, and the results are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6(a–j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 15 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' (a–j) Band structures of six-layer BN structures based on the IPA calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The labels (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=', NNBBBB and BNNBBB) are defined by the directly opposite atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' (k) Geometry of BNNBBB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6a, the six-layer AB-stacked structure with B–B opposite (BBBBBB) has a direct FBG of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='64 eV at K point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' By inserting N–N opposite into the BBBBBB, the structure gradually transforms from direct FBG (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6a–6c, 6e, and 6f) to indirect one (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6g–6j) as the number of N–N opposites increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The structures with one N–N opposite at different insertion positions have a direct FGB (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6b, 6c, and 6e) because two or three B–B opposites are reserved in the structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' A consecutive B–B opposite unit is essential for the structure to have a direct FGB, as shown in Figs, 6b, 6c, 6e, and 6f whose corresponding structures have BBB unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' On the contrary, consecutive N–N opposites (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6g and 6i) make the structure exhibit an indirect FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' To understand these behaviors, we show in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='7 the PDOS of several selected six-layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The conduction band edges of BNNNBB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 7d) and NBBBNN (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 7e) mainly come from NNN and BBB units, respectively, which leads to indirect and direct FBG in corresponding structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For NNNBBB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 7b), NNN and BBB competitively contribute to the conduction band edge, and the result is that NNNBBB exhibit a direct FBG determined by the BBB unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Meanwhile, we can see that the inner layers have more effects on the band edge than the outer layers, M K WK M K M M K S EUGL入 (V) 4 QWWWBBB BMИBB MBBИM MMMBBM WMWMBB M K LL W K LL WK LL WK LL WK 5 (D) 0 Q 16 because the inner layers interact with two sides, which possibly leads to a larger dispersion of energy band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, in both BBNNBB and NNBBNN, the B–N opposites of inner layers play a major role in determining the type of FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2b, 2d, and 3a, the bilayer structures with the B–N opposite have a relative flat M–K path and a slightly indirect FGB, which leads to a slightly indirect FBG in both BBNNBB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6d) and NNBBNN (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Similarly, for BNNNBB (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 7d) and NBBBNN (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 7e), the inner NNN and BBB units also determine the type of FBG (the former is indirect and the latter is direct).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Interestingly, our present finding is very applicable to the ten-layer t-BN reported by Mengle and Kioupakis 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Although they only show a representative t-BN structure (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3a of Ref23) consisting of ten randomly chosen layers, we can see from this structure that two inner BBB units lead the structure to having a direct FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' PDOS of selected six structures based on the pz orbitals of B and N atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' L1 represents the first layer, L2 represents the second layer, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The atomic labels in the legends indicate the directly opposite atoms in the six-layer structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' More examples, we show in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' S2 the band structures of selected AB-stacked four- and five-layer structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' As expected, the BBBNN and NBBBN with a BBB unit have a direct FGB, while the BBNNN and BNNNB with a NNN unit have an indirect one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The NBBNN with not only a inner B–B opposite but also B–N and N–N opposites exhibit a relative flat M-K path and have a slightly direct FBG at K point, a similar case occurs for BNNBB which has a slightly indirect FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=" The BBNN with not only B–B opposite but also EUGLA (GN) EUGLEA (GA) EUGLEN (G) 3'0 3'2 4'0 42 3'0 2." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 4'0 4'2 3'0 3'2 4'0 42 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 BWWWBB 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 WBBBWW 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 BBWИBB 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 Voleotste 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="0 BI WrI BI 0'3 urs 0'3 BIS 0'3 BrS MF3 Br3 Wr3 0'4 0'4 B 0'4 I Br2 r2 Br2 Bre (g) (G) wre Bre (t) 02 2." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="0 02EUGLA (GN) EUGLEA (GA) EUGLEN (G) 3'0 3'2 4'0 42 3'0 2." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="8 4'0 4'2 3'0 3'2 4'0 42 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 BBBBBB 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 BBB 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 WWBBWM BFI BrI WrI 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 BrS .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 BIS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content="0 wrs B3 Br3 B3 0'4 BI 0'4 0'4 BI Br2 wr2 wr?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' (s) (p) (c) BTe wre wre 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 17 N–N or N–B opposite has a slightly direct FBG at K point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Finally, BBNBB has an obvious direct FBG at K points which is determined by two B–B opposites, though two N–B opposites locate in inner layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Thus, the B–B opposite plays a crucial role in determining the type of FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Conclusions We have performed the first-principles many-body GW and BSE calculations on the BL-BN and AAB-stacked TL-BN structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The size and type of FBG strongly depend on the opposite atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Structures dominated by the B–B opposite are expected to have a direct FBG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The B–B opposite makes the stacking have a relative small binding energy of exciton, and thus the corresponding structures have a stronger electronic screening than those with the B–N and N–N opposites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The Davydov splitting energies of excitons of TL-BN are closely related to those of BL-BN substructure, which implies the Davydov splittings of FL-BN could be understood on the basis of those of substructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' All the structures have similar dispersion of valence band edge, and thus the intrinsic FBG is mainly determined by the conduction band edge whose dispersion depends on the type of opposite atoms in FL-BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For t-BN or FL-BN, to obtain the structure with a direct FBG, we should construct the B–B opposite as many as possible and preferably locate them in the inner layer because the B–B opposite can make the structure have a direct FBG at K point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Our findings not only show a new structure-property relationship but also provide a useful reference for experimentally designing FL-BNs with a direct FBG which are more suitable for optoelectronic applications in deep ultraviolet region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Acknowledgements We appreciate the financial support from Natural Science Foundation of China Project 21303164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' References: 1 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Arnaud, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lebègue, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rabiller, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Alouani, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 96, 026402 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 2 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Elias, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Valvin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Pelini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Summerfield, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Mellor, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cheng, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Eaves, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Foxon, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Beton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Novikov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Gil, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cassabois, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 10, 2639 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Galvani, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Paleari, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Miranda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Molina-Sánchez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Wirtz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Latil, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Amara, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' mboxçelse çfiois Ducastelle, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 94, 125303 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 4 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Henriques, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Amorim, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ribeiro, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Peres, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 105, 115421 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 5 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Henriques, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ventura, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Fernandes, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Peres, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Matter 32, 025304 18 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 6 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' You, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ghimire, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Heinz, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Reis, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 13, 262 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 7 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Paleari, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Galvani, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Amara, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ducastelle, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Molina-Sánchez, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Wirtz, 2D Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 5, 045017 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 8 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ribeiro and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Peres, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 83, 235312 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 9 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rousseau, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ren, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Durand, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Valvin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Gil, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Taniguchi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Urbaszek, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Marie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Robert, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cassabois, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 21, 10133 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 10 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Shi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Hamsen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Jia, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Reina, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Hofmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Hsu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Juang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Dresselhaus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kong, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 10, 4134 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 11 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Song, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ci, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sorokin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Jin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kvashnin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kvashnin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lou, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Yakobson, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ajayan, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 10, 3209 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 12 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sponza, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Amara, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Attaccalite, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Latil, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Galvani, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Paleari, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Wirtz, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' mboxçelse çfiois Ducastelle, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 98, 125206 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 13 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Wickramaratne, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Weston, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Van de Walle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' C 122, 25524 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 14 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sahin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cahangirov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Topsakal, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Bekaroglu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Akturk, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Senger, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ciraci, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 80, 155453 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 15 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Berseneva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Gulans, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Krasheninnikov, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Nieminen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 87, 035404 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 16 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Zhang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ruan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Zhang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cheng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Wang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 128, 100902 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 17 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Feng, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Shen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 68, 104102 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 18 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ooi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rairkar, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lindsley, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Adams, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Matter 18, 97 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 19 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cassabois, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Valvin, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Gil, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Photonics 10, 262 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 20 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Taniguchi, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kanda, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 3, 404 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 21 X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Uddin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lin, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Jiang, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 110, 092102 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 22 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kim, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Brown, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Graham, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Hovden, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Havener, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' McEuen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Muller, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Park, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 13, 5660 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 23 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Mengle and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kioupakis, APL Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 7, 021106 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 24 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Fujimoto and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Saito, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 94, 245427 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 25 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Alkoy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Toy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Gönül, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Tekin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ceram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 17, 1415 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 26 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kobayashi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Tashiro, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sekine, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sato, Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 9, 233 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 19 27 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Thomas, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Weston, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' O’Connor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 84, 4619 (1962).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 28 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kurakevych and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Solozhenko, Acta Crystallographica Section C 63, i80 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 29 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Giannozzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Baroni, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Bonini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Calandra, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Car, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cavazzoni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ceresoli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Chiarotti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cococcioni, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Dabo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Corso, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' de Gironcoli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Fabris, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Fratesi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Gebauer, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Gerstmann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Gougoussis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kokalj, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lazzeri, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Martin-Samos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Marzari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Mauri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Mazzarello, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Paolini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Pasquarello, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Paulatto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sbraccia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Scandolo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sclauzero, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Seitsonen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Smogunov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Umari, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Wentzcovitch, J Phys : Condens Matter 21, 395502 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 30 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Tkatchenko and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Scheffler, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 102, 073005 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 31 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sangalli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Ferretti, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Miranda, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Attaccalite, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Marri, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cannuccia, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Melo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Marsili, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Paleari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Marrazzo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Prandini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Bonfà, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Atambo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Affinito, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Palummo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Molina-Sánchez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Hogan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Grning, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Varsano, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Marini, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Matter 31, 325902 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 32 X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Blase, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rubio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Louie, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cohen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 51, 6868 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 33 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Hsu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Jia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Shi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Hofmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Nezich, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rodriguez-Nieva, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Dresselhaus, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Palacios, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kong, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 12, 161 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 34 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Williams, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Elsayed-Ali, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Connell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' C 115, 2679 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 35 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rohlfing and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Louie, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 62, 4927 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 36 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Hüser, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Olsen, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Thygesen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 88, 245309 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 37 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rasmussen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Schmidt, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Winther, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Thygesen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 94, 155406 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 38 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rozzi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Varsano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Marini, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Gross, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rubio, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 73, 205119 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 39 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cudazzo, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Tokatly, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rubio, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 84, 085406 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 40 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Davydov, Theory Molecular Excitons, 1st ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' (Springer US, 1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 41 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sheka, Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Liq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 29, 323 (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 42 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lan, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 138, 213 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 43 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Deslippe, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Park, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Cohen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Louie, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 103, 186802 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 44 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Kirchhoff, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Deilmann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Krüger, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rohlfing, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' B 106, 045118 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 1 Effects of opposite atoms on electronic structure and optical absorption of two-dimensional hexagonal boron nitride You-Zhao Lan*1 Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China Table S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Convergence tests of the energy gap of ML-hBN based on the change of the number of empty states, response block size, and k-grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' 1 Ry = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='6 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Number of empty states : 200;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' response block size : 5 Ry k-grids 18×18×1 24×24×1 30×30×1 36×36×1 Gap at K (eV) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='32 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='27 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24 Global gap (eV) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='63 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='49 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='44 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='41 k-grid: 30×30×1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' response block size : 5 Ry Number of empty states 100 200 300 400 Gap at K (eV) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='25 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='25 Global gap (eV) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='29 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='41 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='43 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='45 Number of empty states : 200;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' k-grid : 30×30×1 Response block size (Ry) 5 8 10 13 Gap at K (eV) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='24 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='25 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='28 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='29 Global gap (eV) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='41 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='52 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='57 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='59 1 Corresponding author: lyzhao@zjnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='cn 2 Figure S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The dependence on the k-grid and eh-basis of the imaginary part of two-dimensional polarizability (Imχ2D) of ML-BN, AA-BN, and AAB-BNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' The legend of “5–12” is defined on the basis of the index of bands of IPA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' For example, in the case of AA-BN with 16 valence electrons occupying 8 valence bands, it indicates that the highest four valence bands and the lowest four conduction bands are included in the BSE calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' EUGL (GA) EUGL (GA) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 40 42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 40 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='t 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 0 2 2 JO J0 SD SDJ J() J() 12 J-JQ J-JS 0-JQ 5O k-alig:30x30x 5O 3-JJ JO-JQ VA-AA JS JI-e 52 52EUGLA (GA) EUGL (GA) 32 40 42 20 c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 32 40 42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='0 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content='F 0 0 2 2 SD SD 1(m) 1(0) ( JO 30X30XJ 4-2 Ix+Sx+s 3-J0 8 Ix81x81 :br19- Ix8Ix8I 8-8 WI-BИ JSXJSXJ WF-BИ J-8 3 Figure S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' Band structures of selected four- and five-layer AB-stacked structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} +page_content=' M LL WK LL WK LL WK LL WK 0 4 (6) 8BBИИ BИИB BBИ BBИBB BИИИB M K LL WK LL K LL WK LL WK 0 EUGL&> ( (Va) 4 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf'} diff --git a/l9A0T4oBgHgl3EQfJf8H/vector_store/index.faiss b/l9A0T4oBgHgl3EQfJf8H/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..d8c07ea77b69acaad802025009eefe72667960d2 --- /dev/null +++ b/l9A0T4oBgHgl3EQfJf8H/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:984e52fd22a47c4bef2801576145c816fc28a68b7af204d9b938ce04e2ba1e16 +size 8650797 diff --git a/lNA0T4oBgHgl3EQfJP8k/vector_store/index.faiss b/lNA0T4oBgHgl3EQfJP8k/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..7f5a54c89a212b0ae1f336b17ed05ad95a911368 --- /dev/null +++ b/lNA0T4oBgHgl3EQfJP8k/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f105227c643ce39029fc5a22759e5c57667598b5b118fb11058738bbe28bb04 +size 3276845 diff --git a/lNA0T4oBgHgl3EQfJP8k/vector_store/index.pkl b/lNA0T4oBgHgl3EQfJP8k/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..850370fae6d2d6ac29f83a3c8ca7e87c9c3882ba --- /dev/null +++ b/lNA0T4oBgHgl3EQfJP8k/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:964fd9a8070b149bf8341911080ea3ec239fb3c5266f68ca095ae2d11bded6c8 +size 115839 diff --git a/ldE1T4oBgHgl3EQfgwR3/content/tmp_files/2301.03233v1.pdf.txt b/ldE1T4oBgHgl3EQfgwR3/content/tmp_files/2301.03233v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..97cfe9beb96a458d83b1188cdf0b4fcf95e24a22 --- /dev/null +++ b/ldE1T4oBgHgl3EQfgwR3/content/tmp_files/2301.03233v1.pdf.txt @@ -0,0 +1,1329 @@ +Quantum state reduction of general initial states through spontaneous unitarity +violation +Aritro Mukherjee,1 Srinivas Gotur,1 Jelle Aalberts,1 Rosa van den Ende,1, 2 Lotte Mertens,1, 3 and Jasper van Wezel1 +1Institute for Theoretical Physics Amsterdam, University of Amsterdam, +Science Park 904, 1098 XH Amsterdam, The Netherlands +2Universit´e Paris 1 Panth´eon-Sorbonne, 2 Rue Cujas, 75231 Paris cedex 05, France +3Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany +(Dated: January 10, 2023) +The inability of Schr¨odinger’s unitary time evolution to describe measurement of a quantum state +remains a central foundational problem. It was recently suggested that the unitarity of Schr¨odinger +dynamics can be spontaneously broken, resulting in measurement as an emergent phenomenon in the +thermodynamic limit. Here, we introduce a family of models for spontaneous unitarity violation that +apply to generic initial superpositions over arbitrarily many states, using either single or multiple +state-independent stochastic components. Crucially, we show that Born’s probability rule emerges +spontaneously in all cases. +I. +INTRODUCTION +How +the +unitary +time +evolution +prescribed +by +Schr¨odinger’s equation can be reconciled with the ob- +servation of single measurement outcomes randomly se- +lected according to Born’s probability distribution, re- +mains one of the central foundational problems of mod- +ern science [1–5]. One way to formulate this ‘quantum +measurement problem’, is to observe that one registers a +single outcome upon performing a single quantum mea- +surement. +Repeating the measurement with the same +initial state might yield a different outcome, in accor- +dance with Born’s rule [6]. Describing the measurement +device as a macroscopic collection of interacting quan- +tum particles, however, its evolution should be governed +by Schr¨odinger’s equation. As formalized by Von Neu- +mann [7], the interaction between a measurement device +|M⟩ and microscopic quantum system |S⟩ in the so-called +strong measurement limit, then inevitably leads to the +prediction of an entangled state between system and mea- +surement device of the form: +� � +j +αj |Sj⟩ +� +|M⟩ → +� +j +αj |Sj⟩ |Mj⟩ +(1) +Although ever more massive objects have successfully +been put into spatial superposition [8–11], this predicted +final state is still inconsistent with the usual observation +of a single measurement outcome for each individual ex- +periment. +Attempts to theoretically address the measurement +problem can be grouped into three broad categories. The +first posits that decoherence may be seen as a type of +measurement, because it leads to diagonal reduced den- +sity matrices after tracing out the environment [12–15]. +This approach, however, is explicitly restricted to de- +scribing expectation values averaged over an ensemble +of realisations of the environment, and hence does not +resolve the issue of a single outcome being observed in a +single measurement [1, 16–19]. +Second are the interpretations of quantum mechanics, +which all share the central assumption that Schr¨odinger’s +equation (and hence unitary dynamics) applies without +change to all objects in the universe, large or small [20– +24]. +These theories then give different interpretations +for the physical meaning of the quantum state to ex- +plain why the superposed states of macroscopic objects +that are unavoidable under unitary dynamics are not ob- +served in our everyday experience. Since all interpreta- +tions strictly adhere to Schr¨odinger’s equation, the pre- +dictions from different interpretations for any given ex- +periment are all identical, and they cannot be experi- +mentally distinguished or verified. Notice however, that +any experimental observation of Schr¨odinger’s equation +being violated would suffice to falsify all interpretations. +In contrast, the third class of approaches, which in- +troduce objective collapse or dynamical quantum state +reduction (DQSR) theories, share the common assump- +tion that the quantum state does represent the actual +state of physical objects of any size, and that the observed +emergence of classical physics necessitates a refinement of +Schr¨odinger’s equation [25–33]. These theories introduce +small modifications to quantum dynamics that have no +noticeable effect on the microscopic scale of elementary +particles, but which begin to influence the dynamics in a +mesoscopic regime (defined differently in different theo- +ries, but roughly understood to involve objects of beyond +106 atoms being superposed over distances comparable +to their own size [32]). +Beyond the quantum-classical +crossover, in the macroscopic world of human measures, +the result is a nearly instantaneous, dynamical reduction +of the quantum state to a single, classical configuration. +Because these theories introduce actual changes to the +laws of quantum dynamics at the mesoscopic level, they +provide experimentally testable predictions, which are a +target of active and ongoing investigation [3, 34–37]. +In this article, we generalize the recently suggested idea +that spontaneously broken unitarity can cause quantum +measurement [33, 38, 39], and we show that it gives rise +to a family of objective collapse theories describing the +measurement of generic initial states. These models dif- +arXiv:2301.03233v1 [quant-ph] 9 Jan 2023 + +2 +FIG. 1. Dynamics of quantum state reduction. (a) The state +evolution of superpositions of two pointer states as given by +Eq. (4), depicted on the Bloch sphere. +The pointer states +form attractive fixed points of the flow on the poles of the +Bloch sphere. The position of the dashed red separatrix is +determined by the value of the stochastic variable ξ. (b) Gen- +eralization of the evolution to superpositions of three pointer +states (extreme points in the flow), as given by Eq. (9). (c) +Example of an initial state superposed over eight pointer +states |j⟩, being dynamically reduced (for a single value of +the stochastic variable) to the final measurement outcome |2⟩. +The probability that the randomly chosen stochastic variable +leads to this particular outcome is given by P = |α19|2, in +accordance with Born’s rule. +fer from existing objective collapse theories in two essen- +tial ways. First, the modified quantum state evolution is +continuous and (once) differentiable, in contrast to the +non-differentiable stochastic evolution or discontinuous +stochastic jumps in other theories [1, 28–31]. Secondly, +although any collapse evolution necessarily involves both +a non-linear and a stochastic component [38], these are +strictly separated in the models introduced here, and +the distribution of the stochastic term is independent +of the state being measured. This ensures that Born’s +rule emerges spontaneously in the thermodynamic limit +without being assumed in the proposed modifications to +quantum dynamics [39]. +In Sec. II, we briefly review how Spontaneous Unitarity +Violations (SUV) lead to DQSR in the ideal measurement +setup starting from a two-state superposition. In III, IV +and V we generalize this initial result and explicitly con- +struct DQSR models for generic initial states consisting +of N-component superpositions. We discuss three ways +of introducing the required stochastic component into the +N-state dynamics, leading to models with either a single, +N, or log(N) random variables. We conclude in Sec. VII +with a brief comparison and discussion of these models +for quantum state reduction resulting from spontaneous +unitarity violation. +II. +QUANTUM STATE REDUCTION FROM +SPONTANEOUS UNITARITY VIOLATIONS +In this section, we briefly review the application of +spontaneous unitarity violation to the quantum measure- +ment problem [33, 38]. Following Von Neumann [7], we +consider a strong measurement setup in which a micro- +scopic system and macroscopic apparatus are instanta- +neously coupled and brought into the entangled state of +Eq. (1). From here on, we will consider the joint evolution +of the system and measurement device, and label their +states by a single quantum number: |ψi⟩ ≡ |Si⟩ |Mi⟩. No- +tice that the states of the measurement apparatus in this +expression are so-called pointer states [40], which are sta- +ble under interactions with the environment. They are +also states with a spontaneously broken symmetry, such +as the translational symmetry broken by actual point- +ers. Both requirements ensure that the preferred basis in +which we express the state of the measurement apparatus +consists of the classical states of the apparatus observed +in our everyday world. An evolution starting from the +superposition of Eq. (1) and ending in a single state |ψi⟩ +then constitutes a description of quantum measurement. +Any theory of DQSR necessarily includes a stochastic +element in order to allow for the same initial state to +yield different measurement outcomes in repeated exper- +iments [3]. Furthermore, because the probability of find- +ing any particular measurement outcome depends on the +initial state, the DQSR dynamics must also necessarily be +a state-dependent and thus non-linear process [38]. Fi- +nally, in order to obtain irreversible single-state dynamics +and stable end points of the quantum measurement pro- +cess, it must be non-unitary [33, 38]. +A non-unitary measurement process necessarily im- +plies the breakdown of time inversion symmetry, in the +sense that the probabilistic prediction of measurement +outcomes based on the initial state differs from the as- +signment of initial state likelihoods based on a given mea- +surement outcome (notice the difference with time rever- +sal symmetry: a magnet in equilibrium spontaneously +breaks time reversal symmetry. The magnetized equilib- +rium configuration, however, is static and thus evolves +the same way under time evolution forwards and back- +wards in time. That is, its dynamics still has time inver- +sion symmetry). The central idea of introducing sponta- +neous unitarity violations (SUV), is that time inversion +symmetry can be broken spontaneously, in the same way +that any other symmetry of nature can be spontaneously +broken. This is made possible by the infinite suscepti- +bility of Schr¨odinger dynamics to even infinitesimal non- +unitary perturbations in the thermodynamic limit [41]. +Assuming that unitarity is not a fundamental property of +our universe, as testified for example by general relativity +not being a unitary theory [32], the diverging susceptibil- +ity to non-unitary perturbations explains the stability of +(symmetry-broken) classical states for macroscopic ob- +jects [42]. Adding a stochastic component additionally +yields an objective collapse model for quantum measure- + +3 +ment. +To be specific, consider the time evolution given by the +modified Schr¨odinger equation: +iℏ∂|ψ(t)⟩ +∂t += [ ˆH + iϵN ˆGψ(t),ξ(t)]|ψ(t)⟩. +(2) +Here ˆH is the standard Hamiltonian acting on the joint +state |ψ⟩ of the microscopic system and measurement de- +vice. The unitarity-breaking perturbation is written as +ϵN ˆG, making explicit that it couples to an order pa- +rameter of the measurement device and hence scales ex- +tensively with its size N [41]. +Moreover, its strength +ϵ is taken to be infinitesimal, so that it has negligible +effect on the dynamics of microscopic systems while af- +fecting an almost instantaneous evolution in the ther- +modynamic limit. +The operator ˆG is Hermitian but +non-linear and depends on the state |ψ(t)⟩ as well as +the instantaneous value of a time-dependent stochastic +variable ξ(t). +Together with a specification of the dy- +namics for ξ(t), Eq. (2) describes a Markovian quan- +tum state evolution. +Notice, however, that the non- +unitary dynamics describes the full state of the joint sys- +tem and is not an effective model. It differs in this re- +spect from the standard Gorini-Kossakowski-Sudarshan- +Lindblad (GKSL) master equations, obtained for exam- +ple by tracing out an environment in open quantum sys- +tems [43, 44]. +In contrast to so-called continuous spontaneous local- +ization (CSL) models [30], we do not assume the stochas- +tic variable ξ(t) to be Gaussian white noise, and ξ(t)dt is +not the infinitesimal Wiener measure dWt [1]. Instead, +we assume that the stochastic variable has a non-zero +correlation time τ, and we will be mostly interested in +the thermodynamic limit N → ∞, in which the state +|ψ(t)⟩ evolves much faster than the stochastic variable. +In that limit τ is effectively infinite and ξ(t) can be taken +to be a time-independent variable that is randomly cho- +sen from a stationary distribution for each realisation of +the quantum measurement process. +Specialising to the specific case of an initial state su- +perposed over two pointer states, as in Eq. (1), we can +take the Hermitian part ˆH to be zero, because all pointer +states of a good measurement device should become de- +generate eigenstates of the Hamiltonian in the thermody- +namic limit [45]. Furthermore, the non-unitary contribu- +tion to the dynamics, ˆG, must couple to the order param- +eter describing the broken symmetry of the pointer state +in order for the breakdown of time inversion symmetry +to occur spontaneously [33, 41]. It must thus be diagonal +in the pointer state basis and have different eigenvalues +for different pointer states. The minimal way in which +all requirements on ˆG can be implemented is to consider: +|ψ(t)⟩ = α(t) |0⟩ + β(t) |1⟩ +ˆG |ψ(t)⟩ = +� +|0⟩ +�|α(t)|2 − |β(t)|2 +|α(t)|2 + |β(t)|2 − ξ +� +⟨0| ++ |1⟩ +� +ξ − |α(t)|2 − |β(t)|2 +|α(t)|2 + |β(t)|2 +� +⟨1| +� +|ψ(t)⟩ (3) +In this expression, the coupling to the order parameter +appears in a non-linear way, allowing the pointer states +to be stable end states of the non-unitary evolution [38]. +The stochastic variable ξ is taken from a flat, uniform +distribution on the interval [−x, x], with x a parameter +whose value will be determined below. The combination +of the stochastic term in Eq. (3) being linear and its +probability density function not depending on |ψ⟩ ensures +that, contrary to other models for DQSR, Born’s rule is +not imposed in the definition of the stochastic evolution +and instead has to emerge spontaneously [39]. +The time evolution implied by Eqs. (2) and (3) does +not conserve the norm of |ψ⟩. This is not a problem as all +physically observable expectation values can be defined +in a norm-independent way as ¯O = ⟨ψ| ˆO |ψ⟩ / ⟨ψ|ψ⟩ [38]. +Alternatively, and equivalently, the time evolution can +be augmented with a normalisation of the wave function +either at each time step dt or at the end of a period of +evolution, as in other models for DQSR [1]. The issue of +having to define the unobservable norm and total phase +can be circumvented by focusing on only the physical +content of the state |ψ⟩, represented by the Euler angles θ +and ϕ defining its representation on the Bloch sphere (see +Fig 1). In fact, the relative phase ϕ does not influence +the evolution of θ for the time evolution generated by +Eq. (3). We thus restrict attention to only the dynamics +of the relative weights, given by: +ℏ dθ/dt = ϵN sin(θ) (ξ − cos(θ)) +(4) +Notice that the change in θ from time t to t + dt is com- +pletely specified by the values of θ and ξ at time t it- +self. +The time evolution is thus a Markovian process +without memory [1]. Moreover, because the value of the +stochastic variable ξ is newly sampled for every reali- +sation of the measurement process, the time evolution +cannot be used for quantum state cloning, despite being +non-linear [46, 47]. +The non-linear dynamics on the Bloch sphere defined +by Eq. (4) has stable fixed points at θ = 0 and θ = π, +which represent the two pointer states appearing in the +initial state superposition. It also has an unstable fixed +line separating the attractive fixed points (a separatrix) +at θ = cos−1(ξ), as shown in Fig. 1. If the value of the +randomly sampled variable ξ is such that the initial value +θ(t = 0) ≡ θ0 lies above the separatrix, the state evolves +towards θ = π under the non-unitary time evolution, +while it evolves towards θ = 0 otherwise. +The prob- +ability for ending up at either pole is thus determined +by the probability for the randomly selected value ξ to + +4 +be smaller or larger than cos(θ0). Choosing the range +from which ξ is sampled to be [−1, 1] results in final +state statistics equaling Born’s rule [38, 39]. With the +choice x = 1, the time evolution of Eq. (3) thus defines +a model for DQSR starting from a two-state superposi- +tion in the initial state. The spontaneous breakdown of +unitarity takes place in a time scaling with ϵN so that +microscopic objects take arbitrarily long to be affected by +infinitesimal ϵ while the collapse process is instantaneous +in the thermodynamic limit N → ∞, even for a van- +ishingly small non-unitary perturbation. Moreover, the +stable end states of the quantum state reduction are given +by the symmetry-breaking pointer states, and Born’s rule +statistics emerge spontaneously. +III. +ONE RANDOM VARIABLE +Having a model for DQSR based on SUV for the spe- +cific case of a two-state superposition of pointer states, we +will now generalize the approach to initial superpositions +over N pointer states. Notice the difference between N +(the size of the measurement apparatus) and N (the num- +ber of pointer states with nonzero weight in the initial +superposition). The generalization can be done in mul- +tiple ways, differing in the number of required stochastic +variables and the symmetry properties of the non-unitary +perturbation. +The mathematically most straightforward extension of +the two-state evolution can be found by first rewriting +Eq. (4) in the form: +ℏ dθ/dt = ϵN sin(θ) +� +λ − cos2(θ/2) +� +(5) +Here, the random variable ξ ∈ U[−1, 1] was replaced with +λ = (ξ + 1)/2, which corresponds to a random variable +taken from a uniform distribution on the domain [0, 1]. +This rewriting of the time evolution brings to the fore +two important points. First, it makes clear why Born’s +rule emerges. The relative weights in the two-state su- +perposition are determined at any time by θ, with pointer +states corresponding to θ = 0 and θ = π. If the value of +λ in Eq. (5) is lower than cos2(θ0/2), then the velocity +dθ/dt is negative and the value of θ will decrease, indi- +cating an evolution towards θ = 0. Since θ decreases, +λ − cos2(θ/2) will also decrease, and the sign of the ve- +locity never changes (that is, the evolution in Fig. 1 never +crosses the separatrix). Thus, for every value of λ smaller +than cos2(θ0/2), the pointer state at θ = 0 ends up as +the final outcome of the DQSR process. +The probability for finding the state |1⟩ (i.e. θ = 0) +as the result of the quantum measurement is now un- +derstood to equal the probability for the term λ − +|β0|2/(|α0|2 + |β0|2) to be negative. +If λ is randomly +taken from U[0, 1] that probability is |β0|2/(|α0|2+|β0|2), +in agreement with Born’s rule. +Secondly, the set of possible final states and their cor- +responding probabilities will not change if all diagonal el- +ements of ˆG are multiplied by a common factor. Such an +overall multiplicative factor would affect the speed with +which components evolve during the DQSR process, but +not the locations of fixed points or separatrices. +Having identified these characteristics, we can propose +a generalization. Consider an initial superposition over +N pointer states, written as: +|ψ⟩ = +N−1 +� +j=0 +αj |j⟩ , +with +N−1 +� +j=0 +|αj|2 = 1 +(6) +To avoid imposing normalization at every time step, we +again switch to a representation on a higher-dimensional +generalization of the Bloch sphere. Introducing angles +θm with m ∈ {1, 2, . . . , N − 1} describing the relative +weights of components, we write: +|αN−1| = +N−1 +� +m=1 +cos +�θm +2 +� +|α0 1, because of the factor cos(θ1/2) +appearing in all |αj| except |α0|. +Similarly, |1⟩ corre- +sponds to θ1 = 0 and θ2 = π, regardless of the values of +θm for m > 2, and so on. +Having ensured that the possible endpoints of evolu- +tion coincide with the pointer states |j⟩, we need to en- +sure the emergence of Born’s rule. That is, each possible +final state |j⟩ should have probability |αj|2 of being se- +lected by the state dynamics. This can be achieved by +noticing that in a normalized state vector, the squared +components of the wave function add up to one, so that +we can interpret them as the lengths of line segments +adding up to a line of total length one, as indicated in +Fig. 2(a). The domain of the random variable λ is [0, 1], +so that the value of λ can be indicated along the same +line in Fig. 2(a). The probability for the value of λ to +lie within the block of size |αj|2 at t = 0 is equal to the +value of |αj|2 at t = 0 itself. If the evolution ends up +with the final state |j⟩ whenever λ starts out in the the +block of size |αj|2, Born’s rule is guaranteed to emerge. +The boundary values of λ, at which the evolutuion +should switch from favouring one final state to another, + +5 +FIG. 2. Quantum state reduction with one random variable. (a) The line interval [0, 1] can be divided into pieces with lengths +corresponding to the weights |αj|2 of pointer states in an initial state wave function. The probability for a stochastic variable +λ randomly chosen from a uniform distribution on [0, 1] to have a value corresponding to the state |j⟩, is then equal to |αj|2. +(b) Example of an initial (t = 0) state superposed over four pointer states |j⟩, being dynamically reduced according to Eq. (9), +for a particular randomly selected value of the stochastic variable, to a single measurement outcome at late times (t → ∞). (c) +The relative deviation from Born’s rule of the obtained distribution of final states, as a function of time for different values of +the numerical time step dt. The relative error equals the absolute difference between |αj|2 at the initial time and the fraction of +simulations ending in state |j⟩, summed over all j. In the continuum limit dt → 0, the agreement with Born’s rule can be seen +to become exact. These curves are for averages over the stochastic variable starting from the initial state depicted in panel (b). +Similar results are obtained both for different initial state configurations, and for initial superpositions over different numbers +of pointer states. +are defined by: +λ = +n−1 +� +j=0 +|αj|2 = 1 − +n +� +m=1 +cos2 +�θm +2 +� +(8) +Notice that these define N − 1 boundary values, one for +each value of n ∈ {1, 2, . . . , N − 1}. They can equiva- +lently be thought of as defining N − 1 hypersurfaces or +separatrices in the space spanned by the angles θm. We +will write the N − 1 relations in Eq. (8) as Ln = 0 with +Ln ≡ 1 − �n +m=1 cos2(θm/2) − λ. +To define the evolution of the state, recall from Eq. (7) +that the pointer state |0⟩ corresponds to θ1 = π, irre- +spective of the values of θm for m > 1. Repeating the +reasoning that led to Born’s rule in the two-state dynam- +ics, we would thus like to see that θ1 increases in time +and flows towards π whenever λ is smaller than the value +of 1 − cos2(θ1/2) at t = 0, and opposite otherwise. That +is, we should demand dθ1/dt ∝ L1. +If θ1 does evolve to π, Eq. (7) shows that the remainder +of the evolution for the other θm can be ignored, as it does +not influence the final state. In the opposite case, of θ1 +evolving to zero, the final state will certainly not be |0⟩. +Given that θ1 will become zero, the final state will be |1⟩ +if θ2 evolves towards π, and some other state otherwise. +In fact, as observed before, the state |1⟩ is realised for +θ2 = π regardless of the values of θm for m > 2. +If +we demand dθ2/dt ∝ L2, we thus end up at the final +state |1⟩ if λ is smaller than 1−cos2(θ1/2) cos2(θ2/2), but +larger than 1−cos2(θ1/2) at t = 0, establishing agreement +with Born’s rule for the second component. Iterating this +argument, we find that we should demand dθn/dt ∝ Ln +for all n. +These relations are, however, not sufficient to define +the dynamics. We ensured that the hypersurface Ln = 0 +separates regions of opposite sign for the evolution of the +parameter θn, but we have not yet ascertained that the +total evolution comes to a standstill at these hypersur- +faces such that the evolution does not cross the new- +found separatrix. In other words, we still need to force +dθn/dt = 0 on all hypersurfaces Lm with m ̸= n. This +can be done without affecting the sign of the evolution +anywhere by demanding dθn/dt ∝ � +m̸=n L2 +m. Since Lm +goes to zero whenever the state state approaches the mth +separatrix, dθn/dt is now guaranteed to go to zero at all +separatrices. Moreover, since L2 +m is positive on both sides +of the mth separatrix, the sign of dθn/dt is determined +solely by which side of the nth separatrix the state is on. +Putting everything together, we finally find that the +time evolution guaranteeing Born’s rule is given by: +ℏ dθn +dt = ϵN sin(θn)Ln +� +m̸=n +L2 +m +In fact, we can simplify this expression by noticing that +just as in the two-state case, a single factor multiplying +the time derivative of all angles does not change the fixed +points or separatrices, and hence leaves the final states +and their probabilities invariant. +We thus absorb the +common factor � +m L2 +m in the definition of ϵ, keeping in + +6 +mind that spontaneous unitarity violations will emerge +in the limit ϵ → 0, and end up with the final expression: +ℏ dθn +dt = ϵN +sin(θn) +1 − �n +m=1 cos2(θm/2) − λ +(9) +These equations define a model for DQSR starting +from an N-state superposition in the initial state. The +spontaneous breakdown of unitarity takes place in a time +scaling with ϵN, so that the collapse process for a van- +ishingly small non-unitary perturbation is effective only +in the thermodynamic limit. Moreover, the stable end +states of the quantum state reduction are given by the +symmetry-breaking pointer states, and Born’s rule statis- +tics emerge spontaneously in the process, using just a +single random variable chosen from a state-independent, +uniform distribution. +Fig. 2 shows a numerical simulation of the dynamics +implied by Eq. (9). An example of a single evolution, +with one value for the random variable λ, is displayed +in panel 2(b), where DQSR to a single pointer state can +be clearly seen. +The state is normalized at each time +step in order to allow visualization of the time evolution. +As argued before, the normalization does not influence +the final states obtained in the DQSR process, nor their +probability distribution. The statistics of an ensemble of +evolutions starting from the same initial state by halting +each individual realisation of the dynamics whenever the +relative weight of a single component exceeds a threshold +value. The corresponding pointer state is then selected +as the final state for that particular evolution. The de- +viations of the statistics from Born’s rule are shown in +Fig. 2(c) to converge to zero as their numerical simulation +approaches the continuum limit. +IV. +MULTIPLE RANDOM VARIABLES +In the previous section, we generalized the description +of SUV as a model for DQSR from initial superpositions +over two pointer states to an arbitrary number of pointer +states in the initial superposition. +The generalization +based on dividing the N-particle phase space into re- +gions of attraction for the N distinct pointer states is +mathematically economic because it requires only a sin- +gle random variable. +The final form of the time evo- +lution in Eq. (9), however, does not seem to have an +obvious interpretation in terms of physical interactions. +In this section and the next, we therefore introduce an +alternative generalization, which more readily allows for +physical interpretation. We first introduce the construc- +tion in this section, resulting in a model for DQSR of +N-state superpositions using N −1 random variables. In +the next section, we further refine the approach resulting +in a model with log2(N) random variables, which can be +interpreted as components of a continuous field. +Rather than directly dividing the N-particle phase +space into N domains, we will accomplish the parti- +tioning through a series of binary divisions. The most +straightforward way to do this is to first define a time +evolution that causes the weight of just one of the pointer +states, say |α0| = sin(θ1/2) to become either zero or one: +ℏ dθ1/dt = ϵN sin(θ1) +� +λ1 − cos2(θ1/2) +� +(10) +If θ1 becomes π, all components |αj| with j larger than +one will be zero, and Eq. (10) defines the entire DQSR +process. If it evolves to zero, on the other hand, we are +left with a superposition over N − 1 pointer states. We +can then define the time evolution for the next compo- +nent, |α1| = sin(θ2/2) cos(θ1/2) = sin(θ2/2), so that it +becomes either zero or one: +ℏ dθ2/dt = ηϵN sin(θ2) +� +λ2 − cos2(θ2/2) +� +(11) +Notice that we introduced a second random variable in +this equation. Moreover, to ensure that the dynamics of +|α0| is effectively completed before |α1| starts evolving, +we introduced the small parameter η. In the limit η → 0, +the evolutions of the two components become indepen- +dent and sequential. +This procedure can now be iterated, as illustrated in +Fig. 3a, where an N-state system undergoes N − 1 steps +with effective two-state evolution. At each level of the +partitioning, an independent stochastic component, λm +is introduced, and the evolutions are guaranteed to be +independent by scaling their evolution rate with ηm. We +then finally find the complete definition for the dynamics: +ℏ dθm/dt = ηmϵN sin(θm) +� +λm − cos2(θm/2) +� +(12) +Alternatively, the evolution can be specified through the +generator ˆG acting on the state |ψ⟩ as defined in Eqs. (2) +and (6). Its diagonal elements Gj are then given by: +G0 = η0 +�|α0|2 − P1 +P0 +− ξ0 +� +G0 n/d. Since 2 ⩽ n/d ⩽ n/2, exchanging the role of n/d +and d in the above inequality we obtain d!n/d · (n/d)! ⩽ 2(n/2)!2. If a > b ⩾ 2 are +integers, then a!b · b! > b!a · a!, since +a!b−1 = (a · (a − 1) · . . . · (b + 1))b−1 · b!b−1 ⩾ +� +(b + 1)(a−b)�b−1 +· b!b−1 +> b(a−b)(b−1) · b!b−1 ⩾ b!(a−b) · b!b−1 = b!a−1. +Applying this to a = d, b = n/d we have (n/d)!d ·d! < d!n/d ·(n/d)! ⩽ 2(n/2)!2. +□ +Lemma 7. Let H be a maximal subgroup of Sn such that H /∈ F and fix i ∈ I, +M ∈ Ei. Then either |H| ⩽ |NSn(M)| or H ∩ Bi = ∅. +Proof. By the O’Nan–Scott Theorem, the maximal subgroups of Sn are of one of +the following types: (1) primitive, (2) maximal intransitive, isomorphic to Sk×Sn−k +for some k ∈ {1, . . . , n/2 − 1} and (3) maximal imprimitive, isomorphic to Sa ≀ Sb +for 2 ⩽ a, b < n with ab = n. +If H is intransitive then H ∼= Sk × Sn−k with +n/3 ⩽ k < n/2, therefore |H| ⩽ (n/3)!(2n/3)! ⩽ (n/3 − 1)!(2n/3 + 1)! ⩽ |NSn(M)| +if NSn(M) is intransitive. On the other hand, if NSn(M) is transitive, then i = −1 +and H ∩ B−1 = ∅. +Now suppose that H is transitive. If H is imprimitive then |H| = (n/d)!d · d!, +where d is a divisor of n, d ̸= 1, 2, n. By Lemma 6, if NSn(M) is imprimitive, +then |H| = (n/d)!d · d! ⩽ (n/2)!2 · 2! = |NSn(M)|. If NSn(M) is intransitive, then +|H| = (n/d)!d·d! ⩽ (n/2)!2·2! ⩽ (n/3−1)!(2n/3+1)! ⩽ |NSn(M)|. If H is primitive +then either H = An, in which case H ∩Bi = ∅, or H ̸= An, in which case |H| < 4n +by [17]. Since n ⩾ 30 we have 4n ⩽ (n/2)!2 · 2 ⩽ (n/3 − 1)!(2n/3 + 1)! and the +result follows. +□ +Proposition 5. Let H be a maximal subgroup of G not in C. Then d(H) < 1. + +10 +JULIA ALMEIDA AND MARTINO GARONZI +Proof. Assume H has product type. Then H is conjugate to NG(M m) where M is +the intersection between An and a maximal subgroup of Sn not of the form An nor +Sn/2 ≀ S2 nor Si × Sn−i, i = 1, 2, . . ., n/3 − 1, so that |NSn(M)| ⩽ (n/3)! (2n/3)! +by Lemma 6 and the fact that 2(n/2)!2 ⩽ (n/3)! (2n/3)! being n ⩾ 30. If M is +primitive, by [17] we have |NSn(M)| < 4n ⩽ 2(n/2)!2 ⩽ (n/3)! (2n/3)!. Since Πj is +closed under conjugation for all j ∈ J, we have |H ∩ Πj| = |NG(M m) ∩ Πj| for all +j ∈ J. We will use Stirling’s inequalities, which are valid for all k ⩾ 2: +√ +2πk (k/e)k ⩽ k! ⩽ e +√ +k (k/e)k. +Assume that either m is even or r ̸= 2. By Lemma 3 and the fact that Π0,r ⊆ M0,r, +|H ∩ Π0,r| +|M0,r ∩ Π0,r| = r · +� 1 +2 |NSn(M)| +�m−r · �r +i=1 |Di ∩ NSn(M)| +r · |An|m−r · �r +i=1 |Di| +⩽ +�|NSn(M)| +|Sn| +�m−r +· +r +� +i=1 +|NSn(M)| +|Di| += +�|NSn(M)| +|Sn| +�m +· 2(n − 2)nr−1 +⩽ +�(n/3)! (2n/3)! +n! +�m +· 2nr ⩽ 2 · +�22/3 +3 +�nm +· +�ne2√n +3√π +�m +. +By Lemma 5, |NG(M m) ∩ Π0,2|/|Π0,2| ⩽ 2n(n − 2)/|Sn : NSn(M)|m, then we +have the above inequality also in the case r = 2 when m is odd. +According to the proof of [19, Lemmas 5.4, 5.5, 5.9, 5.10], the largest value of +� +i ∈ I +|Bi∩NSn(M)| +|Bi∩NSn(Mi)| is obtained by substituting n = 30 in the expression 3n2+27n+54 +4n2−9 +, +so it is less than 0.9925. By Lemma 7, +� +i ∈ I +|H ∩ Πi| +|NG(M m +i ) ∩ Πi| = +� +i ∈ I +� 1 +2 |NSn(M)| +�m−1 · |Bi ∩ NSn(M)| +� 1 +2 |NSn(Mi)| +�m−1 · |Bi ∩ NSn(Mi)| +⩽ +� +i ∈ I +|Bi ∩ NSn(M)| +|Bi ∩ NSn(Mi)| < 0.9925 +We obtain +d(H) = +� +r∈P (2m) +|H ∩ Π0,r| +|M0,r ∩ Π0,r| + +� +i ∈ I +|H ∩ Πi| +|NG(M m +i ) ∩ Πi| +< 2m · +��22/3 +3 +�n +· ne2√n +3√π +�m ++ 0.9925 +This is less than 1 being n ⩾ 30. +We now turn our attention to the maximal subgroups of G of diagonal type and +supplementing the socle N. Let H be such a subgroup. Recall that H ∩ N = ∆ϕ +has order |An|m/t where t is a prime divisor of m. We have +d(H) = +� +r∈P (2m) +|H ∩ Π0,r| +|M0,r ∩ Π0,r| + +� +i ∈ I +|H ∩ Πi| +|NG(M m +i ) ∩ Πi| +⩽ |H| · + + +� +r∈P (2m) +1 +|Π0,r| + +� +i ∈ I +1 +|NG(M m +i ) ∩ Πi| + + . + +11 +Since HN = G, we have C2m ∼= G/N = HN/N ∼= H/H ∩ N, hence +|H| = |H : H ∩ N| · |H ∩ N| = 2m · |∆ϕ| = 2m · (n!/2)m/t . +Assume first that either m is even or r ̸= 2. Since 2 ⩽ r ⩽ m, +|Π0,r| = r · |An|m−r · +r +� +i=1 +|Di| = r · +�n! +2 +�m−r +· n! +n · +� +n! +2(n − 2) +�r−1 += +r · n!m +2m−1n(n − 2)r−1 ⩾ 2 · n!m +2m−1nr ⩾ +n!m +2m−2nm . +By Lemma 5, the smallest value of |Π0,2| is when m is even, so the above inequality +for |Π0,r| holds in all cases. +Fix Mi ∈ Ei for all i ∈ I. The smallest possible order of NSn(Mi), i ∈ I, is when +Mi is imprimitive with two blocks, so |NSn(Mi)| ⩾ 2 (n/2)!2. Since Bi∩NSn(Mi) ̸= +∅, by Lemma 4 we have +|NG(M m +i ) ∩ Πi| = +�1 +2 |NSn(Mi)| +�m−1 +|Bi ∩ NSn(Mi)| ⩾ (n/2)!2(m−1). +We deduce that +d(H) ⩽ 2m +�n! +2 +�m/t +· + + +� +r∈P (2m) +2m−2nm +(n!)m ++ +� +i ∈ I +1 +(n/2)!2(m−1) + + +⩽ 2m +�1 +2(n/e)ne√n +�m/t � +2m−1 +mnm +(n/e)nm + +n +(n/(2e))n(m−1) +� +< 1 +for m ⩾ 3 and n ⩾ 30, where we used the fact that t ⩾ 2 and t = 3 if m = 3. +Now assume that m = 2. We will show that d(H) = 0 by proving that H ∩ Π0,2 +and H ∩ Πi are empty for all i ∈ I. We have H = NG(∆ϕ) where ∆ϕ = {(α, αϕ) : +α ∈ An} for ϕ ∈ Aut(An) ∼= Sn and +Π0,2 = {(x1, x2)γ2 : x1τ ∈ D1, x2τ ∈ D2} ∪ {(x1, x2)γ2 : x1τ ∈ D2, x2τ ∈ D1}, +Πi = {(x1, x2)γ : x1x2τ ∈ Bi}, +i ∈ I. +For i ∈ I we have that if (x1, x2)γ ∈ H ∩ Πi then +(α, αϕ)(x1,x2)γ = (α, αϕ)(x1,x2)(1,τ)δ = (αx1, αϕx2τ)δ = (αϕx2τ, αx1) ∈ ∆ϕ, +So ϕx2τϕ = x1, equivalently (ϕx2τ)2 = x1x2τ which is false since (ϕx2τ)2 ∈ An +and x1x2τ /∈ An. Therefore H ∩ Πi = ∅ for all i ∈ I. +If (x1, x2)γ2 ∈ H ∩ Π0,2 then, for all α ∈ An, +(α, αϕ)(x1,x2)γ2 = (α, αϕ)(x1,x2)(τ,τ) = (αx1τ, αϕx2τ) ∈ ∆ϕ. +So x1τϕ = ϕx2τ, i.e. ϕ−1x1τϕ = x2τ. This is a contradiction because x1τ and x2τ +are not conjugated in Sn by definition of Π0,2. Therefore H ∩ Π0,2 = ∅. +□ + +12 +JULIA ALMEIDA AND MARTINO GARONZI +3. Proof of Theorem 2 +For the calculation of ω(G), we follow the same strategy used in [7]. We use the +following result that can be found in [6]. The formulation we use is taken from [2, +Corollary 5.1.2] (the “symmetric case”). Given an event E of a probability space, +we denote by P(E) its probability and by E its complement. As usual e denotes +the base of the natural logarithm. +Theorem 3 (Lov´asz Local Lemma). Let E1, E2, . . . , En be events in an arbitrary +probability space. Let (V, E) be a directed graph, where V = {1, . . ., n} is the set of +vertices, and assume that, for every i ∈ V , the event Ei is mutually independent +of the set of events Ej such that (i, j) /∈ E. Let d be the maximum valency of a +vertex of the graph (V, E). If for every i ∈ V +P(Ei) ⩽ +1 +e(d + 1) +then P +�� +i∈V Ei +� +> 0. +The mutual independence condition mentioned in the Lov´asz Local Lemma +means the following: +P + +Ei| +� +j∈S +Ej + + = P(Ei), +for all i ∈ V and for all subset S of {j ∈ V : (i, j) /∈ E}. +Define +N = {NG(M × M a2 × . . . × M am) : M ∈ F}, +where F is the family of maximal imprimitive subgroups of An with 2 blocks, +(Sn/2 ≀ S2) ∩ An, and a2, . . . , am ∈ An. Note that if H ∈ N then H is conjugate to +NG(M m) in G, for some M ∈ F. The subgroups of G contained in N are maximal +in G by [3, Proposition 1.1.44] and [11]. +Let B be the set of n-cycles in Sn and let Π be the set of elements of G of the +form (x1, . . . , xm)γ with the property that x1 . . . xmτ ∈ B. Note that these sets are +precisely what are called B−1 and Π−1 in Section 2. +Lemma 8. Π is a conjugacy class of G. +Proof. Note that B ⊈ An, so there is z ∈ An such that zτ ∈ B. It follows that +π := (z, 1, . . . , 1)γ ∈ Π. We prove that Π is the conjugacy class of π in G. Let +(x1, . . . , xm)γ ∈ Π, we will prove that this element is conjugate to π in G. There +exists a ∈ Sn with (x1 . . . xmτ)a = zτ. If a ̸∈ An, then b = x1 . . . xmτa ∈ An and +(x1 . . . xmτ)b = (x1 . . . xmτ)a, so we may assume that a ∈ An. Set y1 := a and +yi := xi . . . xmτaτ for i = 2, . . . , m. Then ((x1, . . . , xm)γ)(y1,...,ym) equals +(y−1 +1 x1y2, y−1 +2 x2y3, . . . , y−1 +m−1xm−1ym, y−1 +m xmτy1τ)γ = (z, 1, . . ., 1)γ = π. +This concludes the proof. +□ +For H ∈ N and K ⩽ G, define +C(H) = Π ∩ H, +fH(K) = |C(H) ∩ K| +|C(H)| +. + +13 +Let g ∈ G be such that H = (NG(M m))g. By Lemmas 4 and 8, +|C(H)| = |H ∩ Π| = |(NG(M m))g ∩ Π| = |NG(M m) ∩ Π| += +�1 +2 |NSn(M)| +�m−1 +· |B ∩ NSn(M)| = 2/n · (n/2)!2m. +Since H is a non-normal maximal subgroup of G, it is self-normalizing. Since N is +the conjugacy class of H in G, +l = |N| = |G : H| = (n!/2)m · 2m +(n/2)!2m · 2m = 1 +2m +� n +n/2 +�m +< 2m(n−1). +Define the graph Γ whose vertices are the two-element subsets v = {H1, H2} of N, +with H1 ̸= H2. There is an edge between two vertices v and w if v ∩ w ̸= ∅. Every +vertex of Γ has valency d = 2(l−2) < 2m(n−1)+1. Choose gH ∈ C(H) uniformly and +independently, for all H ∈ N, and let Ev be the event ⟨gH1, gH2⟩ ̸= G, equivalently +⟨gH1, gH2⟩ is contained in a maximal subgroup of G. +It is easy to see that the +mutual independence condition is satisfied (see also [7, Section 3]). Our aim is to +prove that P(Ev) ⩽ 1/(e(d + 1)) for every vertex v of Γ. If this is true, then the +Local Lemma implies that there exists a choice of gH in each C(H), H ∈ N, with +the property that ⟨gH1, gH2⟩ = G for all H1 ̸= H2 in N, therefore these elements +form a clique of the generating graph of G, in other words ω(G) ⩾ |N|. This, +together with [8, Theorem 1 (3)], gives the claim of Theorem 2. +In the following discussion we will talk about the various types of maximal +subgroups of G, which we described in Section 2. +Let M1 be the family of maximal intransitive subgroups of Sn, M2 the family +of primitive maximal subgroups of Sn different from An, Mj the family of maximal +imprimitive subgroups of Sn with j blocks for j ∈ {3, 4}, M5 the family of maximal +imprimitive subgroups of Sn with at least 5 blocks. Let H be the family of all +maximal subgroups of G not in N and J = {1, 2, 3, 4, 5, 6}. We write H as the +union H1 ∪. . .∪H6 where the Hj’s are defined as follows. For j with 1 ⩽ j ⩽ 5, Hj +is the subset of H consisting of subgroups of the form NG(M × M a2 × . . . × M am), +where a2, . . . , am ∈ An, NSn(M) ∈ Mj and NSn(M) ∩ An = M. H6 is the family +of maximal subgroups of G of diagonal type. +Fix a vertex v = {H1, H2} of Γ. For j ∈ J, let Ev,j be the probability that +⟨gH1, gH2⟩ is contained in a member of Hj. We clearly have +P(Ev) ⩽ +� +j∈J +P(Ev,j). +Let [H] be the conjugacy class in G of a subgroup H of G and mHi([H]) the number +of different conjugates of H that contain a fixed element of C(Hi), i = 1, 2. This is +well defined by Lemma 8. In the following sum, [H] varies in the set of conjugacy +classes of elements of Hj. Arguing as in [7] we have, for j ∈ J, +P(Ev,j) ⩽ +� +[H] +mH1([H]) max +K∈[H](fH2(K)). + +14 +JULIA ALMEIDA AND MARTINO GARONZI +Let cv,j the number of conjugacy classes of subgroups in Hj such that there exists +H in such a class such that H ∩ C(H1) ̸= ∅ and H ∩ C(H2) ̸= ∅. We deduce that +P(Ev,j) ⩽ cv,j · +min +{i1,i2}={1,2} +� +max +H∈Hj,K∈[H](mHi1 ([H]) · fHi2 (K)) +� +. +(⋆) +Let sv,j be the number of subgroups H in Hj such that H ∩ C(H1) ̸= ∅ and +H ∩ C(H2) ̸= ∅. Then +P(Ev,j) ⩽ +� +H∈Hj +fH1(H)fH2(H) ⩽ sv,j · max +H∈Hj(fH1(H) · fH2(H)). +(⋆⋆) +Lemma 9. Let v = {H1, H2} be a vertex of Γ. Then cv,2 ⩽ n for large enough n, +cv,j ⩽ 1 for j ∈ {3, 4}, cv,5 ⩽ 2√n and cv,6 ⩽ m · 2m. +The bound cv,2 ⩽ n depends on the classification of finite simple groups. +Proof. Note that cv,j is less than or equal to the number of conjugacy classes of +subgroups in Hj. Also, if H ∈ H then we can write H = NG(H ∩ N) and this +allows to reduce to counting G-conjugacy classes of subgroups of the form H ∩ N +in N. Also note that if M and L are conjugate in An, then NG(M m) and NG(Lm) +are conjugate in G by an element of the form (c, c, . . . , c) ∈ Am +n such that M c = L. +Therefore, for j with 1 ⩽ j ⩽ 5, the number of conjugacy classes of subgroups +in Hj is less than or equal to the number of conjugacy classes of subgroups of Sn +belonging to Mj. Therefore, for j ̸= 6, we can use the bounds for cv,j calculated +in [7, Lemma 5]. In other words cv,2 ⩽ n for large enough n, cv,j ⩽ 1 for j ∈ {3, 4} +and cv,5 ⩽ 2√n. +It remains to bound cv,6. We will use the fact that if X ⩽ Y are finite groups +with Y acting on a finite set Ω, then denoting by uX the number of X-orbits and +by uY the number of Y -orbits of this action, we have uY ⩽ uX ⩽ |Y : X| · uY . +Since n is larger than 6, Aut(An) ∼= Sn, therefore any two isomorphic diagonal +subgroups ∆ϕ1, ∆ϕ2 of the socle N = Am +n are conjugate in the group Sm +n ⋊ ⟨δ⟩, +which contains G, via an element of Sm +n . It follows that the number of G-classes +of isomorphic diagonal subgroups is at most the number of Am +n -classes, which is +at most |Sn : An|m = 2m. +We know that the number of isomorphism classes +of diagonal subgroups equals the number of prime divisors of m (see Section 2). +Therefore cv,6 ⩽ m · 2m. +□ +Lemma 10. Let v be a vertex of Γ and assume that 4 divides n. Then sv,4 ⩽ 1. +Proof. Let v = {H1, H2} and let H ∈ H4. Write +H = NG(Rb1 × . . . × Rbm) ∈ H4, +Hi = NG(M ai1 +i +× . . . × M aim +i +) ∈ N, +for i = 1, 2, where each aij and each bj belongs to An, NSn(Mi) is a maximal +imprimitive subgroup of Sn with 2 blocks for i = 1, 2 and NSn(R) is a maximal +imprimitive subgroup of Sn with 4 blocks. Suppose that H∩C(Hi) = H∩Π∩Hi ̸= ∅ +for i = 1, 2. We need to show that H is uniquely determined by these conditions, +in other words, that each Rbj is uniquely determined. By [7, Proof of Lemma 5], +it is enough to prove that B ∩ NSn(M aij +i +) ∩ NSn(Rbj) ̸= ∅ for i = 1, 2 and for +j = 1, . . . , m. + +15 +Fix i ∈ {1, 2} and let h = (x1, . . . , xm)γ ∈ H ∩C(Hi) = H ∩Hi ∩Π. Since h ∈ Π, +by definition x1 . . . xmτ ∈ B. On the other hand, being h ∈ H, Rb1 × . . . × Rbm +equals +(Rb1 × . . . × Rbm)(x1,...,xm)γ = Rbmxmτ × Rb1x1 × Rb2x2 × . . . Rbm−1xm−1. +We deduce that bmxmτb−1 +1 +∈ NSn(R) and bjxjb−1 +j+1 ∈ NSn(R) for j = 1, . . . , m − 1. +Fix j ∈ {1, . . ., m}. Multiplying everything starting from the j-th term, we have +bjxjxj+1 . . . xmτx1x2 . . . xj−1b−1 +j +∈ NSn(R). +It follows that the element x := xjxj+1 . . . xmτx1x2 . . . xj−1 belongs to NSn(Rbj). +Since h ∈ Hi, the same argument shows that x belongs to NSn(M aij +i +). Furthermore +x = (xjxj+1 · · · xmτ) · x1 · · · xmτ · (xjxj+1 · · · xmτ)−1, +so x belongs to B. Therefore x ∈ B ∩ NSn(M aij +i +) ∩ NSn(Rbj). +□ +Lemma 11. Let L ⩽ G and g ∈ Π, then the number of conjugates of L containing +g is at most nm. +Proof. We argue as in the proof of [4, Lemma 4]. Let a(L) the number of conjugates +of L containing g. Note that a(L) does not depend on g because Π is a conjugacy +class in G. +Consider the set R of pairs (h, H) such that h ∈ H ∩ Π and H is +conjugated to L in G. On the one hand, since Π is a conjugacy class of G, |R| = +|Π| · a(L). +On the other hand, since L has |G : NG(L)| conjugates in G and +|Lg ∩ Π| = |L ∩ Π| for all g ∈ G, |R| = |G : NG(L)| · |L ∩ Π| ⩽ |G : L| · |L| = |G|. +Therefore |Π| · a(L) ⩽ |G| hence +a(L) ⩽ |G| +|Π| = +2m · (n!/2)m +(n − 1)! · (n!/2)m−1 = nm. +This concludes the proof. +□ +Fix a vertex v = {H1, H2} of Γ and let i ∈ {1, 2}, H := Hi. By Lemma 11, +mH([K]) ⩽ nm for all K ⩽ G. We now bound fH(K) = |C(H) ∩ K|/|C(H)| for +K ∈ Hj and P(Ev,j) for j = 1, . . . , 6. Since Π is closed under conjugation, when +bounding fH(K) we may assume that H = NG(Lm) where L is a maximal imprimi- +tive subgroup of An with 2 blocks. As in Section 2, we will use Stirling’s inequalities. +By Lemma 4, C(H) = H ∩ Π has size (2/n) · (n/2)!2m ⩾ (2/n)(n/(2e))nm. +(1) Case j = 1. Let K ∈ H1 be a conjugate of NG(M m) in G, where M is a +maximal intransitive subgroup of An. Notice that K ∩ Π = ∅ by Lemma +4, because NSn(M) is intransitive and hence it does not contain n-cycles. +Therefore fH(K) = 0, implying that P(Ev,1) = 0. +(2) Case j = 2. Assume K is a maximal subgroup of G conjugate to NG(M m) +where M m = K ∩ N, M is the intersection between An and a primitive +maximal subgroup of Sn distinct from An. Since |M| ⩽ 4n by [17], KN = G +and K ∩ N is conjugate to M m, we have |C(H) ∩ K| ⩽ |K| = 2m · |M|m ⩽ +2m · 4mn. Therefore, by Inequality (⋆) and Lemmas 9, 11, +P(Ev,2) ⩽ n · mn · mn · 4mn +(n/(2e))mn = m2n3 · +�8e +n +�nm +. + +16 +JULIA ALMEIDA AND MARTINO GARONZI +(3) Case j = 3. Assume K = NG(M × M a2 × . . . × M am), M is a maximal +imprimitive subgroup of An with 3 blocks, and a2, . . . , am ∈ An. We will +bound the size of C(H) ∩ K. Let g ∈ C(H) ∩ K = H ∩ Π ∩ K, then g = +(x1, . . . , xm)γ, where x1 . . . xmτ ∈ B, and the fact that g ∈ H ∩ K implies +that x1, . . . , xm−1, xmτ ∈ NSn(L), aixia−1 +i+1 ∈ NSn(M) for i = 1, . . . , m−1, +where a1 = 1, and amxmτ ∈ NSn(M). We deduce that +x1 . . . xi ∈ NSn(L) ∩ NSn(M)ai+1 +∀i = 1, . . . , m − 1, +x1 . . . xmτ ∈ B ∩ NSn(L) ∩ NSn(M) +By induction, the number of choices for xi is |NSn(L)∩NSn(M)ai+1|, which +is at most |NSn(L) ∩ NSn(M)|, for every i = 1, . . . , m − 1. Moreover, after +choosing x1, . . . , xm−1, the number of choices for xm is |B ∩ NSn(L) ∩ +NSn(M)|, which is at most |NSn(L) ∩ NSn(M)|. Therefore +|C(H) ∩ K| ⩽ |NSn(L) ∩ NSn(M)|m. +The above discussion implies that, if B ∩ NSn(L) ∩ NSn(M) is empty, then +fH(K) = 0, so now we may assume that there is an element σ ∈ B ∩ +NSn(L) ∩ NSn(M). Then σ is an n-cycle normalizing L and M. Let ∆ and +∆ be the blocks of L, i.e. the two orbits of ⟨σ2⟩, and let B1, B2, B3 be the +blocks of M, i.e. the three orbits of ⟨σ3⟩. Then the six orbits of ⟨σ6⟩ are +∆∩Bi, i = 1, 2, 3, and ∆∩Bi, i = 1, 2, 3, forming a partition P of {1, . . ., n} +consisting of 6 blocks of size n/6. Clearly, NSn(L) ∩ NSn(M) is contained +in the stabilizer of the partition P, which is isomorphic to Sn/6 ≀ S6, hence +fH(K) = |C(H) ∩ K| +|C(H)| +⩽ |NSn(L) ∩ NSn(M)|m +|C(H)| +⩽ n +2 · +�(n/6)!6 · 6! +(n/2)!2 +�m +. +An easy application of Stirling’s inequalities shows that this is at most +nO(1)m(1/3)nm. +By Inequality (⋆) and Lemmas 9, 11, the same bound +holds for P(Ev,3). +(4) Case j = 4. Assume K is a maximal subgroup of G conjugate to NG(M m) +where K ∩N = M m and M is a maximal imprimitive subgroup of An with +4 blocks. Since KN = G and K ∩N is conjugate to M m, |K| = 2m·|M|m, +hence an application of Stirling’s inequalities gives +fH(K) ⩽ +|K| +|C(H)| = 2m · ((n/4)!4 · 4!)m +2/n · (n/2)!2m +⩽ nO(1)m · +�1 +2 +�nm +. +Therefore, by Inequality (⋆⋆) and Lemma 10, P(Ev,4) ⩽ nO(1)m(1/4)nm. +(5) Case j = 5. Assume K is a maximal subgroup of G conjugate to NG(M m) +where K ∩N = M m and M is a maximal imprimitive subgroup of An with +5 or more blocks. By [4, Theorem 3], |M| ⩽ nO(1) · (n/(5e))n, and since +|K| = 2m · |M|m, +fH(K) ⩽ 2m · ((n/(5e))n · nO(1))m +2/n · (n/(2e))nm +⩽ nO(1)m · +�2 +5 +�nm +. +By Inequality (⋆) and Lemmas 9, 11, the same bound holds for P(Ev,5). +(6) Case j = 6. Assume K = NG(∆ϕ) is a maximal subgroup of G of diagonal +type, so that |K| = 2m · |An|m/t where t is a prime divisor of m. Using + +17 +t ⩾ 2 and Stirling’s inequalities, +fH(K) ⩽ +|K| +|C(H)| = 2m(n!/2)m/t +(2/n)(n/2)!2m ⩽ nO(1)m · +�2√e +√n +�mn +. +By Inequality (⋆) and Lemmas 9, 11, the same bound holds for P(Ev,6). +We now finish the proof by showing that P(Ev) ⩽ +1 +e(d+1) for sufficiently large n. +Recall that d ⩽ 2mn. The above discussion implies that P(Ev,j) ⩽ nO(1)m(2/5)nm +for all j = 1, . . . , 6, and since P(Ev) ⩽ �6 +j=1 P(Ev,j), it all boils down to showing +that nO(1)m(2/5)mn ⩽ (1/2)mn, which is true for large enough n. +References +[1] A. Abdollahi, F. Ashraf, and S. M. Shaker. “The Symmetric Group of Degree Six can be +Covered by 13 and No Fewer Proper Subgroups.” Bull. Malays. Math. Sci. Soc. (2). 30:1 (2007), +57–58. +[2] N. Alon, J. H. Spencer. The probabilistic method. Fourth edition. Wiley Series in Discrete +Mathematics and Optimization. John Wiley and Sons, Inc., Hoboken, NJ, 2016. +[3] A. Ballester-Bolinches, L. M. Ezquerro. Classes of Finite Groups. Springer Netherlands, 2006. +[4] S. R. Blackburn. “Sets of Permutations That Generate the Symmetric Group Pairwise.” J. +Combin. Theory Ser. A. 113:7 (2006), 1572–1581. +[5] J. H. E. Cohn. “On n-Sum Groups.” Math. Scand. 75:1 (1994), 44–58. +[6] P. Erd˝os, L. Lov´asz. “Problems and results on 3-chromatic hypergraphs and some related +questions.” A. Hajnal, R. Rado, V. S´os (Eds.), Colloquium Math. Society Janos Bolyai, vol. 11, +North-Holland, Amsterdam, 1973, pp. 609–627. +[7] F. Fumagalli, M. Garonzi, A. Mar´oti. “On the maximal number of elements pairwise generating +the symmetric group of even degree.” Discrete Mathematics, Volume 345, Issue 4, (2022), 112776. +[8] M. Garonzi. “Covering Certain Monolithic Groups With Proper Subgroups.” Commun. Alge- +bra. 41:2 (2013a), 471–491. +[9] M. Garonzi, A. Mar´oti. “Covering certain wreath products with proper subgroups.” Journal +of Group Theory, vol. 14, no. 1, (2011), 103–125. +[10] L.-C. Kappe, D. Nikolova-Popova, and E. Swartz. “On the Covering Number of Small Sym- +metric Groups and Some Sporadic Simple Groups.” Groups Complex. Cryptol. 8:2 (2016), 135– +154. +[11] M. W. Liebeck, C. E. Praeger, J. Saxl. “A classification of the maximal subgroups of the +finite alternating and symmetric groups.” Journal of Algebra 111, 365–383 (1987). +[12] A. Lucchini, F. Menegazzo, Generators for finite groups with a unique minimal normal sub- +group. Rendiconti del Seminario Matematico della Universit`a di Padova, tome 98 (1997), p. +173–191 +[13] A. Lucchini, A. Mar´oti. “On the Clique Number of the Generating Graph of a Finite Group.” +Proceedings of the American Mathematical Society, Volume 137, Number 10, (2009), 3207–3217. +[14] A. Mar´oti. “On The Orders of Primitive Groups.” Journal of Algebra, Volume 258, Issue 2, +(2002), 631 - 640. +[15] A. Mar´oti. “Covering the Symmetric Groups With Proper Subgroups.” J. Combin. Theory +Ser. A. 110:1 (2005), 97–111. +[16] R. Oppenheim and E. Swartz. “On the Covering Number of S14.” Involve. 12:1 (2019), 89–96. +[17] C. E. Praeger, J. Saxl. “On the orders of primitive permutation groups.” Bulletin of the +London Mathematical Society, Volume 12, Issue 4, (1980) 303 – 307. +[18] L. Stringer, Pairwise generating sets for the symmetric and alternating groups, PhD thesis, +Royal Holloway, University of London, 2008. +[19] E. Swartz. “On the Covering Number of Symmetric Groups Having Degree Divisible by Six.” +Discrete Math. 339:11 (2016), 2593–2604. + +18 +JULIA ALMEIDA AND MARTINO GARONZI +Departamento de Matem´atica, Universidade de Bras´ılia, Campus Universit´ario Darcy +Ribeiro, Bras´ılia-DF, 70910-900, Brazil +Email address: julia aredes almeida@hotmail.com +Departamento de Matem´atica, Universidade de Bras´ılia, Campus Universit´ario Darcy +Ribeiro, Bras´ılia-DF, 70910-900, Brazil +ORCID: https://orcid.org/0000-0003-0041-3131 +Email address: mgaronzi@gmail.com + diff --git a/m9E2T4oBgHgl3EQfJgYM/content/tmp_files/load_file.txt b/m9E2T4oBgHgl3EQfJgYM/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..0eaf0d3d57f132bd2b6b473996e2f300c8cbf9a9 --- /dev/null +++ b/m9E2T4oBgHgl3EQfJgYM/content/tmp_files/load_file.txt @@ -0,0 +1,1254 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf,len=1253 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='03691v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='GR] 9 Jan 2023 ON MINIMAL COVERINGS AND PAIRWISE GENERATION OF SOME PRIMITIVE GROUPS OF WREATH PRODUCT TYPE JULIA ALMEIDA AND MARTINO GARONZI Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The covering number of a finite group G, denoted σ(G), is the smallest positive integer k such that G is a union of k proper subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We calculate σ(G) for a family of primitive groups G with a unique minimal normal subgroup N, isomorphic to Am n with n divisible by 6 and G/N cyclic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This is a generalization of a result of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Swartz concerning the symmetric groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We also prove an asymptotic result concerning pairwise generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Introduction In this paper, all groups are assumed to be finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A covering of a group G is a family of proper subgroups of G whose union is G and the covering number of G, denoted σ(G), is the smallest size of a covering of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This interesting invariant was introduced by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Cohn in [5] and it was later studied by many authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In this paper, we focus our attention on a family of groups closely related to symmetric groups, so let us shortly recall what is known about σ(Sn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It is easy to prove that σ(S3) = σ(S4) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In his paper, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Cohn proved, among other things, that σ(S5) = 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Abdollahi et al [1] proved that σ(S6) = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Mar´oti [15] proved that σ(Sn) = 2n−1 for n ⩾ 7 odd and n ̸= 9, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Kappe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Nikolova-Popova and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Swartz [10] proved that σ(S8) = 64, σ(S9) = 256, σ(S10) = 221, σ(S12) = 761, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Oppenheim and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Swartz [16] proved that σ(S14) = 3096 and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Swartz [19] proved that σ(S18) = 36773 and gave a precise formula for σ(Sn) when n ⩾ 30 is divisible by 6, which coincides with the formula in our Theorem 1 below setting m = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If G is 2-generated, the generating graph of G is the simple graph whose vertices are the elements of G and two vertices are connected by an edge if together they generate G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A clique of a simple graph is a complete subgraph and its clique number is the maximal size of a clique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We denote by ω(G) the clique number of the generating graph of G, in other words ω(G) is the maximal size of a subset S of G with the property that ⟨x, y⟩ = G whenever x, y ∈ S and x ̸= y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since any proper subgroup of G can contain at most one element of such a set S, we have ω(G) ⩽ σ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It is very natural to ask whether equality occurs for some families of groups, at least asymptotically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Blackburn [4] proved that σ(Sn) = ω(Sn) if n is odd and sufficiently large, and later L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Stringer [18] proved that ω(Sn) = σ(Sn) for all odd n different from 9 and from 15, and that σ(S9) ̸= ω(S9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It is not known wheter ω(S15) equals σ(S15) or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In a joint work with F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Fumagalli and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Permutation group, Primitive group, Covering, Group generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The authors acknowledge the support of Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico (CNPq), PhD fellowship and Universal - Grant number 402934/2021-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 1 2 JULIA ALMEIDA AND MARTINO GARONZI Mar´oti [7], the second author proved that ω(Sn)/σ(Sn) tends to 1 when n is even and tends to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Lucchini and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Mar´oti [13] proved that σ(G) = ω(G) if G is a solvable group of Fitting length at most 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A group G is called primitive if it admits a maximal subgroup with trivial normal core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The study of σ(G) and ω(G) for primitive groups is crucial for the under- standing of the general behaviour of these invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Indeed, for a general G, we have σ(G) = σ(G/Φ(G)) and, if G is 2-generated, ω(G) = ω(G/Φ(G)), where Φ(G) denotes the Frattini subgroup of G, and it is easy to see that G/Φ(G) is a subdirect product of primitive groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Denote by d(G) the minimal size of a set of generators of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If G is noncyclic and has a unique minimal normal subgroup, call it N, then [12, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1] implies that d(G) = max{2, d(G/N)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Moreover, in this case, if Φ(G) = {1} then G is primitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since we are interested in 2-generated groups, the first case to consider is the one in which G/N is cyclic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Our objective in this paper is to continue the work started in [9] and [8] con- cerning the covering number of specific families of primitive groups with nonabelian socle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Recall that the socle of a group G is the subgroup generated by the minimal normal subgroups of G, and if G is primitive with nonabelian socle N, then N is the unique minimal normal subgroup of G and it is a direct power T m of a nonabelian simple group T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume G/N is cyclic and that T is isomorphic to an alternating group An with n ⩾ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If T1 denotes the first direct factor of N, then the structure of G is determined by the almost-simple group X = NG(T1)/CG(T1), which has socle isomorphic to T , so it can be one of An and Sn, if n ̸= 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If X ∼= An, then G is the wreath product An ≀ Cm, where Cm acts as an m-cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In this paper, we are interested in the case X ∼= Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In this case, the structure of G is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let G = Gn,m be the semidirect product Am n ⋊ ⟨γ⟩ where γ = (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , 1, τ)δ ∈ Sn ≀ Sm, with τ = (1 2) and δ = (1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm ∈ An, we have (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ = (xmτ, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In this paper, we establish the following result, generalizing the main result of [19] about σ(Sn), which corresponds to the case m = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let G = Gn,m, for n ⩾ 30 divisible by 6 and m ⩾ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Denote by α(x) the number of distinct prime factors of the positive integer x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then σ(G) = α(2m) + �1 2 � n n/2 ��m + n/3−1 � i=1 �n i �m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Moreover, G has a unique minimal covering consisting of maximal subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let G be the group in the above statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Denote by d(G) the minimal number of elements needed to generate G and let N be the socle of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since N is the unique minimal normal subgroup of G and G/N is cyclic, the main Theorem of [12] implies that d(G) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' So it makes sense to consider ω(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Two explicit generators of G can be constructed as follows: let x1, x2 ∈ An be such that ⟨x1τ, x2τ⟩ = Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then ⟨α1, α2⟩ = G where αi = (xi, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , 1)γ for i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Our second result is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Set G := Gn,m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For fixed m ⩾ 2, ω(G) is asymptotically equal to � 1 2 � n n/2 ��m for n → ∞, n even, and ω(G)/σ(G) tends to 1 as n → ∞, n even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 3 Note that the second statement of the theorem follows from the first one using [8, Theorem 1 (3)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It is interesting to ask whether ω(G)/σ(G) tends to 1 when G is a 2-generated primitive group and |G| → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For an interesting example of a family of groups G for which ω(G)/σ(G) tends to 0, see [13, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof of Theorem 1 In this section, we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The strategy is to apply Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1 of [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let us explain this here for the convenience of the reader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume G is a finite group whose conjugacy classes of maximal subgroups are indexed by a set IG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For j ∈ IG, let Mj be the corresponding conjugacy class of maximal subgroups of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let J be a subset of IG and assume that C = � j∈J Mj is a covering of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let Π be a subset of G closed under conjugation and denote by Πj the subset of Π covered by the conjugacy class Mj, so that Πj is closed under conjugation if Π is closed under conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If this is the case, and M, M ′ are conjugate maximal subgroups of G and j ∈ J, then |M ∩ Π| = |M ′ ∩ Π| and |M ∩ Πj| = |M ′ ∩ Πj|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For a maximal subgroup M of G such that M ̸∈ C, let d(M) := � j∈J |M ∩ Πj| |Mj ∩ Πj| where Mj is any fixed member of Mj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Lemma 1 (Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1 of [19]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume that the following conditions hold for the covering C defined above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (1) xg ∈ Π, for all x ∈ Π and g ∈ G, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Π is closed under conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (2) For every π ∈ Π, there is a unique member of C containing π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (3) d(H) < 1 for every maximal subgroup H of G not in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then C is a minimal covering of G, meaning that σ(G) = |C|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Moreover C is the unique minimal covering of G consisting of maximal subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let G be the group defined in the statement of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We will construct J, Π and C to apply Lemma 1 to the group G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Using the language of [3], which we will often refer to, G is a primitive group of type 2, meaning that G has a core-free maximal subgroup and it admits precisely one minimal normal subgroup, which is nonabelian: its socle, N = Am n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let I = {−1, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=', n/3 − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' As in [19], we define collections Bi, i ∈ I, as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For simplicity of notation, let us denote by [a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ak] the conjugacy class of Sn corresponding to the elements of cycle structure (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ak), where of course the ai’s are positive integers which sum to n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Set B−1 := [n], B1 := [1, n/2 − 2, n/2 + 1] B2 := [2, n/2 − 1, n/2 − 1] if n/2 is even, B2 := [2, n/2 − 4, n/2 + 2] if n/2 is odd, Bi := [i, (n − i − 1)/2, (n − i + 1)/2] if i is odd, 3 ⩽ i < n/3, Bi := [i, (n − i)/2, (n − i)/2] if i is even, (n − i)/2 is odd, 4 ⩽ i < n/3, Bi := [i, (n − i)/2 − 1, (n − i)/2 + 1] if i is even, (n − i)/2 is even, 4 ⩽ i < n/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that Bi ∩ An = ∅ for all i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We define the set Πi for all i ∈ I as follows: Πi = {(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ ∈ G : x1x2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ ∈ Bi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 4 JULIA ALMEIDA AND MARTINO GARONZI Note that the sets Πi are pairwise disjoint as are the sets Bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that we did not define Π0 yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Rather than defining a unique Π0, we will define several sets, which we will call Π0,r, for every prime r dividing m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For such r, let D1 be the conjugacy class of (n−2)-cycles in Sn, and let Di be the conjugacy class of n-cycles in Sn for i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let ν := (1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For all σ ∈ ⟨ν⟩, let Π0,r,σ := {(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γr ∈ G : xixi+rxi+2r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi+m−rτ ∈ Dσ(i) ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , r}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume that either m is even or r ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We define Π0,r := � σ∈⟨ν⟩ Π0,r,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This is a disjoint union.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Indeed, let σ1, σ2 ∈ ⟨ν⟩ with σ1 ̸= σ2 and assume by contradiction that there exists (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γr ∈ Π0,r,σ1 ∩ Π0,r,σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since σ1 ̸= σ2 and r is a prime, there exists i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , r} such that σ1(i) = 1 and j = σ2(i) ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since xixi+r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi+m−rτ belongs to Dσ1(i) ∩ Dσ2(i) = D1 ∩ Dj, we deduce that D1 = Dj, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It follows that |Π0,r| = r · |An|m−r · r � i=1 |Di|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume now that m is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We will define Π0,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Consider the conjugacy class C of Sn consisting of the elements of cycle structure (p, n−p) where p is a fixed prime number such that n/3 < p < 2n/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that p exists by Bertrand’s postulate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In this case, we define Π0,2 := {(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ2 ∈ G : x1x3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ · x2x4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xm−1τ ∈ C}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that |Π0,2| = |An|m−1 · |C|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let J be the set of indices consisting of the elements of I and the pairs (0, r) where r is a prime divisor of 2m and set Π := � j∈J Πj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The following proposition shows that every Πj is closed under conjugation, proving that condition (1) of Lemma 1 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For all i ∈ I, the sets Πi, i ∈ I, and Π0,r, r any prime divisor of 2m, are closed under conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Fix i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ ∈ Πi, the element ((x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ)γ = (τxmτ, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−1) · γ belongs to Πi because τxmτ · x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xm−1 · τ = (x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ)τx−1 m τ ∈ Bi, and if (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ym) ∈ Am n , the element ((x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ)(y1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=',ym) = (y−1 1 x1y2, y−1 2 x2y3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , y−1 m−1xm−1ym, y−1 m xmτy1τ)γ belongs to Πi because y−1 1 x1y2 · y−1 2 x2y3 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' · y−1 m−1xm−1ym · y−1 m xmτy1τ · τ = (x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ)y1 ∈ Bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since G is generated by Am n and γ, this proves that Πi is closed under conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 5 We now prove that Π0,r is closed under conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The following argument can be applied to the case r = 2 when m is odd, so we will assume that either m is even or r ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γr ∈ Π0,r,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that ((x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γr)γ = (τxmτ, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−1)γr and we have the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' τxmτxrx2r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xm−rτ = (xrx2r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xm−rxmτ)τx−1 m τ ∈ Dσ(r) = Dσν−1(1) xixi+rxi+2r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi+m−rτ ∈ Dσ(i) = Dσν−1(i+1) ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , r − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It follows that ((x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γr)γ ∈ Π0,r,σν−1 ⊆ Π0,r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ym) ∈ Am n we have that ((x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γr)(y1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=',ym) equals (y−1 1 x1yr+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , y−1 m−rxm−rym, y−1 m−r+1xm−r+1τy1τ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , y−1 m xmτyrτ) · γr Moreover, if 1 ⩽ i ⩽ r, y−1 i xiyr+i · y−1 r+ixr+iy2r+i · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' · y−1 m−r+ixm−r+iτyiτ · τ = (xixi+rxi+2r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi+m−rτ)yi belongs to Dσ(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This implies that Π0,r is closed under conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ For i ∈ I, i ̸= −1, define Ei to be the set of maximal intransitive subgroups of An whose orbits have size i and n−i and let E−1 be the set of maximal imprimitive subgroups of An with 2 blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let Fi := {NSn(M) : M ∈ Ei} for all i ∈ I, E := � i∈I Ei and F := � i∈I Fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that {An} ∪ F is a covering of Sn, as observed in [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By [19, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2], for n ≡ 0 mod 6, n ⩾ 30 and i ∈ I, the only subgroups in F that contain elements of Bi are the ones belonging to Fi, so that the elements of � i∈I Bi are partitioned by the subgroups in F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Moreover Ei and Fi are conjugacy classes of subgroups of Sn for all i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For i ∈ I, define Mi to be the set consisting of the subgroups of G of the following type: H = NG(M a1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M am) where a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , am ∈ An, M ∈ Ei and NSn(M) ∩ Bi ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By [3, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='44] and [11], H is a maximal subgroup of G supplementing the socle N = Am n of G, moreover H ∩ N is conjugate to M m in N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It follows that |H| = 2m · |M|m and H has |G : H| = |An : M|m conjugates in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For every prime divisor r of 2m, set M0,r = {M0,r} where M0,r = Am n ⋊ ⟨γr⟩ is a normal subgroup of G of index r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let C be the union of all the Mj, for j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The size of C equals the claimed value for σ(G) in the statement of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' C is a covering of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let g = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γk ∈ G where xi ∈ An for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If (k, m) ̸= 1 then g belongs to one of the α(2m) subgroups of G containing the socle, now suppose that (k, m) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since ⟨g⟩ = ⟨gt⟩ if t is coprime to the order of g, we can assume that k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since F is a covering of Sn, there exists M ∈ E such that the odd permutation x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ belongs to NSn(M) and H = NG(M × M x1 × M x1x2 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='xm−1) is a member of C containing g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The sets Mi, i ∈ I, are conjugacy classes of subgroups of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 6 JULIA ALMEIDA AND MARTINO GARONZI Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A given subgroup in Mi is Am n -conjugate to H = NG(M m) where M ∈ Ei, so since every member of Ei is an An-conjugate of M, being NSn(M)An = Sn, we only need to show that Hγ = NG(M τ ×M m−1) is Am n -conjugate to H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This follows from the fact that M τ is An-conjugate to M, being NSn(M)An = Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ We will now describe the maximal subgroups of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A reference for the following discussion is [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The maximal subgroups of G containing the socle N = soc(G) are the M0,r where r is any prime divisor of 2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let U be a maximal subgroup of G not containing N, so that UN = G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Observe that U ∩ N ̸= {1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Indeed, if by contradiction U ∩ N = {1}, then U ∼= G/N would be cyclic, generated by an element u, therefore the only proper subgroup of G containing u would be U, and this contradicts the fact that C is a covering of G whose members are not cyclic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then U can be of one of the following two types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The first type is U = NG(U ∩ N) where U ∩ N = M × M a2 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M am, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , am ∈ An and M is the intersection between An and a maximal subgroup of Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In this first case, U is called a maximal subgroup of product type (see [3, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='44, Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='45]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The second type consists of maximal subgroups of diagonal type (see [3, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='55]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Fix a partition {P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , Pk} of Ω = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m} and write Pi = {aij : j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ri}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Given a collection of automorphisms ϕij of An, with i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , k and j = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ri, let ∆ϕ be the set of m-tuples (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm) ∈ Am n with the property that xaij = xϕi,j ai1 for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then we set U to be the normalizer of ∆ϕ in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If U supplements N, there is in U an element u = (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ym)δ where each yi belongs to Sn and it is easy to see that the partition P is stabilized by δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If U is a maximal subgroup of G, then we may assume that P is minimal, with respect to the relation of refinement, among the nontrivial partitions stabilized by δ, in other words ∆ϕ = {(y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ym/t, yϕ1,2 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , y ϕm/t,2 m/t , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , yϕ1,t 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , y ϕm/t,t m/t ) : y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ym/t ∈ An} where t is a prime divisor of m, ϕi,j is an automorphism of An for 1 ⩽ i ⩽ m/t, 2 ⩽ j ⩽ t, and the matrix (ϕi,j)i,j is denoted by ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If U is a maximal subgroup of G, supplementing the socle N, and of the form NG(∆ϕ) with ϕ as above then U is called a maximal subgroup of diagonal type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If this is the case, then U ∩ N = ∆ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In the following discussion, we fix a subgroup M of An such that NG(M m) is a maximal subgroup of G which supplements the socle N = soc(G), in other words NG(M m)N = G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' NSn(M)An = Sn, in particular NSn(M) ⊈ An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let α ∈ Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If α ∈ An then α ∈ NSn(M)An, so now assume that α ̸∈ An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then ατ ∈ An and so (α, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , α) = (ατ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , ατ)(τ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , τ) ∈ G, being (τ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , τ) = γm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By assumption, we can write (α, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , α) = nh, where n = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , am) ∈ Am n and h = (b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , bm)γk ∈ NG(M m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It follows that k = 0 and hence bi ∈ NSn(M) for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore α = a1b1 ∈ AnNSn(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let g ∈ G and let r be a prime divisor of 2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If either m is even or r ̸= 2, then |NG(M m)g ∩ Π0,r| = r · �1 2 |NSn(M)| �m−r r � i=1 |Di ∩ NSn(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 7 If m is odd, then |NG(M m)g ∩ Π0,2| = �1 2 |NSn(M)| �m−1 |C ∩ NSn(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since Π0,r is closed under conjugation, the size of NG(M m)g ∩ Π0,r equals the size of NG(M m) ∩ Π0,r, therefore we may assume that g = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume first that either m is even or r ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We will compute |NG(M m)∩Π0,r,σ| for each σ ∈ ⟨ν⟩ and sum all the contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Fix σ ∈ ⟨ν⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γr ∈ NG(M m) ∩ Π0,r,σ, then M m equals (M × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M)(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=',xm)γr = M xm−r+1τ × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M xmτ × M x1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M xm−r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' So xm−r+1τ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xmτ ∈ NSn(M) ∩ (Sn − An) and x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−r ∈ NSn(M) ∩ An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since NSn(M) is not contained in An, the sets NSn(M)∩An and NSn(M)∩(Sn−An) have the same cardinality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γr ∈ Π0,r, the xi’s must also satisfy the equations of the definition of Π0,r,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' So for each equation xixi+r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi+m−rτ ∈ Dσ(i), where i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , r, we can freely choose the elements xi+r, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−r+i, with |NSn(M) ∩ An| = 1 2|NSn(M)| choices for each, and only the elements xi, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , r, need to be chosen in order to satisfy the equation defining Π0,r,σ, which is xizi ∈ Dσ(i), where zi = xi+r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi+m−rτ ∈ NSn(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since Dσ(i)z−1 i ∩ NSn(M) = (Dσ(i) ∩ Nsn(M))z−1 i , there are |Dσ(i) ∩ NSn(M)| choices for each xi, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , r, and the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume now that m is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ2 ∈ NG(M m) ∩ Π0,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then M m equals (M × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M)(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=',xm)γ2 = M xm−1τ × M xmτ × M x1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M xm−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' So xm−1τ, xmτ ∈ NSn(M) ∩ (Sn − An) and x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−2 ∈ NSn(M) ∩ An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since NSn(M) is not contained in An, we have 1 2|NSn(M)| choices for each of xm−1 and xm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Now we can choose x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−2 freely in NSn(M) ∩ An and we need to choose x1 in order to satisfy the equation that defines Π0,2, which is x1t ∈ C, where t = x3x5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτx2x4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xm−1τ ∈ NSn(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We can choose x1 freely in Ct−1 ∩ NSn(M) = (C ∩ NSn(M))t−1, so we have |C ∩ NSn(M)| choices for x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume that either m is even or r ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then NG(M m) ∩ Π0,r = ∅ if and only if NSn(M) ∩ Di = ∅ for at least one i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , r}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Moreover, if m is odd and r = 2, then NG(M m) ∩ Π0,2 = ∅ if and only if NSn(M) ∩ C = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If i ∈ I, then |NG(M m) ∩ Πi| = � 1 2 |NSn(M)| �m−1 · |Bi ∩ NSn(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ ∈ NG(M m) ∩ Πi, then M m equals (M m)(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=',xm)γ = (M x1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M xm)γ = M xmτ × M x1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M xm−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' So xmτ ∈ NSn(M)∩(Sn −An) and x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−1 ∈ NSn(M)∩An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since NSn(M) is not contained in An, the number of choices for xm is 1 2|NSn(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Now we can choose x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−1 freely in NSn(M) ∩ An and we need to choose x1 in order to satisfy the equation that defines Πi, which is x1t ∈ Bi, where t = x2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ ∈ NSn(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 8 JULIA ALMEIDA AND MARTINO GARONZI In other words, we can choose x1 freely in Bit−1 ∩ NSn(M) = (Bi ∩ NSn(M))t−1 so the number of choices for x1 is |Bi ∩ NSn(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If i ∈ I, then NG(M m) ∩ Πi = ∅ if and only if Bi ∩ NSn(M) = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The following proposition implies that condition (2) of Lemma 1 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let π ∈ Π, then there is a unique L ∈ C such that π ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If π ∈ Π0,r for some prime r that divides 2m, then M0,r is the only subgroup in M that contains π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This follows from Corollary 1 and the fact that no subgroup in F has non-empty intersection with all sets D1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , Dr, because n-cycles do not belong to intransitive subgroups and (n − 2)-cycles do not stabilize partitions with 2 blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Now suppose that π ∈ Πi for some i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then π = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ with x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ ∈ Bi, in particular π ̸∈ M0,r for every prime r that divides 2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' There is a unique H ∈ F such that x1 · · · xmτ ∈ H and H = NSn(M) where M = H ∩ An ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Suppose that π = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ belongs to NG(M a1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M am).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then M a1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M am equals (M a1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M am)(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=',xm)γ = M amxmτ × M a1x1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M am−1xm−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' So, for i with 1 ⩽ i ⩽ m − 1, aixia−1 i+1 ∈ H and amxmτa−1 1 ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Multiplying all these elements starting from the i-th one, we have aixixi+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτx1x2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi−1a−1 i ∈ H, which can be written as (x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ)x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='xi−1 = xixi+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτx1x2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi−1 ∈ Hai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In particular x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ ∈ Ha1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since F is closed under conjugation, the uniqueness of H implies that Ha1 = H, therefore a1 ∈ NSn(H) = H, being H a maximal subgroup of Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Now we can rewrite the above equations as ai ∈ Hx1x2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi−1, ∀i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It follows that M a1 = M and M ai = M x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='xi−1 for all i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m, hence the only subgroup in C that contains π is NG(M × M x1 × M x1x2 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='xm−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ In order to conclude the proof of Theorem 1, we are left to show that condition (3) of Lemma 1 holds, in other words that d(H) < 1 for every maximal subgroup H of G not in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For n ⩾ 30, the value of |Π0,2| is smallest when m is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Moreover, if g ∈ G, then |NG(M m)g ∩ Π0,2|/|Π0,2| ⩽ 2n(n − 2)/|Sn : NSn(M)|m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We have |D1| = n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='/(2(n − 2)), |D2| = (n − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' and |C| = n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='/(p(n − p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' |Π0,2| = � 2|An|m−2|D1||D2| = |An|m · 4/(n(n − 2)) if m is even |An|m−1|C| = |An|m · 4/(2p(n − p)) if m is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 9 Note that 2p(n − p) < 2(2n/3)2 ⩽ n(n − 2) being n/3 < p < 2n/3 and n ⩾ 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' So the value of |Π0,2| is smallest when m is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We now prove the stated inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since Π0,2 is closed under conjugation, we may assume that g = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Lemma 3, |NG(M m) ∩ Π0,2| |Π0,2| = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 � |NSn(M)| |Sn| �m−2 |D1∩NSn(M)||D2∩NSn(M)| |D1||D2| if m is even � |NSn(M)| |Sn| �m−1 |C∩NSn(M)| |C| if m is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The inequality in the statement follows by using the fact that the size of the inter- section of any one of D1, D2, C with NSn(M) is at most |NSn(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If d is a divisor of n such that 2 ⩽ d ⩽ n/2 then (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='d ·d!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ 2(n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We do as in the proof of [14, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume first that d ⩽ n/d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='d · d!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 · 2 · ((n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' · d)d−2 ⩽ (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 · 2 · ((n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' · n/d)d−2 ⩽ (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 · 2 · ((n/d)n/d)d−2 = (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 · 2 · (n/d)2(n/2−n/d) ⩽ (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 · ((n/d) + 1)2 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' · (n/2)2 · 2 = 2(n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2, where, in the fourth inequality, we used that r!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ rr−1, for all r ⩾ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Suppose now that d > n/d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since 2 ⩽ n/d ⩽ n/2, exchanging the role of n/d and d in the above inequality we obtain d!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='n/d · (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ 2(n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If a > b ⩾ 2 are integers, then a!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='b · b!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' > b!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='a · a!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=', since a!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='b−1 = (a · (a − 1) · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' · (b + 1))b−1 · b!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='b−1 ⩾ � (b + 1)(a−b)�b−1 b!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='b−1 > b(a−b)(b−1) · b!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='b−1 ⩾ b!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (a−b) · b!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='b−1 = b!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='a−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Applying this to a = d, b = n/d we have (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='d ·d!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' < d!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='n/d ·(n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ 2(n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let H be a maximal subgroup of Sn such that H /∈ F and fix i ∈ I, M ∈ Ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then either |H| ⩽ |NSn(M)| or H ∩ Bi = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By the O’Nan–Scott Theorem, the maximal subgroups of Sn are of one of the following types: (1) primitive, (2) maximal intransitive, isomorphic to Sk×Sn−k for some k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , n/2 − 1} and (3) maximal imprimitive, isomorphic to Sa ≀ Sb for 2 ⩽ a, b < n with ab = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If H is intransitive then H ∼= Sk × Sn−k with n/3 ⩽ k < n/2, therefore |H| ⩽ (n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='(2n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ (n/3 − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (2n/3 + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ |NSn(M)| if NSn(M) is intransitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' On the other hand, if NSn(M) is transitive, then i = −1 and H ∩ B−1 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Now suppose that H is transitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If H is imprimitive then |H| = (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='d · d!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=', where d is a divisor of n, d ̸= 1, 2, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Lemma 6, if NSn(M) is imprimitive, then |H| = (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='d · d!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 · 2!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' = |NSn(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If NSn(M) is intransitive, then |H| = (n/d)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='d·d!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2·2!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ (n/3−1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='(2n/3+1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ |NSn(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If H is primitive then either H = An, in which case H ∩Bi = ∅, or H ̸= An, in which case |H| < 4n by [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since n ⩾ 30 we have 4n ⩽ (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 · 2 ⩽ (n/3 − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (2n/3 + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' and the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let H be a maximal subgroup of G not in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then d(H) < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 10 JULIA ALMEIDA AND MARTINO GARONZI Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume H has product type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then H is conjugate to NG(M m) where M is the intersection between An and a maximal subgroup of Sn not of the form An nor Sn/2 ≀ S2 nor Si × Sn−i, i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=', n/3 − 1, so that |NSn(M)| ⩽ (n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (2n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' by Lemma 6 and the fact that 2(n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 ⩽ (n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (2n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' being n ⩾ 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If M is primitive, by [17] we have |NSn(M)| < 4n ⩽ 2(n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 ⩽ (n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (2n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='. Since Πj is closed under conjugation for all j ∈ J, we have |H ∩ Πj| = |NG(M m) ∩ Πj| for all j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We will use Stirling’s inequalities, which are valid for all k ⩾ 2: √ 2πk (k/e)k ⩽ k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ⩽ e √ k (k/e)k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume that either m is even or r ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Lemma 3 and the fact that Π0,r ⊆ M0,r, |H ∩ Π0,r| |M0,r ∩ Π0,r| = r · � 1 2 |NSn(M)| �m−r · �r i=1 |Di ∩ NSn(M)| r · |An|m−r · �r i=1 |Di| ⩽ �|NSn(M)| |Sn| �m−r r � i=1 |NSn(M)| |Di| = �|NSn(M)| |Sn| �m 2(n − 2)nr−1 ⩽ �(n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (2n/3)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' �m 2nr ⩽ 2 · �22/3 3 �nm �ne2√n 3√π �m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Lemma 5, |NG(M m) ∩ Π0,2|/|Π0,2| ⩽ 2n(n − 2)/|Sn : NSn(M)|m, then we have the above inequality also in the case r = 2 when m is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' According to the proof of [19, Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='4, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='5, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='9, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='10], the largest value of � i ∈ I |Bi∩NSn(M)| |Bi∩NSn(Mi)| is obtained by substituting n = 30 in the expression 3n2+27n+54 4n2−9 , so it is less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='9925.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Lemma 7, � i ∈ I |H ∩ Πi| |NG(M m i ) ∩ Πi| = � i ∈ I � 1 2 |NSn(M)| �m−1 · |Bi ∩ NSn(M)| � 1 2 |NSn(Mi)| �m−1 · |Bi ∩ NSn(Mi)| ⩽ � i ∈ I |Bi ∩ NSn(M)| |Bi ∩ NSn(Mi)| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='9925 We obtain d(H) = � r∈P (2m) |H ∩ Π0,r| |M0,r ∩ Π0,r| + � i ∈ I |H ∩ Πi| |NG(M m i ) ∩ Πi| < 2m · ��22/3 3 �n ne2√n 3√π �m + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='9925 This is less than 1 being n ⩾ 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We now turn our attention to the maximal subgroups of G of diagonal type and supplementing the socle N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let H be such a subgroup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Recall that H ∩ N = ∆ϕ has order |An|m/t where t is a prime divisor of m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We have d(H) = � r∈P (2m) |H ∩ Π0,r| |M0,r ∩ Π0,r| + � i ∈ I |H ∩ Πi| |NG(M m i ) ∩ Πi| ⩽ |H| · \uf8eb \uf8ed � r∈P (2m) 1 |Π0,r| + � i ∈ I 1 |NG(M m i ) ∩ Πi| \uf8f6 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 11 Since HN = G, we have C2m ∼= G/N = HN/N ∼= H/H ∩ N, hence |H| = |H : H ∩ N| · |H ∩ N| = 2m · |∆ϕ| = 2m · (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='/2)m/t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume first that either m is even or r ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since 2 ⩽ r ⩽ m, |Π0,r| = r · |An|m−r · r � i=1 |Di| = r · �n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 2 �m−r n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' n · � n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 2(n − 2) �r−1 = r · n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='m 2m−1n(n − 2)r−1 ⩾ 2 · n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='m 2m−1nr ⩾ n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='m 2m−2nm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Lemma 5, the smallest value of |Π0,2| is when m is even, so the above inequality for |Π0,r| holds in all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Fix Mi ∈ Ei for all i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The smallest possible order of NSn(Mi), i ∈ I, is when Mi is imprimitive with two blocks, so |NSn(Mi)| ⩾ 2 (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since Bi∩NSn(Mi) ̸= ∅, by Lemma 4 we have |NG(M m i ) ∩ Πi| = �1 2 |NSn(Mi)| �m−1 |Bi ∩ NSn(Mi)| ⩾ (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2(m−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We deduce that d(H) ⩽ 2m �n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 2 �m/t \uf8eb \uf8ed � r∈P (2m) 2m−2nm (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' )m + � i ∈ I 1 (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2(m−1) \uf8f6 \uf8f8 ⩽ 2m �1 2(n/e)ne√n �m/t � 2m−1 mnm (n/e)nm + n (n/(2e))n(m−1) � < 1 for m ⩾ 3 and n ⩾ 30, where we used the fact that t ⩾ 2 and t = 3 if m = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Now assume that m = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We will show that d(H) = 0 by proving that H ∩ Π0,2 and H ∩ Πi are empty for all i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We have H = NG(∆ϕ) where ∆ϕ = {(α, αϕ) : α ∈ An} for ϕ ∈ Aut(An) ∼= Sn and Π0,2 = {(x1, x2)γ2 : x1τ ∈ D1, x2τ ∈ D2} ∪ {(x1, x2)γ2 : x1τ ∈ D2, x2τ ∈ D1}, Πi = {(x1, x2)γ : x1x2τ ∈ Bi}, i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For i ∈ I we have that if (x1, x2)γ ∈ H ∩ Πi then (α, αϕ)(x1,x2)γ = (α, αϕ)(x1,x2)(1,τ)δ = (αx1, αϕx2τ)δ = (αϕx2τ, αx1) ∈ ∆ϕ, So ϕx2τϕ = x1, equivalently (ϕx2τ)2 = x1x2τ which is false since (ϕx2τ)2 ∈ An and x1x2τ /∈ An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore H ∩ Πi = ∅ for all i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If (x1, x2)γ2 ∈ H ∩ Π0,2 then, for all α ∈ An, (α, αϕ)(x1,x2)γ2 = (α, αϕ)(x1,x2)(τ,τ) = (αx1τ, αϕx2τ) ∈ ∆ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' So x1τϕ = ϕx2τ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ϕ−1x1τϕ = x2τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This is a contradiction because x1τ and x2τ are not conjugated in Sn by definition of Π0,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore H ∩ Π0,2 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ 12 JULIA ALMEIDA AND MARTINO GARONZI 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof of Theorem 2 For the calculation of ω(G), we follow the same strategy used in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We use the following result that can be found in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The formulation we use is taken from [2, Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2] (the “symmetric case”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Given an event E of a probability space, we denote by P(E) its probability and by E its complement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' As usual e denotes the base of the natural logarithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Theorem 3 (Lov´asz Local Lemma).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , En be events in an arbitrary probability space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let (V, E) be a directed graph, where V = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=', n} is the set of vertices, and assume that, for every i ∈ V , the event Ei is mutually independent of the set of events Ej such that (i, j) /∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let d be the maximum valency of a vertex of the graph (V, E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If for every i ∈ V P(Ei) ⩽ 1 e(d + 1) then P �� i∈V Ei � > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The mutual independence condition mentioned in the Lov´asz Local Lemma means the following: P \uf8eb \uf8edEi| � j∈S Ej \uf8f6 \uf8f8 = P(Ei), for all i ∈ V and for all subset S of {j ∈ V : (i, j) /∈ E}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Define N = {NG(M × M a2 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M am) : M ∈ F}, where F is the family of maximal imprimitive subgroups of An with 2 blocks, (Sn/2 ≀ S2) ∩ An, and a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , am ∈ An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that if H ∈ N then H is conjugate to NG(M m) in G, for some M ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The subgroups of G contained in N are maximal in G by [3, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='44] and [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let B be the set of n-cycles in Sn and let Π be the set of elements of G of the form (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ with the property that x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that these sets are precisely what are called B−1 and Π−1 in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Π is a conjugacy class of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that B ⊈ An, so there is z ∈ An such that zτ ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It follows that π := (z, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , 1)γ ∈ Π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We prove that Π is the conjugacy class of π in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ ∈ Π, we will prove that this element is conjugate to π in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' There exists a ∈ Sn with (x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ)a = zτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If a ̸∈ An, then b = x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτa ∈ An and (x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ)b = (x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ)a, so we may assume that a ∈ An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Set y1 := a and yi := xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτaτ for i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then ((x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ)(y1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=',ym) equals (y−1 1 x1y2, y−1 2 x2y3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , y−1 m−1xm−1ym, y−1 m xmτy1τ)γ = (z, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=', 1)γ = π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ For H ∈ N and K ⩽ G, define C(H) = Π ∩ H, fH(K) = |C(H) ∩ K| |C(H)| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 13 Let g ∈ G be such that H = (NG(M m))g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Lemmas 4 and 8, |C(H)| = |H ∩ Π| = |(NG(M m))g ∩ Π| = |NG(M m) ∩ Π| = �1 2 |NSn(M)| �m−1 |B ∩ NSn(M)| = 2/n · (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since H is a non-normal maximal subgroup of G, it is self-normalizing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since N is the conjugacy class of H in G, l = |N| = |G : H| = (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='/2)m · 2m (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2m · 2m = 1 2m � n n/2 �m < 2m(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Define the graph Γ whose vertices are the two-element subsets v = {H1, H2} of N, with H1 ̸= H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' There is an edge between two vertices v and w if v ∩ w ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Every vertex of Γ has valency d = 2(l−2) < 2m(n−1)+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Choose gH ∈ C(H) uniformly and independently, for all H ∈ N, and let Ev be the event ⟨gH1, gH2⟩ ̸= G, equivalently ⟨gH1, gH2⟩ is contained in a maximal subgroup of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It is easy to see that the mutual independence condition is satisfied (see also [7, Section 3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Our aim is to prove that P(Ev) ⩽ 1/(e(d + 1)) for every vertex v of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' If this is true, then the Local Lemma implies that there exists a choice of gH in each C(H), H ∈ N, with the property that ⟨gH1, gH2⟩ = G for all H1 ̸= H2 in N, therefore these elements form a clique of the generating graph of G, in other words ω(G) ⩾ |N|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This, together with [8, Theorem 1 (3)], gives the claim of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In the following discussion we will talk about the various types of maximal subgroups of G, which we described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let M1 be the family of maximal intransitive subgroups of Sn, M2 the family of primitive maximal subgroups of Sn different from An, Mj the family of maximal imprimitive subgroups of Sn with j blocks for j ∈ {3, 4}, M5 the family of maximal imprimitive subgroups of Sn with at least 5 blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let H be the family of all maximal subgroups of G not in N and J = {1, 2, 3, 4, 5, 6}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We write H as the union H1 ∪.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='∪H6 where the Hj’s are defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For j with 1 ⩽ j ⩽ 5, Hj is the subset of H consisting of subgroups of the form NG(M × M a2 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M am), where a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , am ∈ An, NSn(M) ∈ Mj and NSn(M) ∩ An = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' H6 is the family of maximal subgroups of G of diagonal type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Fix a vertex v = {H1, H2} of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' For j ∈ J, let Ev,j be the probability that ⟨gH1, gH2⟩ is contained in a member of Hj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We clearly have P(Ev) ⩽ � j∈J P(Ev,j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let [H] be the conjugacy class in G of a subgroup H of G and mHi([H]) the number of different conjugates of H that contain a fixed element of C(Hi), i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This is well defined by Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In the following sum, [H] varies in the set of conjugacy classes of elements of Hj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Arguing as in [7] we have, for j ∈ J, P(Ev,j) ⩽ � [H] mH1([H]) max K∈[H](fH2(K)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 14 JULIA ALMEIDA AND MARTINO GARONZI Let cv,j the number of conjugacy classes of subgroups in Hj such that there exists H in such a class such that H ∩ C(H1) ̸= ∅ and H ∩ C(H2) ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We deduce that P(Ev,j) ⩽ cv,j · min {i1,i2}={1,2} � max H∈Hj,K∈[H](mHi1 ([H]) · fHi2 (K)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (⋆) Let sv,j be the number of subgroups H in Hj such that H ∩ C(H1) ̸= ∅ and H ∩ C(H2) ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then P(Ev,j) ⩽ � H∈Hj fH1(H)fH2(H) ⩽ sv,j · max H∈Hj(fH1(H) · fH2(H)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (⋆⋆) Lemma 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let v = {H1, H2} be a vertex of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then cv,2 ⩽ n for large enough n, cv,j ⩽ 1 for j ∈ {3, 4}, cv,5 ⩽ 2√n and cv,6 ⩽ m · 2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The bound cv,2 ⩽ n depends on the classification of finite simple groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that cv,j is less than or equal to the number of conjugacy classes of subgroups in Hj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Also, if H ∈ H then we can write H = NG(H ∩ N) and this allows to reduce to counting G-conjugacy classes of subgroups of the form H ∩ N in N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Also note that if M and L are conjugate in An, then NG(M m) and NG(Lm) are conjugate in G by an element of the form (c, c, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , c) ∈ Am n such that M c = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore, for j with 1 ⩽ j ⩽ 5, the number of conjugacy classes of subgroups in Hj is less than or equal to the number of conjugacy classes of subgroups of Sn belonging to Mj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore, for j ̸= 6, we can use the bounds for cv,j calculated in [7, Lemma 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' In other words cv,2 ⩽ n for large enough n, cv,j ⩽ 1 for j ∈ {3, 4} and cv,5 ⩽ 2√n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It remains to bound cv,6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We will use the fact that if X ⩽ Y are finite groups with Y acting on a finite set Ω, then denoting by uX the number of X-orbits and by uY the number of Y -orbits of this action, we have uY ⩽ uX ⩽ |Y : X| · uY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since n is larger than 6, Aut(An) ∼= Sn, therefore any two isomorphic diagonal subgroups ∆ϕ1, ∆ϕ2 of the socle N = Am n are conjugate in the group Sm n ⋊ ⟨δ⟩, which contains G, via an element of Sm n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It follows that the number of G-classes of isomorphic diagonal subgroups is at most the number of Am n -classes, which is at most |Sn : An|m = 2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We know that the number of isomorphism classes of diagonal subgroups equals the number of prime divisors of m (see Section 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore cv,6 ⩽ m · 2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Lemma 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let v be a vertex of Γ and assume that 4 divides n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then sv,4 ⩽ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let v = {H1, H2} and let H ∈ H4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Write H = NG(Rb1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × Rbm) ∈ H4, Hi = NG(M ai1 i × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M aim i ) ∈ N, for i = 1, 2, where each aij and each bj belongs to An, NSn(Mi) is a maximal imprimitive subgroup of Sn with 2 blocks for i = 1, 2 and NSn(R) is a maximal imprimitive subgroup of Sn with 4 blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Suppose that H∩C(Hi) = H∩Π∩Hi ̸= ∅ for i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We need to show that H is uniquely determined by these conditions, in other words, that each Rbj is uniquely determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By [7, Proof of Lemma 5], it is enough to prove that B ∩ NSn(M aij i ) ∩ NSn(Rbj) ̸= ∅ for i = 1, 2 and for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 15 Fix i ∈ {1, 2} and let h = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ ∈ H ∩C(Hi) = H ∩Hi ∩Π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since h ∈ Π, by definition x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' On the other hand, being h ∈ H, Rb1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × Rbm equals (Rb1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × Rbm)(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=',xm)γ = Rbmxmτ × Rb1x1 × Rb2x2 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Rbm−1xm−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We deduce that bmxmτb−1 1 ∈ NSn(R) and bjxjb−1 j+1 ∈ NSn(R) for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Fix j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=', m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Multiplying everything starting from the j-th term, we have bjxjxj+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτx1x2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xj−1b−1 j ∈ NSn(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' It follows that the element x := xjxj+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτx1x2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xj−1 belongs to NSn(Rbj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since h ∈ Hi, the same argument shows that x belongs to NSn(M aij i ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Furthermore x = (xjxj+1 · · · xmτ) · x1 · · · xmτ · (xjxj+1 · · · xmτ)−1, so x belongs to B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore x ∈ B ∩ NSn(M aij i ) ∩ NSn(Rbj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Lemma 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let L ⩽ G and g ∈ Π, then the number of conjugates of L containing g is at most nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We argue as in the proof of [4, Lemma 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let a(L) the number of conjugates of L containing g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Note that a(L) does not depend on g because Π is a conjugacy class in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Consider the set R of pairs (h, H) such that h ∈ H ∩ Π and H is conjugated to L in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' On the one hand, since Π is a conjugacy class of G, |R| = |Π| · a(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' On the other hand, since L has |G : NG(L)| conjugates in G and |Lg ∩ Π| = |L ∩ Π| for all g ∈ G, |R| = |G : NG(L)| · |L ∩ Π| ⩽ |G : L| · |L| = |G|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore |Π| · a(L) ⩽ |G| hence a(L) ⩽ |G| |Π| = 2m · (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='/2)m (n − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' · (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='/2)m−1 = nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' □ Fix a vertex v = {H1, H2} of Γ and let i ∈ {1, 2}, H := Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Lemma 11, mH([K]) ⩽ nm for all K ⩽ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We now bound fH(K) = |C(H) ∩ K|/|C(H)| for K ∈ Hj and P(Ev,j) for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since Π is closed under conjugation, when bounding fH(K) we may assume that H = NG(Lm) where L is a maximal imprimi- tive subgroup of An with 2 blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' As in Section 2, we will use Stirling’s inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Lemma 4, C(H) = H ∩ Π has size (2/n) · (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2m ⩾ (2/n)(n/(2e))nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (1) Case j = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let K ∈ H1 be a conjugate of NG(M m) in G, where M is a maximal intransitive subgroup of An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Notice that K ∩ Π = ∅ by Lemma 4, because NSn(M) is intransitive and hence it does not contain n-cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore fH(K) = 0, implying that P(Ev,1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (2) Case j = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume K is a maximal subgroup of G conjugate to NG(M m) where M m = K ∩ N, M is the intersection between An and a primitive maximal subgroup of Sn distinct from An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since |M| ⩽ 4n by [17], KN = G and K ∩ N is conjugate to M m, we have |C(H) ∩ K| ⩽ |K| = 2m · |M|m ⩽ 2m · 4mn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore, by Inequality (⋆) and Lemmas 9, 11, P(Ev,2) ⩽ n · mn · mn · 4mn (n/(2e))mn = m2n3 · �8e n �nm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 16 JULIA ALMEIDA AND MARTINO GARONZI (3) Case j = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume K = NG(M × M a2 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' × M am), M is a maximal imprimitive subgroup of An with 3 blocks, and a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , am ∈ An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We will bound the size of C(H) ∩ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let g ∈ C(H) ∩ K = H ∩ Π ∩ K, then g = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm)γ, where x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ ∈ B, and the fact that g ∈ H ∩ K implies that x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−1, xmτ ∈ NSn(L), aixia−1 i+1 ∈ NSn(M) for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m−1, where a1 = 1, and amxmτ ∈ NSn(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We deduce that x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xi ∈ NSn(L) ∩ NSn(M)ai+1 ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m − 1, x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' xmτ ∈ B ∩ NSn(L) ∩ NSn(M) By induction, the number of choices for xi is |NSn(L)∩NSn(M)ai+1|, which is at most |NSn(L) ∩ NSn(M)|, for every i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Moreover, after choosing x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , xm−1, the number of choices for xm is |B ∩ NSn(L) ∩ NSn(M)|, which is at most |NSn(L) ∩ NSn(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore |C(H) ∩ K| ⩽ |NSn(L) ∩ NSn(M)|m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The above discussion implies that, if B ∩ NSn(L) ∩ NSn(M) is empty, then fH(K) = 0, so now we may assume that there is an element σ ∈ B ∩ NSn(L) ∩ NSn(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then σ is an n-cycle normalizing L and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Let ∆ and ∆ be the blocks of L, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' the two orbits of ⟨σ2⟩, and let B1, B2, B3 be the blocks of M, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' the three orbits of ⟨σ3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Then the six orbits of ⟨σ6⟩ are ∆∩Bi, i = 1, 2, 3, and ∆∩Bi, i = 1, 2, 3, forming a partition P of {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=', n} consisting of 6 blocks of size n/6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Clearly, NSn(L) ∩ NSn(M) is contained in the stabilizer of the partition P, which is isomorphic to Sn/6 ≀ S6, hence fH(K) = |C(H) ∩ K| |C(H)| ⩽ |NSn(L) ∩ NSn(M)|m |C(H)| ⩽ n 2 · �(n/6)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='6 · 6!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2 �m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' An easy application of Stirling’s inequalities shows that this is at most nO(1)m(1/3)nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Inequality (⋆) and Lemmas 9, 11, the same bound holds for P(Ev,3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (4) Case j = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume K is a maximal subgroup of G conjugate to NG(M m) where K ∩N = M m and M is a maximal imprimitive subgroup of An with 4 blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Since KN = G and K ∩N is conjugate to M m, |K| = 2m·|M|m, hence an application of Stirling’s inequalities gives fH(K) ⩽ |K| |C(H)| = 2m · ((n/4)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='4 · 4!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' )m 2/n · (n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2m ⩽ nO(1)m · �1 2 �nm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Therefore, by Inequality (⋆⋆) and Lemma 10, P(Ev,4) ⩽ nO(1)m(1/4)nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (5) Case j = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume K is a maximal subgroup of G conjugate to NG(M m) where K ∩N = M m and M is a maximal imprimitive subgroup of An with 5 or more blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By [4, Theorem 3], |M| ⩽ nO(1) · (n/(5e))n, and since |K| = 2m · |M|m, fH(K) ⩽ 2m · ((n/(5e))n · nO(1))m 2/n · (n/(2e))nm ⩽ nO(1)m · �2 5 �nm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Inequality (⋆) and Lemmas 9, 11, the same bound holds for P(Ev,5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (6) Case j = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Assume K = NG(∆ϕ) is a maximal subgroup of G of diagonal type, so that |K| = 2m · |An|m/t where t is a prime divisor of m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Using 17 t ⩾ 2 and Stirling’s inequalities, fH(K) ⩽ |K| |C(H)| = 2m(n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='/2)m/t (2/n)(n/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='2m ⩽ nO(1)m · �2√e √n �mn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' By Inequality (⋆) and Lemmas 9, 11, the same bound holds for P(Ev,6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' We now finish the proof by showing that P(Ev) ⩽ 1 e(d+1) for sufficiently large n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Recall that d ⩽ 2mn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The above discussion implies that P(Ev,j) ⩽ nO(1)m(2/5)nm for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' , 6, and since P(Ev) ⩽ �6 j=1 P(Ev,j), it all boils down to showing that nO(1)m(2/5)mn ⩽ (1/2)mn, which is true for large enough n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Abdollahi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Ashraf, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Shaker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “The Symmetric Group of Degree Six can be Covered by 13 and No Fewer Proper Subgroups.” Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Malays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 30:1 (2007), 57–58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Alon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Spencer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' The probabilistic method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Fourth edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Wiley Series in Discrete Mathematics and Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' John Wiley and Sons, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=', Hoboken, NJ, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Ballester-Bolinches, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Ezquerro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Classes of Finite Groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Springer Netherlands, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Blackburn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “Sets of Permutations That Generate the Symmetric Group Pairwise.” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Theory Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 113:7 (2006), 1572–1581.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Cohn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “On n-Sum Groups.” Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Scand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 75:1 (1994), 44–58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Erd˝os, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Lov´asz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “Problems and results on 3-chromatic hypergraphs and some related questions.” A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Hajnal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Rado, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' S´os (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' ), Colloquium Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Society Janos Bolyai, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 11, North-Holland, Amsterdam, 1973, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 609–627.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [7] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Fumagalli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Garonzi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Mar´oti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “On the maximal number of elements pairwise generating the symmetric group of even degree.” Discrete Mathematics, Volume 345, Issue 4, (2022), 112776.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Garonzi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “Covering Certain Monolithic Groups With Proper Subgroups.” Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Alge- bra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 41:2 (2013a), 471–491.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Garonzi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Mar´oti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “Covering certain wreath products with proper subgroups.” Journal of Group Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 1, (2011), 103–125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Kappe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Nikolova-Popova, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Swartz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “On the Covering Number of Small Sym- metric Groups and Some Sporadic Simple Groups.” Groups Complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Cryptol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 8:2 (2016), 135– 154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Liebeck, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Praeger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Saxl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “A classification of the maximal subgroups of the finite alternating and symmetric groups.” Journal of Algebra 111, 365–383 (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Lucchini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Menegazzo, Generators for finite groups with a unique minimal normal sub- group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Rendiconti del Seminario Matematico della Universit`a di Padova, tome 98 (1997), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 173–191 [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Lucchini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Mar´oti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “On the Clique Number of the Generating Graph of a Finite Group.” Proceedings of the American Mathematical Society, Volume 137, Number 10, (2009), 3207–3217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Mar´oti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “On The Orders of Primitive Groups.” Journal of Algebra, Volume 258, Issue 2, (2002), 631 - 640.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Mar´oti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “Covering the Symmetric Groups With Proper Subgroups.” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Theory Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 110:1 (2005), 97–111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Oppenheim and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Swartz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “On the Covering Number of S14.” Involve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 12:1 (2019), 89–96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Praeger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Saxl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “On the orders of primitive permutation groups.” Bulletin of the London Mathematical Society, Volume 12, Issue 4, (1980) 303 – 307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [18] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Stringer, Pairwise generating sets for the symmetric and alternating groups, PhD thesis, Royal Holloway, University of London, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' [19] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' Swartz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' “On the Covering Number of Symmetric Groups Having Degree Divisible by Six.” Discrete Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 339:11 (2016), 2593–2604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content=' 18 JULIA ALMEIDA AND MARTINO GARONZI Departamento de Matem´atica, Universidade de Bras´ılia, Campus Universit´ario Darcy Ribeiro, Bras´ılia-DF, 70910-900, Brazil Email address: julia aredes almeida@hotmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='com Departamento de Matem´atica, Universidade de Bras´ılia, Campus Universit´ario Darcy Ribeiro, Bras´ılia-DF, 70910-900, Brazil ORCID: https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='org/0000-0003-0041-3131 Email address: mgaronzi@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} +page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf'} diff --git a/mdE_T4oBgHgl3EQf7BxL/vector_store/index.pkl b/mdE_T4oBgHgl3EQf7BxL/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..17e836288a59367cdeb533ade1dbeee69dd52165 --- /dev/null +++ b/mdE_T4oBgHgl3EQf7BxL/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2b25c0f9bc455253555d3a1e457c538bd56aaf578d1fa674e262d4832cc8c2ff +size 68705 diff --git a/nNE1T4oBgHgl3EQf1QWH/content/tmp_files/2301.03466v1.pdf.txt b/nNE1T4oBgHgl3EQf1QWH/content/tmp_files/2301.03466v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..49d96eb433378661221183fe2c75da0e867fd3c9 --- /dev/null +++ b/nNE1T4oBgHgl3EQf1QWH/content/tmp_files/2301.03466v1.pdf.txt @@ -0,0 +1,2382 @@ +Astronomy & Astrophysics manuscript no. manuscript +©ESO 2023 +January 10, 2023 +Redox state and interior structure control on the long-term +habitability of stagnant-lid planets +Philipp Baumeister1, 2, Nicola Tosi1, Caroline Brachmann1, 3, John Lee Grenfell1, and Lena Noack3 +1 Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstraße 2, D-12489 Berlin, Germany +e-mail: philipp.baumeister@dlr.de +2 Department of Astronomy and Astrophysics, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany +3 Department of Earth Sciences, Freie Universität Berlin, Malteserstr. 74-100, D-12249 Berlin, Germany +Submitted December 23, 2022 +ABSTRACT +Aims. A major goal in the search for extraterrestrial life is the detection of liquid water on the surface of exoplanets. On terrestrial +planets, volcanic outgassing is a significant source of atmospheric and surface water and a major contributor to the long-term evolution +of the atmosphere. The rate of volcanism depends on the interior evolution and on numerous feedback processes between atmosphere +and interior, which continuously shape atmospheric composition, pressure, and temperature. +Methods. We present the results of a comprehensive 1D model of the coupled evolution of the interior and atmosphere of rocky +exoplanets that combines central feedback processes between these two reservoirs. We carried out more than 280 000 simulations +over a wide range of mantle redox states and volatile content, planetary masses, interior structures and orbital distances in order to +robustly assess the emergence, accumulation and preservation of surface water on rocky planets. To establish a conservative baseline +of which types of planets can outgas and sustain water on their surface, we focus here on stagnant-lid planets. +Results. We find that only a narrow range of the mantle redox state around the iron-wüstite buffer allows forming atmospheres +that lead to long-term habitable conditions. At oxidizing conditions similar to those of the Earth’s mantle, most stagnant-lid planets +transition into a runaway greenhouse regime akin to Venus due to strong CO2 outgassing. At more reducing conditions, the amount of +outgassed greenhouse gases is often too low to keep surface water from freezing. In addition, Mercury-like planets with large metallic +cores are able to sustain habitable conditions at an extended range of orbital distances as a result of lower volcanic activity. +Key words. Planets and satellites: terrestrial planets – Planets and satellites: physical evolution – Planets and satellites: interiors – +Planets and satellites: atmospheres – Planets and satellites: oceans – Methods: numerical +1. Introduction +The water inventory of a rocky planet originates from the time of +formation, with water-bearing materials delivered during accre- +tion onto the protoplanet (O’Brien et al. 2018; Walsh et al. 2011). +Water is brought to the surface and enters the atmosphere dur- +ing the early magma ocean phase (Elkins-Tanton 2008; Hamano +et al. 2013; Lebrun et al. 2013; Nikolaou et al. 2019) and later via +volcanism throughout the lifetime of the planet (Tosi et al. 2017; +Godolt et al. 2019). Water plays an important role in both inte- +rior and atmospheric processes. Its presence lowers the melting +temperature of rocks (Katz et al. 2003) and their viscosity (Hirth +& Kohlstedt 1996, 2004), with major implications for global- +scale mantle dynamics (Nakagawa et al. 2015), planetary evolu- +tion (Tosi et al. 2017; Morschhauser et al. 2011), as well as for +the emergence of plate tectonics (Peslier et al. 2017). In the at- +mosphere, water is involved in a number of feedback processes +controlling the climate, with water vapour strongly contributing +to greenhouse heating (Kasting 1988; Catling & Kasting 2017). +Liquid water is also an essential component in carbonate-silicate +weathering processes, which help stabilize the climate over geo- +logical timescales (Walker et al. 1981). Furthermore, liquid wa- +ter is a crucial prerequisite for life (Westall & Brack 2018; Cock- +ell et al. 2016). +Volcanic outgassing links mantle and atmosphere and estab- +lishes feedback loops as water and other volatiles are removed +from the mantle and brought into the atmosphere. The composi- +tion of volcanic gases, in turn, is in large parts determined by the +composition and pressure of the atmosphere (Gaillard & Scaillet +2014). Planetary mass and interior structure play an additional +important role in shaping the rate of volcanism and interior dy- +namics (Noack et al. 2014, 2017; Stamenkovi´c et al. 2012). +Many previous interior-atmosphere studies of the habitabil- +ity of rocky exoplanets over geological timescales have either +considered only selected feedbacks, or investigated only plan- +ets with Earth-like mass and structure (Noack et al. 2014, 2017; +Tosi et al. 2017; Foley & Smye 2018; Höning et al. 2019; Godolt +et al. 2019; Bower et al. 2019; Kite & Barnett 2020; Spaargaren +et al. 2020; Liggins et al. 2022). +Most parameters driving the interior evolution of rocky plan- +ets, especially mantle parameters such as the redox state and ini- +tial water content, are difficult to constrain and often inaccessible +to observation. The large size of the parameter space and the nu- +merous feedbacks between interior and atmosphere require a sta- +tistical approach to obtain a thorough overview over which plan- +ets are the most likely to exhibit oceans. In this work, we present +the results more than 280 000 coupled interior-atmosphere evo- +lutions of rocky planets with different initial conditions and in- +terior structures (Section 2.1) and investigate the emergence of +surface water based on planet mass, age, mantle volatile content +and redox state, and orbital distance to the host star. Our model +combines a 1D parameterized convection model (Section 2.2) to +Article number, page 1 of 20 +arXiv:2301.03466v1 [astro-ph.EP] 9 Jan 2023 + +A&A proofs: manuscript no. manuscript +simulate the mantle and core evolution of rocky planets up to +3 M⊕, as well melting and volcanic outgassing, with a gray at- +mosphere model tracking the evolution of atmospheric composi- +tion, pressure, and temperature. We focus on stagnant-lid planets +in order to establish a baseline of planets that could sustain liquid +water on their surface. These are less prone to sustain habitable +conditions than plate-tectonics planets due to a strongly reduced +recycling of volatiles into the mantle, which would otherwise +favour long-term, temperate climates (Walker et al. 1981; Kast- +ing et al. 1993). We include a comprehensive array of feedback +processes: +1. A speciation model to self-consistently treat the outgassing +of volatile C-O-H species from surface melts (Ortenzi et al. +2020) (Section 2.3). The final composition of outgassed +volatiles depends primarily on the redox state of the melt and +the current composition and pressure of the atmosphere (Sec- +tion 2.4). At oxidizing conditions, the predominantly out- +gassed species are H2O and CO2, while reducing conditions +favor the outgassing of oxygen-poorer species, mainly H2 +and CO. +2. A simple scheme for surface water accumulation and evap- +oration (Section 2.5). We assume the atmosphere to be fully +saturated in water. Any excess water condenses to form a +surface ocean or ice. +3. A stagnant-lid CO2 weathering cycle (Höning et al. 2019) +(Section 2.6). On Earth, the long-term carbonate-silicate cy- +cle is important for stabilizing the climate over geological +timescales. This cycle is primarily driven by plate tectonics, +which continuously recycles CO2 into the mantle via sub- +duction. On stagnant-lid planets, the cycle relies on the pro- +duction of fresh crust through volcanism. In the presence of +liquid water, CO2 can be weathered and buried under subse- +quent volcanic eruptions (Foley & Smye 2018; Höning et al. +2019). +4. Evolution of H2 in the atmosphere. According to the evo- +lution of the stellar XUV flux (Section 2.7), H2 can be lost +due to atmospheric escape (Section 2.8) and replenished by +volcanic outgassing, particularly under reducing conditions. +Since the surface pressure and atmospheric composition play +an important role in the outgassing of H2O, a thick (poten- +tially primordial) atmosphere can limit the outgassing of wa- +ter especially in the early, active phase of a planet’s evo- +lution. In addition, H2 can act as a potent greenhouse gas +via collision-induced absorption (Pierrehumbert & Gaidos +2011), which we also take into account (Section 2.4). +2. Methods +2.1. Planet interior structures +The diversity in densities of low-mass exoplanets hints at a high +degree of variation in interior structures (Jontof-Hutter 2019). +We model rocky planets between 0.5 and 3 Earth masses. While +many potentially rocky exoplanets with larger masses have been +observed, the large pressure gradient in planets more massive +than 5-6 M⊕ can prevent melt from reaching the surface and thus +impede the outgassing of volatiles (Noack et al. 2017). Addi- +tionally, the mantle rheology and interior dynamics of massive +super-Earths are poorly understood (Stamenkovi´c et al. 2011; +Karato 2011). We model the interior structure of each planet with +our interior structure code TATOOINE (Baumeister et al. 2020). +Each planet consists of an iron-rich core and a silicate mantle +of Earth-like composition. We consider planets with core radius +fractions ranging from 0.3 (a "Moon-like" planet) up to 0.7 (a +"Mercury-like" planet). From these modeled interior structures, +we calculate the average density of the core (ρc) and mantle (ρm) +for use in the parameterized convection model: +ρc = +Mc +4/3πR3c +, +ρm = +Mp − Mc +4/3π +� +R3p − R3c +�, +(1) +where Mp and Rp are the mass and radius of the planet, and Mc +and Rc are the core mass and radius, respectively. We assume +a constant gravitational acceleration g throughout the planetary +mantle, with +g = GMp +R2p +, +(2) +where G is the gravitational constant. +Figure G.2 in Appendix G shows the range of investigated +planets in the form of a mass-radius diagram. +2.2. 1D parameterized convection model +We employ a one-dimensional (1D) parameterized convection +model to simulate the thermal evolution of the mantle and core +of stagnant-lid rocky planets, as well as the melting of mantle +rocks and volcanic outgassing of volatiles (Stamenkovi´c et al. +2012; Grott et al. 2011; Tosi et al. 2017). +We focus on stagnant-lid planets, since the emergence of and +transition into plate tectonics is still poorly understood, and (es- +pecially for exoplanets) the question of which planets are the +most likely to have plate tectonics has proven controversial, with +many studies giving contradicting results (O’Neill et al. 2016; +Noack & Breuer 2014; Stein et al. 2013; Van Heck & Tackley +2011; Korenaga 2010; Valencia et al. 2007; O’neill & Lenardic +2007). Furthermore, plate tectonics favours establishing stable, +temperate climates due to the efficient recycling of volatiles into +the mantle (Walker et al. 1981). On stagnant-lid planets, this re- +cycling is strongly reduced. In this sense, our study provides +a conservative baseline to assess whether or not a planet can +sustain liquid water on its surface. In addition, with the excep- +tion of Earth, the terrestrial planets of the Solar System are in +a stagnant-lid regime at present day, and likely have been for a +majority of their evolution (O’Neill et al. 2007; Tosi & Padovan +2021) (A direct comparison to present-day Venus can be found +in the Appendix C). +Partial melting occurs everywhere where the mantle temper- +ature profile exceeds the solidus. The model accounts for the +partitioning of incompatible trace elements (water, CO2, and ra- +diogenic elements) between mantle, crust, and, in the case of +volatiles, the atmosphere via volcanic outgassing. In addition, +the presence of water depresses the solidus temperature (Katz +et al. 2003). We focus here on fully extrusive volcanism, where +all the melt produced reaches the surface and is subject to out- +gassing. In Sect. 3.5.2, we discuss the impact of intrusive vol- +canism on our results. Once melt reaches the surface, dissolved +volatiles can be outgassed into the atmosphere. This process is +subject to a number of limiting factors, such as the solubility of +volatiles in the melt and the evolving atmosphere composition +and pressure. We model the composition of outgassed species +with a speciation model based on the chemical equilibrium of +volatiles between melt and atmosphere (Sect. 2.3). +We neglect an early magma ocean phase and focus here on +the outgassing of water only via volcanism. This provides a con- +servative estimate of the total amount of water that can be ex- +pected to be outgassed. While magma ocean solidification can +Article number, page 2 of 20 + +Baumeister et al.: Redox state control on the long-term habitability of stagnant-lid planets +result in the formation of a thick steam atmosphere, this would +rapidly collapse to form an early ocean (Elkins-Tanton 2011; Le- +brun et al. 2013). Additionally, young planets likely experience +significant water loss shortly after formation due to high stellar +XUV activity (Tian et al. 2018). In Section E, we discuss the +influence of early steam and CO2 atmospheres that may follow +magma ocean solidification (Lebrun et al. 2013; Nikolaou et al. +2019). +A detailed description of the convection model as well as the +melting and outgassing scheme can be found in the Appendices +A and B. +2.3. Outgassing speciation model +We adapt the model by Ortenzi et al. (2020) to calculate the +chemical speciation of volatiles within the C-O-H system during +outgassing from surface melts, based on the amount of dissolved +H2O and CO2. We follow the approach by Holloway (1998) and +Grott et al. (2011) to calculate the concentration of CO2 in melts. +We assume a sufficiently reduced mantle to allow for carbon to +occur as graphite, with an oxygen fugacity fO2 ranging from -3 +to +3 in log10 units above and below the IW buffer. The (depth- +dependent) concentration of CO2 in the melt (XCO2 +liq ) is then given +by the concentration of carbonate (XCO32− +liq +) +XCO2 +liq (r) = +bXCO32− +liq +(r) +1 + (b − 1)XCO32− +liq +(r) +(3a) +XCO32− +liq +(r) = +KIIKI fO2 +1 + KIIKI fO2 +, +(3b) +where KII and KI are equilibrium constants governing the reac- +tion of forming carbonate and graphite from CO2, respectively, +and b is a constant. KII, KI, and b are all determined appropri- +ately for Hawaiian basalts (Holloway 1998). We calculate the +melt concentration of H2O (XH2O +liq ) based on a model of fractional +melting as described in the Appendix B, assuming a partition co- +efficient δH2O = 0.01. The solubility of H2O and CO2 is governed +by melt-gas equilibrium reactions according to Iacono-Marziano +et al. (2012): +H2O[fluid] + O2−[melt] −−−⇀ +↽−−− 2 OH−[melt] +(4a) +CO2 +[fluid] + O2−[melt] −−−⇀ +↽−−− CO3 +2−[melt] +(4b) +We assume that all of the generated CO and H2 is outgassed +due to their low solubility in silicate melts. The final molar com- +position of outgassed species is then governed by the following +gas-gas equilibria: +H2 +[fluid] + 1 +2 O2 −−−⇀ +↽−−− H2O[fluid] +(5a) +CO[fluid] + 1 +2 O2 −−−⇀ +↽−−− CO2 +[fluid], +(5b) +which can be converted to weight fractions Xi +outg based on the +molar mass of the magma (see Table F.1 in the Appendix), and +ultimately into a mass rate (See eq. (B.12) in Appendix B). We +do not include CH4 in the speciation model, which starts to +become relevant only at lithospheric pressures and colder tem- +peratures that are not reached here. In none of the models we +investigated did the outgassed CH4 concentration reach above +10−11 ppm. +The rate of the gas-gas equilibrium reactions depend mainly +on the melt temperature and and oxygen fugacity (see e.g. Or- +tenzi et al. 2020; Gaillard & Scaillet 2014), with the oxygen fu- +gacity being dependent on the degassing pressure and tempera- +ture as well. We assume that all melt reaches the surface and is +being subject to the current atmospheric surface pressure. To de- +termine the melt temperature, we calculate the volume-averaged +temperature and pressure of the melt region and obtain the sur- +face melt temperature by moving the melt adiabatically to the +surface. +2.4. Atmosphere model +H2O and CO2 are potent greenhouse gases and can strongly +modify the surface temperature of a planet. H2, while not being a +strongly absorbing molecule on its own, can also act as a green- +house gas through collision-induced absorption (Pierrehumbert +& Gaidos 2011), which can be especially relevant for planets +with hydrogen-dominated atmospheres. We adopt a simple two- +stream radiative gray atmosphere model to calculate greenhouse +heating at the surface (Catling & Kasting 2017). The surface +temperature can be expressed in terms of the optical depth τ +of the atmosphere and the equilibrium temperature Teq of the +planet: +Ts = Teq +� +1 + τ +2 +�1/4 +with Teq = +�(1 − A)S ⊙ +4σ +�1/4 +, +(6) +where S ⊙ is the solar insolation at the top of the atmosphere, A +is the bond albedo, and σ is the Stefan-Boltzmann constant. We +assume an Earth-like albedo of 0.3 for all planets considered in +this study. Following Abe & Matsui (1985) and Pujol & North +(2003), the optical depth of the atmosphere is given by +τ = +� +i +τi = +� +i +3k′ +iPi +2g , +(7) +where g is the planet gravity, Pi is the partial pressure of a given +atmosphere species i, and k′ +i is the extinction coefficient relative +to this pressure. k′ +i can be expressed using the extinction coeffi- +cient k0,i at standard atmospheric pressure P0 +k′ +i = +�k0,ig +3P0 +�1/2 +. +(8) +In order to approximate the collision-induced absorption of +H2, we choose a value of k0,H2 = 2 × 10−2 m2 kg−1, which fits +well to the results of Pierrehumbert & Gaidos (2011) (see also +Fig. G.3 in the Appendix). A validation of our atmosphere model +against a 3D climate model can be found in Höning et al. (2021). +2.5. Water condensation +We assume the atmosphere to be fully saturated in H2O, with +any excess outgassed water condensing into a surface ocean or +forming ice. This provides an upper limit for the mass of wa- +ter in the atmosphere, and consequently also for the contribution +of water to greenhouse heating. We calculate the saturated par- +tial pressure (in Pa) of H2O from the saturation vapour pressure +curve by Alduchov & Eskridge (1996): +Pvapour = 610.94 exp +�17.625 (T − 273.15) +T − 30.1 +� +for T ≥ 273.15 K, +(9) +Article number, page 3 of 20 + +A&A proofs: manuscript no. manuscript +where T is the temperature in K. If the surface temperature drops +below the freezing point of water, we assume that the surface of +an existing ocean would freeze. In this case, we use a vapour +pressure curve from Alduchov & Eskridge (1996) defined over a +plane of ice: +Pice +vapour = 611.21 exp +�22.587 (T − 273.15) +T + 0.71 +� +for T < 273.15 K. +(10) +2.6. Carbon weathering cycle +On Earth, the long-term carbon-silicate cycle is an important +process to stabilize the climate over geological time-scales +(Walker et al. 1981). This cycle is primarily driven by plate tec- +tonics, where CO2 can be continuously recycled into the man- +tle with subducting plates and fresh crust constantly produced at +mid-ocean ridges. Stagnant-lid planets, on the other hand, do not +have subducting plates. A carbon cycle on these planets relies on +the continuous production of new crust through hot-spot volcan- +ism, which can be weathered in the presence of liquid water. +The carbonated crust may then be buried by subsequent volcanic +eruptions, sinking downward in the mantle. The rate of weath- +ering is therefore closely coupled to the crust production rate. +We follow the model by Höning et al. (2019), assuming that the +rate of CO2 weathering depends on the partial pressure of CO2 +in the atmosphere. We additionally assume that all newly formed +crust is subject to weathering. The weathering rate Φw can then +be expressed as a function of the crustal growth rate dMcr +dt and the +partial CO2 pressure in the atmosphere PCO2, and scaled to the +seafloor weathering rate on Earth (for more details, see Höning +et al. 2019): +Φw = XEξE +fEφE +�dMcr +dt +� � PCO2 +PCO2,E +�α +, +(11) +where α = 0.23 is a scaling exponent, and PCO2,E = 4 × 10−4 bar +is the present-day partial pressure of CO2 in Earth’s atmosphere. +The other parameters are factors scaling the weathering rate to +the observed present-day seafloor weathering rate on Earth: Xe +is the present-day Earth mid-ocean ridge CO2 concentration in +the melt, ξE is the proportion of seafloor weathering to the total +weathering rate on Earth, fE is the present-day fraction of car- +bonates that are recycled back into Earth’s mantle, and φE is the +fraction of carbonates that remain stable during subduction. +Carbonates are stable only up to a certain pressure-dependent +temperature. Once the sinking carbonated crust reaches this tem- +perature, it undergoes decarbonation and releases its CO2, which +will rise through cracks in the crust and eventually return to +the atmosphere (Foley & Smye 2018; Höning et al. 2019). This +means that in contrast to plate tectonics, CO2 is generally not +recycled back into the mantle in the stagnant lid regime. We cal- +culate the depth zdecarb at which decarbonation occurs following +Höning et al. (2019): +zdecarb = +Ts − Bdecarb +Adecarb − Tm−Ts +Dl+du +, +(12) +where Adecarb = 3.125 × 10−3 K m−1 and Bdecarb = 835.5 K are +constants related to the decarbonation temperature (Foley & +Smye 2018). +During the evolution of the planet, our model continuously +tracks the depth of the previously weathered crustal layers. Once +the decarbonation depth is reached, the carbon content of the +layer is released as CO2. To avoid numerical instabilities, the +released CO2 is first stored in a temporary volatile buffer, which +releases 10% of its CO2 content into the atmosphere at every +time step (see also Höning et al. 2019). +Carbon weathering requires the presence of liquid water. +Therefore, we set the weathering rate to zero if either no sur- +face water is present, or if the surface temperature lies below the +freezing point of water. For the latter, this means that any exist- +ing ocean in our model will freeze over so that little exchange of +CO2 with the ocean is possible. Nevertheless, in both cases the +burying of previously formed carbonates as well as decarbona- +tion continue as long as there is active volcanism. +2.7. Stellar evolution +We focus on planets around G-type stars with one solar mass. We +account for an increasing stellar insolation S ⊙ over the lifetime +of the host star by using the parameterization by Gough (1981), +S ⊙(t) = S ⊙,0 +� +1 + 2 +5 +� +1 − t +t0 +��−1 +, +(13) +where S ⊙,0 is the insolation at the planet at present day t0 = +4.5 Gyrs. +In order to model atmospheric escape processes, we follow +Owen & Wu (2017) for a parametrization of the stellar XUV flux +evolution: +FXUV(t) = +����������� +Fsat +for t < tsat +Fsat +� t +tsat +�−1.5 +for t ≥ tsat +with Fsat = 10−3.5S ⊙,0, +(14) +with a saturation timescale of tsat = 100 Myrs. +2.8. Atmospheric escape +To model the transition from a primary H2 to a secondary out- +gassed atmosphere and to treat the loss of later outgassed H2, we +consider hydrodynamic escape of H2. For hydrogen-dominated +atmospheres, the maximum rate at which hydrogen can escape is +limited by the amount of energy from XUV radiation that the at- +mosphere can absorb. The energy-limited mass-loss rate is given +by +˙Mel = επRpR2 +atmFXUV +GMp +, +(15) +where ε is an efficiency factor we here take to be 0.15 following +Kite & Barnett (2020), and Ratm is the planet radius at the top of +the atmosphere, which we define at 20 mbar. +In the case of hydrogen existing as a minor atmospheric com- +ponent within a background of heavier species, the loss of hy- +drogen is limited by the rate at which it can be supplied from +the lower parts of the atmosphere. This diffusion-limited escape +provides an upper limit to hydrodynamic escape. The diffusion- +limited mass loss rate can be expressed as +˙Mdl = 4πR2 +atm +mH2 +NA +ba jχH2 +� 1 +Ha +− +1 +HH2 +� +, +(16) +where mH2 is the molar mass of molecular hydrogen, NA is Avo- +gadro’s number, and χH2 is the molar mixing ratio of hydrogen +Article number, page 4 of 20 + +Baumeister et al.: Redox state control on the long-term habitability of stagnant-lid planets +in the atmosphere. HH2 and Ha are the unperturbed scale heights +of H2 and the background gas respectively. baj is the binary dif- +fusion coefficient between the escaping H2 and the heavier back- +ground gas. In our case, the background gas consists of varying +amounts of CO2, CO, and H2O. We calculate baj as the sum of +the respective binary diffusion coefficients bCO2, bCO, and bH2O, +weighted by their relative mixing ratios: +ba j = χa,CO2bCO2 + χa,CObCO + χa,H2ObH2O. +(17) +Here, χa,CO2 = 3 × 1021 m−1 s−1, χa,CO = 3 × 1021 m−1 s−1, and +χa,H2O = 4.3 × 1021 m−1 s−1 are the mixing ratios of CO2, CO, +and H2O in the heavier background gas and in the absence of +hydrogen (See also Table F.2 in the Appendix for references). +The transition from energy-limited to diffusion-limited es- +cape, and thus from a hydrogen-dominated to a secondary at- +mosphere, is currently not well understood and requires the +use of detailed hydrodynamical models (Owen 2019; Zahnle +et al. 2019) which are out of the scope of this work, espe- +cially since volcanic outgassing continuously changes the atmo- +spheric composition, which can make the hydrodynamical treat- +ment challenging. Here, we opt for smoothly interpolating be- +tween energy-limited and diffusion-limited mass loss rates for +intermediate H2 fractions, with the interpolated mass loss rate +given by +˙Mloss = fel ˙Mel + (1 − fel) ˙Mdl, +(18) +where the contribution of energy-limited escape fel is given by a +logistic function (see also e.g. Kite & Barnett 2020): +fel(χH2) = +� +1 + exp +� +−χH2 − χ0 +w +��−1 +, +(19) +centered at a H2 mixing ratio of χ0 = 0.15 and a horizontal scal- +ing w = 0.01. These parameters are chosen to account for a tran- +sition from purely energy-limited escape starting at a hydrogen +mixing ratio of 20% to a purely diffusion-limited escape at a +mixing ratio of 10%. +We do not consider the photodissociation of water in the up- +per atmosphere and the subsequent loss of hydrogen. Signifi- +cant water loss will occur once large amounts of water reach the +stratosphere, which mainly occurs in planets undergoing a run- +away greenhouse regime. On habitable planets, which are the +main focus of this study, the tropopause "cold trap" prevents sig- +nificant amounts of water vapour from reaching the stratosphere +(Catling & Kasting 2017). +2.9. Investigated parameters and initial conditions +We adopt a Monte-Carlo sampling approach to model an entire +population of planets where the initial conditions for each planet +are set to random values within given ranges (i.e. with a uni- +form distribution). We compute the thermal evolution for a set of +≈ 280 000 initial conditions. Each evolution is run up to 8 Gyrs +to cover a wide range of potentially observable planets. We stop +the evolution earlier if the surface temperature exceeds1500 K, at +which point the surface rocks would be close to melting. In or- +der to simulate the observation of planets with different ages, we +select snapshots of the evolution at up to five randomly chosen +times after 100 Myrs. For models which finished earlier (e.g. be- +cause the surface temperature has risen too high), we select fewer +snapshots accordingly to ensure a balanced sample of planet +ages. This results in a final data set size of ≈ 1 000 000 plan- +ets. +We vary the initial water concentration in the mantle XH2O +m,0 +between 100 and 1000 ppm, corresponding to relatively dry and +wet conditions, respectively. We allow the mantle oxygen fugac- +ity to vary between three log10 units below and above the iron- +wüstite buffer (IW). +Each planet in the parameter study is placed at a fixed dis- +tance to its (Sun-like) host star, ranging from a Venus-like orbit +(0.723 au) to a Mars-like orbit (1.524 au). In addition, we set the +mass of each planet between 0.5 and 3 M⊕ and allow for varied +interior structures, where the radius of the core can vary between +30 and 70% of the planet radius (Section 2.1). We fix the initial +mantle temperature Tm,0 at 1700 K and prescribe an initial tem- +perature jump of 200 K at the CMB. +The main model parameters used in our study are given in +Table F.2 in the Appendix. +3. Results +3.1. Characteristic planet evolutions +Figure 1 demonstrates the characteristic atmospheric evolution +for two planets with one Earth mass and either an Earth-like in- +terior structure (Figs. 1a and 1b) or a large, Mercury-like core +which makes up 70% of the interior (Figs. 1c and 1d). Both plan- +ets are located at 1 au and the initial parameters are the same for +both (log fO2 = −0.05 IW, XH2O +m,0 += 250 ppm). These parame- +ters are in the range that allows establishing prolonged habitable +conditions for the Mercury-like planet, but ultimately causes the +Earth-like planet to transition into a runaway greenhouse. +In both cases, an outgassed atmosphere of 0.1–1 bar is +quickly built up within the first hundred million years. Due to +the relatively reducing conditions of the mantle, this initial at- +mosphere consist mainly of CO, H2, and CO2 (1b and 1d). The +surface temperature is initially too low to allow for liquid wa- +ter (Figs. 1a and 1c), but rises quickly due to the accumulation +of greenhouse gasses. Once the surface temperature exceeds the +freezing point of water, the carbonate-silicate weathering cycle +becomes active and is sufficiently strong to counteract the rate +of CO2 outgassing. This keeps the surface temperature close to, +but nevertheless above, the freezing point of water. The level of +atmospheric H2 remains relatively stable due to continuous out- +gassing supply and simultaneous loss from the top of the atmo- +sphere. +Stagnant-lid planets lack an efficient long-term CO2 sink. +While the weathering cycle can temporarily remove CO2 from +the atmosphere, the slow sinking of carbonated crust does not +allow recycling of carbonates into the mantle. For the planet +with the Earth-like interior, at around 1.5 Gyr, the crust is sat- +urated in carbonates up to the decarbonation depth. Any addi- +tional surface weathering leads to subsequent crust decarbona- +tion at depth, which transfers CO2 back into the atmosphere (see +Section 2.6 and Höning et al. (2019)). This renders CO2 weath- +ering largely ineffective. CO2 can accumulate in the atmosphere, +driving the surface temperature up (in addition to the increas- +ing luminosity of the star), which in turn allows more water to +enter the atmosphere. After a 2 Gyr-long habitable phase, this +eventually triggers a runaway greenhouse, and the entire water +reservoir evaporates to form a thick steam atmosphere of around +45 bar. At this point, the evolution of this planet does not exhibit +any qualitative change since we do not consider water loss from +steam atmospheres. The pressure is too high for much additional +CO2 to be outgassed, so little atmospheric evolution is possible +at this pont. Some part of the steam atmosphere would be lost via +photodissociation, which would allow for more CO2 outgassing. +Article number, page 5 of 20 + +A&A proofs: manuscript no. manuscript +Fig. 1. Characteristic evolutions of the atmosphere temperature and pressure of an Earth-mass planet at 1 au with an Earth-like (a and b) or a +Mercury-like (c and d) interior structure. The colored background marks the state of water at the planet’s surface. Both planets start with the same +mantle water content of 250 ppm and an oxygen fugacity of 0.05 log10 units above the IW buffer. Panels (a,b) and (c,d) correspond respectively to +the points 1 and 2 marked in Figs. 3 and 4. +This planet would likely end up with a thick, Venus-like CO2 +atmosphere. +The evolution of the atmosphere is different in the case of the +Mercury-like planet. The steep pressure gradient of the melting +temperature due to the higher gravity compared to the Earth- +like case leads to a lower volcanic activity (see Noack et al. +2017), which stops completely at around 4.5 Gyr as the core and +mantle have cooled to temperatures that no longer make melt- +ing possible. Without volcanism, no volatiles are outgassed into +the atmosphere, and the remaining H2 is quickly lost due to at- +mospheric escape. Likewise, no CO2 is removed by weathering +since this depends on fresh basaltic rock delivered by volcan- +ism. Over time, more water vapour enters into the atmosphere as +a result of the rising surface temperature due to the increasing lu- +minosity of the star. However, even at 8 Gyr, the planet remains +habitable. +3.2. Role of redox state on habitability +In this section, we focus on Earth-mass planets with Earth-like +interior structures orbiting a Sun-like star at 1 au, with the effects +of orbital distance, interior structure and planet being detailed in +Section 3.3. +We find that the mantle redox state and initial water con- +tent are the two main factors limiting the emergence of habitable +conditions. Only a narrow range of these two parameters yields +long-term stable habitable conditions (Fig. 2a). We can iden- +tify well-defined populations of planets with characteristic evo- +lutions of surface habitability. At oxidizing conditions above the +iron-wüstite (IW) buffer, the majority of planets are in a Venus- +like runaway greenhouse regime with surface temperatures ex- +ceeding 400 K (Fig. 2b). At reducing conditions, one to two log10 +units below the IW buffer, most planets with dry mantles have +surface temperatures below the freezing point of water, whereas +planets with wet mantles (initial mantle water content exceeding +∼500 ppm) are in a runaway greenhouse state now caused by +strong H2 outgassing. Only in a narrow range of slightly reduced +mantles, conditions are just right for liquid water to be stable at +the surface over long time spans. +The surface temperature and the partial pressure of water in +the atmosphere are the main factors determining if water can be +outgassed and remain liquid on a planet’s surface. The partial +pressure of water in turn strongly depends on temperature. At +cool temperatures, most of the outgassed water is in the form of +oceans or ice, with only small amounts in the atmosphere. At +higher temperatures, more and more water vapour can be main- +tained in the atmosphere. Since water is a strong greenhouse gas, +this acts as a positive feedback, where rising surface tempera- +tures cause more water to evaporate (Catling & Kasting 2017). A +rise in surface temperature can be caused by an increase of CO2 +or H2 and, on longer timescales, an increase in solar luminosity. +The outgassing of the greenhouse gases CO2 and H2 therefore +predominantly shape the evolution of the surface temperature. +Outgassing rates depend on the amount of melting in the +interior. Water in the mantle decreases melting temperatures +and viscosity, thus wetter mantles experience more melting and +cause more volcanic activity. The oxygen fugacity shapes the +composition of outgassed species. At oxygen fugacities above +the IW buffer, the main outgassed species are CO2 and H2O. +At reducing mantle conditions, on the other hand, outgassing is +dominated by the oxygen-poor species H2 and CO. Increasing +amounts of either CO2 or H2 in the atmosphere eventually push +the planet into a runaway greenhouse regime, where any existing +surface water quickly evaporates to form a H2O-rich atmosphere +preventing further water outgassing. +Strong CO2 outgassing dominates on planets with an oxy- +gen fugacity more than one log10 above the IW buffer, which +enter a runaway greenhouse state within the first billion year +of their evolution (Fig. 3). Planets closer to the IW buffer may +exhibit a short habitable phase. H2 becomes the dominant out- +Article number, page 6 of 20 + +Water phase at the surface: +Liquid +Vapour +Frozen +Earth-like interior structure +Mercury-like interior structure +900 +900 +Ts +a +c +800 +temperature +800 +rature +Tea +e +350 +350 +dw +Weathering cycle +Weathering cycle +ter +stabilizes climate +300 + stabilizes climate +300 + Surface +Surface +250 +250 + End of volcanic activity +102 +102 + pressure (bar) + (bar) +d +0 +Total +101 +101 +CO2 +pressure ( +100. +H20 +100 +CO +101 +.1 +-Oceans evaporate +H2 +Surface I +Surface I +10-2 +10-2 +Water evaporation due to +increase in stellar luminosity +-3 +Crust is saturated +10 +in carbonates, +CO2 builds up + End of volcanic activity +10-4 +10-4 +0 +1000 +2000 +¥4000 +2000 +7000 +8000 +3000 +5000 +6000 +7000 +8000 +0 +1000 +3000 +4000 +5000 +6000 +Time (Myrs) +Time (Myrs)Baumeister et al.: Redox state control on the long-term habitability of stagnant-lid planets +Fig. 2. States of a stagnant-lid Earth as a function of the mantle oxygen fugacity. Each point represents a snapshot of the planetary evolution at +a randomly selected planet age between 100 Myr and 8 Gyr. The colored points in panel a show the prevailing water phase at the surface as a +function of the oxygen fugacity ( fO2) and initial water content of the mantle (X0 +H2O). The color background shows the area where the majority of +neighboring data points share the same surface conditions. In panels b–d, points are colored according to the greenhouse gas that contributes most +to surface heating. Panel b shows the surface temperature, panel c shows the total mass of outgassed water, and panel d shows the total mass of +CO2 removed from the atmosphere via weathering. +gassed greenhouse gas at an oxygen fugacity around one log10 +below the IW buffer (see e.g. Fig. G.4 in the Appendix and Or- +tenzi et al. (2020)). H2 in the atmosphere is steadily lost due to +atmospheric escape. Its presence in the atmosphere is therefore +maintained only by a continuous replenishment from volcanic +outgassing (Fig. 1b), and H2 only builds up in the atmosphere +if the rate of outgassing outweighs the rate of escape. We find +that planets with significant H2 outgassing may enter a runaway +greenhouse as well, specifically those with water-rich mantles +for which outgassing rates of H2 are high (Fig. 2a-b, Fig. 3). H2 +can build up faster on planets at high orbital distances, where +atmospheric loss is less severe. These planets are more likely +to undergo an H2-induced runaway greenhouse as a result (Fig. +3). Habitable conditions occur in the transition regime between +CO2- and H2-dominated outgassing. Here, the combination of +CO2 and H2 keeps the surface temperature above the freezing +point of water, but a runaway is prevented by weathering of ex- +cess CO2 (Fig. 2d) and continuous loss of H2 from the top of the +atmosphere, both working to keep the climate stable. Significant +amounts of water can be outgassed at these conditions (Fig. 2c). +Planets with very reduced, dry mantles can sustain habitable sur- +face conditions for several billions of years even at the orbit of +Venus, albeit with very thin atmospheres. +3.3. Effect of interior structure and planet mass +Planet mass and the size of the iron core are additional important +factors influencing the amount and lifetime of volcanism. Plan- +ets with large cores tend to undergo less partial melting due to +larger hydrostatic pressure gradients in the mantle, which pre- +vent melt from reaching the surface (Noack et al. 2017). Fur- +thermore, the mantles of planets with large cores cool efficiently +(Noack et al. 2017), which reduces the time a planet is volcani- +cally active (as already shown in Figs. 1c and 1d). This prevents +a runaway greenhouse in many cases and allows habitable plan- +ets at a wider range of orbital distances, mantle water contents +and oxygen fugacities (Fig. 4). Due to the lower outgassing rates, +however, in many cases the surface remains frozen. By contrast, +planets with small cores show strong, long-lasting volcanic ac- +tivity, which limits the potential to develop habitable conditions +(Fig. 4). The same applies to planets with higher mass, where the +higher mantle volume supports long-lived volcanism. For very +thick mantles however, the viscosity of the deepest mantle can +become so large that a non-convective, stagnant region is formed +(Stamenkovi´c et al. 2012), shrinking the active, convective part +of the mantle (see e.g. the case of 3 M⊕, 30% core shown in Fig. +G.1 in the Appendix). With respect to outgassing, this resembles +the behavior of a smaller planet with a larger core. +Article number, page 7 of 20 + +900 +H2-induced +C02-induced +a +runaway greenhouse +runaway greenhouse +700 +Water phase at +the surface: +500 +Frozen +Liquid +300 +Vapour +100 +b +1200 - +CO2-induced +1000. +H2-induced +runaway greenhouse +K +800- +600 +Main greenhouse gas +CO2 +400 +H20 H2 +200 +Outgassed water +C +1.00 +0.75- +0.50- +0.25 +0.00 +Weathered CO2 +d +1.5- +kg) +1.0- +0.5- +0 +-3 +0 +2 +3 +fo2 (log △lW)A&A proofs: manuscript no. manuscript +Fig. 3. Evolution of habitable conditions of a stagnant-lid Earth at dif- +ferent orbital distances. Each row depicts the evolution of surface con- +ditions of a planet with Earth mass and core size at the orbit of Venus +(0.723 au), Earth (1 au) and Mars (1.524 au), respectively. Each plot +shows the prevailing surface conditions for water as a function of the +oxygen fugacity and initial water content of the mantle, with the color +background showing the area where the majority of neighboring data +points share the same surface conditions. Similar to Fig. 2a, each point +represents a snapshot of the evolution at a randomly selected planet age +within the given age range. The marker in the middle row marks the +evolution shown in detail in Fig. 1a,b. +Fig. 4. Prevailing water state at the surface for Earth-mass planets with +different core sizes at different orbital distances. Each plot shows the +range of surface conditions for a specific combination of iron core size +(rows) at a fixed orbital distance (columns), and as a function of the +oxygen fugacity and initial water content of the mantle, with the color +background showing the area where the majority of neighboring data +points share the same surface conditions. Similar to Fig. 2a, each point +represents a snapshot of the planetary evolution at a randomly selected +planet age. The two markers depict the initial conditions for the detailed +evolutions in Fig. 1a,b (1) and 1c,d (2). +3.4. Planetary evolution pathways +We find that distinct pathways exist for the evolution of a rocky, +stagnant-lid planet (Fig. 5), depending on the make-up of its +mantle. If the planet’s surface temperature remains low (i.e. the +planet orbits far enough away from its host star), outgassed water +can start condensing and accumulating on the surface as ice or in +liquid form. If CO2 outgassing is strong early on (e.g. for planets +with oxidized mantles), this will quickly result in atmospheric +pressures unsuitable for water outgassing. The planet ends up +with a thick, CO2-rich atmosphere. By contrast, with weak CO2 +outgassing, the planet can accumulate large amounts of water +vapour, which will rapidly condense. Further CO2 outgassing +can eventually push these planets into a runaway greenhouse +regime, where the entire ocean evaporates to form a hot steam +atmosphere. In planets with wet mantles and reducing condi- +tions, outgassing of H2 can achieve the same effect. The nature +of stagnant-lid planets does not permit a long-term removal of +CO2, preventing a return to habitable conditions even if all wa- +ter vapour in the atmosphere was lost (a mechanism that we do +not model here). Planets can stay in the habitable regime if the +outgassing rates of greenhouse gases remain low over the vol- +canic lifetime of the planet, but high enough to keep the surface +from freezing. This is the case for planets with oxygen fugaci- +ties around the IW buffer. Planets with dry, reduced mantles may +never advance from a frozen state due to limited outgassing of +H2 and CO2. +The presence of primordial atmospheres can reduce the +range of habitable conditions even further. Substantial H2 at- +mospheres may not be lost quickly enough through atmospheric +escape to allow the emergence of habitable surface conditions +(Section D in the Appendix). While pure steam atmospheres col- +lapse quickly into an ocean, the presence of enough CO2 in a +primordial atmosphere can strongly limit the range of interior +conditions which yield habitable planets (Section E in the Ap- +pendix). +3.5. Sensitivity to model parameters +We tested the model sensitivity with respect to changing a few +key parameters to confirm the robustness of the results. Fig. 6 +summarizes this sensitivity analysis for planets with one Earth- +mass. +3.5.1. Influence of CO2 absorption coefficient +Though the value of the CO2 absorption coefficient k0,CO2 we +use (0.05 m2 kg−1) is fitted to reproduce the present-day Earth +climate sensitivity (Pujol & North 2003), which describes the +response of Earth’s climate to a doubling in CO2, other values +have been used in the literature (e.g., Elkins-Tanton 2008). Since +the amount of greenhouse heating of CO2 plays an important +role for habitability, we tested the sensitivity of the model to +a reduction of k0,CO2 to 0.001 m2 kg−1, which is generally used +in magma ocean atmosphere modeling (Nikolaou et al. 2019; +Elkins-Tanton 2008) and thus provides us with a lower bound on +the greenhouse heating from CO2. As shown in Fig. 3.5b, this +slightly extends the range of habitable planets towards more ox- +idizing conditions, as larger amounts of CO2 are needed to put +the planet into a runaway greenhouse regime due to the lower +efficiency of heating. Overall, the influence of the absorption co- +efficient is fairly minor. +Article number, page 8 of 20 + +Water phase at the surface: +Frozen +Liquid +Vapoul +<1 Gyrs +1-2 Gyrs +2-4.5 Gyrs +>4.5 Gyrs +1000 +Venus orbit +(udd) +750 +500 +250- +1000 +(udd) +Earth orbit +750 +500 +38% +250 +1000 +750 +Mars orbit +500 +250 - +2-10 +1 +2-10 +-2 -10 +1 +-2 -1 0 +1 +2 +1 +2 +2 +2 +fo, (log △lw) +fo, (log △lw) +fo, (log △lw) +fo2 (log △lW)Water phase at the surface: +IFrozen +Liquid +Vapour +Venus orbit +Earth orbit +Mars orbit +1000 +750 +30% core +500 +250 +1000 +Earth-like core +750 +500 +250 +1000 +750 +70% core +500 +250 +0 +2 +-2 +-2 +0 +2 +-2 +0 +2 +fo, (log △lw) +fo, (log Alw) +fo, (log Alw)Baumeister et al.: Redox state control on the long-term habitability of stagnant-lid planets +Fig. 5. Evolutionary tracks of water outgassing on stagnant-lid planets. +The arrows illustrate potential pathways on which a planet may evolve +over time. Only planets with a non-zero amount of water outgassing are +shown. The points represent Earth-mass planets with cores sizes ranging +from 30% to 70% of the planet’s radius at randomly selected times in +their evolution, with the color showing the redox state of the mantle. +3.5.2. Influence of ratio of intrusive/extrusive volcanism +In the models presented so far, we assumed that all melt pro- +duced in the mantle reaches the surface of the planet where +the supersaturated volatile species are outgassed into the atmo- +sphere. However, in general a large part of the magma pro- +duced at depth is expected to be intrusive (White et al. 2006), +where melt crystallizes within or at the base of existing crust, +thus reducing the amount of volatiles that reach the surface. The +amount of extrusive volcanism is difficult to constrain and can +vary based on location, crust porosity and lithospheric thickness. +To model the impact of reduced extrusive volcanism, we run a +model study for an intrusive-to-extrusive ratio of 2.5 (Tosi et al. +2017), corresponding to fextr ≈ 0.286. The results are shown in +Fig. 6c. +Similar to section 3.5.1, the presence of intrusive volcanism +extends the range of habitable planets to more oxidizing con- +ditions to a small degree. With intrusive volcanism, the rate of +outgassing is reduced. This primarily reduces the rate at which +greenhouse gasses, specifically CO2, build up. Therefore, more +CO2 can be outgassed until the planet transitions into a runaway +greenhouse, which allows the planets to be habitable at more ox- +idizing conditions. +4. Discussion and conclusions +The structure and composition of the interior are fundamental +factors to determine whether a planet can be habitable or not. +The mantle redox state in particular strongly constrains the space +of potentially habitable planets. In general, it is difficult for plan- +ets with stagnant lids to remain habitable because of the limited +number of pathways available to permanently remove outgassed +CO2 from the atmosphere. In fact, CO2 tends to accumulate and +heat the planet up until the atmosphere enters a runaway green- +house. We model the (temporary) removal of CO2 via silicate +Fig. 6. Influence of changing the CO2 absorption coefficient and intro- +ducing intrusive volcanism. The reference model here is the same as in +Fig. 2. +weathering, which is active only in the presence of liquid water, +thus placing further limits on the removal of CO2. Additional +CO2 could be lost via hydrodynamic escape of hydrogen (Tian +2015; Hunten et al. 1987) or through photodissociation in the +upper atmosphere, processes we do not model here. Stagnant-lid +planets are common in the Solar System. Earth alone is in a plate +tectonic regime. If this trend holds also for rocky exoplanets, we +would expect a large number of those to more closely resem- +ble Venus than Earth, with hot, dense atmospheres even if they +reside in the habitable zone of their host star. +Our simple atmosphere model cannot capture the full com- +plexity of a planetary atmosphere. With a more sophisticated at- +mospheric model (Scheucher et al. 2020; Wunderlich et al. 2020; +Kaspi & Showman 2015; Schreier et al. 2014), the surface tem- +perature would likely differ to some extent from the one cal- +culated here, thus affecting both the habitability of planets as +well as the critical amount of CO2 or H2 at which the planet +transitions into a runaway greenhouse. However, as discussed +above, the main driver for the accumulation of surface water +is the outgassing rate of CO2 and H2, which is mainly a func- +tion of the planetary interior. We note here that the outgassing +rates are subject to the composition of the atmosphere, which +may be different from the outgassed species due to atmospheric +chemistry which we do not take into account here. However, the +solubilities of both CO2 and H2 in the melt are very low and +therefore these two species are least affected by partial pressures +during outgassing. As such, while a difference in surface tem- +perature could change the exact values of oxygen fugacities and +water concentration in the mantle which yield habitable condi- +tions, the general relations described above would still hold. As +seen in Section 3.5.1, even a drastically reduced IR absorption +coefficient of CO2 has only a small effect upon the proportions +of planets with surface water. +Here we considered the internal structure of a planet to be +independent from its redox state. Yet, the latter and the size +of the metallic core may well evolve jointly, based on the lo- +cal oxidation level of the protoplanetary disk during formation, +on the conditions of metal-silicate differentiation, and on the +subsequent evolution of the magma ocean, complex processes +whose mutual relations are still to be fully unraveled (Wade & +Wood 2005; Frost & McCammon 2008; Zhang et al. 2017; Arm- +strong et al. 2019). Planets with deep magma oceans may de- +velop rather oxidizing mantles (Deng et al. 2020), which would +be less favored to develop long-term habitable conditions based +on our results. In fact, our results indicate that a stagnant-lid +Earth or Venus, having more oxiding conditions, will always +enter a runaway greenhouse. In contrast, low-mass planets with +large iron cores would likely have more reducing conditions due +Article number, page 9 of 20 + +3 +1400 +2 +fo (log △/W) +1200 +0 +CO2-induced +Surface temperature (K) +2 +runaway greenhouse +000 +3 +C +800 +Wet mantles +Strong H2 outgassing +Continuous CO2 +outgassing +600 +++ +++ ++ +400 +Habitable +conditions +273 +Frozen surface +Low co, outgassing +200 +10-5 +10-4 +10-3 +10-2 +10-1 +100 +Outgassed water (Earth oceans)Water phase at the surface: +Frozen +Liquid +Vapour +With intrusive volcanism +Reference mode +Lower CO2 absorption +1000 +a +b +C +800 - +(udd) +600 +400: +200- +T2 +0 +2 +2 +0 +-2 +-2 +-2 +0 +fo, (log △lw) +fo, (log △lW) +fo2 (log △lw)A&A proofs: manuscript no. manuscript +to more shallow magma oceans, which in turn would strongly +favor long-term habitable conditions. Liggins et al. (2022) show +that the mantle redox state imposes characteristic atmospheric +compositions. The atmospheric composition of such planets is +therefore potentially detectable in exoplanets in the near-future +through spectroscopic observations with instruments such as +JWST (Greene et al. 2016), where we predict that planets which +are habitable in our models should be generally characterised +by reduced atmospheric compositions. The unambiguous direct +detection of an exoplanetary ocean is a challenging prospect, re- +lying on direct imaging (Lustig-Yaeger et al. 2018), and is there- +fore likely limited to only a few planets in the forseeable future. +Promising first targets would therefore be small, dense exoplan- +ets, which may offer the best chances in the pursuit to find plan- +ets capable of hosting liquid water at their surface. +References +Abe, Y. & Matsui, T. 1985, Lunar and Planetary Science Conference Proceed- +ings, 90, C545 +Abe, Y. & Matsui, T. 1988, Journal of Atmospheric Sciences, 45, 3081 +Agee, C. B. 2008, Earth and Planetary Science Letters, 265, 641 +Alduchov, O. A. & Eskridge, R. E. 1996, Journal of Applied Meteorology and +Climatology, 35, 601 +Armstrong, K., Frost, D. J., McCammon, C. A., Rubie, D. C., & Boffa Ballaran, +T. 2019, Science, 365, 903 +Aubaud, C. 2004, Geophysical Research Letters, 31, L20611 +Baumeister, P., Padovan, S., Tosi, N., et al. 2020, The Astrophysical Journal, 889, +42 +Blundy, J. & Wood, B. 2003, Earth and Planetary Science Letters, 210, 383 +Bower, D. J., Kitzmann, D., Wolf, A. S., et al. 2019, Astronomy & Astrophysics, +631, A103 +Catling, D. C. & Kasting, J. F. 2017, Atmospheric Evolution on Inhabited and +Lifeless Worlds (Cambridge, United Kingdom: Cambridge University Press) +Cockell, C., Bush, T., Bryce, C., et al. 2016, Astrobiology, 16, 89 +Deng, J., Du, Z., Karki, B. B., Ghosh, D. B., & Lee, K. K. M. 2020, Nature +Communications, 11, 2007 +Elkins-Tanton, L. 2008, Earth and Planetary Science Letters, 271, 181 +Elkins-Tanton, L. T. 2011, Astrophys Space Sci, 6 +Fei, Y. & Ahrens, T. 1995, Mineral physics and crystallography: a handbook of +physical constants, 2, 29 +Foley, B. J. 2015, The Astrophysical Journal, 812, 36 +Foley, B. J. & Smye, A. J. 2018, Astrobiology, 18, 873 +Frost, D. J. & McCammon, C. A. 2008, Annual Review of Earth and Planetary +Sciences, 36, 389 +Gaillard, F. & Scaillet, B. 2014, Earth and Planetary Science Letters, 403, 307 +Godolt, M., Tosi, N., Stracke, B., et al. 2019, Astronomy & Astrophysics, 625, +A12 +Gough, D. O. 1981, Solar Physics, 74, 21 +Grasset, O. & Parmentier, E. M. 1998, Journal of Geophysical Research: Solid +Earth, 103, 18171 +Greene, T. P., Line, M. R., Montero, C., et al. 2016, The Astrophysical Journal, +817, 17 +Grott, M., Morschhauser, A., Breuer, D., & Hauber, E. 2011, Earth and Planetary +Science Letters, 308, 391 +Hamano, K., Abe, Y., & Genda, H. 2013, Nature, 497, 607 +Hirth, G. & Kohlstedt, D. 2004, in Inside the Subduction Factory (American +Geophysical Union (AGU)), 83–105 +Hirth, G. & Kohlstedt, D. L. 1996, Earth and Planetary Science Letters, 144, 93 +Holloway, J. R. 1998, Chemical Geology, 147, 89 +Höning, D., Baumeister, P., Grenfell, J. L., Tosi, N., & Way, M. J. 2021, Journal +of Geophysical Research: Planets, 126 +Höning, D., Tosi, N., & Spohn, T. 2019, Astronomy & Astrophysics, 627, A48 +Howe, A. R., Adams, F. C., & Meyer, M. R. 2020, The Astrophysical Journal, +894, 130 +Hunten, D. M., Pepin, R. O., & Walker, J. C. 1987, Icarus, 69, 532 +Iacono-Marziano, G., Morizet, Y., Le Trong, E., & Gaillard, F. 2012, Geochimica +et Cosmochimica Acta, 97, 1 +Jontof-Hutter, D. 2019, Annual Review of Earth and Planetary Sciences, 47, 141 +Karato, S.-i. 2011, Icarus, 212, 14 +Kaspi, Y. & Showman, A. P. 2015, The Astrophysical Journal, 804, 60 +Kasting, J. F. 1988, Icarus, 74, 472 +Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108 +Katz, R. F., Spiegelman, M., & Langmuir, C. H. 2003, Geochemistry, Geo- +physics, Geosystems, 4, n/a +Kite, E. S. & Barnett, M. N. 2020, Proceedings of the National Academy of +Sciences, 117, 18264 +Korenaga, J. 2010, The Astrophysical Journal Letters, 725, L43 +Krissansen-Totton, J., Galloway, M. L., Wogan, N., Dhaliwal, J. K., & Fortney, +J. J. 2021, The Astrophysical Journal, 913, 107 +Lammer, H., Stökl, A., Erkaev, N. V., et al. 2014, Monthly Notices of the Royal +Astronomical Society, 439, 3225 +Lebrun, T., Massol, H., ChassefièRe, E., et al. 2013, Journal of Geophysical Re- +search (Planets), 118, 1155 +Liggins, P., Jordan, S., Rimmer, P. B., & Shorttle, O. 2022, Journal of Geophys- +ical Research: Planets, 127 +Lustig-Yaeger, J., Meadows, V. S., Tovar Mendoza, G., et al. 2018, The Astro- +nomical Journal, 156, 301 +Marrero, T. R. & Mason, E. A. 1972, Journal of Physical and Chemical Refer- +ence Data, 1, 3 +McDonough, W. F. & Sun, S.-S. 1995, Chemical geology, 120, 223 +Miyagoshi, T., Kameyama, M., & Ogawa, M. 2018, Earth, Planets and Space, +70, 200 +Morschhauser, A., Grott, M., & Breuer, D. 2011, Icarus, 212, 541 +Nakagawa, T., Nakakuki, T., & Iwamori, H. 2015, Geochemistry, Geophysics, +Geosystems, 16, 1449 +Nikolaou, A., Katyal, N., Tosi, N., et al. 2019, The Astrophysical Journal, 875, +11 +Noack, L. & Breuer, D. 2014, Planetary and Space Science, 98, 41 +Noack, L., Godolt, M., von Paris, P., et al. 2014, Planetary and Space Science, +98, 14 +Noack, L., Höning, D., Rivoldini, A., et al. 2016, Icarus, 277, 215 +Noack, L., Rivoldini, A., & Van Hoolst, T. 2017, Physics of the Earth and Plan- +etary Interiors, 269, 40 +O’Brien, D. P., Izidoro, A., Jacobson, S. A., Raymond, S. N., & Rubie, D. C. +2018, Space Science Reviews, 214, 47 +O’Neill, C., Jellinek, A., & Lenardic, A. 2007, Earth and Planetary Science Let- +ters, 261, 20 +O’neill, C. & Lenardic, A. 2007, Geophysical Research Letters, 34 +O’Neill, C., Lenardic, A., Weller, M., et al. 2016, Physics of the Earth and Plan- +etary Interiors, 255, 80 +Ortenzi, G., Noack, L., Sohl, F., et al. 2020, Scientific Reports, 10, 10907 +Owen, J. E. 2019, Annual Review of Earth and Planetary Sciences, 47, 67 +Owen, J. E. & Wu, Y. 2017, The Astrophysical Journal, 847, 29 +Peslier, A. H., Schönbächler, M., Busemann, H., & Karato, S.-I. 2017, Space +Science Reviews, 212, 743 +Pierrehumbert, R. & Gaidos, E. 2011, The Astrophysical Journal, 734, L13 +Pujol, T. & North, G. R. 2003, Tellus A: Dynamic Meteorology and Oceanogra- +phy, 55, 328 +Reese, C., Solomatov, V., & Baumgardner, J. 2005, Physics of the Earth and +Planetary Interiors, 149, 361 +Roberts, R. 1972, in American Institute of Physics Handbook, 3rd edn., ed. D. E. +Gray (New York, [...]: McGraw-Hill), 249–252 +Scheucher, M., Wunderlich, F., Grenfell, J. L., et al. 2020, The Astrophysical +Journal, 898, 44 +Schreier, F., Gimeno García, S., Hedelt, P., et al. 2014, Journal of Quantitative +Spectroscopy and Radiative Transfer, 137, 29 +Spaargaren, R. J., Ballmer, M. D., Bower, D. J., Dorn, C., & Tackley, P. J. 2020, +Astronomy & Astrophysics, 643, A44 +Spohn, T. 1991, Icarus, 90, 222 +Stamenkovi´c, V., Breuer, D., & Spohn, T. 2011, Icarus, 216, 572 +Stamenkovi´c, V., Noack, L., Breuer, D., & Spohn, T. 2012, The Astrophysical +Journal, 748, 41 +Stein, C., Lowman, J., & Hansen, U. 2013, Earth and Planetary Science Letters, +361, 448 +Tian, F. 2015, Earth and Planetary Science Letters, 432, 126 +Tian, F., Güdel, M., Johnstone, C. P., et al. 2018, Space Science Reviews, 214, +65 +Tosi, N., Godolt, M., Stracke, B., et al. 2017, Astronomy & Astrophysics, 605, +A71 +Tosi, N. & Padovan, S. 2021, Mercury, Moon, Mars: Surface expression of man- +tle convection and interior evolution of stagnant-lid bodies (American Geo- +physical Union (AGU)), 455–489 +Tosi, N., Yuen, D. A., de Koker, N., & Wentzcovitch, R. M. 2013, Physics of the +Earth and Planetary Interiors, 217, 48 +Valencia, D., O’connell, R. J., & Sasselov, D. D. 2007, The Astrophysical Journal +Letters, 670, L45 +Van Heck, H. & Tackley, P. 2011, Earth and Planetary Science Letters, 310, 252 +Wade, J. & Wood, B. 2005, Earth and Planetary Science Letters, 236, 78 +Walker, J. C. G., Hays, P. B., & Kasting, J. F. 1981, Journal of Geophysical +Research: Oceans, 86, 9776 +Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. +2011, Nature, 475, 206 +Westall, F. & Brack, A. 2018, Space Science Reviews, 214, 50 +White, S. M., Crisp, J. A., & Spera, F. J. 2006, Geochemistry, Geophysics, +Geosystems, 7, Q03010 +Wunderlich, F., Scheucher, M., Godolt, M., et al. 2020, The Astrophysical Jour- +nal, 901, 126 +Zahnle, K. J., Gacesa, M., & Catling, D. C. 2019, Geochimica et Cosmochimica +Acta, 244, 56 +Zhang, H., Hirschmann, M., Cottrell, E., & Withers, A. 2017, Geochimica et +Cosmochimica Acta, 204, 83 +Article number, page 10 of 20 + +Baumeister et al.: Redox state control on the long-term habitability of stagnant-lid planets +Appendix A: 1D parameterized convection model +Fig. A.1. Schematic of the interior structure used in the thermal evolu- +tion model, alongside a diagram of the temperature profile (see the text +for the explanation of the various symbols). +We model the thermal evolution of a planet’s mantle by con- +sidering the energy balance between heat lost through the plan- +etary surface and heat entering the mantle from the iron core +as well as the decay of radiogenic elements inside the mantle. +Assuming the core to be fully liquid and convecting, its energy +balance is given by +ρcccVc +dTc +dt = −qcAc, +(A.1) +where Tc is the average temperature in the core; ρc, cc, and Vc +are the density, specific heat capacity, and volume of the core; +Ac is the area of the core-mantle boundary (CMB); and qc is the +heat flux out of the core. +The energy balance of the mantle is given by +ρmcmVm(1 + St)dTm +dt += +− +� +ql + �ρcrL + ρcrccr(Tm − Tl)� dDcr +dt +� +Am + qbAb + QmVm, +(A.2) +where Tm is the average temperature of the convecting mantle; +ρm and cm are the density and specific heat capacity of the man- +tle; Vm and Am are the volume and area of the convecting part of +the mantle; St is the Stefan number, which describes the energy +consumed and released upon mantle melting and solidification; +ql and qb are the heat fluxes out of and into the convecting part +of the mantle respectively; Tm and Tl are the temperatures of the +upper mantle and the bottom of the stagnant lid; ρcr, ccr, and Dcr +are the density, specific heat capacity, and thickness of the crust; +L is the latent heat of melting; and Qm is the volumetric heat- +ing rate in the mantle from heat-producing elements. The main +parameters used in this model are summarized in Table F.2. +The temperatures at the top of the core and mantle Tc and +Tm are related to the volume-averaged temperatures Tc and Tm +through scaling factors εc and εm +Tc = εcTc, +Tm = εmTm = 1 +Vm +� +Vm +Tad(r) dV, +(A.3) +where Tad(r) is the adiabatic temperature profile in the man- +tle. For the core, we set εc = 1.2 following Stamenkovi´c et al. +(2012), who found only a small dependence on planetary mass. +For the mantle, εm is updated continuously during the mantle +evolution based on the mantle temperature profile and on the +varying thickness of the stagnant lid. +The evolution of the thickness of the stagnant lid (Dl) follows +from the energy balance at the base of the lid (at radius Rl) +ρmcmVm(Tm − Tl)dDl +dt = +− ql + �ρcrL + ρcrccr(Tm − Tl)� dDcr +dt +− km +∂T +∂r +�����r=Rl +. +(A.4) +∂T/∂r|r=Rl is the temperature gradient at the base of the lid, +which we calculate assuming steady-state heat conduction: +1 +r2 +∂ +∂r +� +r2kl +∂T +∂r +� += −Ql, +(A.5) +where kl is the thermal conductivity and Ql the heat produc- +tion rate in the lid. Parts of the stagnant lid can be comprised +of crustal material, so when solving Eq. (A.5), we set kl and Ql +to crustal values (kcr and Qcr) from the surface to the base of the +crust or mantle values (km and Qm) from the base of the crust to +the base of the stagnant lid as appropriate. The boundary con- +ditions for Eq. A.5 are the given surface temperature Ts and the +temperature at the stagnant lid base Tl. +Numerical convection models suggest that the viscosity con- +trast across the upper thermal boundary layer is typically about +one order of magnitude (Grasset & Parmentier 1998). Based +on this, the lid base temperature Tl can be calculated from the +mantle temperature and activation energy (Grasset & Parmentier +1998) +Tl = Tm − 2.9RT 2 +m +E∗ , +(A.6) +where the factor of 2.9 accounts for the effects of spherical ge- +ometry (Reese et al. 2005). +The convective heat flux out of the mantle ql, assuming that +the upper thermal boundary layer is small so that the radial tem- +perature profile is close to linear, can then be expressed as +ql = km +Tm − Tl +du +, +(A.7) +where the thickness of the upper TBL du can be calculated from +boundary layer theory +du = Dm +�Racrit +Ra +�1/3 +, +(A.8) +where Dm = Rl −Rb is the thickness of the convecting part of the +mantle, Racrit is the critical Rayleigh number of the mantle, and +Ra is the Rayleigh number for the entire mantle +Ra = αm(Pm, Tm)ρmg∆TD3 +m +κmηm +, +(A.9) +Article number, page 11 of 20 + +R +qs +R +D1 +Crust +-R1 +1 +Stagnant lid +q1 +Upper TBL +D +m +Qm +Convecting +mantle +qb +Tb +R +Lower TBL +qc +Convecting +core +TA&A proofs: manuscript no. manuscript +with the mantle viscosity ηm, mantle thermal diffusivity κm = +km/(ρmcm), the pressure- and temperature-dependent coefficient +of thermal expansion αm, and ∆T = (Tm−Tl)+(Tc−Tb), which is +the sum of temperature differences across both boundary layers. +The coefficient of thermal expansion α, which has a strong +influence on the heat transport in the convecting mantle, is of- +ten assumed to be constant, although it is known from experi- +mental data that this parameter can vary considerably with both +pressure and temperature (Fei & Ahrens 1995). This becomes +especially important if one considers the modeling of super- +Earths (Miyagoshi et al. 2018). We use here the temperature- +and pressure-dependent parameterization of α from Tosi et al. +(2013), +α(P, T) = (a0 + a1T − a2T −2) exp(−a3P), +(A.10) +where the coefficients a0 - a3 are chosen assuming a lower man- +tle composition of 80% perovskite/20% periclase (see Table F.2 +for parameter values). +The temperature profile in the convecting part of the mantle +is assumed to be adiabatic: +dT +dP = α(P, T) +ρmcm +T. +(A.11) +To account for a potentially non-convecting zone near the +CMB due to the effect of high pressures on the mantle viscosity, +we use the parameterization from Stamenkovi´c et al. (2012). As- +suming that this conductive layer is close to convective stability, +the thickness can be approximated from boundary layer theory +using a critical Rayleigh number RaCMB +crit +based on the viscosity +contrast ∆η across the layer: +RaCMB +crit (∆η) = max�Racrit, 11.74 · ln(∆η)4�, +(A.12) +with +∆η = max +�η(Rc) +η(Rb), η(Rb) +η(Rc) +� +. +(A.13) +Here, Rb is the radius at the top of the conductive layer, and Rc +is the radius of the CMB. +The thickness of this layer is then given by: +db = +� +RaCMB +crit (∆η) κm min�η(Rb), η(Rc)� +αm(Pb, Tb)ρmg|Tc − Tb| +�1/3 +. +(A.14) +Especially for planets more massive than Earth, the conduc- +tive CMB layer can make up a significant part of the mantle. +Therefore, we treat the heat fluxes from the CMB lid into the +mantle and from the core into the CMB lid separately, and as- +sume time-dependent thermal conduction across the layer. The +heat fluxes are given by the temperature gradients at the top and +bottom of the conductive CMB layer: +qb = −km +∂T +∂r +�����r=Rb +(A.15) +qc = −km +∂T +∂r +�����r=Rc +, +(A.16) +which we determine by solving the time-dependent heat +equation across the CMB lid: +1 +r2 +∂ +∂r +� +r2km +∂T +∂r +� += −Qm + ρmcm +∂T +∂t . +(A.17) +Appendix B: Melting, trace element partitioning, +and volatile outgassing +We compute the distribution of partial melt in the mantle by +comparing the local mantle temperature profile T(r) against the +solidus Tsol(r) and liquidus Tliq(r) temperatures. We assume the +amount of partial melt to vary linearly between the solidus and +the liquidus: +φ(r) = T(r) − Tsol(r) +Tliq(r) − Tsol(r). +(B.1) +We do not consider melting above a pressure of 8 GPa. Un- +der these conditions, melt becomes denser than the surrounding +mantle rocks and cannot reach the surface (Agee 2008). +The presence of water in the mantle depresses the solidus and +liquidus curves. We calculate wet solidus and liquidus curves +following a parameterization by Katz et al. (2003). +The volume-averaged, extractable melt fraction φ in the man- +tle is then given by +φ = 1 +Vφ +� +Vφ +φ(r) dV, +(B.2) +where Vφ is the total volume of the melt zone (i.e. where the +temperature lies above the solidus). +Knowing the volume of melt produced, we can calculate the +evolution of the crustal thickness Dcr. We adopt the plume model +description by Grott et al. (2011). Partial melting in the mantle is +generally restricted to localized upwelling plumes. We assume a +plume covering fraction of fp = 0.01, and add the temperature +difference across the bottom thermal boundary layer to the lo- +cal temperature profile when evaluating the melt fraction in Eq. +(B.1). In addition to the amount of available melt, the crustal +growth rate depends on the rate at which fresh mantle material +can be supplied to the partial melt zone, which is governed by +the convective velocity u of the mantle. The crustal growth rate +is given by +dDcr +dt += fpuφ Vφ +4πR3p +, +(B.3) +where the convective velocity is +u = u0 +� Ra +Racrit +�2/3 +, +(B.4) +where u0 is a characteristic mantle convective velocity scale. We +impose the additional constraint that the crust cannot grow larger +than the lid. Once the crust reaches the bottom of the lid, any ex- +cess crust is recycled back into the mantle, and the crustal growth +rate is set to be equal to the lid growth rate. +During crustal formation, we treat the release and consump- +tion of latent heat during mantle melting and crystallization via +the Stefan number, which is recalculated at every time step (See +also Eq. (A.2)) +St = L +cm +Vφ +Vm +dφ +dTm +. +(B.5) +We consider the partitioning of radiogenic elements and wa- +ter between crust and mantle due to melt production and crust +formation, and the subsequent enrichment of the crust in these +elements. We consider a model of fractional melting to calcu- +late the partitioning of trace elements between melt and mantle +Article number, page 12 of 20 + +Baumeister et al.: Redox state control on the long-term habitability of stagnant-lid planets +rocks. The concentration in the melt Xi +liq of a given trace element +i at radius r is then given by +Xi +liq(r) = Xi +m +φ(r) +� +1 − �1 − φ(r)�1/δi� +, +(B.6) +where Xi +m is the corresponding bulk concentration in the mantle +and δi a trace-element-specific partition coefficient. We assume +δi = 0.001 for heat-producing elements (Blundy & Wood 2003), +and δi = 0.01 for water (Aubaud 2004). The average concentra- +tion in the melt then follows as +Xi +liq = +1 +φVφ +� +Vφ +Xi +liq(r)φ(r) dV. +(B.7) +Enriched melt is transported to the surface and forms a crust. +The total mass of an incompatible element Mi +cr in the crust is +given by the crust production rate and the average concentration +in the melt: +dMi +cr +dt += 4πR2 +pρcrXi +liq +dDcr +dt +(B.8) +At the same time, the mantle will be depleted in trace elements +accordingly, with the concentration of the trace elements in the +mantle and crust given by +Xi +m = +Xi +m,0Mm,0 − Mi +cr +Mm +, +Xi +cr = Mi +cr +Mcr +, +(B.9) +where Mm,0 and Mm are the initial and current mass of the man- +tle, respectively, and Xi +m,0 is the initial mantle concentration of +the respective trace element. +The enrichment of heat-producing elements in the crust and +depletion in the mantle leads to different volumetric heating rates +in crust and mantle, which can be calculated as follows +Qm(t) = ρm +� +i +Xi +m(t)Hi exp +������� +ln 2 · (4.5 Gyr − t) +τi +1/2 +������� , +(B.10) +Qcr(t) = ρcr +� +i +Xi +cr(t)Hi exp +������� +ln 2 · (4.5 Gyr − t) +τi +1/2 +������� , +(B.11) +where i specifies one of the four long-lived radioisotopes 40 K, +232 Th, 235 U and 238 U, with corresponding specific heat produc- +tion rates Hi and half-lives τi +1/2 based on bulk-silicate-Earth abun- +dances from McDonough & Sun (1995). +Not all melt produced in the mantle is able to reach the sur- +face, but is instead intruded into the lid, solidifies there, and is +therefore unavailable for outgassing. To model this, we need to +assume a fraction of extrusive volcanism fextr, which we set to 1 +in this study (i.e. all melt reaches the surface). While this is not +fully realistic for an Earth-like planet, it provides an upper limit +for the outgassed species. In Sect. 3.5.2 in the main text, we also +tested the model results with a more realistic value (Tosi et al. +2017) of fextr = 0.286 and show that this ultimately serves to +further increase the number of habitable planets. +Volatile species will be partially outgassed into the atmo- +sphere once the melt reaches the surface. To outgas a volatile +species, the melt needs to be supersaturated with respect to the +atmosphere, and any excess concentration can be released into +the atmosphere. The redox state of the mantle plays a large role +regarding which volatile species are outgassed, with an oxidized +mantle favouring H2O and CO2, while a reduced mantle is domi- +nated by H2 and CO outgassing (Ortenzi et al. 2020). The chem- +ical outgassing model based on Ortenzi et al. (2020) (as de- +scribed in Section 2.3) calculates the outgassed mass fraction +Xi +outg of volatile species based on the chemical equilibrium be- +tween melt and atmosphere, taking into account the solubility +of each species. The outgassed mass Mi +outg of volatile species is +then given by +dMi +outg +dt += fextrXi +outg +dMi +cr +dt . +(B.12) +We can then calculate the partial pressure of each species ac- +cording to its atmospheric mass and the presence of other species +(e.g. Bower et al. (2019)). The actual mass enriched in the crust +in Eq. (B.8) is then reduced by the outgassed mass. We also as- +sume that all surface volcanism takes place above any poten- +tial ocean surface, since the pressure at the bottom of the ocean +would limit outgassing. Ocean coverage and depth are difficult +to estimate as they are dependent on surface topography. Simi- +lar to the assumption of fully extrusive volcanism, this assump- +tion provides an upper limit to volatile outgassing. Likewise, we +do not take into account so-called “water worlds”, i.e. planets +with several tens of kilometers of water oceans. Due to the high +pressures at the ocean bottom, volatile outgassing would likely +be severely limited (Noack et al. 2016; Krissansen-Totton et al. +2021). +Appendix C: Venus-like planets +Venus is the quintessential runaway greenhouse planet. In order +to test the ability of our model to reproduce a Venus-like sce- +nario, we simulated the evolution of 5000 planets with Venus- +like interior structures and orbital distance, while varying the +mantle water content and oxygen fugacity as described in the +methods section 2.9. We find that at present day (4.5 Gyr) all +modeled planets are in an extreme greenhouse state. No hab- +itable planets are present (Fig. C.1a), and surface pressures +in planets with mantle oxygen fugacities above the IW buffer +are comparable to those of present-day Venus (Fig. C.1b). Our +model tends to overestimate the surface temperature compared +to actual Venus. This stems from the fact that we do not consider +the loss of water through photodissociation, which leaves water +in the atmosphere as a potent greenhouse gas. Many of the water- +rich atmospheres shown in Fig. C.1 would evolve into thick, dry, +CO2-dominated atmospheres. Furthermore, Venus’ high albedo +due to its global cloud cover is not represented in the model, +which contributes to explaining the higher surface temperatures. +A more in-depth discussion of the evolution of Venus using the +outgassing model discussed here can be found in Höning et al. +(2021). +Appendix D: Influence of primordial H2 +atmospheres +So far we have assumed that any primordial atmosphere is lost at +the point when our evolution models start. This provides us with +an upper limit to any outgassed secondary atmosphere. How- +ever, while the life-time of primordial atmospheres can be very +short, on the order of tens of millions of years, especially for +close-in, low-mass planets (Kite & Barnett 2020; Lammer et al. +Article number, page 13 of 20 + +A&A proofs: manuscript no. manuscript +Fig. C.1. Thermal (a) and pressure (b) state of Venus-like planets at +present day, after 4.5 Gyr of evolution. The color map indicates the oxy- +gen fugacity of the mantle. The red dashed lines mark the present-day +surface temperature and atmospheric pressure of Venus. +2014), thick H2 atmospheres may survive magma ocean solidi- +fication. We investigated the influence of a primordial H2 atmo- +sphere by running a number of evolution models of Earth-like +planets with initial atmospheric pressures of up to 300 bar. This +upper limit is motivated by the amount of hydrogen an Earth-like +planet may accrete on formation (Lammer et al. 2014) and by the +maximum amount it can lose over time so that most planets we +consider here are still rocky (Howe et al. 2020). This results in +a reasonable range of different planet evolutions, but different +choices could change the proportions of planets with different +atmospheres. Low-mass planets in particular may not be able +to accrete a hydrogen atmosphere of that extent during forma- +tion. We find that the presence of primordial H2 atmospheres +with pressures above ≈ 50 − 100 bar can significantly reduce the +amount of habitable planets (Fig. D.1). This is due to two main +factors: First, sufficiently thick H2 atmospheres may not be lost +completely, and thus the planet never reaches surface tempera- +tures that are low enough to allow for liquid water. Second, it can +easily take several hundred million years for extensive primor- +dial H2 atmospheres to be completely lost. At this early stage, +a planet is volcanically very active, but the outgassed CO2 is +not removed from the atmosphere because the existing H2 at- +mosphere inhibits the carbon-silicate cycle that requires liquid +water. In addition, additional outgassing of H2 can further pro- +long the lifetime of an H2 atmosphere. As a result, even though +the H2 atmosphere may be eventually lost, too much CO2 has +been outgassed during that time to allow habitable conditions. +The planets which may avoid a runaway greenhouse in these +cases are those with very low amounts of CO2 outgassing, i.e. +planets with dry mantles and oxygen fugacities well below the +IW buffer. +Appendix E: Influence of primordial steam and CO2 +atmospheres +It is likely that a magma ocean would form a thick steam atmo- +sphere, although these may collapse shortly after magma ocean +solidification to form an early ocean (Elkins-Tanton 2011). +To determine the influence of an early post magma ocean at- +mosphere, we investigate two endmember compositions: Pure +steam atmospheres up to 200 bar, and pure CO2 atmosphere up +to 5 bars. Pure steam atmospheres have little impact on the long- +term evolution of the planets (Fig. E.1). Due to the positive cli- +mate feedback of water vapour, these atmospheres are not sta- +ble, and other sources of heating, such as from other greenhouse +gasses, are needed to sustain a steam atmosphere. Shortly after +the start of the evolution, these atmospheres therefore collapse +and rain out to form an ocean. They do not contribute further to +the warming of the surface, but merely provide a reservoir of wa- +ter. On the other hand, even small amounts of initial CO2 atmo- +spheres can severely limit the occurence of habitable conditions +(Fig. E.2). In our model, CO2 is only removed via silicate weath- +ering, which requires the presence of liquid water. If the initial +amount of CO2 in the atmosphere is too high to permit liquid +water, there exists no pathway for a planet to lose CO2 and be- +come habitable. Therefore, the CO2 pressures given in Fig. E.2 +represent a conservative estimate on the amount of CO2 which +can still yield habitable conditions. +Appendix F: Tables +Component +wt% +SiO2 +49.9 +Al2O3 +15.9 +FeO +11.1 +MgO +6.8 +CaO +9.6 +Na2O +3.0 +TiO2 +1.9 +K2O +1.2 +Table F.1. Magma composition for the outgassing speciation model +Article number, page 14 of 20 + +Surface temperature (K) +a +1000 +500 +H+ + +++HW +273 +Surface pressure (bar) +b +102 +3 +2 +101 +0 +100 +2 +3 +10-2 +10- +Outgassed water (Earth oceans)Baumeister et al.: Redox state control on the long-term habitability of stagnant-lid planets +Fig. D.1. Influence of a primordial H2 atmosphere on the emergence of habitable surface conditions. Each column corresponds to different initial +pressures of H2, with each row marking planets at different orbital distances to their host star. +Fig. E.1. Influence of a primordial steam atmosphere on the emergence of habitable surface conditions. Each column of plots corresponds to +different initial pressures of H2O, with each row marking planets at different orbital distances to their host star. +Article number, page 15 of 20 + +Water phase at the surface: +Frozen +Vapour +ILiquid +10.0 bar +25.0 bar +50.0 bar +100.0 bar +150.0 bar +200.0 bar +1000 +Venus orbit +500 +1000 +Earth orbit +500 +1000 +Mars orbit +500 +313% +13: +14% +3° +-2.5 +0.0 +2.5-2.5 +0.0 +2.5-2.5 +0.0 +2.5 -2.5 +0.0 +2.5 -2.5 +0.0 +2.5 +5-2.5 +0.0 +2.5 +fo, (log △lW) +fo, (log △lW) +fo, (log △lW) +fo, (log △lW) +fo, (log △lW) +fo2 (log △lw)Water phase at the surface: +Frozen +Vapour + Liquid +10.0 bar +20.0 bar +50.0 bar +100.0 bar +200.0 bar +300.0 bar +1000 +Venus orbit +(udd) +500 +·. +1000 +Earth orbit +500 +1000 +Mars orbit +500 +:14% +-2.5 +0.0 +2.5-2.5 +0.0 +2.5-2.5 +0.0 +2.5-2.5 +0.0 +2.5-2.5 +0.0 +2.5 -2.5 +0.0 +2.5 +fo, (log △lW) +fo, (log △W) +fo, (log △lW) +fo, (log △lW) +fo, (log △lw) +fo2 (log △lW)A&A proofs: manuscript no. manuscript +Fig. E.2. Influence of a primordial CO2 atmosphere on the emergence of habitable surface conditions. Each column of plots corresponds to different +initial pressures of CO2, with each row marking planets at different orbital distances to their host star. +Article number, page 16 of 20 + +Water phase at the surface: +Frozen LiquidVapour +0.1 bar +0.5 bar +1.0 bar +2.0 bar +5.0 bar +1000 +Venus orbit +(udd) +500 +1000 +Earth orbit +500 +1000 +Mars orbit +500 +3% +-2.5 +0.0 +2.5-2.5 +0.0 +2.5-2.5 +0.0 +2.5-2.5 +0.0 +2.5-2.5 +0.0 +2.5 +fo, (log Alw) +foz (log lw) +fo2 (log △lw) +foz (log AlW) +foz (log △lw)Baumeister et al.: Redox state control on the long-term habitability of stagnant-lid planets +Parameter +Description +Value +Reference +Mantle convection +ρcr +Crust density +2900 kg m−3 +kcr +Crust thermal conductivity +3 W m−1 K−1 +km +Mantle thermal conductivity +4 W m−1 K−1 +ccr +Crust specific heat capacity +1100 J kg−1 K−1 +cm +Mantle specific heat capacity +1100 J kg−1 K−1 +cc +Core specific heat capacity +800 J kg−1 K−1 +Racrit +Critical mantle Rayleigh number +450 +A +Viscosity pre-factor +6.127 × 1010 Pa s +Tosi et al. (2017) +E∗ +Activation energy +3.35 × 105 J mol−1 +Tosi et al. (2017) +a0 +Thermal expansivity coefficient +2.68 × 10−5 K−1 +Tosi et al. (2013) +a1 +Thermal expansivity coefficient +2.77 × 10−9 K−2 +Tosi et al. (2013) +a2 +Thermal expansivity coefficient +−1.21 K +Tosi et al. (2013) +a3 +Thermal expansivity coefficient +8.63 × 10−3 GPa−1 +Tosi et al. (2013) +Melting +u0 +Convection velocity scale +2 × 10−12 m s−1 +Spohn (1991) +L +Latent heat of melting +6 × 105 J kg−1 +fp +Plume covering fraction +0.01 +Tosi et al. (2017) +fextr +Proportion of extrusive volcanism +1.0 or 0.286 +δH2O +Water partition coefficient +0.01 +Aubaud (2004) +δHPE +Partition coefficient for heat-producing +elements +0.001 +Blundy & Wood (2003) +Atmosphere & escape +A +Planetary albedo +0.3 +k0,H2 +H2 absorption coefficient +2 × 10−2 m2 kg−1 +after Pierrehumbert & Gaidos (2011) +k0,CO2 +CO2 absorption coefficient +0.05 m2 kg−1 or 0.001 m2 kg−1 +Pujol & North (2003) +k0,H2O +H2O absorption coefficient +0.01 m2 kg−1 +Abe & Matsui (1988) +bCO2 +Binary diffusion coefficient H2-CO2 +3 × 1021 m−1 s−1 +Marrero & Mason (1972) +bCO +Binary diffusion coefficient H2-CO +3 × 1021 m−1 s−1 +Marrero & Mason (1972) +bH2O +Binary diffusion coefficient H2-H2O +4.3 × 1021 m−1 s−1 +Roberts (1972) +χ0 +Interpolation: H2 mixing ratio +threshold +0.15 +w +Interpolation fall-off width +0.01 +Carbon weathering +XE +Present-day Earth mid-ocean ridge +CO2 concentration in the melt +125 ppm +Höning et al. (2019) +ξE +Proportion of Earth’s seafloor +weathering to the total weathering rate +0.15 +Foley (2015) +fE +Present-day fraction of carbonates +reaching Earth’s mantle +0.5 +Höning et al. (2019) +φE +Fraction of stable carbonates during +subduction +0.8857 +Höning et al. (2019) +PCO2,E +Present-day Earth atmospheric CO2 +pressure +4 × 10−4 bar +Höning et al. (2019) +α +Seafloor weathering scaling exponent +0.23 +Foley (2015) +Adecarb +Decarbonation constant +3.125 × 10−3 K m−1 +Foley & Smye (2018) +Bdecarb +Decarbonation constant +835.5 K +Foley & Smye (2018) +Table F.2. Main model parameters +Appendix G: Additional figures +Article number, page 17 of 20 + +A&A proofs: manuscript no. manuscript +Fig. G.1. Prevailing water state at the surface for planets with different masses and core sizes. Each plot shows the range of surface conditions for +a specific combination of planet mass (columns) and iron core size (rows), and as a function of the oxygen fugacity and initial water content of the +mantle, with the color background showing the area where the majority of neighboring data points share the same surface conditions. Similar to +Fig. 2a in the main text, each point represents a snapshot of the planetary evolution at a randomly selected planet age. The two markers depict the +initial conditions for the detailed evolutions in Fig. 1a,b (1) and 1c,d (2) in the main text. +Article number, page 18 of 20 + +Water phase at the surface: +Frozen +Liquid +Vapoul +0.5 M@ +1.0 M@ +1.5 M@ +3.0 M@ +1000 +XB,o (ppm) +750 +30% core +500 +250 +1000 +Earth-like core +750 +500 +250 +1000 +750 +70% core +500 +250 +TO +12 +12 +-2 +-2 +-2 +-2 +0 +2 +fo, (log △lw) +foz (log △lW) +fo2 (log △lW) +fo2 (log △lW)Baumeister et al.: Redox state control on the long-term habitability of stagnant-lid planets +Fig. G.2. Mass-radius range of terrestrial planets considered in this study. The color map indicates the thickness of the iron core relative to the +planet radius. +Article number, page 19 of 20 + +0.8 +1.6- +0.7 +Core radius fraction +1.4 +0.6 +1.2 +-0.5 +-0.4 +P +1.0- +0.3 +0.8 +0.2 +2 +3 +4 +5 +Planet mass (M )A&A proofs: manuscript no. manuscript +Fig. G.3. Amount of atmospheric H2 needed to keep the surface temperature at 280 K as a function of orbital distance (after Pierrehumbert +& Gaidos (2011)). Dashed lines show the results from Pierrehumbert & Gaidos (2011), solid lines show the results of our atmosphere model +assuming a hydrogen absorption coefficient of k0,H2=2 × 10−2 m2 kg−1. +Fig. G.4. Example of the composition of outgassed species as a function of oxygen fugacity. Assumed here is a 1 bar buffer atmosphere, and a +volatile content in the melt of 1000 ppm H2O and CO2, respectively, at a melt temperature of 1500 K. +Article number, page 20 of 20 + + Grey atmosphere (Our model) +for 280 K (bar) +102 +- Pierrehumbert et al. (2011) +101 +Surface pressure f +M star +G star +100 +100 +101 +Orbital distance (AU)(wdd) uo! +Ps = 1 bar +1000 +800- + concentrati +H20 +600 +CO2 +H2 +400- +CO +Outgassed +200- +0 +1 +1 +1 +-3 +-1 +0 +1 +2 +3 +fo2 (log △lW) \ No newline at end of file diff --git a/nNE1T4oBgHgl3EQf1QWH/content/tmp_files/load_file.txt b/nNE1T4oBgHgl3EQf1QWH/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9d0ba5cfa8e0576c3b40adc6438f08770e8aa06a --- /dev/null +++ b/nNE1T4oBgHgl3EQf1QWH/content/tmp_files/load_file.txt @@ -0,0 +1,1380 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf,len=1379 +page_content='Astronomy & Astrophysics manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript ©ESO 2023 January 10, 2023 Redox state and interior structure control on the long-term habitability of stagnant-lid planets Philipp Baumeister1, 2, Nicola Tosi1, Caroline Brachmann1, 3, John Lee Grenfell1, and Lena Noack3 1 Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstraße 2, D-12489 Berlin, Germany e-mail: philipp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='baumeister@dlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='de 2 Department of Astronomy and Astrophysics, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany 3 Department of Earth Sciences, Freie Universität Berlin, Malteserstr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 74-100, D-12249 Berlin, Germany Submitted December 23, 2022 ABSTRACT Aims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A major goal in the search for extraterrestrial life is the detection of liquid water on the surface of exoplanets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' On terrestrial planets, volcanic outgassing is a significant source of atmospheric and surface water and a major contributor to the long-term evolution of the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The rate of volcanism depends on the interior evolution and on numerous feedback processes between atmosphere and interior, which continuously shape atmospheric composition, pressure, and temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We present the results of a comprehensive 1D model of the coupled evolution of the interior and atmosphere of rocky exoplanets that combines central feedback processes between these two reservoirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We carried out more than 280 000 simulations over a wide range of mantle redox states and volatile content, planetary masses, interior structures and orbital distances in order to robustly assess the emergence, accumulation and preservation of surface water on rocky planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' To establish a conservative baseline of which types of planets can outgas and sustain water on their surface, we focus here on stagnant-lid planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We find that only a narrow range of the mantle redox state around the iron-wüstite buffer allows forming atmospheres that lead to long-term habitable conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At oxidizing conditions similar to those of the Earth’s mantle, most stagnant-lid planets transition into a runaway greenhouse regime akin to Venus due to strong CO2 outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At more reducing conditions, the amount of outgassed greenhouse gases is often too low to keep surface water from freezing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In addition, Mercury-like planets with large metallic cores are able to sustain habitable conditions at an extended range of orbital distances as a result of lower volcanic activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Planets and satellites: terrestrial planets – Planets and satellites: physical evolution – Planets and satellites: interiors – Planets and satellites: atmospheres – Planets and satellites: oceans – Methods: numerical 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Introduction The water inventory of a rocky planet originates from the time of formation, with water-bearing materials delivered during accre- tion onto the protoplanet (O’Brien et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Walsh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Water is brought to the surface and enters the atmosphere dur- ing the early magma ocean phase (Elkins-Tanton 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Hamano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Lebrun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Nikolaou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019) and later via volcanism throughout the lifetime of the planet (Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Godolt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Water plays an important role in both inte- rior and atmospheric processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Its presence lowers the melting temperature of rocks (Katz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2003) and their viscosity (Hirth & Kohlstedt 1996, 2004), with major implications for global- scale mantle dynamics (Nakagawa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2015), planetary evolu- tion (Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Morschhauser et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011), as well as for the emergence of plate tectonics (Peslier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In the at- mosphere, water is involved in a number of feedback processes controlling the climate, with water vapour strongly contributing to greenhouse heating (Kasting 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Catling & Kasting 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Liquid water is also an essential component in carbonate-silicate weathering processes, which help stabilize the climate over geo- logical timescales (Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Furthermore, liquid wa- ter is a crucial prerequisite for life (Westall & Brack 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Cock- ell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Volcanic outgassing links mantle and atmosphere and estab- lishes feedback loops as water and other volatiles are removed from the mantle and brought into the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The composi- tion of volcanic gases, in turn, is in large parts determined by the composition and pressure of the atmosphere (Gaillard & Scaillet 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Planetary mass and interior structure play an additional important role in shaping the rate of volcanism and interior dy- namics (Noack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Stamenkovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Many previous interior-atmosphere studies of the habitabil- ity of rocky exoplanets over geological timescales have either considered only selected feedbacks, or investigated only plan- ets with Earth-like mass and structure (Noack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Foley & Smye 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Godolt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Bower et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Kite & Barnett 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Spaargaren et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Liggins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Most parameters driving the interior evolution of rocky plan- ets, especially mantle parameters such as the redox state and ini- tial water content, are difficult to constrain and often inaccessible to observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The large size of the parameter space and the nu- merous feedbacks between interior and atmosphere require a sta- tistical approach to obtain a thorough overview over which plan- ets are the most likely to exhibit oceans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In this work, we present the results more than 280 000 coupled interior-atmosphere evo- lutions of rocky planets with different initial conditions and in- terior structures (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1) and investigate the emergence of surface water based on planet mass, age, mantle volatile content and redox state, and orbital distance to the host star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Our model combines a 1D parameterized convection model (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2) to Article number, page 1 of 20 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='03466v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='EP] 9 Jan 2023 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript simulate the mantle and core evolution of rocky planets up to 3 M⊕, as well melting and volcanic outgassing, with a gray at- mosphere model tracking the evolution of atmospheric composi- tion, pressure, and temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We focus on stagnant-lid planets in order to establish a baseline of planets that could sustain liquid water on their surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' These are less prone to sustain habitable conditions than plate-tectonics planets due to a strongly reduced recycling of volatiles into the mantle, which would otherwise favour long-term, temperate climates (Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Kast- ing et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We include a comprehensive array of feedback processes: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A speciation model to self-consistently treat the outgassing of volatile C-O-H species from surface melts (Ortenzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020) (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The final composition of outgassed volatiles depends primarily on the redox state of the melt and the current composition and pressure of the atmosphere (Sec- tion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At oxidizing conditions, the predominantly out- gassed species are H2O and CO2, while reducing conditions favor the outgassing of oxygen-poorer species, mainly H2 and CO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A simple scheme for surface water accumulation and evap- oration (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We assume the atmosphere to be fully saturated in water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Any excess water condenses to form a surface ocean or ice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A stagnant-lid CO2 weathering cycle (Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019) (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' On Earth, the long-term carbonate-silicate cy- cle is important for stabilizing the climate over geological timescales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This cycle is primarily driven by plate tectonics, which continuously recycles CO2 into the mantle via sub- duction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' On stagnant-lid planets, the cycle relies on the pro- duction of fresh crust through volcanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In the presence of liquid water, CO2 can be weathered and buried under subse- quent volcanic eruptions (Foley & Smye 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Evolution of H2 in the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' According to the evo- lution of the stellar XUV flux (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='7), H2 can be lost due to atmospheric escape (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='8) and replenished by volcanic outgassing, particularly under reducing conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Since the surface pressure and atmospheric composition play an important role in the outgassing of H2O, a thick (poten- tially primordial) atmosphere can limit the outgassing of wa- ter especially in the early, active phase of a planet’s evo- lution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In addition, H2 can act as a potent greenhouse gas via collision-induced absorption (Pierrehumbert & Gaidos 2011), which we also take into account (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Methods 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Planet interior structures The diversity in densities of low-mass exoplanets hints at a high degree of variation in interior structures (Jontof-Hutter 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We model rocky planets between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 and 3 Earth masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' While many potentially rocky exoplanets with larger masses have been observed, the large pressure gradient in planets more massive than 5-6 M⊕ can prevent melt from reaching the surface and thus impede the outgassing of volatiles (Noack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Addi- tionally, the mantle rheology and interior dynamics of massive super-Earths are poorly understood (Stamenkovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Karato 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We model the interior structure of each planet with our interior structure code TATOOINE (Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each planet consists of an iron-rich core and a silicate mantle of Earth-like composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We consider planets with core radius fractions ranging from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3 (a "Moon-like" planet) up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='7 (a "Mercury-like" planet).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' From these modeled interior structures, we calculate the average density of the core (ρc) and mantle (ρm) for use in the parameterized convection model: ρc = Mc 4/3πR3c , ρm = Mp − Mc 4/3π � R3p − R3c �, (1) where Mp and Rp are the mass and radius of the planet, and Mc and Rc are the core mass and radius, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We assume a constant gravitational acceleration g throughout the planetary mantle, with g = GMp R2p , (2) where G is the gravitational constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Figure G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 in Appendix G shows the range of investigated planets in the form of a mass-radius diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1D parameterized convection model We employ a one-dimensional (1D) parameterized convection model to simulate the thermal evolution of the mantle and core of stagnant-lid rocky planets, as well as the melting of mantle rocks and volcanic outgassing of volatiles (Stamenkovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Grott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We focus on stagnant-lid planets, since the emergence of and transition into plate tectonics is still poorly understood, and (es- pecially for exoplanets) the question of which planets are the most likely to have plate tectonics has proven controversial, with many studies giving contradicting results (O’Neill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Noack & Breuer 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Stein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Van Heck & Tackley 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Korenaga 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Valencia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' O’neill & Lenardic 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Furthermore, plate tectonics favours establishing stable, temperate climates due to the efficient recycling of volatiles into the mantle (Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' On stagnant-lid planets, this re- cycling is strongly reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In this sense, our study provides a conservative baseline to assess whether or not a planet can sustain liquid water on its surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In addition, with the excep- tion of Earth, the terrestrial planets of the Solar System are in a stagnant-lid regime at present day, and likely have been for a majority of their evolution (O’Neill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Tosi & Padovan 2021) (A direct comparison to present-day Venus can be found in the Appendix C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Partial melting occurs everywhere where the mantle temper- ature profile exceeds the solidus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The model accounts for the partitioning of incompatible trace elements (water, CO2, and ra- diogenic elements) between mantle, crust, and, in the case of volatiles, the atmosphere via volcanic outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In addition, the presence of water depresses the solidus temperature (Katz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We focus here on fully extrusive volcanism, where all the melt produced reaches the surface and is subject to out- gassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2, we discuss the impact of intrusive vol- canism on our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Once melt reaches the surface, dissolved volatiles can be outgassed into the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This process is subject to a number of limiting factors, such as the solubility of volatiles in the melt and the evolving atmosphere composition and pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We model the composition of outgassed species with a speciation model based on the chemical equilibrium of volatiles between melt and atmosphere (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We neglect an early magma ocean phase and focus here on the outgassing of water only via volcanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This provides a con- servative estimate of the total amount of water that can be ex- pected to be outgassed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' While magma ocean solidification can Article number, page 2 of 20 Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' : Redox state control on the long-term habitability of stagnant-lid planets result in the formation of a thick steam atmosphere, this would rapidly collapse to form an early ocean (Elkins-Tanton 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Le- brun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Additionally, young planets likely experience significant water loss shortly after formation due to high stellar XUV activity (Tian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In Section E, we discuss the influence of early steam and CO2 atmospheres that may follow magma ocean solidification (Lebrun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Nikolaou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A detailed description of the convection model as well as the melting and outgassing scheme can be found in the Appendices A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Outgassing speciation model We adapt the model by Ortenzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2020) to calculate the chemical speciation of volatiles within the C-O-H system during outgassing from surface melts, based on the amount of dissolved H2O and CO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We follow the approach by Holloway (1998) and Grott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2011) to calculate the concentration of CO2 in melts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We assume a sufficiently reduced mantle to allow for carbon to occur as graphite, with an oxygen fugacity fO2 ranging from -3 to +3 in log10 units above and below the IW buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The (depth- dependent) concentration of CO2 in the melt (XCO2 liq ) is then given by the concentration of carbonate (XCO32− liq ) XCO2 liq (r) = bXCO32− liq (r) 1 + (b − 1)XCO32− liq (r) (3a) XCO32− liq (r) = KIIKI fO2 1 + KIIKI fO2 , (3b) where KII and KI are equilibrium constants governing the reac- tion of forming carbonate and graphite from CO2, respectively, and b is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' KII, KI, and b are all determined appropri- ately for Hawaiian basalts (Holloway 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We calculate the melt concentration of H2O (XH2O liq ) based on a model of fractional melting as described in the Appendix B, assuming a partition co- efficient δH2O = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The solubility of H2O and CO2 is governed by melt-gas equilibrium reactions according to Iacono-Marziano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2012): H2O[fluid] + O2−[melt] −−−⇀ ↽−−− 2 OH−[melt] (4a) CO2 [fluid] + O2−[melt] −−−⇀ ↽−−− CO3 2−[melt] (4b) We assume that all of the generated CO and H2 is outgassed due to their low solubility in silicate melts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The final molar com- position of outgassed species is then governed by the following gas-gas equilibria: H2 [fluid] + 1 2 O2 −−−⇀ ↽−−− H2O[fluid] (5a) CO[fluid] + 1 2 O2 −−−⇀ ↽−−− CO2 [fluid], (5b) which can be converted to weight fractions Xi outg based on the molar mass of the magma (see Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1 in the Appendix), and ultimately into a mass rate (See eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='12) in Appendix B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We do not include CH4 in the speciation model, which starts to become relevant only at lithospheric pressures and colder tem- peratures that are not reached here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In none of the models we investigated did the outgassed CH4 concentration reach above 10−11 ppm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The rate of the gas-gas equilibrium reactions depend mainly on the melt temperature and and oxygen fugacity (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Or- tenzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Gaillard & Scaillet 2014), with the oxygen fu- gacity being dependent on the degassing pressure and tempera- ture as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We assume that all melt reaches the surface and is being subject to the current atmospheric surface pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' To de- termine the melt temperature, we calculate the volume-averaged temperature and pressure of the melt region and obtain the sur- face melt temperature by moving the melt adiabatically to the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Atmosphere model H2O and CO2 are potent greenhouse gases and can strongly modify the surface temperature of a planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' H2, while not being a strongly absorbing molecule on its own, can also act as a green- house gas through collision-induced absorption (Pierrehumbert & Gaidos 2011), which can be especially relevant for planets with hydrogen-dominated atmospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We adopt a simple two- stream radiative gray atmosphere model to calculate greenhouse heating at the surface (Catling & Kasting 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The surface temperature can be expressed in terms of the optical depth τ of the atmosphere and the equilibrium temperature Teq of the planet: Ts = Teq � 1 + τ 2 �1/4 with Teq = �(1 − A)S ⊙ 4σ �1/4 , (6) where S ⊙ is the solar insolation at the top of the atmosphere, A is the bond albedo, and σ is the Stefan-Boltzmann constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We assume an Earth-like albedo of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3 for all planets considered in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Following Abe & Matsui (1985) and Pujol & North (2003), the optical depth of the atmosphere is given by τ = � i τi = � i 3k′ iPi 2g , (7) where g is the planet gravity, Pi is the partial pressure of a given atmosphere species i, and k′ i is the extinction coefficient relative to this pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' k′ i can be expressed using the extinction coeffi- cient k0,i at standard atmospheric pressure P0 k′ i = �k0,ig 3P0 �1/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (8) In order to approximate the collision-induced absorption of H2, we choose a value of k0,H2 = 2 × 10−2 m2 kg−1, which fits well to the results of Pierrehumbert & Gaidos (2011) (see also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3 in the Appendix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A validation of our atmosphere model against a 3D climate model can be found in Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Water condensation We assume the atmosphere to be fully saturated in H2O, with any excess outgassed water condensing into a surface ocean or forming ice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This provides an upper limit for the mass of wa- ter in the atmosphere, and consequently also for the contribution of water to greenhouse heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We calculate the saturated par- tial pressure (in Pa) of H2O from the saturation vapour pressure curve by Alduchov & Eskridge (1996): Pvapour = 610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='94 exp �17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='625 (T − 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='15) T − 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1 � for T ≥ 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='15 K, (9) Article number, page 3 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript where T is the temperature in K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' If the surface temperature drops below the freezing point of water, we assume that the surface of an existing ocean would freeze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In this case, we use a vapour pressure curve from Alduchov & Eskridge (1996) defined over a plane of ice: Pice vapour = 611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='21 exp �22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='587 (T − 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='15) T + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='71 � for T < 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='15 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (10) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Carbon weathering cycle On Earth, the long-term carbon-silicate cycle is an important process to stabilize the climate over geological time-scales (Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This cycle is primarily driven by plate tec- tonics, where CO2 can be continuously recycled into the man- tle with subducting plates and fresh crust constantly produced at mid-ocean ridges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Stagnant-lid planets, on the other hand, do not have subducting plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A carbon cycle on these planets relies on the continuous production of new crust through hot-spot volcan- ism, which can be weathered in the presence of liquid water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The carbonated crust may then be buried by subsequent volcanic eruptions, sinking downward in the mantle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The rate of weath- ering is therefore closely coupled to the crust production rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We follow the model by Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2019), assuming that the rate of CO2 weathering depends on the partial pressure of CO2 in the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We additionally assume that all newly formed crust is subject to weathering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The weathering rate Φw can then be expressed as a function of the crustal growth rate dMcr dt and the partial CO2 pressure in the atmosphere PCO2, and scaled to the seafloor weathering rate on Earth (for more details, see Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019): Φw = XEξE fEφE �dMcr dt � � PCO2 PCO2,E �α , (11) where α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='23 is a scaling exponent, and PCO2,E = 4 × 10−4 bar is the present-day partial pressure of CO2 in Earth’s atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The other parameters are factors scaling the weathering rate to the observed present-day seafloor weathering rate on Earth: Xe is the present-day Earth mid-ocean ridge CO2 concentration in the melt, ξE is the proportion of seafloor weathering to the total weathering rate on Earth, fE is the present-day fraction of car- bonates that are recycled back into Earth’s mantle, and φE is the fraction of carbonates that remain stable during subduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Carbonates are stable only up to a certain pressure-dependent temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Once the sinking carbonated crust reaches this tem- perature, it undergoes decarbonation and releases its CO2, which will rise through cracks in the crust and eventually return to the atmosphere (Foley & Smye 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This means that in contrast to plate tectonics, CO2 is generally not recycled back into the mantle in the stagnant lid regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We cal- culate the depth zdecarb at which decarbonation occurs following Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2019): zdecarb = Ts − Bdecarb Adecarb − Tm−Ts Dl+du , (12) where Adecarb = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='125 × 10−3 K m−1 and Bdecarb = 835.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 K are constants related to the decarbonation temperature (Foley & Smye 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' During the evolution of the planet, our model continuously tracks the depth of the previously weathered crustal layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Once the decarbonation depth is reached, the carbon content of the layer is released as CO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' To avoid numerical instabilities, the released CO2 is first stored in a temporary volatile buffer, which releases 10% of its CO2 content into the atmosphere at every time step (see also Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Carbon weathering requires the presence of liquid water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Therefore, we set the weathering rate to zero if either no sur- face water is present, or if the surface temperature lies below the freezing point of water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' For the latter, this means that any exist- ing ocean in our model will freeze over so that little exchange of CO2 with the ocean is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Nevertheless, in both cases the burying of previously formed carbonates as well as decarbona- tion continue as long as there is active volcanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Stellar evolution We focus on planets around G-type stars with one solar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We account for an increasing stellar insolation S ⊙ over the lifetime of the host star by using the parameterization by Gough (1981), S ⊙(t) = S ⊙,0 � 1 + 2 5 � 1 − t t0 ��−1 , (13) where S ⊙,0 is the insolation at the planet at present day t0 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Gyrs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In order to model atmospheric escape processes, we follow Owen & Wu (2017) for a parametrization of the stellar XUV flux evolution: FXUV(t) = ����������� Fsat for t < tsat Fsat � t tsat �−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 for t ≥ tsat with Fsat = 10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5S ⊙,0, (14) with a saturation timescale of tsat = 100 Myrs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Atmospheric escape To model the transition from a primary H2 to a secondary out- gassed atmosphere and to treat the loss of later outgassed H2, we consider hydrodynamic escape of H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' For hydrogen-dominated atmospheres, the maximum rate at which hydrogen can escape is limited by the amount of energy from XUV radiation that the at- mosphere can absorb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The energy-limited mass-loss rate is given by ˙Mel = επRpR2 atmFXUV GMp , (15) where ε is an efficiency factor we here take to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='15 following Kite & Barnett (2020), and Ratm is the planet radius at the top of the atmosphere, which we define at 20 mbar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In the case of hydrogen existing as a minor atmospheric com- ponent within a background of heavier species, the loss of hy- drogen is limited by the rate at which it can be supplied from the lower parts of the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This diffusion-limited escape provides an upper limit to hydrodynamic escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The diffusion- limited mass loss rate can be expressed as ˙Mdl = 4πR2 atm mH2 NA ba jχH2 � 1 Ha − 1 HH2 � , (16) where mH2 is the molar mass of molecular hydrogen, NA is Avo- gadro’s number, and χH2 is the molar mixing ratio of hydrogen Article number, page 4 of 20 Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' : Redox state control on the long-term habitability of stagnant-lid planets in the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' HH2 and Ha are the unperturbed scale heights of H2 and the background gas respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' baj is the binary dif- fusion coefficient between the escaping H2 and the heavier back- ground gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In our case, the background gas consists of varying amounts of CO2, CO, and H2O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We calculate baj as the sum of the respective binary diffusion coefficients bCO2, bCO, and bH2O, weighted by their relative mixing ratios: ba j = χa,CO2bCO2 + χa,CObCO + χa,H2ObH2O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (17) Here, χa,CO2 = 3 × 1021 m−1 s−1, χa,CO = 3 × 1021 m−1 s−1, and χa,H2O = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3 × 1021 m−1 s−1 are the mixing ratios of CO2, CO, and H2O in the heavier background gas and in the absence of hydrogen (See also Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 in the Appendix for references).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The transition from energy-limited to diffusion-limited es- cape, and thus from a hydrogen-dominated to a secondary at- mosphere, is currently not well understood and requires the use of detailed hydrodynamical models (Owen 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Zahnle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019) which are out of the scope of this work, espe- cially since volcanic outgassing continuously changes the atmo- spheric composition, which can make the hydrodynamical treat- ment challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Here, we opt for smoothly interpolating be- tween energy-limited and diffusion-limited mass loss rates for intermediate H2 fractions, with the interpolated mass loss rate given by ˙Mloss = fel ˙Mel + (1 − fel) ˙Mdl, (18) where the contribution of energy-limited escape fel is given by a logistic function (see also e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Kite & Barnett 2020): fel(χH2) = � 1 + exp � −χH2 − χ0 w ��−1 , (19) centered at a H2 mixing ratio of χ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='15 and a horizontal scal- ing w = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' These parameters are chosen to account for a tran- sition from purely energy-limited escape starting at a hydrogen mixing ratio of 20% to a purely diffusion-limited escape at a mixing ratio of 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We do not consider the photodissociation of water in the up- per atmosphere and the subsequent loss of hydrogen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Signifi- cant water loss will occur once large amounts of water reach the stratosphere, which mainly occurs in planets undergoing a run- away greenhouse regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' On habitable planets, which are the main focus of this study, the tropopause "cold trap" prevents sig- nificant amounts of water vapour from reaching the stratosphere (Catling & Kasting 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Investigated parameters and initial conditions We adopt a Monte-Carlo sampling approach to model an entire population of planets where the initial conditions for each planet are set to random values within given ranges (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' with a uni- form distribution).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We compute the thermal evolution for a set of ≈ 280 000 initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each evolution is run up to 8 Gyrs to cover a wide range of potentially observable planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We stop the evolution earlier if the surface temperature exceeds1500 K, at which point the surface rocks would be close to melting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In or- der to simulate the observation of planets with different ages, we select snapshots of the evolution at up to five randomly chosen times after 100 Myrs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' For models which finished earlier (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' be- cause the surface temperature has risen too high), we select fewer snapshots accordingly to ensure a balanced sample of planet ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This results in a final data set size of ≈ 1 000 000 plan- ets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We vary the initial water concentration in the mantle XH2O m,0 between 100 and 1000 ppm, corresponding to relatively dry and wet conditions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We allow the mantle oxygen fugac- ity to vary between three log10 units below and above the iron- wüstite buffer (IW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each planet in the parameter study is placed at a fixed dis- tance to its (Sun-like) host star, ranging from a Venus-like orbit (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='723 au) to a Mars-like orbit (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='524 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In addition, we set the mass of each planet between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 and 3 M⊕ and allow for varied interior structures, where the radius of the core can vary between 30 and 70% of the planet radius (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We fix the initial mantle temperature Tm,0 at 1700 K and prescribe an initial tem- perature jump of 200 K at the CMB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The main model parameters used in our study are given in Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Results 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Characteristic planet evolutions Figure 1 demonstrates the characteristic atmospheric evolution for two planets with one Earth mass and either an Earth-like in- terior structure (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1a and 1b) or a large, Mercury-like core which makes up 70% of the interior (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1c and 1d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Both plan- ets are located at 1 au and the initial parameters are the same for both (log fO2 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='05 IW, XH2O m,0 = 250 ppm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' These parame- ters are in the range that allows establishing prolonged habitable conditions for the Mercury-like planet, but ultimately causes the Earth-like planet to transition into a runaway greenhouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In both cases, an outgassed atmosphere of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1–1 bar is quickly built up within the first hundred million years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Due to the relatively reducing conditions of the mantle, this initial at- mosphere consist mainly of CO, H2, and CO2 (1b and 1d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The surface temperature is initially too low to allow for liquid wa- ter (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1a and 1c), but rises quickly due to the accumulation of greenhouse gasses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Once the surface temperature exceeds the freezing point of water, the carbonate-silicate weathering cycle becomes active and is sufficiently strong to counteract the rate of CO2 outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This keeps the surface temperature close to, but nevertheless above, the freezing point of water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The level of atmospheric H2 remains relatively stable due to continuous out- gassing supply and simultaneous loss from the top of the atmo- sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Stagnant-lid planets lack an efficient long-term CO2 sink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' While the weathering cycle can temporarily remove CO2 from the atmosphere, the slow sinking of carbonated crust does not allow recycling of carbonates into the mantle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' For the planet with the Earth-like interior, at around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Gyr, the crust is sat- urated in carbonates up to the decarbonation depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Any addi- tional surface weathering leads to subsequent crust decarbona- tion at depth, which transfers CO2 back into the atmosphere (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='6 and Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2019)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This renders CO2 weath- ering largely ineffective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' CO2 can accumulate in the atmosphere, driving the surface temperature up (in addition to the increas- ing luminosity of the star), which in turn allows more water to enter the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' After a 2 Gyr-long habitable phase, this eventually triggers a runaway greenhouse, and the entire water reservoir evaporates to form a thick steam atmosphere of around 45 bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At this point, the evolution of this planet does not exhibit any qualitative change since we do not consider water loss from steam atmospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The pressure is too high for much additional CO2 to be outgassed, so little atmospheric evolution is possible at this pont.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Some part of the steam atmosphere would be lost via photodissociation, which would allow for more CO2 outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Article number, page 5 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Characteristic evolutions of the atmosphere temperature and pressure of an Earth-mass planet at 1 au with an Earth-like (a and b) or a Mercury-like (c and d) interior structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The colored background marks the state of water at the planet’s surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Both planets start with the same mantle water content of 250 ppm and an oxygen fugacity of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='05 log10 units above the IW buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Panels (a,b) and (c,d) correspond respectively to the points 1 and 2 marked in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This planet would likely end up with a thick, Venus-like CO2 atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The evolution of the atmosphere is different in the case of the Mercury-like planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The steep pressure gradient of the melting temperature due to the higher gravity compared to the Earth- like case leads to a lower volcanic activity (see Noack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017), which stops completely at around 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Gyr as the core and mantle have cooled to temperatures that no longer make melt- ing possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Without volcanism, no volatiles are outgassed into the atmosphere, and the remaining H2 is quickly lost due to at- mospheric escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Likewise, no CO2 is removed by weathering since this depends on fresh basaltic rock delivered by volcan- ism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Over time, more water vapour enters into the atmosphere as a result of the rising surface temperature due to the increasing lu- minosity of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' However, even at 8 Gyr, the planet remains habitable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Role of redox state on habitability In this section, we focus on Earth-mass planets with Earth-like interior structures orbiting a Sun-like star at 1 au, with the effects of orbital distance, interior structure and planet being detailed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We find that the mantle redox state and initial water con- tent are the two main factors limiting the emergence of habitable conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Only a narrow range of these two parameters yields long-term stable habitable conditions (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We can iden- tify well-defined populations of planets with characteristic evo- lutions of surface habitability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At oxidizing conditions above the iron-wüstite (IW) buffer, the majority of planets are in a Venus- like runaway greenhouse regime with surface temperatures ex- ceeding 400 K (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At reducing conditions, one to two log10 units below the IW buffer, most planets with dry mantles have surface temperatures below the freezing point of water, whereas planets with wet mantles (initial mantle water content exceeding ∼500 ppm) are in a runaway greenhouse state now caused by strong H2 outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Only in a narrow range of slightly reduced mantles, conditions are just right for liquid water to be stable at the surface over long time spans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The surface temperature and the partial pressure of water in the atmosphere are the main factors determining if water can be outgassed and remain liquid on a planet’s surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The partial pressure of water in turn strongly depends on temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At cool temperatures, most of the outgassed water is in the form of oceans or ice, with only small amounts in the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At higher temperatures, more and more water vapour can be main- tained in the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Since water is a strong greenhouse gas, this acts as a positive feedback, where rising surface tempera- tures cause more water to evaporate (Catling & Kasting 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A rise in surface temperature can be caused by an increase of CO2 or H2 and, on longer timescales, an increase in solar luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The outgassing of the greenhouse gases CO2 and H2 therefore predominantly shape the evolution of the surface temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Outgassing rates depend on the amount of melting in the interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Water in the mantle decreases melting temperatures and viscosity, thus wetter mantles experience more melting and cause more volcanic activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The oxygen fugacity shapes the composition of outgassed species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At oxygen fugacities above the IW buffer, the main outgassed species are CO2 and H2O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At reducing mantle conditions, on the other hand, outgassing is dominated by the oxygen-poor species H2 and CO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Increasing amounts of either CO2 or H2 in the atmosphere eventually push the planet into a runaway greenhouse regime, where any existing surface water quickly evaporates to form a H2O-rich atmosphere preventing further water outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Strong CO2 outgassing dominates on planets with an oxy- gen fugacity more than one log10 above the IW buffer, which enter a runaway greenhouse state within the first billion year of their evolution (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Planets closer to the IW buffer may exhibit a short habitable phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' H2 becomes the dominant out- Article number, page 6 of 20 Water phase at the surface: Liquid Vapour Frozen Earth-like interior structure Mercury-like interior structure 900 900 Ts a c 800 temperature 800 rature Tea e 350 350 dw Weathering cycle Weathering cycle ter stabilizes climate 300 stabilizes climate 300 Surface Surface 250 250 End of volcanic activity 102 102 pressure (bar) (bar) d 0 Total 101 101 CO2 pressure ( 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' H20 100 CO 101 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1 Oceans evaporate H2 Surface I Surface I 10-2 10-2 Water evaporation due to increase in stellar luminosity 3 Crust is saturated 10 in carbonates, CO2 builds up End of volcanic activity 10-4 10-4 0 1000 2000 ¥4000 2000 7000 8000 3000 5000 6000 7000 8000 0 1000 3000 4000 5000 6000 Time (Myrs) Time (Myrs)Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' : Redox state control on the long-term habitability of stagnant-lid planets Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' States of a stagnant-lid Earth as a function of the mantle oxygen fugacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each point represents a snapshot of the planetary evolution at a randomly selected planet age between 100 Myr and 8 Gyr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The colored points in panel a show the prevailing water phase at the surface as a function of the oxygen fugacity ( fO2) and initial water content of the mantle (X0 H2O).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The color background shows the area where the majority of neighboring data points share the same surface conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In panels b–d, points are colored according to the greenhouse gas that contributes most to surface heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Panel b shows the surface temperature, panel c shows the total mass of outgassed water, and panel d shows the total mass of CO2 removed from the atmosphere via weathering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' gassed greenhouse gas at an oxygen fugacity around one log10 below the IW buffer (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4 in the Appendix and Or- tenzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2020)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' H2 in the atmosphere is steadily lost due to atmospheric escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Its presence in the atmosphere is therefore maintained only by a continuous replenishment from volcanic outgassing (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1b), and H2 only builds up in the atmosphere if the rate of outgassing outweighs the rate of escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We find that planets with significant H2 outgassing may enter a runaway greenhouse as well, specifically those with water-rich mantles for which outgassing rates of H2 are high (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2a-b, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' H2 can build up faster on planets at high orbital distances, where atmospheric loss is less severe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' These planets are more likely to undergo an H2-induced runaway greenhouse as a result (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Habitable conditions occur in the transition regime between CO2- and H2-dominated outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Here, the combination of CO2 and H2 keeps the surface temperature above the freezing point of water, but a runaway is prevented by weathering of ex- cess CO2 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2d) and continuous loss of H2 from the top of the atmosphere, both working to keep the climate stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Significant amounts of water can be outgassed at these conditions (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Planets with very reduced, dry mantles can sustain habitable sur- face conditions for several billions of years even at the orbit of Venus, albeit with very thin atmospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Effect of interior structure and planet mass Planet mass and the size of the iron core are additional important factors influencing the amount and lifetime of volcanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Plan- ets with large cores tend to undergo less partial melting due to larger hydrostatic pressure gradients in the mantle, which pre- vent melt from reaching the surface (Noack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Fur- thermore, the mantles of planets with large cores cool efficiently (Noack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017), which reduces the time a planet is volcani- cally active (as already shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1c and 1d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This prevents a runaway greenhouse in many cases and allows habitable plan- ets at a wider range of orbital distances, mantle water contents and oxygen fugacities (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Due to the lower outgassing rates, however, in many cases the surface remains frozen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' By contrast, planets with small cores show strong, long-lasting volcanic ac- tivity, which limits the potential to develop habitable conditions (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The same applies to planets with higher mass, where the higher mantle volume supports long-lived volcanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' For very thick mantles however, the viscosity of the deepest mantle can become so large that a non-convective, stagnant region is formed (Stamenkovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2012), shrinking the active, convective part of the mantle (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' the case of 3 M⊕, 30% core shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1 in the Appendix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' With respect to outgassing, this resembles the behavior of a smaller planet with a larger core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Article number, page 7 of 20 900 H2-induced C02-induced a runaway greenhouse runaway greenhouse 700 Water phase at the surface: 500 Frozen Liquid 300 Vapour 100 b 1200 - CO2-induced 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' H2-induced runaway greenhouse K 800- 600 Main greenhouse gas CO2 400 H20 H2 200 Outgassed water C 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='75- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='50- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='00 Weathered CO2 d 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5- kg) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5- 0 3 0 2 3 fo2 (log △lW)A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Evolution of habitable conditions of a stagnant-lid Earth at dif- ferent orbital distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each row depicts the evolution of surface con- ditions of a planet with Earth mass and core size at the orbit of Venus (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='723 au), Earth (1 au) and Mars (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='524 au), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each plot shows the prevailing surface conditions for water as a function of the oxygen fugacity and initial water content of the mantle, with the color background showing the area where the majority of neighboring data points share the same surface conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2a, each point represents a snapshot of the evolution at a randomly selected planet age within the given age range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The marker in the middle row marks the evolution shown in detail in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1a,b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Prevailing water state at the surface for Earth-mass planets with different core sizes at different orbital distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each plot shows the range of surface conditions for a specific combination of iron core size (rows) at a fixed orbital distance (columns), and as a function of the oxygen fugacity and initial water content of the mantle, with the color background showing the area where the majority of neighboring data points share the same surface conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2a, each point represents a snapshot of the planetary evolution at a randomly selected planet age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The two markers depict the initial conditions for the detailed evolutions in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1a,b (1) and 1c,d (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Planetary evolution pathways We find that distinct pathways exist for the evolution of a rocky, stagnant-lid planet (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 5), depending on the make-up of its mantle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' If the planet’s surface temperature remains low (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' the planet orbits far enough away from its host star), outgassed water can start condensing and accumulating on the surface as ice or in liquid form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' If CO2 outgassing is strong early on (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' for planets with oxidized mantles), this will quickly result in atmospheric pressures unsuitable for water outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The planet ends up with a thick, CO2-rich atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' By contrast, with weak CO2 outgassing, the planet can accumulate large amounts of water vapour, which will rapidly condense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Further CO2 outgassing can eventually push these planets into a runaway greenhouse regime, where the entire ocean evaporates to form a hot steam atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In planets with wet mantles and reducing condi- tions, outgassing of H2 can achieve the same effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The nature of stagnant-lid planets does not permit a long-term removal of CO2, preventing a return to habitable conditions even if all wa- ter vapour in the atmosphere was lost (a mechanism that we do not model here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Planets can stay in the habitable regime if the outgassing rates of greenhouse gases remain low over the vol- canic lifetime of the planet, but high enough to keep the surface from freezing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This is the case for planets with oxygen fugaci- ties around the IW buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Planets with dry, reduced mantles may never advance from a frozen state due to limited outgassing of H2 and CO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The presence of primordial atmospheres can reduce the range of habitable conditions even further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Substantial H2 at- mospheres may not be lost quickly enough through atmospheric escape to allow the emergence of habitable surface conditions (Section D in the Appendix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' While pure steam atmospheres col- lapse quickly into an ocean, the presence of enough CO2 in a primordial atmosphere can strongly limit the range of interior conditions which yield habitable planets (Section E in the Ap- pendix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Sensitivity to model parameters We tested the model sensitivity with respect to changing a few key parameters to confirm the robustness of the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 6 summarizes this sensitivity analysis for planets with one Earth- mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Influence of CO2 absorption coefficient Though the value of the CO2 absorption coefficient k0,CO2 we use (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='05 m2 kg−1) is fitted to reproduce the present-day Earth climate sensitivity (Pujol & North 2003), which describes the response of Earth’s climate to a doubling in CO2, other values have been used in the literature (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Elkins-Tanton 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Since the amount of greenhouse heating of CO2 plays an important role for habitability, we tested the sensitivity of the model to a reduction of k0,CO2 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='001 m2 kg−1, which is generally used in magma ocean atmosphere modeling (Nikolaou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Elkins-Tanton 2008) and thus provides us with a lower bound on the greenhouse heating from CO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5b, this slightly extends the range of habitable planets towards more ox- idizing conditions, as larger amounts of CO2 are needed to put the planet into a runaway greenhouse regime due to the lower efficiency of heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Overall, the influence of the absorption co- efficient is fairly minor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Article number, page 8 of 20 Water phase at the surface: Frozen Liquid Vapoul <1 Gyrs 1-2 Gyrs 2-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Gyrs >4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Gyrs 1000 Venus orbit (udd) 750 500 250- 1000 (udd) Earth orbit 750 500 38% 250 1000 750 Mars orbit 500 250 - 2-10 1 2-10 2 -10 1 2 -1 0 1 2 1 2 2 2 fo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (log △lw) fo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (log △lw) fo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (log △lw) fo2 (log △lW)Water phase at the surface: IFrozen Liquid Vapour Venus orbit Earth orbit Mars orbit 1000 750 30% core 500 250 1000 Earth-like core 750 500 250 1000 750 70% core 500 250 0 2 2 2 0 2 2 0 2 fo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (log △lw) fo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (log Alw) fo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (log Alw)Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' : Redox state control on the long-term habitability of stagnant-lid planets Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Evolutionary tracks of water outgassing on stagnant-lid planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The arrows illustrate potential pathways on which a planet may evolve over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Only planets with a non-zero amount of water outgassing are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The points represent Earth-mass planets with cores sizes ranging from 30% to 70% of the planet’s radius at randomly selected times in their evolution, with the color showing the redox state of the mantle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Influence of ratio of intrusive/extrusive volcanism In the models presented so far, we assumed that all melt pro- duced in the mantle reaches the surface of the planet where the supersaturated volatile species are outgassed into the atmo- sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' However, in general a large part of the magma pro- duced at depth is expected to be intrusive (White et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2006), where melt crystallizes within or at the base of existing crust, thus reducing the amount of volatiles that reach the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The amount of extrusive volcanism is difficult to constrain and can vary based on location, crust porosity and lithospheric thickness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' To model the impact of reduced extrusive volcanism, we run a model study for an intrusive-to-extrusive ratio of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 (Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017), corresponding to fextr ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 6c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Similar to section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1, the presence of intrusive volcanism extends the range of habitable planets to more oxidizing con- ditions to a small degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' With intrusive volcanism, the rate of outgassing is reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This primarily reduces the rate at which greenhouse gasses, specifically CO2, build up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Therefore, more CO2 can be outgassed until the planet transitions into a runaway greenhouse, which allows the planets to be habitable at more ox- idizing conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Discussion and conclusions The structure and composition of the interior are fundamental factors to determine whether a planet can be habitable or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The mantle redox state in particular strongly constrains the space of potentially habitable planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In general, it is difficult for plan- ets with stagnant lids to remain habitable because of the limited number of pathways available to permanently remove outgassed CO2 from the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In fact, CO2 tends to accumulate and heat the planet up until the atmosphere enters a runaway green- house.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We model the (temporary) removal of CO2 via silicate Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Influence of changing the CO2 absorption coefficient and intro- ducing intrusive volcanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The reference model here is the same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' weathering, which is active only in the presence of liquid water, thus placing further limits on the removal of CO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Additional CO2 could be lost via hydrodynamic escape of hydrogen (Tian 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Hunten et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1987) or through photodissociation in the upper atmosphere, processes we do not model here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Stagnant-lid planets are common in the Solar System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Earth alone is in a plate tectonic regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' If this trend holds also for rocky exoplanets, we would expect a large number of those to more closely resem- ble Venus than Earth, with hot, dense atmospheres even if they reside in the habitable zone of their host star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Our simple atmosphere model cannot capture the full com- plexity of a planetary atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' With a more sophisticated at- mospheric model (Scheucher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Wunderlich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Kaspi & Showman 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Schreier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014), the surface tem- perature would likely differ to some extent from the one cal- culated here, thus affecting both the habitability of planets as well as the critical amount of CO2 or H2 at which the planet transitions into a runaway greenhouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' However, as discussed above, the main driver for the accumulation of surface water is the outgassing rate of CO2 and H2, which is mainly a func- tion of the planetary interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We note here that the outgassing rates are subject to the composition of the atmosphere, which may be different from the outgassed species due to atmospheric chemistry which we do not take into account here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' However, the solubilities of both CO2 and H2 in the melt are very low and therefore these two species are least affected by partial pressures during outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' As such, while a difference in surface tem- perature could change the exact values of oxygen fugacities and water concentration in the mantle which yield habitable condi- tions, the general relations described above would still hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' As seen in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1, even a drastically reduced IR absorption coefficient of CO2 has only a small effect upon the proportions of planets with surface water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Here we considered the internal structure of a planet to be independent from its redox state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Yet, the latter and the size of the metallic core may well evolve jointly, based on the lo- cal oxidation level of the protoplanetary disk during formation, on the conditions of metal-silicate differentiation, and on the subsequent evolution of the magma ocean, complex processes whose mutual relations are still to be fully unraveled (Wade & Wood 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Frost & McCammon 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Arm- strong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Planets with deep magma oceans may de- velop rather oxidizing mantles (Deng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020), which would be less favored to develop long-term habitable conditions based on our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In fact, our results indicate that a stagnant-lid Earth or Venus, having more oxiding conditions, will always enter a runaway greenhouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In contrast,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' low-mass planets with large iron cores would likely have more reducing conditions due Article number,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' page 9 of 20 3 1400 2 fo (log △/W) 1200 0 CO2-induced Surface temperature (K) 2 runaway greenhouse 000 3 C 800 Wet mantles Strong H2 outgassing Continuous CO2 outgassing 600 ++ ++ + 400 Habitable conditions 273 Frozen surface Low co,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' outgassing 200 10-5 10-4 10-3 10-2 10-1 100 Outgassed water (Earth oceans)Water phase at the surface: Frozen Liquid Vapour With intrusive volcanism Reference mode Lower CO2 absorption 1000 a b C 800 - (udd) 600 400: 200- T2 0 2 2 0 2 2 2 0 fo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (log △lw) fo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (log △lW) fo2 (log △lw)A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript to more shallow magma oceans, which in turn would strongly favor long-term habitable conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Liggins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2022) show that the mantle redox state imposes characteristic atmospheric compositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The atmospheric composition of such planets is therefore potentially detectable in exoplanets in the near-future through spectroscopic observations with instruments such as JWST (Greene et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2016), where we predict that planets which are habitable in our models should be generally characterised by reduced atmospheric compositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The unambiguous direct detection of an exoplanetary ocean is a challenging prospect, re- lying on direct imaging (Lustig-Yaeger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018), and is there- fore likely limited to only a few planets in the forseeable future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Promising first targets would therefore be small, dense exoplan- ets, which may offer the best chances in the pursuit to find plan- ets capable of hosting liquid water at their surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' References Abe, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Matsui, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1985, Lunar and Planetary Science Conference Proceed- ings, 90, C545 Abe, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Matsui, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1988, Journal of Atmospheric Sciences, 45, 3081 Agee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2008, Earth and Planetary Science Letters, 265, 641 Alduchov, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Eskridge, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1996, Journal of Applied Meteorology and Climatology, 35, 601 Armstrong, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Frost, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', McCammon, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Rubie, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Boffa Ballaran, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019, Science, 365, 903 Aubaud, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2004, Geophysical Research Letters, 31, L20611 Baumeister, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Padovan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Tosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020, The Astrophysical Journal, 889, 42 Blundy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Wood, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2003, Earth and Planetary Science Letters, 210, 383 Bower, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Kitzmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Wolf, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019, Astronomy & Astrophysics, 631, A103 Catling, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Kasting, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017, Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge, United Kingdom: Cambridge University Press) Cockell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Bush, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Bryce, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2016, Astrobiology, 16, 89 Deng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Du, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Karki, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Ghosh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020, Nature Communications, 11, 2007 Elkins-Tanton, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2008, Earth and Planetary Science Letters, 271, 181 Elkins-Tanton, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011, Astrophys Space Sci, 6 Fei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Ahrens, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1995, Mineral physics and crystallography: a handbook of physical constants, 2, 29 Foley, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2015, The Astrophysical Journal, 812, 36 Foley, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Smye, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018, Astrobiology, 18, 873 Frost, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & McCammon, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2008, Annual Review of Earth and Planetary Sciences, 36, 389 Gaillard, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Scaillet, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014, Earth and Planetary Science Letters, 403, 307 Godolt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Tosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Stracke, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019, Astronomy & Astrophysics, 625, A12 Gough, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1981, Solar Physics, 74, 21 Grasset, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Parmentier, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1998, Journal of Geophysical Research: Solid Earth, 103, 18171 Greene, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Line, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Montero, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2016, The Astrophysical Journal, 817, 17 Grott, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Morschhauser, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Breuer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Hauber, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011, Earth and Planetary Science Letters, 308, 391 Hamano, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Abe, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Genda, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2013, Nature, 497, 607 Hirth, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Kohlstedt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2004, in Inside the Subduction Factory (American Geophysical Union (AGU)), 83–105 Hirth, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Kohlstedt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1996, Earth and Planetary Science Letters, 144, 93 Holloway, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1998, Chemical Geology, 147, 89 Höning, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Baumeister, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Grenfell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Tosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Way, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2021, Journal of Geophysical Research: Planets, 126 Höning, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Tosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Spohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019, Astronomy & Astrophysics, 627, A48 Howe, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Adams, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Meyer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020, The Astrophysical Journal, 894, 130 Hunten, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Pepin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Walker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1987, Icarus, 69, 532 Iacono-Marziano, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Morizet, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Le Trong, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Gaillard, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2012, Geochimica et Cosmochimica Acta, 97, 1 Jontof-Hutter, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019, Annual Review of Earth and Planetary Sciences, 47, 141 Karato, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='-i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011, Icarus, 212, 14 Kaspi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Showman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2015, The Astrophysical Journal, 804, 60 Kasting, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1988, Icarus, 74, 472 Kasting, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Whitmire, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Reynolds, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1993, Icarus, 101, 108 Katz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Spiegelman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Langmuir, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2003, Geochemistry, Geo- physics, Geosystems, 4, n/a Kite, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Barnett, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020, Proceedings of the National Academy of Sciences, 117, 18264 Korenaga, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2010, The Astrophysical Journal Letters, 725, L43 Krissansen-Totton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Galloway, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Wogan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Dhaliwal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Fortney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2021, The Astrophysical Journal, 913, 107 Lammer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Stökl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Erkaev, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014, Monthly Notices of the Royal Astronomical Society, 439, 3225 Lebrun, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Massol, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', ChassefièRe, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2013, Journal of Geophysical Re- search (Planets), 118, 1155 Liggins, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Jordan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Rimmer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Shorttle, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2022, Journal of Geophys- ical Research: Planets, 127 Lustig-Yaeger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Meadows, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Tovar Mendoza, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018, The Astro- nomical Journal, 156, 301 Marrero, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Mason, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1972, Journal of Physical and Chemical Refer- ence Data, 1, 3 McDonough, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Sun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1995, Chemical geology, 120, 223 Miyagoshi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Kameyama, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Ogawa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018, Earth, Planets and Space, 70, 200 Morschhauser, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Grott, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Breuer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011, Icarus, 212, 541 Nakagawa, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Nakakuki, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Iwamori, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2015, Geochemistry, Geophysics, Geosystems, 16, 1449 Nikolaou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Katyal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Tosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019, The Astrophysical Journal, 875, 11 Noack, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Breuer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014, Planetary and Space Science, 98, 41 Noack, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Godolt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', von Paris, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014, Planetary and Space Science, 98, 14 Noack, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Höning, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Rivoldini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2016, Icarus, 277, 215 Noack, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Rivoldini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Van Hoolst, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017, Physics of the Earth and Plan- etary Interiors, 269, 40 O’Brien, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Izidoro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Jacobson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Raymond, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Rubie, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018, Space Science Reviews, 214, 47 O’Neill, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Jellinek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Lenardic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2007, Earth and Planetary Science Let- ters, 261, 20 O’neill, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Lenardic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2007, Geophysical Research Letters, 34 O’Neill, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Lenardic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Weller, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2016, Physics of the Earth and Plan- etary Interiors, 255, 80 Ortenzi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Noack, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Sohl, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020, Scientific Reports, 10, 10907 Owen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019, Annual Review of Earth and Planetary Sciences, 47, 67 Owen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017, The Astrophysical Journal, 847, 29 Peslier, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Schönbächler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Busemann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Karato, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017, Space Science Reviews, 212, 743 Pierrehumbert, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Gaidos, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011, The Astrophysical Journal, 734, L13 Pujol, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & North, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2003, Tellus A: Dynamic Meteorology and Oceanogra- phy, 55, 328 Reese, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Solomatov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Baumgardner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2005, Physics of the Earth and Planetary Interiors, 149, 361 Roberts, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1972, in American Institute of Physics Handbook, 3rd edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Gray (New York, [.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=']: McGraw-Hill), 249–252 Scheucher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Wunderlich, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Grenfell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020, The Astrophysical Journal, 898, 44 Schreier, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Gimeno García, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Hedelt, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014, Journal of Quantitative Spectroscopy and Radiative Transfer, 137, 29 Spaargaren, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Ballmer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Bower, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Dorn, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Tackley, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020, Astronomy & Astrophysics, 643, A44 Spohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1991, Icarus, 90, 222 Stamenkovi´c, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Breuer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Spohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011, Icarus, 216, 572 Stamenkovi´c, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Noack, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Breuer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Spohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2012, The Astrophysical Journal, 748, 41 Stein, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Lowman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Hansen, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2013, Earth and Planetary Science Letters, 361, 448 Tian, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2015, Earth and Planetary Science Letters, 432, 126 Tian, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Güdel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Johnstone, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018, Space Science Reviews, 214, 65 Tosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Godolt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Stracke, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017, Astronomy & Astrophysics, 605, A71 Tosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Padovan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2021, Mercury, Moon, Mars: Surface expression of man- tle convection and interior evolution of stagnant-lid bodies (American Geo- physical Union (AGU)), 455–489 Tosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Yuen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', de Koker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Wentzcovitch, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2013, Physics of the Earth and Planetary Interiors, 217, 48 Valencia, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', O’connell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Sasselov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2007, The Astrophysical Journal Letters, 670, L45 Van Heck, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Tackley, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011, Earth and Planetary Science Letters, 310, 252 Wade, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Wood, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2005, Earth and Planetary Science Letters, 236, 78 Walker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Hays, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Kasting, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1981, Journal of Geophysical Research: Oceans, 86, 9776 Walsh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Raymond, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', O’Brien, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Mandell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2011, Nature, 475, 206 Westall, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' & Brack, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018, Space Science Reviews, 214, 50 White, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Crisp, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Spera, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2006, Geochemistry, Geophysics, Geosystems, 7, Q03010 Wunderlich, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Scheucher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Godolt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020, The Astrophysical Jour- nal, 901, 126 Zahnle, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Gacesa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Catling, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2019, Geochimica et Cosmochimica Acta, 244, 56 Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Hirschmann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', Cottrell, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=', & Withers, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017, Geochimica et Cosmochimica Acta, 204, 83 Article number, page 10 of 20 Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' : Redox state control on the long-term habitability of stagnant-lid planets Appendix A: 1D parameterized convection model Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Schematic of the interior structure used in the thermal evolu- tion model, alongside a diagram of the temperature profile (see the text for the explanation of the various symbols).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We model the thermal evolution of a planet’s mantle by con- sidering the energy balance between heat lost through the plan- etary surface and heat entering the mantle from the iron core as well as the decay of radiogenic elements inside the mantle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Assuming the core to be fully liquid and convecting, its energy balance is given by ρcccVc dTc dt = −qcAc, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1) where Tc is the average temperature in the core;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' ρc, cc, and Vc are the density, specific heat capacity, and volume of the core;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Ac is the area of the core-mantle boundary (CMB);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' and qc is the heat flux out of the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The energy balance of the mantle is given by ρmcmVm(1 + St)dTm dt = − � ql + �ρcrL + ρcrccr(Tm − Tl)� dDcr dt � Am + qbAb + QmVm, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2) where Tm is the average temperature of the convecting mantle;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' ρm and cm are the density and specific heat capacity of the man- tle;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Vm and Am are the volume and area of the convecting part of the mantle;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' St is the Stefan number, which describes the energy consumed and released upon mantle melting and solidification;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' ql and qb are the heat fluxes out of and into the convecting part of the mantle respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Tm and Tl are the temperatures of the upper mantle and the bottom of the stagnant lid;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' ρcr, ccr, and Dcr are the density, specific heat capacity, and thickness of the crust;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' L is the latent heat of melting;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' and Qm is the volumetric heat- ing rate in the mantle from heat-producing elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The main parameters used in this model are summarized in Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The temperatures at the top of the core and mantle Tc and Tm are related to the volume-averaged temperatures Tc and Tm through scaling factors εc and εm Tc = εcTc, Tm = εmTm = 1 Vm � Vm Tad(r) dV, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3) where Tad(r) is the adiabatic temperature profile in the man- tle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' For the core, we set εc = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 following Stamenkovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2012), who found only a small dependence on planetary mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' For the mantle, εm is updated continuously during the mantle evolution based on the mantle temperature profile and on the varying thickness of the stagnant lid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The evolution of the thickness of the stagnant lid (Dl) follows from the energy balance at the base of the lid (at radius Rl) ρmcmVm(Tm − Tl)dDl dt = − ql + �ρcrL + ρcrccr(Tm − Tl)� dDcr dt − km ∂T ∂r �����r=Rl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4) ∂T/∂r|r=Rl is the temperature gradient at the base of the lid, which we calculate assuming steady-state heat conduction: 1 r2 ∂ ∂r � r2kl ∂T ∂r � = −Ql, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5) where kl is the thermal conductivity and Ql the heat produc- tion rate in the lid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Parts of the stagnant lid can be comprised of crustal material, so when solving Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5), we set kl and Ql to crustal values (kcr and Qcr) from the surface to the base of the crust or mantle values (km and Qm) from the base of the crust to the base of the stagnant lid as appropriate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The boundary con- ditions for Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 are the given surface temperature Ts and the temperature at the stagnant lid base Tl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Numerical convection models suggest that the viscosity con- trast across the upper thermal boundary layer is typically about one order of magnitude (Grasset & Parmentier 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Based on this, the lid base temperature Tl can be calculated from the mantle temperature and activation energy (Grasset & Parmentier 1998) Tl = Tm − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='9RT 2 m E∗ , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='6) where the factor of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='9 accounts for the effects of spherical ge- ometry (Reese et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The convective heat flux out of the mantle ql, assuming that the upper thermal boundary layer is small so that the radial tem- perature profile is close to linear, can then be expressed as ql = km Tm − Tl du , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='7) where the thickness of the upper TBL du can be calculated from boundary layer theory du = Dm �Racrit Ra �1/3 , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='8) where Dm = Rl −Rb is the thickness of the convecting part of the mantle, Racrit is the critical Rayleigh number of the mantle, and Ra is the Rayleigh number for the entire mantle Ra = αm(Pm, Tm)ρmg∆TD3 m κmηm , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='9) Article number, page 11 of 20 R qs R D1 Crust R1 1 Stagnant lid q1 Upper TBL D m Qm Convecting mantle qb Tb R Lower TBL qc Convecting core TA&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript with the mantle viscosity ηm, mantle thermal diffusivity κm = km/(ρmcm), the pressure- and temperature-dependent coefficient of thermal expansion αm, and ∆T = (Tm−Tl)+(Tc−Tb), which is the sum of temperature differences across both boundary layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The coefficient of thermal expansion α, which has a strong influence on the heat transport in the convecting mantle, is of- ten assumed to be constant, although it is known from experi- mental data that this parameter can vary considerably with both pressure and temperature (Fei & Ahrens 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This becomes especially important if one considers the modeling of super- Earths (Miyagoshi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We use here the temperature- and pressure-dependent parameterization of α from Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2013), α(P, T) = (a0 + a1T − a2T −2) exp(−a3P), (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='10) where the coefficients a0 - a3 are chosen assuming a lower man- tle composition of 80% perovskite/20% periclase (see Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 for parameter values).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The temperature profile in the convecting part of the mantle is assumed to be adiabatic: dT dP = α(P, T) ρmcm T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='11) To account for a potentially non-convecting zone near the CMB due to the effect of high pressures on the mantle viscosity, we use the parameterization from Stamenkovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' As- suming that this conductive layer is close to convective stability, the thickness can be approximated from boundary layer theory using a critical Rayleigh number RaCMB crit based on the viscosity contrast ∆η across the layer: RaCMB crit (∆η) = max�Racrit, 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='74 · ln(∆η)4�, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='12) with ∆η = max �η(Rc) η(Rb), η(Rb) η(Rc) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='13) Here, Rb is the radius at the top of the conductive layer, and Rc is the radius of the CMB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The thickness of this layer is then given by: db = � RaCMB crit (∆η) κm min�η(Rb), η(Rc)� αm(Pb, Tb)ρmg|Tc − Tb| �1/3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='14) Especially for planets more massive than Earth, the conduc- tive CMB layer can make up a significant part of the mantle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Therefore, we treat the heat fluxes from the CMB lid into the mantle and from the core into the CMB lid separately, and as- sume time-dependent thermal conduction across the layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The heat fluxes are given by the temperature gradients at the top and bottom of the conductive CMB layer: qb = −km ∂T ∂r �����r=Rb (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='15) qc = −km ∂T ∂r �����r=Rc , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='16) which we determine by solving the time-dependent heat equation across the CMB lid: 1 r2 ∂ ∂r � r2km ∂T ∂r � = −Qm + ρmcm ∂T ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='17) Appendix B: Melting, trace element partitioning, and volatile outgassing We compute the distribution of partial melt in the mantle by comparing the local mantle temperature profile T(r) against the solidus Tsol(r) and liquidus Tliq(r) temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We assume the amount of partial melt to vary linearly between the solidus and the liquidus: φ(r) = T(r) − Tsol(r) Tliq(r) − Tsol(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1) We do not consider melting above a pressure of 8 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Un- der these conditions, melt becomes denser than the surrounding mantle rocks and cannot reach the surface (Agee 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The presence of water in the mantle depresses the solidus and liquidus curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We calculate wet solidus and liquidus curves following a parameterization by Katz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The volume-averaged, extractable melt fraction φ in the man- tle is then given by φ = 1 Vφ � Vφ φ(r) dV, (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2) where Vφ is the total volume of the melt zone (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' where the temperature lies above the solidus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Knowing the volume of melt produced, we can calculate the evolution of the crustal thickness Dcr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We adopt the plume model description by Grott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Partial melting in the mantle is generally restricted to localized upwelling plumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We assume a plume covering fraction of fp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='01, and add the temperature difference across the bottom thermal boundary layer to the lo- cal temperature profile when evaluating the melt fraction in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In addition to the amount of available melt, the crustal growth rate depends on the rate at which fresh mantle material can be supplied to the partial melt zone, which is governed by the convective velocity u of the mantle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The crustal growth rate is given by dDcr dt = fpuφ Vφ 4πR3p , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3) where the convective velocity is u = u0 � Ra Racrit �2/3 , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4) where u0 is a characteristic mantle convective velocity scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We impose the additional constraint that the crust cannot grow larger than the lid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Once the crust reaches the bottom of the lid, any ex- cess crust is recycled back into the mantle, and the crustal growth rate is set to be equal to the lid growth rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' During crustal formation, we treat the release and consump- tion of latent heat during mantle melting and crystallization via the Stefan number, which is recalculated at every time step (See also Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2)) St = L cm Vφ Vm dφ dTm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5) We consider the partitioning of radiogenic elements and wa- ter between crust and mantle due to melt production and crust formation, and the subsequent enrichment of the crust in these elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We consider a model of fractional melting to calcu- late the partitioning of trace elements between melt and mantle Article number, page 12 of 20 Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' : Redox state control on the long-term habitability of stagnant-lid planets rocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The concentration in the melt Xi liq of a given trace element i at radius r is then given by Xi liq(r) = Xi m φ(r) � 1 − �1 − φ(r)�1/δi� , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='6) where Xi m is the corresponding bulk concentration in the mantle and δi a trace-element-specific partition coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We assume δi = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='001 for heat-producing elements (Blundy & Wood 2003), and δi = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='01 for water (Aubaud 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The average concentra- tion in the melt then follows as Xi liq = 1 φVφ � Vφ Xi liq(r)φ(r) dV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='7) Enriched melt is transported to the surface and forms a crust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The total mass of an incompatible element Mi cr in the crust is given by the crust production rate and the average concentration in the melt: dMi cr dt = 4πR2 pρcrXi liq dDcr dt (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='8) At the same time, the mantle will be depleted in trace elements accordingly, with the concentration of the trace elements in the mantle and crust given by Xi m = Xi m,0Mm,0 − Mi cr Mm , Xi cr = Mi cr Mcr , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='9) where Mm,0 and Mm are the initial and current mass of the man- tle, respectively, and Xi m,0 is the initial mantle concentration of the respective trace element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The enrichment of heat-producing elements in the crust and depletion in the mantle leads to different volumetric heating rates in crust and mantle, which can be calculated as follows Qm(t) = ρm � i Xi m(t)Hi exp ������� ln 2 · (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Gyr − t) τi 1/2 ������� , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='10) Qcr(t) = ρcr � i Xi cr(t)Hi exp ������� ln 2 · (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Gyr − t) τi 1/2 ������� , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='11) where i specifies one of the four long-lived radioisotopes 40 K, 232 Th, 235 U and 238 U, with corresponding specific heat produc- tion rates Hi and half-lives τi 1/2 based on bulk-silicate-Earth abun- dances from McDonough & Sun (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Not all melt produced in the mantle is able to reach the sur- face, but is instead intruded into the lid, solidifies there, and is therefore unavailable for outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' To model this, we need to assume a fraction of extrusive volcanism fextr, which we set to 1 in this study (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' all melt reaches the surface).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' While this is not fully realistic for an Earth-like planet, it provides an upper limit for the outgassed species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 in the main text, we also tested the model results with a more realistic value (Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2017) of fextr = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='286 and show that this ultimately serves to further increase the number of habitable planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Volatile species will be partially outgassed into the atmo- sphere once the melt reaches the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' To outgas a volatile species, the melt needs to be supersaturated with respect to the atmosphere, and any excess concentration can be released into the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The redox state of the mantle plays a large role regarding which volatile species are outgassed, with an oxidized mantle favouring H2O and CO2, while a reduced mantle is domi- nated by H2 and CO outgassing (Ortenzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The chem- ical outgassing model based on Ortenzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2020) (as de- scribed in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3) calculates the outgassed mass fraction Xi outg of volatile species based on the chemical equilibrium be- tween melt and atmosphere, taking into account the solubility of each species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The outgassed mass Mi outg of volatile species is then given by dMi outg dt = fextrXi outg dMi cr dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='12) We can then calculate the partial pressure of each species ac- cording to its atmospheric mass and the presence of other species (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Bower et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2019)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The actual mass enriched in the crust in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='8) is then reduced by the outgassed mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We also as- sume that all surface volcanism takes place above any poten- tial ocean surface, since the pressure at the bottom of the ocean would limit outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Ocean coverage and depth are difficult to estimate as they are dependent on surface topography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Simi- lar to the assumption of fully extrusive volcanism, this assump- tion provides an upper limit to volatile outgassing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Likewise, we do not take into account so-called “water worlds”, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' planets with several tens of kilometers of water oceans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Due to the high pressures at the ocean bottom, volatile outgassing would likely be severely limited (Noack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Krissansen-Totton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Appendix C: Venus-like planets Venus is the quintessential runaway greenhouse planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In order to test the ability of our model to reproduce a Venus-like sce- nario, we simulated the evolution of 5000 planets with Venus- like interior structures and orbital distance, while varying the mantle water content and oxygen fugacity as described in the methods section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We find that at present day (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Gyr) all modeled planets are in an extreme greenhouse state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' No hab- itable planets are present (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1a), and surface pressures in planets with mantle oxygen fugacities above the IW buffer are comparable to those of present-day Venus (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Our model tends to overestimate the surface temperature compared to actual Venus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This stems from the fact that we do not consider the loss of water through photodissociation, which leaves water in the atmosphere as a potent greenhouse gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Many of the water- rich atmospheres shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1 would evolve into thick, dry, CO2-dominated atmospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Furthermore, Venus’ high albedo due to its global cloud cover is not represented in the model, which contributes to explaining the higher surface temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' A more in-depth discussion of the evolution of Venus using the outgassing model discussed here can be found in Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Appendix D: Influence of primordial H2 atmospheres So far we have assumed that any primordial atmosphere is lost at the point when our evolution models start.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This provides us with an upper limit to any outgassed secondary atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' How- ever, while the life-time of primordial atmospheres can be very short, on the order of tens of millions of years, especially for close-in, low-mass planets (Kite & Barnett 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Lammer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Article number, page 13 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Thermal (a) and pressure (b) state of Venus-like planets at present day, after 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Gyr of evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The color map indicates the oxy- gen fugacity of the mantle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The red dashed lines mark the present-day surface temperature and atmospheric pressure of Venus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014), thick H2 atmospheres may survive magma ocean solidi- fication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We investigated the influence of a primordial H2 atmo- sphere by running a number of evolution models of Earth-like planets with initial atmospheric pressures of up to 300 bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This upper limit is motivated by the amount of hydrogen an Earth-like planet may accrete on formation (Lammer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2014) and by the maximum amount it can lose over time so that most planets we consider here are still rocky (Howe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This results in a reasonable range of different planet evolutions, but different choices could change the proportions of planets with different atmospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Low-mass planets in particular may not be able to accrete a hydrogen atmosphere of that extent during forma- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' We find that the presence of primordial H2 atmospheres with pressures above ≈ 50 − 100 bar can significantly reduce the amount of habitable planets (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' This is due to two main factors: First, sufficiently thick H2 atmospheres may not be lost completely, and thus the planet never reaches surface tempera- tures that are low enough to allow for liquid water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Second, it can easily take several hundred million years for extensive primor- dial H2 atmospheres to be completely lost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' At this early stage, a planet is volcanically very active, but the outgassed CO2 is not removed from the atmosphere because the existing H2 at- mosphere inhibits the carbon-silicate cycle that requires liquid water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In addition, additional outgassing of H2 can further pro- long the lifetime of an H2 atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' As a result, even though the H2 atmosphere may be eventually lost, too much CO2 has been outgassed during that time to allow habitable conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The planets which may avoid a runaway greenhouse in these cases are those with very low amounts of CO2 outgassing, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' planets with dry mantles and oxygen fugacities well below the IW buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Appendix E: Influence of primordial steam and CO2 atmospheres It is likely that a magma ocean would form a thick steam atmo- sphere, although these may collapse shortly after magma ocean solidification to form an early ocean (Elkins-Tanton 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' To determine the influence of an early post magma ocean at- mosphere, we investigate two endmember compositions: Pure steam atmospheres up to 200 bar, and pure CO2 atmosphere up to 5 bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Pure steam atmospheres have little impact on the long- term evolution of the planets (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Due to the positive cli- mate feedback of water vapour, these atmospheres are not sta- ble, and other sources of heating, such as from other greenhouse gasses, are needed to sustain a steam atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Shortly after the start of the evolution, these atmospheres therefore collapse and rain out to form an ocean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' They do not contribute further to the warming of the surface, but merely provide a reservoir of wa- ter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' On the other hand, even small amounts of initial CO2 atmo- spheres can severely limit the occurence of habitable conditions (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' In our model, CO2 is only removed via silicate weath- ering, which requires the presence of liquid water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' If the initial amount of CO2 in the atmosphere is too high to permit liquid water, there exists no pathway for a planet to lose CO2 and be- come habitable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Therefore, the CO2 pressures given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 represent a conservative estimate on the amount of CO2 which can still yield habitable conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Appendix F: Tables Component wt% SiO2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='9 Al2O3 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='9 FeO 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1 MgO 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='8 CaO 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='6 Na2O 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 TiO2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='9 K2O 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Magma composition for the outgassing speciation model Article number, page 14 of 20 Surface temperature (K) a 1000 500 H+ + +++HW 273 Surface pressure (bar) b 102 3 2 101 0 100 2 3 10-2 10- Outgassed water (Earth oceans)Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' : Redox state control on the long-term habitability of stagnant-lid planets Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Influence of a primordial H2 atmosphere on the emergence of habitable surface conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each column corresponds to different initial pressures of H2, with each row marking planets at different orbital distances to their host star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Influence of a primordial steam atmosphere on the emergence of habitable surface conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each column of plots corresponds to different initial pressures of H2O, with each row marking planets at different orbital distances to their host star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Article number, page 15 of 20 Water phase at the surface: Frozen Vapour ILiquid 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 1000 Venus orbit 500 1000 Earth orbit 500 1000 Mars orbit 500 313% 13: 14% 3° 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 fo, (log △lW) fo, (log △lW) fo, (log △lW) fo, (log △lW) fo, (log △lW) fo2 (log △lw)Water phase at the surface: Frozen Vapour Liquid 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 1000 Venus orbit (udd) 500 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1000 Earth orbit 500 1000 Mars orbit 500 :14% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 fo, (log △lW) fo, (log △W) fo, (log △lW) fo, (log △lW) fo, (log △lw) fo2 (log △lW)A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Influence of a primordial CO2 atmosphere on the emergence of habitable surface conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each column of plots corresponds to different initial pressures of CO2, with each row marking planets at different orbital distances to their host star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Article number, page 16 of 20 Water phase at the surface: Frozen LiquidVapour 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1 bar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 bar 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 bar 1000 Venus orbit (udd) 500 1000 Earth orbit 500 1000 Mars orbit 500 3% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 fo, (log Alw) foz (log lw) fo2 (log △lw) foz (log AlW) foz (log △lw)Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' : Redox state control on the long-term habitability of stagnant-lid planets Parameter Description Value Reference Mantle convection ρcr Crust density 2900 kg m−3 kcr Crust thermal conductivity 3 W m−1 K−1 km Mantle thermal conductivity 4 W m−1 K−1 ccr Crust specific heat capacity 1100 J kg−1 K−1 cm Mantle specific heat capacity 1100 J kg−1 K−1 cc Core specific heat capacity 800 J kg−1 K−1 Racrit Critical mantle Rayleigh number 450 A Viscosity pre-factor 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='127 × 1010 Pa s Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2017) E∗ Activation energy 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='35 × 105 J mol−1 Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2017) a0 Thermal expansivity coefficient 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='68 × 10−5 K−1 Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2013) a1 Thermal expansivity coefficient 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='77 × 10−9 K−2 Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2013) a2 Thermal expansivity coefficient −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='21 K Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2013) a3 Thermal expansivity coefficient 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='63 × 10−3 GPa−1 Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2013) Melting u0 Convection velocity scale 2 × 10−12 m s−1 Spohn (1991) L Latent heat of melting 6 × 105 J kg−1 fp Plume covering fraction 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='01 Tosi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2017) fextr Proportion of extrusive volcanism 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 or 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='286 δH2O Water partition coefficient 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='01 Aubaud (2004) δHPE Partition coefficient for heat-producing elements 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='001 Blundy & Wood (2003) Atmosphere & escape A Planetary albedo 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3 k0,H2 H2 absorption coefficient 2 × 10−2 m2 kg−1 after Pierrehumbert & Gaidos (2011) k0,CO2 CO2 absorption coefficient 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='05 m2 kg−1 or 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='001 m2 kg−1 Pujol & North (2003) k0,H2O H2O absorption coefficient 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='01 m2 kg−1 Abe & Matsui (1988) bCO2 Binary diffusion coefficient H2-CO2 3 × 1021 m−1 s−1 Marrero & Mason (1972) bCO Binary diffusion coefficient H2-CO 3 × 1021 m−1 s−1 Marrero & Mason (1972) bH2O Binary diffusion coefficient H2-H2O 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3 × 1021 m−1 s−1 Roberts (1972) χ0 Interpolation: H2 mixing ratio threshold 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='15 w Interpolation fall-off width 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='01 Carbon weathering XE Present-day Earth mid-ocean ridge CO2 concentration in the melt 125 ppm Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2019) ξE Proportion of Earth’s seafloor weathering to the total weathering rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='15 Foley (2015) fE Present-day fraction of carbonates reaching Earth’s mantle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2019) φE Fraction of stable carbonates during subduction 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='8857 Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2019) PCO2,E Present-day Earth atmospheric CO2 pressure 4 × 10−4 bar Höning et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2019) α Seafloor weathering scaling exponent 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='23 Foley (2015) Adecarb Decarbonation constant 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='125 × 10−3 K m−1 Foley & Smye (2018) Bdecarb Decarbonation constant 835.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 K Foley & Smye (2018) Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Main model parameters Appendix G: Additional figures Article number, page 17 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Prevailing water state at the surface for planets with different masses and core sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Each plot shows the range of surface conditions for a specific combination of planet mass (columns) and iron core size (rows), and as a function of the oxygen fugacity and initial water content of the mantle, with the color background showing the area where the majority of neighboring data points share the same surface conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 2a in the main text, each point represents a snapshot of the planetary evolution at a randomly selected planet age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The two markers depict the initial conditions for the detailed evolutions in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' 1a,b (1) and 1c,d (2) in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Article number, page 18 of 20 Water phase at the surface: Frozen Liquid Vapoul 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 M@ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 M@ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 M@ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0 M@ 1000 XB,o (ppm) 750 30% core 500 250 1000 Earth-like core 750 500 250 1000 750 70% core 500 250 TO 12 12 2 2 2 2 0 2 fo, (log △lw) foz (log △lW) fo2 (log △lW) fo2 (log △lW)Baumeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' : Redox state control on the long-term habitability of stagnant-lid planets Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Mass-radius range of terrestrial planets considered in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' The color map indicates the thickness of the iron core relative to the planet radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Article number, page 19 of 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='6- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='7 Core radius fraction 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4 P 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='0- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='2 2 3 4 5 Planet mass (M )A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' manuscript Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Amount of atmospheric H2 needed to keep the surface temperature at 280 K as a function of orbital distance (after Pierrehumbert & Gaidos (2011)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Dashed lines show the results from Pierrehumbert & Gaidos (2011), solid lines show the results of our atmosphere model assuming a hydrogen absorption coefficient of k0,H2=2 × 10−2 m2 kg−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Example of the composition of outgassed species as a function of oxygen fugacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Assumed here is a 1 bar buffer atmosphere, and a volatile content in the melt of 1000 ppm H2O and CO2, respectively, at a melt temperature of 1500 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Article number, page 20 of 20 Grey atmosphere (Our model) for 280 K (bar) 102 Pierrehumbert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' (2011) 101 Surface pressure f M star G star 100 100 101 Orbital distance (AU)(wdd) uo!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} +page_content=' Ps = 1 bar 1000 800- concentrati H20 600 CO2 H2 400- CO Outgassed 200- 0 1 1 1 3 1 0 1 2 3 fo2 (log △lW)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf'} diff --git a/ndFRT4oBgHgl3EQfbDfe/content/tmp_files/2301.13559v1.pdf.txt b/ndFRT4oBgHgl3EQfbDfe/content/tmp_files/2301.13559v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3963e6f9301477a60b3eee28fdc63860093c3f5c --- /dev/null +++ b/ndFRT4oBgHgl3EQfbDfe/content/tmp_files/2301.13559v1.pdf.txt @@ -0,0 +1,2919 @@ +arXiv:2301.13559v1 [math.PR] 31 Jan 2023 +Noncooperative models of kinetically constrained lattice gases +Assaf Shapira +ABSTRACT. We study a family of conservative interacting particle systems with degenerate rates +called noncooperative kinetically constrained lattice gases. We prove for all models in this +family the diffusive scaling of the relaxation time, the positivity of the diffusion coefficient, and +the positivity of the self-diffusion coefficient. +1. Introduction +Kinetically constrained lattice gases are interacting particle systems introduced by physi- +cists in order to better understand glassy materials (see, e.g., [19, 24]). The basic underlying +hypothesis behind these models is that glassy behavior is a dynamic effect, and the role of +interactions is irrelevant. Under this hypothesis, we can explain why glasses are rigid using +the cage effect—even though their microscopic structure is amorphous, glasses at low temper- +atures have a very high density, and molecules are unable to move since they are blocked by +neighboring molecules. +In order to model this effect, we consider the lattice Zd, describing a coarse graining of +the glass. Each site, corresponding to some region in the glass, could be either occupied or +empty, representing dense or dilute zones. We think of the glass as very dense, so the small +parameter q will be the ratio of empty sites. +The dynamics of kinetically constrained lattice gases is conservative—particles could jump +between neighbors, turning an occupied site empty and a neighboring empty site occupied. +However, not all jumps are allowed—in order to imitate the cage effect, when the local +neighborhood of a particle is too dense it is blocked. +That is, particles are only able to +move under a certain constraint, satisfied when there are many vacancies nearby. Different +kinetically constraint lattice gases are given by different choices of this constraint, namely, +different interpretations of the neighborhood being “too dense”. +To fix an idea, consider a one dimensional model introduced in [2] (see Example 2.1), +where a particle is allowed jump to an empty neighbor, if it has at least two empty neighbors +before or after the jump (including the site it jumped to/from). Note that if a particle is +allowed to jump, than it is also allowed to jump back immediately after. This is a property we +require for all kinetically constrained models, and it guarantees a noninteracting equilibrium. +It is instructive to compare these models to another family of interacting particle systems, +the nonconservative kinetically constrained models (see, e.g., [10]). In those models, rather +than jumping between sites, particles appear and disappear under the constraint. +These +models are in general simpler to analyze, and, at least in one and two dimensions, we have +1 + +2 +ASSAF SHAPIRA +FIGURE 1.1. This figure shows how, in the model described in Example 2.1, a +mobile cluster can propagate. The mobile cluster here consists of the two empty +sites, and after a sequence of 1 allowed transitions it is moved one step to the +right. See Example 3.14. +a relatively good understanding of their behavior [21, 20, 15, 14, 13, 12]. In fact, one can +identify a handful of universality classes describing the properties of a kinetically constrained +model. Moreover, a simple criterion allows us to determine, given any translation invariant +local constraint, to which universality class the model belongs. In the case of conservative +kinetically constrained lattice gases, however, only a few specific models have been analyzed +[2, 6, 11, 23, 29, 22, 4, 9, 25], and no general results are available. +We distinguish between two types of kinetically constrained lattice gases—cooperative and +noncooperative. In a cooperative dynamics, any large scale change in the configuration forces +many particles to move in order to "free up" space. In noncooperative models, small empty +clusters can move around the lattice, without requiring any cooperation from other sites near +them. Consider the example introduced above. Figure 1.1 shows how, in two allowed transi- +tions, two neighboring vacancies can propagate to the right, no matter what the occupation +is elsewhere. We say that these vacancies form a mobile cluster. Noncooperative models are +those where a mobile cluster exists, and cooperative models are models where no finite set +of vacancies can propagate without any outside help. See Definition 3.13. +One simple implication of the presence of a mobile cluster is that the critical density of the +model is 1 (equivalently, the critical value of q is 0). This means that for any q > 0, in an +infinite system, there exists with probability 1 a sequence of allowed transitions in the end +of which the origin (or any other arbitrary vertex) is empty. Indeed, since a mobile cluster +consists of some fixed number of vacancies, if q > 0 there will almost surely be an empty +mobile cluster somewhere in Zd. We can then move this cluster until one of its vacancies +reaches the origin. In cooperative models identifying the critical density is more complicated. +The only cooperative kinetically constrained lattice gas studied in the mathematics literature +is the Kob-Andersen model [29], where the critical density is also 1; but in general cooperative +models may have critical densities which are strictly smaller. +Close to criticality, when q ≪ 1, most sites are occupied, and the constraint is rarely satis- +fied. The dynamics then tends to slow down, making typical time scales diverge. We will try +to understand how significant this effect is. In the unconstrained model (namely the simple +exclusion process), time scales diffusively, as the square of the distance: +typical time ≈ C × typical distance2. +We will see that noncooperative models are also diffusive—the constraint may affect the +coefficient C, but the exponent remains 2. This will be done in four different contexts, giving +different interpretations to “typical time” and “typical distance”. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +3 +The first time scale we study is the relaxation time, describing the time scale over which +correlations are lost. Consider some observable f depending on the configuration, and mea- +sure it at time 0 and at time t. In some cases, the correlation between these two quantities, +f0 and ft, decreases exponentially fast with t— +Corr(f0, ft) ≤ e−t/τ. +The best (i.e. smallest) coefficient τ for which this decay hold uniformly (i.e. for all f) is +the relaxation time. In general, the relaxation time can be infinite, and this is in fact the +case for kinetically contrained lattice gases on the infinite lattice. In sections 4 and 5 we +study the relaxation time on a finite box, of length L. We will see that the relaxation time is +proportional to L2, and that the corresponding coefficient diverges as a power law for small +values of q. +In Section 6 we study the diffusion coefficient associated with the dynamics. This coeffi- +cient, generally speaking, describes the large scale evolution of the density profile. Consider +for example a one dimensional model defined on a large interval {1, . . . , L}. Assume that +the initial configuration approximates some given density profile ρ0 : [0, 1] → [0, 1]. Roughly +speaking, this means that the number of particles in an interval {x − l/2, . . . , x, . . . , x + l/2} +of “medium” length (i.e. 1 ≪ l ≪ L) is close to lρ(x/L). Then, when the system is diffusive, +we expect the configuration at a later time t to approximate the same profile ρ0 if t ≪ L2 +(before the diffusive time scale), some evolving profile ρ(t/L2, ·) when t is of the order L2 (in +the diffusive time scale), and a uniform profile when t ≫ L2 (after the diffusive time scale). +Moreover, the evolution in the diffusive scale is given by a diffusion equation +∂τρ(τ, ξ) = ∂ξ D(ρ(τ, ξ))∂ξρ(τ, ξ). +The diffusion coefficient D tells us, within the diffusive scale, how fast the density profile +changes. In particular, if D = 0 the density profile does not evolve in diffusive time scales. +When this picture indeed describes the behavior of the model, we say that it converges to a +hydrodynamic limit in the diffusive scale. This hydrodynamic limit is given by the diffusion +equation above. For a more complete discussion see, e.g., [17]. +Proving rigorously converges to a hydrodynamic limit is not an easy task, accomplished +only for one example of a kinetically constrained lattice gas [11, 3]. In fact, it cannot hold in +full generality—a configuration such as the one shown in Figure 1.2 approximates the profile +ρ0(x) = + + + +1 +x ≤ L/2, +2/3 +x > L/2. +At the same time, the configuration is blocked, namely, no particle is allowed to jump. Thus, +the density profile remains fixed, and cannot converge to a hydrodynamic limit. This initial +configuration, though, is very specific, and one may still hope that, by restricting to a more + +4 +ASSAF SHAPIRA +FIGURE 1.2. We see here a blocked configuration for the model in Example +2.1—in the left half all sites are filled, while in the right half one in every three +sites is empty. No particle could jump to an empty site, hence the configuration +is blocked. In particular, it cannot converge to the hydrodynamic limit. +generic initial state, the dynamics will convergence to a hydrodynamic limit. This is proven +in [11] for the model they study, but a general proof seems to be very difficult. +Still, even without proving convergence, studying the diffusion coefficient is an interesting +problem, allowing us to obtain a plausible candidate for the hydrodynamic limit [1, 28, 25]. +Moreover, the strategy of [25] shows convergence to a hydrodynamic limit in a “soft” sense +whenever the model is rotation invariant. In particular, a strictly positive diffusion coefficient +is a good indication that the density profile evolves over diffusive time scales. In Section 6 +we show that the diffusion coefficient of noncooperative kinetically constrained lattice gases +is indeed positive, and that it decays at most polynomially fast for small q. +The last interpretation of “typical time” and “typical distance” we consider is perhaps the +most intuitive. Assume that the initial configuration has a particle at the origin called the +tracer (but otherwise sampled from equilibrium). One may think of the tracer as playing the +role of the pollen grain in Brown’s famous experiment. We then follow its motion, and ask +what is the time it would typically take in order to cross a certain distance. Diffusive scaling +means that this time scales as the square of the distance. A general argument of [16] shows a +much stronger result—under diffusive scaling, the path of the tracer converges to a Brownian +motion. The variance of this Brownian motion is called the self diffusion Ds, and when it is +strictly positive the Brownian motion in nondegenerate, i.e., the relevant time scale is indeed +diffusive. +All quantities mentioned above have variational characterizations, involving infima or +suprema over local functions, see equations (4.2), (6.1), and (7.1). These formulations allow +us to analyze them using canonical path arguments, which in the lack of attractivity have +proven extremely useful in the study of kinetically constrained models and kinetically con- +strained lattice gases (see, e.g., [5, 6, 2, 22, 4, 25]). In this paper, following [22, 9, 25], +we formulate these argument in the language of multistep moves, see Definition 3.1. These +are sequences of transitions, each allowed for the dynamics, leading to some desired final +configuration. +1.1. Structure of the paper. In Section 2 we set up some of the notation, and define ki- +netically constrained lattice gases. We also introduce two examples that will be referred to +throughout the paper. +Is Section 3 we introduce the notion of a multistep move and its basic properties. We then +use this notion in order to precisely define of a mobile cluster and noncooperative models. +Finally, we provide a slightly weaker characterization of noncooperative models. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +5 +The two following sections discuss the relaxation time in two different settings—Section 4 +concerns with systems connected to a reservoir, while in Section 5 we analyze closed systems. +The result of Section 4 shows diffusivity of the relaxation time in all noncooperative models. +It generalizes [2], and the proof uses the same strategy in a wider context and in the language +of multistep moves. +Studying the relaxation time in closed systems is much more involved. This problem was +analyzed for one noncooperative model in [11], proving diffusive scaling if the density is low +enough or when adding a small perturbation violating the constraint. The same model was +later considered in [23], where diffusivity was proven for all densities and with no pertur- +bation. Here, in Section 5, we generalize the result of [23] to some class of noncooperative +models. The proof of the result uses a completely different strategy—while [23] relies on spe- +cific combinatorial details of the model they study, the proof here only uses general properties +of mobile clusters. This new strategy allows us to obtain a result in a wider context. +In Section 6 we show that the diffusion coefficient is positive for all noncooperative models. +In order to achieve that, we introduce a new comparison argument using multistep moves +(Lemma 6.4). We then construct an auxiliary dynamics which on one hand can be compared +to the kinetically constrained gas in question, and on the other hand possesses a special +property allowing us to calculate its diffusion coefficient explicitly. +The positivity of the self-diffusion coefficient for all noncooperative models (in dimension +2 and above) is proven in Section 7. The proof applies a strategy similar to [27, II.6], using a +multistep move in order to compare the kinetically constrained lattice gas to a random walk. +We conclude with open problems that this work suggests. +2. The model +2.1. Notation. In order to simplify the exposition of the model, we start by defining some of +the notation we use. +• For n ∈ N, we denote [n] = {1, . . . , n}. +• We will consider models defined either on Zd, a finite box [L]d for L ∈ N, or the torus +Zd/LZd. We denote by {eα}d +α=1 the standard basis, and we say that two sites x and y are +neighbors, denoted x ∼ y, if x−y ∈ {±e1, . . . , ±ed}. The boundary of a set Λ ⊂ Zd, denoted +∂Λ, is the set of sites in Λ that have a neighbor outside Λ. +• For any finite sequence of sites x1, . . . , xn, we denote by σ = (x1, . . . , xn) the corresponding +cyclic permutation, i.e., for any site y +σ(y) = + + + + + + + +xk+1 +if y = xk for k ∈ [n − 1], +x1 +if y = xn, +y +otherwise. + +6 +ASSAF SHAPIRA +For a fixed site x we denote by τx the permutation on Zd given by a translation by x, i.e., +for any site y ∈ Zd +τx(y) = y + x. +• A configuration is an element η of Ω = ΩΛ = {0, 1}Λ, where Λ is either Zd, [L]d, or the +torus. We say that a site x ∈ Λ is empty if η(x) = 0 and occupied if η(x) = 1. +• For η ∈ Ω and a site x we define ηx to be the configuration η after flipping the occupation +at x. +• For η ∈ Ω and two sites x and y we define ηx,y to be the configuration η after exchanging +the occupation values at x and y. +• For η ∈ Ω and a permutation σ, we define ση to be the configuration after applying σ, i.e., +for any site y +(ση)(y) = η(σ−1(y)). +In particular, for any two sites x and y we can write ηx,y = (x, y)η. +• For a f : Ω → R and two sites x and y, +∇xf(η) = f(ηx) − f(η), +∇x,yf(η) = f(ηx,y) − f(η). +• For a f : Ω → R and a permutation σ, we define the function σf as +σf(η) = f(σ−1η). +Finally, we note that throughout the paper C represents a generic positive constant, that may +depend only on the model (dimension and constraints), and in particular does not depend +on the parameter q. +2.2. Kinetically constrained lattice gases. Kinetically constrained lattice gases are interact- +ing particle systems, defined on Zd, with generator L acting on any local function f : Ω → R +as +Lf(η) = +� +x∼y +cx,y(η)∇x,yf(η). +(2.1) +The rates cx,y must have the following properties: +(1) For any x ∼ y and η ∈ Ω, cx,y(η) ∈ {0} ∪ [1, cmax] for some cmax ≥ 1. +(2) The rate cx,y depends only on the configuration outside x and y. +(3) The rates are nondegenerate, i.e., for any edge x ∼ y there exists a configuration +η ∈ Ω such that cx,y(η) ≥ 1 and a configuration η′ ∈ Ω such that cx,y(η) = 0. +(4) For fixed x and y, the rate is a decreasing function of η, i.e., emptying sites could only +speed up the dynamics. +(5) The model is homogeneous: cx,y(η) = cτz(x),τz(y)(τzη) for any η ∈ Ω and x, y, z ∈ Zd. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +7 +(6) The rates have finite range, i.e., cx,y depends only on the occupation of the sites in +some box x + [−R, R], where R is called the range. +Sometimes we refer to the rate cx,y as the constraint (having in mind the case cmax = 1), and +say that the constraint is satisfied when cx,y ≥ 1 and not satisfied when cx,y = 0. +We may also consider the model on a subset of the lattice Λ ⊂ Zd (usually [L]d) by thinking +of the sites outside Λ as empty. The generator has the same form as (2.1), with sum taken +over x, y ∈ Λ. The constraint cx,y(η) for η ∈ {0, 1}Λ is then defined to be cx,y(η), where +η ∈ {0, 1}Zd is the configuration which equals η on Λ and 0 outside Λ. Theses are the empty +boundary conditions. The occupied boundary conditions are defined analogously. Finally, peri- +odic boundary conditions are defined when considering the model on the torus. The constraint +cx,y(η) for η ∈ {0, 1}Zd/LZd is then given by cx,y(η) with η(x) = η(x mod Ld). +Under the assumptions above, the dynamics is reversible with respect to a product measure +for any density in [0, 1]. We refer to this measure as the equilibrium measure (at a given +density). The density of empty sites is denoted by q ∈ [0, 1], so the equilibrium measure +µ = µq assigns to each site an independent Bernoulli random variable with parameter 1 − q. +On a finite box Λ = [L]d, we may consider a kinetically constrained lattice gas with reservoir +on the boundary. This model is defined by the generator Lr operating on any local function +f : Ω → R as +Lrf(η) = +� +x,y∈Λ +x∼y +cx,y(η)∇x,yf(η) + +� +x∈∂Λ +cx∇xf(η), +(2.2) +where cx(η) = qη(x) + (1 − q)(1 − η(x)). Note that cx(η) is chosen such that the process +remains reversible with respect to µ. +2.3. Examples. Throughout the paper, we will refer to two fundamental examples: +Example 2.1. The 1 dimensional model, with constraint +cx,x+1(η) = + + + +1 +if η(x − 1) = 0 or η(x + 2) = 0, +0 +otherwise. +This model was introduced in [2], and further studied in [23]. In [11] a slight variation +was introduced, where the rate cx,x+1 equals 2 if both η(x − 1) and η(x + 2) are empty. This +difference is of no importance to the analysis in this paper, but it does introduce a significant +simplification in proving the convergence to a hydrodynamic limit. +Example 2.2. The 2 dimensional model with constraint +cx,x+eα(η) = + + + +1 +if η(x − eα) = 0 or η(x + 2eα) = 0, +0 +otherwise, +for α ∈ {1, 2}. + +8 +ASSAF SHAPIRA +This could be seen is a generalization of Example 2.1, also studied in [2]. +3. Multistep moves +The main tool we use in this paper are multistep moves, which are sequences of transitions +allowed for the dynamics, taking us from one configuration to the other. This formulation, +used in [22, 9, 25], makes the application of canonical path methods more transparent. +A multistep move provides, for η in some fixed set of configuration (the domain), a se- +quence of transitions that are allowed for the dynamics. That is, at each step t it will tell us +which edge to exchange in order to move from the configuration ηt to ηt+1. In order for the +move to be valid, in all exchanges the constraint must be satisfied. This is expressed in the +following definition: +Definition 3.1 (Multistep move). For fixed T > 0, a T-step move M defined on Dom M ⊆ Ω +is a triple +� +(ηt)T +t=0, (xt)T−1 +t=0 , (et)T−1 +t=0 +� +; where (ηt)T +t=0 is a sequence of functions ηt : Dom M → Ω, +(xt)T−1 +t=0 is a sequence of functions xt : Dom M → Zd, and (et)T−1 +t=0 is a sequence of functions +et : Dom M → {±e1, . . . , ±ed}. The move must satisfy the following properties: +(1) For any η ∈ Dom M, η0(η) = η. +(2) For any η ∈ Dom M and t ∈ {0, . . . , T − 1}, +(a) on the infinite lattice or a finite box with no reservoirs, +ηt+1(η) = ηt(η)xt(η),xt(η)+et(η) and cxt(η),xt(η)+et(η)(ηt(η)) = 1. +(b) on a finite box Λ with reservoirs, either +ηt+1(η) = ηt(η)xt(η),xt(η)+et(η) and cxt(η),xt(η)+et(η)(ηt(η)) = 1, +or +ηt+1(η) = ηt(η)xt(η) and xt(η) ∈ ∂Λ. +When context allows we omit, with some abuse of notation, the explicit dependence on η +(writing ηt, xt, et rather than ηt(η), xt(η), et(η)). +We continue with several basic notions related to multistep moves. +Definition 3.2 (Information loss). Consider a T-step move M = ((ηt), (xt), (et)) and t ∈ +{0, . . . , T}. The loss of information at time t is defined as +2Losst M = sup +η′,x′,e′ # {η ∈ Dom M such that ηt(η) = η′, xt(η) = x′ and et(η) = e′} , +where the supremum is taken over η′ ∈ Dom M, x′ ∈ Zd and e′ ∈ {±e1, . . . , ±ed}. We also +define +Loss M = sup +t Losst M. +That is, for given t, η′, x′, e′ there are at most 2Loss M possible configurations η ∈ Dom M for +which ηt = η′, xt = x′ and et = e′. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +9 +Definition 3.3 (Energy barrier). Consider a T-step move M = ((ηt), (xt), (et)) for a kinetically +constrained lattice gas defined on a finite box Λ with reservoirs on the boundaries. The energy +barrier is +EB(M) = +sup +t∈{0,...T} +sup +η∈Dom Ω +(# {empty sites in ηt} − # {empty sites in η}) . +Note that, since η0 = η, EB(M) ≥ 0. +Definition 3.4 (Composition of multistep moves). Fix a T1-step move M1 = ((η1 +t ), (x1 +t), (e1 +t)) +and a T2-step move M2 = ((η2 +t ), (x2 +t), (e2 +t)) such that for any η ∈ Dom M1, η1 +T1(η) ∈ Dom M2. +Then their composition M2 ◦ M1 is the T-step move M = ((ηt), (xt), (et)), with T = T1 + T2 +and Dom M = Dom M1 given by +ηt(η) = + + + +η1 +t (η) +if t ∈ {0, . . . , T1}, +η2 +t−T1(η1 +T(η)) +otherwise, +xt(η) = + + + +x1 +t(η) +if t ∈ {0, . . . , T1}, +x2 +t−T1(η1 +T(η)) +otherwise, +et(η) = + + + +e1 +t(η) +if t ∈ {0, . . . , T1}, +e2 +t−T1(η1 +T (η)) +otherwise. +Definition 3.5 (Associated permutation). We consider here a model with no reservoirs. Fix +a T-step move M = ((ηt), (xt), (et)) and η ∈ Dom M. Then the associated permutation σ +is a permutation on the sites of Zd given by the product of transpositions (xT−1, xT−1 + +eT−1)(xT−2, xT−2 + eT−2) . . . (x0, x0 + e0). +We say that the move M is compatible with a permutation σ if, for any η ∈ Dom M, the +associated permutation is σ. +Observation 3.6. Fix a T-step move M = ((ηt), (xt), (et)) and η ∈ Dom M. Then ηT = ση, i.e., +for any x ∈ Zd, +ηT(σ(x)) = η(x). +Observation 3.7. Consider two multistep moves M1 and M2. Assume that M1 is compatible +with a permutation σ1 and M2 with a permutation σ2. If M2 ◦ M1 is well defined, then it is +compatible with σ2σ1. +Definition 3.8 (Deterministic move). A T-step move M = ((ηt), (xt), (et)) is called determin- +istic if the sequences (xt)T−1 +t=0 and (et)T−1 +t=0 do not depend on η, that is, for any η, η′ ∈ Dom M +and any t ∈ {0, . . . , T − 1}, xt(η) = xt(η′) and et(η) = et(η′). Note that a deterministic move +is always compatible with a permutation, and has 0 loss of information. + +10 +ASSAF SHAPIRA +Observation 3.9. Consider a deterministic T-step move M = ((ηt), (xt), (et)) compatible with +a permutation σ. The there exists an inverse move M−1 with domain +Dom M−1 = {η ∈ Ω : ση ∈ Dom M} , +which is a T-step move compatible with σ−1. +These are the general definitions and basic properties of multistep moves. We now continue +with a few definitions related to the noncooperative nature of the model. In each definition, +we will describe a move that changes the configuration in a desired way without “disturbing” +too many sites, under the condition that there is a mobile cluster near by. The way in which +we change the configuration is given by the permutation the move is compatible with. The +fact that we do not want to disturb many sites is expressed in the fact that all xt’s are restricted +to some given box. The requirement that a mobile cluster is available is expressed in the +domain of the multistep move. +The first move we define will allow us to move a mobile cluster C on the lattice: +Definition 3.10 (Translation move). Fix a finite set C ⊂ Zd, l > 0, e ∈ {±e1, . . . , ±ed} and +x ∈ Zd. A translation move in [−l, l]d of the cluster x + C in the direction e is a TTr-step move +Tre(x + C) satisfying: +(1) Dom Tre(x + C) = {η ∈ Ω : x + C is empty} +(2) Tre(x + C) is a deterministic move, compatible with a permutation σ. +(3) σ(x + y) = x + y + e for any y ∈ C. +(4) For all t ∈ {0, . . . , T − 1}, xt ∈ x + [−l, l]d and xt + et ∈ x + [−l, l]d. +For brevity, we may write Tr±α rather than Tr±eα. +Observation 3.11. Fix a C ⊂ Zd, l > 0, e ∈ {±e1, . . . , ±ed} and x ∈ Zd. Then Tre(x + C)−1 is +a translation move in [−l, l]d of the cluster x + e + C in the direction −e. We may therefore +always assume that the translation moves are chosen such that Tre(x+C)−1 = Tr−e(x+e+C). +Once we are able to move the mobile cluster around, we need to use it in order to move +particles in its vicinity. +Definition 3.12 (Exchange move). Fix a finite set C ⊂ Zd, l > 0, e ∈ {±e1, . . . , ±ed} and +x ∈ Zd. An exchange move in [−l, l]d using the cluster x + C in the direction e is a TEx-step +move Exe(x + C) satisfying: +(1) Dom Exe(x + C) = {η ∈ Ω : x + C is empty} +(2) Exe(x+C) is a deterministic move, compatible with the permutation (x+y, x+y +e), +where y = le. +(3) For all t ∈ {0, . . . , T − 1}, xt ∈ x + [−l, l]d ∪ {x + (l + 1)e} and xt + et ∈ x + [−l, l]d ∪ +{x + (l + 1)e}. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +11 +FIGURE 3.1. This is an illustration of the translation move in the model de- +scribed in examples 2.2 and 3.15. The mobile cluster is given by an empty 2×2 +square. In this figure we see how it could move one step up. +Definition 3.13 (Mobile cluster). A mobile cluster C is a finite set of sites, for which there ex- +ists l > 0 such that Tre(x+C) and Exe(x+C) could be constructed for all e and x. Equivalently, +by translation invariance, there exists l > 0 such that Tre(C) and Exe(C) could be constructed +for all e. +A kinetically constrained lattice gas is called noncooperative if there exists a mobile cluster. +Example 3.14. The model in Example 2.1 is noncooperative—take C = {1, 2} and l = 3. We +need to construct four moves: Tr1(C), Tr−1(C), Ex1(C), Ex−1(C). +Tr1(C) will be a 2-step move ((η0, η1, η2), (x0, x1), (e0, e1)) operating on η ∈ Dom Tr1(C) as +follows: +η0 = η, +η1 = η2,3 = (2, 3)η, +η2 = (2, 3, 1)η, +x0 = 2, e0 = 1, +x1 = 1, e1 = 1. +Recalling that η ∈ Dom Tr1(C) means η(1) = η(2) = 0, it is straightforward to verify that the +move is well defined and that it is indeed a translation move. See Figure 1.1. +Tr−1(C) is defined as Tr1(−1 + C)−1. +Ex1(C) is the 1-step move exchanging the sites 3 and 4, which is allowed since 2 must be +empty. +Ex−1(C) could be constructed as the composition +Ex−1(C) = Tr−1(−1 + C)−1 ◦ Tr−1(−2 + C)−1 ◦ Tr−1(−3 + C)−1 ◦ Tr−1(−4 + C)−1 ◦ Ex1(−5 + C) +◦ Tr−1(−4 + C) ◦ Tr−1(−3 + C) ◦ Tr−1(−2 + C) ◦ Tr−1(−1 + C) ◦ Tr−1(C). +The composition is well defined (recalling Tr−1(x + C)−1 = Tr1(x − 1 + C), so its domain +consists of the configurations where x − 1 + C is empty). Moreover, it is a composition of +deterministic moves, and compatible with +(1, 2, 0)(0, 1, −1)(−1, 0, −2)(−2, −1, −3)(−3, −2, −4)(−2, −1) +(−4, −2, −3)(−3, −1, −2)(−2, 0, −1)(−1, 1, 0)(0, 2, 1) = (−3, −4). +Example 3.15. The model in Example 2.2 is noncooperative, with C = {e1 +e2, e1 +2e2, 2e1 + +e2, 2e1 + 2e2} and l = 3. The construction of the multistep moves is the same as the previous +example, see Figure 3.1. + +12 +ASSAF SHAPIRA +... +FIGURE 3.2. We see here how the exchange move could be constructed, see +Claim 3.17. For the sake of this illustration, we assume that it suffices to empty +the two sites marked with a red square in order to free the edge (0, e1) marked +in green. The mobile cluster C, marked with blue stars, is empty. In addition, +a translation of C, marked with blue triangles, is also empty. After applying the +multistep move described in the figure the constraint is satisfied at the edge +(0, e1), so we may exchange the two sites and move the mobile clusters back to +their original position. +To conclude this section, we see in the following proposition that if we are able to con- +struct, for any direction, a cluster that is free to move in that direction, then the model is +noncooperative, i.e., there is some (possible very large) cluster that is able to move in all +directions, and to exchange edges in its vicinity. +Proposition 3.16. Assume that for any e ∈ {e1, . . . , ed} there exists Ce and le, such that Tre(Ce) +exists. Then the model is noncooperative, i.e., there exists a mobile cluster C. +Proof. The construction of the cluster C is explained in the appendix of [25] (claims A11 +and on). Since the result there is stated in a slightly different context (and with different +notation), we explain here briefly how the cluster is constructed. The reader may consult +[25] for any missing details. +Claim 3.17. Fix e. If Tre(C) exists for some C and l, then Tre(C′) and Exe(C′) exist for some C′ +and l′. +Proof. Without loss of generality e = e1. Let {y1, . . . , yk} ∈ (∞, 0] × Zd−1 be finite set of +sites such that c0,e ≥ 1 if {y1, . . . , yk} is empty. This set has to exist since Tre(C) exists. Fix +C′ = �k +i=1 (yi − ile1 + C). Define Ex(C′) by translating the copies of C until y1, . . . , yk are all +empty, then exchange 0 and e, and finally roll back the translation moves. See Figure 3.2. +□ +Claim 3.18. Assume Tr1(C1), Ex1(C1), Tr2(C2), Ex2(C2),...,Trk(Ck), Exk(Ck) are defined. Then +there exist C′ +k and l′ +k such that for all y ∈ [l1, ∞]e1 + Ze2 + · · ·+ Zek we may define a multistep +move Exy +1 exchanging (y, y + e1). +Proof. Consider first k = 2, and denote C1 = {x1, . . . , xn}. We choose +C′ +2 = C1 ∪ +� n� +i=1 +xi − le2 + C2 +� +. +By applying translation and exchange moves using the cluster xi − le2 + C2, we are able to +exchange xi with xi + e2. Doing that for all i, we end up with an empty cluster (e2 + C1) ∪ +(�n +i=1 xi − le2 + C2). We can repeat the operation (with one additional translation move for + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +13 +each i), reaching an empty cluster (2e2 + C1) ∪ (�n +i=1 xi − le2 + C2). In fact, by adjusting the +number of repetitions we are able to empty all sites of (w + C1) ∪ (�n +i=1 xi − le2 + C2) where +w = y −(y · e1)e1. Now, since w + C1 is empty, we can use Tr1(w + C1) and Ex1(w + C1) in order +to exchange y and y + e1. Rolling back all changes, we end up with the move Exw +1 . +For larger values of k we follow the same construction by induction—use +��C′ +k−1 +�� copies of +Ck in order to move a single copy of C′ +k−1 in the ek direction y · ek times. Then apply (the +translation of) Exy−y·ek +1 +in order to exchange y and y + e1, and roll back to place C′ +k in its +original location. +□ +This claim allows us to define a cluster C′ +d, which allows exchanges in the direction e1. We +may construct in the same manner clusters allowing exchanges in any direction: +Corollary 3.19. For any e, there exist le and Ce, such that we may define a multistep move +Exy +e(x + Ce) exchanging x + y with x + y + e whenever x + Ce is empty, for all y such that +y · e ≥ le. +To conclude, consider 2d disjoint copies of the clusters defined in the corollary above placed +on the diagonal— +C = +� d� +α=1 +−αl(1, 1, . . . , 1) + Ceα +� � � d� +α=1 +αl(1, 1, . . . , 1) + Ce−α +� +, +for large enough l to guarantee that the union is indeed disjoint. Now, in order to construct +Exeα(C) we may simply use Exy +eα(x + Ceα) with x = −αl(1, . . . , 1) and y = αleα − x (and anal- +ogously for Exe−α(C)). In order to construct Treα, we first use the cluster −αl(1, . . . , 1) + Ceα +in order to move in the direction eα all vacancies in �d +α=1 +� +αl(1, 1, . . . , 1) + Ce−α +� +. Then we use +the cluster αl(1, . . . , 1)+eα+Ce−α in order to move all vacancies in �d +α=1 +� +−αl(1, 1, . . . , 1) + Ceα +� +in the direction eα. This concludes the proof of the proposition. +□ +4. Relaxation time on a finite box with a reservoir +In this section we consider noncooperative kinetically constrained lattice gases on a finite +box [L]d with reservoirs on the boundary. In [2], the relaxation times of two models were +studied, and a diffusive scaling was proven. We will follow their strategy, showing a diffusive +scaling with power law dependence on q. +In order to define the relaxation time, we first write the Dirichlet form associated with the +generator Lr given in equation (2.2): +Drf = µ +� � +x∼y∈Λ +cx,y(∇x,yf)2 +� ++ µ +� � +x∈∂Λ +cx(∇xf)2 +� +. +(4.1) +Then the relaxation time is given by +sup +f:Ω→R +Var f̸=0 +Var f +Drf . +(4.2) + +14 +ASSAF SHAPIRA +The following theorem provides an upper bound on the relaxation time: +Theorem 4.1. Consider a noncooperative kinetically constrained lattice gas on a finite box Λ = +[L]d with reservoirs (see equation (2.2)) and empty boundary conditions. Fix a mobile cluster C +of size N. Then for any f : Ω → R, +Var f ≤ Cq−N−1L2 Drf, +where the variance is taken with respect to the equilibrium µ and Dr is the associated Dirichlet +form given in equation (4.1). +4.1. Proof. We will first prove Theorem 4.1 when q ≤ 1 +2, and then briefly explain how to +adapt the proof for q > 1 +2. +We follow the steps of [2]—for any x ∈ Λ, we will define a multistep move that creates a +mobile cluster at the boundary and uses it in order to flip the occupation at x. We will then +prove the theorem using this multistep move together with the inequality +Var f ≤ q(1 − q)µ +�� +z∈Λ +(∇zf)2 +� +. +(4.3) +Lemma 4.2. For any z ∈ Λ, there exists a T-step move Flipz = ((ηt), (xt), (et)) such that: +(1) Dom Flipz = ΩΛ. +(2) For any η, the final configuration is given by ηT(η) = ηz. +(3) T ≤ CL. +(4) The information loss Loss Flipz ≤ C. +(5) The energy barrier EB Flipz ≤ N + 1. +(6) For any t ∈ {0, . . . , T}, x(t) ∈ z + ∆, where ∆ ⊂ Zd is fixed and |∆| ≤ CL. +(7) Each site x ∈ Λ is changed a bounded number of times, i.e., {t : xt = x} ≤ C. +Proof. Let z = z − e1 · z, and consider the configuration η defined on the infinite lattice as +follows +η(y) = + + + + + + + + + + + + + +η(y) +if y ∈ Λ, +1 − η(z) +if y = z, +0 +if y ∈ z − le1 + C, +1 +otherwise. +(4.4) +We will define a T-step move M operating on this configuration by composing exchange +and translation moves as follows— +(1) Using the mobile cluster z−le1+C, apply the exchange move Ex1(z−le1+C) (Definition +(3.12)) in order to exchange z with z + e1. +(2) Apply the translation move Tr1(z − le1 + C) (Definition (3.10)) in order to move the +cluster z − le1 + C one step to the right. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +15 +(3) Continue to apply these two moves alternatingly until reaching x, i.e., +Tr1(yk + C) ◦ Ex1(yk + C) ◦ · · · ◦ Tr1(y1 + C) ◦ Ex1(y1 + C) ◦ Tr1(y0 + C) ◦ Ex1(y0 + C), +where yi = z − le1 + ie1 for all i, and k is chosen such that yk = z − 2e1. +(4) Apply the exchange move Ex1(yk + e1 + C) in order to exchange yk + e1 with z. +(5) Wind back the exchanges and translations of step 3 and move the mobile cluster back +to z − le1 + C. +Putting everything together, we obtain +M = Ex1(y0 + C) ◦ Tr−1(y1 + C) ◦ · · · ◦ Ex1(yk + C) ◦ Tr−1(yk+1 + C) ◦ Ex1(yk+1 + C) +◦Tr1(yk + C) ◦ Ex1(yk + C) ◦ · · · ◦ Tr1(y0 + C) ◦ Ex1(y0 + C). +We have thus constructed a multistep move M with the following properties: +(1) η ∈ Dom M for any η ∈ ΩΛ. +(2) M is compatible with the transposition exchanging z and z. +(3) T ≤ CL. +(4) Loss M = 0 and EB M = 0. +(5) All exchanges occur in a tube z + [−l, L] × [−l, l]d−1 for some (large enough) fixed l. +The move Flipz that we construct will simply be the restriction of M to Λ—if we denote +M = (ηt, xt, et), then Flipz will be such that, for any y ∈ Λ, +ηt(y) = ηt(y). +All that is left is to verify that this move satisfies the required properties: +(1) It is well-defined on the entire ΩΛ—for any η ∈ ΩΛ we know that η defined above is in +Dom M. In addition, a transition in M outside Λ does not change ηt, a transition on +the boundary corresponds to a reservoir term for ηt, and a transition inside Λ which +is allowed for ηt is certainly allowed for ηt. This means that all transitions in Flipx are +allowed, making it a valid move. +(2) Since z /∈ Λ and η(z) = 1 − η(z), the fact that M is compatible with the transposition +exchanging z and z implies that the final configuration of Flipz is ηz. +(3) T = T ≤ CL. +(4) In order to reconstruct ηt from ηt it is enough to know the occupation at some finite +box to the left of z. Since M has 0 loss of information, the size of this box bounds the +loss of information. +(5) The number of vacancies in ηt is certainly smaller than that of ηt, which exceeds the +number of vacancies of η by at most N + 1. +(6) Choosing ∆ = z + [−l − L, L] × [−l, l]d−1 will suffice. + +16 +ASSAF SHAPIRA +(7) Since the exchange and translation moves operate locally, a site z could be “touched” +by a bounded number of such moves, each of which being able to change z a bounded +number of times. +□ +We will now use Lemma 4.2 in order to prove Theorem 4.1. Start by considering, for each +z ∈ Λ, the T-step move Flipz = (ηz, xz, ez), and using it in order to write +(∇zf)2 = +�T−1 +� +t=0 +∇tf(ηz +t ) +�2 +≤ CL +T−1 +� +t=0 +(∇tf(ηz +t ))2 , +where ∇t stands for ∇xz +t ,xz +t +ez +t for a bulk exchange (ηt+1 = ηxz +t ,xz +t +ez +t +t +), or ∇xz +t for a boundary +flip (ηt+1 = ηxz +t +t ). +Then by equation 4.3 +Var f ≤ CLq(1 − q)µ +�� +z∈Λ +T−1 +� +t=0 +(∇tf(ηz +t ))2 +� += CLq +� +η∈ΩΛ +µ(η) +� +z∈Λ +� +t +� +η′∈ΩΛ +� +x∈z+∆ +� +e +1bulk exchange1xz +t (η)=x1ez +t (η)=e1ηt(η)=η′ cx,x+e(η′) (∇x,x+ef(η′))2 ++ CLq +� +η∈ΩΛ +µ(η) +� +z∈Λ +� +t +� +η′∈ΩΛ +� +x∈∂Λ∩(z+∆) +1bounday flip1xz +t (η)=x1ηt=η′ (∇xf(η′))2 +≤ CLq +� +x∈Λ +� +e +� +η′∈ΩΛ +µ(η′)cx,x+e(η′) (∇x,x+ef(η′))2 � +η∈ΩΛ +µ(η) +µ(η′) +� +z∈x−∆ +� +t +1xz +t (η)=x1ηt(η)=η′ ++ CL +� +x∈∂Λ +� +η′∈ΩΛ +µ(η′)cx(η′) (∇xf(η′))2 � +η∈ΩΛ +µ(η) +µ(η′) +� +z∈x−∆ +� +t +1xz +t (η)=x1ηt=η′. +We will now use the properties of Flipz in order to bound the different terms above. First, +since we assume q ≤ 1 +2, +µ(η) +µ(η′) ≤ q− EB(Flipz) = q−N−1. +The bound on the loss of information allows us to write � +η∈ΩΛ 1ηt(η)=η′ ≤ C. +The last property of the flip move implies that �T +t=0 1xz +t (η)=x ≤ C. +Putting everything together, we obtain +Var f +≤ +CLq−N−1 |∆| +� +x∈Λ +� +e +� +η′∈ΩΛ +µ(η′)cx,x+e(η′) (∇x,x+ef(η′))2 ++CLq−N−1 |∆| +� +x∈∂Λ +� +η′∈ΩΛ +µ(η′)cx(η′) (∇xf(η′))2 +≤ +CL2q−N−1DΛf. +This concludes the proof when q ≤ 1 +2. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +17 +The case q > +1 +2 could be thought of as a negative temperature setting, so the relevant +quantity is the negative energy barrier—rather than counting the excess vacancies, we should +count the excess particles. By changing the definition of η given in equation (4.4) such that +η(y) = 0 if y /∈ Λ ∪ {z}, we can construct the Flipz in the same manner, such that at each +t the number of particles in ηt exceeds the number of particles in η by at most 1. The only +estimate that changes is that of +µ(η) +µ(η′), which becomes +µ(η) +µ(η′) ≤ (1 − q)−1, and the rest of the +proof follows. +□ +5. Relaxation time in a closed system +In this section we consider models on a finite box Λ = [L]d, with no reservoirs. In this +setting the total number of particles is fixed, hence µ cannot be ergodic. Moreover, even if +we condition µ to some fixed number of vacancies k, the measure that we obtain is in general +not ergodic due to the constraint. +In particular, at least if q is not too large, one may construct blocked configuration. These +are configurations where no particle is allowed to jump, and therefore do not change during +the dynamics (see, e.g., Figure 1.2). If k < +� +L +R+1 +�d (where R is the range of the constraint), +we may place the vacancies such that no two empty sites are at distance less than R. Since +the model is nondegenerate the constraint is not satisfied for the edges adjacent to a vacancy, +and the configuration is indeed blocked. +For noncooperative models, we note that two configurations containing a mobile cluster, +at least for k large enough, are always in the same ergodic component—consider two con- +figurations η and η′ with k vacancies, each containing a mobile cluster, x + C and x′ + C′ +respectively. Assuming k > |C| + |C′|, we may use the translation and exchange moves on η +with the cluster x + C in order to move vacancies to x′ + C′. Then we use the translation and +exchange moves with the cluster x′ + C′ to move around all other vacancies to their locations +in η′. +We therefore define the ergodic configurations as follows: +Definition 5.1. Consider a family of mobile clusters {C1, . . . , Cm}. The set of ergodic configu- +rations with k vacancies, denoted Ωk, is given by all configurations η containing k vacancies +connected to a configuration that contains an empty translation of a mobile cluster. More pre- +cisely, η ∈ Ωk if it contains k vacancies, and there exists a T-step move M = ((ηt), (xt), (et)), +a site x ∈ Λ, and some i ∈ [m], such that η ∈ Dom M and all sites of x + Ci are empty for the +configuration ηT(η). +The equilibrium measure µk is the uniform measure on Ωk. We denote in this section µ = µk. +The discussion above implies the following fact: +Fact 5.2. For any family of mobile clusters {C1, . . . , Cm}, and any k > 2 maxm +i=1 |Ci|, the measure +µ is ergodic. + +18 +ASSAF SHAPIRA +(a) +(b) +(c) +(d) +FIGURE 5.1. A few configurations in the model of Example 2.2 defined on a +finite box. The mobile cluster of this model is a 2 × 2 square (see Example 3.15 +and Figure 3.1). Configuration (a) is blocked hence not ergodic, configuration +(b) is not blocked but still not ergodic, configuration (c) contains a mobile +cluster hence ergodic, and configuration (d) is ergodic even though no small +region contains a mobile cluster. See Example 5.4. +Example 5.3. Consider the model of Example 2.1, and the family of mobile clusters {{1, 2}, +{1, 3}}. If a configuration η does not contain an empty translation of either cluster, it is +blocked, since all allowed transitions for the dynamics involve two vacancies at distance at +most 2. Therefore, the ergodic configurations in this models are those containing an empty +translation of {1, 3} or {1, 2}. +Example 5.4. In the model introduced in Example 2.2 the ergodic component is more compli- +cated. One can find configurations that are not blocked but still not ergodic, or configurations +which are ergodic but do not contain a mobile cluster of size smaller than L. An explicit de- +scription of Ωk for this model seems to be much more difficult to find than the 1 dimensional +case. See Figure 5.1. +In view of these examples, we will restrict our discussion to models with easily identifiable +set of ergodic configurations: +Hypothesis 5.5. There exists a finite family of mobile clusters, {C1, . . . , Cm}, such that +Ωk = {η : there exist x ∈ Λ and i ∈ [m] for which x + Ci is in Λ and empty} . + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +19 +Fix k > maxm +i=1 |Ci|, so Ωk is nonempty and the measure µ is well defined. The Dirichlet +form associated with the generator (2.1) and the (reversible) measure µ is given by +Df = µ + + +� +x,y∈Λ +x∼y +cx,y(∇x,yf)2 + + . +(5.1) +The result of this section is a bound on the relaxation time of 1 dimensional models satis- +fying Hypothesis 5.5: +Theorem 5.6. Consider a noncooperative kinetically constrained lattice gas with occupied bound- +ary conditions in one dimension satisfying Hypothesis 5.5, and let k = ⌊qL⌋ for some q ∈ (0, 1). +Then for L large enough and any f : Ωk → R +Var f ≤ CqCL2 Df, +where the variance is taken with respect to µ = µk and D is the associated Dirichlet form given +in equation (5.1). +5.1. Proof. The overall scheme of the proof is similar to that of [11]—we first create many +mobile clusters, and then use them in order to exchange the occupation of pairs of sites. This +will allow us to compare our model with the simple exclusion process on the complete graph. +The main difference between the proof here and the one presented in [11] is that the creation +of the mobile clusters is accomplished without resorting to a perturbed model. +We start with a few definitions, which will depend on a fixed arbitrary mobile cluster C of +size N, and an integer λ > 2N +q such that Ci ⊂ [λ] for all i ∈ {1, . . . , k}. +Definition 5.7. A box (of size λ) is a subset of Λ of the type λi + [λ], for i ∈ Z. We may +assume that L +λ ∈ N by the same monotonicity argument as in [22, Remark 3.1], and denote +the set of boxes +B = {λi + [λ], i ∈ Z ∩ [0, L/λ − 1]} . +Definition 5.8. A good box is a box containing an empty translation of C. +A pregood box is a box containing at least N vacancies (recall N = |C|). +We denote by G the event that at least k0 = +� +λ−N � k +4λ − 1 +�� +boxes are good. We assume L +(and therefore k) large enough so that k0 > 0. +Claim 5.9. For any η ∈ Ωk, at least +k +2λ boxes are pregood. +Proof. Let nv be the number of boxes containing exactly v vacancies, so the number of pregood +boxes is �λ +v=N nv. Then +k = +λ +� +v=0 +vnv = +N−1 +� +v=0 +vnv + +λ +� +v=N +vnv + +20 +ASSAF SHAPIRA +≤ N |B| + λ +λ +� +v=N +nv ≤ k +2 + λ · #pregood boxes. +□ +Definition 5.10. Let Σ be the set whose elements are of the type s = (o, σ), for o ∈ {+, −} +and σ = (σB)B∈B, where σB is a permutation of the sites of B for any box B ∈ B. +For a configuration η ∈ Ωk and s ∈ Σ, we construct the configuration sη as follows: +(1) Find the the first mobile cluster in the orientation o, that is, the site z ∈ Λ together +with i ∈ {1, . . . , k} such that: +(a) z + Ci is empty for some i ∈ {1, . . . , k}. +(b) z is the leftmost site satisfying (a) if o = +, and the rightmost if o = −. Dif- +ferently stated, for any y ̸= z such that y + Cj is empty for some j ∈ {1, . . . , k}, +oz < oy. +(2) Identify the set Bo of boxes after z, that is, the boxes B ∈ B in which all sites are +strictly to the right of z + Ci if o = +, or strictly to its left in the case o = −. +(3) For x ∈ Λ, denoting by B the box containing x, +sη(x) = + + + +η(x) +if B /∈ Bo, +η(σ−1 +B x) +if B ∈ Bo. +Observation 5.11. The action defined above is bijective—for any s ∈ Σ we can define s−1 ∈ Σ +by inverting each permutation and keeping the orientation fixed. Then ss−1η = η for any +η ∈ Ωk. +Claim 5.12. Fix η ∈ Ωk. Then +|{s ∈ Σ : sη ∈ G}| +|Σ| +≥ 1 +4. +Proof. We use the notation of Definition 5.10. ∪o∈{±}Bo contains all boxes, except for a max- +imum of 2 boxes containing sites of the mobile cluster. By Claim 5.9, at least +k +2λ − 2 of them +are pregood. Hence, there is an orientation o⋆ ∈ {+, −}, such that the number of pregood +boxes in Bo⋆ is at least +k/2λ−2 +2 +. +Let s = (o, σ) be an element of Σ chosen uniformly at random. Equivalently, we can say that +o is chosen uniformly at random from {+, −} and each permutation in σ is chosen uniformly +at random, all independently of one another. As we have seen above, under this measure, +denoting by p the number of boxes in Bo that are pregood for η, +P +� +p ≥ k +4λ − 1 +� +≥ P[o = o⋆] = 1 +2. +For each box B ∈ Bo which is pregood for η, the probability that B is good for sη is at +least λ−N. Hence, conditioning on p ≥ +k +4l − 1, the number of good boxes for sη is dominat- +ing a binomial random variable of parameters +k +4l − 1 and λ−N. The median of the latter is + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +21 +λ−N � k +4λ − 1 +� += k0, hence +P +� +#good boxes for sη ≥ k0|p ≥ k +4λ − 1 +� +≥ 1 +2. +This concludes the proof. +□ +In order to bound the variance of f, we start by writing +Var f += +1 +2 +� +η,η′∈Ωk +µ(η)µ(η′) (f(η) − f(η′))2 += +1 +2 +� +η,η′∈Ωk +µ(η)µ(η′) +1 +|{s ∈ Σ : sη ∈ G}|2 +� +s∈Σ +1sη∈G +� +s′∈Σ +1s′η′∈G (f(η) − f(η′))2 +≤ +C +|Σ|2 +� +s,s′∈Σ +� +η,η′ +µ(η)µ(η′)1sη∈G1s′η′∈G (f(η) − f(η′))2 += +C +|Σ|2 +� +s,s′∈Σ +� +η,η′ +µ(η)µ(η′)1sη∈G1s′η′∈G (f(η) − f(sη) + f(sη) − f(s′η′) + f(s′η′) − f(η′))2 +≤ +C +|Σ|2 +� +s,s′∈Σ +� +η,η′ +µ(η)µ(η′)1sη∈G1s′η′∈G (f(η) − f(sη))2 ++ C +|Σ|2 +� +s,s′∈Σ +� +η,η′ +µ(η)µ(η′)1sη∈G1s′η′∈G (f(sη) − f(s′η′))2 ++ C +|Σ|2 +� +s,s′∈Σ +� +η,η′ +µ(η)µ(η′)1sη∈G1s′η′∈G (f(s′η′) − f(η′))2 +≤ +C +|Σ| +� +s +� +η +µ(η) (f(η) − f(sη))2 + C +|Σ|2 +� +s,s′∈Σ +� +η,η′ +µ(η)µ(η′)1sη∈G1s′η′∈G (f(sη) − f(s′η′))2 += +I + II. +In order to finish the proof of the theorem, it is left to show that +I ≤ Cq−CL2DΛf, +(5.2) +II ≤ Cq−CL2DΛf. +(5.3) +Let us start with inequality (5.2). +Claim 5.13. For any s = (o, σ) ∈ Σ and z ∈ Λ there exists a T-step move Ms,z = ((ηt), (xt), (et)) +satisfying: +(1) Dom Ms = {η ∈ Ωk : z is the first mobile cluster in η for the orientation o}. +(2) ηT (η) = sη for any η ∈ Dom Ms. +(3) T ≤ Cl3L. +(4) Loss Ms = 0. +(5) Each site x ∈ Λ is exchanged at most Cλ3 times. Moreover, +|{t such that xt(η) = x for some η ∈ Dom Ms,z}| ≤ Cλ3. + +22 +ASSAF SHAPIRA +Proof. Assume for simplicity o = +, the case o = − is analogous. +We start with the mobile cluster at z, and use the translation move (Definition 3.10) L−λ−z +times in order to move it to the box [L − 2λ + 1, L − λ]. The permutation σ[L−λ+1,L] can be +decomposed as a product of at most Cλ2 nearest neighbor transpositions (see, e.g., [18, +Section 5.2.2]). We apply them one by one, where at each step in order to exchange L−λ+x +with L − λ + x + 1 we move the cluster x times to the right using the translation move +(Definition 3.10), then exchange L − λ + x with L − λ + x + 1 using the exchange move +(Definition 3.12), and finally move the cluster x times to the left. Each transposition takes +2xTTr + TEx < Cl steps. +Once the permutation σ[L−λ+1,L] has been applied, we move the cluster λ steps to the left, +to the box [L − 3λ + 1, L − 2λ], and apply as before the permutation σ[L−2λ+1,L−λ] to the box +[L − 2λ + 1, L − λ]. Continue in the same manner until all boxes in B+ are rearranged, and +move the cluster back to z. +The verification of 2-5 is immediate. +□ +We now use the move Ms,z = ((ηs,z +t ), (xs,z +t ), (es,z +t )) in order to bound the term I: for any +s ∈ Σ, +� +η +µ(η) (f(η) − f(sη))2 = +� +η +µ(η) +� +z∈Λ +1η∈Dom Ms,z (f(η) − f(sη))2 += +� +η +µ(η) +� +z∈Λ +1η∈Dom Ms,z +�T−1 +� +t=0 +∇xs,z +t +,xs,z +t ++es,z +t f(ηs,z +t ) +�2 +≤ C +� +η +µ(η) +� +z∈Λ +T +� +η′∈Ω +� +x∈Λ +1η∈Dom Ms,z +T−1 +� +t=0 +1η′=ηs,z +t 1x=xs,z +t cx,x+1(η′) (∇x,x+1f(η′))2 +≤ Cλ6L2 � +η′ +µ(η′) +� +x∈Λ +cx,x+1(η′) (∇x,x+1f(η′))2 = Cλ6L2Df. +Therefore +C +|Σ| +� +s +� +η +µ(η) (f(η) − f(sη))2 ≤ Cλ6L2Df. +For q small we may choose λ < 2N+1 +q +and inequality (5.2) is satisfied. For q large the q and λ +dependence could be put it the constant C, proving inequality (5.2) for all q. +We move to inequality (5.3). Start by noting that, thanks to the bijectivity of s and s′, we +can change variables in the sum to obtain +II = +C +|Σ|2 +� +s,s′∈Σ +� +η,η′ +µ(η)µ(η′)1η∈G1η′∈G (f(η) − f(η′))2 += C +� +η,η′ +µ(η)µ(η′)1η∈G1η′∈G (f(η) − f(η′))2 . + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +23 +Since under the good event there are at least k0 sites x for which x + C is empty, +II ≤ C +� +η,η′ +µ(η)µ(η′)1η∈G1η′∈G +1 +k0 +� +z∈Λ +1z+C is empty for η +1 +k0 +� +z′∈Λ +1z′+C is empty for η′ (f(η) − f(η′))2 +≤ C +k2 +0 +� +η,η′ +µ(η)µ(η′) +� +z,z′ +1z+C is empty for η1z′+C is empty for η′ (f(η) − f(η′))2 . +For η such that z + C is empty, let Θzη be the outcome of z translations moves to the left. +That is, Θz is the permutation compatible with Tr−1(1 + C) ◦ · · · ◦ Tr−1(z + C). We can then +write II as +II +≤ +C +k2 +0 +� +η,η′ +µ(η)µ(η′) +� +z,z′ +1η(z+C)=01η′(z′+C)=0 (f(η) − f(Θzη) + f(Θzη) − f(Θz′η′) + f(Θz′η′) − f(η′))2 +≤ +C +k2 +0 +� +η,η′ +µ(η)µ(η′) +� +z,z′ +1η(z+C)=01η′(z′+C)=0 (f(η) − f(Θzη))2 ++ C +k2 +0 +� +η,η′ +µ(η)µ(η′) +� +z,z′ +1η(z+C)=01η′(z′+C)=0 (f(Θzη) − f(Θz′η′))2 ++ C +k2 +0 +� +η,η′ +µ(η)µ(η′) +� +z,z′ +1η(z+C)=01η′(z′+C)=0 (f(Θz′η′) − f(η′))2 . +≤ +CL +k2 +0 +� +η +µ(η) +� +z +1η(z+C)=0 (f(η) − f(Θzη))2 ++CL2 +k2 +0 +� +η,η′ +µ(η)µ(η′)1η(C)=01η′(C)=0 (f(η) − f(η′))2 += +III + IV. +The term III could be bounded using the T-step move M = ((ηt), (xt), (et)) resulted from the +composition of z translations to the left—it is not difficult to see that T ≤ CL, that it has 0 +loss, and that each edge is flipped a bounded number of times. Therefore +III ≤ CL2 +k2 +0 +� +η +µ(η) +� +z +1η(z+C)=0 +� +η′ +� +x +T−1 +� +t=0 +1η′=ηt1xt=xcx,x+1(η′) (∇x,x+1f(η′))2 +≤ CL3 +k2 +0 +� +η′ +µ(η′)cx,x+1(η′) +� +x +(∇x,x+1f(η′))2 ≤ CL2 +k2 +0 +LDf ≤ Cq−CL Df. +In order to estimate the last term IV, we need two ingredients—first, let Ωk−N be the +space of configurations on Λ \ C with k − N particles, endowed with the uniform measure µ. +Note that to any configuration η ∈ Ωk in which C is empty we can associate a configuration +η ∈ Ωk−N and vice versa. We may also define the function f : Ω → R, given by f(η) = f(η). +Then +IV = CL2 +k2 +0 +��Ωk−N +��2 +|Ωk|2 +� +η,η′ +µ(η)µ(η′) +� +f(η) − f(η′) +�2 . + +24 +ASSAF SHAPIRA +Note that the variance of f with respect to the measure µ is given by +Varµ f = 1 +2 +� +η,η′ +µ(η)µ(η′) +� +f(η) − f(η′) +�2 . +We can therefore bound IV using the relaxation time of the simple exclusion process on the +complete graph [7, 8], expressed in the following Poincaré inequality: +Varµ f ≤ +1 +L − N +� +η +µ(η) +� +y,z∈Λ\C +� +∇x,yf(η) +�2 . +Thus +IV ≤ CL +k2 +0 +��Ωk−N +��2 +|Ωk|2 +� +η +µ(η) +� +y,z∈Λ\C +� +∇y,zf(η) +�2 += CL +k2 +0 +��Ωk−N +�� +|Ωk| +� +η +µ(η)1C is empty +� +y,z∈Λ\C +(∇y,zf(η))2 +≤ CL +k2 +0 +� +η +µ(η)1C is empty +� +y,z∈Λ\C +(∇y,zf(η))2 . +In order to conclude we need to construct a multistep move that exchanges x and y: +Claim 5.14. Fix y, z ∈ Λ\C. Then there exists a T-step move My,z = ((ηt), (xt), (et)) such that: +(1) Dom My,z = {η ∈ Ωk : C is empty}. +(2) My,z is compatible with the transposition of x and y. +(3) T ≤ CL. +(4) Loss My,z = 0. +(5) Each site x ∈ Λ is exchanged at most CλC times. Moreover, +|{t such that xt(η) = x for some η ∈ Dom Ms,z}| ≤ CλC. +Proof. If y and z are both larger than λ, the construction follows the exact same steps as that +of M in the proof of Lemma 4.2. +If y ∈ [λ], we perform the following maneuver—first, move the cluster 3λ steps to the +right. This move is compatible with some permutation σ. Since the order of the particles is +conserved in one dimension, σ(y) and σ(y + λ) are both in [3λ]. We can then exchange them +using the cluster at 3λ + C by the same construction as Lemma 4.2. When we now move the +cluster back to the left, the net result is a move compatible with transposing y and y + λ. +If z > λ we can apply the move constructed in the beginning, exchaning y + λ with z, +and finally wind back our manoeuvre to exchange y and y + λ. This leaves us with the +configuration ηy,z as we wanted. +If z is also in [l], we move the cluster 2λ steps to the right. Then use it to exchange σ(y) +and σ(z). Then move the cluster back 2λ steps to the left. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +25 +If L is large enough all these maneuvers take negligible time, and we are left with the +bound T ≤ CL. +□ +We can now use this newly constructed move My,z = ((ηy,z +t ), (xy,z +t ), (ey,z +t )) in order to finish +the bound on IV: +IV ≤ CL2 +k2 +0 +� +η +µ(η)1C is empty +� +y,z∈Λ\C +T−1 +� +t=0 +� +η′ +� +x∈Λ +1η′=ηy,z +t 1x=xy,z +t cx,x+1(η′) (∇x,x+1f(η′))2 += CL4λC +k2 +0 +� +η′ +µ(η′) +� +x∈Λ +cx,x+1(η′) (∇x,x+1f(η′))2 = CL4λC +k2 +0 +Df. +To sum it all up, assuming L is large enough and using the fact that k0 ≥ qCL, +II ≤ III + IV ≤ Cq−CL Df + CL4λC +k2 +0 +Df ≤ Cq−C L2 Df. +We have thus proven inequalities (5.2) and (5.3), concluding the proof of Theorem 5.6. +□ +6. Diffusion coefficient +In this section we consider the model on Zd, and study the diffusion coefficient D. This is a +symmetric matrix given by the following variational formula (see, e.g., [27, II.2.2]): for any +u ∈ Rd, +u · Du = +1 +2q(1 − q) inf +f µ + + +d +� +α=1 +c0,eα +� +u · eα(η(0) − η(eα)) + +� +x +∇0,eατxf +�2 + . +(6.1) +In [11], convergence to a hydrodynamic limit of a variation of Example 2.1 is proven, +and the diffusion coefficient is found explicitly. This is done by a careful choice of the rates, +rendering the model gradient. Proving convergence to a hydrodynamic limit for Example 2.1 +with the original rates, and identifying the diffusion coefficient, is a much more difficult task. +However, equation (6.1), together with the result of [11], allows us to deduce the positivity +of the diffusion coefficient, and even give an estimate accurate up to a factor (to be precise, +q ≤ D ≤ 2q). +In this section we prove the positivity of the diffusion coefficient in a much more general +setting, for all noncooperative models. +Theorem 6.1. Consider a noncooperative kinetically constrained lattice gas, and let D be the +associated diffusion coefficient (given in equation (6.1)). Then D is positive definite, that is, +u · Du is strictly positive for any u ∈ Rd. +Remark 6.2. The proof of Theorem (6.1) also provides bounds on the diffusion coefficient, +and in particular shows that it could decay at most polynomially fast as q tends to 0. This +power law behavior is characteristic of noncooperative models, while cooperative models are +expected to show faster decay (see e.g. [25]). + +26 +ASSAF SHAPIRA +6.1. Proof. +6.1.1. Comparison argument. We will see here how to bound the diffusion coefficient using +multistep moves that compare our model to an auxiliary dynamics. For this purpose, consider +the dynamics defined by a generator +Lauxf = +� +x∼y +caux +x,y(η)∇x,yf(η), +(6.2) +and assume: +(1) The rates caux +x,y(η) do not depend on η(x), η(y). This guarantees that the dynamics is +reversible with respect to µ. +(2) The model is translation invariant. +(3) The rates are bounded from above by caux +max. +In order to compare the two models, we need to be able to perform the exchanges of the +auxiliary model using the original dynamics. This will be done using a multistep move: +Hypothesis 6.3. For any α ∈ {1, . . . , d} there exists a TAux-step move Auxα such that: +(1) Dom(Auxα) = +� +η ∈ Ω : caux +0,eα(η) ̸= 0 +� +, +(2) The move is compatible with the permutation exchanging 0 and eα. +(3) xt ∈ Λ for all t, where Λ is a fixed set. +Lemma 6.4. Consider the auxiliary model (6.2), and let Daux be its diffusion coefficient. If +Hypothesis (6.3) is satisfied, then for any u ∈ Rd +u · Dauxu ≤ dT 2 +Aux2Loss(Aux)caux +max |Λ| u · Du. +Proof. Fix a local function f : Ω → R. We need to show that +d +� +α=1 +µ + +caux +0,eα +� +u · eα(η(0) − η(eα)) + +� +x +∇0,eατxf +�2 + +≤ dT 2 +Aux2Loss(Aux)caux +max |Λ| +d +� +α=1 +µ + +c0,eα +� +u · eα(η(0) − η(eα)) + +� +x +∇0,eατxf +�2 + . +Fix α, and denote Auxα = ((ηt), (xt), (et)). Then, for η ∈ Dom(Auxα) we can write +u · eα (η(0) − η(eα)) = +T−1 +� +t=0 +u · et (ηt(xt) − ηt(xt + et)) , +∇0,eατxf = +T−1 +� +t=0 +∇xt,xt+et τxf(ηt). +Using these equalities, + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +27 +µ + +caux +0,eα +� +u · eα(η(0) − η(eα)) + +� +x +∇0,eατxf +�2 + += µ + +caux +0,eα +� T +� +t=0 +u · et (ηt(xt) − ηt(xt + et)) + +� +x +T +� +t=0 +∇xt,xt+et τxf +�2 + +≤ TAuxµ + +caux +0,eα +T +� +t=0 +� +u · et (ηt(xt) − ηt(xt + et)) + +� +x +τxt∇0,etτ−xt τxf +�2 + += TAuxµ + +caux +0,eα +T +� +t=0 +cxt,xt+et(ηt) +� +u · etτxt (ηt(0) − ηt(et)) + τxt +� +x +∇0,etτxf +�2 + += TAux +� +η +µ(η)caux +0,eα +T +� +t=0 +� +z∈Λ +1z=xt +� +η′ +1η′=τzηt +� +α′ +1eα′=etc0,eα′(η′) +× +� +u · eα′ (η′(0) − η′(eα′)) + +� +x +∇0,eα′τxf(η′) +�2 += T 2 +Aux2Loss(Aux)caux +max |Λ| +� +η′ +µ(η′)c0,eα′(η′) +� +α′ +� +u · eα′ (η′(0) − η′(eα′)) + +� +x +∇0,eα′τxf(η′) +�2 += T 2 +Aux2Loss(Aux)caux +max |Λ| +d +� +α′=1 +µ + +c0,eα′ +� +u · eα′ (η(0) − η(eα′)) + +� +x +∇0,eα′τxf +�2 + . +□ +6.1.2. The auxiliary model. We now define an auxiliary model that will satisfy Hypothesis +6.3. In order to do that, fix d finite sets of sites, Aα = +� +xα +1, . . . , xα +nα +� +for α ∈ {1, . . . , d}. We +order xα +1, . . . , xα +nα from right to left according to their α coordinate, so that xα +i · eα ≥ xα +j · eα if +i ≤ j. We also define the sets +Aα +i = +� +xα +j + eα , 1 ≤ j ≤ i +� +∪ +� +xα +j , i + 1 ≤ j ≤ nα +� +for i ∈ {0, . . . , nα}, so that Aα +0 = Aα, and Aα +i+1 is obtained from Aα +i by moving xα +i+1 one step +in the direction eα. Note that thanks to the ordering we have chosen, the new site xα +i + eα +does not belong to Aα +i , so that |Aα +i | = nα for all i, and Aα +nα = Aα + eα. +We will now define a Markov process on Ω with the aid of these sets. The idea would be to +allow empty copies of Aα to move in the direction ±eα, vacancy by vacancy, by changing at +each step Aα +i to Aα +i±1. More precisely, for each α and each i ∈ {0, . . . , nα − 1}, we identify all +translations of Aα +i of the form x + Aα +i which are empty for η. Then, with rate 1, we exchange +sites x+xα +i+1 and x+xα +i+1+eα. In addition, for each α and each i ∈ {1, . . . , nα}, we identify all +translations of Aα +i of the form x + Aα +i which are empty for η. Then, with rate 1, we exchange +sites x+xα +i and x+xα +i +eα. This could be described using the following infinitesimal generator + +28 +ASSAF SHAPIRA +operating on a local function f: +Lauxf += +d +� +α=1 +nα−1 +� +i=0 +� +x∈Zd +1x+Aα +i are empty∇x+xα +i+1,x+xα +i+1+eαf(η) +(6.3) ++ +d +� +α=1 +nα +� +i=1 +� +x∈Zd +1x+Aα +i are empty∇x+xα +i ,x+xα +i +eαf(η). +We will refer to the transition described in the first sum as forward transitions, and to the +ones in the second sum as backward transitions. That is, a forward transition occurs when an +empty site x is exchanged with an occupied neighbor x+eα, and a backward transition occurs +when an empty site y is exchanged with an occupied neighbor y − eα. Note that a forward +transition from x to x + eα is only possible when for some ˜x ∈ Z2 and i ∈ {0, . . . , nα − 1}, +˜x+Aα +i is empty and x = ˜x+xα +i+1. In other words, we need x−xα +i+1 +Aα +i to be empty for some +i ∈ {0, . . . , nα −1}. Similarly, a backward transition from y to y −eα requires y −eα −xα +i +Aα +i +to be empty for some i ∈ {1, . . . , nα}. +Observation 6.5. The auxiliary dynamics (6.3) is reversible with respect to the equilibrium +measure µ, for any value of the parameter q. +Proof. This is a consequence of the fact that for any η ∈ Ω and any edge x ∼ y of Z2, the rate +at which η changes to ηx,y is the same as the rate at which ηx,y changes to η—without loss of +generality assume η(x) = 1 − η(y) = 0 and y = x + eα. Then the rate of exchanging x and y +for η is given by the number of sets Aα +i , i ∈ {0, . . . , nα − 1}, such that x − xi+1 + Aα +i is empty +for η. On the other hand, the rate of exchanging x and y for ηx,y is given by the number of +sets Aα +i , i ∈ {1, . . . , nα}, such that y − eα − xi + Aα +i is empty for ηx,y. The latter could be +written as +# {i ∈ {1, . . . , nα} : y − eα − xi + Aα +i is empty for ηx,y} += # +� +i ∈ {0, . . . , nα − 1} : x − xi+1 + Aα +i+1 is empty for ηx,y� += # {i ∈ {0, . . . , nα − 1} : x − xi+1 + Aα +i is empty for η} , +which conclude the proof. +□ +The last observation shows that Laux could be put in the form (6.2), where the rates caux +x,y +are bounded by nα. +The key property of this model is that the total current vanishes for any configuration: +Observation 6.6. Consider the auxiliary dynamics (6.3) on the torus Zd/LZd, for some fixed +(large) L. Then, for any η ∈ Ω, the total current is 0. That is, +� +x∼y +caux +x,y (x − y) (η(x) − η(y)) = 0. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +29 +Proof. Fix α ∈ {1, . . . , d}. We show that the total current in the α direction is 0. The nega- +tive current (particles moving in the direction −eα) is given by forward transitions, and the +positive current by backward transitions. We need to prove that the two cancel out. +Each empty translation of Aα +i contributes a forward transition of rate 1, unless we try to +move the vacancy to an already empty site. Hence the rate of forward transitions is given by +nα−1 +� +i=0 +� +x∈Zd +1x+Aα +i are empty − +nα−1 +� +i=0 +� +x∈Zd +1x+Aα +i are empty1x+xα +i+1+eα is empty += +nα−1 +� +i=1 +� +x∈Zd +1x+Aα +i are empty + +� +x∈Zd +1x+Aα +0 are empty − +nα−1 +� +i=0 +� +x∈Zd +1x+Aα +i+1 are empty1x+xα +i+1 is empty += +nα−1 +� +i=1 +� +x∈Zd +1x+Aα +i are empty + +� +x∈Zd +1x+Aα +nα are empty − +nα +� +i=1 +� +x∈Zd +1x+Aα +i are empty1x+xα +i is empty += +nα +� +i=1 +� +x∈Zd +1x+Aα +i are empty − +nα +� +i=1 +� +x∈Zd +1x+Aα +i are empty1x+xα +i is empty. +We recognize the last line as the rate of backward transitions, which finishes the proof. +□ +The zero current property, as explained in [27, II.2.4], makes the contribution of the +current-current correlation to the diffusion coefficient vanish. This allows us to calculate +explicitly the diffusion coefficient. +Lemma 6.7. Let Daux be the diffusion coefficient associated to the auxiliary dynamics (6.3). +Then for any u ∈ Rd +u · Dauxu = +d +� +α=1 +(u · eα)2 µ [c0,eα] ≥ Cqn ∥u∥2 , +where n = maxα nα. +Proof. The inequality follows directly from the definition of the model, so we are left with +showing the equality. [27, II.2.4] explains how it could be derived from the Green-Kubo +formula [27, II, equation (2.27)], for completeness we will prove it explicitly from the varia- +tional characterization (6.1). +Fix a local function f, and L large enough (depending on the support of f), so that � +x∈Zd +in equation (6.1) could be replaced by � +x∈Zd/LZd. Then +µ + + +d +� +α=1 +caux +0,eα +� +u · eα(η(0) − η(eα)) + +� +x +∇0,eατxf +�2 + += +d +� +α=1 +µ +� +caux +0,eα (u · eα(η(0) − η(eα)))2� ++ 2 +d +� +α=1 +µ +� +caux +0,eα u · eα(η(0) − η(eα)) +� +x +∇0,eατxf +� + +30 +ASSAF SHAPIRA ++ +d +� +α=1 +µ + +caux +0,eα +�� +x +∇0,eατxf +�2 + +≥ +d +� +α=1 +µ +� +caux +0,eα (u · eα(η(0) − η(eα)))2� ++ 2 +d +� +α=1 +u · eα +� +x +µ +� +caux +0,eα (η(0) − η(eα)) ∇0,eατxf +� +. +Since µ is invariant under the map η �→ η0,eα and caux +0,eα(η) = caux +0,eα(η0,eα), we can write for any +function g +µ +� +caux +0,eα (η(0) − η(eα)) g(η) +� += 1 +2 +� +µ +� +caux +0,eα (η(0) − η(eα)) g(η) +� ++ µ +� +caux +0,eα (η0,eα(0) − η0,eα(eα)) g(η0,eα) +�� += −1 +2µ +� +caux +0,eα (η(0) − η(eα)) ∇0,eαg(η) +� +. +Therefore, setting g = τxf and then using the translation invariance of µ we obtain +� +x +µ +� +caux +0,eα (η(0) − η(eα)) ∇0,eατxf +� += −2 +� +x +µ +� +caux +0,eα (η(0) − η(eα)) τxf +� += −2 +� +x +µ +� +caux +x,x+eα (η(x) − η(x + eα)) f +� += −2µ +��� +x +caux +x,x+eα (η(x) − η(x + eα)) +� +f +� +. +The last term is 0 by Observation (6.6), proving that +u · Dauxu ≥ +1 +2q(1 − q) µ +� d +� +α=1 +caux +0,eα (u · eα(η(0) − η(eα)))2 +� +. +Hence, the infimum in equation (6.1) is attained for constant f. +Finally, we use the product structure of µ and the fact that caux +0,eα does not depend on η(0) +and η(eα) to calculate this infimum explicitly: +u · Dauxu = +1 +2q(1 − q) µ +� +d +� +α=1 +c0,eα (u · eα(η(0) − η(eα)))2 +� += +1 +2q(1 − q) +d +� +α=1 +(u · eα)2µ [c0,eα] +� +(η(0) − η(eα))2� += +d +� +α=1 +(u · eα)2µ [c0,eα] . +□ +6.1.3. The multistep move. As a corollary of lemmas 6.4 and 6.7, if we assume that for any +α there exists Aα of size nα ≤ n such that the auxiliary model defined in (6.3) satisfies +Hypothesis (6.3), then +u · Du ≥ Cqn ∥u∥2 +for any u ∈ Rd. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +31 +Example 6.8. In Example 2.1, we may take A0 = {1, 2} so A1 = {1, 3} and A2 = {2, 3}. Then +the multistep Aux could be chosen trivially as the 1-step move exchanging the corresponding +sites. +Similarly, in Example 2.1, we take A1 = {e1, 2e1} and A2 = {e2, 2e2}, and verify that we +may choose the trivial 1-step moves. +In these two examples we know that by modifying the rates (without changing the con- +strained and unconstrained transitions) as in [11] we obtain a gradient model (which is, in +fact, the auxiliary model we defined above). That is, equation (6.1) could be used directly, +without passing through the comparison argument. This is expressed in the fact that our +multistep move is in fact a 1-step move. +In order to prove Theorem 6.1 all that is left is to construct Aα and the Auxα move. +Consider a mobile cluster C, and l such that C ∈ [l − 1]d. +Choosing, for any α, the set +Aα = C ∪ (leα + C) (with nα = 2 |C|) will suffice. In order to show that, we need to construct +the Auxα move. +Let η ∈ Dom Auxα, i.e., caux +0,eα > 0. By reversibility we may assume that this is a forward +transition, so η(0) = 1 − η(eα) = 0, and there exists i ∈ {0, . . . , nα − 1} such that −xi+1 + Aα +i +is empty. We consider two cases: +Case 1. +i ∈ {0, . . . , |C| − 1}. Then −xi+1 + C = −xi+1 + {x|C|+1, . . . , xnα} ⊂ Aα +i . Moreover, +neither 0 nor eα are contained in −xi+1 + C since xi+1 ∈ leα + [l − 1]d. We may +therefore apply translation and exchange moves using the mobile cluster −xi+1 + +eα + leα + C in order to exchange 0 and eα. +Case 2. +i ∈ {|C| , . . . , nα}. Then −xi+1 + eα + leα + C = −xi+1 + eα + {x1, . . . , x|C|} ⊂ Aα +i . As +before, neither 0 nor eα are contained in −xi+1 + eα + leα + C since xi+1 ∈ [l − 1]d. +We may therefore apply translation and exchange moves using the mobile cluster +−xi+1 + eα + leα + C in order to exchange 0 and eα. +Hypothesis 6.3 is thus satisfied, concluding the proof of Theorem 6.1 by lemmas 6.4 and +6.7. +□ +Remark 6.9. While the construction above gives a polynomial bound for all noncooperative +models, in specific cases it might not be optimal. In Example 2.2, the mobile cluster has size +4, therefore the estimate we obtain is of the order q8. We have seen, however, that there is a +more efficient explicit choice of Aα which yields a much better bound, of the order q2. +7. Self-diffusion in d ≥ 2 +In this section we study the self-diffusion coefficient Ds, which is a symmetric matrix given +by the following variational formula ([26], [27, II.6.2]): for any u ∈ Rd, + +32 +ASSAF SHAPIRA +u · Dsu = 1 +2 inf +f µ0 + + +� +y∼x +x,y̸=0 +cxy(∇xyf)2 + +� +y∼0 +c0y(1 − η(y)) +� +u · y + f(τ−yη0y) − f(η) +�2 + + . +(7.1) +In dimension 1, due to the preservation of the order of particles, the self-diffusion coef- +ficient is 0 even with in an unconstrained setting (see, e.g., [27, II.6.4]), we will therefore +consider here only the higher dimensional case. +The positivity of the diffusion coefficient for examples 2.1 and 2.2 was proven in [2]. We +will see here that it is positive for any noncooperative models. +Theorem 7.1. Consider a noncooperative kinetically constrained lattice gas in dimension 2 or +higher, and let Ds be the associated self-diffusion coefficient (given in equation (7.1)). Then Ds +is positive definite, that is, u · Dsu is strictly positive for any u ∈ Rd. +Remark 7.2. As for the diffusion coefficient, the proof of Theorem 7.1 also shows that the +rate at which Ds decays to 0 when q approaches 0 is at most polynomial, as expected. +7.1. Proof. The proof will follow the strategy of [27, II.6.3], also used in [2]. It consists +of comparing the model to as auxiliary model where the tracer motion could be more easily +tracked. The auxiliary model we will choose, however, does not fall under the framework +of equation (7.1)—First, the transitions are not single particle jumps, but a simultaneous +rearrangement of several particles. Moreover, these transitions are not homogeneous; more +precisely, the allowed transitions and their rates depend on the position as seen from the +tracer. +We start by generalizing equation (7.1) in a setting which will cover our auxiliary model. +Consider a dynamics on the space of configuration Ω with additional information on the +location of the tracer z ∈ Zd. Fix a countable set Σ of permutations of the sites, and assume +that they all have finite range. This means that, for some fixed R, any permutation σ ∈ Σ fixes +the sites outside x+[−R, R]d, where x ∈ Zd may depend on σ. Then, for each σ ∈ Σ, we apply +σ with rate ˆcσ, relative to the tracer position z. That is, the configuration η becomes τzστ−zη +and the tracer moves to τzστ−z(z) = z + σ(0), with rate ˆcσ(τ−zη). It is important to note that +in the new configuration, if the old tracer position is occupied then so is the new one. This +process can be written using the infinitesimal generator operating on f : Zd × Ω → R: +ˆLf(z, η) = +� +σ∈Σ +ˆcσ(τ−zη) (f(z + σ(0), τzστ−zη) − f(z, η)) , +(7.2) +for a set of rates ˆcσ : Ω → [0, ∞) defined for all any σ ∈ Σ. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +33 +Remark 7.3. To obtain the original kinetically constrained model we take Σ to be the set of +nearest neighbor transpositions Σkc, and the rate +ˆckc +(x,y)(η) = + + + + + + + +cx,y(τ−zη)1η(y)=0 +if x = 0, +cx,y(τ−zη)1η(x)=0 +if y = 0, +cx,y(τ−zη) +otherwise. +The reason that we do not simply take ˆckc +(x,y)(η) = cx,y(τ−zη) is that, while in the original +dynamics exchanging two particles is equivalent to doing nothing, when following the tracer +we are not allowed to exchange it with a particle. +Then +ˆLkcf(z, η) += +� +x∼y +x,y̸=0 +cx,y(τ−zη) +� +f(z, ηx+z,y+z) − f(z, η) +� ++ +� +0∼y +c0,y(τ−zη) +� +f(y, ηz,y+z) − f(z, η) +� += +� +x∼y +x,y̸=z +cx,y(η) (f(z, ηx,y) − f(z, η)) + +� +z∼y +cz,y(η) (f(y, ηz,y) − f(z, η)) , +which is indeed the generator of the dynamics (2.1) together with a tracer. +The variational formula (7.1) could be generalized to the setting of (7.2): +Lemma 7.4. Consider the dynamics (7.2). Assume that, ignoring the tracer, it is reversible with +respect to a probability measure ν on Ω (i.e., ˆL is self adjoint operating on functions that do +not depend on z). Let ν0 be the measure ν, conditioned on having a particle at the origin, i.e., +ν0(ζ ∈ ·) = ν(ζ ∈ ·|ζ(0) = 1). Then for any u ∈ Rd, +u · ˆDsu = 1 +2 inf +f +�� +σ∈Σ +ν0 +� +ˆcσ(ζ) +� +u · σ(0) + f(τ−σ(0)σζ) − f(ζ) +�2�� +, +where ˆDs is the associated self-diffusion coefficient and the infimum is taken over all local func- +tions on Ω0 = {ζ ∈ Ω : ζ(0) = 1}. +Remark 7.5. From the last lemma we can reconstruct equation (7.1): as in Remark 7.3, +� +σ∈Σ +ν0 +� +ˆckc +σ (ζ) +� +f(τ−σ(0)σζ) − f(ζ) − u · σ(0) +�2� += +� +x∼y +x,y̸=0 +ν0 +� +cx,y(ζ) (f(ζx,y) − f(ζ))2� ++ +� +y∼0 +ν0 +� +c0,y(ζ)(1 − η(y)) +� +u · y + f(τ−yζ0,y) − f(ζ) +�2� +. +Proof. The proof follows the exact same argument as [26, 27]. For completeness we present +here the main steps. +Consider the process described above, with ηt and zt the configuration and tracer position +at time t. Define ζt = τ−zηt, so the joint process (ζt, zt) is Markovian with generator operating + +34 +ASSAF SHAPIRA +on f : Ω0 × Zd → R as +Lf(ζ, z) = +� +σ∈Σ +ˆcσ(ζ) +� +f(z + σ(0), τ−σ(0)σζ) − f(z, ζ) +� +. +Fix g(z, ζ) = u · z, and let +ju(ζ) = Lg(z, ζ) = +� +σ∈Σ +ˆcσ(ζ) u · σ(0). +Then +u · zt − +� t +0 +ju(ζs) d s = Mt +is a martingale with stationary increments and quadratic variation +E +� +M2 +t +� += t +� +σ∈Σ +(u · σ(0))2 ν0 (ˆcσ(ζ)) . +Here, and in the rest of the proof, E(·) refers to expectation related to the process, starting +from a configuration η drawn according to ν0 and a tracer at the origin. +We obtain +E +� +(u · zt)2� += t +� +σ∈Σ +(u · σ(0))2 ν0 (ˆcσ) − +� t +0 +� t +0 +E [ju(ζs)ju(ζs′)] d s d s′ + E +� +u · zt +� t +0 +ju(ζs) d s +� +. +By reversibility and translation invariance, the process (−zt−s, ζt−s)s∈[0,t] has the same law as +(zs, ζs)s∈[0,t] (under the initial condition z = 0 and ζ draws from ν0). Therefore, the last term +in the equation above vanishes, leaving us with +u · ˆDsu = 1 +2t lim +t→∞ E +� +(u · zt)2� += 1 +2 +� +σ∈Σ +(u · σ(0))2 ν0 (ˆcσ) − +� ∞ +0 +ν0 +� +juetLju +� +d t. +Note that the last expression contains only functions of the configuration ζ, without looking +at the tracer position z. The process (ζt)∞ +t=0 is Markovian and reversible with respect to ν0; +therefore, with some abuse of notation, we will consider from now on L as the generator of +this projected process, operating on functions on Ω0. +We may now write +− +∞ +� +0 +ν0 +� +juetLju d t +� += ν0 +� +juL +−1ju +� += inf +f +� +−2ν0(juf) − ν0(fLf) +� +. +In order to calculate the first term in the infimum we use the detailed balance equation. +For every σ, defining σ′ = τ−σ(0)σ−1τσ(0) (so that applying σ and then σ′ brings us back to the +original configuration), +ν0 [ˆcσ(ζ)f(ζ)] = ν0 +� +ˆcσ′(ζ)f(τ−σ′(0)σ′ζ) +� +. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +35 +Hence, using σ′(0) = −σ(0), +−2ν0 [juf] = −2 +� +σ∈Σ +u · σ(0) ν0 [ˆcσ(ζ)f(ζ)] += +� +σ∈Σ +u · σ(0) ν0 +� +ˆcσ(ζ) +� +f(τ−σ(0)σζ) − f(ζ) +�� +. +The second term in the infimum is given by the Dirichlet form +−ν0(fLf) = 1 +2 +� +σ∈Σ +ν0 +� +ˆcσ(ζ) +� +f(τ−σ(0)σζ) − f(ζ) +�2� +. +Summing all up, +1 +2 inf +f +�� +σ∈Σ +ν0 +� +ˆcσ(ζ) +� +u · σ(0) + f(τ−σ(0)σζ) − f(ζ) +�2�� += 1 +2 +� +σ +(u · σ(0))2ν0(ˆcσ) + inf +f +� +−ν0(fLf) − 2ν0(juf) +� += 1 +2 +� +σ +(u · σ(0))2ν0(ˆcσ) − +∞ +� +0 +ν0 +� +juetLju d t +� += u · ˆDsu. +□ +7.1.1. Comparison argument. As in the case of the diffusion coefficient, we will see that an +appropriate move could help us compare different dynamics. +Consider a model as in equation (7.2), satisfying the following conditions: +(1) For any σ ∈ Σ, the configuration σ′ = τ−σ(0)σ−1τσ(0) is also in Σ, and ˆcσ = ˆcσ′. This is +equivalent to reversibility with respect to the equilibrium measure µ (for any q). +(2) ˆcσ ≤ 1 for any σ ∈ Σ. +The comparison argument will be based on multistep moves, requiring us to follow the tracer +position throughout the move. +Definition 7.6. Fix a T-step move M = ((ηt), (xt), (et)), and assume that for any η ∈ Dom(M) +some given site z0 is occupied, i.e., η(z0) = 1. Then the tracer position associated with M +starting at z0 is a sequence of sites (zt)T +t=0 giving at each step t the position of the particle +originally at z0: +zt+1 = + + + + + + + +xt + et +if zt = xt and ηt(xt + et) = 0, +xt +if zt = xt + et and ηt(xt) = 0, +zt +otherwise. +In order to compare the auxiliary model with our kinetically constrained lattice gas, we +must have an appropriate multistep move: +Hypothesis 7.7. For any σ ∈ Σ and z0 ∈ Zd, there is a T-step move Mz0,σ = ((ηt), (xt), (et)) +such that: + +36 +ASSAF SHAPIRA +(1) DomM = {η ∈ Ω : η(z0) = 1 and ˆcσ(τ−z0η) > 0}. +(2) M is compatible with the permutation τz0στ−z0. +(3) In all transitions involving the tracer, the site it jumps to must be empty. More pre- +cisely, denote zt the tracer position associated with M starting from z0. Then, for all +t, if xt = zt then ηt(xt + et) = 0 and if xt + et = zt then ηt(xt) = 0. +(4) For any z0, t, η′, x′, e′ and z′, +|{σ ∈ Σ : ηt = η′, xt = x′, et = e′, zt = z′}| ≤ C. +We note that by translation invariance of the kinetically constrained lattice gas, it suffices to +construct Mz0,σ for a specific choice of z0 to guarantee its existence for all z0. +Lemma 7.8. Consider an auxiliary model as in (7.2), reversible with respect to µ and with rates +bounded by 1. Assume that Hypothesis 7.7 holds. Then for all u ∈ Rd, +u · ˆDsu ≤ C u · Dsu, +where Ds and ˆDs are the self diffusion coefficients associated with the kinetically constrained +lattice gas and the auxiliary model respectively. +Proof. Fix z0 ∈ Zd and σ ∈ Σ, and consider the move Mz0,σ = ((ηt), (xt), (et)) given in Hypoth- +esis 7.7. Let zt be the associated tracer position starting at z0. Fix η ∈ Dom Mz0,σ, and set +ζ = τ−z0η, ζt = τ−zηt and σt = (xt − zt, xt − zt + et) for all t. Note first that +u · σ(0) + f(τ−σ(0)σζ) − f(ζ) = u · (zT − z0) + f(ζT) − f(ζ0) += +T−1 +� +t=0 +u · (zt+1 − zt) + f(ζt+1) − f(ζt). +Also, +zt+1 = zt + σt(0), +ζt+1 = τ−σt(0)σtζt. +Recall remarks 7.3 and 7.5. Setting z0 = 0 (and hence ζ = η), +� +σ∈Σ +µ0 + +ˆcσ(ζ) +�T−1 +� +t=0 +u · (zt+1 − zt) + f(ζt+1) − f(ζt) +�2 + +≤ T +� +σ∈Σ +µ0 +� +ˆcσ(ζ) +T−1 +� +t=0 +� +u · σt(0) + f(τ−σt(0)σtζt) − f(ζt) +�2 +� +≤ CT +� +z∈[−R,R]d +T−1 +� +t=0 +µ0 + + � +σ′∈Σkc +1z′=zt1σ′=((xt−z′,xt−z′+et))ˆckc +σ′ +� +u · σ′(0) + f(τ−σ′(0)σ′ζ′) − f(ζ′) +�2 + + + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +37 +≤ CT 2Rdµ0 + + � +σ′∈Σkc +ˆckc +σ′ +� +u · σ′(0) + f(τ−σ′(0)σ′ζ′) − f(ζ′) +�2 + + . +This concludes the proof by Lemma 7.4. +□ +7.1.2. The auxiliary model. Fix some finite set ˆC ⊂ Zd \ {0}, and d permutations σ1, . . . , σd +with finite range. Assume that σi(0) = ei and that σi( ˆC) = ei + ˆC. For all i ∈ [d] set +σ−i = τ−σi(0)σ−1 +i τσi(0), +so in particular +σ−i(0) = −ei, +σ−i( ˆC) = −ei + ˆC. +We then define the auxiliary model as in equation (7.2), with Σ = {σ±1, . . . , σ±d} and +ˆcσ(η) = 1 ˆC is empty for all σ ∈ Σ. It is indeed reversible with respect to µ, and all rates are +bounded by 1 (as required by Lemma 6.4). +Lemma 7.9. Consider the auxiliary model defined above. Then for all u ∈ Rd +u · ˆDsu = 1 +2q| ˆC| ∥u∥2 . +Proof. Start the dynamics with a configuration η0 drawn from µ0 and tracer at the origin. +Assume ˆC is empty for η0. Then the entire cluster ˆC ∪ {0} performs a simple random walk, +independently of the initial configuration. This is because initially all rates are 1, and in each +transition the tracer moves together with ˆC, meaning that all rates remain 1. +On the other hand, if ˆC is not empty initially, then the configuration is blocked, and the +tracer remain at the origin forever. Hence, denoting the tracer position at time t by zt, +u · ˆDsu = lim +t→∞ +1 +2tE +� +(u · zt)2� += lim +t→∞ +1 +2tE +� +(u · zt)21 ˆC is empty for η0 +� += 1 +2 ∥u∥2 µ( ˆC is empty for η0). +□ +7.1.3. The multistep move. In this section we construct the multistep moves allowing us to +move the tracer together with an empty cluster ˆC. +Fix a mobile cluster C and l > 0 such that the translation and exchange moves exist. We +define +ˆC = {−e1} ∪ ((l + 2)e1 + C) . +Claim 7.10. There exists a T-step move Hop = ((ηt), (xt), (et)), which we call the vacancy +hopping move, such that: +(1) Dom Hop = +� +η : η(0) = 1 and ˆC is empty +� +. +(2) Hop is a deterministic move, compatible with the cyclic permutation σH = (e1, e1 + +e2, e2, −e1 + e2, −e1). +(3) For all t, at least one of the two sites xt or xt + et must be empty. + +38 +ASSAF SHAPIRA +Proof. We will construct Hop as a composition of several moves. First, we use translation +moves in order to bring the mobile cluster to −e1 − le2 + C: +M1 = Tr2(−(l + 1)e2 − e1 + C) ◦ Tr−1(−(l + 1)e2 + C) ◦ · · · ◦ Tr−1(−(l + 1)e2 + (l + 2)e1 + C) +◦ Tr−2(−le2 + (l + 2)e1 + C) ◦ · · · ◦ Tr−2((l + 2)e1 + C). +We emphasize that, for each of these translation Tr(x + C), the sites −e1, −e1 + e2 are outside +x + [−l, l], hence untouched by the move. Also, the translation move is deterministic, and +since adding vacancies to a configuration in Dom Tr keeps it in Dom Tr, we may assume that +all transitions involve at least one empty site. +Next, we exchange −e1 and −e1 + e2: +M2 = Ex2(−e1 − le2 + C), +and move the mobile cluster back to (l + 2)e1 + C. +M3 = M−1 +1 . +So far, we obtain a move M3 ◦ M2 ◦ M1 with the associated permutation (−e1, −e1 + e2). +Next, we move the cluster, exchange −e1 + e2 with e2 and the move it back: +M4 = Tr−1((l + 1)e1 + e2 + C) ◦ Tr−1((l + 2)e1 + e2 + C) ◦ Tr2((l + 2)e1 + C), +M5 = Ex−1(le1 + e2 + C), +M6 = M−1 +4 . +This results in a move M6 ◦ M5 ◦ M4 associated to the permutation (−e1 + e2, e2). +In the same manner we construct a move M7 associated with (e2, e1 + e2) and a move M8 +associated with (e1 + e2, e1). +We end up with the desired multistep move Hop = M8◦M7◦M6◦M5◦M4◦M3◦M2◦M1. +□ +Claim 7.11. There exists a permutation σ1 and a move Mσ1 such that: +(1) Dom Mσ1 = +� +η : η(0) = 1 and ˆC is empty +� +. +(2) Mσ1 is deterministic, compatible with σ1. +(3) σ1(0) = e1 and σ1( ˆC) = e1 + ˆC. +(4) For all t, at least one of the two sites xt or xt + et must be empty. +Proof. The move Mσ1 is given by +Mσ1 = Tr1((l + 2)e1 + C) ◦ Tr1((l + 1)e1 + C) ◦ Ex−1((l + 1)e1 + C) ◦ Tr−1((l + 2)e1 + C) ◦ Hop. +□ +So far, we constructed the permutation σ1 defining the auxiliary model, and the move +Mz0,σ1 required in Hypothesis 6.3 (for z0 = 0 hence for all z0). This gives us automatically +σ−1 = τ−e1σ−1 +1 τe1, and the move Me1,σ−1 = M−1 +0,σ1, which provides Mz0,σ−1 for all z0. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +39 +In order to propagate in other directions, we use the following claim: +Claim 7.12. For and α ∈ [1], there exists a permutation σα and a move Mσα such that: +(1) Dom Mσα = +� +η : η(0) = 1 and ˆC is empty +� +. +(2) Mσα is deterministic, compatible with σα. +(3) σα(0) = eα and σα( ˆC) = eα + ˆC. +(4) For all t, at least one of the two sites xt or xt + et must be empty. +Proof. Claim 7.11 shows the case α = 1. +The construction for α ̸= 1 is similar to the previous claims. Start by exchanging −e1 with +−eα (in the exact same manner as the move M6 ◦M5 ◦M4 ◦M3 ◦M2 ◦M1 in the proof of Claim +7.10). Then translate the mobile cluster from (l + 2)e1 + C to (l + 2)eα + C. This brings us +to the same setting as Claim 7.11, where the direction 1 is replaced by α. We may then use +the same construction in order to move {0, −eα}∪((l + 2)eα + C) one step in the direction eα. +Finally, move the mobile cluster back from (l + 3)eα + C to (l + 2)e1 + eα + C and the vacancy +at 0 to eα − e1. +□ +Theorem 7.1 then follows from Claim 7.12, Lemma 7.8, and Lemma 7.9. +□ +8. Questions +• The proofs given here show polynomial divergence of time scales as q tends to 0. Is it +possible to identify the exact exponent of this divergence? +• What is the qualitative behavior of the different quantities described here when changing +q? Are they continuous? Smooth? We expect them to be monotone (since decreasing q +should “slow down” the system), but the nonattractivity of the model makes it difficult to +prove. +• Variational formulas can also be used to approximate different quantities, and not just find +bounds—consider, for example, the diffusion coefficient D. We may define, for Λ ⊂ Zd, +u · D(Λ)u = +1 +2q(1 − q) min +f +µ + + +d +� +α=1 +c0,eα +� +u · eα(η(0) − η(eα)) + +� +x +∇0,eατxf +�2 + , +where the minimum is taken over functions f : {0, 1}Λ → R. Then D = limΛ→Zd D(Λ). +[1] evaluated this minimum, obtaining (nonrigorously) an approximate expression for +D of the Kob-Andersen model, which is a cooperative kinetically constrained lattice gas. In +their case, as q tends to 0, larger and larger boxes Λ must be taken in order to have a good +approximation of D. We know that since any finite Λ gives D(Λ) polynomial in q, and for +the Kob-Andersen model the diffusion coefficient decays superpolynamially. +In noncooperative models, the decays is polynomial, so one may hope that a finite box Λ +could provide a good approximation of D for all q. For the model in Example 2.1 an empty + +40 +ASSAF SHAPIRA +Λ already gives the correct diffusion coefficient up to a factor 2. What happens in other +noncooperative models? Can we say that D/D(Λ) → 1 uniformly in q? +• Extend Theorem 5.6 to models satisfying Hypothesis 5.5 in all dimensions, or more gener- +ally to all noncooperative models. +• Given the positivity of the diffusion coefficient (Theorem 6.1), it is natural to conjecture +convergence to the hydrodynamic limit of all noncooperative kinetically constrained lattice +gases. Can we show it for models other than the one studied in [11]? Proving convergence +for nongradient models (e.g. the model in Example 2.1) is an interesting (and challenging) +problem. +• We expect the equilibrium fluctuations to converge to a Gaussian field (see, e.g., [27, II.2]), +with the diffusion coefficient studied in Section 6. Can this be proven? +• Studying the diffusivity of cooperative kinetically constrained models. Results analogous to +theorems 4.1, 6.1, and 7.1 have been shown for the Kob-Andersen model ([22, 25, 4, 9]). +To the author’s knowledge, other cooperative models have not been studied in the mathe- +matical literature. Can one understand ergodicity properties of cooperative models? Does +ergodicity always imply diffusivity? How do typical time scales diverge near criticality? +References +[1] Chikashi Arita, P.L. Krapivsky, and Kirone Mallick. Bulk diffusion in a kinetically constrained lattice gas. +Journal of Physics A: Mathematical and Theoretical, 51(12):125002, 2018. +[2] Lorenzo Bertini and Cristina Toninelli. Exclusion processes with degenerate rates: convergence to equilib- +rium and tagged particle. Journal of Statistical Physics, 117(3):549–580, 2004. +[3] Oriane Blondel, Patrícia Gonçalves, and Marielle Simon. Convergence to the stochastic Burgers equation +from a degenerate microscopic dynamics. Electron. J. Probab., 21:Paper No. 69, 25, 2016. +[4] Oriane Blondel and Cristina Toninelli. Kinetically constrained lattice gases: tagged particle diffusion. Ann. +Inst. Henri Poincaré Probab. Stat., 54(4):2335–2348, 2018. +[5] Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto, and Cristina Toninelli. Kinetically constrained spin +models. Probab. Theory Related Fields, 140(3-4):459–504, 2008. +[6] Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto, and Cristina Toninelli. Kinetically constrained lattice +gases. Comm. Math. Phys., 297(2):299–344, 2010. +[7] Persi Diaconis and Laurent Saloff-Coste. Comparison techniques for random walk on finite groups. The +Annals of Probability, pages 2131–2156, 1993. +[8] Persi Diaconis and Mehrdad Shahshahani. Generating a random permutation with random transpositions. +Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57(2):159–179, 1981. +[9] Anatole Ertul and Assaf Shapira. Self-diffusion coefficient in the Kob-Andersen model. Electronic Commu- +nications in Probability, 26:1–12, 2021. +[10] Juan P. Garrahan, Peter Sollich, and Cristina Toninelli. Kinetically constrained models. Dynamical hetero- +geneities in glasses, colloids, and granular media, 150:111–137, 2011. +[11] Patrícia Gonçalves, Claudio Landim, and Cristina Toninelli. Hydrodynamic limit for a particle system with +degenerate rates. Ann. Inst. Henri Poincaré Probab. Stat., 45(4):887–909, 2009. +[12] Ivailo Hartarsky. Refined universality for critical kcm: upper bounds. arXiv preprint arXiv:2104.02329, +2021. + +NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES +41 +[13] Ivailo Hartarsky and Laure Marêché. Refined universality for critical kcm: lower bounds. Combinatorics, +Probability and Computing, 31(5):879–906, 2022. +[14] Ivailo Hartarsky, Laure Marêché, and Cristina Toninelli. Universality for critical kcm: infinite number of +stable directions. Probability Theory and Related Fields, 178(1-2):289–326, 2020. +[15] Ivailo Hartarsky, Fabio Martinelli, and Cristina Toninelli. Universality for critical kcm: finite number of +stable directions. The Annals of Probability, 49(5):2141–2174, 2021. +[16] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible Markov pro- +cesses and applications to simple exclusions. Comm. Math. Phys., 104(1):1–19, 1986. +[17] Claude Kipnis and Claudio Landim. Scaling limits of interacting particle systems, volume 320 of Grundlehren +der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, +Berlin, 1999. +[18] Donald Ervin Knuth. The art of computer programming, volume 3: Sorting and searching. Addison-Wesley +Reading, MA, 1998. +[19] Walter Kob and Hans C. Andersen. Kinetic lattice-gas model of cage effects in high-density liquids and a +test of mode-coupling theory of the ideal-glass transition. Physical Review E, 48(6):4364, 1993. +[20] Laure Marêché, Fabio Martinelli, and Cristina Toninelli. Exact asymptotics for duarte and supercritical +rooted kinetically constrained models. 2020. +[21] Fabio Martinelli, Robert Morris, and Cristina Toninelli. Universality results for kinetically constrained spin +models in two dimensions. Communications in mathematical physics, 369(2):761–809, 2019. +[22] Fabio Martinelli, Assaf Shapira, and Cristina Toninelli. Diffusive scaling of the Kob-Andersen model in Zd. +Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 56(3):2189–2210, 2020. +[23] Yukio Nagahata. Lower bound estimate of the spectral gap for simple exclusion process with degenerate +rates. Electronic Journal of Probability, 17:1–19, 2012. +[24] F. Ritort and P. Sollich. Glassy dynamics of kinetically constrained models. Advances in Physics, 52(4):219– +342, 2003. +[25] Assaf Shapira. Hydrodynamic limit of the kob-andersen model. arXiv preprint arXiv:2003.08495, 2020. +[26] Herbert Spohn. Tracer diffusion in lattice gases. J. Statist. Phys., 59(5-6):1227–1239, 1990. +[27] Herbert Spohn. Large Scale Dynamics of Interacting Particles. Springer-Verlag Berlin Heidelberg, 1991. +[28] Eial Teomy and Yair Shokef. Hydrodynamics in kinetically constrained lattice-gas models. Physical Review +E, 95(2):022124, 2017. +[29] Cristina Toninelli, Giulio Biroli, and Daniel S. Fisher. Cooperative behavior of kinetically constrained lattice +gas models of glassy dynamics. J. Stat. Phys., 120(1-2):167–238, 2005. +MAP5, UNIVERSITÉ PARIS CITÉ +Email address: assaf.shapira@normalesup.org +URL: assafshap.github.io + diff --git a/ndFRT4oBgHgl3EQfbDfe/content/tmp_files/load_file.txt b/ndFRT4oBgHgl3EQfbDfe/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..386d2e6cc674995ad20d7cb11687b369db0d53f3 --- /dev/null +++ b/ndFRT4oBgHgl3EQfbDfe/content/tmp_files/load_file.txt @@ -0,0 +1,1540 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf,len=1539 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='13559v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='PR] 31 Jan 2023 Noncooperative models of kinetically constrained lattice gases Assaf Shapira ABSTRACT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We study a family of conservative interacting particle systems with degenerate rates called noncooperative kinetically constrained lattice gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We prove for all models in this family the diffusive scaling of the relaxation time, the positivity of the diffusion coefficient, and the positivity of the self-diffusion coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Introduction Kinetically constrained lattice gases are interacting particle systems introduced by physi- cists in order to better understand glassy materials (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', [19, 24]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The basic underlying hypothesis behind these models is that glassy behavior is a dynamic effect, and the role of interactions is irrelevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Under this hypothesis, we can explain why glasses are rigid using the cage effect—even though their microscopic structure is amorphous, glasses at low temper- atures have a very high density, and molecules are unable to move since they are blocked by neighboring molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to model this effect, we consider the lattice Zd, describing a coarse graining of the glass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Each site, corresponding to some region in the glass, could be either occupied or empty, representing dense or dilute zones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We think of the glass as very dense, so the small parameter q will be the ratio of empty sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The dynamics of kinetically constrained lattice gases is conservative—particles could jump between neighbors, turning an occupied site empty and a neighboring empty site occupied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' However, not all jumps are allowed—in order to imitate the cage effect, when the local neighborhood of a particle is too dense it is blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' That is, particles are only able to move under a certain constraint, satisfied when there are many vacancies nearby.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Different kinetically constraint lattice gases are given by different choices of this constraint, namely, different interpretations of the neighborhood being “too dense”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' To fix an idea, consider a one dimensional model introduced in [2] (see Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1), where a particle is allowed jump to an empty neighbor, if it has at least two empty neighbors before or after the jump (including the site it jumped to/from).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Note that if a particle is allowed to jump, than it is also allowed to jump back immediately after.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is a property we require for all kinetically constrained models, and it guarantees a noninteracting equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' It is instructive to compare these models to another family of interacting particle systems, the nonconservative kinetically constrained models (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', [10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In those models, rather than jumping between sites, particles appear and disappear under the constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' These models are in general simpler to analyze, and, at least in one and two dimensions, we have 1 2 ASSAF SHAPIRA FIGURE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This figure shows how, in the model described in Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1, a mobile cluster can propagate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The mobile cluster here consists of the two empty sites, and after a sequence of 1 allowed transitions it is moved one step to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' See Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' a relatively good understanding of their behavior [21, 20, 15, 14, 13, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In fact, one can identify a handful of universality classes describing the properties of a kinetically constrained model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Moreover, a simple criterion allows us to determine, given any translation invariant local constraint, to which universality class the model belongs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In the case of conservative kinetically constrained lattice gases, however, only a few specific models have been analyzed [2, 6, 11, 23, 29, 22, 4, 9, 25], and no general results are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We distinguish between two types of kinetically constrained lattice gases—cooperative and noncooperative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In a cooperative dynamics, any large scale change in the configuration forces many particles to move in order to "free up" space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In noncooperative models, small empty clusters can move around the lattice, without requiring any cooperation from other sites near them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider the example introduced above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 shows how, in two allowed transi- tions, two neighboring vacancies can propagate to the right, no matter what the occupation is elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We say that these vacancies form a mobile cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Noncooperative models are those where a mobile cluster exists, and cooperative models are models where no finite set of vacancies can propagate without any outside help.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' See Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' One simple implication of the presence of a mobile cluster is that the critical density of the model is 1 (equivalently, the critical value of q is 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This means that for any q > 0, in an infinite system, there exists with probability 1 a sequence of allowed transitions in the end of which the origin (or any other arbitrary vertex) is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Indeed, since a mobile cluster consists of some fixed number of vacancies, if q > 0 there will almost surely be an empty mobile cluster somewhere in Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We can then move this cluster until one of its vacancies reaches the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In cooperative models identifying the critical density is more complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The only cooperative kinetically constrained lattice gas studied in the mathematics literature is the Kob-Andersen model [29], where the critical density is also 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' but in general cooperative models may have critical densities which are strictly smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Close to criticality, when q ≪ 1, most sites are occupied, and the constraint is rarely satis- fied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The dynamics then tends to slow down, making typical time scales diverge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will try to understand how significant this effect is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In the unconstrained model (namely the simple exclusion process), time scales diffusively, as the square of the distance: typical time ≈ C × typical distance2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will see that noncooperative models are also diffusive—the constraint may affect the coefficient C, but the exponent remains 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This will be done in four different contexts, giving different interpretations to “typical time” and “typical distance”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 3 The first time scale we study is the relaxation time, describing the time scale over which correlations are lost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider some observable f depending on the configuration, and mea- sure it at time 0 and at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In some cases, the correlation between these two quantities, f0 and ft, decreases exponentially fast with t— Corr(f0, ft) ≤ e−t/τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The best (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' smallest) coefficient τ for which this decay hold uniformly (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' for all f) is the relaxation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In general, the relaxation time can be infinite, and this is in fact the case for kinetically contrained lattice gases on the infinite lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In sections 4 and 5 we study the relaxation time on a finite box, of length L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will see that the relaxation time is proportional to L2, and that the corresponding coefficient diverges as a power law for small values of q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In Section 6 we study the diffusion coefficient associated with the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This coeffi- cient, generally speaking, describes the large scale evolution of the density profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider for example a one dimensional model defined on a large interval {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , L}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume that the initial configuration approximates some given density profile ρ0 : [0, 1] → [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Roughly speaking, this means that the number of particles in an interval {x − l/2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , x + l/2} of “medium” length (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 1 ≪ l ≪ L) is close to lρ(x/L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then, when the system is diffusive, we expect the configuration at a later time t to approximate the same profile ρ0 if t ≪ L2 (before the diffusive time scale), some evolving profile ρ(t/L2, ·) when t is of the order L2 (in the diffusive time scale), and a uniform profile when t ≫ L2 (after the diffusive time scale).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Moreover, the evolution in the diffusive scale is given by a diffusion equation ∂τρ(τ, ξ) = ∂ξ D(ρ(τ, ξ))∂ξρ(τ, ξ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The diffusion coefficient D tells us, within the diffusive scale, how fast the density profile changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In particular, if D = 0 the density profile does not evolve in diffusive time scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' When this picture indeed describes the behavior of the model, we say that it converges to a hydrodynamic limit in the diffusive scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This hydrodynamic limit is given by the diffusion equation above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For a more complete discussion see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proving rigorously converges to a hydrodynamic limit is not an easy task, accomplished only for one example of a kinetically constrained lattice gas [11, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In fact, it cannot hold in full generality—a configuration such as the one shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2 approximates the profile ρ0(x) = \uf8f1 \uf8f2 \uf8f3 1 x ≤ L/2, 2/3 x > L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' At the same time, the configuration is blocked, namely, no particle is allowed to jump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Thus, the density profile remains fixed, and cannot converge to a hydrodynamic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This initial configuration, though, is very specific, and one may still hope that, by restricting to a more 4 ASSAF SHAPIRA FIGURE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We see here a blocked configuration for the model in Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1—in the left half all sites are filled, while in the right half one in every three sites is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' No particle could jump to an empty site, hence the configuration is blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In particular, it cannot converge to the hydrodynamic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' generic initial state, the dynamics will convergence to a hydrodynamic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is proven in [11] for the model they study, but a general proof seems to be very difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Still, even without proving convergence, studying the diffusion coefficient is an interesting problem, allowing us to obtain a plausible candidate for the hydrodynamic limit [1, 28, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Moreover, the strategy of [25] shows convergence to a hydrodynamic limit in a “soft” sense whenever the model is rotation invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In particular, a strictly positive diffusion coefficient is a good indication that the density profile evolves over diffusive time scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In Section 6 we show that the diffusion coefficient of noncooperative kinetically constrained lattice gases is indeed positive, and that it decays at most polynomially fast for small q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The last interpretation of “typical time” and “typical distance” we consider is perhaps the most intuitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume that the initial configuration has a particle at the origin called the tracer (but otherwise sampled from equilibrium).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' One may think of the tracer as playing the role of the pollen grain in Brown’s famous experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We then follow its motion, and ask what is the time it would typically take in order to cross a certain distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Diffusive scaling means that this time scales as the square of the distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A general argument of [16] shows a much stronger result—under diffusive scaling, the path of the tracer converges to a Brownian motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The variance of this Brownian motion is called the self diffusion Ds, and when it is strictly positive the Brownian motion in nondegenerate, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', the relevant time scale is indeed diffusive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' All quantities mentioned above have variational characterizations, involving infima or suprema over local functions, see equations (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1), and (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' These formulations allow us to analyze them using canonical path arguments, which in the lack of attractivity have proven extremely useful in the study of kinetically constrained models and kinetically con- strained lattice gases (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', [5, 6, 2, 22, 4, 25]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In this paper, following [22, 9, 25], we formulate these argument in the language of multistep moves, see Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' These are sequences of transitions, each allowed for the dynamics, leading to some desired final configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Structure of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In Section 2 we set up some of the notation, and define ki- netically constrained lattice gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We also introduce two examples that will be referred to throughout the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Is Section 3 we introduce the notion of a multistep move and its basic properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We then use this notion in order to precisely define of a mobile cluster and noncooperative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Finally, we provide a slightly weaker characterization of noncooperative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 5 The two following sections discuss the relaxation time in two different settings—Section 4 concerns with systems connected to a reservoir, while in Section 5 we analyze closed systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The result of Section 4 shows diffusivity of the relaxation time in all noncooperative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' It generalizes [2], and the proof uses the same strategy in a wider context and in the language of multistep moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Studying the relaxation time in closed systems is much more involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This problem was analyzed for one noncooperative model in [11], proving diffusive scaling if the density is low enough or when adding a small perturbation violating the constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The same model was later considered in [23], where diffusivity was proven for all densities and with no pertur- bation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Here, in Section 5, we generalize the result of [23] to some class of noncooperative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The proof of the result uses a completely different strategy—while [23] relies on spe- cific combinatorial details of the model they study, the proof here only uses general properties of mobile clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This new strategy allows us to obtain a result in a wider context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In Section 6 we show that the diffusion coefficient is positive for all noncooperative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to achieve that, we introduce a new comparison argument using multistep moves (Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We then construct an auxiliary dynamics which on one hand can be compared to the kinetically constrained gas in question, and on the other hand possesses a special property allowing us to calculate its diffusion coefficient explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The positivity of the self-diffusion coefficient for all noncooperative models (in dimension 2 and above) is proven in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The proof applies a strategy similar to [27, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6], using a multistep move in order to compare the kinetically constrained lattice gas to a random walk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We conclude with open problems that this work suggests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The model 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to simplify the exposition of the model, we start by defining some of the notation we use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For n ∈ N, we denote [n] = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will consider models defined either on Zd, a finite box [L]d for L ∈ N, or the torus Zd/LZd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We denote by {eα}d α=1 the standard basis, and we say that two sites x and y are neighbors, denoted x ∼ y, if x−y ∈ {±e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , ±ed}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The boundary of a set Λ ⊂ Zd, denoted ∂Λ, is the set of sites in Λ that have a neighbor outside Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For any finite sequence of sites x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , xn, we denote by σ = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , xn) the corresponding cyclic permutation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', for any site y σ(y) = \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 xk+1 if y = xk for k ∈ [n − 1], x1 if y = xn, y otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 6 ASSAF SHAPIRA For a fixed site x we denote by τx the permutation on Zd given by a translation by x, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', for any site y ∈ Zd τx(y) = y + x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A configuration is an element η of Ω = ΩΛ = {0, 1}Λ, where Λ is either Zd, [L]d, or the torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We say that a site x ∈ Λ is empty if η(x) = 0 and occupied if η(x) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For η ∈ Ω and a site x we define ηx to be the configuration η after flipping the occupation at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For η ∈ Ω and two sites x and y we define ηx,y to be the configuration η after exchanging the occupation values at x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For η ∈ Ω and a permutation σ, we define ση to be the configuration after applying σ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', for any site y (ση)(y) = η(σ−1(y)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In particular, for any two sites x and y we can write ηx,y = (x, y)η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For a f : Ω → R and two sites x and y, ∇xf(η) = f(ηx) − f(η), ∇x,yf(η) = f(ηx,y) − f(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For a f : Ω → R and a permutation σ, we define the function σf as σf(η) = f(σ−1η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Finally, we note that throughout the paper C represents a generic positive constant, that may depend only on the model (dimension and constraints), and in particular does not depend on the parameter q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Kinetically constrained lattice gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Kinetically constrained lattice gases are interact- ing particle systems, defined on Zd, with generator L acting on any local function f : Ω → R as Lf(η) = � x∼y cx,y(η)∇x,yf(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) The rates cx,y must have the following properties: (1) For any x ∼ y and η ∈ Ω, cx,y(η) ∈ {0} ∪ [1, cmax] for some cmax ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) The rate cx,y depends only on the configuration outside x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) The rates are nondegenerate, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', for any edge x ∼ y there exists a configuration η ∈ Ω such that cx,y(η) ≥ 1 and a configuration η′ ∈ Ω such that cx,y(η) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) For fixed x and y, the rate is a decreasing function of η, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', emptying sites could only speed up the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (5) The model is homogeneous: cx,y(η) = cτz(x),τz(y)(τzη) for any η ∈ Ω and x, y, z ∈ Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 7 (6) The rates have finite range, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', cx,y depends only on the occupation of the sites in some box x + [−R, R], where R is called the range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Sometimes we refer to the rate cx,y as the constraint (having in mind the case cmax = 1), and say that the constraint is satisfied when cx,y ≥ 1 and not satisfied when cx,y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may also consider the model on a subset of the lattice Λ ⊂ Zd (usually [L]d) by thinking of the sites outside Λ as empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The generator has the same form as (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1), with sum taken over x, y ∈ Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The constraint cx,y(η) for η ∈ {0, 1}Λ is then defined to be cx,y(η), where η ∈ {0, 1}Zd is the configuration which equals η on Λ and 0 outside Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Theses are the empty boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The occupied boundary conditions are defined analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Finally, peri- odic boundary conditions are defined when considering the model on the torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The constraint cx,y(η) for η ∈ {0, 1}Zd/LZd is then given by cx,y(η) with η(x) = η(x mod Ld).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Under the assumptions above, the dynamics is reversible with respect to a product measure for any density in [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We refer to this measure as the equilibrium measure (at a given density).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The density of empty sites is denoted by q ∈ [0, 1], so the equilibrium measure µ = µq assigns to each site an independent Bernoulli random variable with parameter 1 − q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' On a finite box Λ = [L]d, we may consider a kinetically constrained lattice gas with reservoir on the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This model is defined by the generator Lr operating on any local function f : Ω → R as Lrf(η) = � x,y∈Λ x∼y cx,y(η)∇x,yf(η) + � x∈∂Λ cx∇xf(η), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2) where cx(η) = qη(x) + (1 − q)(1 − η(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Note that cx(η) is chosen such that the process remains reversible with respect to µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Throughout the paper, we will refer to two fundamental examples: Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The 1 dimensional model, with constraint cx,x+1(η) = \uf8f1 \uf8f2 \uf8f3 1 if η(x − 1) = 0 or η(x + 2) = 0, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This model was introduced in [2], and further studied in [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In [11] a slight variation was introduced, where the rate cx,x+1 equals 2 if both η(x − 1) and η(x + 2) are empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This difference is of no importance to the analysis in this paper, but it does introduce a significant simplification in proving the convergence to a hydrodynamic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The 2 dimensional model with constraint cx,x+eα(η) = \uf8f1 \uf8f2 \uf8f3 1 if η(x − eα) = 0 or η(x + 2eα) = 0, 0 otherwise, for α ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 8 ASSAF SHAPIRA This could be seen is a generalization of Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1, also studied in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Multistep moves The main tool we use in this paper are multistep moves, which are sequences of transitions allowed for the dynamics, taking us from one configuration to the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This formulation, used in [22, 9, 25], makes the application of canonical path methods more transparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A multistep move provides, for η in some fixed set of configuration (the domain), a se- quence of transitions that are allowed for the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' That is, at each step t it will tell us which edge to exchange in order to move from the configuration ηt to ηt+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order for the move to be valid, in all exchanges the constraint must be satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is expressed in the following definition: Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 (Multistep move).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For fixed T > 0, a T-step move M defined on Dom M ⊆ Ω is a triple � (ηt)T t=0, (xt)T−1 t=0 , (et)T−1 t=0 � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' where (ηt)T t=0 is a sequence of functions ηt : Dom M → Ω, (xt)T−1 t=0 is a sequence of functions xt : Dom M → Zd, and (et)T−1 t=0 is a sequence of functions et : Dom M → {±e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , ±ed}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The move must satisfy the following properties: (1) For any η ∈ Dom M, η0(η) = η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) For any η ∈ Dom M and t ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , T − 1}, (a) on the infinite lattice or a finite box with no reservoirs, ηt+1(η) = ηt(η)xt(η),xt(η)+et(η) and cxt(η),xt(η)+et(η)(ηt(η)) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (b) on a finite box Λ with reservoirs, either ηt+1(η) = ηt(η)xt(η),xt(η)+et(η) and cxt(η),xt(η)+et(η)(ηt(η)) = 1, or ηt+1(η) = ηt(η)xt(η) and xt(η) ∈ ∂Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' When context allows we omit, with some abuse of notation, the explicit dependence on η (writing ηt, xt, et rather than ηt(η), xt(η), et(η)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We continue with several basic notions related to multistep moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2 (Information loss).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a T-step move M = ((ηt), (xt), (et)) and t ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , T}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The loss of information at time t is defined as 2Losst M = sup η′,x′,e′ # {η ∈ Dom M such that ηt(η) = η′, xt(η) = x′ and et(η) = e′} , where the supremum is taken over η′ ∈ Dom M, x′ ∈ Zd and e′ ∈ {±e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , ±ed}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We also define Loss M = sup t Losst M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' That is, for given t, η′, x′, e′ there are at most 2Loss M possible configurations η ∈ Dom M for which ηt = η′, xt = x′ and et = e′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 9 Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3 (Energy barrier).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a T-step move M = ((ηt), (xt), (et)) for a kinetically constrained lattice gas defined on a finite box Λ with reservoirs on the boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The energy barrier is EB(M) = sup t∈{0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='T} sup η∈Dom Ω (# {empty sites in ηt} − # {empty sites in η}) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Note that, since η0 = η, EB(M) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4 (Composition of multistep moves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a T1-step move M1 = ((η1 t ), (x1 t), (e1 t)) and a T2-step move M2 = ((η2 t ), (x2 t), (e2 t)) such that for any η ∈ Dom M1, η1 T1(η) ∈ Dom M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then their composition M2 ◦ M1 is the T-step move M = ((ηt), (xt), (et)), with T = T1 + T2 and Dom M = Dom M1 given by ηt(η) = \uf8f1 \uf8f2 \uf8f3 η1 t (η) if t ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , T1}, η2 t−T1(η1 T(η)) otherwise, xt(η) = \uf8f1 \uf8f2 \uf8f3 x1 t(η) if t ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , T1}, x2 t−T1(η1 T(η)) otherwise, et(η) = \uf8f1 \uf8f2 \uf8f3 e1 t(η) if t ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , T1}, e2 t−T1(η1 T (η)) otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='5 (Associated permutation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We consider here a model with no reservoirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a T-step move M = ((ηt), (xt), (et)) and η ∈ Dom M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then the associated permutation σ is a permutation on the sites of Zd given by the product of transpositions (xT−1, xT−1 + eT−1)(xT−2, xT−2 + eT−2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (x0, x0 + e0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We say that the move M is compatible with a permutation σ if, for any η ∈ Dom M, the associated permutation is σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Observation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a T-step move M = ((ηt), (xt), (et)) and η ∈ Dom M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then ηT = ση, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', for any x ∈ Zd, ηT(σ(x)) = η(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Observation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider two multistep moves M1 and M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume that M1 is compatible with a permutation σ1 and M2 with a permutation σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' If M2 ◦ M1 is well defined, then it is compatible with σ2σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='8 (Deterministic move).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A T-step move M = ((ηt), (xt), (et)) is called determin- istic if the sequences (xt)T−1 t=0 and (et)T−1 t=0 do not depend on η, that is, for any η, η′ ∈ Dom M and any t ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , T − 1}, xt(η) = xt(η′) and et(η) = et(η′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Note that a deterministic move is always compatible with a permutation, and has 0 loss of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 10 ASSAF SHAPIRA Observation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a deterministic T-step move M = ((ηt), (xt), (et)) compatible with a permutation σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The there exists an inverse move M−1 with domain Dom M−1 = {η ∈ Ω : ση ∈ Dom M} , which is a T-step move compatible with σ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' These are the general definitions and basic properties of multistep moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We now continue with a few definitions related to the noncooperative nature of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In each definition, we will describe a move that changes the configuration in a desired way without “disturbing” too many sites, under the condition that there is a mobile cluster near by.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The way in which we change the configuration is given by the permutation the move is compatible with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The fact that we do not want to disturb many sites is expressed in the fact that all xt’s are restricted to some given box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The requirement that a mobile cluster is available is expressed in the domain of the multistep move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The first move we define will allow us to move a mobile cluster C on the lattice: Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='10 (Translation move).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a finite set C ⊂ Zd, l > 0, e ∈ {±e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , ±ed} and x ∈ Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A translation move in [−l, l]d of the cluster x + C in the direction e is a TTr-step move Tre(x + C) satisfying: (1) Dom Tre(x + C) = {η ∈ Ω : x + C is empty} (2) Tre(x + C) is a deterministic move, compatible with a permutation σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) σ(x + y) = x + y + e for any y ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) For all t ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , T − 1}, xt ∈ x + [−l, l]d and xt + et ∈ x + [−l, l]d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For brevity, we may write Tr±α rather than Tr±eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Observation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a C ⊂ Zd, l > 0, e ∈ {±e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , ±ed} and x ∈ Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then Tre(x + C)−1 is a translation move in [−l, l]d of the cluster x + e + C in the direction −e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may therefore always assume that the translation moves are chosen such that Tre(x+C)−1 = Tr−e(x+e+C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Once we are able to move the mobile cluster around, we need to use it in order to move particles in its vicinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='12 (Exchange move).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a finite set C ⊂ Zd, l > 0, e ∈ {±e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , ±ed} and x ∈ Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' An exchange move in [−l, l]d using the cluster x + C in the direction e is a TEx-step move Exe(x + C) satisfying: (1) Dom Exe(x + C) = {η ∈ Ω : x + C is empty} (2) Exe(x+C) is a deterministic move, compatible with the permutation (x+y, x+y +e), where y = le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) For all t ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , T − 1}, xt ∈ x + [−l, l]d ∪ {x + (l + 1)e} and xt + et ∈ x + [−l, l]d ∪ {x + (l + 1)e}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 11 FIGURE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is an illustration of the translation move in the model de- scribed in examples 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The mobile cluster is given by an empty 2×2 square.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In this figure we see how it could move one step up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='13 (Mobile cluster).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A mobile cluster C is a finite set of sites, for which there ex- ists l > 0 such that Tre(x+C) and Exe(x+C) could be constructed for all e and x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Equivalently, by translation invariance, there exists l > 0 such that Tre(C) and Exe(C) could be constructed for all e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A kinetically constrained lattice gas is called noncooperative if there exists a mobile cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The model in Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 is noncooperative—take C = {1, 2} and l = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We need to construct four moves: Tr1(C), Tr−1(C), Ex1(C), Ex−1(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Tr1(C) will be a 2-step move ((η0, η1, η2), (x0, x1), (e0, e1)) operating on η ∈ Dom Tr1(C) as follows: η0 = η, η1 = η2,3 = (2, 3)η, η2 = (2, 3, 1)η, x0 = 2, e0 = 1, x1 = 1, e1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Recalling that η ∈ Dom Tr1(C) means η(1) = η(2) = 0, it is straightforward to verify that the move is well defined and that it is indeed a translation move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' See Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Tr−1(C) is defined as Tr1(−1 + C)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Ex1(C) is the 1-step move exchanging the sites 3 and 4, which is allowed since 2 must be empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Ex−1(C) could be constructed as the composition Ex−1(C) = Tr−1(−1 + C)−1 ◦ Tr−1(−2 + C)−1 ◦ Tr−1(−3 + C)−1 ◦ Tr−1(−4 + C)−1 ◦ Ex1(−5 + C) Tr−1(−4 + C) ◦ Tr−1(−3 + C) ◦ Tr−1(−2 + C) ◦ Tr−1(−1 + C) ◦ Tr−1(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The composition is well defined (recalling Tr−1(x + C)−1 = Tr1(x − 1 + C), so its domain consists of the configurations where x − 1 + C is empty).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Moreover, it is a composition of deterministic moves, and compatible with (1, 2, 0)(0, 1, −1)(−1, 0, −2)(−2, −1, −3)(−3, −2, −4)(−2, −1) (−4, −2, −3)(−3, −1, −2)(−2, 0, −1)(−1, 1, 0)(0, 2, 1) = (−3, −4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The model in Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2 is noncooperative, with C = {e1 +e2, e1 +2e2, 2e1 + e2, 2e1 + 2e2} and l = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The construction of the multistep moves is the same as the previous example, see Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 12 ASSAF SHAPIRA .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' FIGURE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We see here how the exchange move could be constructed, see Claim 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For the sake of this illustration, we assume that it suffices to empty the two sites marked with a red square in order to free the edge (0, e1) marked in green.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The mobile cluster C, marked with blue stars, is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In addition, a translation of C, marked with blue triangles, is also empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' After applying the multistep move described in the figure the constraint is satisfied at the edge (0, e1), so we may exchange the two sites and move the mobile clusters back to their original position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' To conclude this section, we see in the following proposition that if we are able to con- struct, for any direction, a cluster that is free to move in that direction, then the model is noncooperative, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', there is some (possible very large) cluster that is able to move in all directions, and to exchange edges in its vicinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume that for any e ∈ {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , ed} there exists Ce and le, such that Tre(Ce) exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then the model is noncooperative, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', there exists a mobile cluster C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The construction of the cluster C is explained in the appendix of [25] (claims A11 and on).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Since the result there is stated in a slightly different context (and with different notation), we explain here briefly how the cluster is constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The reader may consult [25] for any missing details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Claim 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' If Tre(C) exists for some C and l, then Tre(C′) and Exe(C′) exist for some C′ and l′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Without loss of generality e = e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Let {y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , yk} ∈ (∞, 0] × Zd−1 be finite set of sites such that c0,e ≥ 1 if {y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , yk} is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This set has to exist since Tre(C) exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix C′ = �k i=1 (yi − ile1 + C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Define Ex(C′) by translating the copies of C until y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , yk are all empty, then exchange 0 and e, and finally roll back the translation moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' See Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ Claim 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume Tr1(C1), Ex1(C1), Tr2(C2), Ex2(C2),.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=',Trk(Ck), Exk(Ck) are defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then there exist C′ k and l′ k such that for all y ∈ [l1, ∞]e1 + Ze2 + · · ·+ Zek we may define a multistep move Exy 1 exchanging (y, y + e1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider first k = 2, and denote C1 = {x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , xn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We choose C′ 2 = C1 ∪ � n� i=1 xi − le2 + C2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' By applying translation and exchange moves using the cluster xi − le2 + C2, we are able to exchange xi with xi + e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Doing that for all i, we end up with an empty cluster (e2 + C1) ∪ (�n i=1 xi − le2 + C2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We can repeat the operation (with one additional translation move for NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 13 each i), reaching an empty cluster (2e2 + C1) ∪ (�n i=1 xi − le2 + C2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In fact, by adjusting the number of repetitions we are able to empty all sites of (w + C1) ∪ (�n i=1 xi − le2 + C2) where w = y −(y · e1)e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Now, since w + C1 is empty, we can use Tr1(w + C1) and Ex1(w + C1) in order to exchange y and y + e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Rolling back all changes, we end up with the move Exw 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For larger values of k we follow the same construction by induction—use ��C′ k−1 �� copies of Ck in order to move a single copy of C′ k−1 in the ek direction y · ek times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then apply (the translation of) Exy−y·ek 1 in order to exchange y and y + e1, and roll back to place C′ k in its original location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ This claim allows us to define a cluster C′ d, which allows exchanges in the direction e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may construct in the same manner clusters allowing exchanges in any direction: Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For any e, there exist le and Ce, such that we may define a multistep move Exy e(x + Ce) exchanging x + y with x + y + e whenever x + Ce is empty, for all y such that y · e ≥ le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' To conclude, consider 2d disjoint copies of the clusters defined in the corollary above placed on the diagonal— C = � d� α=1 −αl(1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , 1) + Ceα � � � d� α=1 αl(1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , 1) + Ce−α � , for large enough l to guarantee that the union is indeed disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Now, in order to construct Exeα(C) we may simply use Exy eα(x + Ceα) with x = −αl(1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , 1) and y = αleα − x (and anal- ogously for Exe−α(C)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to construct Treα, we first use the cluster −αl(1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , 1) + Ceα in order to move in the direction eα all vacancies in �d α=1 � αl(1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , 1) + Ce−α � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then we use the cluster αl(1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , 1)+eα+Ce−α in order to move all vacancies in �d α=1 � −αl(1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , 1) + Ceα � in the direction eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This concludes the proof of the proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Relaxation time on a finite box with a reservoir In this section we consider noncooperative kinetically constrained lattice gases on a finite box [L]d with reservoirs on the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In [2], the relaxation times of two models were studied, and a diffusive scaling was proven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will follow their strategy, showing a diffusive scaling with power law dependence on q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to define the relaxation time, we first write the Dirichlet form associated with the generator Lr given in equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2): Drf = µ � � x∼y∈Λ cx,y(∇x,yf)2 � + µ � � x∈∂Λ cx(∇xf)2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) Then the relaxation time is given by sup f:Ω→R Var f̸=0 Var f Drf .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2) 14 ASSAF SHAPIRA The following theorem provides an upper bound on the relaxation time: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a noncooperative kinetically constrained lattice gas on a finite box Λ = [L]d with reservoirs (see equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2)) and empty boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a mobile cluster C of size N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then for any f : Ω → R, Var f ≤ Cq−N−1L2 Drf, where the variance is taken with respect to the equilibrium µ and Dr is the associated Dirichlet form given in equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will first prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 when q ≤ 1 2, and then briefly explain how to adapt the proof for q > 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We follow the steps of [2]—for any x ∈ Λ, we will define a multistep move that creates a mobile cluster at the boundary and uses it in order to flip the occupation at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will then prove the theorem using this multistep move together with the inequality Var f ≤ q(1 − q)µ �� z∈Λ (∇zf)2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3) Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For any z ∈ Λ, there exists a T-step move Flipz = ((ηt), (xt), (et)) such that: (1) Dom Flipz = ΩΛ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) For any η, the final configuration is given by ηT(η) = ηz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) T ≤ CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) The information loss Loss Flipz ≤ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (5) The energy barrier EB Flipz ≤ N + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (6) For any t ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , T}, x(t) ∈ z + ∆, where ∆ ⊂ Zd is fixed and |∆| ≤ CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (7) Each site x ∈ Λ is changed a bounded number of times, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', {t : xt = x} ≤ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Let z = z − e1 · z, and consider the configuration η defined on the infinite lattice as follows η(y) = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 η(y) if y ∈ Λ, 1 − η(z) if y = z, 0 if y ∈ z − le1 + C, 1 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4) We will define a T-step move M operating on this configuration by composing exchange and translation moves as follows— (1) Using the mobile cluster z−le1+C, apply the exchange move Ex1(z−le1+C) (Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='12)) in order to exchange z with z + e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) Apply the translation move Tr1(z − le1 + C) (Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='10)) in order to move the cluster z − le1 + C one step to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 15 (3) Continue to apply these two moves alternatingly until reaching x, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', Tr1(yk + C) ◦ Ex1(yk + C) ◦ · · · ◦ Tr1(y1 + C) ◦ Ex1(y1 + C) ◦ Tr1(y0 + C) ◦ Ex1(y0 + C), where yi = z − le1 + ie1 for all i, and k is chosen such that yk = z − 2e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) Apply the exchange move Ex1(yk + e1 + C) in order to exchange yk + e1 with z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (5) Wind back the exchanges and translations of step 3 and move the mobile cluster back to z − le1 + C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Putting everything together, we obtain M = Ex1(y0 + C) ◦ Tr−1(y1 + C) ◦ · · · ◦ Ex1(yk + C) ◦ Tr−1(yk+1 + C) ◦ Ex1(yk+1 + C) Tr1(yk + C) ◦ Ex1(yk + C) ◦ · · · ◦ Tr1(y0 + C) ◦ Ex1(y0 + C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We have thus constructed a multistep move M with the following properties: (1) η ∈ Dom M for any η ∈ ΩΛ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) M is compatible with the transposition exchanging z and z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) T ≤ CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) Loss M = 0 and EB M = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (5) All exchanges occur in a tube z + [−l, L] × [−l, l]d−1 for some (large enough) fixed l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The move Flipz that we construct will simply be the restriction of M to Λ—if we denote M = (ηt, xt, et), then Flipz will be such that, for any y ∈ Λ, ηt(y) = ηt(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' All that is left is to verify that this move satisfies the required properties: (1) It is well-defined on the entire ΩΛ—for any η ∈ ΩΛ we know that η defined above is in Dom M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In addition, a transition in M outside Λ does not change ηt, a transition on the boundary corresponds to a reservoir term for ηt, and a transition inside Λ which is allowed for ηt is certainly allowed for ηt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This means that all transitions in Flipx are allowed, making it a valid move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) Since z /∈ Λ and η(z) = 1 − η(z), the fact that M is compatible with the transposition exchanging z and z implies that the final configuration of Flipz is ηz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) T = T ≤ CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) In order to reconstruct ηt from ηt it is enough to know the occupation at some finite box to the left of z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Since M has 0 loss of information, the size of this box bounds the loss of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (5) The number of vacancies in ηt is certainly smaller than that of ηt, which exceeds the number of vacancies of η by at most N + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (6) Choosing ∆ = z + [−l − L, L] × [−l, l]d−1 will suffice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 16 ASSAF SHAPIRA (7) Since the exchange and translation moves operate locally, a site z could be “touched” by a bounded number of such moves, each of which being able to change z a bounded number of times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ We will now use Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2 in order to prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Start by considering, for each z ∈ Λ, the T-step move Flipz = (ηz, xz, ez), and using it in order to write (∇zf)2 = �T−1 � t=0 ∇tf(ηz t ) �2 ≤ CL T−1 � t=0 (∇tf(ηz t ))2 , where ∇t stands for ∇xz t ,xz t +ez t for a bulk exchange (ηt+1 = ηxz t ,xz t +ez t t ), or ∇xz t for a boundary flip (ηt+1 = ηxz t t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then by equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3 Var f ≤ CLq(1 − q)µ �� z∈Λ T−1 � t=0 (∇tf(ηz t ))2 � = CLq � η∈ΩΛ µ(η) � z∈Λ � t � η′∈ΩΛ � x∈z+∆ � e 1bulk exchange1xz t (η)=x1ez t (η)=e1ηt(η)=η′ cx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x+e(η′) (∇x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x+ef(η′))2 + CLq � η∈ΩΛ µ(η) � z∈Λ � t � η′∈ΩΛ � x∈∂Λ∩(z+∆) 1bounday flip1xz t (η)=x1ηt=η′ (∇xf(η′))2 ≤ CLq � x∈Λ � e � η′∈ΩΛ µ(η′)cx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x+e(η′) (∇x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x+ef(η′))2 � η∈ΩΛ µ(η) µ(η′) � z∈x−∆ � t 1xz t (η)=x1ηt(η)=η′ + CL � x∈∂Λ � η′∈ΩΛ µ(η′)cx(η′) (∇xf(η′))2 � η∈ΩΛ µ(η) µ(η′) � z∈x−∆ � t 1xz t (η)=x1ηt=η′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will now use the properties of Flipz in order to bound the different terms above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' First, since we assume q ≤ 1 2, µ(η) µ(η′) ≤ q− EB(Flipz) = q−N−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The bound on the loss of information allows us to write � η∈ΩΛ 1ηt(η)=η′ ≤ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The last property of the flip move implies that �T t=0 1xz t (η)=x ≤ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Putting everything together, we obtain Var f ≤ CLq−N−1 |∆| � x∈Λ � e � η′∈ΩΛ µ(η′)cx,x+e(η′) (∇x,x+ef(η′))2 +CLq−N−1 |∆| � x∈∂Λ � η′∈ΩΛ µ(η′)cx(η′) (∇xf(η′))2 ≤ CL2q−N−1DΛf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This concludes the proof when q ≤ 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 17 The case q > 1 2 could be thought of as a negative temperature setting, so the relevant quantity is the negative energy barrier—rather than counting the excess vacancies, we should count the excess particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' By changing the definition of η given in equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4) such that η(y) = 0 if y /∈ Λ ∪ {z}, we can construct the Flipz in the same manner, such that at each t the number of particles in ηt exceeds the number of particles in η by at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The only estimate that changes is that of µ(η) µ(η′), which becomes µ(η) µ(η′) ≤ (1 − q)−1, and the rest of the proof follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Relaxation time in a closed system In this section we consider models on a finite box Λ = [L]d, with no reservoirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In this setting the total number of particles is fixed, hence µ cannot be ergodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Moreover, even if we condition µ to some fixed number of vacancies k, the measure that we obtain is in general not ergodic due to the constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In particular, at least if q is not too large, one may construct blocked configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' These are configurations where no particle is allowed to jump, and therefore do not change during the dynamics (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' If k < � L R+1 �d (where R is the range of the constraint), we may place the vacancies such that no two empty sites are at distance less than R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Since the model is nondegenerate the constraint is not satisfied for the edges adjacent to a vacancy, and the configuration is indeed blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For noncooperative models, we note that two configurations containing a mobile cluster, at least for k large enough, are always in the same ergodic component—consider two con- figurations η and η′ with k vacancies, each containing a mobile cluster, x + C and x′ + C′ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assuming k > |C| + |C′|, we may use the translation and exchange moves on η with the cluster x + C in order to move vacancies to x′ + C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then we use the translation and exchange moves with the cluster x′ + C′ to move around all other vacancies to their locations in η′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We therefore define the ergodic configurations as follows: Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a family of mobile clusters {C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , Cm}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The set of ergodic configu- rations with k vacancies, denoted Ωk, is given by all configurations η containing k vacancies connected to a configuration that contains an empty translation of a mobile cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' More pre- cisely, η ∈ Ωk if it contains k vacancies, and there exists a T-step move M = ((ηt), (xt), (et)), a site x ∈ Λ, and some i ∈ [m], such that η ∈ Dom M and all sites of x + Ci are empty for the configuration ηT(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The equilibrium measure µk is the uniform measure on Ωk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We denote in this section µ = µk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The discussion above implies the following fact: Fact 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For any family of mobile clusters {C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , Cm}, and any k > 2 maxm i=1 |Ci|, the measure µ is ergodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 18 ASSAF SHAPIRA (a) (b) (c) (d) FIGURE 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A few configurations in the model of Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2 defined on a finite box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The mobile cluster of this model is a 2 × 2 square (see Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='15 and Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Configuration (a) is blocked hence not ergodic, configuration (b) is not blocked but still not ergodic, configuration (c) contains a mobile cluster hence ergodic, and configuration (d) is ergodic even though no small region contains a mobile cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' See Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider the model of Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1, and the family of mobile clusters {{1, 2}, {1, 3}}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' If a configuration η does not contain an empty translation of either cluster, it is blocked, since all allowed transitions for the dynamics involve two vacancies at distance at most 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Therefore, the ergodic configurations in this models are those containing an empty translation of {1, 3} or {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In the model introduced in Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2 the ergodic component is more compli- cated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' One can find configurations that are not blocked but still not ergodic, or configurations which are ergodic but do not contain a mobile cluster of size smaller than L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' An explicit de- scription of Ωk for this model seems to be much more difficult to find than the 1 dimensional case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' See Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In view of these examples, we will restrict our discussion to models with easily identifiable set of ergodic configurations: Hypothesis 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' There exists a finite family of mobile clusters, {C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , Cm}, such that Ωk = {η : there exist x ∈ Λ and i ∈ [m] for which x + Ci is in Λ and empty} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 19 Fix k > maxm i=1 |Ci|, so Ωk is nonempty and the measure µ is well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The Dirichlet form associated with the generator (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) and the (reversible) measure µ is given by Df = µ \uf8ee \uf8ef\uf8f0 � x,y∈Λ x∼y cx,y(∇x,yf)2 \uf8f9 \uf8fa\uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) The result of this section is a bound on the relaxation time of 1 dimensional models satis- fying Hypothesis 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='5: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a noncooperative kinetically constrained lattice gas with occupied bound- ary conditions in one dimension satisfying Hypothesis 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='5, and let k = ⌊qL⌋ for some q ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then for L large enough and any f : Ωk → R Var f ≤ CqCL2 Df, where the variance is taken with respect to µ = µk and D is the associated Dirichlet form given in equation (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The overall scheme of the proof is similar to that of [11]—we first create many mobile clusters, and then use them in order to exchange the occupation of pairs of sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This will allow us to compare our model with the simple exclusion process on the complete graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The main difference between the proof here and the one presented in [11] is that the creation of the mobile clusters is accomplished without resorting to a perturbed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We start with a few definitions, which will depend on a fixed arbitrary mobile cluster C of size N, and an integer λ > 2N q such that Ci ⊂ [λ] for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A box (of size λ) is a subset of Λ of the type λi + [λ], for i ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may assume that L λ ∈ N by the same monotonicity argument as in [22, Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1], and denote the set of boxes B = {λi + [λ], i ∈ Z ∩ [0, L/λ − 1]} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A good box is a box containing an empty translation of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' A pregood box is a box containing at least N vacancies (recall N = |C|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We denote by G the event that at least k0 = � λ−N � k 4λ − 1 �� boxes are good.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We assume L (and therefore k) large enough so that k0 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Claim 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For any η ∈ Ωk, at least k 2λ boxes are pregood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Let nv be the number of boxes containing exactly v vacancies, so the number of pregood boxes is �λ v=N nv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then k = λ � v=0 vnv = N−1 � v=0 vnv + λ � v=N vnv 20 ASSAF SHAPIRA ≤ N |B| + λ λ � v=N nv ≤ k 2 + λ · #pregood boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Let Σ be the set whose elements are of the type s = (o, σ), for o ∈ {+, −} and σ = (σB)B∈B, where σB is a permutation of the sites of B for any box B ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For a configuration η ∈ Ωk and s ∈ Σ, we construct the configuration sη as follows: (1) Find the the first mobile cluster in the orientation o, that is, the site z ∈ Λ together with i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , k} such that: (a) z + Ci is empty for some i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (b) z is the leftmost site satisfying (a) if o = +, and the rightmost if o = −.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Dif- ferently stated, for any y ̸= z such that y + Cj is empty for some j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , k}, oz < oy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) Identify the set Bo of boxes after z, that is, the boxes B ∈ B in which all sites are strictly to the right of z + Ci if o = +, or strictly to its left in the case o = −.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) For x ∈ Λ, denoting by B the box containing x, sη(x) = \uf8f1 \uf8f2 \uf8f3 η(x) if B /∈ Bo, η(σ−1 B x) if B ∈ Bo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Observation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The action defined above is bijective—for any s ∈ Σ we can define s−1 ∈ Σ by inverting each permutation and keeping the orientation fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then ss−1η = η for any η ∈ Ωk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Claim 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix η ∈ Ωk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then |{s ∈ Σ : sη ∈ G}| |Σ| ≥ 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We use the notation of Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' ∪o∈{±}Bo contains all boxes, except for a max- imum of 2 boxes containing sites of the mobile cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' By Claim 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='9, at least k 2λ − 2 of them are pregood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Hence, there is an orientation o⋆ ∈ {+, −}, such that the number of pregood boxes in Bo⋆ is at least k/2λ−2 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Let s = (o, σ) be an element of Σ chosen uniformly at random.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Equivalently, we can say that o is chosen uniformly at random from {+, −} and each permutation in σ is chosen uniformly at random, all independently of one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' As we have seen above, under this measure, denoting by p the number of boxes in Bo that are pregood for η, P � p ≥ k 4λ − 1 � ≥ P[o = o⋆] = 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For each box B ∈ Bo which is pregood for η, the probability that B is good for sη is at least λ−N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Hence, conditioning on p ≥ k 4l − 1, the number of good boxes for sη is dominat- ing a binomial random variable of parameters k 4l − 1 and λ−N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The median of the latter is NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 21 λ−N � k 4λ − 1 � = k0, hence P � #good boxes for sη ≥ k0|p ≥ k 4λ − 1 � ≥ 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ In order to bound the variance of f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' we start by writing Var f = 1 2 � η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='η′∈Ωk µ(η)µ(η′) (f(η) − f(η′))2 = 1 2 � η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='η′∈Ωk µ(η)µ(η′) 1 |{s ∈ Σ : sη ∈ G}|2 � s∈Σ 1sη∈G � s′∈Σ 1s′η′∈G (f(η) − f(η′))2 ≤ C |Σ|2 � s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='s′∈Σ � η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='η′ µ(η)µ(η′)1sη∈G1s′η′∈G (f(η) − f(η′))2 = C |Σ|2 � s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='s′∈Σ � η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='η′ µ(η)µ(η′)1sη∈G1s′η′∈G (f(η) − f(sη) + f(sη) − f(s′η′) + f(s′η′) − f(η′))2 ≤ C |Σ|2 � s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='s′∈Σ � η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='η′ µ(η)µ(η′)1sη∈G1s′η′∈G (f(η) − f(sη))2 + C |Σ|2 � s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='s′∈Σ � η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='η′ µ(η)µ(η′)1sη∈G1s′η′∈G (f(sη) − f(s′η′))2 + C |Σ|2 � s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='s′∈Σ � η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='η′ µ(η)µ(η′)1sη∈G1s′η′∈G (f(s′η′) − f(η′))2 ≤ C |Σ| � s � η µ(η) (f(η) − f(sη))2 + C |Σ|2 � s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='s′∈Σ � η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='η′ µ(η)µ(η′)1sη∈G1s′η′∈G (f(sη) − f(s′η′))2 = I + II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to finish the proof of the theorem, it is left to show that I ≤ Cq−CL2DΛf, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2) II ≤ Cq−CL2DΛf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3) Let us start with inequality (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Claim 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For any s = (o, σ) ∈ Σ and z ∈ Λ there exists a T-step move Ms,z = ((ηt), (xt), (et)) satisfying: (1) Dom Ms = {η ∈ Ωk : z is the first mobile cluster in η for the orientation o}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) ηT (η) = sη for any η ∈ Dom Ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) T ≤ Cl3L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) Loss Ms = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (5) Each site x ∈ Λ is exchanged at most Cλ3 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Moreover, |{t such that xt(η) = x for some η ∈ Dom Ms,z}| ≤ Cλ3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 22 ASSAF SHAPIRA Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume for simplicity o = +, the case o = − is analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We start with the mobile cluster at z, and use the translation move (Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='10) L−λ−z times in order to move it to the box [L − 2λ + 1, L − λ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The permutation σ[L−λ+1,L] can be decomposed as a product of at most Cλ2 nearest neighbor transpositions (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', [18, Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We apply them one by one, where at each step in order to exchange L−λ+x with L − λ + x + 1 we move the cluster x times to the right using the translation move (Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='10), then exchange L − λ + x with L − λ + x + 1 using the exchange move (Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='12), and finally move the cluster x times to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Each transposition takes 2xTTr + TEx < Cl steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Once the permutation σ[L−λ+1,L] has been applied, we move the cluster λ steps to the left, to the box [L − 3λ + 1, L − 2λ], and apply as before the permutation σ[L−2λ+1,L−λ] to the box [L − 2λ + 1, L − λ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Continue in the same manner until all boxes in B+ are rearranged, and move the cluster back to z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The verification of 2-5 is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ We now use the move Ms,z = ((ηs,z t ), (xs,z t ), (es,z t )) in order to bound the term I: for any s ∈ Σ, � η µ(η) (f(η) − f(sη))2 = � η µ(η) � z∈Λ 1η∈Dom Ms,z (f(η) − f(sη))2 = � η µ(η) � z∈Λ 1η∈Dom Ms,z �T−1 � t=0 ∇xs,z t ,xs,z t +es,z t f(ηs,z t ) �2 ≤ C � η µ(η) � z∈Λ T � η′∈Ω � x∈Λ 1η∈Dom Ms,z T−1 � t=0 1η′=ηs,z t 1x=xs,z t cx,x+1(η′) (∇x,x+1f(η′))2 ≤ Cλ6L2 � η′ µ(η′) � x∈Λ cx,x+1(η′) (∇x,x+1f(η′))2 = Cλ6L2Df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Therefore C |Σ| � s � η µ(η) (f(η) − f(sη))2 ≤ Cλ6L2Df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For q small we may choose λ < 2N+1 q and inequality (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2) is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For q large the q and λ dependence could be put it the constant C, proving inequality (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2) for all q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We move to inequality (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Start by noting that, thanks to the bijectivity of s and s′, we can change variables in the sum to obtain II = C |Σ|2 � s,s′∈Σ � η,η′ µ(η)µ(η′)1η∈G1η′∈G (f(η) − f(η′))2 = C � η,η′ µ(η)µ(η′)1η∈G1η′∈G (f(η) − f(η′))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 23 Since under the good event there are at least k0 sites x for which x + C is empty, II ≤ C � η,η′ µ(η)µ(η′)1η∈G1η′∈G 1 k0 � z∈Λ 1z+C is empty for η 1 k0 � z′∈Λ 1z′+C is empty for η′ (f(η) − f(η′))2 ≤ C k2 0 � η,η′ µ(η)µ(η′) � z,z′ 1z+C is empty for η1z′+C is empty for η′ (f(η) − f(η′))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For η such that z + C is empty, let Θzη be the outcome of z translations moves to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' That is, Θz is the permutation compatible with Tr−1(1 + C) ◦ · · · ◦ Tr−1(z + C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We can then write II as II ≤ C k2 0 � η,η′ µ(η)µ(η′) � z,z′ 1η(z+C)=01η′(z′+C)=0 (f(η) − f(Θzη) + f(Θzη) − f(Θz′η′) + f(Θz′η′) − f(η′))2 ≤ C k2 0 � η,η′ µ(η)µ(η′) � z,z′ 1η(z+C)=01η′(z′+C)=0 (f(η) − f(Θzη))2 + C k2 0 � η,η′ µ(η)µ(η′) � z,z′ 1η(z+C)=01η′(z′+C)=0 (f(Θzη) − f(Θz′η′))2 + C k2 0 � η,η′ µ(η)µ(η′) � z,z′ 1η(z+C)=01η′(z′+C)=0 (f(Θz′η′) − f(η′))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' ≤ CL k2 0 � η µ(η) � z 1η(z+C)=0 (f(η) − f(Θzη))2 +CL2 k2 0 � η,η′ µ(η)µ(η′)1η(C)=01η′(C)=0 (f(η) − f(η′))2 = III + IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The term III could be bounded using the T-step move M = ((ηt), (xt), (et)) resulted from the composition of z translations to the left—it is not difficult to see that T ≤ CL, that it has 0 loss, and that each edge is flipped a bounded number of times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Therefore III ≤ CL2 k2 0 � η µ(η) � z 1η(z+C)=0 � η′ � x T−1 � t=0 1η′=ηt1xt=xcx,x+1(η′) (∇x,x+1f(η′))2 ≤ CL3 k2 0 � η′ µ(η′)cx,x+1(η′) � x (∇x,x+1f(η′))2 ≤ CL2 k2 0 LDf ≤ Cq−CL Df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to estimate the last term IV, we need two ingredients—first, let Ωk−N be the space of configurations on Λ \\ C with k − N particles, endowed with the uniform measure µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Note that to any configuration η ∈ Ωk in which C is empty we can associate a configuration η ∈ Ωk−N and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may also define the function f : Ω → R, given by f(η) = f(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then IV = CL2 k2 0 ��Ωk−N ��2 |Ωk|2 � η,η′ µ(η)µ(η′) � f(η) − f(η′) �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 24 ASSAF SHAPIRA Note that the variance of f with respect to the measure µ is given by Varµ f = 1 2 � η,η′ µ(η)µ(η′) � f(η) − f(η′) �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We can therefore bound IV using the relaxation time of the simple exclusion process on the complete graph [7, 8], expressed in the following Poincaré inequality: Varµ f ≤ 1 L − N � η µ(η) � y,z∈Λ\\C � ∇x,yf(η) �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Thus IV ≤ CL k2 0 ��Ωk−N ��2 |Ωk|2 � η µ(η) � y,z∈Λ\\C � ∇y,zf(η) �2 = CL k2 0 ��Ωk−N �� |Ωk| � η µ(η)1C is empty � y,z∈Λ\\C (∇y,zf(η))2 ≤ CL k2 0 � η µ(η)1C is empty � y,z∈Λ\\C (∇y,zf(η))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to conclude we need to construct a multistep move that exchanges x and y: Claim 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix y, z ∈ Λ\\C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then there exists a T-step move My,z = ((ηt), (xt), (et)) such that: (1) Dom My,z = {η ∈ Ωk : C is empty}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) My,z is compatible with the transposition of x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) T ≤ CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) Loss My,z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (5) Each site x ∈ Λ is exchanged at most CλC times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Moreover, |{t such that xt(η) = x for some η ∈ Dom Ms,z}| ≤ CλC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' If y and z are both larger than λ, the construction follows the exact same steps as that of M in the proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' If y ∈ [λ], we perform the following maneuver—first, move the cluster 3λ steps to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This move is compatible with some permutation σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Since the order of the particles is conserved in one dimension, σ(y) and σ(y + λ) are both in [3λ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We can then exchange them using the cluster at 3λ + C by the same construction as Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' When we now move the cluster back to the left, the net result is a move compatible with transposing y and y + λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' If z > λ we can apply the move constructed in the beginning, exchaning y + λ with z, and finally wind back our manoeuvre to exchange y and y + λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This leaves us with the configuration ηy,z as we wanted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' If z is also in [l], we move the cluster 2λ steps to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then use it to exchange σ(y) and σ(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then move the cluster back 2λ steps to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 25 If L is large enough all these maneuvers take negligible time, and we are left with the bound T ≤ CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ We can now use this newly constructed move My,z = ((ηy,z t ), (xy,z t ), (ey,z t )) in order to finish the bound on IV: IV ≤ CL2 k2 0 � η µ(η)1C is empty � y,z∈Λ\\C T−1 � t=0 � η′ � x∈Λ 1η′=ηy,z t 1x=xy,z t cx,x+1(η′) (∇x,x+1f(η′))2 = CL4λC k2 0 � η′ µ(η′) � x∈Λ cx,x+1(η′) (∇x,x+1f(η′))2 = CL4λC k2 0 Df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' To sum it all up, assuming L is large enough and using the fact that k0 ≥ qCL, II ≤ III + IV ≤ Cq−CL Df + CL4λC k2 0 Df ≤ Cq−C L2 Df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We have thus proven inequalities (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2) and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3), concluding the proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Diffusion coefficient In this section we consider the model on Zd, and study the diffusion coefficient D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is a symmetric matrix given by the following variational formula (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', [27, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2]): for any u ∈ Rd, u · Du = 1 2q(1 − q) inf f µ \uf8ee \uf8f0 d � α=1 c0,eα � u · eα(η(0) − η(eα)) + � x ∇0,eατxf �2\uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) In [11], convergence to a hydrodynamic limit of a variation of Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 is proven, and the diffusion coefficient is found explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is done by a careful choice of the rates, rendering the model gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proving convergence to a hydrodynamic limit for Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 with the original rates, and identifying the diffusion coefficient, is a much more difficult task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' However, equation (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1), together with the result of [11], allows us to deduce the positivity of the diffusion coefficient, and even give an estimate accurate up to a factor (to be precise, q ≤ D ≤ 2q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In this section we prove the positivity of the diffusion coefficient in a much more general setting, for all noncooperative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a noncooperative kinetically constrained lattice gas, and let D be the associated diffusion coefficient (given in equation (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then D is positive definite, that is, u · Du is strictly positive for any u ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The proof of Theorem (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) also provides bounds on the diffusion coefficient, and in particular shows that it could decay at most polynomially fast as q tends to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This power law behavior is characteristic of noncooperative models, while cooperative models are expected to show faster decay (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [25]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 26 ASSAF SHAPIRA 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Comparison argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will see here how to bound the diffusion coefficient using multistep moves that compare our model to an auxiliary dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For this purpose, consider the dynamics defined by a generator Lauxf = � x∼y caux x,y(η)∇x,yf(η), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2) and assume: (1) The rates caux x,y(η) do not depend on η(x), η(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This guarantees that the dynamics is reversible with respect to µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) The model is translation invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) The rates are bounded from above by caux max.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to compare the two models, we need to be able to perform the exchanges of the auxiliary model using the original dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This will be done using a multistep move: Hypothesis 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For any α ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , d} there exists a TAux-step move Auxα such that: (1) Dom(Auxα) = � η ∈ Ω : caux 0,eα(η) ̸= 0 � , (2) The move is compatible with the permutation exchanging 0 and eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) xt ∈ Λ for all t, where Λ is a fixed set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider the auxiliary model (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2), and let Daux be its diffusion coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' If Hypothesis (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3) is satisfied, then for any u ∈ Rd u · Dauxu ≤ dT 2 Aux2Loss(Aux)caux max |Λ| u · Du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a local function f : Ω → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We need to show that d � α=1 µ \uf8ee \uf8f0caux 0,eα � u · eα(η(0) − η(eα)) + � x ∇0,eατxf �2\uf8f9 \uf8fb ≤ dT 2 Aux2Loss(Aux)caux max |Λ| d � α=1 µ \uf8ee \uf8f0c0,eα � u · eα(η(0) − η(eα)) + � x ∇0,eατxf �2\uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix α, and denote Auxα = ((ηt), (xt), (et)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then, for η ∈ Dom(Auxα) we can write u · eα (η(0) − η(eα)) = T−1 � t=0 u · et (ηt(xt) − ηt(xt + et)) , ∇0,eατxf = T−1 � t=0 ∇xt,xt+et τxf(ηt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Using these equalities,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 27 µ \uf8ee \uf8f0caux 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα � u · eα(η(0) − η(eα)) + � x ∇0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eατxf �2\uf8f9 \uf8fb = µ \uf8ee \uf8f0caux 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα � T � t=0 u · et (ηt(xt) − ηt(xt + et)) + � x T � t=0 ∇xt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='xt+et τxf �2\uf8f9 \uf8fb ≤ TAuxµ \uf8ee \uf8f0caux 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα T � t=0 � u · et (ηt(xt) − ηt(xt + et)) + � x τxt∇0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='etτ−xt τxf �2\uf8f9 \uf8fb = TAuxµ \uf8ee \uf8f0caux 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα T � t=0 cxt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='xt+et(ηt) � u · etτxt (ηt(0) − ηt(et)) + τxt � x ∇0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='etτxf �2\uf8f9 \uf8fb = TAux � η µ(η)caux 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα T � t=0 � z∈Λ 1z=xt � η′ 1η′=τzηt � α′ 1eα′=etc0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα′(η′) × � u · eα′ (η′(0) − η′(eα′)) + � x ∇0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα′τxf(η′) �2 = T 2 Aux2Loss(Aux)caux max |Λ| � η′ µ(η′)c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα′(η′) � α′ � u · eα′ (η′(0) − η′(eα′)) + � x ∇0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα′τxf(η′) �2 = T 2 Aux2Loss(Aux)caux max |Λ| d � α′=1 µ \uf8ee \uf8f0c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα′ � u · eα′ (η(0) − η(eα′)) + � x ∇0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='eα′τxf �2\uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The auxiliary model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We now define an auxiliary model that will satisfy Hypothesis 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to do that, fix d finite sets of sites, Aα = � xα 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , xα nα � for α ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We order xα 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , xα nα from right to left according to their α coordinate, so that xα i · eα ≥ xα j · eα if i ≤ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We also define the sets Aα i = � xα j + eα , 1 ≤ j ≤ i � ∪ � xα j , i + 1 ≤ j ≤ nα � for i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα}, so that Aα 0 = Aα, and Aα i+1 is obtained from Aα i by moving xα i+1 one step in the direction eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Note that thanks to the ordering we have chosen, the new site xα i + eα does not belong to Aα i , so that |Aα i | = nα for all i, and Aα nα = Aα + eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will now define a Markov process on Ω with the aid of these sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The idea would be to allow empty copies of Aα to move in the direction ±eα, vacancy by vacancy, by changing at each step Aα i to Aα i±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' More precisely, for each α and each i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα − 1}, we identify all translations of Aα i of the form x + Aα i which are empty for η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then, with rate 1, we exchange sites x+xα i+1 and x+xα i+1+eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In addition, for each α and each i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα}, we identify all translations of Aα i of the form x + Aα i which are empty for η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then, with rate 1, we exchange sites x+xα i and x+xα i +eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This could be described using the following infinitesimal generator 28 ASSAF SHAPIRA operating on a local function f: Lauxf = d � α=1 nα−1 � i=0 � x∈Zd 1x+Aα i are empty∇x+xα i+1,x+xα i+1+eαf(η) (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3) + d � α=1 nα � i=1 � x∈Zd 1x+Aα i are empty∇x+xα i ,x+xα i +eαf(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will refer to the transition described in the first sum as forward transitions, and to the ones in the second sum as backward transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' That is, a forward transition occurs when an empty site x is exchanged with an occupied neighbor x+eα, and a backward transition occurs when an empty site y is exchanged with an occupied neighbor y − eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Note that a forward transition from x to x + eα is only possible when for some ˜x ∈ Z2 and i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα − 1}, ˜x+Aα i is empty and x = ˜x+xα i+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In other words, we need x−xα i+1 +Aα i to be empty for some i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα −1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Similarly, a backward transition from y to y −eα requires y −eα −xα i +Aα i to be empty for some i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Observation 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The auxiliary dynamics (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3) is reversible with respect to the equilibrium measure µ, for any value of the parameter q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is a consequence of the fact that for any η ∈ Ω and any edge x ∼ y of Z2, the rate at which η changes to ηx,y is the same as the rate at which ηx,y changes to η—without loss of generality assume η(x) = 1 − η(y) = 0 and y = x + eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then the rate of exchanging x and y for η is given by the number of sets Aα i , i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα − 1}, such that x − xi+1 + Aα i is empty for η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' On the other hand, the rate of exchanging x and y for ηx,y is given by the number of sets Aα i , i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα}, such that y − eα − xi + Aα i is empty for ηx,y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The latter could be written as # {i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα} : y − eα − xi + Aα i is empty for ηx,y} = # � i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα − 1} : x − xi+1 + Aα i+1 is empty for ηx,y� = # {i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα − 1} : x − xi+1 + Aα i is empty for η} , which conclude the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ The last observation shows that Laux could be put in the form (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2), where the rates caux x,y are bounded by nα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The key property of this model is that the total current vanishes for any configuration: Observation 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider the auxiliary dynamics (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3) on the torus Zd/LZd, for some fixed (large) L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then, for any η ∈ Ω, the total current is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' That is, � x∼y caux x,y (x − y) (η(x) − η(y)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 29 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix α ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We show that the total current in the α direction is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The nega- tive current (particles moving in the direction −eα) is given by forward transitions, and the positive current by backward transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We need to prove that the two cancel out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Each empty translation of Aα i contributes a forward transition of rate 1, unless we try to move the vacancy to an already empty site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Hence the rate of forward transitions is given by ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='nα−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i are empty − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='nα−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i are empty1x+xα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i+1+eα is empty ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='nα−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i are empty + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='0 are empty − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='nα−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i+1 are empty1x+xα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i+1 is empty ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='nα−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i are empty + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='nα are empty − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='nα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i are empty1x+xα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i is empty ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='nα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i are empty − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='nα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='x∈Zd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1x+Aα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i are empty1x+xα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='i is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We recognize the last line as the rate of backward transitions, which finishes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ The zero current property, as explained in [27, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4], makes the contribution of the current-current correlation to the diffusion coefficient vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This allows us to calculate explicitly the diffusion coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Let Daux be the diffusion coefficient associated to the auxiliary dynamics (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then for any u ∈ Rd u · Dauxu = d � α=1 (u · eα)2 µ [c0,eα] ≥ Cqn ∥u∥2 , where n = maxα nα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The inequality follows directly from the definition of the model, so we are left with showing the equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [27, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4] explains how it could be derived from the Green-Kubo formula [27, II, equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='27)], for completeness we will prove it explicitly from the varia- tional characterization (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a local function f, and L large enough (depending on the support of f), so that � x∈Zd in equation (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) could be replaced by � x∈Zd/LZd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then µ \uf8ee \uf8f0 d � α=1 caux 0,eα � u · eα(η(0) − η(eα)) + � x ∇0,eατxf �2\uf8f9 \uf8fb = d � α=1 µ � caux 0,eα (u · eα(η(0) − η(eα)))2� + 2 d � α=1 µ � caux 0,eα u · eα(η(0) − η(eα)) � x ∇0,eατxf � 30 ASSAF SHAPIRA + d � α=1 µ \uf8ee \uf8f0caux 0,eα �� x ∇0,eατxf �2\uf8f9 \uf8fb ≥ d � α=1 µ � caux 0,eα (u · eα(η(0) − η(eα)))2� + 2 d � α=1 u · eα � x µ � caux 0,eα (η(0) − η(eα)) ∇0,eατxf � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Since µ is invariant under the map η �→ η0,eα and caux 0,eα(η) = caux 0,eα(η0,eα), we can write for any function g µ � caux 0,eα (η(0) − η(eα)) g(η) � = 1 2 � µ � caux 0,eα (η(0) − η(eα)) g(η) � + µ � caux 0,eα (η0,eα(0) − η0,eα(eα)) g(η0,eα) �� = −1 2µ � caux 0,eα (η(0) − η(eα)) ∇0,eαg(η) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Therefore, setting g = τxf and then using the translation invariance of µ we obtain � x µ � caux 0,eα (η(0) − η(eα)) ∇0,eατxf � = −2 � x µ � caux 0,eα (η(0) − η(eα)) τxf � = −2 � x µ � caux x,x+eα (η(x) − η(x + eα)) f � = −2µ ��� x caux x,x+eα (η(x) − η(x + eα)) � f � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The last term is 0 by Observation (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6), proving that u · Dauxu ≥ 1 2q(1 − q) µ � d � α=1 caux 0,eα (u · eα(η(0) − η(eα)))2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Hence, the infimum in equation (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) is attained for constant f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Finally, we use the product structure of µ and the fact that caux 0,eα does not depend on η(0) and η(eα) to calculate this infimum explicitly: u · Dauxu = 1 2q(1 − q) µ � d � α=1 c0,eα (u · eα(η(0) − η(eα)))2 � = 1 2q(1 − q) d � α=1 (u · eα)2µ [c0,eα] � (η(0) − η(eα))2� = d � α=1 (u · eα)2µ [c0,eα] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The multistep move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' As a corollary of lemmas 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='7, if we assume that for any α there exists Aα of size nα ≤ n such that the auxiliary model defined in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3) satisfies Hypothesis (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3), then u · Du ≥ Cqn ∥u∥2 for any u ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 31 Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1, we may take A0 = {1, 2} so A1 = {1, 3} and A2 = {2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then the multistep Aux could be chosen trivially as the 1-step move exchanging the corresponding sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Similarly, in Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1, we take A1 = {e1, 2e1} and A2 = {e2, 2e2}, and verify that we may choose the trivial 1-step moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In these two examples we know that by modifying the rates (without changing the con- strained and unconstrained transitions) as in [11] we obtain a gradient model (which is, in fact, the auxiliary model we defined above).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' That is, equation (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) could be used directly, without passing through the comparison argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is expressed in the fact that our multistep move is in fact a 1-step move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to prove Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 all that is left is to construct Aα and the Auxα move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a mobile cluster C, and l such that C ∈ [l − 1]d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Choosing, for any α, the set Aα = C ∪ (leα + C) (with nα = 2 |C|) will suffice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to show that, we need to construct the Auxα move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Let η ∈ Dom Auxα, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', caux 0,eα > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' By reversibility we may assume that this is a forward transition, so η(0) = 1 − η(eα) = 0, and there exists i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα − 1} such that −xi+1 + Aα i is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We consider two cases: Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , |C| − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then −xi+1 + C = −xi+1 + {x|C|+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , xnα} ⊂ Aα i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Moreover, neither 0 nor eα are contained in −xi+1 + C since xi+1 ∈ leα + [l − 1]d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may therefore apply translation and exchange moves using the mobile cluster −xi+1 + eα + leα + C in order to exchange 0 and eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' i ∈ {|C| , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , nα}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then −xi+1 + eα + leα + C = −xi+1 + eα + {x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , x|C|} ⊂ Aα i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' As before, neither 0 nor eα are contained in −xi+1 + eα + leα + C since xi+1 ∈ [l − 1]d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may therefore apply translation and exchange moves using the mobile cluster −xi+1 + eα + leα + C in order to exchange 0 and eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Hypothesis 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3 is thus satisfied, concluding the proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 by lemmas 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' While the construction above gives a polynomial bound for all noncooperative models, in specific cases it might not be optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2, the mobile cluster has size 4, therefore the estimate we obtain is of the order q8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We have seen, however, that there is a more efficient explicit choice of Aα which yields a much better bound, of the order q2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Self-diffusion in d ≥ 2 In this section we study the self-diffusion coefficient Ds, which is a symmetric matrix given by the following variational formula ([26], [27, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2]): for any u ∈ Rd, 32 ASSAF SHAPIRA u · Dsu = 1 2 inf f µ0 \uf8ee \uf8ef\uf8f0 � y∼x x,y̸=0 cxy(∇xyf)2 + � y∼0 c0y(1 − η(y)) � u · y + f(τ−yη0y) − f(η) �2 \uf8f9 \uf8fa\uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) In dimension 1, due to the preservation of the order of particles, the self-diffusion coef- ficient is 0 even with in an unconstrained setting (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', [27, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4]), we will therefore consider here only the higher dimensional case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The positivity of the diffusion coefficient for examples 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2 was proven in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will see here that it is positive for any noncooperative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a noncooperative kinetically constrained lattice gas in dimension 2 or higher, and let Ds be the associated self-diffusion coefficient (given in equation (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then Ds is positive definite, that is, u · Dsu is strictly positive for any u ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' As for the diffusion coefficient, the proof of Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 also shows that the rate at which Ds decays to 0 when q approaches 0 is at most polynomial, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The proof will follow the strategy of [27, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3], also used in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' It consists of comparing the model to as auxiliary model where the tracer motion could be more easily tracked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The auxiliary model we will choose, however, does not fall under the framework of equation (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1)—First, the transitions are not single particle jumps, but a simultaneous rearrangement of several particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Moreover, these transitions are not homogeneous;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' more precisely, the allowed transitions and their rates depend on the position as seen from the tracer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We start by generalizing equation (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) in a setting which will cover our auxiliary model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a dynamics on the space of configuration Ω with additional information on the location of the tracer z ∈ Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a countable set Σ of permutations of the sites, and assume that they all have finite range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This means that, for some fixed R, any permutation σ ∈ Σ fixes the sites outside x+[−R, R]d, where x ∈ Zd may depend on σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then, for each σ ∈ Σ, we apply σ with rate ˆcσ, relative to the tracer position z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' That is, the configuration η becomes τzστ−zη and the tracer moves to τzστ−z(z) = z + σ(0), with rate ˆcσ(τ−zη).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' It is important to note that in the new configuration, if the old tracer position is occupied then so is the new one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This process can be written using the infinitesimal generator operating on f : Zd × Ω → R: ˆLf(z, η) = � σ∈Σ ˆcσ(τ−zη) (f(z + σ(0), τzστ−zη) − f(z, η)) , (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2) for a set of rates ˆcσ : Ω → [0, ∞) defined for all any σ ∈ Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 33 Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' To obtain the original kinetically constrained model we take Σ to be the set of nearest neighbor transpositions Σkc, and the rate ˆckc (x,y)(η) = \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 cx,y(τ−zη)1η(y)=0 if x = 0, cx,y(τ−zη)1η(x)=0 if y = 0, cx,y(τ−zη) otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The reason that we do not simply take ˆckc (x,y)(η) = cx,y(τ−zη) is that, while in the original dynamics exchanging two particles is equivalent to doing nothing, when following the tracer we are not allowed to exchange it with a particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then ˆLkcf(z, η) = � x∼y x,y̸=0 cx,y(τ−zη) � f(z, ηx+z,y+z) − f(z, η) � + � 0∼y c0,y(τ−zη) � f(y, ηz,y+z) − f(z, η) � = � x∼y x,y̸=z cx,y(η) (f(z, ηx,y) − f(z, η)) + � z∼y cz,y(η) (f(y, ηz,y) − f(z, η)) , which is indeed the generator of the dynamics (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) together with a tracer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The variational formula (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) could be generalized to the setting of (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2): Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider the dynamics (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume that, ignoring the tracer, it is reversible with respect to a probability measure ν on Ω (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', ˆL is self adjoint operating on functions that do not depend on z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Let ν0 be the measure ν, conditioned on having a particle at the origin, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', ν0(ζ ∈ ·) = ν(ζ ∈ ·|ζ(0) = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then for any u ∈ Rd, u · ˆDsu = 1 2 inf f �� σ∈Σ ν0 � ˆcσ(ζ) � u · σ(0) + f(τ−σ(0)σζ) − f(ζ) �2�� , where ˆDs is the associated self-diffusion coefficient and the infimum is taken over all local func- tions on Ω0 = {ζ ∈ Ω : ζ(0) = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' From the last lemma we can reconstruct equation (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1): as in Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3, � σ∈Σ ν0 � ˆckc σ (ζ) � f(τ−σ(0)σζ) − f(ζ) − u · σ(0) �2� = � x∼y x,y̸=0 ν0 � cx,y(ζ) (f(ζx,y) − f(ζ))2� + � y∼0 ν0 � c0,y(ζ)(1 − η(y)) � u · y + f(τ−yζ0,y) − f(ζ) �2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The proof follows the exact same argument as [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For completeness we present here the main steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider the process described above, with ηt and zt the configuration and tracer position at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Define ζt = τ−zηt, so the joint process (ζt, zt) is Markovian with generator operating 34 ASSAF SHAPIRA on f : Ω0 × Zd → R as Lf(ζ, z) = � σ∈Σ ˆcσ(ζ) � f(z + σ(0), τ−σ(0)σζ) − f(z, ζ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix g(z, ζ) = u · z, and let ju(ζ) = Lg(z, ζ) = � σ∈Σ ˆcσ(ζ) u · σ(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then u · zt − � t 0 ju(ζs) d s = Mt is a martingale with stationary increments and quadratic variation E � M2 t � = t � σ∈Σ (u · σ(0))2 ν0 (ˆcσ(ζ)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Here, and in the rest of the proof, E(·) refers to expectation related to the process, starting from a configuration η drawn according to ν0 and a tracer at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We obtain E � (u · zt)2� = t � σ∈Σ (u · σ(0))2 ν0 (ˆcσ) − � t 0 � t 0 E [ju(ζs)ju(ζs′)] d s d s′ + E � u · zt � t 0 ju(ζs) d s � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' By reversibility and translation invariance, the process (−zt−s, ζt−s)s∈[0,t] has the same law as (zs, ζs)s∈[0,t] (under the initial condition z = 0 and ζ draws from ν0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Therefore, the last term in the equation above vanishes, leaving us with u · ˆDsu = 1 2t lim t→∞ E � (u · zt)2� = 1 2 � σ∈Σ (u · σ(0))2 ν0 (ˆcσ) − � ∞ 0 ν0 � juetLju � d t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Note that the last expression contains only functions of the configuration ζ, without looking at the tracer position z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The process (ζt)∞ t=0 is Markovian and reversible with respect to ν0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' therefore, with some abuse of notation, we will consider from now on L as the generator of this projected process, operating on functions on Ω0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may now write − ∞ � 0 ν0 � juetLju d t � = ν0 � juL −1ju � = inf f � −2ν0(juf) − ν0(fLf) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to calculate the first term in the infimum we use the detailed balance equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For every σ, defining σ′ = τ−σ(0)σ−1τσ(0) (so that applying σ and then σ′ brings us back to the original configuration), ν0 [ˆcσ(ζ)f(ζ)] = ν0 � ˆcσ′(ζ)f(τ−σ′(0)σ′ζ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 35 Hence, using σ′(0) = −σ(0), −2ν0 [juf] = −2 � σ∈Σ u · σ(0) ν0 [ˆcσ(ζ)f(ζ)] = � σ∈Σ u · σ(0) ν0 � ˆcσ(ζ) � f(τ−σ(0)σζ) − f(ζ) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The second term in the infimum is given by the Dirichlet form −ν0(fLf) = 1 2 � σ∈Σ ν0 � ˆcσ(ζ) � f(τ−σ(0)σζ) − f(ζ) �2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Summing all up, 1 2 inf f �� σ∈Σ ν0 � ˆcσ(ζ) � u · σ(0) + f(τ−σ(0)σζ) − f(ζ) �2�� = 1 2 � σ (u · σ(0))2ν0(ˆcσ) + inf f � −ν0(fLf) − 2ν0(juf) � = 1 2 � σ (u · σ(0))2ν0(ˆcσ) − ∞ � 0 ν0 � juetLju d t � = u · ˆDsu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Comparison argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' As in the case of the diffusion coefficient, we will see that an appropriate move could help us compare different dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider a model as in equation (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2), satisfying the following conditions: (1) For any σ ∈ Σ, the configuration σ′ = τ−σ(0)σ−1τσ(0) is also in Σ, and ˆcσ = ˆcσ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is equivalent to reversibility with respect to the equilibrium measure µ (for any q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) ˆcσ ≤ 1 for any σ ∈ Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The comparison argument will be based on multistep moves, requiring us to follow the tracer position throughout the move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Definition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a T-step move M = ((ηt), (xt), (et)), and assume that for any η ∈ Dom(M) some given site z0 is occupied, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', η(z0) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then the tracer position associated with M starting at z0 is a sequence of sites (zt)T t=0 giving at each step t the position of the particle originally at z0: zt+1 = \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 xt + et if zt = xt and ηt(xt + et) = 0, xt if zt = xt + et and ηt(xt) = 0, zt otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In order to compare the auxiliary model with our kinetically constrained lattice gas, we must have an appropriate multistep move: Hypothesis 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For any σ ∈ Σ and z0 ∈ Zd, there is a T-step move Mz0,σ = ((ηt), (xt), (et)) such that: 36 ASSAF SHAPIRA (1) DomM = {η ∈ Ω : η(z0) = 1 and ˆcσ(τ−z0η) > 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) M is compatible with the permutation τz0στ−z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) In all transitions involving the tracer, the site it jumps to must be empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' More pre- cisely, denote zt the tracer position associated with M starting from z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then, for all t, if xt = zt then ηt(xt + et) = 0 and if xt + et = zt then ηt(xt) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) For any z0, t, η′, x′, e′ and z′, |{σ ∈ Σ : ηt = η′, xt = x′, et = e′, zt = z′}| ≤ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We note that by translation invariance of the kinetically constrained lattice gas, it suffices to construct Mz0,σ for a specific choice of z0 to guarantee its existence for all z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider an auxiliary model as in (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2), reversible with respect to µ and with rates bounded by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume that Hypothesis 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='7 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then for all u ∈ Rd, u · ˆDsu ≤ C u · Dsu, where Ds and ˆDs are the self diffusion coefficients associated with the kinetically constrained lattice gas and the auxiliary model respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix z0 ∈ Zd and σ ∈ Σ, and consider the move Mz0,σ = ((ηt), (xt), (et)) given in Hypoth- esis 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Let zt be the associated tracer position starting at z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix η ∈ Dom Mz0,σ, and set ζ = τ−z0η, ζt = τ−zηt and σt = (xt − zt, xt − zt + et) for all t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Note first that u · σ(0) + f(τ−σ(0)σζ) − f(ζ) = u · (zT − z0) + f(ζT) − f(ζ0) = T−1 � t=0 u · (zt+1 − zt) + f(ζt+1) − f(ζt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Also, zt+1 = zt + σt(0), ζt+1 = τ−σt(0)σtζt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Recall remarks 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3 and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Setting z0 = 0 (and hence ζ = η), � σ∈Σ µ0 \uf8ee \uf8f0ˆcσ(ζ) �T−1 � t=0 u · (zt+1 − zt) + f(ζt+1) − f(ζt) �2\uf8f9 \uf8fb ≤ T � σ∈Σ µ0 � ˆcσ(ζ) T−1 � t=0 � u · σt(0) + f(τ−σt(0)σtζt) − f(ζt) �2 � ≤ CT � z∈[−R,R]d T−1 � t=0 µ0 \uf8ee \uf8f0 � σ′∈Σkc 1z′=zt1σ′=((xt−z′,xt−z′+et))ˆckc σ′ � u · σ′(0) + f(τ−σ′(0)σ′ζ′) − f(ζ′) �2 \uf8f9 \uf8fb NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 37 ≤ CT 2Rdµ0 \uf8ee \uf8f0 � σ′∈Σkc ˆckc σ′ � u · σ′(0) + f(τ−σ′(0)σ′ζ′) − f(ζ′) �2 \uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This concludes the proof by Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The auxiliary model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix some finite set ˆC ⊂ Zd \\ {0}, and d permutations σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , σd with finite range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume that σi(0) = ei and that σi( ˆC) = ei + ˆC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For all i ∈ [d] set σ−i = τ−σi(0)σ−1 i τσi(0), so in particular σ−i(0) = −ei, σ−i( ˆC) = −ei + ˆC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We then define the auxiliary model as in equation (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2), with Σ = {σ±1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' , σ±d} and ˆcσ(η) = 1 ˆC is empty for all σ ∈ Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' It is indeed reversible with respect to µ, and all rates are bounded by 1 (as required by Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Consider the auxiliary model defined above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then for all u ∈ Rd u · ˆDsu = 1 2q| ˆC| ∥u∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Start the dynamics with a configuration η0 drawn from µ0 and tracer at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Assume ˆC is empty for η0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then the entire cluster ˆC ∪ {0} performs a simple random walk, independently of the initial configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This is because initially all rates are 1, and in each transition the tracer moves together with ˆC, meaning that all rates remain 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' On the other hand, if ˆC is not empty initially, then the configuration is blocked, and the tracer remain at the origin forever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Hence, denoting the tracer position at time t by zt, u · ˆDsu = lim t→∞ 1 2tE � (u · zt)2� = lim t→∞ 1 2tE � (u · zt)21 ˆC is empty for η0 � = 1 2 ∥u∥2 µ( ˆC is empty for η0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The multistep move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In this section we construct the multistep moves allowing us to move the tracer together with an empty cluster ˆC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fix a mobile cluster C and l > 0 such that the translation and exchange moves exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We define ˆC = {−e1} ∪ ((l + 2)e1 + C) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Claim 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' There exists a T-step move Hop = ((ηt), (xt), (et)), which we call the vacancy hopping move, such that: (1) Dom Hop = � η : η(0) = 1 and ˆC is empty � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) Hop is a deterministic move, compatible with the cyclic permutation σH = (e1, e1 + e2, e2, −e1 + e2, −e1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) For all t, at least one of the two sites xt or xt + et must be empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 38 ASSAF SHAPIRA Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We will construct Hop as a composition of several moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' First, we use translation moves in order to bring the mobile cluster to −e1 − le2 + C: M1 = Tr2(−(l + 1)e2 − e1 + C) ◦ Tr−1(−(l + 1)e2 + C) ◦ · · · ◦ Tr−1(−(l + 1)e2 + (l + 2)e1 + C) Tr−2(−le2 + (l + 2)e1 + C) ◦ · · · ◦ Tr−2((l + 2)e1 + C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We emphasize that, for each of these translation Tr(x + C), the sites −e1, −e1 + e2 are outside x + [−l, l], hence untouched by the move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Also, the translation move is deterministic, and since adding vacancies to a configuration in Dom Tr keeps it in Dom Tr, we may assume that all transitions involve at least one empty site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Next, we exchange −e1 and −e1 + e2: M2 = Ex2(−e1 − le2 + C), and move the mobile cluster back to (l + 2)e1 + C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' M3 = M−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' So far, we obtain a move M3 ◦ M2 ◦ M1 with the associated permutation (−e1, −e1 + e2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Next, we move the cluster, exchange −e1 + e2 with e2 and the move it back: M4 = Tr−1((l + 1)e1 + e2 + C) ◦ Tr−1((l + 2)e1 + e2 + C) ◦ Tr2((l + 2)e1 + C), M5 = Ex−1(le1 + e2 + C), M6 = M−1 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This results in a move M6 ◦ M5 ◦ M4 associated to the permutation (−e1 + e2, e2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In the same manner we construct a move M7 associated with (e2, e1 + e2) and a move M8 associated with (e1 + e2, e1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We end up with the desired multistep move Hop = M8◦M7◦M6◦M5◦M4◦M3◦M2◦M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ Claim 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' There exists a permutation σ1 and a move Mσ1 such that: (1) Dom Mσ1 = � η : η(0) = 1 and ˆC is empty � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) Mσ1 is deterministic, compatible with σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) σ1(0) = e1 and σ1( ˆC) = e1 + ˆC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) For all t, at least one of the two sites xt or xt + et must be empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The move Mσ1 is given by Mσ1 = Tr1((l + 2)e1 + C) ◦ Tr1((l + 1)e1 + C) ◦ Ex−1((l + 1)e1 + C) ◦ Tr−1((l + 2)e1 + C) ◦ Hop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ So far, we constructed the permutation σ1 defining the auxiliary model, and the move Mz0,σ1 required in Hypothesis 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='3 (for z0 = 0 hence for all z0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This gives us automatically σ−1 = τ−e1σ−1 1 τe1, and the move Me1,σ−1 = M−1 0,σ1, which provides Mz0,σ−1 for all z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 39 In order to propagate in other directions, we use the following claim: Claim 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For and α ∈ [1], there exists a permutation σα and a move Mσα such that: (1) Dom Mσα = � η : η(0) = 1 and ˆC is empty � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (2) Mσα is deterministic, compatible with σα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (3) σα(0) = eα and σα( ˆC) = eα + ˆC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' (4) For all t, at least one of the two sites xt or xt + et must be empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Claim 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='11 shows the case α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The construction for α ̸= 1 is similar to the previous claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Start by exchanging −e1 with −eα (in the exact same manner as the move M6 ◦M5 ◦M4 ◦M3 ◦M2 ◦M1 in the proof of Claim 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then translate the mobile cluster from (l + 2)e1 + C to (l + 2)eα + C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' This brings us to the same setting as Claim 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='11, where the direction 1 is replaced by α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may then use the same construction in order to move {0, −eα}∪((l + 2)eα + C) one step in the direction eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Finally, move the mobile cluster back from (l + 3)eα + C to (l + 2)e1 + eα + C and the vacancy at 0 to eα − e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 then follows from Claim 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='12, Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='8, and Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' □ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Questions The proofs given here show polynomial divergence of time scales as q tends to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Is it possible to identify the exact exponent of this divergence?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' What is the qualitative behavior of the different quantities described here when changing q?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Are they continuous?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Smooth?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We expect them to be monotone (since decreasing q should “slow down” the system), but the nonattractivity of the model makes it difficult to prove.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Variational formulas can also be used to approximate different quantities, and not just find bounds—consider, for example, the diffusion coefficient D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We may define, for Λ ⊂ Zd, u · D(Λ)u = 1 2q(1 − q) min f µ \uf8ee \uf8f0 d � α=1 c0,eα � u · eα(η(0) − η(eα)) + � x ∇0,eατxf �2\uf8f9 \uf8fb , where the minimum is taken over functions f : {0, 1}Λ → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Then D = limΛ→Zd D(Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [1] evaluated this minimum, obtaining (nonrigorously) an approximate expression for D of the Kob-Andersen model, which is a cooperative kinetically constrained lattice gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In their case, as q tends to 0, larger and larger boxes Λ must be taken in order to have a good approximation of D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We know that since any finite Λ gives D(Λ) polynomial in q, and for the Kob-Andersen model the diffusion coefficient decays superpolynamially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' In noncooperative models, the decays is polynomial, so one may hope that a finite box Λ could provide a good approximation of D for all q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' For the model in Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 an empty 40 ASSAF SHAPIRA Λ already gives the correct diffusion coefficient up to a factor 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' What happens in other noncooperative models?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Can we say that D/D(Λ) → 1 uniformly in q?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Extend Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='6 to models satisfying Hypothesis 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='5 in all dimensions, or more gener- ally to all noncooperative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Given the positivity of the diffusion coefficient (Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1), it is natural to conjecture convergence to the hydrodynamic limit of all noncooperative kinetically constrained lattice gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Can we show it for models other than the one studied in [11]?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Proving convergence for nongradient models (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' the model in Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1) is an interesting (and challenging) problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' We expect the equilibrium fluctuations to converge to a Gaussian field (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', [27, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='2]), with the diffusion coefficient studied in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Can this be proven?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Studying the diffusivity of cooperative kinetically constrained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Results analogous to theorems 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1, and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='1 have been shown for the Kob-Andersen model ([22, 25, 4, 9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' To the author’s knowledge, other cooperative models have not been studied in the mathe- matical literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Can one understand ergodicity properties of cooperative models?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Does ergodicity always imply diffusivity?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' How do typical time scales diverge near criticality?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' References [1] Chikashi Arita, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Krapivsky, and Kirone Mallick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Bulk diffusion in a kinetically constrained lattice gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Journal of Physics A: Mathematical and Theoretical, 51(12):125002, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [2] Lorenzo Bertini and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Exclusion processes with degenerate rates: convergence to equilib- rium and tagged particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Journal of Statistical Physics, 117(3):549–580, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [3] Oriane Blondel, Patrícia Gonçalves, and Marielle Simon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Convergence to the stochastic Burgers equation from a degenerate microscopic dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', 21:Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 69, 25, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [4] Oriane Blondel and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Kinetically constrained lattice gases: tagged particle diffusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Henri Poincaré Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', 54(4):2335–2348, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [5] Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto, and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Kinetically constrained spin models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Theory Related Fields, 140(3-4):459–504, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [6] Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto, and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Kinetically constrained lattice gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', 297(2):299–344, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [7] Persi Diaconis and Laurent Saloff-Coste.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Comparison techniques for random walk on finite groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The Annals of Probability, pages 2131–2156, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [8] Persi Diaconis and Mehrdad Shahshahani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Generating a random permutation with random transpositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57(2):159–179, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [9] Anatole Ertul and Assaf Shapira.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Self-diffusion coefficient in the Kob-Andersen model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Electronic Commu- nications in Probability, 26:1–12, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [10] Juan P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Garrahan, Peter Sollich, and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Kinetically constrained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Dynamical hetero- geneities in glasses, colloids, and granular media, 150:111–137, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [11] Patrícia Gonçalves, Claudio Landim, and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Hydrodynamic limit for a particle system with degenerate rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Henri Poincaré Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', 45(4):887–909, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [12] Ivailo Hartarsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Refined universality for critical kcm: upper bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' arXiv preprint arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='02329, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 41 [13] Ivailo Hartarsky and Laure Marêché.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Refined universality for critical kcm: lower bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Combinatorics, Probability and Computing, 31(5):879–906, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [14] Ivailo Hartarsky, Laure Marêché, and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Universality for critical kcm: infinite number of stable directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Probability Theory and Related Fields, 178(1-2):289–326, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [15] Ivailo Hartarsky, Fabio Martinelli, and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Universality for critical kcm: finite number of stable directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The Annals of Probability, 49(5):2141–2174, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Kipnis and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Varadhan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Central limit theorem for additive functionals of reversible Markov pro- cesses and applications to simple exclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', 104(1):1–19, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [17] Claude Kipnis and Claudio Landim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Scaling limits of interacting particle systems, volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Springer-Verlag, Berlin, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [18] Donald Ervin Knuth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' The art of computer programming, volume 3: Sorting and searching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Addison-Wesley Reading, MA, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [19] Walter Kob and Hans C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Andersen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Kinetic lattice-gas model of cage effects in high-density liquids and a test of mode-coupling theory of the ideal-glass transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Physical Review E, 48(6):4364, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [20] Laure Marêché, Fabio Martinelli, and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Exact asymptotics for duarte and supercritical rooted kinetically constrained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [21] Fabio Martinelli, Robert Morris, and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Universality results for kinetically constrained spin models in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Communications in mathematical physics, 369(2):761–809, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [22] Fabio Martinelli, Assaf Shapira, and Cristina Toninelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Diffusive scaling of the Kob-Andersen model in Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 56(3):2189–2210, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [23] Yukio Nagahata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Lower bound estimate of the spectral gap for simple exclusion process with degenerate rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Electronic Journal of Probability, 17:1–19, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [24] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Ritort and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Sollich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Glassy dynamics of kinetically constrained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Advances in Physics, 52(4):219– 342, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [25] Assaf Shapira.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Hydrodynamic limit of the kob-andersen model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' arXiv preprint arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='08495, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [26] Herbert Spohn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Tracer diffusion in lattice gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', 59(5-6):1227–1239, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [27] Herbert Spohn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Large Scale Dynamics of Interacting Particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Springer-Verlag Berlin Heidelberg, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [28] Eial Teomy and Yair Shokef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Hydrodynamics in kinetically constrained lattice-gas models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Physical Review E, 95(2):022124, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' [29] Cristina Toninelli, Giulio Biroli, and Daniel S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Fisher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Cooperative behavior of kinetically constrained lattice gas models of glassy dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=', 120(1-2):167–238, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content=' MAP5, UNIVERSITÉ PARIS CITÉ Email address: assaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='shapira@normalesup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='org URL: assafshap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} +page_content='io' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf'} diff --git a/o9AyT4oBgHgl3EQfzPm_/content/tmp_files/2301.00699v1.pdf.txt b/o9AyT4oBgHgl3EQfzPm_/content/tmp_files/2301.00699v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c77d7847a65912325a1c38972197ddc9d7d9e5e7 --- /dev/null +++ b/o9AyT4oBgHgl3EQfzPm_/content/tmp_files/2301.00699v1.pdf.txt @@ -0,0 +1,4437 @@ +Astronomy & Astrophysics manuscript no. main +©ESO 2023 +January 3, 2023 +Gaia search for early-formed andesitic asteroidal crusts +M. Galinier1, M. Delbo1, C. Avdellidou1, L. Galluccio1, and Y. Marrocchi2 +1 Université Côte d’Azur, CNRS–Lagrange, Observatoire de la Côte d’Azur, CS 34229 – F 06304 NICE Cedex 4, France +e-mail: marjorie.galinier@oca.eu +2 CRPG, CNRS, Université de Lorraine, UMR 7358, Vandoeuvre-les-Nancy F-54501, France +Received date, year; accepted date, year +ABSTRACT +Context. Andesitic meteorites are among the oldest achondrites known to date. They record volcanic events and crust formation +episodes in primordial planetesimals that took place about 4.565 Myr ago. However, no analogue for these meteorites has been found +in the asteroid population to date. +Aims. We searched for spectroscopic analogues of the andesitic meteorite Erg Chech 002 in the asteroid population using the Gaia +DR3 spectral dataset. +Methods. In order to identify which asteroids have the most similar spectrum to Erg Chech 002, we first determined the spectral +parameters of Gaia DR3 asteroids (spectral slope and Band I depth) and compared them to the spectral parameters of different +samples of the meteorite. In addition, we performed a spectral curve matching between Erg Chech 002 and Gaia DR3 asteroid data, +and we compared the results of both methods. +Results. We found that 51 main-belt asteroids have a visible spectrum similar to the one of Erg Chech 002, and 91 have a spectrum +similar to the space-weathered spectra of the meteorite, corresponding to 0.08 and 0.15% of the whole Gaia DR3 dataset of asteroids +with spectra, respectively. The asteroids that best match the laboratory samples of the meteorite are mostly located in the inner main +belt, while the objects matching the space-weathered meteorite models show slightly more scattering across the belt. +Conclusions. Despite the fact that we find asteroids that potentially match Erg Chech 002, these asteroids are extremely rare. More- +over, a visible spectrum alone is not completely diagnostic of an Erg Chech 002-like composition. Near-infrared spectra will be +important to confirm (or rule out) the spectral matches between Erg Chech 002 and the candidate asteroid population. +Key words. Minor planets, asteroids: general – Meteorites, meteors, meteoroids – Techniques: spectroscopic +1. Introduction +Planetesimal accretion is considered the first stage of planetary +formation. The composition and sizes of these planetesimals and +the heliocentric distance of their accretion are key long-standing +issues in planetary science (see, e.g. Johansen et al. 2015, and +references therein). Planetesimal accretion took place during the +first million years of our Solar System’s history (Henke et al. +2012; Trieloff et al. 2022; Morbidelli et al. 2020, 2022), and the +planetesimals that formed at the earliest times are expected to +have been highly heated by the radioactive decay of 26Al, and +thus to be differentiated. During this process, the interior of a +molten body with an initial homogeneous composition organ- +ises into layers of different densities and compositions, forming +a dense metallic core, an olivine-rich overlaying mantle, and an +igneous crust (e.g. McSween et al. 2002, and references therein). +Subsequent collisional evolution fragmented those original plan- +etesimals, producing families of asteroid fragments. These frag- +ments should show different physical and spectral properties +depending on the type of collision and the depth of the mate- +rial excavation during the impact event. Moreover, family frag- +ments can drift towards regions of orbital instability due to non- +gravitational forces and then be delivered to Earth as meteorites. +Meteorites show a large range of compositions, reflecting the +composition of the different layers of the parent body from which +they are derived, if differentiated (e.g. Greenwood et al. 2020). +Linking meteorites to asteroids provides insights into the inter- +nal structure of the parent body and into its accretion time and +region. However, only a few links have been established up to +now: the Howardite-Eucrite-Diogenite meteorites (HEDs) have +been linked to the asteroid (4) Vesta and its family (Russell et al. +2012); the aubrite meteorites (enstatite achondrites) have been +connected to the (434) Hungaria family (Lucas et al. 2019); and +very recently the enstatite chondrite meteorites of EL type were +linked to the asteroid family of (161) Athor (Avdellidou et al. +2022). All of these families are located in the inner main belt +(i.e. with a semi-major axis between 2.1 and 2.5 au). +The study of HEDs, for example, showed that they originate +from the igneous crust of asteroid (4) Vesta (e.g. McCord et al. +1970; Russell et al. 2012; Binzel et al. 1993; Burbine et al. 2001; +De Sanctis et al. 2012; Russell et al. 2013), which is known to be +differentiated (e.g. Ruzicka et al. 1997; Righter & Drake 1997; +Mandler & Elkins-Tanton 2013). However, other eucrite mete- +orites that do not belong to the HEDs and thus do not come from +Vesta have also been identified (Bland et al. 2009). Moreover, +lithological, colour, and albedo differences have been detected +by Mansour et al. (2020) between the vestoids, other low inclina- +tion basaltic asteroids of the inner belt, as well as basaltic aster- +oids with orbits beyond 2.5 au. All of these point to the necessary +existence of another basaltic source of meteorites. Oszkiewicz +et al. (2015) suggest that this object could be the parent body of +the Flora family. +Despite the evidence given by the meteorites, few signs +of differentiation amongst asteroids have been found to date. +Searches for a population of basaltic crust-like asteroids (in and +outside the Vesta family; e.g. Moskovitz et al. 2008; Solontoi +Article number, page 1 of 28 +arXiv:2301.00699v1 [astro-ph.EP] 2 Jan 2023 + +A&A proofs: manuscript no. main +et al. 2012; Leith et al. 2017) as well as metallic ones (e.g. Har- +ris & Drube 2014) have been successful. However, there is an +observational lack of mantle-like olivine-rich asteroids in the +main belt (DeMeo et al. 2019). These asteroids are identified +as A types (Bus & Binzel 2002; DeMeo et al. 2009); in addi- +tion compared to the amount of basaltic and metallic asteroids in +the main belt, they should be found in a larger proportion than +what has been observed so far. This long-standing issue in plan- +etary science is the so-called missing mantle problem (Chapman +1986). +Another interesting class of meteorites has been recently +identified as evidence of differentiation in the main belt, in ad- +dition to the aubrites, iron meteorites, HEDs, and eucrites: the +so-called andesitic meteorites (Day et al. 2009; Barrat et al. +2021). The formation mechanism of these meteorites is consis- +tent with rapid cooling of a silicate-rich magma at the surface +of a planetesimal. However, said mechanism is still debated (Ar- +culus et al. 2009). In particular, the meteorite Erg Chech 002 +(hereafter EC 002) found in May 2020 in the Sahara desert is +reported by Barrat et al. (2021) to be ’the oldest andesite of the +Solar System’, with a measured crystallisation age of 4,565 Myr +(around 2.25 Myr after the beginning of the Solar System). It has +been classified as an ungrouped achondrite and it is spectroscop- +ically unique. Its composition is similar to those experimentally +produced by low partial melting of ordinary chondrite-like mate- +rials (Collinet & Grove 2020). This suggests that EC 002 could +originate from the igneous crust of a non-carbonaceous planetes- +imal that suffered from low partial melting. This crust is thought +to have been separated from the original parent body by a vio- +lent event, as suggested by evidence of a rapid cooling. EC 002 +was thrown into space and travelled as part of a bigger body, be- +fore separating from it. As its composition is different from the +HEDs, this meteorite provides evidence that some planetesimals +were covered in andesitic and not basaltic crusts, the process of +differentiation thus being different for these bodies. +The parent bodies of andesitic meteorites and planetesimals +with andesitic crusts are unknown to date. Barrat et al. (2021) +searched for objects with similar properties to EC 002 among +the main belt asteroid population. To do so, they compared +laboratory spectra of different samples of EC 002 to astro- +nomical spectra of asteroids with strong pyroxene signatures, +namely taxonomic end members of classes O and V, and to +spectrophotometric data from the Sloan Digital Sky Survey +(SDSS). No satisfying match between the meteorite and the +asteroids was found. The authors concluded that almost the +entire original population of planetesimals must have dis- +appeared, as well as their fragments. They speculate that the +disappearance of EC 002-like objects could be due either to their +accretion to other asteroids to form larger planetary embryos, +or to their destruction. This could also result from their erasure +by subsequent stages of melting and planetary accretion and +differentiation (Collinet & Grove 2020). +Reflectance spectra of EC 002 were acquired by Barrat et al. +(2021). These spectra show the presence of two strong absorp- +tion bands that were linked to Ca-rich pyroxene: a first band cen- +tred around 0.95 µm (Band I), and a second one around 2 µm +(Band II). They also show the presence of a small band centred +around 0.65 µm, whose origin is not discussed by Barrat et al. +(2021). However, the analysis done by the authors show that the +pyroxenes of EC 002 are quite rich in Cr-bearing species (as +shown in Table S2 of their supplementary material); and accord- +ing to Moskovitz et al. (2008), Cloutis et al. (2018) and Cloutis +(2002), Cr-rich high-Ca pyroxene can lead to the apparition of +absorption features near 450 and 0.65 µm. Thus, the 0.65 µm ab- +sorption band observable in the reflectance spectrum of EC 002 +could be due to the presence of chromium in the pyroxene of +the meteorite. Comparing this spectrum with available asteroids +spectra, the authors found no known asteroid spectral type pre- +senting such absorption signatures. +In this work we take advantage of the recent publication of an +unprecedented sample of asteroid spectra by the Data Release 3 +(DR3) of the ESA mission Gaia (Gaia Collaboration et al. 2022) +to search for analogues of EC 002 in the asteroid population. +In Sect. 2 the dataset of asteroid spectra used is presented, along +with the spectral data of the meteorite retrieved from Barrat et al. +(2021). The methods are detailed in Sect. 3. In Sect. 4 we present +our results, followed by a discussion in Sect. 5. +2. Data +In order to search for analogues of EC 002 among the asteroid +population, we used the dataset of reflectance spectra that was +acquired by Gaia between 5 August 2014 and 28 May 2017, +and was released in June 2022. This dataset consists of mean re- +flectance spectra in the visible wavelength range of 60 518 Solar +System objects (SSOs), with the majority of objects having mag- +nitudes between ≃18 and 20. This is an unprecedented dataset of +objects that are usually too faint to be observed from ground- +based telescopes. +The reflectance spectra are acquired by two low-resolution +slit-less spectrophotometers on board Gaia, the blue and red +spectrophotometers (BP and RP), which are respectively opti- +mised for the blue and red part of the spectrum. Specifically, +the BP spans the wavelength range from 0.33 to 0.68 µm and +the RP covers the range from 0.64 to 1.050 µm. The spec- +tral resolution of each spectrophotometer is a function of wave- +length, and varies from 4 to 32 nm pixel−1 for the BP and 7 to +15 nm pixel−1 for the RP (Gaia Collaboration et al. 2022; Car- +rasco et al. 2021; Jordi et al. 2010). When an SSO transits on +the focal plane of Gaia at a given epoch, each spectrophotometer +measures counts at every wavelength to create ‘epoch spectra’. +Given that the wavelength range of both instruments overlaps +in the 0.65-0.68 µm interval, the two epoch spectra are merged +to create a full epoch spectrum. To each SSO is associated a +unique mean reflectance spectrum obtained by averaging several +epoch spectra, spanning the visible wavelength range from 374 +to 1034 nm in 16 discrete wavelength bands (Gaia Collaboration +et al. 2022). A ‘spectral_validation_flag’ (hereafter flag) num- +ber is associated to each band, assessing the estimated quality of +the band. In some cases, the merging of the epoch spectra taken +by each spectrophotometer is not perfect and can lead to the +creation of artefact bands (see Gaia Collaboration et al. 2022). +Caution must thus be taken when analysing the mean reflectance +spectra in the overlapping wavelength interval. In a similar way, +the bluest and reddest data bands of Gaia spectra are in gen- +eral affected by large systematics due to the low efficiency of the +spectrophotometers in these bands. They are not always flagged +but they need to be taken with caution as well. To assess the qual- +ity of the asteroid analogues of EC 002 found using Gaia data, +visible (VIS) and near-infrared (NIR) spectra from the literature +were used in our analysis. +To perform our analysis, we used the EC 002 spectra that +were published by Barrat et al. (2021). Barrat et al. (2021) ac- +quired visible and near-infrared reflectance spectra of one pow- +der sample and three raw slabs samples of EC 002. The spectra +were digitised from the supplementary material of Barrat et al. +(2021) using the region features (points and box) of the SAO Im- +Article number, page 2 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +age DS9 software. A python code was used to transform the pixel +coordinates to reflectance and wavelengths units, and we verified +that our digitised spectra were indistinguishable from the origi- +nal ones before conducting the study. The spectra of the labora- +tory samples of the meteorite were later kindly provided to us by +Jean-Alix Barrat and his co-authors (J. A. Barrat, P. Beck, private +communication). Since asteroid surfaces can be altered by space +weathering and in order to compare the meteorite spectrum with +asteroid spectra, Barrat et al. (2021) applied a space weather- +ing model (Hapke 2001) to the powder sample of the meteorite, +to simulate the effects of solar wind ion bombardment and mi- +crometeorite impacts on the surface of the body. They published +three space-weathered spectra of EC 002 corresponding to three +different levels of space weathering – low, medium, and high – +which we retrieved using SAO image DS9 software. In our study, +we used the four reflectance spectra of the laboratory samples of +the meteorite and the three modelled space-weathered spectra to +search for asteroids with similar features to EC 002. +In order to compare our work with the one of Barrat et al. +(2021), we also performed some comparison tests between the +SDSS and the Gaia dataset. The SDSS dataset used in this work +contains information for 33 584 asteroids and was retrieved from +the work of DeMeo & Carry (2013). No selection criteria was +applied to filter out noisy data, regardless of the uncertainties of +the SDSS dataset. +3. Methods +In order to identify a spectral link between EC 002 and Gaia +asteroids, we first compared the laboratory spectra of EC 002 +to Gaia spectra without considering the effect of space weather- +ing. Since the source of this meteorite is yet unknown, there is +a probability that this object originates from a family of young +fragments created by a recent collision. These fragments would +have suffered limited space weathering because of their young +age, showing a spectrum similar to the one of EC 002. More- +over, we present here an attempt to detect asteroids with similar +spectral features as of EC 002 (similar spectral slope, presence of +a pyroxene band around 0.95 µm and of a small 0.65 µm band), +and these features are more easily detected without space weath- +ering. It is also reasonable to believe that asteroids have surface +grains. Given that they influence the spectroscopic properties of +a medium, we studied the spectra of the powder and raw slab +samples of EC 002. +On the other hand, EC 002 has the composition of a par- +tial melt of an ordinary chondrite (Barrat et al. 2021). Once +weathered, ordinary chondrites are spectrally similar to S-type +asteroids. If the asteroids matching EC 002 suffered from space +weathering, it is not unreasonable to expect a S-type-like space +weathering (as expressed by the space weathering trend assumed +by Barrat et al. 2021). Hence, we studied in a second time the +modelled space-weathered spectra of EC 002. To summarise, we +searched for asteroids spectrally matching the powder, raw slabs +samples, and modelled space-weathered spectra of EC 002. To +do so, we used two spectral matching methods described below. +3.1. Band I depth vs. slope comparison +The first method consists in comparing the spectral parameters +derived from the reflectance spectra of the meteorite and of the +asteroids. These parameters are the slope of the reflectance spec- +trum between 468.6 and 748 nm, and a measure of the depth of +the silicate band centred around 950 nm (Band I depth). This +method was inspired by the works of Barrat et al. (2021), DeMeo +& Carry (2013) and Parker et al. (2008) using the SDSS asteroid +spectrophotometric data. Ivezi´c et al. (2001) and Nesvorný et al. +(2005) performed a principal component analysis on these data +and identified two spectral parameters that express most of the +data variability: the a* parameter and the i-z colour. The a* pa- +rameter closely represents the slope of the reflectance spectrum +in the g’, r’ and i’ SDSS bands (Ivezi´c et al. 2001), these bands +being respectively centred at 468.6 nm, 616.6 nm and 748.0 nm +(DeMeo & Carry 2013). The i-z colour is sensitive to the depth +of a potential 1 µm band, the colour being the difference of mag- +nitude between the i’ and z’ bands. These parameters are useful +to characterise a visible asteroid spectrum. +DeMeo & Carry (2013) used slightly different spectral pa- +rameters to characterise the asteroids: the z-i parameter and +the gri-slope. To evaluate them, the SDSS observed magnitudes +of asteroids are converted into reflectance values at the cen- +tre of each SDSS filter, and the derived reflectance spectra are +normalised to unity at the central wavelength of the g’ filter +(468.6 nm). The gri-slope is defined as the slope of the derived +reflectance spectra over the g’, r’ and i’ filters. The z-i parameter +still measures the depth of a potential 1 µm band, but it is here +defined as: +Rz − Ri = R(λ = 893.2 nm) − R(λ = 748.0 nm). +(1) +The gri-slope and z-i colour of asteroids have been used to +group objects into classes since (Ivezic et al. 2002; Carvano et al. +2010; DeMeo & Carry 2013). We note that the parameter mea- +suring the Band I depth used in this study is a difference of re- +flectance, we therefore refer to it as Rz − Ri. +In order to compare Gaia reflectance spectra with what has +been done in the work of Barrat et al. (2021), we evaluated the +gri-slope and Rz − Ri parameters for Gaia spectra. First, each +Gaia spectrum was interpolated using a cubic smoothing spline +(python3 package csaps, default smoothing parameter) and re- +sampled between 450 and 900 nm. During this smoothing pro- +cedure, only Gaia bands with flags equal to zero (good quality +bands) were considered and the first and last Gaia bands were +not taken into account, in order to limit the impact of low qual- +ity bands on the calculated reflectance values. The re-sampled +Gaia spectra were then normalised at 468.6 nm, and the spec- +tral gri-slope was computed by linearly fitting the spectrum be- +tween 468.6 and 748.0 nm (first-degree polynomial fit, numpy +package polyfit). The Rz − Ri parameter was computed by tak- +ing the value of the reflectance of every re-sampled normalised +Gaia spectra at the central wavelength of the i’ and z’ SDSS +filters, namely 748.0 nm and 893.2 nm. The asteroids defined as +potentially matching the spectrum of EC 002 are those in an area +close to the meteorite in the Rz − Ri vs. gri slope diagram. This +will be further discussed in section 4. +3.1.1. Asteroid matching with spectra of laboratory samples +of EC 002 +First, we studied the four laboratory samples of the meteorite +EC 002 without taking space weathering into account. To com- +pare the meteorite spectra with those of Gaia asteroids, their +spectral slope and Rz − Ri parameter were calculated. To do so, +the spectrum of each sample was interpolated between 450 and +900 nm using a cubic smoothing spline (python3 package csaps, +default smoothing parameter), as was done for the Gaia data. +The spectra were then normalised to unity at 468.6 nm and the +Rz − Ri parameter was calculated using Eq. 1. The spectral slope +Article number, page 3 of 28 + +A&A proofs: manuscript no. main +was evaluated between 468.6 and 748.0 nm applying a first de- +gree polynomial fit. +In order to identify the asteroids with spectral parameters +similar to EC 002, we calculated the average of the slope and +Rz − Ri values for the four samples. The corresponding point is +considered as the ’barycentre’ of the non-space-weathered sam- +ples. Then, we determined a 3σ confidence ellipse around this +barycentre. The equation of the confidence ellipse centred on a +barycentre of coordinates (xc, yc) and oriented with an angle α +is: +�cos2 α +a2 ++ sin2 α +b2 +� +(x − xc)2 + +�sin2 α +a2 ++ cos2 α +b2 +� +(y − yc)2+ +2(x − xc)(y − yc) sin α cos α +� 1 +b2 − 1 +a2 +� += s, +(2) +with x the gri-slope of a reflectance spectrum, y = Rz − Ri, and s +the scale of the ellipse that represents a chosen confidence level. +a and b are respectively the semi-major and semi-minor axis of +the ellipse. It is possible using χ-square probabilities to deter- +mine that for a 3σ ellipse, the s value is 9.210 (99% confidence +level). If an asteroid falls inside the 3σ ellipse in the spectral pa- +rameter space, then it would be considered as a candidate match +of EC 002 according to its visible spectrum. +To compute the parameters of the 3σ confidence ellipse, we +calculated the covariance matrix of the four laboratory samples +of the meteorite. The semi-major and semi-minor axis of the el- +lipse are defined as: +�a += √sλ1 +b += √sλ2, +(3) +with λ1 and λ2 the eigenvalues of the covariance matrix, λ1 +being the largest. The angle α of the ellipse is defined as +α = arctan v1(y) +v1(x) with v1 the eigenvector of the covariance matrix +associated to the largest eigenvalue. +3.1.2. Asteroid matching with modelled space-weathered +spectra of EC 002 +After studying non-space-weathered samples of EC 002, we +analysed the modelled spectra of EC 002 from Barrat et al. +(2021) on which was applied the Hapke (2001) space weathering +model (from Fig. S12 of the supplementary material of Barrat +et al. 2021). The slope and Rz − Ri parameters were calculated +for these spectra, following the same procedure as explained be- +fore. In order to study more stages of space weathering of the +meteorite, we fitted a straight line to the points corresponding +to the powder sample and to the three space-weathered samples +in the Rz − Ri vs. slope plot. This line will be referred in the fol- +lowing as the ‘space weathering line’. A parallel line to the space +weathering line centred on the barycentre of the non-weathered +samples was calculated, and the 3σ ellipse was moved along this +line from the lowest to the highest space weathering points, in +order to define a ’possible matches area’ within which objects +could present spectral parameters similar to those of EC 002 with +different levels of space weathering. The spectra of the asteroids +within this ‘possible matches area’ were then visually inspected. +Indeed, we preferred relying on visual inspection rather than on +an automated method to assess the quality of the matches, firstly +because of the relatively small number of objects to inspect and +secondly because the 0.65 µm band present on the meteorite +spectrum was never detected by algorithms. This band being a +characteristic feature of the meteorite spectrum, we chose the +method where its presence was the most surely detected. +3.2. Curve matching +The second method we used in order to find spectral analogues of +EC 002 is a curve matching method, between the meteorite and +the asteroids reflectance spectra. This method is widely used in +the literature (see, e.g. Popescu et al. 2012; DeMeo et al. 2022). +It consists in evaluating how similar two spectra are relying on +the measure of a best-fit coefficient. In this work, among the pos- +sible existing coefficients, we chose to use the χ2 goodness-of-fit +test. The reduced χ2 we used is expressed as: +χ2 +red = 1 +ν +N +� +i +(Ai − f.Mi)2 +σ2 +i +, +(4) +with Mi the meteorite spectrum, Ai a Gaia asteroid reflectance +spectrum and σi its associated uncertainties, ν the number of +degrees of freedom, and f a normalisation factor allowing the +best overlap between the meteorite and Gaia reflectance spectra. +The f-value was determined by minimising the χ2 +red such that the +partial derivative of the χ2 +red with respect to f is zero. This leads +to: +f = +�N +i +Mi.Ai +σ2 +i +�N +i +M2 +i +σ2 +i +. +(5) +In order to compare EC 002 with asteroids, we started by +sampling the meteorite spectrum at Gaia’s wavelengths. We con- +sidered only the good quality bands in Gaia spectra. Since the +bands at the extreme wavelengths of the spectral range are often +damaged due to the low BP-RP sensitivity there, the first and last +bands of Gaia spectra were not taken into account. Moreover, as +explained earlier, DR3 SSO spectra were assigned a non-zero +flag to the bands where some potential problems were detected. +Every band flagged with a non-zero number was removed. The +‘cleaned’ Gaia spectra were thus composed of 14 bands span- +ning the wavelength range from 418 to 990 nm, provided that +they had a flag=0. +400 +600 +800 +1000 +Wavelength (nm) +0.5 +1.0 +1.5 +2.0 +Normalised Reflectance +SW high +SW medium +SW low +slabs +powder +Fig. 1. Spectra of a powder, three raw slab samples and three modelled +spectra of space-weathered of EC 002 sampled and normalised as Gaia +data, after removing the first and last Gaia bands. +Then, a cubic smoothing spline was applied to the meteorite +spectrum to interpolate it (python package csaps, smoothing pa- +rameter of 0.0001) and the interpolated spectrum was sampled +as each cleaned Gaia spectrum. This re-sampled meteorite spec- +trum was then normalised at 550 nm. Figure 1 shows the differ- +ent spectra of EC 002 normalised and re-sampled. +Article number, page 4 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +For each sample of the meteorite, the χ2 +red of Eq.4 was cal- +culated between each cleaned asteroid spectrum and the re- +sampled and re-normalised meteorite spectrum. As explained in +previous studies (Hanuš et al. 2015; Hanuš et al. 2018), a 3σ +match to the meteorite is defined as an asteroid respecting the +following condition: χ2 +red < 1 + 3σ with σ = +√ +2ν +ν +and ν the num- +ber of degrees of freedom. For ν=16, χ2 +red < 2.06 ≃ χ2 +red < 2. For +each meteorite sample, the best matches were selected according +to this criterion and their spectra were then visually inspected. +4. Results +In this section we describe the results from (i) the comparison +of the spectral slope and Band I depth, and (ii) the curve match- +ing method, between the spectra of EC 002 and that of Gaia as- +teroids. As it will be shown, some asteroids were identified as +having Gaia reflectance spectra similar to the visible part of the +spectrum of EC 002. The number of matches found with each +method and each sample is recapitulated on Table 1, and the de- +tail of the number and name of each asteroid matching and with +which method it was found is given on Table 3. +Table 1. Accepted asteroids as candidate matches for the different sam- +ples of EC 002, according to the method used. +Sample +Spectral parameter +CM +Total +Powder + slabs +41 +18 / 10 +51 +SW low +56 +23 / 15 +71 +SW medium +12 +8 / 5 +17 +SW high +2 +1 / 1 +3 +Note: CM stands for curve matching. The first number in the CM col- +umn is the number of asteroids found using the curve matching +method for a given sample of the meteorite, and the second number +corresponds to the number of asteroids not already found with the +spectral parameter method. The total number of matches for each +sample is indicated in the last column. +4.1. SDSS-Gaia spectral parameters comparison +First, because Barrat et al. (2021) did not find satisfactory +matches between EC 002 and the SDSS data, we started our +analysis by investigating potential differences between Gaia and +the SDSS dataset. To compare them, we calculated the spectral +slope and the Rz − Ri parameter for every object in each dataset. +The spectral slope was computed by linearly fitting the three +SDSS reflectance data points in the g, r and i SDSS filters us- +ing a one-degree polynomial fit (numpy polynomial.polyfit). The +same spectral parameters were calculated for the 60 518 Gaia +spectra as explained in Sect. 3. +As can be seen in Fig. 2, the two datasets appear to be shifted +in the spectral parameter space. In order to study these apparent +shifts, we used a sub-sample of 14 129 asteroids having observa- +tions both in Gaia and SDSS. Figure 3 shows histograms of the +spectral parameters of this sub-sample, where a shift in Rz − Ri +is clearly visible on panel (B). To evaluate the value of this shift, +the median value of Rz − Ri was calculated for both datasets of +the sub-sample and we found that Gaia data have 0.076 times +higher Rz − Ri than the SDSS, doing the difference of the two. +While there is a general agreement in spectral slope between the +two surveys (difference between median slope of both surveys of +only 0.52), a wing of higher slope values for Gaia asteroids can +be noticed in Fig. 3 (A), meaning that Gaia detects objects red- +der than the SDSS. The shift in Rz − Ri is quite significant and +remains when considering only objects with a high S/N (S/N > +100 for example). We chose not to correct Gaia data from this +shift in this work since we do not know its causes. +A potential reason for this shift could be the different choice +of solar analogues between the two surveys. Indeed, a mean so- +lar analogue spectrum was used to retrieve the asteroids spectra +from Gaia, and solar colours are needed to convert colour indices +to reflectances for the SDSS. It is possible that the accuracy of +the solar analogues or the solar colours used is at the origin of +this shift. This difference between the SDSS and Gaia will be +investigated in future works. +4.2. Spectral parameter matching +In the following are described the potential matches of EC 002 +obtained with the study of spectral parameters. The slope and +Rz − Ri spectral parameters were calculated for the spectra of +the powder samples and all raw slab samples of EC 002 (see +Table 2). The average and standard deviation for the slope and +Band I depth are of 24.7 ± 2.9 % (100 nm)−1 and −0.76 ± 0.02, +respectively. In Fig. 4, the corresponding point is plotted as an +orange diamond. We can observe that the points corresponding +to the different samples of the meteorite plots away from any +group of asteroids in the spectral parameter space, as already +observed in Fig. S14 of the supplementary material of Barrat +et al. (2021). +Table 2. Spectral slope and Band I depth evaluated for different samples +of EC 002. +Sample +spectral slope (%(100 nm)−1) +Rz − Ri +Powder +24.3 +-0.74 +Raw slab 1 +27.4 +-0.77 +Raw slab 2 +20.1 +-0.75 +Raw slab 3 +27.1 +-0.80 +In the spectral parameter space, using the average point as a +centre, we defined a 3σ confidence ellipse as described in sec- +tion 3 in which no asteroid is contained (Fig. 4). As described +in Sect.3, we calculated a ‘space weathering line’ of equation: +y = 0.047x − 1.92. The coefficient of determination of this fit is +R2 = 0.986, meaning that the linear fit to the space weathering +modelled spectra of Barrat et al. (2021) is good. This line plots +to the right side of the spectral parameter space, where only a +few asteroids are present. +Using the parameters of the linear fit, we extended the 3σ +ellipse along the space weathering line, defining a ‘possible +matches area’ that contains 305 asteroids listed in Table A.1, +which spectra were visually inspected. +Following several criteria we rejected ∼63.8% of the sample. +As a first step, we rejected the objects that have known VIS or +NIR spectrum in the literature that allowed to distinguish them +from EC 002. It corresponds to 10.2% of the initial sample of +305 asteroids. Then, we removed the objects with more than +three flagged bands in the Gaia spectrum (1.8% of the sample). +Finally, we rejected the asteroids that had either a too noisy spec- +trum, or that were visually different from the spectra of EC 002 +in either BP or RP parts (51.8% of the sample). For the last case +we noticed that several spectra, otherwise similar to the one of +EC 002 show a steep increase of the reflectance in the red part, +making their Band I centre shifted compared to the one of the +meteorite. We chose to reject such objects of the list of candi- +date matches. +Article number, page 5 of 28 + +A&A proofs: manuscript no. main +−10 +0 +10 +20 +30 +40 +Spectral slope (% (100 nm)−1) +−0.8 +−0.6 +−0.4 +−0.2 +0.0 +0.2 +0.4 +Rz − Ri +Gaia vs SDSS +−10 +0 +10 +20 +30 +40 +Spectral slope (% (100 nm)−1) +Gaia vs SDSS subsample +Gaia +SDSS +(A) +(B) +Fig. 2. Comparison of the Band I depth Rz − Ri and the spectral slope for Gaia (black) and the SDSS (green) asteroids. Panel A: comparison +between the 60 518 asteroids of Gaia and the 33 584 asteroids of the SDSS. Panel B: comparison between a sub-sample of 14 129 asteroids both +observed by the SDSS and Gaia. A shift in Rz − Ri between the spectra of Gaia and the SDSS is visible in both panels. +0 +10 +20 +30 +Spectral slope (% (100 nm)−1) +0 +200 +400 +600 +Number of asteroids +Gaia +SDSS +−0.5 +0.0 +0.5 +Rz − Ri +0 +500 +Number of asteroids +Gaia +SDSS +(B) +(A) +Fig. 3. Comparison of the Rz − Ri parameter and of the spectral slope for the sub-sample of 14 129 asteroids observed both by Gaia and SDSS. +We note that the slope distribution (panel A) of Gaia has a wing that extends to redder slopes than the SDSS. Panel (B) shows that the distributions +of Rz − Ri for Gaia and SDSS are clearly shifted, with Gaia seeing a less deep Band I compared to the SDSS. Gaia and SDSS Rz − Ri parameter +histograms can be superimposed when a constant value of 0.07 is subtracted from Gaia Rz − Ri-values. +After our visual inspection, 110 asteroids were retained (Ta- +ble. A.1). Among these validated asteroids, 106 objects have +been given a spectrum for the first time by the Gaia mission, +and 41 asteroids were identified to have a reflectance spectrum +similar to the laboratory spectra of EC 002. These objects are +defined as matches. The matches of the four laboratory samples +of the meteorite were not considered separately here, because +these samples show almost indistinguishable spectra in the visi- +ble wavelength range. The spectra of the matches are shown on +Fig. B.1, and their median signal-to-noise ratio (S/N) is of 26.3. +In addition, there are 70 asteroids matching the space- +weathered spectra of EC 002: 56 asteroids match the spectrum +on which has been applied a low space weathering, 12 aster- +oids match the medium space-weathered spectrum and only two +asteroids match the highly space-weathered spectra. Their spec- +tra are shown respectively on Fig. B.2, Fig. B.3 and Fig. B.4. +The median S/N of the matches is of 23.0 for the low space- +weathering of EC 002, of 18.2 for the median space weathering, +and of 15.97 for asteroid (9974) Brody and 14.05 for asteroid +(19754) Paclements. +4.3. Curve matching +We applied the curve matching method to the different labora- +tory spectra of the EC 002 (powder and slabs) and to the entire +dataset of 60 518 Gaia asteroid reflectance spectra. As mentioned +before, the matches of the four laboratory samples were not con- +sidered separately here due to the similar visible spectra of these +samples. +Article number, page 6 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +−10 +0 +10 +20 +30 +40 +50 +gri slope (% (100 nm)−1) +−1.0 +−0.8 +−0.6 +−0.4 +−0.2 +0.0 +0.2 +0.4 +Rz − Ri +Gaia DR3 asteroids +powder +slabs +SW low +SW medium +SW high +barycentre +3-σ ellipse +SW line +shifted barycentre +matches SW +matches EC002 spectra +curve matching EC002 spectra +curve matching SW +Fig. 4. Distribution of depth of the 1 µm band with respect to the spectral slope of every Gaia asteroid (grey dots). Red squares: raw slabs of +the meteorite EC 002. Purple square : powder sample of the meteorite. Full orange diamond: barycentre of these 4 samples, and empty orange +diamond: shifted barycentre along the ‘space weathering line’. The squares going from light blue to dark blue represent the modelled space- +weathered spectra of EC 002, with different space weathering intensity. The orange ellipses are the 3-σ ellipse respectively around the barycentre +and shifted following the space weathering behaviour of EC 002. The two dashed blue lines delimit a ‘possible matches area’, within which +are represented asteroids matching EC 002. Pink dots: asteroids matching the raw slabs and powder sample of EC 002. Cyan dots: asteroids +matching the space-weathered samples. Dark red dots: asteroids matching EC 002 by the curve matching method. Green dots: asteroids matching +the space-weathered spectra of EC 002 by this same method. +We considered only the cases giving χ2 +red<2, resulting in a +list of 58 bodies matching EC 002 listed on Table. A.2. Af- +ter a visual inspection of their spectra, several objects were re- +jected (Table A.2). The final list of potential matches to EC 002 +meteorite contains 18 asteroids. Amongst these, ten asteroids +were not found with the spectral parameters method: (16856) +Banach, (17056) Boschetti, (54062) 2000GX135, (63653) +2001QQ109, (77147) 2001EV6, (77935) 2002GM54, (89556) +2001XS98, (123113) 2000SH361, (124884) 2001TE41, and +(164121) 2003YT1. The spectra of these ten bodies are shown +on Fig. B.5. +The curve matching method was then applied to the space- +weathered samples of EC 002. For the low space-weathered +spectrum, 269 asteroids had a χ2 +red<2. There was 223 asteroids +with χ2 +red<2 for the medium space-weathered spectrum, and only +12 asteroids for the highly space-weathered spectrum. +Most asteroids were rejected following the criteria ex- +posed earlier. We finally found 23 asteroids as potential +analogues of the low space-weathered EC 002, eight as- +teroids matching the medium space-weathered EC 002 and +one asteroid matching the highly space-weathered meteorite. +These objects are listed in Table A.3. The asteroids that +were found as matches with this method and not with the +spectral parameters method are asteroids (10131) Stanga, +(15623) 2000 HU30, (18780) Kuncham, (20535) Marshbur- +rows, (22276) Belkin, (22538) Lucasmoller, (32835) 1992EO5, +(33423) 1999DK, (33852) Baschnagel, (33934) 2000LA30, +(65504) 3544P-L, (74378) 1998XH11, (79827) 1998WU3, +(100440) 1996PJ6, and (103308) 2000AH55 for the low +SW ; asteroids (68089) 2000YS108, (68946) 2002PX138, +(93797) 2000WO43, (108899) 2001PP5, (145532) 2006FD42 +and (230762) 2003WP192 for the medium SW and asteroid +(33809) 1999XK152 for the high SW. Their spectra are shown +respectively on Fig. B.6, Fig. B.7 and Fig. B.8. +Article number, page 7 of 28 + +A&A proofs: manuscript no. main +Table 3. Accepted asteroids as candidate matches for the different samples of EC 002. +Asteroid +Method +Powder + raw slabs +(1643) Brown +Spectral parameters +(1946) Walraven +Spectral parameters +(2432) Soomana +Spectral parameters +(3188) Jekabsons +Spectral parameters +(3651) Friedman +Spectral parameters +(3869) Norton +Spectral parameters +(4302) Markeev +Spectral parameters +(5121) Numazawa +Spectral parameters +(6853) Silvanomassaglia +Spectral parameters + CM +(6876) Beppeforti +Spectral parameters +(8587) Ruficollis +Spectral parameters +(8827) Kollwitz +Spectral parameters +(9197) Endo +Spectral parameters +(9433) 1997 CF3 +Spectral parameters +(10156) 1994 VQ7 +Spectral parameters + CM +(10671) Mazurova +Spectral parameters +(10902) 1997 WB22 +Spectral parameters +(11155) Kinpu +Spectral parameters +(12551) 1998 QQ39 +Spectral parameters +(13839) 1999 XF29 +Spectral parameters +(15989) 1998 XK39 +Spectral parameters +(16856) Banach +CM +(17056) Boschetti +CM +(17240) Gletorrence +Spectral parameters +(20454) Pedrajo +Spectral parameters + CM +(24286) 1999 XU188 +Spectral parameters +(24892) 1997 AD3 +Spectral parameters + CM +(26573) 2000 EG87 +Spectral parameters +(27262) 1999 XT184 +Spectral parameters +(28162) 1998 VD14 +Spectral parameters +(30769) 1984 ST2 +Spectral parameters +(33418) Jacksonweaver +Spectral parameters +(36431) 2000 PJ12 +Spectral parameters +(44150) 1998 HC108 +Spectral parameters +(47232) 1999 VQ36 +Spectral parameters +(49101) 1998 RE76 +Spectral parameters +(54062) 2000 GX135 +CM +(55549) 2001 XC59 +Spectral parameters + CM +(56904) 2000 QP171 +Spectral parameters +(63653) 2001 QQ109 +CM +(77147) 2001 EV6 +CM +(77935) 2002 GM54 +CM +(87093) 2000 LW6 +Spectral parameters +(88955) 2001 TW42 +Spectral parameters + CM +(89556) 2001 XS98 +CM +(90604) 4813 P-L +Spectral parameters +(123113) 2000 SH361 +CM +(124884) 2001 TE41 +CM +(164121) 2003 YT1 +CM +(205560) 2001 SC282 +Spectral parameters + CM +(310436) 2000 AB169 +Spectral parameters + CM +SW low +(4088) Baggesen +Spectral parameters +(6003) 1988 VO1 +Spectral parameters +(6789) Milkey +Spectral parameters +(8243) Devonburr +Spectral parameters +(8483) Kinwalaniihsia +Spectral parameters +Asteroid +Method +SW low +(8692) 1992 WH +Spectral parameters +(9753) 1990 QL3 +Spectral parameters +(10131) Stanga +CM +(11920) 1992 UY2 +Spectral parameters +(14511) Nickel +Spectral parameters +(15088) Licitra +Spectral parameters +(15623) 2000 HU30 +CM +(17739) 1998 BY15 +Spectral parameters +(17821) Bolsche +Spectral parameters +(17882) Thielemann +Spectral parameters +(17943) 1999 JZ6 +Spectral parameters +(18344) 1989 TN11 +Spectral parameters +(18780) Kuncham +CM +(19978) 1989 TN6 +Spectral parameters +(20289) Nettimi +Spectral parameters +(20535) Marshburrows +CM +(21318) 1996 XU26 +Spectral parameters +(22276) Belkin +CM +(22538) Lucasmoller +CM +(23766) 1998 MZ23 +Spectral parameters +(24569) 9609 P-L +Spectral parameters +(24684) 1990 EU4 +Spectral parameters + CM +(26084) 1981 EK17 +Spectral parameters +(26851) Sarapul +Spectral parameters +(27876) 1996 BM4 +Spectral parameters + CM +(27884) 1996 EZ1 +Spectral parameters +(28132) Karenzobel +Spectral parameters +(29171) 1990 QK3 +Spectral parameters +(30426) Philtalbot +Spectral parameters +(30834) 1990 VR6 +Spectral parameters +(32835) 1992 EO5 +CM +(33423) 1999 DK +CM +(33852) Baschnagel +CM +(33934) 2000 LA30 +CM +(33947) 2000 ML1 +Spectral parameters + CM +(35364) Donaldpray +Spectral parameters +(39940) 1998 FR99 +Spectral parameters +(41894) 2000 WH121 +Spectral parameters +(43278) 2000 ES109 +Spectral parameters + CM +(44162) 1998 HC148 +Spectral parameters +(45787) 2000 OJ24 +Spectral parameters +(48039) 2001 DT69 +Spectral parameters +(51659) Robohachi +Spectral parameters +(53417) 1999 NP38 +Spectral parameters +(53661) 2000 DU62 +Spectral parameters +(53899) 2000 FM49 +Spectral parameters +(56561) Jaimenomen +Spectral parameters + CM +(58640) 1997 WH18 +Spectral parameters +(61098) 2000 LY28 +Spectral parameters +(64458) 2001 VF35 +Spectral parameters +(65504) 3544 P-L +CM +(74107) 1998 QM37 +Spectral parameters +(74378) 1998 XH11 +CM +(75323) 1999 XY47 +Spectral parameters +(79827) 1998 WU3 +CM +(87216) 2000 OG38 +Spectral parameters +(89776) 2002 AL90 +Spectral parameters +Article number, page 8 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +Table 3. continued. +Asteroid +Method +SW low +(89952) 2002 JB20 +Spectral parameters + CM +(92593) 2000 PN16 +Spectral parameters +(100440) 1996 PJ6 +CM +(103308) 2000 AH55 +CM +(108139) 2001 GL11 +Spectral parameters + CM +(112326) 2002 MM4 +Spectral parameters + CM +(122122) 2000 JM16 +Spectral parameters +(128450) 2004 NX24 +Spectral parameters +(134916) 2000 YP53 +Spectral parameters +SW medium +(13133) Jandecleir +Spectral parameters +(18143) 2000 OK48 +Spectral parameters +(31060) 1996 TB6 +Spectral parameters +(42822) 1999 NT13 +Spectral parameters + CM +(44322) 1998 RZ42 +Spectral parameters + CM +(49141) 1998 SM41 +Spectral parameters +(51379) 2001 BY7 +Spectral parameters +(52408) 1993 TJ34 +Spectral parameters +(68089) 2000 YS108 +CM +(68946) 2002 PX138 +CM +(90843) 1995 YZ22 +Spectral parameters +(93797) 2000 WO43 +CM +(99714) 2002 JQ41 +Spectral parameters +(108899) 2001 PP5 +CM +(122125) 2000 JO17 +Spectral parameters +(145532) 2006 FD42 +CM +(230762) 2003 WP192 +Spectral parameters + CM +SW high +(9974) Brody +Spectral parameters +(19754) Paclements +Spectral parameters +(33809) 1999 XK152 +CM +Note: Asteroids showing a spectrum matching the powder and raw +slabs samples of the meteorite are 51 in number, while 71 asteroids +match the low space-weathered spectrum of EC 002, 17 asteroids +match its medium space-weathered spectrum and three asteroids +match its highly space-weathered spectrum. CM stands for curve +matching. +5. Discussion +Asteroids spectroscopically matching EC 002 are extremely +rare. We find only 51 asteroids matching the non-space- +weathered spectrum of EC 002, and 91 asteroids matching its +spectrum on which was modelled the effect of space weathering +to various degrees. Considering the entire Gaia sample of over +60 518 Solar System minor bodies, it means a mere 0.08% of the +sample for the non-space-weathered samples and 0.15% of the +sample for the space-weathered EC 002. This confirms the con- +clusions of Barrat et al. (2021) about the scarcity of analogues +of EC 002 among the asteroid population. +The best matches of the different samples of EC 002 are +defined as the objects found using both methods. For the four +laboratory samples, there are seven best matches: (6853) Sil- +vanomassaglia, (10156) 1994VQ7, (20454) Pedrajo, (55549) +2001XC59, (88955) 2001TW42, (205560) 2001SC282, and +(310436) 2000AB169. For the spectra on which was applied a +low space weathering model, there are eight best matches: aster- +oids (24684) 1990 EU4, (27876) 1996BM4, (33947) 2000ML1, +(43278) 2000ES109, (56561) Jaimenomen, (89952) 2002JB20, +(108139) 2001GL11, and (112326) 2002MM4. For the medium +space weathering model, asteroids (42822) 1999NT13, (44322) +1998RZ42, and (230762) 2003WP192 are found by both meth- +ods. No asteroid is found by both methods for the highly space- +weathered spectrum. +Both methods give quite different asteroid as matches. In- +deed, we did not filter the objects considering their S/N but we +noticed that the large majority of objects retained as potential +analogues of EC 002 have S/N-values lower than a hundred. +For the curve matching method, the median value of the S/N +for the accepted objects is of 17.2. This low value is explained +by the fact that the chosen curve matching parameter favours +observations with large error bars, hence low S/N observations. +This method thus filters out objects with higher S/N found by the +spectral parameter method that appear to be very good matches +by visual inspection, such as asteroid (5121) Numazawa. In or- +der to evaluate the results of this curve matching method, we +performed some tests with an alternative Least Squares method. +We computed the sum of the squared residuals between the me- +teorite and the asteroids spectra, removing the flagged points as +was done for the χ2 +red calculation and not taking the uncertainties +into account. The sum of the squared residuals used is described +in Eq. 6: +R2 = +N +� +i +(Ai − f.Mi)2, +(6) +with Mi the meteorite spectrum, Ai a Gaia asteroid reflectance +spectrum and f a normalisation factor similar to the one in +Eq. 5 but without consideration of the uncertainties. This method +spans a wider range of S/N, giving only potential matches of +EC 002 among asteroids with S/N above 25 for the powder sam- +ple of the meteorite for example. Most asteroids found as poten- +tial matches plot inside the ‘possible matches area’ of Fig.4 and +thus were already found with the spectral parameters method. +This method is therefore a complement of the spectral parameter +method, but since it is sensitive to outliers it requires a visual in- +spection as well to assess the quality of the matches. The curve +matching method with the χ2 +red has the advantage that it explores +a larger area in the spectral parameter space, finding objects out- +side the ‘possible matches area’ even though they are low S/N +asteroids. These objects should be further observed and studied +in future analysis to evaluate how good a match they are. +All matched asteroids with the non-space-weathered me- +teorite spectra are located in the inner part of the main belt +(Fig. 5), between the secular resonance ν6 and the 3:1 mean +motion resonance with Jupiter. The asteroids matched with the +space-weathered meteorite are more scattered across the main +belt, even though most objects can be found in the inner main +belt as well, in particular close to the Vesta family (Fig. 6). +Some of the asteroids matching the different samples of +EC 002 are members of known collisional families, according +to the membership of Nesvorny et al. (2015). Among the 142 +matches of the different samples of EC 002, 23.9% of the aster- +oids belong to the Vesta family, 9.8% belong to the Flora family +and a mere 7.7% belong to other families (mainly Nysa-Polana). +The presence of asteroids matching with EC 002 inside the +Vesta family could be due to two possible reasons. If these ob- +jects are real analogues to EC 002, they could be interlopers in- +side the Vesta family since EC 002 is chemically distinct from +the HEDs (Barrat et al. 2021). The second possibility is that these +asteroids are true Vesta family members compositionally alike +HEDs, but which happen to have a Gaia reflectance spectrum in +the visible range very similar to that of EC 002. In fact, the dis- +tinction between the reflectance spectra of EC 002 and HEDs in +Article number, page 9 of 28 + +A&A proofs: manuscript no. main +2.2 +2.4 +2.6 +2.8 +3.0 +3.2 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +Proper sin(inclination) (°) +0.0 +0.1 +0.2 +0.3 +Proper eccentricity +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +2.2 +2.4 +2.6 +2.8 +3.0 +3.2 +Proper semi-major axis (au) +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +Proper eccentricity +Gaia DR3 asteroids with H<14.5 +Vesta family +Flora family +matches found with the +spectral parameters method +matches amongst +asteroids with χ2<2 +Fig. 5. Proper orbital element1plots of Gaia asteroids with absolute magnitude H<14.5 (light grey dots). Vesta and Flora family members are +indicated respectively with black and blue dots. Asteroids that were found to be spectroscopically matching with EC 002 after visual inspection +are plotted with dots circles indicated in the legend above. +the visible is difficult, and relies mainly on the position of the +Band I centre. However, the last Gaia bands may show a fast in- +crease in reflectance due to light contamination in the RP (Gaia +Collaboration et al. 2022). This contamination could result in a +shift of the Band I centre. Future analysis of the Gaia reflectance +spectra could help solve this issue, and future near-infrared spec- +troscopy of these bodies might be able to reveal if they are more +similar to EC 002 or to the HEDs and to Vesta family members. +The Flora family is a large collisional family adjacent to the +ν6 (Nesvorny et al. 2015), which is the most efficient region +to deliver main-belt asteroids to Earth-crossing orbits (Granvik +et al. 2016). Hence, this family could be an important source +of near-Earth asteroids (La Spina et al. 2004; Kryszczy´nska +2013) and meteorites (Nesvorný et al. 2002). The Flora fam- +ily is mainly constituted of S-type asteroids (Oszkiewicz et al. +1 Data retrieved from the Belgrade catalogue http://asteroids. +matf.bg.ac.rs/fam/properelements.php. +2015; Nesvorny et al. 2015, and references therein), which are +linked to ordinary chondrites. Barrat et al. (2021) showed that +EC 002 could be derived from the partial melt of a planetesimal +of non-carbonaceous chondritic composition, which experienced +heating during its accretion and consequently formed an igneous +crust. If the asteroids belonging to the Flora family are (i) real +EC 002 analogues, and (ii) true members of the Flora family, +this would confirm the spectroscopic diversity within this family +pointed out by several studies (Oszkiewicz et al. 2015, and refer- +ences there in). In addition, this would potentially point towards +a differentiation of the family parent body, as has been already +proposed (Oszkiewicz et al. 2015). +Given the very low number of asteroids belonging to the +other asteroid families, it is difficult to assume that the parent +body of EC 002 was part of these families. Every other asteroids +potentially matching with EC 002 do not belong to known fami- +lies. However, current family catalogues are based on algorithms +that determine the membership of an object to a family based on +Article number, page 10 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +2.2 +2.4 +2.6 +2.8 +3.0 +3.2 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +Proper sin(inclination) (°) +0.0 +0.1 +0.2 +0.3 +Proper eccentricity e +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +2.2 +2.4 +2.6 +2.8 +3.0 +3.2 +Proper semi-major axis a (au) +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +Proper eccentricity e +Gaia DR3 asteroids with H<14.5 +Vesta family +Flora family +matches of space-weathered models +of EC 002 (spectral parameter method) +matches of space-weathered models +of EC 002 amongst asteroids with χ2<2 +Fig. 6. Same as Fig. 5, but with cyan dots indicating asteroids that have spectral parameters compatible with the space-weathered models of +EC 002 derived by Barrat et al. (2021) in the spectral parameters space. The green dots are asteroids matching the weathered models of the +meteorite spectra using the curve matching method. +its proper orbital elements only, in order to distinguish the dif- +ferent families and to clearly identify their cores (Nesvorny et al. +2015; Tsirvoulis et al. 2018). As a result, some background ob- +jects are designated as family members but are in fact interlop- +ers, and some real family members are not considered as part of +the family, leading to halos of asteroids surrounding known fam- +ilies (Parker et al. 2008; Brož & Morbidelli 2013). In addition, +the study of the dynamical behaviour of family and non-family +asteroids by Dermott et al. (2018) lead to the conclusion that +most asteroids in the inner main belt are or were originally part +of the main known families, showing evidence that the families +are very dispersed. Some of these dispersed families have been +detected (Delbo et al. 2017, 2019) using the so-called V-shape +method (Bolin et al. 2017), and more families are probably left +to be identified (Delbo et al. 2017, 2019; Dermott et al. 2018). +Hence, it is possible that the asteroids matching with EC 002 that +are not listed as family members are part of very old families of +the inner main belt that escaped identification up to now. +It is also established that laboratory spectra of meteorites do +not necessarily match with the spectra of asteroids of analogue +composition (Brunetto et al. 2015, and references therein). The +reason is that the reflectance spectra of asteroids are affected +by the exposure of their surface to weathering agents in space, +such as solar wind ions and micrometeorites. Space weathering +models have been developed, for example by Hapke (2001) or +Brunetto et al. (2006), in order to correct reflectance spectra from +space weathering. The Hapke model is based on the calculation +of the absorption coefficient of a silicate host medium in which +small nanophase iron spheres are included (see Brunetto et al. +2007, for further details). The inclusion of nanophase iron inside +a siliceous material changes its physical properties and alters its +visible and infrared spectrum: the spectral slope is reddened, the +silicate bands become shallower and less recognisable and the +albedo of the object is darkened. However, the silicate band cen- +tres are not (or very little) affected by this type of space weather- +ing Gaffey et al. (2002). This model was developed by studying +Article number, page 11 of 28 + +A&A proofs: manuscript no. main +the space weathering of the Moon and it successfully recreates it. +For its appliance to an object to be relevant, the mineralogy of the +object needs to be dominated by silicates with grains larger than +the wavelength (Pierre Beck, private communication). Thus, the +Hapke and other similar models (Brunetto et al. 2006) have been +applied to ordinary chondrites and allowed to link this type of +meteorites to S-type asteroids, giving precious information about +the mineralogy of these asteroids. EC 002 is an achondrite with +andesitic composition, corresponding to the partial melt of an +ordinary chondrite and which contains silicates with large grains +(Barrat et al. 2021). Therefore, using the Hapke model makes +sense to simulate the effect of space weathering on an asteroid +of the same composition as EC 002, as what was implemented +by Barrat et al. (2021). +500 +1000 +1500 +2000 +2500 +Wavelength (nm) +1.0 +1.5 +Normalised Reflectance +EC 002 powder sample +(10537) 1991 RY16 +Fig. 7. VISNIR spectra of the powder sample of EC 002 (black lines) +and of asteroid (10537) 1991 RY16 (orange lines) retrieved from Fig.1 +of Moskovitz et al. (2008). Both spectra were normalised at 550 nm. +The two spectra show a similar shape, they both show a band around +0.65 µm and similar Band I centre. However their Band II centre is +shifted with respect to each other. +A characteristic feature of the EC 002 reflectance spectrum +is the presence of an absorption band at 0.65 µm. Unfortunately, +this feature cannot be used as an absolute diagnostic feature in +Gaia asteroid spectra for two reasons. First, the BP and RP spec- +tra overlap in the region of this band. Since the spectrophotome- +ters are independently calibrated (De Angeli et al. 2022), their +overlapping region can be affected by artefacts (Gaia Collabo- +ration et al. 2022) and must be handled with care. The second +reason is that some V-type asteroids also display an absorption +band near 0.65 µm, such as the asteroid (10537) 1991 RY16 +(Moskovitz et al. 2008). Interestingly, the visible reflectance +spectra of asteroid (10537) 1991 RY16 and EC 002 are quite +similar. This asteroid has already been found the closest match to +the ungrouped achondrite (NWA) 7325 by Cloutis et al. (2018) +based on the spectral features of both bodies, without being a +satisfactory match. In the near-infrared however, EC 002 shows +a deeper Band II depth and a Band II centre at longer wave- +lengths (1.89 µm for asteroid (10537) 1991 RY16, vs. 2.08 µm +for EC 002, as visible Fig. 7). This points to the necessity of us- +ing near-infrared spectroscopy to distinguish potential EC 002 +visible matches against V-type asteroids. +6. Conclusion and perspectives +We searched for analogues of the andesitic meteorite EC 002 +among the asteroid population, using Gaia visible reflectance +spectra. We studied four different laboratory samples of the me- +teorite: three raw slabs and one powder spectrum; and three mod- +elled space-weathered spectra of EC 002 were also analysed. As +first method, we evaluated and compared the spectral parameters +of each sample of the meteorite with the ones of the asteroids, +studying the slope and the Band I depth of each asteroid spec- +trum. The second method used was a curve matching method. +For both methods, a visual inspection of the asteroid spectra +and a search in the literature for already existing VIS and NIR +spectra of these objects allowed us to deduce which asteroids +are the most probable analogues of EC 002 among the main-belt +asteroid population. The spectral parameter method gave 41 ob- +jects as potential analogues to the laboratory samples of EC 002, +and 70 objects matching the space-weathered spectra of EC 002. +These objects are mostly located in the inner main belt, around +the Vesta and Flora families. +The curve matching method gave 18 objects matching the +laboratory samples of the meteorite, also concentrated in the +inner main belt. The curve matching with the modelled space- +weathered spectra of the meteorite gave 23 asteroids as poten- +tial analogues of the low space-weathered EC 002, eight aster- +oids matching the medium space-weathered meteorite and only +one asteroid matching the highly space-weathered EC 002. Be- +cause of the χ2 +red parameter used, only objects with a low S/N +were found with this method. In the end, a total of 51 asteroids +were found as potential analogues of the not-space-weathered +EC 002, and 91 asteroids were found matching the modelled +space-weathered spectra of the meteorite. +Finally, only 0.08% of Gaia asteroids were found to be +matching the laboratory samples of the meteorite, and 0.15% +were found matching the modelled space-weathered spectra. +However, acquiring and studying the near-infrared spectra of +these objects could help determining if they are real analogues +of EC 002. If they are, they would be remnants of the original +population of planetesimals that appeared in the early times of +the Solar System and that showed an andesitic - and not basaltic +- crust after differentiation. Traces of this original population +would thus still exist in the main belt. Moreover, a full VIS- +NIR spectrum would allow the study of more spectral parame- +ters (Band II centre and band area ratio), which would give great +clues about the quality of the matches presented in this work. +Acknowledgements. MG and MD acknowledge financial support from CNES +and the Action Specifique Gaia. MD, CA, and LG acknowledge financial sup- +port from the ANR ORIGINS (ANR-18-CE31-0014). This work has made use +of data from the European Space Agency (ESA) mission Gaia (https://www. +cosmos.esa.int/gaia), processed by the Gaia Data Processing and Anal- +ysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/ +consortium). Funding for the DPAC has been provided by national institutions, +in particular the institutions participating in the Gaia Multilateral Agreement. +This work is based on data provided by the Minor Planet Physical Properties +Catalogue (MP3C) of the Observatoire de la Côte d’Azur. Spectra from Barrat +et al. (2021) were used as well in this study. The authors are grateful to Jean-Alix +Barrat and Pierre Beck for their precious help. +References +Alvarez-Candal, A., Duffard, R., Lazzaro, D., & Michtchenko, T. 2006, A&A, +459, 969 +Arculus, R., Campbell, I. H., McLennan, S. M., & Taylor, S. R. 2009, Nature, +459, E1 +Avdellidou, C., Delbo, M., Morbidelli, A., et al. 2022, A&A, 665, L9 +Barrat, J.-A., Chaussidon, M., Yamaguchi, A., et al. 2021, Proceedings of the +National Academy of Science, 118, 2026129118 +Binzel, R. P., DeMeo, F. E., Turtelboom, E. V., et al. 2019, Icarus, 324, 41 +Binzel, R. P., Xu, S., Bus, S. J., et al. 1993, Science, 262, 1541 +Bland, P. A., Spurný, P., Towner, M. C., et al. 2009, Science, 325, 1525 +Bolin, B. T., Delbo, M., Morbidelli, A., & Walsh, K. J. 2017, Icarus, 282, 290 +Article number, page 12 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +Brož, M. & Morbidelli, A. 2013, Icarus, 223, 844 +Brunetto, R., de León, J., & Licandro, J. 2007, A&A, 472, 653 +Brunetto, R., Loeffler, M. J., Nesvorný, D., Sasaki, S., & Strazzulla, G. 2015, in +Asteroids IV (P. Michel, et al. eds), 597 +Brunetto, R., Vernazza, P., Marchi, S., et al. 2006, Icarus, 184, 327 +Burbine, T. H., Buchanan, P. C., Binzel, R. P., et al. 2001, Meteoritics & Plane- +tary Science, 36, 761 +Bus, S. J. & Binzel, R. P. 2002, Icarus, 158, 146 +Carrasco, J. M., Weiler, M., Jordi, C., et al. 2021, A&A, 652, A86 +Carry, B., Solano, E., Eggl, S., & DeMeo, F. E. 2016, Icarus, 268, 340 +Carvano, J. M., Hasselmann, P. H., Lazzaro, D., & Mothé-Diniz, T. 2010, A&A, +510, A43 +Chapman, C. R. 1986, in Proceedings of the NASA and CNR, International +Workshop on Catastrophic Disruption of Asteroids and Satellites, 103–114 +Cloutis, E. A. 2002, Journal of Geophysical Research (Planets), 107, 5039 +Cloutis, E. A., Reddy, V., & Blewett, D. T. 2018, Icarus, 311, 384 +Collinet, M. & Grove, T. L. 2020, Geochimica et Cosmochimica Acta, 277, 334 +Day, J. M. D., Ash, R. D., Liu, Y., et al. 2009, Nature, 457, 179 +De Angeli, F., Weiler, M., Montegriffo, P., et al. 2022, arXiv e-prints, +arXiv:2206.06143 +De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. 2012, Science, 336, 697 +de Sanctis, M. C., Migliorini, A., Luzia Jasmin, F., et al. 2011, A&A, 533, A77 +Delbo, M., Avdellidou, C., & Morbidelli, A. 2019, A&A, 624, A69 +Delbo, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. 2017, Science, +357, 1026 +DeMeo, F. E., Binzel, R. P., Slivan, S. M., & Bus, S. J. 2009, Icarus, 202, 160 +DeMeo, F. E., Burt, B. J., Marsset, M., et al. 2022, Icarus, 380, 114971 +DeMeo, F. E. & Carry, B. 2013, Icarus, 226, 723 +DeMeo, F. E., Polishook, D., Carry, B., et al. 2019, Icarus, 322, 13 +Dermott, S. F., Christou, A. A., Li, D., Kehoe, T. J. J., & Robinson, J. M. 2018, +Nature Astronomy, 2, 549 +Gaffey, M. J., Cloutis, E. A., Kelley, M. S., & Reed, K. L. 2002, Mineralogy +of Asteroids, ed. W. F. Bottke, Jr., A. Cellino, P. Paolicchi, & R. P. Binzel, +183–204 +Gaia Collaboration, Galluccio, L., Delbo, M., et al. 2022, arXiv e-prints, +arXiv:2206.12174 +Granvik, M., Morbidelli, A., Jedicke, R., et al. 2016, Nature, 530, 303 +Greenwood, R. C., Burbine, T. H., & Franchi, I. A. 2020, Geochim. Cos- +mochim. Acta, 277, 377 +Hanuš, J., Delbo, M., Durech, J., & Alí-Lagoa, V. 2018, Icarus, 309, 297 +Hanuš, J., Delbo’, M., ˇDurech, J., & Alí-Lagoa, V. 2015, Icarus, 256, 101 +Hapke, B. 2001, J. Geophys. Res., 106, 10039 +Hardersen, P. S., Reddy, V., Cloutis, E., et al. 2018, The Astronomical Journal, +156, 11 +Harris, A. W. & Drube, L. 2014, ApJ, 785, L4 +Henke, S., Gail, H. P., Trieloff, M., Schwarz, W. H., & Kleine, T. 2012, A&A, +545, A135 +Ivezic, Z., Juric, M., Lupton, R. H., Tabachnik, S., & Quinn, T. 2002, in Society +of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. +4836, Survey and Other Telescope Technologies and Discoveries, ed. J. A. +Tyson & S. Wolff, 98–103 +Ivezi´c, Ž., Tabachnik, S., Rafikov, R., et al. 2001, AJ, 122, 2749 +Jasmim, F. L., Lazzaro, D., Carvano, J. M. F., Mothé-Diniz, T., & Hasselmann, +P. H. 2013, A&A, 552, A85 +Johansen, A., Jacquet, E., Cuzzi, J. N., Morbidelli, A., & Gounelle, M. 2015, in +Asteroids IV (P. Michel, et al. eds), 471 +Jordi, C., Gebran, M., Carrasco, J. M., et al. 2010, A&A, 523, A48 +Kryszczy´nska, A. 2013, A&A, 551, A102 +La Spina, A., Paolicchi, P., Kryszczy´nska, A., & Pravec, P. 2004, Nature, 428, +400 +Lazzaro, D., Angeli, C. A., Carvano, J. M., et al. 2004, Icarus, 172, 179 +Leith, T. B., Moskovitz, N. A., Mayne, R. G., et al. 2017, Icarus, 295, 61 +Lindsay, S. S., Marchis, F., Emery, J. P., Enriquez, J. E., & Assafin, M. 2015, +Icarus, 247, 53 +Lucas, M. P., Emery, J. P., MacLennan, E. M., et al. 2019, Icarus, 322, 227 +Mahlke, M., Carry, B., & Mattei, P.-A. 2022, arXiv e-prints, arXiv:2203.11229 +Mandler, B. E. & Elkins-Tanton, L. T. 2013, Meteoritics & Planetary Science, +48, 2333 +Mansour, J. A., Popescu, M., de León, J., & Licandro, J. 2020, MNRAS, 491, +5966 +Matloviˇc, P., de Leon, J., Medeiros, H., et al. 2020, A&A, 643, A107 +McCord, T. B., Adams, J. B., & Johnson, T. V. 1970, Science, 168, 1445 +McSween, H. Y., J., Ghosh, A., Grimm, R. E., Wilson, L., & Young, E. D. 2002, +in Asteroids III, 559–571 +Medeiros, H., de León, J., Lazzaro, D., et al. 2019, MNRAS, 488, 3866 +Migliorini, A., De Sanctis, M. C., Michtchenko, T. A., et al. 2021, MNRAS, 504, +2019 +Morbidelli, A., Baillié, K., Batygin, K., et al. 2022, Nature Astronomy, 6, 72 +Morbidelli, A., Libourel, G., Palme, H., Jacobson, S. A., & Rubie, D. C. 2020, +Earth and Planetary Science Letters, 538, 116220 +Moskovitz, N. A., Jedicke, R., Gaidos, E., et al. 2008, Icarus, 198, 77 +Moskovitz, N. A., Willman, M., Burbine, T. H., Binzel, R. P., & Bus, S. J. 2010, +Icarus, 208, 773 +Nesvorny, D., Broz, M., & Carruba, V. 2015, in Asteroids IV (P. Michel, et al. +eds), 297 +Nesvorný, D., Morbidelli, A., Vokrouhlický, D., Bottke, W. F., & Brož, M. 2002, +Icarus, 157, 155 +Nesvorný, D., Bottke, W. F., Vokrouhlický, D., Morbidelli, A., & Jedicke, R. +2005, Proceedings of the International Astronomical Union, 1, 289–299 +Oszkiewicz, D., Kankiewicz, P., Włodarczyk, I., & Kryszczy´nska, A. 2015, +A&A, 584, A18 +Parker, A., Ivezi´c, Ž., Juri´c, M., et al. 2008, Icarus, 198, 138 +Popescu, M., Birlan, M., & Nedelcu, D. A. 2012, A&A, 544, A130 +Popescu, M., Licandro, J., Carvano, J. M., et al. 2018, A&A, 617, A12 +Ribeiro, A. O., Roig, F., Cañada-Assandri, M., et al. 2014, Planet. Space Sci., +92, 57 +Righter, K. & Drake, M. J. 1997, Meteoritics & Planetary Science, 32, 929 +Russell, C. T., Raymond, C. A., Coradini, A., et al. 2012, Science, 336, 684 +Russell, C. T., Raymond, C. A., Jaumann, R., et al. 2013, Meteoritics & Planetary +Science, 48, 2076 +Ruzicka, A., Snyder, G. A., & Taylor, L. A. 1997, Meteoritics & Planetary Sci- +ence, 32, 825 +Sanchez, J. A., Michelsen, R., Reddy, V., & Nathues, A. 2013, Icarus, 225, 131 +Sergeyev, A. V. & Carry, B. 2021, A&A, 652, A59 +Sergeyev, A. V., Carry, B., Onken, C. A., et al. 2022, A&A, 658, A109 +Solontoi, M. R., Hammergren, M., Gyuk, G., & Puckett, A. 2012, Icarus, 220, +577 +Trieloff, M., Hopp, J., & Gail, H.-P. 2022, Icarus, 373, 114762 +Tsirvoulis, G., Morbidelli, A., Delbo, M., & Tsiganis, K. 2018, Icarus, 304, 14 +Xu, S., Binzel, R. P., Burbine, T. H., & Bus, S. J. 1995, Icarus, 115, 1 +Article number, page 13 of 28 + +A&A proofs: manuscript no. main +Appendix A: Tables of asteroids matching the spectra of EC 002 +Table A.1. Asteroids within the ’possible matches area’. +Asteroid +Acceptance +Notes +Type +Method +Ref. +(289) Nenetta +0 +longer band I centre +A +Spec. VISNIR +5 +(863) Benkoela +0 +longer band I centre +A +Spec. VISNIR +5 +(956) Elisa +0 +- +V +Spec. VIS and NIR +3, 6 +(1459) Magnya +0 +VISNIR different +V +Spec. VISNIR +5 +(1468) Zomba +0 +NIR different +V +Spec. VISNIR +20 +(1488) Aura +0 +different red part +A +Phot. VIS +24 +(1643) Brown +1 +- +S +Phot. VIS +24 +(1709) Ukraina +0 +A type spectrum +A +Spec. VISNIR +25 +(1908) Pobeda +0 +longer band I centre +S +Phot. VIS +24 +(1946) Walraven +1 +- +V +Spec. VIS +4 +(2168) Swope +0 +- +V +Spec. NIR +16,22 +(2371) Dimitrov +0 +NIR different +V +Spec. VIS and NIR +2, 6 +(2432) Soomana +1 +- +V +Phot. VIS +10, 23 +(2442) Corbett +0 +shorter band I centre +V +Spec. VISNIR +5 +(2557) Putnam +0 +shorter band I centre +S +Phot. VIS +24 +(2851) Harbin +0 +- +V +Spec. VISNIR +5 +(2912) Lapalma +0 +- +V +Spec. VISNIR +5 +(3104) Durer +0 +different red part +K +Spec. VISNIR +25 +(3155) Lee +0 +shorter band I centre +V +Spec. VISNIR +5 +(3188) Jekabsons +1 +- +V +Spec. VIS +21 +(3651) Friedman +1 +bad two last points +V +Phot. VIS +24 +(3817) Lencarter +0 +shorter band I centre +- +- +- +(3869) Norton +1 +article: related to 4 Vesta +V +Spec. VIS +1 +(3882) Johncox +0 +- +V +Spec. VISNIR +18 +(4055) Magellan +0 +- +V +Spec. VISNIR +5 +(4088) Baggesen +1 +no clear 0.65 µm band - SW low +- +- +- +(4302) Markeev +1 +- +V +Phot. VIS +23 +(4402) Tsunemori +0 +different band I shape +A +Spec. VISNIR +25 +(4692) SIMBAD +0 +shorter band I centre +V +Phot. VIS +10, 23 +(5037) Habing +0 +shorter band I centre +V +Spec. VISNIR +25 +(5121) Numazawa +1 +- +S +Phot. VIS +24 +(5498) Gustafsson +0 +linked to howardites +V +Spec. VIS and NIR +6, 8 +(5696) Ibsen +0 +different red part +(6003) 1988 VO1 +1 +SW low +X +Phot. VIS +24 +(6046) 1991 RF14 +0 +shorter band I centre +V +Spec. VISNIR +18 +(6159) Andreseloy +0 +shorter band I centre +V +Spec. VISNIR +25 +(6369) 1983 UC +0 +shorter band I centre +- +- +- +(6584) Ludekpesek +0 +shorter band I centre +V +Phot. NIR +17 +(6728) 1991 UM +0 +shorter band I centre +- +- +- +(6789) Milkey +1 +SW low +- +- +- +(6853) Silvanomassaglia +1 +- +V +Phot. NIR +17 +(6876) Beppeforti +1 +- +S +Phot. VIS +24, 24 +(6877) Giada +0 +shorter band I centre +V +Phot. NIR +17 +(6964) Kunihiko +0 +shorter band I centre +V +Phot. VIS +24 +(7294) Barbaraakey +0 +flatter red part +S +Phot. VIS +24 +(7529) Vagnozzi +0 +flatter red part +V +Phot. VIS +24 +(7889) 1994 LX +0 +noisy +V +Spec. VISNIR +20 +(7933) Magritte +0 +shorter band I centre +X +Phot. VIS +24 +(7942) 1991 OK1 +0 +shorter band I centre +S +Phot. VIS +24 +(8031) Williamdana +0 +shorter band I centre +V +Phot. VIS +24 +(8243) Devonburr +1 +SW low +S +Phot. VIS +24, 24 +(8483) Kinwalaniihsia +1 +SW low (without first and last bands) +V +Phot. VIS +24 +(8587) Ruficollis +1 +- +K +Phot. VIS +24 +(8660) Sano +0 +longer band I centre +S +Phot. VIS +24 +(8669) 1991 NS1 +0 +shorter band I centre +S +Phot. VIS +24 +(8692) 1992 WH +1 +SW low +S +Phot. VIS +24 +(8827) Kollwitz +1 +- +C +Phot. VIS +24 +(8838) 1989 UW2 +0 +longer band I centre +A +Spec. VISNIR +19 +(9115) Battisti +0 +shorter band I centre +V +Phot. VIS +24 +(9197) Endo +1 +not very good VISNIR literature spectrum +V +Spec. VISNIR +22 +(9432) Iba +0 +shorter band I centre +V +Phot. VIS +24 +(9433) 1997 CF3 +1 +- +C +Phot. VIS +24 +(9593) 1991 PZ17 +0 +bump instead of 0.65 µm band +S +Phot. VIS +24 +(9752) 1990 QZ1 +0 +longer band I centre +S +Phot. VIS +24 +(9753) 1990 QL3 +1 +SW low +- +- +- +Article number, page 14 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +Table A.1 – continued. +Asteroid +Acceptance +Notes +Type +Method +Ref +(9974) Brody +1 +SW high +- +- +- +(10156) 1994 VQ7 +1 +bad three last points +V +Phot. VIS +24 +(10319) Toshiharu +0 +shorter band I centre V +V +Phot. VIS +23, 24 +(10418) 1998 WZ23 +0 +shorter band I centre +V +Phot. VIS +24 +(10438) Ludolph +0 +shorter band I centre +- +- +- +(10578) 1995 LH +0 +bad BP RP overlapping +- +- +- +(10671) Mazurova +1 +- +S +Phot. VIS +24 +(10811) Lau +0 +flatter red part +- +- +- +(10902) 1997 WB22 +1 +- +- +- +- +(11041) Fechner +0 +shorter band I centre +V +Phot. VIS +7 +(11155) Kinpu +1 +- +S +Phot. VIS +24 +(11764) Benbaillaud +0 +shorter band I centre +V +Spec. VIS +8 +(11861) Teruhime +0 +longer band I centre +- +- +- +(11890) 1991 FF +0 +longer band I centre +C +Phot. VIS +24 +(11920) 1992 UY2 +1 +SW low (noisy) +C +Phot. VIS +24 +(12551) 1998 QQ39 +1 +- +V +Phot. VIS +24 +(12860) Turney +0 +shorter band I centre +S +Phot. VIS +24, 24 +(13133) Jandecleir +1 +SW medium +S +Phot. VIS +24 +(13704) Aletesi +0 +shorter band I centre +C +Phot. VIS +24 +(13714) Stainbrook +0 +noisy +S +Phot. VIS +24 +(13743) Rivkin +0 +shorter band I centre +V +Phot. VIS +24 +(13839) 1999 XF29 +1 +- +S +Phot. VIS +24 +(14108) 1998 OA13 +0 +shorter band I centre +- +- +- +(14489) 1994 UW +0 +- +V +Phot. VIS +23 +(14511) Nickel +1 +bump instead of band - SW low +- +- +- +(14562) 1997 YQ19 +0 +noisy +V +Spec VISNIR +25 +(15031) Lemus +0 +shorter band I centre +V +Phot. NIR +17 +(15088) Licitra +1 +SW low +S +Phot. VIS +24 +(15759) 1992 GM4 +0 +shorter band I centre +V +Phot. VIS +24 +(15989) 1998 XK39 +1 +- +V +Phot. VIS +24 +(16866) 1998 AR +0 +no clear band I +S +Phot. VIS +24 +(16962) Elizawoolard +0 +shorter band I centre +C +Phot. VIS +24 +(17225) Alanschorn +0 +shorter band I centre +- +- +- +(17240) Gletorrence +1 +- +S +Phot. VIS +24 +(17739) 1998 BY15 +1 +SW low +V +Phot. NIR +17 +(17821) Bolsche +1 +lower quality spectrum - SW low +C +Phot. VIS +24 +(17882) Thielemann +1 +SW low +V +Phot. VIS +24 +(17904) Annekoupal +0 +shorter band I centre +S +Phot. VIS +24 +(17943) 1999 JZ6 +1 +SW low +V +Phot. VIS +24 +(17951) Fenska +0 +shorter band I centre +- +- +- +(18102) Angrilli +0 +shorter band I centre +- +- +- +(18143) 2000 OK48 +1 +SW medium +A +Phot. VIS +10, 23, 24 +(18280) 4245 T-3 +0 +more similar to a V type +S +Phot. VIS +24 +(18344) 1989 TN11 +1 +SW low +V +Phot. VIS +24 +(19230) Sugazi +0 +shorter band I centre +V +Phot. NIR +17 +(19281) 1996 AP3 +0 +- +V +Spec. VISNIR +18 +(19487) Rosscoleman +0 +shorter band I centre +- +- +- +(19589) Kirkland +0 +noisy +V +Phot. VIS +24 +(19754) Paclements +1 +SW high or medium +S +Phot. VIS +10, 23, 24 +(19978) 1989 TN6 +1 +SW low +V +Phot. VIS +10, 23 +(20079) 1994 EP +0 +shorter band I centre +V +Phot. VIS +24 +(20157) 1996 TS18 +0 +shorter band I centre +S +Phot. VIS +24 +(20237) Clavius +0 +no clear band I +- +- +- +(20289) Nettimi +1 +SW low (noisy) +- +- +- +(20454) Pedrajo +1 +noisy +S +Phot. VIS +24 +(20955) 2387 T-3 +0 +shorter band I centre +S +Phot. VIS +24 +(21318) 1996 XU26 +1 +SW low +- +- +- +(21435) Aharon +0 +noisy +- +- +- +(21891) Andreabocelli +0 +shorter band I centre +- +- +- +(22113) 2000 RH9 +0 +shorter band I centre +V +Phot. VIS +10, 23 +(22197) 3555 P-L +0 +shorter band I centre +C +Phot. VIS +24 +(22322) Bodensee +0 +shorter band I centre +V +Phot. VIS +24 +(23306) Adamfields +0 +shorter band I centre +S +Phot. VIS +24 +(23502) 1992 DE3 +0 +shorter band I centre +- +- +- +(23595) 1995 VR11 +0 +shorter band I centre +C +Phot. VIS +24 +(23766) 1998 MZ23 +1 +SW low +S +Phot. VIS +24 +(24286) 1999 XU188 +1 +- +S +Phot. VIS +24 +(24569) 9609 P-L +1 +SW low or medium +S +Phot. NIR +17 +Article number, page 15 of 28 + +A&A proofs: manuscript no. main +Table A.1 – continued. +Asteroid +Acceptance +Notes +Type +Method +Ref +(24684) 1990 EU4 +1 +SW low +S +Phot. NIR +17 +(24892) 1997 AD3 +1 +- +- +- +- +(25434) Westonia +0 +shorter band I centre +V +Phot. VIS +23, 24 +(25752) 2000 BE8 +0 +noisy + bad BP-RP alignment +- +- +- +(25808) 2000 CK103 +0 +flatter red part +S +Phot. VIS +24 +(26084) 1981 EK17 +1 +SW low +S +Phot. VIS +24 +(26417) Michaelgord +0 +bad BP-RP overlapping +V +Phot. VIS +10, 23, 24 +(26573) 2000 EG87 +1 +- +V +Phot. VIS +24 +(26851) Sarapul +1 +SW low +- +- +- +(27106) Jongoldman +0 +shorter band I centre +V +Phot. VIS +24 +(27162) 1999 AM6 +0 +shorter band I centre +S +Phot. VIS +24 +(27262) 1999 XT184 +1 +bad RP +X +Phot. VIS +24 +(27390) Kyledavis +0 +shorter band I centre +- +- +- +(27399) Gehring +0 +shorter band I centre +C +Phot. VIS +24 +(27876) 1996 BM4 +1 +SW low +S +Phot. VIS +24 +(27884) 1996 EZ1 +1 +SW low +S +Phot. VIS +24 +(28132) Karenzobel +1 +SW low +S +Phot. VIS +24 +(28162) 1998 VD14 +1 +- +- +- +- +(28291) 1999 CX52 +0 +shorter band I centre +V +Spec. VIS +9 +(29171) 1990 QK3 +1 +bump instead of 0.65 µm band - SW low +- +- +- +(29269) 1993 FD25 +0 +shorter band I centre +C +Phot. VIS +24 +(30426) Philtalbot +1 +SW low +V +Phot. VIS +23 +(30751) 1981 EL29 +0 +shorter band I centre +S +Phot. VIS +24 +(30769) 1984 ST2 +1 +- +- +- +- +(30781) 1988 CR2 +0 +shorter band I centre +C +Phot. VIS +24 +(30820) 1990 RU2 +0 +more similar to a V type +S +Phot. VIS +24 +(30834) 1990 VR6 +1 +SW low +V +Phot. VIS +10, 23 +(30892) 1993 FR18 +0 +shorter band I centre +A +Phot. VIS +23 +(31060) 1996 TB6 +1 +SW medium +SQ +Phot. VIS +7 +(31414) Rotarysusa +0 +shorter band I centre +V +Spec. VISNIR +25 +(31544) 1999 DZ5 +0 +shorter band I centre +V +Phot. VIS +24 +(31572) 1999 FM22 +0 +shorter band I centre +V +Phot. VIS +24 +(31622) 1999 GL19 +0 +shorter band I centre +- +- +- +(32168) 2000 NP9 +0 +shorter band I centre +- +- +- +(32449) Crystalmiller +0 +shorter band I centre +S +Phot. VIS +24 +(32590) Cynthiachen +0 +shorter band I centre SW low +V +Phot. VIS +10, 23 +(33418) Jacksonweaver +1 +- +V +Phot. VIS +10, 23 +(33562) Amydunphy +0 +different red part +V +Phot. NIR +17 +(33881) 2000 JK66 +0 +- +V +Spec. VISNIR +20 +(33947) 2000 ML1 +1 +SW low +S +Phot. VIS +24 +(34698) 2001 OD22 +0 +shorter band I centre +V +Spec. NIR +16 +(34706) 2001 OP83 +0 +Vesta family +V +Spec. NIR +14 +(35193) 1994 CG14 +0 +no clear band I +C +Phot. VIS +24 +(35364) Donaldpray +1 +SW low +V +Phot. VIS +10 +(36360) 2000 OH3 +0 +shorter band I centre +S +Phot. VIS +24 +(36363) 2000 OB5 +0 +shorter band I centre +S +Phot. VIS +24 +(36431) 2000 PJ12 +1 +- +V +Phot. VIS +7 +(36798) 2000 SA43 +0 +shorter band I centre + noisy +S +Phot. VIS +24 +(37306) 2001 KW46 +0 +no clear band I +- +- +- +(37386) 2001 WG29 +0 +shorter band I centre +V +Phot. NIR +17 +(39940) 1998 FR99 +1 +SW low (bad BP) +- +- +- +(40056) 1998 KT44 +0 +shorter band I centre +C +Phot. VIS +24 +(41574) 2000 SQ1 +0 +no clear band I +- +- +- +(41765) 2000 VV35 +0 +shorter band I centre +X +Phot. VIS +24 +(41894) 2000 WH121 +1 +SW low +- +- +- +(42644) 1998 FE67 +0 +bump instead of 0.65 µm band +V +Phot. NIR +17 +(42822) 1999 NT13 +1 +SW medium +S +Phot. VIS +24, 24 +(43278) 2000 ES109 +1 +SW low +C +Phot. VIS +24 +(43302) 2000 GE114 +0 +shorter band I centre +V +Phot. VIS +24 +(43388) 2000 WA61 +0 +shorter band I centre +V +Phot. NIR +17 +(44150) 1998 HC108 +1 +- +V +Phot. VIS +10, 23 +(44162) 1998 HC148 +1 +SW low +C +Phot. VIS +24 +(44322) 1998 RZ42 +1 +SW medium +S +Phot. VIS +24 +(44711) Carp +0 +no clear band I +S +Phot. VIS +24 +(44940) 1999 VH53 +0 +shorter band I centre +C +Phot. VIS +24, 24 +(45417) 2000 AZ151 +0 +shorter band I centre +- +- +- +(45787) 2000 OJ24 +1 +SW low +- +- +- +(46701) Interrante +0 +shorter band I centre +V +Phot. VIS +23 +Article number, page 16 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +Table A.1 – continued. +Asteroid +Acceptance +Notes +Type +Method +Ref +(47232) 1999 VQ36 +1 +good agreement between 500 and 950 nm +C +Phot. VIS +24 +(47398) 1999 XC116 +0 +bump instead of 0.65 µm band +V +Phot. VIS +23 +(47463) 1999 XE258 +0 +shorter band I centre +- +- +- +(48039) 2001 DT69 +1 +SW low +V +Phot. VIS +23 +(48114) 2001 FW77 +0 +different blue part +S +Phot. VIS +10, 23 +(48323) 2002 NN33 +0 +low quality spectrum +S +Phot. VIS +24 +(48632) 1995 SV29 +0 +more similar to a V type +V +Phot. VIS +10 +(49101) 1998 RE76 +1 +- +V +Phot. VIS +10, 23 +(49141) 1998 SM41 +1 +SW medium (or A type?) +A +Phot. VIS +10, 23 +(49901) 1999 XK164 +0 +shorter band I centre +S +Phot. VIS +24 +(50139) 2000 AH129 +0 +no clear band I +- +- +- +(50236) 2000 BB3 +0 +shorter band I centre SW low +V +Phot. VIS +24 +(51379) 2001 BY7 +1 +SW medium (noisy) +C +Phot. VIS +24 +(51443) 2001 FN27 +0 +bump instead of band +V +Phot. NIR +17 +(51659) Robohachi +1 +SW low (noisy) +S +Phot. VIS +24 +(52216) 5014 T-3 +0 +shorter band I centre +V +Phot. VIS +24 +(52408) 1993 TJ34 +1 +SW medium +- +- +- +(52995) 1998 UJ32 +0 +shorter band I centre +V +Phot. NIR +17 +(53417) 1999 NP38 +1 +SW low +- +- +- +(53425) 1999 SO4 +0 +noisy +S +Phot. VIS +10, 23 +(53593) 2000 CJ58 +0 +shorter band I centre +S +Phot. VIS +24 +(53661) 2000 DU62 +1 +SW low +S +Phot. VIS +24 +(53899) 2000 FM49 +1 +SW low or medium +- +- +- +(54061) 2000 GX134 +0 +shorter band I centre +- +- +- +(55549) 2001 XC59 +1 +noisy but plausible +S +Phot. VIS +24 +(55831) 1995 XL +0 +bad BP-RP alignment +S +Phot. NIR +17 +(56348) 2000 AH69 +0 +shorter band I centre +C +Phot. VIS +24 +(56561) Jaimenomen +1 +SW low +- +- +- +(56585) 2000 JZ29 +0 +shorter band I centre +Q +Phot. VIS +24 +(56696) 2000 LQ26 +0 +shorter band I centre +V +Phot. VIS +10, 23 +(56904) 2000 QP171 +1 +- +C +Phot. VIS +24 +(57857) 2001 XJ203 +0 +shorter band I centre +- +- +- +(58640) 1997 WH18 +1 +SW low +- +- +- +(59228) 1999 CH +0 +shorter band I centre +V +Phot. VIS +10, 23 +(59530) 1999 JU24 +0 +shorter band I centre +- +- +- +(59686) 1999 JS108 +0 +shorter band I centre +- +- +- +(60285) 1999 XR106 +0 +shorter band I centre +S +Phot. VIS +24 +(60584) 2000 EW132 +0 +shorter band I centre +S +Phot. VIS +24 +(61098) 2000 LY28 +1 +SW low +V +Phot. VIS +24 +(61203) 2000 OY4 +0 +- +V +Phot. VIS +24 +(61682) 2000 QV124 +0 +shorter band I centre +C +Phot. VIS +24 +(63366) 2001 HK4 +0 +different red part +V +Phot. VIS +10 +(63438) 2001 MY28 +0 +no clear band I +- +- +- +(64252) 2001 TL168 +0 +shorter band I centre +A +Phot. VIS +24 +(64458) 2001 VF35 +1 +SW low +V +Phot. NIR +17 +(64948) 2001 YH124 +0 +noisy +S +Phot. VIS +24 +(65707) 1992 PY1 +0 +bad quality spectrum +- +- +- +(66679) 1999 TD29 +0 +shorter band I centre +V +Phot. VIS +24 +(68765) 2002 EE99 +0 +shorter band I centre +- +- +- +(69595) 1998 FK11 +0 +shorter band I centre +V +Phot. VIS +24 +(69628) 1998 FD62 +0 +shorter band I centre +S +Phot. VIS +24 +(74107) 1998 QM37 +1 +SW low? Bad BP-RP overlapping? +- +- +- +(75323) 1999 XY47 +1 +SW low +- +- +- +(75441) 1999 XB129 +0 +shorter band I centre +S +Phot. VIS +24 +(77584) 2001 KP14 +0 +noisy +S +Phot. VIS +24 +(77590) 2001 KM17 +0 +shorter band I centre +V +Phot. NIR +17 +(78034) 2002 JF82 +0 +shorter band I centre +V +Phot. VIS +7 +(79137) 1991 PD15 +0 +no band I +- +- +- +(80356) 1999 XM124 +0 +no clear band I +Ad +Phot. NIR +17 +(80863) 2000 DT27 +0 +more similar to a V type +V +Phot. VIS +10 +(85301) 1994 UM5 +0 +shorter band I centre +- +- +- +(87093) 2000 LW6 +1 +- +V +Phot. VIS +23 +(87216) 2000 OG38 +1 +SW low (bad BP spectrum) +- +- +- +(88912) 2001 TS8 +0 +no clear band I +V +Phot. VIS +24 +(88955) 2001 TW42 +1 +- +S +Phot. VIS +24 +(89776) 2002 AL90 +1 +SW low +- +- +- +(89952) 2002 JB20 +1 +SW low +S +Phot. VIS +24 +(90604) 4813 P-L +1 +bad red part +S +Phot. VIS +24 +Article number, page 17 of 28 + +A&A proofs: manuscript no. main +Table A.1 – continued. +Asteroid +Acceptance +Notes +Type +Method +Ref +(90843) 1995 YZ22 +1 +SW medium +- +- +- +(90855) 1996 GZ8 +0 +bump instead of band +C +Phot. VIS +24 +(91343) 1999 JP30 +0 +shorter band I centre +V +Phot. NIR +17 +(92593) 2000 PN16 +1 +SW low +- +- +- +(98482) 2000 UL101 +0 +noisy +S +Phot. VIS +24 +(98745) 2000 YB47 +0 +shorter band I centre +V +Phot. NIR +17 +(99714) 2002 JQ41 +1 +SW medium +S +Phot. VIS +24 +(102071) 1999 RK139 +0 +shorter band I centre +V +Phot. VIS +10, 23 +(102107) 1999 RL164 +0 +shorter band I centre +V +Phot. VIS +10 +(102195) 1999 ST10 +0 +noisy +- +- +- +(102469) 1999 TC237 +0 +bap BP RP overlapping? +V +Phot. VIS +23 +(108139) 2001 GL11 +1 +SW low +V +Phot. VIS +7 +(108199) 2001 HX21 +0 +no clear band I +- +- +- +(112326) 2002 MM4 +1 +SW low +V +Phot. VIS +23 +(114486) 2003 AJ57 +0 +- +- +- +- +(119385) 2001 TU7 +0 +bump instead of 0.65 µm band, bad blue and red parts +V +Phot. NIR +17 +(122122) 2000 JM16 +1 +SW low +V +Phot. VIS +23 +(122125) 2000 JO17 +1 +SW medium +S +Phot. VIS +10, 23 +(125002) 2001 TJ154 +0 +shorter band I centre +- +- +- +(127422) 2002 OX11 +0 +low quality spectrum +S +Phot. VIS +10, 23 +(128450) 2004 NX24 +1 +SW low +- +- +- +(130988) 2000 WT141 +0 +NEA +V +Spec. VIS +13 +(133245) 2003 RL2 +0 +shorter band I centre +- +- +- +(134693) 1999 XP67 +0 +noisy +- +- +- +(134916) 2000 YP53 +1 +bad RP spectrum, SW low +- +- +- +(149372) 2002 XC71 +0 +bad agreement before 700 nm +- +- +- +(150544) 2000 SG164 +0 +noisy +X +Phot. VIS +23 +(158242) 2001 TM24 +0 +bad BP-RP alignment +V +Phot. VIS +23 +(163804) 2003 QQ88 +0 +noisy +S +Phot. VIS +7 +(179587) 2002 LS2 +0 +- +S +Phot. VIS +15 +(180757) 2004 NE33 +0 +- +- +- +- +(190138) 2005 RW27 +0 +shorter band I centre +- +- +- +(190664) 2000 YX90 +0 +bad BP-RP overlapping +- +- +- +(205560) 2001 SC282 +1 +noisy but plausible +- +- +- +(230762) 2003 WP192 +1 +SW medium +- +- +- +(310436) 2000 AB169 +1 +noisy but plausible +- +- +- +Note: The information in the table are the number and name of the 305 asteroids, if they are accepted or not as a match for EC 002 +(1 if accepted, 0 if not), some notes about the visual inspection, the spectral type of the asteroid if determined and the method +and relevant references associated (Ref column). The taxonomic scheme used for the type of each asteroid is the one used in the +reference papers associated. Spec. stands for Spectroscopy and Phot. for Photometry. +Table A.2. Asteroids found as a match to the powder and raw slab samples of EC 002 with a curve-matching method. +Asteroid +Acceptance +Notes +Type +Method +Ref. +(6853) Silvanomassaglia +1 +- +V +Phot. NIR +17 +(10156) 1994 VQ7 +1 +- +V +Phot. VIS +24 +(13743) Rivkin +0 +shorter band I centre +V +Phot. VIS +24 +(16856) Banach +1 +- +S +Phot. VIS +24 +(17056) Boschetti +1 +- +S +Phot. VIS +24 +(20289) Nettimi +0 +noisy and unclear band I +- +- +- +(20454) Pedrajo +1 +- +S +Phot. VIS +24 +(23522) 1992 WC9 +0 +shorter band I centre +V +Phot. NIR +17 +(24143) 1999 VY124 +0 +noisy +C +Phot. VIS +24 +(24892) 1997 AD3 +1 +- +- +- +- +(26399) Rileyennis +0 +shorter band I centre +- +- +- +(26420) 1999 XL103 +0 +shorter band I centre +V +Phot. VIS +23 +(27106) Jongoldman +0 +shorter band I centre +V +Phot. VIS +24 +(27627) 2038 P-L +0 +shorter band I centre +V +Phot. VIS +24 +(30000) Camenzind +0 +shallow slope +V +Phot. VIS +10, 23, 24 +(30081) Zarinrahman +0 +shorter band I centre +S +Phot. VIS +24 +(38690) 2000 QS29 +0 +unclear band I +S +Phot. VIS +24 +(40693) 1999 RX229 +0 +unclear band I +C +Phot. VIS +24 +(44691) 1999 RF221 +0 +shallow slope +C +Phot. VIS +24 +(47327) 1999 XZ25 +0 +shorter band I centre +V +Phot. VIS +10, 23 +(48632) 1995 SV29 +0 +shorter band I centre +V +Phot. VIS +10 +(50488) 2000 DA86 +0 +shallow slope +- +- +- +(51659) Robohachi +0 +noisy +S +Phot. VIS +24 +(51688) 2001 KW12 +0 +shorter band I centre +S +Phot. VIS +24 +Article number, page 18 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +Table A.2 – continued. +(53561) 2000 CM22 +0 +noisy and unclear band I +S +Phot. VIS +24 +(54062) 2000 GX135 +1 +noisy but plausible +C +Phot. VIS +24 +(55549) 2001 XC59 +1 +S +Phot. VIS +24 +(55866) 1997 PV4 +0 +shallow slope +V +Phot. VIS +24 +(59686) 1999 JS108 +0 +shorter band I centre +- +- +- +(61169) 2000 NY20 +0 +band red and blue parts +X +Phot. VIS +24 +(63653) 2001 QQ109 +1 +- +- +- +- +(64181) 2001 TS64 +0 +shorter band I centre +V +Phot. VIS +23 +(68814) 2002 GP66 +0 +shallow slope +- +- +- +(77147) 2001 EV6 +1 +bad two last points +S +Phot. VIS +24 +(77590) 2001 KM17 +0 +shorter band I centre +V +Phot. NIR +17 +(77935) 2002 GM54 +1 +noisy but plausible +V +Phot. VIS +24 +(78034) 2002 JF82 +0 +shorter band I centre +V +Phot. VIS +7 +(80924) 2000 DJ73 +0 +noisy and unclear band I +C +Phot. VIS +24 +(81448) 2000 GV123 +0 +shallow slope +S +Phot. VIS +24 +(87010) 2000 JR55 +0 +shallow slope +C +Phot. VIS +24, 24 +(88955) 2001 TW42 +1 +- +S +Phot. VIS +24 +(89556) 2001 XS98 +1 +except for last points +- +- +- +(93893) 2000 WL141 +0 +unclear band I +S +Phot. VIS +10, 23, 24 +(96353) 1997 VF3 +0 +flatter spectrum +C +Phot. VIS +24 +(99722) 2002 JW46 +0 +flatter spectrum +S +Phot. VIS +24 +(102107) 1999 RL164 +0 +shorter band I centre +V +Phot. VIS +10 +(103308) 2000 AH55 +0 +unclear band I +- +- +- +(119144) 2001 PH32 +0 +unclear band I +V +Phot. VIS +10, 23 +(123113) 2000 SH361 +1 +- +V +Phot. VIS +23 +(124884) 2001 TE41 +1 +- +V +Phot. VIS +10, 23 +(130988) 2000 WT141 +0 +NEA +V +Spec. VIS +13 +(147124) 2002 TH129 +0 +less pronounced band +- +- +- +(149372) 2002 XC71 +0 +bad agreement before 700 nm +- +- +- +(153408) 2001 QV137 +0 +shorter band I centre +- +- +- +(164121) 2003 YT1 +1 +RP noisy but plausible +V +Spec. VISNIR +12 +(194248) 2001 TA199 +0 +flatter spectrum +- +- +- +(205560) 2001 SC282 +1 +noisy but plausible +- +- +- +(310436) 2000 AB169 +1 +noisy but plausible +- +- +- +Note: The information in the table are the number and name of the 58 asteroids, if they are accepted or +not as a good match for EC 002 (1 if accepted, 0 if not), some notes about the visual inspection, the +spectral type of the asteroid if determined and the method and relevant references associated (Ref. +column). The taxonomic scheme used for the type of each asteroid is the one used in the reference +papers associated. Spec. stands for Spectroscopy and Phot. for Photometry. +Note: The references are (1) Xu et al. (1995), (2) Bus & Binzel (2002), (3) Lazzaro et al. (2004), (4) Alvarez-Candal et al. (2006), +(5) DeMeo et al. (2009), (6) Moskovitz et al. (2010), (7) Carvano et al. (2010), (8) de Sanctis et al. (2011), (9) Solontoi et al. (2012), +(10) DeMeo & Carry (2013), (11) Jasmim et al. (2013), (12) Sanchez et al. (2013), (13) Ribeiro et al. (2014), (14) Lindsay et al. +(2015), (15) Carry et al. (2016), (16) Hardersen et al. (2018), (17) Popescu et al. (2018), (18)Medeiros et al. (2019), (19) DeMeo +et al. (2019), (20) Binzel et al. (2019), (21) Matloviˇc et al. (2020), (22) Migliorini et al. (2021), (23) Sergeyev & Carry (2021), (24) +Sergeyev et al. (2022), (25) Mahlke et al. (2022) +Appendix B: Spectra of the asteroids matching the spectra of EC 002 +Article number, page 19 of 28 + +A&A proofs: manuscript no. main +Table A.3. Accepted asteroids as candidate matches to the three space-weathered modelled samples of EC 002. +Asteroid +Type +Method +Ref +SW low +(10131) Stanga +S +Phot. VIS +24 +(15623) 2000 HU30 +S +Phot. NIR +17 +(18780) Kuncham +S +Phot. VIS +24 +(20535) Marshburrows +L +Phot. VIS +24 +(22276) Belkin +S +Phot. VIS +24 +(22538) Lucasmoller +S +Phot. VIS +24 +(24684) 1990 EU4 +S +Phot. NIR +17 +(27876) 1996 BM4 +S +Phot. VIS +24 +(32835) 1992 EO5 +V +Phot. VIS +24 +(33423) 1999 DK +A +Phot. VIS +23 +(33852) Baschnagel +V +Phot. VIS +24 +(33934) 2000 LA30 +S +Phot. VIS +24 +(33947) 2000 ML1 +S +Phot. VIS +24 +(43278) 2000 ES109 +C +Phot. VIS +24 +(56561) Jaimenomen +- +- +- +(65504) 3544 P-L +V +Phot. NIR +17 +(74378) 1998 XH11 +S +Phot. NIR +17 +(79827) 1998 WU3 +- +- +- +(89952) 2002 JB20 +S +Phot. VIS +24 +(100440) 1996 PJ6 +- +- +- +(103308) 2000 AH55 +- +- +- +(108139) 2001 GL11 +V +Phot. VIS +7 +(112326) 2002 MM4 +V +Phot. VIS +23 +SW medium +(42822) 1999 NT13 +S +Phot. VIS +24 +(44322) 1998 RZ42 +S +Phot. VIS +24 +(68089) 2000 YS108 +- +- +- +(68946) 2002 PX138 +S +Phot. VIS +24 +(93797) 2000 WO43 +S +Phot. VIS +10 +(108899) 2001 PP5 +- +- +- +(145532) 2006 FD42 +- +- +- +(230762) 2003 WP192 +- +- +- +SW high +(33809) 1999 XK152 +C +Phot. VIS +24 +Note: +This selection has been done after visual inspection of 269 asteroids for the low space-weathered sample, 223 asteroids for the medium +space weathering and 12 asteroids for the high space weathering. The references associated with the numbers in the Ref. column are given in +appendix. The taxonomic scheme used for the type of each asteroid is the one used in the reference papers associated. SW stands for space +weathering. +Article number, page 20 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +0.5 +1.0 +1.5 +(1643) Brown +(1946) Walraven +(2432) Soomana +(3188) Jekabsons +0.5 +1.0 +1.5 +(3651) Friedman +(3869) Norton +(4302) Markeev +(5121) Numazawa +0.5 +1.0 +1.5 +(6853) Silvanomassaglia +(6876) Beppeforti +(8587) Ruficollis +(8827) Kollwitz +0.5 +1.0 +1.5 +(9197) Endo +(9433) 1997CF3 +(10156) 1994VQ7 +(10671) Mazurova +0.5 +1.0 +1.5 +(10902) 1997WB22 +(11155) Kinpu +(12551) 1998QQ39 +(13839) 1999XF29 +0.5 +1.0 +1.5 +(15989) 1998XK39 +(17240) Gletorrence +(20454) Pedrajo +(24286) 1999XU188 +500 +750 +1000 +0.5 +1.0 +1.5 +(24892) 1997AD3 +500 +750 +1000 +(26573) 2000EG87 +500 +750 +1000 +(27262) 1999XT184 +500 +750 +1000 +(28162) 1998VD14 +Normalised Reflectance +Wavelength (nm) +Fig. B.1. Spectra of the 41 asteroids found in the ’possible matches area’, validated as matches of EC 002 after visual inspection. The spectra are +normalised at 550 nm. Black continuous line: spectrum of the powder sample of the meteorite, grey lines: spectra of the raw slab samples. The 16 +bands of the Gaia asteroid spectra are given a colour and a symbol according to the value of the flag associated to the band: blue circle if flag=0, +orange diamond if flag=1 and red star if flag=2. This way of showing the asteroid spectra applies for every figure hereafter. +Article number, page 21 of 28 + +A&A proofs: manuscript no. main +0.5 +1.0 +1.5 +(30769) 1984ST2 +(33418) Jacksonweaver +(36431) 2000PJ12 +(44150) 1998HC108 +0.5 +1.0 +1.5 +(47232) 1999VQ36 +(49101) 1998RE76 +(55549) 2001XC59 +(56904) 2000QP171 +0.5 +1.0 +1.5 +(87093) 2000LW6 +(88955) 2001TW42 +(90604) 4813P-L +(205560) 2001SC282 +500 +750 +1000 +0.5 +1.0 +1.5 +(310436) 2000AB169 +Normalised Reflectance +Wavelength (nm) +Fig. B.1. continued. +Article number, page 22 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +1 +2 +(4088) Baggesen +(6003) 1988VO1 +(6789) Milkey +(8243) Devonburr +1 +2 +(8483) Kinwalaniihsia +(8692) 1992WH +(9753) 1990QL3 +(11920) 1992UY2 +1 +2 +(14511) Nickel +(15088) Licitra +(17739) 1998BY15 +(17821) Bolsche +1 +2 +(17882) Thielemann +(17943) 1999JZ6 +(18344) 1989TN11 +(19978) 1989TN6 +1 +2 +(20289) Nettimi +(21318) 1996XU26 +(23766) 1998MZ23 +(24569) 9609P-L +1 +2 +(24684) 1990EU4 +(26084) 1981EK17 +(26851) Sarapul +(27876) 1996BM4 +500 +750 +1000 +1 +2 +(27884) 1996EZ1 +500 +750 +1000 +(28132) Karenzobel +500 +750 +1000 +(29171) 1990QK3 +500 +750 +1000 +(30426) Philtalbot +Normalised Reflectance +Wavelength (nm) +Fig. B.2. Same as Fig. B.1 but with the 56 asteroids visually validated as matches of the low space-weathered EC 002. The space-weathered +spectra of EC 002 are shown in grey lines. +Article number, page 23 of 28 + +A&A proofs: manuscript no. main +1 +2 +(30834) 1990VR6 +(33947) 2000ML1 +(35364) Donaldpray +(39940) 1998FR99 +1 +2 +(41894) 2000WH121 +(43278) 2000ES109 +(44162) 1998HC148 +(45787) 2000OJ24 +1 +2 +(48039) 2001DT69 +(51659) 2001JN1 +(53417) 1999NP38 +(53661) 2000DU62 +1 +2 +(53899) 2000FM49 +(56561) Jaimenomen +(58640) 1997WH18 +(61098) 2000LY28 +1 +2 +(64458) 2001VF35 +(74107) 1998QM37 +(75323) 1999XY47 +(87216) 2000OG38 +1 +2 +(89776) 2002AL90 +(89952) 2002JB20 +(92593) 2000PN16 +(108139) 2001GL11 +500 +750 +1000 +1 +2 +(112326) 2002MM4 +500 +750 +1000 +(122122) 2000JM16 +500 +750 +1000 +(128450) 2004NX24 +500 +750 +1000 +(134916) 2000YP53 +Normalised Reflectance +Wavelength (nm) +Fig. B.2. continued. +Article number, page 24 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +1 +2 +(13133) Jandecleir +(18143) 2000OK48 +(31060) 1996TB6 +(42822) 1999NT13 +1 +2 +(44322) 1998RZ42 +(49141) 1998SM41 +(51379) 2001BY7 +(52408) 1993TJ34 +500 +750 +1000 +1 +2 +(90843) 1995YZ22 +500 +750 +1000 +(99714) 2002JQ41 +500 +750 +1000 +(122125) 2000JO17 +500 +750 +1000 +(230762) 2003WP192 +Normalised Reflectance +Wavelength (nm) +Fig. B.3. Same as Fig. B.2 but with the 12 asteroids visually validated as matches of the medium space-weathered EC 002. +400 +600 +800 +1000 +0.5 +1.0 +1.5 +2.0 +(9974) Brody +400 +600 +800 +1000 +(19754) Paclements +Normalised Reflectance +Wavelength (nm) +Fig. B.4. Same as Fig. B.2 but with the two asteroids visually validated as matches of the high space-weathered EC 002. +Article number, page 25 of 28 + +A&A proofs: manuscript no. main +0.5 +1.0 +1.5 +(16856) Banach +f = 0.991 +(17056) Boschetti +f = 1.024 +(54062) 2000GX135 +f = 1.019 +(63653) 2001QQ109 +f = 1.03 +0.5 +1.0 +1.5 +(77147) 2001EV6 +f = 1.024 +(77935) 2002GM54 +f = 1.046 +(89556) 2001XS98 +f = 1.011 +(123113) 2000SH361 +f = 1.016 +500 +750 +1000 +0.5 +1.0 +1.5 +(124884) 2001TE41 +f = 0.984 +500 +750 +1000 +(164121) 2003YT1 +f = 0.988 +Normalised Reflectance +Wavelength (nm) +Fig. B.5. Spectra of the ten asteroids found with the curve matching method only, validated as matches of EC 002 after visual inspection. The +spectra are normalised with a scaling factor f, here the meteorite spectrum was divided by the scaling factor. The spectra of the powder sample of +the meteorite is shown in black continuous line, and the raw slab samples spectra are shown in grey lines. As previously, the 16 bands of the Gaia +asteroid spectra are shown with a colour and a symbol associated to their flag number. +Article number, page 26 of 28 + +M. Galinier et al.: Gaia search for early-formed andesitic asteroidal crusts +1 +2 +(10131) Stanga +f = 1.043 +(15623) 2000HU30 +f = 1.02 +(18780) Kuncham +f = 0.964 +(20535) Marshburrows +f = 0.961 +1 +2 +(22276) Belkin +f = 0.976 +(22538) Lucasmoller +f = 0.957 +(32835) 1992EO5 +f = 0.996 +(33423) 1999DK +f = 1.051 +1 +2 +(33852) Baschnagel +f = 0.971 +(33934) 2000LA30 +f = 0.995 +(65504) 3544P-L +f = 0.895 +(74378) 1998XH11 +f = 1.023 +500 +750 +1000 +1 +2 +(79827) 1998WU3 +f = 0.913 +500 +750 +1000 +(100440) 1996PJ6 +f = 1.056 +500 +750 +1000 +(103308) 2000AH55 +f = 0.948 +Normalised Reflectance +Wavelength (nm) +Fig. B.6. Same as Fig. B.5 but with the 15 asteroids visually validated as matches of the low space-weathered EC 002. Here the spectra of the +powder sample of the meteorite is shown in black continuous line, and the space-weathered spectra are shown in grey lines. +Article number, page 27 of 28 + +A&A proofs: manuscript no. main +1 +2 +(68089) 2000YS108 +f = 0.88 +(68946) 2002PX138 +f = 0.984 +1 +2 +(93797) 2000WO43 +f = 0.945 +(108899) 2001PP5 +f = 0.958 +500 +750 +1000 +1 +2 +(145532) 2006FD42 +f = 0.959 +Normalised Reflectance +Wavelength (nm) +Fig. B.7. Same as Fig. B.6 but with the 8 asteroids visually validated as matches of the medium space-weathered EC 002. +400 +600 +800 +1000 +0.5 +1.0 +1.5 +2.0 +(33809) 1999XK152 +f = 0.921 +Normalised Reflectance +Wavelength (nm) +Fig. B.8. Same as Fig. B.6 but with the asteroid visually validated as match of the high space-weathered EC 002. +Article number, page 28 of 28 + diff --git a/o9AyT4oBgHgl3EQfzPm_/content/tmp_files/load_file.txt b/o9AyT4oBgHgl3EQfzPm_/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..12e3d5e0a6bb0e131117e3a60e9e200ac3b120a8 --- /dev/null +++ b/o9AyT4oBgHgl3EQfzPm_/content/tmp_files/load_file.txt @@ -0,0 +1,2219 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf,len=2218 +page_content='Astronomy & Astrophysics manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main ©ESO 2023 January 3, 2023 Gaia search for early-formed andesitic asteroidal crusts M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier1, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Delbo1, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Avdellidou1, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galluccio1, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Marrocchi2 1 Université Côte d’Azur, CNRS–Lagrange, Observatoire de la Côte d’Azur, CS 34229 – F 06304 NICE Cedex 4, France e-mail: marjorie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='galinier@oca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='eu 2 CRPG, CNRS, Université de Lorraine, UMR 7358, Vandoeuvre-les-Nancy F-54501, France Received date, year;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' accepted date, year ABSTRACT Context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Andesitic meteorites are among the oldest achondrites known to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' They record volcanic events and crust formation episodes in primordial planetesimals that took place about 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='565 Myr ago.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, no analogue for these meteorites has been found in the asteroid population to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Aims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We searched for spectroscopic analogues of the andesitic meteorite Erg Chech 002 in the asteroid population using the Gaia DR3 spectral dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In order to identify which asteroids have the most similar spectrum to Erg Chech 002, we first determined the spectral parameters of Gaia DR3 asteroids (spectral slope and Band I depth) and compared them to the spectral parameters of different samples of the meteorite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In addition, we performed a spectral curve matching between Erg Chech 002 and Gaia DR3 asteroid data, and we compared the results of both methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We found that 51 main-belt asteroids have a visible spectrum similar to the one of Erg Chech 002, and 91 have a spectrum similar to the space-weathered spectra of the meteorite, corresponding to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='08 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='15% of the whole Gaia DR3 dataset of asteroids with spectra, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The asteroids that best match the laboratory samples of the meteorite are mostly located in the inner main belt, while the objects matching the space-weathered meteorite models show slightly more scattering across the belt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Despite the fact that we find asteroids that potentially match Erg Chech 002, these asteroids are extremely rare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' More- over, a visible spectrum alone is not completely diagnostic of an Erg Chech 002-like composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Near-infrared spectra will be important to confirm (or rule out) the spectral matches between Erg Chech 002 and the candidate asteroid population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Minor planets, asteroids: general – Meteorites, meteors, meteoroids – Techniques: spectroscopic 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Introduction Planetesimal accretion is considered the first stage of planetary formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The composition and sizes of these planetesimals and the heliocentric distance of their accretion are key long-standing issues in planetary science (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Johansen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Planetesimal accretion took place during the first million years of our Solar System’s history (Henke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Trieloff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Morbidelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2020, 2022), and the planetesimals that formed at the earliest times are expected to have been highly heated by the radioactive decay of 26Al, and thus to be differentiated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' During this process, the interior of a molten body with an initial homogeneous composition organ- ises into layers of different densities and compositions, forming a dense metallic core, an olivine-rich overlaying mantle, and an igneous crust (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' McSween et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2002, and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Subsequent collisional evolution fragmented those original plan- etesimals, producing families of asteroid fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These frag- ments should show different physical and spectral properties depending on the type of collision and the depth of the mate- rial excavation during the impact event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Moreover, family frag- ments can drift towards regions of orbital instability due to non- gravitational forces and then be delivered to Earth as meteorites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Meteorites show a large range of compositions, reflecting the composition of the different layers of the parent body from which they are derived, if differentiated (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Greenwood et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Linking meteorites to asteroids provides insights into the inter- nal structure of the parent body and into its accretion time and region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, only a few links have been established up to now: the Howardite-Eucrite-Diogenite meteorites (HEDs) have been linked to the asteroid (4) Vesta and its family (Russell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' the aubrite meteorites (enstatite achondrites) have been connected to the (434) Hungaria family (Lucas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2019);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' and very recently the enstatite chondrite meteorites of EL type were linked to the asteroid family of (161) Athor (Avdellidou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' All of these families are located in the inner main belt (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' with a semi-major axis between 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The study of HEDs, for example, showed that they originate from the igneous crust of asteroid (4) Vesta (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' McCord et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1970;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Russell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Binzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Burbine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' De Sanctis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Russell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2013), which is known to be differentiated (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Ruzicka et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Righter & Drake 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Mandler & Elkins-Tanton 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, other eucrite mete- orites that do not belong to the HEDs and thus do not come from Vesta have also been identified (Bland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Moreover, lithological, colour, and albedo differences have been detected by Mansour et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2020) between the vestoids, other low inclina- tion basaltic asteroids of the inner belt, as well as basaltic aster- oids with orbits beyond 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' All of these point to the necessary existence of another basaltic source of meteorites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Oszkiewicz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2015) suggest that this object could be the parent body of the Flora family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Despite the evidence given by the meteorites, few signs of differentiation amongst asteroids have been found to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Searches for a population of basaltic crust-like asteroids (in and outside the Vesta family;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Moskovitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Solontoi Article number, page 1 of 28 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='00699v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='EP] 2 Jan 2023 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Leith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2017) as well as metallic ones (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Har- ris & Drube 2014) have been successful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, there is an observational lack of mantle-like olivine-rich asteroids in the main belt (DeMeo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These asteroids are identified as A types (Bus & Binzel 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' DeMeo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2009);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' in addi- tion compared to the amount of basaltic and metallic asteroids in the main belt, they should be found in a larger proportion than what has been observed so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This long-standing issue in plan- etary science is the so-called missing mantle problem (Chapman 1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Another interesting class of meteorites has been recently identified as evidence of differentiation in the main belt, in ad- dition to the aubrites, iron meteorites, HEDs, and eucrites: the so-called andesitic meteorites (Day et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The formation mechanism of these meteorites is consis- tent with rapid cooling of a silicate-rich magma at the surface of a planetesimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, said mechanism is still debated (Ar- culus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In particular, the meteorite Erg Chech 002 (hereafter EC 002) found in May 2020 in the Sahara desert is reported by Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) to be ’the oldest andesite of the Solar System’, with a measured crystallisation age of 4,565 Myr (around 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='25 Myr after the beginning of the Solar System).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' It has been classified as an ungrouped achondrite and it is spectroscop- ically unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Its composition is similar to those experimentally produced by low partial melting of ordinary chondrite-like mate- rials (Collinet & Grove 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This suggests that EC 002 could originate from the igneous crust of a non-carbonaceous planetes- imal that suffered from low partial melting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This crust is thought to have been separated from the original parent body by a vio- lent event, as suggested by evidence of a rapid cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' EC 002 was thrown into space and travelled as part of a bigger body, be- fore separating from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As its composition is different from the HEDs, this meteorite provides evidence that some planetesimals were covered in andesitic and not basaltic crusts, the process of differentiation thus being different for these bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The parent bodies of andesitic meteorites and planetesimals with andesitic crusts are unknown to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) searched for objects with similar properties to EC 002 among the main belt asteroid population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To do so, they compared laboratory spectra of different samples of EC 002 to astro- nomical spectra of asteroids with strong pyroxene signatures, namely taxonomic end members of classes O and V, and to spectrophotometric data from the Sloan Digital Sky Survey (SDSS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' No satisfying match between the meteorite and the asteroids was found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The authors concluded that almost the entire original population of planetesimals must have dis- appeared, as well as their fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' They speculate that the disappearance of EC 002-like objects could be due either to their accretion to other asteroids to form larger planetary embryos, or to their destruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This could also result from their erasure by subsequent stages of melting and planetary accretion and differentiation (Collinet & Grove 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Reflectance spectra of EC 002 were acquired by Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These spectra show the presence of two strong absorp- tion bands that were linked to Ca-rich pyroxene: a first band cen- tred around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='95 µm (Band I), and a second one around 2 µm (Band II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' They also show the presence of a small band centred around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm, whose origin is not discussed by Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, the analysis done by the authors show that the pyroxenes of EC 002 are quite rich in Cr-bearing species (as shown in Table S2 of their supplementary material);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' and accord- ing to Moskovitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2008), Cloutis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2018) and Cloutis (2002), Cr-rich high-Ca pyroxene can lead to the apparition of absorption features near 450 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Thus, the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm ab- sorption band observable in the reflectance spectrum of EC 002 could be due to the presence of chromium in the pyroxene of the meteorite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Comparing this spectrum with available asteroids spectra, the authors found no known asteroid spectral type pre- senting such absorption signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In this work we take advantage of the recent publication of an unprecedented sample of asteroid spectra by the Data Release 3 (DR3) of the ESA mission Gaia (Gaia Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022) to search for analogues of EC 002 in the asteroid population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2 the dataset of asteroid spectra used is presented, along with the spectral data of the meteorite retrieved from Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The methods are detailed in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 4 we present our results, followed by a discussion in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Data In order to search for analogues of EC 002 among the asteroid population, we used the dataset of reflectance spectra that was acquired by Gaia between 5 August 2014 and 28 May 2017, and was released in June 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This dataset consists of mean re- flectance spectra in the visible wavelength range of 60 518 Solar System objects (SSOs), with the majority of objects having mag- nitudes between ≃18 and 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This is an unprecedented dataset of objects that are usually too faint to be observed from ground- based telescopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The reflectance spectra are acquired by two low-resolution slit-less spectrophotometers on board Gaia, the blue and red spectrophotometers (BP and RP), which are respectively opti- mised for the blue and red part of the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Specifically, the BP spans the wavelength range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='33 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='68 µm and the RP covers the range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='64 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='050 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spec- tral resolution of each spectrophotometer is a function of wave- length, and varies from 4 to 32 nm pixel−1 for the BP and 7 to 15 nm pixel−1 for the RP (Gaia Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Car- rasco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Jordi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' When an SSO transits on the focal plane of Gaia at a given epoch, each spectrophotometer measures counts at every wavelength to create ‘epoch spectra’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Given that the wavelength range of both instruments overlaps in the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='68 µm interval, the two epoch spectra are merged to create a full epoch spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To each SSO is associated a unique mean reflectance spectrum obtained by averaging several epoch spectra, spanning the visible wavelength range from 374 to 1034 nm in 16 discrete wavelength bands (Gaia Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A ‘spectral_validation_flag’ (hereafter flag) num- ber is associated to each band, assessing the estimated quality of the band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In some cases, the merging of the epoch spectra taken by each spectrophotometer is not perfect and can lead to the creation of artefact bands (see Gaia Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Caution must thus be taken when analysing the mean reflectance spectra in the overlapping wavelength interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In a similar way, the bluest and reddest data bands of Gaia spectra are in gen- eral affected by large systematics due to the low efficiency of the spectrophotometers in these bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' They are not always flagged but they need to be taken with caution as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To assess the qual- ity of the asteroid analogues of EC 002 found using Gaia data, visible (VIS) and near-infrared (NIR) spectra from the literature were used in our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To perform our analysis, we used the EC 002 spectra that were published by Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) ac- quired visible and near-infrared reflectance spectra of one pow- der sample and three raw slabs samples of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectra were digitised from the supplementary material of Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) using the region features (points and box) of the SAO Im- Article number, page 2 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts age DS9 software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A python code was used to transform the pixel coordinates to reflectance and wavelengths units, and we verified that our digitised spectra were indistinguishable from the origi- nal ones before conducting the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectra of the labora- tory samples of the meteorite were later kindly provided to us by Jean-Alix Barrat and his co-authors (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Barrat, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Beck, private communication).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Since asteroid surfaces can be altered by space weathering and in order to compare the meteorite spectrum with asteroid spectra, Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) applied a space weather- ing model (Hapke 2001) to the powder sample of the meteorite, to simulate the effects of solar wind ion bombardment and mi- crometeorite impacts on the surface of the body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' They published three space-weathered spectra of EC 002 corresponding to three different levels of space weathering – low, medium, and high – which we retrieved using SAO image DS9 software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In our study, we used the four reflectance spectra of the laboratory samples of the meteorite and the three modelled space-weathered spectra to search for asteroids with similar features to EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In order to compare our work with the one of Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021), we also performed some comparison tests between the SDSS and the Gaia dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The SDSS dataset used in this work contains information for 33 584 asteroids and was retrieved from the work of DeMeo & Carry (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' No selection criteria was applied to filter out noisy data, regardless of the uncertainties of the SDSS dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Methods In order to identify a spectral link between EC 002 and Gaia asteroids, we first compared the laboratory spectra of EC 002 to Gaia spectra without considering the effect of space weather- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Since the source of this meteorite is yet unknown, there is a probability that this object originates from a family of young fragments created by a recent collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These fragments would have suffered limited space weathering because of their young age, showing a spectrum similar to the one of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' More- over, we present here an attempt to detect asteroids with similar spectral features as of EC 002 (similar spectral slope, presence of a pyroxene band around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='95 µm and of a small 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm band), and these features are more easily detected without space weath- ering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' It is also reasonable to believe that asteroids have surface grains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Given that they influence the spectroscopic properties of a medium, we studied the spectra of the powder and raw slab samples of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' On the other hand, EC 002 has the composition of a par- tial melt of an ordinary chondrite (Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Once weathered, ordinary chondrites are spectrally similar to S-type asteroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' If the asteroids matching EC 002 suffered from space weathering, it is not unreasonable to expect a S-type-like space weathering (as expressed by the space weathering trend assumed by Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Hence, we studied in a second time the modelled space-weathered spectra of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To summarise, we searched for asteroids spectrally matching the powder, raw slabs samples, and modelled space-weathered spectra of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To do so, we used two spectral matching methods described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Band I depth vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' slope comparison The first method consists in comparing the spectral parameters derived from the reflectance spectra of the meteorite and of the asteroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These parameters are the slope of the reflectance spec- trum between 468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 and 748 nm, and a measure of the depth of the silicate band centred around 950 nm (Band I depth).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This method was inspired by the works of Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021), DeMeo & Carry (2013) and Parker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2008) using the SDSS asteroid spectrophotometric data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Ivezi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2001) and Nesvorný et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2005) performed a principal component analysis on these data and identified two spectral parameters that express most of the data variability: the a* parameter and the i-z colour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The a* pa- rameter closely represents the slope of the reflectance spectrum in the g’, r’ and i’ SDSS bands (Ivezi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2001), these bands being respectively centred at 468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 nm, 616.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 nm and 748.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 nm (DeMeo & Carry 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The i-z colour is sensitive to the depth of a potential 1 µm band, the colour being the difference of mag- nitude between the i’ and z’ bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These parameters are useful to characterise a visible asteroid spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' DeMeo & Carry (2013) used slightly different spectral pa- rameters to characterise the asteroids: the z-i parameter and the gri-slope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To evaluate them, the SDSS observed magnitudes of asteroids are converted into reflectance values at the cen- tre of each SDSS filter, and the derived reflectance spectra are normalised to unity at the central wavelength of the g’ filter (468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The gri-slope is defined as the slope of the derived reflectance spectra over the g’, r’ and i’ filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The z-i parameter still measures the depth of a potential 1 µm band, but it is here defined as: Rz − Ri = R(λ = 893.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 nm) − R(λ = 748.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (1) The gri-slope and z-i colour of asteroids have been used to group objects into classes since (Ivezic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Carvano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' DeMeo & Carry 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We note that the parameter mea- suring the Band I depth used in this study is a difference of re- flectance, we therefore refer to it as Rz − Ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In order to compare Gaia reflectance spectra with what has been done in the work of Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021), we evaluated the gri-slope and Rz − Ri parameters for Gaia spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' First, each Gaia spectrum was interpolated using a cubic smoothing spline (python3 package csaps, default smoothing parameter) and re- sampled between 450 and 900 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' During this smoothing pro- cedure, only Gaia bands with flags equal to zero (good quality bands) were considered and the first and last Gaia bands were not taken into account, in order to limit the impact of low qual- ity bands on the calculated reflectance values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The re-sampled Gaia spectra were then normalised at 468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 nm, and the spec- tral gri-slope was computed by linearly fitting the spectrum be- tween 468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 and 748.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 nm (first-degree polynomial fit, numpy package polyfit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The Rz − Ri parameter was computed by tak- ing the value of the reflectance of every re-sampled normalised Gaia spectra at the central wavelength of the i’ and z’ SDSS filters, namely 748.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 nm and 893.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The asteroids defined as potentially matching the spectrum of EC 002 are those in an area close to the meteorite in the Rz − Ri vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' gri slope diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This will be further discussed in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroid matching with spectra of laboratory samples of EC 002 First, we studied the four laboratory samples of the meteorite EC 002 without taking space weathering into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To com- pare the meteorite spectra with those of Gaia asteroids, their spectral slope and Rz − Ri parameter were calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To do so, the spectrum of each sample was interpolated between 450 and 900 nm using a cubic smoothing spline (python3 package csaps, default smoothing parameter), as was done for the Gaia data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectra were then normalised to unity at 468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 nm and the Rz − Ri parameter was calculated using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectral slope Article number, page 3 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main was evaluated between 468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 and 748.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 nm applying a first de- gree polynomial fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In order to identify the asteroids with spectral parameters similar to EC 002, we calculated the average of the slope and Rz − Ri values for the four samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The corresponding point is considered as the ’barycentre’ of the non-space-weathered sam- ples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Then, we determined a 3σ confidence ellipse around this barycentre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The equation of the confidence ellipse centred on a barycentre of coordinates (xc, yc) and oriented with an angle α is: �cos2 α a2 + sin2 α b2 � (x − xc)2 + �sin2 α a2 + cos2 α b2 � (y − yc)2+ 2(x − xc)(y − yc) sin α cos α � 1 b2 − 1 a2 � = s, (2) with x the gri-slope of a reflectance spectrum, y = Rz − Ri, and s the scale of the ellipse that represents a chosen confidence level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' a and b are respectively the semi-major and semi-minor axis of the ellipse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' It is possible using χ-square probabilities to deter- mine that for a 3σ ellipse, the s value is 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='210 (99% confidence level).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' If an asteroid falls inside the 3σ ellipse in the spectral pa- rameter space, then it would be considered as a candidate match of EC 002 according to its visible spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To compute the parameters of the 3σ confidence ellipse, we calculated the covariance matrix of the four laboratory samples of the meteorite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The semi-major and semi-minor axis of the el- lipse are defined as: �a = √sλ1 b = √sλ2, (3) with λ1 and λ2 the eigenvalues of the covariance matrix, λ1 being the largest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The angle α of the ellipse is defined as α = arctan v1(y) v1(x) with v1 the eigenvector of the covariance matrix associated to the largest eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroid matching with modelled space-weathered spectra of EC 002 After studying non-space-weathered samples of EC 002, we analysed the modelled spectra of EC 002 from Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) on which was applied the Hapke (2001) space weathering model (from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' S12 of the supplementary material of Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The slope and Rz − Ri parameters were calculated for these spectra, following the same procedure as explained be- fore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In order to study more stages of space weathering of the meteorite, we fitted a straight line to the points corresponding to the powder sample and to the three space-weathered samples in the Rz − Ri vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' slope plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This line will be referred in the fol- lowing as the ‘space weathering line’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A parallel line to the space weathering line centred on the barycentre of the non-weathered samples was calculated, and the 3σ ellipse was moved along this line from the lowest to the highest space weathering points, in order to define a ’possible matches area’ within which objects could present spectral parameters similar to those of EC 002 with different levels of space weathering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectra of the asteroids within this ‘possible matches area’ were then visually inspected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Indeed, we preferred relying on visual inspection rather than on an automated method to assess the quality of the matches, firstly because of the relatively small number of objects to inspect and secondly because the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm band present on the meteorite spectrum was never detected by algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This band being a characteristic feature of the meteorite spectrum, we chose the method where its presence was the most surely detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Curve matching The second method we used in order to find spectral analogues of EC 002 is a curve matching method, between the meteorite and the asteroids reflectance spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This method is widely used in the literature (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Popescu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' DeMeo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' It consists in evaluating how similar two spectra are relying on the measure of a best-fit coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In this work, among the pos- sible existing coefficients, we chose to use the χ2 goodness-of-fit test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The reduced χ2 we used is expressed as: χ2 red = 1 ν N � i (Ai − f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Mi)2 σ2 i , (4) with Mi the meteorite spectrum, Ai a Gaia asteroid reflectance spectrum and σi its associated uncertainties, ν the number of degrees of freedom, and f a normalisation factor allowing the best overlap between the meteorite and Gaia reflectance spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The f-value was determined by minimising the χ2 red such that the partial derivative of the χ2 red with respect to f is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This leads to: f = �N i Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Ai σ2 i �N i M2 i σ2 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (5) In order to compare EC 002 with asteroids, we started by sampling the meteorite spectrum at Gaia’s wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We con- sidered only the good quality bands in Gaia spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Since the bands at the extreme wavelengths of the spectral range are often damaged due to the low BP-RP sensitivity there, the first and last bands of Gaia spectra were not taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Moreover, as explained earlier, DR3 SSO spectra were assigned a non-zero flag to the bands where some potential problems were detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Every band flagged with a non-zero number was removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The ‘cleaned’ Gaia spectra were thus composed of 14 bands span- ning the wavelength range from 418 to 990 nm, provided that they had a flag=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 400 600 800 1000 Wavelength (nm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 Normalised Reflectance SW high SW medium SW low slabs powder Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Spectra of a powder, three raw slab samples and three modelled spectra of space-weathered of EC 002 sampled and normalised as Gaia data, after removing the first and last Gaia bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Then, a cubic smoothing spline was applied to the meteorite spectrum to interpolate it (python package csaps, smoothing pa- rameter of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0001) and the interpolated spectrum was sampled as each cleaned Gaia spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This re-sampled meteorite spec- trum was then normalised at 550 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Figure 1 shows the differ- ent spectra of EC 002 normalised and re-sampled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 4 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts For each sample of the meteorite, the χ2 red of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 was cal- culated between each cleaned asteroid spectrum and the re- sampled and re-normalised meteorite spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As explained in previous studies (Hanuš et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Hanuš et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2018), a 3σ match to the meteorite is defined as an asteroid respecting the following condition: χ2 red < 1 + 3σ with σ = √ 2ν ν and ν the num- ber of degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For ν=16, χ2 red < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='06 ≃ χ2 red < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For each meteorite sample, the best matches were selected according to this criterion and their spectra were then visually inspected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Results In this section we describe the results from (i) the comparison of the spectral slope and Band I depth, and (ii) the curve match- ing method, between the spectra of EC 002 and that of Gaia as- teroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As it will be shown, some asteroids were identified as having Gaia reflectance spectra similar to the visible part of the spectrum of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The number of matches found with each method and each sample is recapitulated on Table 1, and the de- tail of the number and name of each asteroid matching and with which method it was found is given on Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Accepted asteroids as candidate matches for the different sam- ples of EC 002, according to the method used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Sample Spectral parameter CM Total Powder + slabs 41 18 / 10 51 SW low 56 23 / 15 71 SW medium 12 8 / 5 17 SW high 2 1 / 1 3 Note: CM stands for curve matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The first number in the CM col- umn is the number of asteroids found using the curve matching method for a given sample of the meteorite, and the second number corresponds to the number of asteroids not already found with the spectral parameter method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The total number of matches for each sample is indicated in the last column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' SDSS-Gaia spectral parameters comparison First, because Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) did not find satisfactory matches between EC 002 and the SDSS data, we started our analysis by investigating potential differences between Gaia and the SDSS dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To compare them, we calculated the spectral slope and the Rz − Ri parameter for every object in each dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectral slope was computed by linearly fitting the three SDSS reflectance data points in the g, r and i SDSS filters us- ing a one-degree polynomial fit (numpy polynomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='polyfit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The same spectral parameters were calculated for the 60 518 Gaia spectra as explained in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2, the two datasets appear to be shifted in the spectral parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In order to study these apparent shifts, we used a sub-sample of 14 129 asteroids having observa- tions both in Gaia and SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Figure 3 shows histograms of the spectral parameters of this sub-sample, where a shift in Rz − Ri is clearly visible on panel (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' To evaluate the value of this shift, the median value of Rz − Ri was calculated for both datasets of the sub-sample and we found that Gaia data have 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='076 times higher Rz − Ri than the SDSS, doing the difference of the two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' While there is a general agreement in spectral slope between the two surveys (difference between median slope of both surveys of only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='52), a wing of higher slope values for Gaia asteroids can be noticed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 3 (A), meaning that Gaia detects objects red- der than the SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The shift in Rz − Ri is quite significant and remains when considering only objects with a high S/N (S/N > 100 for example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We chose not to correct Gaia data from this shift in this work since we do not know its causes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A potential reason for this shift could be the different choice of solar analogues between the two surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Indeed, a mean so- lar analogue spectrum was used to retrieve the asteroids spectra from Gaia, and solar colours are needed to convert colour indices to reflectances for the SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' It is possible that the accuracy of the solar analogues or the solar colours used is at the origin of this shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This difference between the SDSS and Gaia will be investigated in future works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Spectral parameter matching In the following are described the potential matches of EC 002 obtained with the study of spectral parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The slope and Rz − Ri spectral parameters were calculated for the spectra of the powder samples and all raw slab samples of EC 002 (see Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The average and standard deviation for the slope and Band I depth are of 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='7 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='9 % (100 nm)−1 and −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='76 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='02, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 4, the corresponding point is plotted as an orange diamond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We can observe that the points corresponding to the different samples of the meteorite plots away from any group of asteroids in the spectral parameter space, as already observed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' S14 of the supplementary material of Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Spectral slope and Band I depth evaluated for different samples of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Sample spectral slope (%(100 nm)−1) Rz − Ri Powder 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='74 Raw slab 1 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='77 Raw slab 2 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='75 Raw slab 3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='80 In the spectral parameter space, using the average point as a centre, we defined a 3σ confidence ellipse as described in sec- tion 3 in which no asteroid is contained (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As described in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3, we calculated a ‘space weathering line’ of equation: y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='047x − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The coefficient of determination of this fit is R2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='986, meaning that the linear fit to the space weathering modelled spectra of Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) is good.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This line plots to the right side of the spectral parameter space, where only a few asteroids are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Using the parameters of the linear fit, we extended the 3σ ellipse along the space weathering line, defining a ‘possible matches area’ that contains 305 asteroids listed in Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1, which spectra were visually inspected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Following several criteria we rejected ∼63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8% of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As a first step, we rejected the objects that have known VIS or NIR spectrum in the literature that allowed to distinguish them from EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' It corresponds to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2% of the initial sample of 305 asteroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Then, we removed the objects with more than three flagged bands in the Gaia spectrum (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8% of the sample).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Finally, we rejected the asteroids that had either a too noisy spec- trum, or that were visually different from the spectra of EC 002 in either BP or RP parts (51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8% of the sample).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For the last case we noticed that several spectra, otherwise similar to the one of EC 002 show a steep increase of the reflectance in the red part, making their Band I centre shifted compared to the one of the meteorite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We chose to reject such objects of the list of candi- date matches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 5 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main −10 0 10 20 30 40 Spectral slope (% (100 nm)−1) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 Rz − Ri Gaia vs SDSS −10 0 10 20 30 40 Spectral slope (% (100 nm)−1) Gaia vs SDSS subsample Gaia SDSS (A) (B) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Comparison of the Band I depth Rz − Ri and the spectral slope for Gaia (black) and the SDSS (green) asteroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Panel A: comparison between the 60 518 asteroids of Gaia and the 33 584 asteroids of the SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Panel B: comparison between a sub-sample of 14 129 asteroids both observed by the SDSS and Gaia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A shift in Rz − Ri between the spectra of Gaia and the SDSS is visible in both panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 0 10 20 30 Spectral slope (% (100 nm)−1) 0 200 400 600 Number of asteroids Gaia SDSS −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 Rz − Ri 0 500 Number of asteroids Gaia SDSS (B) (A) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Comparison of the Rz − Ri parameter and of the spectral slope for the sub-sample of 14 129 asteroids observed both by Gaia and SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We note that the slope distribution (panel A) of Gaia has a wing that extends to redder slopes than the SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Panel (B) shows that the distributions of Rz − Ri for Gaia and SDSS are clearly shifted, with Gaia seeing a less deep Band I compared to the SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Gaia and SDSS Rz − Ri parameter histograms can be superimposed when a constant value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='07 is subtracted from Gaia Rz − Ri-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' After our visual inspection, 110 asteroids were retained (Ta- ble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Among these validated asteroids, 106 objects have been given a spectrum for the first time by the Gaia mission, and 41 asteroids were identified to have a reflectance spectrum similar to the laboratory spectra of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These objects are defined as matches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The matches of the four laboratory samples of the meteorite were not considered separately here, because these samples show almost indistinguishable spectra in the visi- ble wavelength range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectra of the matches are shown on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1, and their median signal-to-noise ratio (S/N) is of 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In addition, there are 70 asteroids matching the space- weathered spectra of EC 002: 56 asteroids match the spectrum on which has been applied a low space weathering, 12 aster- oids match the medium space-weathered spectrum and only two asteroids match the highly space-weathered spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Their spec- tra are shown respectively on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The median S/N of the matches is of 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 for the low space- weathering of EC 002, of 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 for the median space weathering, and of 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='97 for asteroid (9974) Brody and 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='05 for asteroid (19754) Paclements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Curve matching We applied the curve matching method to the different labora- tory spectra of the EC 002 (powder and slabs) and to the entire dataset of 60 518 Gaia asteroid reflectance spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As mentioned before, the matches of the four laboratory samples were not con- sidered separately here due to the similar visible spectra of these samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 6 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts −10 0 10 20 30 40 50 gri slope (% (100 nm)−1) −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 Rz − Ri Gaia DR3 asteroids powder slabs SW low SW medium SW high barycentre 3-σ ellipse SW line shifted barycentre matches SW matches EC002 spectra curve matching EC002 spectra curve matching SW Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Distribution of depth of the 1 µm band with respect to the spectral slope of every Gaia asteroid (grey dots).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Red squares: raw slabs of the meteorite EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Purple square : powder sample of the meteorite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Full orange diamond: barycentre of these 4 samples, and empty orange diamond: shifted barycentre along the ‘space weathering line’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The squares going from light blue to dark blue represent the modelled space- weathered spectra of EC 002, with different space weathering intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The orange ellipses are the 3-σ ellipse respectively around the barycentre and shifted following the space weathering behaviour of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The two dashed blue lines delimit a ‘possible matches area’, within which are represented asteroids matching EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Pink dots: asteroids matching the raw slabs and powder sample of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Cyan dots: asteroids matching the space-weathered samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Dark red dots: asteroids matching EC 002 by the curve matching method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Green dots: asteroids matching the space-weathered spectra of EC 002 by this same method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We considered only the cases giving χ2 red<2, resulting in a list of 58 bodies matching EC 002 listed on Table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Af- ter a visual inspection of their spectra, several objects were re- jected (Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The final list of potential matches to EC 002 meteorite contains 18 asteroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Amongst these, ten asteroids were not found with the spectral parameters method: (16856) Banach, (17056) Boschetti, (54062) 2000GX135, (63653) 2001QQ109, (77147) 2001EV6, (77935) 2002GM54, (89556) 2001XS98, (123113) 2000SH361, (124884) 2001TE41, and (164121) 2003YT1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectra of these ten bodies are shown on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The curve matching method was then applied to the space- weathered samples of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For the low space-weathered spectrum, 269 asteroids had a χ2 red<2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' There was 223 asteroids with χ2 red<2 for the medium space-weathered spectrum, and only 12 asteroids for the highly space-weathered spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Most asteroids were rejected following the criteria ex- posed earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We finally found 23 asteroids as potential analogues of the low space-weathered EC 002, eight as- teroids matching the medium space-weathered EC 002 and one asteroid matching the highly space-weathered meteorite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These objects are listed in Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The asteroids that were found as matches with this method and not with the spectral parameters method are asteroids (10131) Stanga, (15623) 2000 HU30, (18780) Kuncham, (20535) Marshbur- rows, (22276) Belkin, (22538) Lucasmoller, (32835) 1992EO5, (33423) 1999DK, (33852) Baschnagel, (33934) 2000LA30, (65504) 3544P-L, (74378) 1998XH11, (79827) 1998WU3, (100440) 1996PJ6, and (103308) 2000AH55 for the low SW ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' asteroids (68089) 2000YS108, (68946) 2002PX138, (93797) 2000WO43, (108899) 2001PP5, (145532) 2006FD42 and (230762) 2003WP192 for the medium SW and asteroid (33809) 1999XK152 for the high SW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Their spectra are shown respectively on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='7 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 7 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Accepted asteroids as candidate matches for the different samples of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Asteroid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Method ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Powder + raw slabs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(1643) Brown ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(1946) Walraven ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(2432) Soomana ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(3188) Jekabsons ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(3651) Friedman ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(3869) Norton ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(4302) Markeev ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(5121) Numazawa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(6853) Silvanomassaglia ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(6876) Beppeforti ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(8587) Ruficollis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(8827) Kollwitz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(9197) Endo ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(9433) 1997 CF3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(10156) 1994 VQ7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(10671) Mazurova ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(10902) 1997 WB22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(11155) Kinpu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(12551) 1998 QQ39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(13839) 1999 XF29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(15989) 1998 XK39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(16856) Banach ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17056) Boschetti ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17240) Gletorrence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(20454) Pedrajo ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(24286) 1999 XU188 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(24892) 1997 AD3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(26573) 2000 EG87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(27262) 1999 XT184 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(28162) 1998 VD14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(30769) 1984 ST2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(33418) Jacksonweaver ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(36431) 2000 PJ12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(44150) 1998 HC108 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(47232) 1999 VQ36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(49101) 1998 RE76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(54062) 2000 GX135 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(55549) 2001 XC59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(56904) 2000 QP171 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(63653) 2001 QQ109 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(77147) 2001 EV6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(77935) 2002 GM54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(87093) 2000 LW6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(88955) 2001 TW42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(89556) 2001 XS98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(90604) 4813 P-L ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(123113) 2000 SH361 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(124884) 2001 TE41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(164121) 2003 YT1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(205560) 2001 SC282 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(310436) 2000 AB169 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='SW low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(4088) Baggesen ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(6003) 1988 VO1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(6789) Milkey ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(8243) Devonburr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(8483) Kinwalaniihsia ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Asteroid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Method ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='SW low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(8692) 1992 WH ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(9753) 1990 QL3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(10131) Stanga ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(11920) 1992 UY2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(14511) Nickel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(15088) Licitra ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(15623) 2000 HU30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17739) 1998 BY15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17821) Bolsche ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17882) Thielemann ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17943) 1999 JZ6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(18344) 1989 TN11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(18780) Kuncham ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(19978) 1989 TN6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(20289) Nettimi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(20535) Marshburrows ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(21318) 1996 XU26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(22276) Belkin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(22538) Lucasmoller ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(23766) 1998 MZ23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(24569) 9609 P-L ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(24684) 1990 EU4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(26084) 1981 EK17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(26851) Sarapul ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(27876) 1996 BM4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(27884) 1996 EZ1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(28132) Karenzobel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(29171) 1990 QK3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(30426) Philtalbot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(30834) 1990 VR6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(32835) 1992 EO5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(33423) 1999 DK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(33852) Baschnagel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(33934) 2000 LA30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(33947) 2000 ML1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(35364) Donaldpray ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(39940) 1998 FR99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(41894) 2000 WH121 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(43278) 2000 ES109 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(44162) 1998 HC148 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(45787) 2000 OJ24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(48039) 2001 DT69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(51659) Robohachi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(53417) 1999 NP38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(53661) 2000 DU62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(53899) 2000 FM49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(56561) Jaimenomen ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(58640) 1997 WH18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(61098) 2000 LY28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(64458) 2001 VF35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(65504) 3544 P-L ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(74107) 1998 QM37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(74378) 1998 XH11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(75323) 1999 XY47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(79827) 1998 WU3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(87216) 2000 OG38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(89776) 2002 AL90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Article number,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' page 8 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Asteroid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Method ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='SW low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(89952) 2002 JB20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(92593) 2000 PN16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(100440) 1996 PJ6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(103308) 2000 AH55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(108139) 2001 GL11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(112326) 2002 MM4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(122122) 2000 JM16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(128450) 2004 NX24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(134916) 2000 YP53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='SW medium ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(13133) Jandecleir ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(18143) 2000 OK48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(31060) 1996 TB6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(42822) 1999 NT13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(44322) 1998 RZ42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(49141) 1998 SM41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(51379) 2001 BY7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(52408) 1993 TJ34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(68089) 2000 YS108 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(68946) 2002 PX138 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(90843) 1995 YZ22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(93797) 2000 WO43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(99714) 2002 JQ41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(108899) 2001 PP5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(122125) 2000 JO17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(145532) 2006 FD42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(230762) 2003 WP192 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters + CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='SW high ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(9974) Brody ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(19754) Paclements ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Spectral parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(33809) 1999 XK152 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Note: Asteroids showing a spectrum matching the powder and raw ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='slabs samples of the meteorite are 51 in number,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' while 71 asteroids match the low space-weathered spectrum of EC 002,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 17 asteroids match its medium space-weathered spectrum and three asteroids match its highly space-weathered spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' CM stands for curve matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Discussion Asteroids spectroscopically matching EC 002 are extremely rare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We find only 51 asteroids matching the non-space- weathered spectrum of EC 002, and 91 asteroids matching its spectrum on which was modelled the effect of space weathering to various degrees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Considering the entire Gaia sample of over 60 518 Solar System minor bodies, it means a mere 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='08% of the sample for the non-space-weathered samples and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='15% of the sample for the space-weathered EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This confirms the con- clusions of Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) about the scarcity of analogues of EC 002 among the asteroid population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The best matches of the different samples of EC 002 are defined as the objects found using both methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For the four laboratory samples, there are seven best matches: (6853) Sil- vanomassaglia, (10156) 1994VQ7, (20454) Pedrajo, (55549) 2001XC59, (88955) 2001TW42, (205560) 2001SC282, and (310436) 2000AB169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For the spectra on which was applied a low space weathering model, there are eight best matches: aster- oids (24684) 1990 EU4, (27876) 1996BM4, (33947) 2000ML1, (43278) 2000ES109, (56561) Jaimenomen, (89952) 2002JB20, (108139) 2001GL11, and (112326) 2002MM4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For the medium space weathering model, asteroids (42822) 1999NT13, (44322) 1998RZ42, and (230762) 2003WP192 are found by both meth- ods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' No asteroid is found by both methods for the highly space- weathered spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Both methods give quite different asteroid as matches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In- deed, we did not filter the objects considering their S/N but we noticed that the large majority of objects retained as potential analogues of EC 002 have S/N-values lower than a hundred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For the curve matching method, the median value of the S/N for the accepted objects is of 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This low value is explained by the fact that the chosen curve matching parameter favours observations with large error bars, hence low S/N observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This method thus filters out objects with higher S/N found by the spectral parameter method that appear to be very good matches by visual inspection, such as asteroid (5121) Numazawa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In or- der to evaluate the results of this curve matching method, we performed some tests with an alternative Least Squares method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We computed the sum of the squared residuals between the me- teorite and the asteroids spectra, removing the flagged points as was done for the χ2 red calculation and not taking the uncertainties into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The sum of the squared residuals used is described in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 6: R2 = N � i (Ai − f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Mi)2, (6) with Mi the meteorite spectrum, Ai a Gaia asteroid reflectance spectrum and f a normalisation factor similar to the one in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 5 but without consideration of the uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This method spans a wider range of S/N, giving only potential matches of EC 002 among asteroids with S/N above 25 for the powder sam- ple of the meteorite for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Most asteroids found as poten- tial matches plot inside the ‘possible matches area’ of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 and thus were already found with the spectral parameters method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This method is therefore a complement of the spectral parameter method, but since it is sensitive to outliers it requires a visual in- spection as well to assess the quality of the matches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The curve matching method with the χ2 red has the advantage that it explores a larger area in the spectral parameter space, finding objects out- side the ‘possible matches area’ even though they are low S/N asteroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These objects should be further observed and studied in future analysis to evaluate how good a match they are.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' All matched asteroids with the non-space-weathered me- teorite spectra are located in the inner part of the main belt (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 5), between the secular resonance ν6 and the 3:1 mean motion resonance with Jupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The asteroids matched with the space-weathered meteorite are more scattered across the main belt, even though most objects can be found in the inner main belt as well, in particular close to the Vesta family (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Some of the asteroids matching the different samples of EC 002 are members of known collisional families, according to the membership of Nesvorny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Among the 142 matches of the different samples of EC 002, 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='9% of the aster- oids belong to the Vesta family, 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8% belong to the Flora family and a mere 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='7% belong to other families (mainly Nysa-Polana).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The presence of asteroids matching with EC 002 inside the Vesta family could be due to two possible reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' If these ob- jects are real analogues to EC 002, they could be interlopers in- side the Vesta family since EC 002 is chemically distinct from the HEDs (Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The second possibility is that these asteroids are true Vesta family members compositionally alike HEDs, but which happen to have a Gaia reflectance spectrum in the visible range very similar to that of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In fact, the dis- tinction between the reflectance spectra of EC 002 and HEDs in Article number, page 9 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 Proper sin(inclination) (°) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3 Proper eccentricity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 Proper semi-major axis (au) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='35 Proper eccentricity Gaia DR3 asteroids with H<14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 Vesta family Flora family matches found with the spectral parameters method matches amongst asteroids with χ2<2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Proper orbital element1plots of Gaia asteroids with absolute magnitude H<14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (light grey dots).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Vesta and Flora family members are indicated respectively with black and blue dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroids that were found to be spectroscopically matching with EC 002 after visual inspection are plotted with dots circles indicated in the legend above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' the visible is difficult, and relies mainly on the position of the Band I centre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, the last Gaia bands may show a fast in- crease in reflectance due to light contamination in the RP (Gaia Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This contamination could result in a shift of the Band I centre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Future analysis of the Gaia reflectance spectra could help solve this issue, and future near-infrared spec- troscopy of these bodies might be able to reveal if they are more similar to EC 002 or to the HEDs and to Vesta family members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The Flora family is a large collisional family adjacent to the ν6 (Nesvorny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015), which is the most efficient region to deliver main-belt asteroids to Earth-crossing orbits (Granvik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Hence, this family could be an important source of near-Earth asteroids (La Spina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Kryszczy´nska 2013) and meteorites (Nesvorný et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The Flora fam- ily is mainly constituted of S-type asteroids (Oszkiewicz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1 Data retrieved from the Belgrade catalogue http://asteroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' matf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='bg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='rs/fam/properelements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='php.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Nesvorny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, and references therein), which are linked to ordinary chondrites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) showed that EC 002 could be derived from the partial melt of a planetesimal of non-carbonaceous chondritic composition, which experienced heating during its accretion and consequently formed an igneous crust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' If the asteroids belonging to the Flora family are (i) real EC 002 analogues, and (ii) true members of the Flora family, this would confirm the spectroscopic diversity within this family pointed out by several studies (Oszkiewicz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, and refer- ences there in).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In addition, this would potentially point towards a differentiation of the family parent body, as has been already proposed (Oszkiewicz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Given the very low number of asteroids belonging to the other asteroid families, it is difficult to assume that the parent body of EC 002 was part of these families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Every other asteroids potentially matching with EC 002 do not belong to known fami- lies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, current family catalogues are based on algorithms that determine the membership of an object to a family based on Article number, page 10 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 Proper sin(inclination) (°) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3 Proper eccentricity e 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 Proper semi-major axis a (au) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='35 Proper eccentricity e Gaia DR3 asteroids with H<14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 Vesta family Flora family matches of space-weathered models of EC 002 (spectral parameter method) matches of space-weathered models of EC 002 amongst asteroids with χ2<2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 5, but with cyan dots indicating asteroids that have spectral parameters compatible with the space-weathered models of EC 002 derived by Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) in the spectral parameters space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The green dots are asteroids matching the weathered models of the meteorite spectra using the curve matching method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' its proper orbital elements only, in order to distinguish the dif- ferent families and to clearly identify their cores (Nesvorny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Tsirvoulis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As a result, some background ob- jects are designated as family members but are in fact interlop- ers, and some real family members are not considered as part of the family, leading to halos of asteroids surrounding known fam- ilies (Parker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Brož & Morbidelli 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In addition, the study of the dynamical behaviour of family and non-family asteroids by Dermott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2018) lead to the conclusion that most asteroids in the inner main belt are or were originally part of the main known families, showing evidence that the families are very dispersed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Some of these dispersed families have been detected (Delbo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2017, 2019) using the so-called V-shape method (Bolin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2017), and more families are probably left to be identified (Delbo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2017, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Dermott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Hence, it is possible that the asteroids matching with EC 002 that are not listed as family members are part of very old families of the inner main belt that escaped identification up to now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' It is also established that laboratory spectra of meteorites do not necessarily match with the spectra of asteroids of analogue composition (Brunetto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The reason is that the reflectance spectra of asteroids are affected by the exposure of their surface to weathering agents in space, such as solar wind ions and micrometeorites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Space weathering models have been developed, for example by Hapke (2001) or Brunetto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2006), in order to correct reflectance spectra from space weathering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The Hapke model is based on the calculation of the absorption coefficient of a silicate host medium in which small nanophase iron spheres are included (see Brunetto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2007, for further details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The inclusion of nanophase iron inside a siliceous material changes its physical properties and alters its visible and infrared spectrum: the spectral slope is reddened, the silicate bands become shallower and less recognisable and the albedo of the object is darkened.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, the silicate band cen- tres are not (or very little) affected by this type of space weather- ing Gaffey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This model was developed by studying Article number, page 11 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main the space weathering of the Moon and it successfully recreates it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For its appliance to an object to be relevant, the mineralogy of the object needs to be dominated by silicates with grains larger than the wavelength (Pierre Beck, private communication).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Thus, the Hapke and other similar models (Brunetto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2006) have been applied to ordinary chondrites and allowed to link this type of meteorites to S-type asteroids, giving precious information about the mineralogy of these asteroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' EC 002 is an achondrite with andesitic composition, corresponding to the partial melt of an ordinary chondrite and which contains silicates with large grains (Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Therefore, using the Hapke model makes sense to simulate the effect of space weathering on an asteroid of the same composition as EC 002, as what was implemented by Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 500 1000 1500 2000 2500 Wavelength (nm) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 Normalised Reflectance EC 002 powder sample (10537) 1991 RY16 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR spectra of the powder sample of EC 002 (black lines) and of asteroid (10537) 1991 RY16 (orange lines) retrieved from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 of Moskovitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Both spectra were normalised at 550 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The two spectra show a similar shape, they both show a band around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm and similar Band I centre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However their Band II centre is shifted with respect to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A characteristic feature of the EC 002 reflectance spectrum is the presence of an absorption band at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Unfortunately, this feature cannot be used as an absolute diagnostic feature in Gaia asteroid spectra for two reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' First, the BP and RP spec- tra overlap in the region of this band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Since the spectrophotome- ters are independently calibrated (De Angeli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022), their overlapping region can be affected by artefacts (Gaia Collabo- ration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022) and must be handled with care.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The second reason is that some V-type asteroids also display an absorption band near 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm, such as the asteroid (10537) 1991 RY16 (Moskovitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Interestingly, the visible reflectance spectra of asteroid (10537) 1991 RY16 and EC 002 are quite similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This asteroid has already been found the closest match to the ungrouped achondrite (NWA) 7325 by Cloutis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2018) based on the spectral features of both bodies, without being a satisfactory match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In the near-infrared however, EC 002 shows a deeper Band II depth and a Band II centre at longer wave- lengths (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='89 µm for asteroid (10537) 1991 RY16, vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='08 µm for EC 002, as visible Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This points to the necessity of us- ing near-infrared spectroscopy to distinguish potential EC 002 visible matches against V-type asteroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Conclusion and perspectives We searched for analogues of the andesitic meteorite EC 002 among the asteroid population, using Gaia visible reflectance spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' We studied four different laboratory samples of the me- teorite: three raw slabs and one powder spectrum;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' and three mod- elled space-weathered spectra of EC 002 were also analysed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As first method, we evaluated and compared the spectral parameters of each sample of the meteorite with the ones of the asteroids, studying the slope and the Band I depth of each asteroid spec- trum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The second method used was a curve matching method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' For both methods, a visual inspection of the asteroid spectra and a search in the literature for already existing VIS and NIR spectra of these objects allowed us to deduce which asteroids are the most probable analogues of EC 002 among the main-belt asteroid population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectral parameter method gave 41 ob- jects as potential analogues to the laboratory samples of EC 002, and 70 objects matching the space-weathered spectra of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' These objects are mostly located in the inner main belt, around the Vesta and Flora families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The curve matching method gave 18 objects matching the laboratory samples of the meteorite, also concentrated in the inner main belt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The curve matching with the modelled space- weathered spectra of the meteorite gave 23 asteroids as poten- tial analogues of the low space-weathered EC 002, eight aster- oids matching the medium space-weathered meteorite and only one asteroid matching the highly space-weathered EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Be- cause of the χ2 red parameter used, only objects with a low S/N were found with this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' In the end, a total of 51 asteroids were found as potential analogues of the not-space-weathered EC 002, and 91 asteroids were found matching the modelled space-weathered spectra of the meteorite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Finally, only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='08% of Gaia asteroids were found to be matching the laboratory samples of the meteorite, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='15% were found matching the modelled space-weathered spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' However, acquiring and studying the near-infrared spectra of these objects could help determining if they are real analogues of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' If they are, they would be remnants of the original population of planetesimals that appeared in the early times of the Solar System and that showed an andesitic - and not basaltic crust after differentiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Traces of this original population would thus still exist in the main belt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Moreover, a full VIS- NIR spectrum would allow the study of more spectral parame- ters (Band II centre and band area ratio), which would give great clues about the quality of the matches presented in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' MG and MD acknowledge financial support from CNES and the Action Specifique Gaia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' MD, CA, and LG acknowledge financial sup- port from the ANR ORIGINS (ANR-18-CE31-0014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' cosmos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='esa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='int/gaia), processed by the Gaia Data Processing and Anal- ysis Consortium (DPAC, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='cosmos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='esa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='int/web/gaia/dpac/ consortium).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This work is based on data provided by the Minor Planet Physical Properties Catalogue (MP3C) of the Observatoire de la Côte d’Azur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Spectra from Barrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021) were used as well in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The authors are grateful to Jean-Alix Barrat and Pierre Beck for their precious help.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' References Alvarez-Candal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Duffard, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Lazzaro, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Michtchenko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2006, A&A, 459, 969 Arculus, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Campbell, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', McLennan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Taylor, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2009, Nature, 459, E1 Avdellidou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Delbo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022, A&A, 665, L9 Barrat, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Chaussidon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Yamaguchi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021, Proceedings of the National Academy of Science, 118, 2026129118 Binzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', DeMeo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Turtelboom, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2019, Icarus, 324, 41 Binzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Xu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Bus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1993, Science, 262, 1541 Bland, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Spurný, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Towner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2009, Science, 325, 1525 Bolin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Delbo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Walsh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2017, Icarus, 282, 290 Article number, page 12 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts Brož, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' & Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2013, Icarus, 223, 844 Brunetto, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', de León, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Licandro, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2007, A&A, 472, 653 Brunetto, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Loeffler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Nesvorný, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Sasaki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Strazzulla, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, in Asteroids IV (P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Michel, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' eds), 597 Brunetto, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Vernazza, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Marchi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2006, Icarus, 184, 327 Burbine, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Buchanan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Binzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2001, Meteoritics & Plane- tary Science, 36, 761 Bus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' & Binzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2002, Icarus, 158, 146 Carrasco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Weiler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Jordi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021, A&A, 652, A86 Carry, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Solano, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Eggl, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & DeMeo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2016, Icarus, 268, 340 Carvano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Hasselmann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Lazzaro, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Mothé-Diniz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2010, A&A, 510, A43 Chapman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1986, in Proceedings of the NASA and CNR, International Workshop on Catastrophic Disruption of Asteroids and Satellites, 103–114 Cloutis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2002, Journal of Geophysical Research (Planets), 107, 5039 Cloutis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Reddy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Blewett, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2018, Icarus, 311, 384 Collinet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' & Grove, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2020, Geochimica et Cosmochimica Acta, 277, 334 Day, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Ash, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2009, Nature, 457, 179 De Angeli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Weiler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Montegriffo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='06143 De Sanctis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Ammannito, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Capria, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012, Science, 336, 697 de Sanctis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Migliorini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Luzia Jasmin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2011, A&A, 533, A77 Delbo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Avdellidou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2019, A&A, 624, A69 Delbo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Walsh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Bolin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Avdellidou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2017, Science, 357, 1026 DeMeo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Binzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Slivan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Bus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2009, Icarus, 202, 160 DeMeo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Burt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Marsset, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022, Icarus, 380, 114971 DeMeo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' & Carry, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2013, Icarus, 226, 723 DeMeo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Polishook, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Carry, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2019, Icarus, 322, 13 Dermott, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Christou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Kehoe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Robinson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2018, Nature Astronomy, 2, 549 Gaffey, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Cloutis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Kelley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Reed, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2002, Mineralogy of Asteroids, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Bottke, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Cellino, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Paolicchi, & R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Binzel, 183–204 Gaia Collaboration, Galluccio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Delbo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='12174 Granvik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Jedicke, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2016, Nature, 530, 303 Greenwood, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Burbine, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Franchi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2020, Geochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Cos- mochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Acta, 277, 377 Hanuš, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Delbo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Durech, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Alí-Lagoa, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2018, Icarus, 309, 297 Hanuš, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Delbo’, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', ˇDurech, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Alí-Lagoa, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, Icarus, 256, 101 Hapke, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2001, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', 106, 10039 Hardersen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Reddy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Cloutis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2018, The Astronomical Journal, 156, 11 Harris, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' & Drube, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2014, ApJ, 785, L4 Henke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Gail, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Trieloff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Schwarz, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Kleine, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012, A&A, 545, A135 Ivezic, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Juric, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Lupton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Tabachnik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Quinn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2002, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 4836, Survey and Other Telescope Technologies and Discoveries, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Tyson & S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Wolff, 98–103 Ivezi´c, Ž.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Tabachnik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Rafikov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2001, AJ, 122, 2749 Jasmim, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Lazzaro, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Carvano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Mothé-Diniz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Hasselmann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2013, A&A, 552, A85 Johansen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Jacquet, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Cuzzi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Gounelle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, in Asteroids IV (P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Michel, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' eds), 471 Jordi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Gebran, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Carrasco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2010, A&A, 523, A48 Kryszczy´nska, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2013, A&A, 551, A102 La Spina, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Paolicchi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Kryszczy´nska, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Pravec, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2004, Nature, 428, 400 Lazzaro, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Angeli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Carvano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2004, Icarus, 172, 179 Leith, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Moskovitz, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Mayne, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2017, Icarus, 295, 61 Lindsay, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Marchis, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Emery, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Enriquez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Assafin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, Icarus, 247, 53 Lucas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Emery, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', MacLennan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2019, Icarus, 322, 227 Mahlke, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Carry, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Mattei, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='11229 Mandler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' & Elkins-Tanton, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2013, Meteoritics & Planetary Science, 48, 2333 Mansour, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Popescu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', de León, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Licandro, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2020, MNRAS, 491, 5966 Matloviˇc, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', de Leon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Medeiros, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2020, A&A, 643, A107 McCord, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Adams, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1970, Science, 168, 1445 McSween, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Ghosh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Grimm, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Wilson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Young, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2002, in Asteroids III, 559–571 Medeiros, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', de León, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Lazzaro, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2019, MNRAS, 488, 3866 Migliorini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', De Sanctis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Michtchenko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021, MNRAS, 504, 2019 Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Baillié, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Batygin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022, Nature Astronomy, 6, 72 Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Libourel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Palme, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Jacobson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Rubie, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2020, Earth and Planetary Science Letters, 538, 116220 Moskovitz, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Jedicke, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Gaidos, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2008, Icarus, 198, 77 Moskovitz, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Willman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Burbine, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Binzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Bus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2010, Icarus, 208, 773 Nesvorny, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Broz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Carruba, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, in Asteroids IV (P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Michel, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' eds), 297 Nesvorný, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Vokrouhlický, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Bottke, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Brož, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2002, Icarus, 157, 155 Nesvorný, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Bottke, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Vokrouhlický, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Jedicke, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2005, Proceedings of the International Astronomical Union, 1, 289–299 Oszkiewicz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Kankiewicz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Włodarczyk, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Kryszczy´nska, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2015, A&A, 584, A18 Parker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Ivezi´c, Ž.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Juri´c, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2008, Icarus, 198, 138 Popescu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Birlan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Nedelcu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012, A&A, 544, A130 Popescu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Licandro, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Carvano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2018, A&A, 617, A12 Ribeiro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Roig, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Cañada-Assandri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2014, Planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', 92, 57 Righter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' & Drake, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1997, Meteoritics & Planetary Science, 32, 929 Russell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Raymond, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Coradini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012, Science, 336, 684 Russell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Raymond, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Jaumann, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2013, Meteoritics & Planetary Science, 48, 2076 Ruzicka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Snyder, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Taylor, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1997, Meteoritics & Planetary Sci- ence, 32, 825 Sanchez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Michelsen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Reddy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Nathues, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2013, Icarus, 225, 131 Sergeyev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' & Carry, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2021, A&A, 652, A59 Sergeyev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Carry, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Onken, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022, A&A, 658, A109 Solontoi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Hammergren, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Gyuk, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Puckett, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2012, Icarus, 220, 577 Trieloff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Hopp, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Gail, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2022, Icarus, 373, 114762 Tsirvoulis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Morbidelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Delbo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Tsiganis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 2018, Icarus, 304, 14 Xu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Binzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', Burbine, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=', & Bus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 1995, Icarus, 115, 1 Article number, page 13 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main Appendix A: Tables of asteroids matching the spectra of EC 002 Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroids within the ’possible matches area’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroid Acceptance Notes Type Method Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (289) Nenetta 0 longer band I centre A Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 5 (863) Benkoela 0 longer band I centre A Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 5 (956) Elisa 0 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS and NIR 3, 6 (1459) Magnya 0 VISNIR different V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 5 (1468) Zomba 0 NIR different V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 20 (1488) Aura 0 different red part A Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (1643) Brown 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (1709) Ukraina 0 A type spectrum A Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 25 (1908) Pobeda 0 longer band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (1946) Walraven 1 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 4 (2168) Swope 0 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 16,22 (2371) Dimitrov 0 NIR different V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS and NIR 2, 6 (2432) Soomana 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (2442) Corbett 0 shorter band I centre V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 5 (2557) Putnam 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (2851) Harbin 0 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 5 (2912) Lapalma 0 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 5 (3104) Durer 0 different red part K Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 25 (3155) Lee 0 shorter band I centre V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 5 (3188) Jekabsons 1 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 21 (3651) Friedman 1 bad two last points V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (3817) Lencarter 0 shorter band I centre (3869) Norton 1 article: related to 4 Vesta V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 1 (3882) Johncox 0 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 18 (4055) Magellan 0 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 5 (4088) Baggesen 1 no clear 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm band - SW low (4302) Markeev 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (4402) Tsunemori 0 different band I shape A Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 25 (4692) SIMBAD 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (5037) Habing 0 shorter band I centre V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 25 (5121) Numazawa 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (5498) Gustafsson 0 linked to howardites V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS and NIR 6, 8 (5696) Ibsen 0 different red part (6003) 1988 VO1 1 SW low X Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (6046) 1991 RF14 0 shorter band I centre V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 18 (6159) Andreseloy 0 shorter band I centre V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 25 (6369) 1983 UC 0 shorter band I centre (6584) Ludekpesek 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (6728) 1991 UM 0 shorter band I centre (6789) Milkey 1 SW low (6853) Silvanomassaglia 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (6876) Beppeforti 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24, 24 (6877) Giada 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (6964) Kunihiko 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (7294) Barbaraakey 0 flatter red part S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (7529) Vagnozzi 0 flatter red part V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (7889) 1994 LX 0 noisy V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 20 (7933) Magritte 0 shorter band I centre X Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (7942) 1991 OK1 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (8031) Williamdana 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (8243) Devonburr 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24, 24 (8483) Kinwalaniihsia 1 SW low (without first and last bands) V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (8587) Ruficollis 1 K Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (8660) Sano 0 longer band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (8669) 1991 NS1 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (8692) 1992 WH 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (8827) Kollwitz 1 C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (8838) 1989 UW2 0 longer band I centre A Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 19 (9115) Battisti 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (9197) Endo 1 not very good VISNIR literature spectrum V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 22 (9432) Iba 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (9433) 1997 CF3 1 C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (9593) 1991 PZ17 0 bump instead of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm band S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (9752) 1990 QZ1 0 longer band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (9753) 1990 QL3 1 SW low Article number, page 14 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 – continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroid Acceptance Notes Type Method Ref (9974) Brody 1 SW high (10156) 1994 VQ7 1 bad three last points V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (10319) Toshiharu 0 shorter band I centre V V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23, 24 (10418) 1998 WZ23 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (10438) Ludolph 0 shorter band I centre (10578) 1995 LH 0 bad BP RP overlapping (10671) Mazurova 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (10811) Lau 0 flatter red part (10902) 1997 WB22 1 (11041) Fechner 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 7 (11155) Kinpu 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (11764) Benbaillaud 0 shorter band I centre V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 8 (11861) Teruhime 0 longer band I centre (11890) 1991 FF 0 longer band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (11920) 1992 UY2 1 SW low (noisy) C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (12551) 1998 QQ39 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (12860) Turney 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24, 24 (13133) Jandecleir 1 SW medium S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (13704) Aletesi 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (13714) Stainbrook 0 noisy S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (13743) Rivkin 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (13839) 1999 XF29 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (14108) 1998 OA13 0 shorter band I centre (14489) 1994 UW 0 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (14511) Nickel 1 bump instead of band - SW low (14562) 1997 YQ19 0 noisy V Spec VISNIR 25 (15031) Lemus 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (15088) Licitra 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (15759) 1992 GM4 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (15989) 1998 XK39 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (16866) 1998 AR 0 no clear band I S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (16962) Elizawoolard 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (17225) Alanschorn 0 shorter band I centre (17240) Gletorrence 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (17739) 1998 BY15 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (17821) Bolsche 1 lower quality spectrum - SW low C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (17882) Thielemann 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (17904) Annekoupal 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (17943) 1999 JZ6 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (17951) Fenska 0 shorter band I centre (18102) Angrilli 0 shorter band I centre (18143) 2000 OK48 1 SW medium A Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23, 24 (18280) 4245 T-3 0 more similar to a V type S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (18344) 1989 TN11 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (19230) Sugazi 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (19281) 1996 AP3 0 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 18 (19487) Rosscoleman 0 shorter band I centre (19589) Kirkland 0 noisy V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (19754) Paclements 1 SW high or medium S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23, 24 (19978) 1989 TN6 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (20079) 1994 EP 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (20157) 1996 TS18 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (20237) Clavius 0 no clear band I (20289) Nettimi 1 SW low (noisy) (20454) Pedrajo 1 noisy S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (20955) 2387 T-3 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (21318) 1996 XU26 1 SW low (21435) Aharon 0 noisy (21891) Andreabocelli 0 shorter band I centre (22113) 2000 RH9 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (22197) 3555 P-L 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (22322) Bodensee 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (23306) Adamfields 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (23502) 1992 DE3 0 shorter band I centre (23595) 1995 VR11 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (23766) 1998 MZ23 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (24286) 1999 XU188 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (24569) 9609 P-L 1 SW low or medium S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 Article number, page 15 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 – continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroid Acceptance Notes Type Method Ref (24684) 1990 EU4 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (24892) 1997 AD3 1 (25434) Westonia 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23, 24 (25752) 2000 BE8 0 noisy + bad BP-RP alignment (25808) 2000 CK103 0 flatter red part S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (26084) 1981 EK17 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (26417) Michaelgord 0 bad BP-RP overlapping V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23, 24 (26573) 2000 EG87 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (26851) Sarapul 1 SW low (27106) Jongoldman 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (27162) 1999 AM6 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (27262) 1999 XT184 1 bad RP X Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (27390) Kyledavis 0 shorter band I centre (27399) Gehring 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (27876) 1996 BM4 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (27884) 1996 EZ1 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (28132) Karenzobel 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (28162) 1998 VD14 1 (28291) 1999 CX52 0 shorter band I centre V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 9 (29171) 1990 QK3 1 bump instead of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm band - SW low (29269) 1993 FD25 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (30426) Philtalbot 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (30751) 1981 EL29 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (30769) 1984 ST2 1 (30781) 1988 CR2 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (30820) 1990 RU2 0 more similar to a V type S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (30834) 1990 VR6 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (30892) 1993 FR18 0 shorter band I centre A Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (31060) 1996 TB6 1 SW medium SQ Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 7 (31414) Rotarysusa 0 shorter band I centre V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 25 (31544) 1999 DZ5 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (31572) 1999 FM22 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (31622) 1999 GL19 0 shorter band I centre (32168) 2000 NP9 0 shorter band I centre (32449) Crystalmiller 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (32590) Cynthiachen 0 shorter band I centre SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (33418) Jacksonweaver 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (33562) Amydunphy 0 different red part V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (33881) 2000 JK66 0 V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 20 (33947) 2000 ML1 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (34698) 2001 OD22 0 shorter band I centre V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 16 (34706) 2001 OP83 0 Vesta family V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 14 (35193) 1994 CG14 0 no clear band I C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (35364) Donaldpray 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10 (36360) 2000 OH3 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (36363) 2000 OB5 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (36431) 2000 PJ12 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 7 (36798) 2000 SA43 0 shorter band I centre + noisy S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (37306) 2001 KW46 0 no clear band I (37386) 2001 WG29 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (39940) 1998 FR99 1 SW low (bad BP) (40056) 1998 KT44 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (41574) 2000 SQ1 0 no clear band I (41765) 2000 VV35 0 shorter band I centre X Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (41894) 2000 WH121 1 SW low (42644) 1998 FE67 0 bump instead of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm band V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (42822) 1999 NT13 1 SW medium S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24, 24 (43278) 2000 ES109 1 SW low C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (43302) 2000 GE114 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (43388) 2000 WA61 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (44150) 1998 HC108 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (44162) 1998 HC148 1 SW low C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (44322) 1998 RZ42 1 SW medium S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (44711) Carp 0 no clear band I S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (44940) 1999 VH53 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24, 24 (45417) 2000 AZ151 0 shorter band I centre (45787) 2000 OJ24 1 SW low (46701) Interrante 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 Article number, page 16 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 – continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroid Acceptance Notes Type Method Ref (47232) 1999 VQ36 1 good agreement between 500 and 950 nm C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (47398) 1999 XC116 0 bump instead of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm band V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (47463) 1999 XE258 0 shorter band I centre (48039) 2001 DT69 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (48114) 2001 FW77 0 different blue part S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (48323) 2002 NN33 0 low quality spectrum S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (48632) 1995 SV29 0 more similar to a V type V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10 (49101) 1998 RE76 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (49141) 1998 SM41 1 SW medium (or A type?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=') A Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (49901) 1999 XK164 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (50139) 2000 AH129 0 no clear band I (50236) 2000 BB3 0 shorter band I centre SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (51379) 2001 BY7 1 SW medium (noisy) C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (51443) 2001 FN27 0 bump instead of band V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (51659) Robohachi 1 SW low (noisy) S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (52216) 5014 T-3 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (52408) 1993 TJ34 1 SW medium (52995) 1998 UJ32 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (53417) 1999 NP38 1 SW low (53425) 1999 SO4 0 noisy S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (53593) 2000 CJ58 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (53661) 2000 DU62 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (53899) 2000 FM49 1 SW low or medium (54061) 2000 GX134 0 shorter band I centre (55549) 2001 XC59 1 noisy but plausible S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (55831) 1995 XL 0 bad BP-RP alignment S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (56348) 2000 AH69 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (56561) Jaimenomen 1 SW low (56585) 2000 JZ29 0 shorter band I centre Q Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (56696) 2000 LQ26 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (56904) 2000 QP171 1 C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (57857) 2001 XJ203 0 shorter band I centre (58640) 1997 WH18 1 SW low (59228) 1999 CH 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (59530) 1999 JU24 0 shorter band I centre (59686) 1999 JS108 0 shorter band I centre (60285) 1999 XR106 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (60584) 2000 EW132 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (61098) 2000 LY28 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (61203) 2000 OY4 0 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (61682) 2000 QV124 0 shorter band I centre C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (63366) 2001 HK4 0 different red part V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10 (63438) 2001 MY28 0 no clear band I (64252) 2001 TL168 0 shorter band I centre A Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (64458) 2001 VF35 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (64948) 2001 YH124 0 noisy S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (65707) 1992 PY1 0 bad quality spectrum (66679) 1999 TD29 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (68765) 2002 EE99 0 shorter band I centre (69595) 1998 FK11 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (69628) 1998 FD62 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (74107) 1998 QM37 1 SW low?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Bad BP-RP overlapping?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (75323) 1999 XY47 1 SW low (75441) 1999 XB129 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (77584) 2001 KP14 0 noisy S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (77590) 2001 KM17 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (78034) 2002 JF82 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 7 (79137) 1991 PD15 0 no band I (80356) 1999 XM124 0 no clear band I Ad Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (80863) 2000 DT27 0 more similar to a V type V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10 (85301) 1994 UM5 0 shorter band I centre (87093) 2000 LW6 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (87216) 2000 OG38 1 SW low (bad BP spectrum) (88912) 2001 TS8 0 no clear band I V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (88955) 2001 TW42 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (89776) 2002 AL90 1 SW low (89952) 2002 JB20 1 SW low S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (90604) 4813 P-L 1 bad red part S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 Article number, page 17 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 – continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroid Acceptance Notes Type Method Ref (90843) 1995 YZ22 1 SW medium (90855) 1996 GZ8 0 bump instead of band C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (91343) 1999 JP30 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (92593) 2000 PN16 1 SW low (98482) 2000 UL101 0 noisy S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (98745) 2000 YB47 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (99714) 2002 JQ41 1 SW medium S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (102071) 1999 RK139 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (102107) 1999 RL164 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10 (102195) 1999 ST10 0 noisy (102469) 1999 TC237 0 bap BP RP overlapping?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (108139) 2001 GL11 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 7 (108199) 2001 HX21 0 no clear band I (112326) 2002 MM4 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (114486) 2003 AJ57 0 (119385) 2001 TU7 0 bump instead of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='65 µm band, bad blue and red parts V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (122122) 2000 JM16 1 SW low V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (122125) 2000 JO17 1 SW medium S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (125002) 2001 TJ154 0 shorter band I centre (127422) 2002 OX11 0 low quality spectrum S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (128450) 2004 NX24 1 SW low (130988) 2000 WT141 0 NEA V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 13 (133245) 2003 RL2 0 shorter band I centre (134693) 1999 XP67 0 noisy (134916) 2000 YP53 1 bad RP spectrum, SW low (149372) 2002 XC71 0 bad agreement before 700 nm (150544) 2000 SG164 0 noisy X Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (158242) 2001 TM24 0 bad BP-RP alignment V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (163804) 2003 QQ88 0 noisy S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 7 (179587) 2002 LS2 0 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 15 (180757) 2004 NE33 0 (190138) 2005 RW27 0 shorter band I centre (190664) 2000 YX90 0 bad BP-RP overlapping (205560) 2001 SC282 1 noisy but plausible (230762) 2003 WP192 1 SW medium (310436) 2000 AB169 1 noisy but plausible Note: The information in the table are the number and name of the 305 asteroids,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' if they are accepted or not as a match for EC 002 (1 if accepted,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 0 if not),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' some notes about the visual inspection,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' the spectral type of the asteroid if determined and the method and relevant references associated (Ref column).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The taxonomic scheme used for the type of each asteroid is the one used in the reference papers associated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' stands for Spectroscopy and Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' for Photometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroids found as a match to the powder and raw slab samples of EC 002 with a curve-matching method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroid Acceptance Notes Type Method Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (6853) Silvanomassaglia 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (10156) 1994 VQ7 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (13743) Rivkin 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (16856) Banach 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (17056) Boschetti 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (20289) Nettimi 0 noisy and unclear band I (20454) Pedrajo 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (23522) 1992 WC9 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (24143) 1999 VY124 0 noisy C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (24892) 1997 AD3 1 (26399) Rileyennis 0 shorter band I centre (26420) 1999 XL103 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (27106) Jongoldman 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (27627) 2038 P-L 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (30000) Camenzind 0 shallow slope V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23, 24 (30081) Zarinrahman 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (38690) 2000 QS29 0 unclear band I S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (40693) 1999 RX229 0 unclear band I C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (44691) 1999 RF221 0 shallow slope C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (47327) 1999 XZ25 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (48632) 1995 SV29 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10 (50488) 2000 DA86 0 shallow slope (51659) Robohachi 0 noisy S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (51688) 2001 KW12 0 shorter band I centre S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 Article number, page 18 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 – continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (53561) 2000 CM22 0 noisy and unclear band I S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (54062) 2000 GX135 1 noisy but plausible C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (55549) 2001 XC59 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (55866) 1997 PV4 0 shallow slope V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (59686) 1999 JS108 0 shorter band I centre (61169) 2000 NY20 0 band red and blue parts X Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (63653) 2001 QQ109 1 (64181) 2001 TS64 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (68814) 2002 GP66 0 shallow slope (77147) 2001 EV6 1 bad two last points S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (77590) 2001 KM17 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (77935) 2002 GM54 1 noisy but plausible V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (78034) 2002 JF82 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 7 (80924) 2000 DJ73 0 noisy and unclear band I C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (81448) 2000 GV123 0 shallow slope S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (87010) 2000 JR55 0 shallow slope C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24, 24 (88955) 2001 TW42 1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (89556) 2001 XS98 1 except for last points (93893) 2000 WL141 0 unclear band I S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23, 24 (96353) 1997 VF3 0 flatter spectrum C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (99722) 2002 JW46 0 flatter spectrum S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (102107) 1999 RL164 0 shorter band I centre V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10 (103308) 2000 AH55 0 unclear band I (119144) 2001 PH32 0 unclear band I V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (123113) 2000 SH361 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (124884) 2001 TE41 1 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10, 23 (130988) 2000 WT141 0 NEA V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 13 (147124) 2002 TH129 0 less pronounced band (149372) 2002 XC71 0 bad agreement before 700 nm (153408) 2001 QV137 0 shorter band I centre (164121) 2003 YT1 1 RP noisy but plausible V Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VISNIR 12 (194248) 2001 TA199 0 flatter spectrum (205560) 2001 SC282 1 noisy but plausible (310436) 2000 AB169 1 noisy but plausible Note: The information in the table are the number and name of the 58 asteroids, if they are accepted or not as a good match for EC 002 (1 if accepted, 0 if not), some notes about the visual inspection, the spectral type of the asteroid if determined and the method and relevant references associated (Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' column).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The taxonomic scheme used for the type of each asteroid is the one used in the reference papers associated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' stands for Spectroscopy and Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' for Photometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Note: The references are (1) Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (1995), (2) Bus & Binzel (2002), (3) Lazzaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2004), (4) Alvarez-Candal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2006), (5) DeMeo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2009), (6) Moskovitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2010), (7) Carvano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2010), (8) de Sanctis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2011), (9) Solontoi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2012), (10) DeMeo & Carry (2013), (11) Jasmim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2013), (12) Sanchez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2013), (13) Ribeiro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2014), (14) Lindsay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2015), (15) Carry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2016), (16) Hardersen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2018), (17) Popescu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2018), (18)Medeiros et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2019), (19) DeMeo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2019), (20) Binzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2019), (21) Matloviˇc et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2020), (22) Migliorini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2021), (23) Sergeyev & Carry (2021), (24) Sergeyev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2022), (25) Mahlke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' (2022) Appendix B: Spectra of the asteroids matching the spectra of EC 002 Article number, page 19 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Accepted asteroids as candidate matches to the three space-weathered modelled samples of EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Asteroid Type Method Ref SW low (10131) Stanga S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (15623) 2000 HU30 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (18780) Kuncham S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (20535) Marshburrows L Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (22276) Belkin S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (22538) Lucasmoller S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (24684) 1990 EU4 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (27876) 1996 BM4 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (32835) 1992 EO5 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (33423) 1999 DK A Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 (33852) Baschnagel V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (33934) 2000 LA30 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (33947) 2000 ML1 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (43278) 2000 ES109 C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (56561) Jaimenomen (65504) 3544 P-L V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (74378) 1998 XH11 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' NIR 17 (79827) 1998 WU3 (89952) 2002 JB20 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (100440) 1996 PJ6 (103308) 2000 AH55 (108139) 2001 GL11 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 7 (112326) 2002 MM4 V Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 23 SW medium (42822) 1999 NT13 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (44322) 1998 RZ42 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (68089) 2000 YS108 (68946) 2002 PX138 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 (93797) 2000 WO43 S Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 10 (108899) 2001 PP5 (145532) 2006 FD42 (230762) 2003 WP192 SW high (33809) 1999 XK152 C Phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' VIS 24 Note: This selection has been done after visual inspection of 269 asteroids for the low space-weathered sample, 223 asteroids for the medium space weathering and 12 asteroids for the high space weathering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The references associated with the numbers in the Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' column are given in appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The taxonomic scheme used for the type of each asteroid is the one used in the reference papers associated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' SW stands for space weathering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 20 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (1643) Brown (1946) Walraven (2432) Soomana (3188) Jekabsons 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (3651) Friedman (3869) Norton (4302) Markeev (5121) Numazawa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (6853) Silvanomassaglia (6876) Beppeforti (8587) Ruficollis (8827) Kollwitz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (9197) Endo (9433) 1997CF3 (10156) 1994VQ7 (10671) Mazurova 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (10902) 1997WB22 (11155) Kinpu (12551) 1998QQ39 (13839) 1999XF29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (15989) 1998XK39 (17240) Gletorrence (20454) Pedrajo (24286) 1999XU188 500 750 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (24892) 1997AD3 500 750 1000 (26573) 2000EG87 500 750 1000 (27262) 1999XT184 500 750 1000 (28162) 1998VD14 Normalised Reflectance Wavelength (nm) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Spectra of the 41 asteroids found in the ’possible matches area’, validated as matches of EC 002 after visual inspection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectra are normalised at 550 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Black continuous line: spectrum of the powder sample of the meteorite, grey lines: spectra of the raw slab samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The 16 bands of the Gaia asteroid spectra are given a colour and a symbol according to the value of the flag associated to the band: blue circle if flag=0, orange diamond if flag=1 and red star if flag=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' This way of showing the asteroid spectra applies for every figure hereafter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 21 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (30769) 1984ST2 (33418) Jacksonweaver (36431) 2000PJ12 (44150) 1998HC108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (47232) 1999VQ36 (49101) 1998RE76 (55549) 2001XC59 (56904) 2000QP171 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (87093) 2000LW6 (88955) 2001TW42 (90604) 4813P-L (205560) 2001SC282 500 750 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (310436) 2000AB169 Normalised Reflectance Wavelength (nm) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 22 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(4088) Baggesen ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(6003) 1988VO1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(6789) Milkey ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(8243) Devonburr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(8483) Kinwalaniihsia ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(8692) 1992WH ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(9753) 1990QL3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(11920) 1992UY2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(14511) Nickel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(15088) Licitra ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17739) 1998BY15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17821) Bolsche ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17882) Thielemann ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(17943) 1999JZ6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(18344) 1989TN11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(19978) 1989TN6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(20289) Nettimi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(21318) 1996XU26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(23766) 1998MZ23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(24569) 9609P-L ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(24684) 1990EU4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(26084) 1981EK17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(26851) Sarapul ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(27876) 1996BM4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='750 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(27884) 1996EZ1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='750 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(28132) Karenzobel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='750 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(29171) 1990QK3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='750 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(30426) Philtalbot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Normalised Reflectance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Wavelength (nm) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 but with the 56 asteroids visually validated as matches of the low space-weathered EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The space-weathered spectra of EC 002 are shown in grey lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 23 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(30834) 1990VR6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(33947) 2000ML1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(35364) Donaldpray ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(39940) 1998FR99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(41894) 2000WH121 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(43278) 2000ES109 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(44162) 1998HC148 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(45787) 2000OJ24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(48039) 2001DT69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(51659) 2001JN1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(53417) 1999NP38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(53661) 2000DU62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(53899) 2000FM49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(56561) Jaimenomen ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(58640) 1997WH18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(61098) 2000LY28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(64458) 2001VF35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(74107) 1998QM37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(75323) 1999XY47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(87216) 2000OG38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(89776) 2002AL90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(89952) 2002JB20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(92593) 2000PN16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(108139) 2001GL11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='750 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(112326) 2002MM4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='750 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(122122) 2000JM16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='750 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(128450) 2004NX24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='750 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='(134916) 2000YP53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Normalised Reflectance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Wavelength (nm) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 24 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts 1 2 (13133) Jandecleir (18143) 2000OK48 (31060) 1996TB6 (42822) 1999NT13 1 2 (44322) 1998RZ42 (49141) 1998SM41 (51379) 2001BY7 (52408) 1993TJ34 500 750 1000 1 2 (90843) 1995YZ22 500 750 1000 (99714) 2002JQ41 500 750 1000 (122125) 2000JO17 500 750 1000 (230762) 2003WP192 Normalised Reflectance Wavelength (nm) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 but with the 12 asteroids visually validated as matches of the medium space-weathered EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 400 600 800 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 (9974) Brody 400 600 800 1000 (19754) Paclements Normalised Reflectance Wavelength (nm) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='2 but with the two asteroids visually validated as matches of the high space-weathered EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 25 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (16856) Banach f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='991 (17056) Boschetti f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='024 (54062) 2000GX135 f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='019 (63653) 2001QQ109 f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (77147) 2001EV6 f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='024 (77935) 2002GM54 f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='046 (89556) 2001XS98 f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='011 (123113) 2000SH361 f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='016 500 750 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 (124884) 2001TE41 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='984 500 750 1000 (164121) 2003YT1 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='988 Normalised Reflectance Wavelength (nm) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Spectra of the ten asteroids found with the curve matching method only, validated as matches of EC 002 after visual inspection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectra are normalised with a scaling factor f, here the meteorite spectrum was divided by the scaling factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' The spectra of the powder sample of the meteorite is shown in black continuous line, and the raw slab samples spectra are shown in grey lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' As previously, the 16 bands of the Gaia asteroid spectra are shown with a colour and a symbol associated to their flag number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 26 of 28 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Galinier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' : Gaia search for early-formed andesitic asteroidal crusts 1 2 (10131) Stanga f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='043 (15623) 2000HU30 f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='02 (18780) Kuncham f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='964 (20535) Marshburrows f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='961 1 2 (22276) Belkin f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='976 (22538) Lucasmoller f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='957 (32835) 1992EO5 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='996 (33423) 1999DK f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='051 1 2 (33852) Baschnagel f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='971 (33934) 2000LA30 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='995 (65504) 3544P-L f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='895 (74378) 1998XH11 f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='023 500 750 1000 1 2 (79827) 1998WU3 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='913 500 750 1000 (100440) 1996PJ6 f = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='056 500 750 1000 (103308) 2000AH55 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='948 Normalised Reflectance Wavelength (nm) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 but with the 15 asteroids visually validated as matches of the low space-weathered EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Here the spectra of the powder sample of the meteorite is shown in black continuous line, and the space-weathered spectra are shown in grey lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 27 of 28 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' main 1 2 (68089) 2000YS108 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='88 (68946) 2002PX138 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='984 1 2 (93797) 2000WO43 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='945 (108899) 2001PP5 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='958 500 750 1000 1 2 (145532) 2006FD42 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='959 Normalised Reflectance Wavelength (nm) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 but with the 8 asteroids visually validated as matches of the medium space-weathered EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' 400 600 800 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='0 (33809) 1999XK152 f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='921 Normalised Reflectance Wavelength (nm) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content='6 but with the asteroid visually validated as match of the high space-weathered EC 002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} +page_content=' Article number, page 28 of 28' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf'} diff --git a/odE1T4oBgHgl3EQfhwTG/content/2301.03245v1.pdf b/odE1T4oBgHgl3EQfhwTG/content/2301.03245v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..5b4478560344e0c5eb06cb53d8dd14b947609630 --- /dev/null +++ b/odE1T4oBgHgl3EQfhwTG/content/2301.03245v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2ed0e25150be8881d398732319c2b9e8582c618ec70559df37d574c8142be41b +size 749620 diff --git a/odE1T4oBgHgl3EQfhwTG/vector_store/index.faiss b/odE1T4oBgHgl3EQfhwTG/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..386e6ec72d29831d60a61302f8e307f547ec738c --- /dev/null +++ b/odE1T4oBgHgl3EQfhwTG/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8a51d43b0837d543d3514940f4089d07e22c115210b4b65da38f2bdbfde127fc +size 2818093 diff --git a/odE1T4oBgHgl3EQfhwTG/vector_store/index.pkl b/odE1T4oBgHgl3EQfhwTG/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..57aad46a938af2dcc1f318cbf8096ffe83ecad0a --- /dev/null +++ b/odE1T4oBgHgl3EQfhwTG/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c44fb6a34445d7aff9a6ed78a006a71f91e56bb8e61f4fbc1c78d158598855c4 +size 99350 diff --git a/rNFIT4oBgHgl3EQfxivv/content/tmp_files/2301.11357v1.pdf.txt b/rNFIT4oBgHgl3EQfxivv/content/tmp_files/2301.11357v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..6a102cf32741f280a6dbbba1a97e913329b6ae14 --- /dev/null +++ b/rNFIT4oBgHgl3EQfxivv/content/tmp_files/2301.11357v1.pdf.txt @@ -0,0 +1,1442 @@ +Multimodal Event Transformer for Image-guided Story Ending +Generation +Yucheng Zhou, Guodong Long +Australian AI Institute, School of Computer Science, FEIT, University of Technology Sydney +yucheng.zhou-1@student.uts.edu.au, guodong.long@uts.edu.au +Abstract +Image-guided +story +ending +generation +(IgSEG) is to generate a story ending based on +given story plots and ending image. Existing +methods focus on cross-modal feature fusion +but overlook reasoning and mining implicit +information from story plots and ending +image. To tackle this drawback, we propose a +multimodal event transformer, an event-based +reasoning framework for IgSEG. Specifically, +we construct visual and semantic event graphs +from story plots and ending image, +and +leverage event-based reasoning to reason and +mine implicit information in a single modality. +Next, we connect visual and semantic event +graphs and utilize cross-modal fusion to inte- +grate different-modality features. In addition, +we propose a multimodal injector to adaptive +pass essential information to decoder. Besides, +we +present +an +incoherence +detection +to +enhance the understanding context of a story +plot and the robustness of graph modeling for +our model. Experimental results show that our +method achieves state-of-the-art performance +for the image-guided story ending generation. +1 +Introduction +Story ending generation (Guan et al., 2019) aims +to generate a reasonable ending for a given story +plot. It requires deep models to integrate powerful +language understanding capability, which is crucial +for artificial intelligence. Many efforts (Wang and +Wan, 2019; Guan et al., 2019; Yao et al., 2019; +Guan et al., 2020) have been proposed and achieved +promising results since neural models designed +for comprehending natural language allow them +to understand story plots and reason reasonable +story endings. With the advance of automatic story +generation, it has attracted outstanding attention in +multimodality research (Jung et al., 2020; Yu et al., +2021; Chen et al., 2021). +However, since story plots and story ending usu- +ally correspond to different content, the context +It was our first big backyard barbeque of summer +and we invited all friends. +We all sat around and caught up with each others’ +lives. +Dave started the fire pit, look at those flames! +Everyone put hot dogs on skewers and roasted +them over the fire. +We all had a great time hanging out until very late +in the night and it was a great party! +Story Plot +Ending +Image +Story +Ending +Generation +Figure 1: Given a multi-sentence story plot and an end- +ing image, the image-guided story ending generation +aims to generate a story ending related to the image. +with information bottleneck is not enough to de- +duce an informative story ending, i.e., generated +endings tend to be inane and generic. To address +this issue, Huang et al. (2021) propose an image- +guided story ending generation (IgSEG) task that +combines story plots and ending image to gener- +ate a coherent, specific and informative story end- +ing. IgSEG demands not only introducing informa- +tion from the ending image to story plots for story +ending generation but also reasoning and mining +implicit information from story plots and ending +image, respectively. As shown in Figure 1, for +story plots, “party” can be inferred from “big back- +yard barbeque” and “invited all friends”, and “all +friends”, “all sat around” and “caught up with” can +deduce “had a great time”. For the ending image, +“dim indoor” and “bright lights” can infer “very late +in the night”. +Existing methods (Huang et al., 2021; Xue et al., +2022) focus on cross-modal feature fusion but over- +look reasoning and mining implicit information +from story plots and ending images. Nonetheless, +to effectively conduct cross-modal feature fusion, +it is necessary to reason and mine more implicit +information from single-modality data. An event is +a fine-grained semantic unit, which refers to a text +arXiv:2301.11357v1 [cs.CV] 26 Jan 2023 + +span composed of a predicate and its arguments +(Zhang et al., 2020). Recently, event-centric rea- +soning displays excellent capability for context un- +derstanding and subsequent event prediction (Zhou +et al., 2022b). In this work, we propose a multi- +modal event transformer (MET) to mine implicit +information to improve cross-modal fusion. For +story plots, we leverage semantic role labeling +(SRL) parser (He et al., 2017) to extract events +from story plots and then construct them into a +semantic event graph. For an ending image, we uti- +lize scene graph parser (Zellers et al., 2018) to cap- +ture visual concepts and their relation to construct +visual event graphs. Since edges contain relation- +ships between nodes in visual and semantic event +graphs, we employ relational graph convolutional +networks (RGCN) (Schlichtkrull et al., 2018) to +encode event graphs to infer implicit information. +For cross-modal feature fusion, most recent +works (Huang et al., 2021; Xue et al., 2022) adopt +attention-based neural network models to implic- +itly integrate multi-modal features. However, due +to the complexity of cross-modal features and the +existence of dependency between single-modal fea- +tures, it is often difficult for these models to comple- +ment cross-modal features. To tackle the issue, we +propose cross-modal fusion to integrate different- +modality features. Specifically, we merge visual +and semantic event graphs and use RGCN to fuse +cross-modal features for feature complement. +Moreover, since features from different modal- +ities suffer from domain inconsistency, previous +methods (Huang et al., 2021; Xue et al., 2022) +directly concatenate them and pass them to the de- +coder, which is not a crafted manner. To appropri- +ately combine features from different modalities, +we design a multimodal injector to integrate rel- +evant features into the decoder. In addition, we +propose an incoherence detection to enhance the +context understanding for a story plot and the ro- +bustness of graph modeling for our model. +In experiments, we conduct extensive evalua- +tions on two datasets (i.e., VIST-E (Huang et al., +2021) and LSMDC-E (Xue et al., 2022)). Experi- +mental results show that our method outperforms +strong competitors and achieves state-of-the-art per- +formance. In addition, we conduct further analysis +to demonstrate the effectiveness of our method. +Lastly, we compare the performance of our method +and other methods through human evaluation. +2 +Related Work +2.1 +Story Ending Generation +Story ending generation aims to generate a story +ending for given story plots, and it is one of the im- +portant tasks in natural language generation. Many +efforts have been invested in story ending gener- +ation (Wang and Wan, 2019; Guan et al., 2019; +Yao et al., 2019; Guan et al., 2020). To make +the generated story ending more reasonable, Guan +et al. (2019) propose a model encapsulating a +multi-source attention mechanism, which can uti- +lize context clues and understand commonsense +knowledge. To ensure the coherence in generated +story endings, Wang and Wan (2019) propose a +transformer-based conditional autoencoder, which +can capture contextual clues in story splot. To +improve long-range coherence in generated sto- +ries, Guan et al. (2020) pre-train model on exter- +nal commonsense knowledge bases for the story +ending generation. Zhou et al. (2022b) propose +a correlation-aware context-to-event pre-trained +transformer, which applies to a wide range of event- +centric reasoning and generation scenarios, includ- +ing story ending generation. Beyond the limit of +single-modal information, Huang et al. (2021) in- +troduce visual information to enrich the generation +of story endings with more coherent, specific, and +informative. To improve cross-modal feature fu- +sion, Xue et al. (2022) propose a multimodal mem- +ory transformer, which fuses contextual and visual +information to capture the multimodal dependency +effectively. +2.2 +Visual Storytelling +Visual storytelling task is proposed by Huang et al. +(2016), which aims to generate a story based on +a given image stream. Wang et al. (2018) present +an adversarial reward learning framework to learn +an implicit reward function from human demon- +strations. To inject imaginary concepts that do not +appear in the images, some works (Yang et al., +2019; Chen et al., 2021; Xu et al., 2021) propose +building scene graphs and injecting external knowl- +edge into model to reason the relationship between +visual concepts. Qi et al. (2021) propose a latent +memory-augmented graph transformer to exploit +the semantic relationships among image regions +and attentively aggregate critical visual features +based on the parsed scene graphs. + +It was our first big +backyard barbeque +of summer and we +invited all friends. +Everyone put hot +dogs +on +skewers +and roasted them +over the fire. +… +man +room +skirt +woman +jacket +window +wearing +near +wearing +in front of +on +Scene Graph Parser +was +we +and +invited +It +all friends +our first big backyard +barbeque of summer +put +roasted +Everyone +hot dogs +on skewers +them +over the fire +… +light +near +whole sentence +… +whole image +SRL parser +Event Graph Construction +Event-based Reasoning +whole sentence +… +whole image +Relational Graph Convolution Network +Cross-modal Fusion +Multimodal Injector +Embed & Position +Self-attention +Add & Norm +Cross-attention +Add & Norm +FFN +Add & Norm +N +× +Relational Graph Convolution Network +Story Ending Generation +Figure 2: An overview of our model. Grey rounded rectangles denote fixed model. Blue rounded rectangles denote +parameters that will be optimized. +2.3 +Event-centric Reasoning +Events always play an essential role in a story be- +cause a story is composed of multiple events and +implies the relationship between the events. An +event is a text span composed of a predicate and +its arguments (Zhang et al., 2020). Multiple events +include relations between events that conform to +human commonsense (Zhou et al., 2022a). Some +works use plot events for story generation, which is +generating a prompt and then transforming it into a +text (Ammanabrolu et al., 2020; Fan et al., 2019). +To generate a more coherent and specific ending, +understanding events in story plots and their rela- +tionship can obtain informative context, which is a +crucial step for story ending generation. +3 +Method +This section will elaborate on our method for +image-guided story ending generation, including +event graph construction, event-based reasoning, +cross-modal fusion, multimodal injector and story +ending generation. The details of our method are +shown in Figure 2. Lastly, details about objectives +and training are elaborated. +3.1 +Event Graph Construction +Semantic Event Graph. +The story plot contains +multiple events which are correlated with each +other. The definition of an event is a text span +composed of a predicate and its arguments (Zhang +et al., 2020). The event-centric reasoning shows +excellent capability for context understanding and +subsequent event prediction (Zhou et al., 2022b). +To effectively reason and mine more implicit in- +formation from story plots, we use semantic role +labeling (SRL) to parse the story and extract events +from parsing results, as shown in Figure 2. Specifi- +cally, Given story plots S = {S1, S2, S3, S4}, we +construct semantic event graphs Gs +i = (Vs +i , Es +i ) by +SRL. Es +i consists of two vectors, one for the pos- +itive direction and one for the opposite direction, +and Vs +i = {si +0, si +1, si +2, · · · , si +n}. To obtain features +of each node, we use a pre-trained transformer en- +coder to obtain token representations in sentence +Si. +Ti = Trans-Enc(Si), Ti ∈ {t1 +i , t2 +i , · · · , tg +i } (1) +where tg +i denotes token representation, and g is +length of sentence Si. Next, we conduct a mean +pooling operation for tokens presentations based +on SRL parsing result ˆSi to get presentation ˆsi +j +for each node. In addition, we take pooling for +all token presentations of sentence Si to obtain a +presentation of sentence node ˆsi +0. Each node ˆsi +j +in sentence Si is connected to the sentence node. +To preserve the relationship between sequences, +we connect sentence nodes in the order of the se- +quence. +Visual Event Graph. +For ending images, previ- +ous works (Huang et al., 2021; Xue et al., 2022) use +pre-trained convolutional neural networks (CNN) +to extract feature maps directly. We construct vi- +sual event graphs to reason and mine more im- +plicit information from ending images. +Scene + +graphs have been used for many tasks to produce +structured graph representations of visual scenes +(Zellers et al., 2018). Inspired by the success of +these tasks, we parse the ending image I to a scene +graph via the scene graph parser. A scene graph +can be denoted as a tuple GI = {VI, EI}, where +VI = {v0, v1, v2, · · · , vk} is a set of k detected +objects. v0 denotes a representation of the whole +image, and other vi is a region representation of +detected object. EI = {e1, e2, · · · , em} is a set of +directed edges and each edge ei refers to a triplet +(vi, ri,j, vj), which includes two directional edges +from vi to ri,j and from ri,j to vj. Specifically, the +construction of the scene graph can be divided into +two parts: one is object detection, and the other is +visual relation detection. +For object detection, we leverage a well-trained +object detector, Faster-RCNN (Ren et al., 2017) +with a ResNet-152 (He et al., 2016) backbone, to +classify and encode objects in the ending image +I. The outputs of detector include a set of region +representations VI = {v1, v2, · · · , vk} and object +categories O = {o1, o2, · · · , ok}. For visual rela- +tion detection, we leverage MOTIFS (Zellers et al., +2018) as our relation detector to classify the re- +lationship between objects. We train the relation +detector on Visual Genome dataset (Krishna et al., +2017). The output of relation detector is a set of +relation EI = {e1, e2, · · · , em}, where ei refers to +a triplet (vi, ri,j, vj). Lastly, we obtain the scene +graph GI = {VI, EI} of ending image by combin- +ing the results of object detection and relationship +detection. +3.2 +Event-based Reasoning +We perform graph-structure reasoning over seman- +tic and visual event graphs to effectively reason and +mine more implicit information from story plots +and ending images. Since event graphs have mul- +tiple relations between nodes (e.g., relations be- +tween visual objects, relations between predicates +and arguments, etc.), we select relational graph +convolutional networks (RGCN), which can pass +different messages along different relations. Specif- +ically, for each layer l in L-layer RGCN, the node +representation wl +i is updated as follows: +wl+1 +i +=ReLU +� � +r∈R +� +j∈Nr(i) +1 +|Nr(i)|Wr · wl +j +� +(2) +where R denote a set of all edges types, and Nr(i) +is the neighborhood of node i under relation r. +Selective Attention +hd +… +Selective Attention +hd +… +𝜎 +× +× +1- ++ +hd ++ +{ "𝒱! +", "𝒱# +", "𝒱$ +", "𝒱%"} +"𝒱& +Figure 3: Details of the multimodal injector. +To reason and mine more implicit information in +single-modality, we conduct event-based reasoning +on semantic and visual event graphs, respectively. +3.3 +Cross-modal Fusion +We propose cross-modal fusion for visual and se- +mantic event graphs to integrate information from +story plots and ending images. We adopt a layer +normalization for node features to reduce the cross- +modal gap between visual and semantic graphs. For +cross-modal feature fusion, previous works (Huang +et al., 2021; Xue et al., 2022) adopt attention-based +neural network models to implicitly integrate multi- +modal features. However, these models neglect the +dependency between single-modal features. There- +fore, we maintain graph structure for visual and +semantic features and connect nodes that repre- +sent whole image and sentences, as shown in Fig- +ure 2. Moreover, we utilize RGCN as Eq.2 to in- +tegrate cross-modal features in event graph, and +outputs denote as ¯Vs +i = {¯si +0, ¯si +1, ¯si +2, · · · , ¯si +n} and +¯VI = {¯v0, ¯v1, ¯v2, · · · , ¯vk}. +3.4 +Multimodal Injector +To integrate different modal sources, we propose +a multimodal injector, which adaptly extracts key +information from different modal features and inte- +grates them appropriately. As shown in Figure 3, +inputs of multimodal injector include a hidden state +hd from the decoder, visual features ¯VI and seman- +tic features ¯Vs +i . Specifically, we first use selective +attention for key information extraction, i.e., +hu +attn = softmax +�QKT +√dk +� +V, u ∈ {I, S} +(3) +where Q is hd from decoder; K and V are visual +features ¯VI or semantic features ¯Vs +i ; and dk is the + +same as the dimension of hd. Then, the gate λ ∈ +[0, 1] and the fused output are defined as: +λ = σ +� +UhI +attn + V hS +attn +� +(4) +where U and V are trainable weights. λ controls +how much visual information is attended. +ˆhd = λ · hI +attn + (1 − λ) · hS +attn + hd +(5) +where the fusion vector ˆhd is fed into the decoder. +3.5 +Story Ending Generation +Recently, Transformer (Vaswani et al., 2017) shows +its powerful ability to generate natural language +(Radford et al., 2019). For story ending generation, +we use a Transformer decoder as the decoder for +our model. Specifically, the decoder input includes +a segment of the generated story ending ¯C and +fusion vector ˆhd from the multimodal injector. The +purpose of the decoder is to predict a probability +distribution of the next word of the segment ¯C, i.e., +hi = Trans-Dec(ˆhd, ¯C) ∈ Rd +where ¯C = [c1, . . . , ci−1] +(6) +pi = LM-Head(hi) ∈ RV +(7) +where hi refers to the hidden representation in i-th +step; V denotes token vocabulary and pi refers to +a probability distribution over V; d in ˆhd denotes +the current number of layer. Lastly, the story end- +ing generation objective is defined as a maximum +likelihood estimation. The loss function is defined +as: +L(gen) = − 1 +|N| +�N +i=1 log pi(ci), +(8) +where pi(ci) denotes fetching the probability of the +i-th step gold token ci ∈ C from pi. C refers to +the gold caption, and N is its length. +3.6 +Incoherence Detection +To enhance the understanding context of a story +plot and robustness of graph modeling for our +model, we introduce a training objective: incoher- +ence detection. We set a 10% probability to replace +a whole sentence node in semantic event graph ran- +domly. In the objective, the final step output hn +of the decoder is passed into a MLP to classify +whether each whole sentence node is changed, i.e., +pclf = σ(MLP(hn)) ∈ R4 +(9) +where σ denotes a sigmoid function. The loss func- +tion is defined as: +L(clf) = −1 +4 +4 +� +i=1 +yi · log(pclf +i +) ++ (1 − yi) · log(1 − pclf +i +) +(10) +3.7 +Training +In model training, we set a trade-off parameter α +for two losses L(gen) and L(clf). The total loss +function of our model is definite as follows: +L = L(gen) + α × L(clf) +(11) +4 +Experiment +4.1 +Dataset and Evaluation Metric +VIST-Ending. +We compare our model and other +state-of-the-art methods on the VIST-Ending +(VIST-E) dataset (Huang et al., 2021). The dataset +is built over VIST dataset (Huang et al., 2016). +The VIST-E dataset comprises 39,920 samples for +training, 4,963 samples for validation and 5,030 +samples for testing. In experiments, we follow the +data split in (Huang et al., 2021). +LSMDC-Ending. +LSMDC-Ending (LSMDC-E) +(Xue et al., 2022) contains 20,151 training samples, +1,477 validation samples and 2,005 test samples, +which are collected from LSMDC 2021 (Rohrbach +et al., 2017). +Visual Genome. +We use the Visual Genome +(VG) dataset to train a visual relationship detec- +tor. The dataset includes 108,077 images annotated +with scene graphs, and we follow the setting in (Xu +et al., 2017), which contains 150 object classes and +50 relation classes. +Evaluation Metric. +As follow Xue et al. (2022), +we utilize the same metrics to report evaluation re- +sults, and the evaluation code is open-source1. The +evaluation metrics include: BLEU (Kingma and +Ba, 2015), METEOR (Banerjee and Lavie, 2005), +CIDEr (Vedantam et al., 2015), ROUGE-L (Lin, +2004) and Result Sum (rSUM) (Xue et al., 2022). +4.2 +Implementation Details +For the scene graph, we limit the maximum number +of objects to 10 and the maximum number of rela- +tionships to 20. The relational graph convolution +network includes four relational graph convolution +1https://github.com/tylin/coco-caption + +Method +B@1 +B@2 +B@3 +B@4 +M +R-L +C +rSUM +Seq2Seq (Luong et al., 2015) +13.96 +5.57 +2.94 +1.69 +4.54 +16.84 +12.04 +57.58 +Transformer (Vaswani et al., 2017) +17.18 +6.29 +3.07 +2.01 +6.91 +18.23 +12.75 +66.44 +IE+MSA (Guan et al., 2019) +19.15 +5.74 +2.73 +1.63 +6.59 +20.62 +15.56 +72.02 +T-CVAE (Wang and Wan, 2019) +14.34 +5.06 +2.01 +1.13 +4.23 +15.51 +11.49 +53.77 +MG+Trans (Huang et al., 2021) +19.43 +7.47 +3.92 +2.46 +7.63 +19.62 +14.42 +74.95 +MG+CIA (Huang et al., 2021) +20.91 +7.46 +3.88 +2.35 +7.29 +21.12 +19.88 +82.89 +MGCL (Huang et al., 2021) +22.57 +8.16 +4.23 +2.49 +7.84 +21.66 +21.46 +88.41 +MMT (Xue et al., 2022) +22.87 +8.68 +4.38 +2.61 +15.55 +23.61 +25.41 +103.11 +MET (Ours) +24.31 +8.79 +4.62 +2.73 +16.41 +24.49 +26.47 +107.82 +Table 1: Comparison results on VIST-E test set. B@n, M, R-L, C and rSUM denote BLEU@n, METEOR, +ROUGE-L, CIDEr and Result Sum, respectively. +Method +B@1 +B@2 +B@3 +B@4 +M +R-L +C +rSUM +Seq2Seq (Luong et al., 2015) +14.21 +4.56 +1.70 +0.70 +11.01 +19.69 +8.69 +60.56 +Transformer (Vaswani et al., 2017) +15.35 +4.49 +1.82 +0.76 +11.43 +19.16 +9.32 +62.33 +MGCL (Huang et al., 2021) +15.89 +4.76 +1.57 +0.00 +11.61 +20.30 +9.16 +63.29 +MMT (Xue et al., 2022) +18.52 +5.99 +2.51 +1.13 +12.87 +20.99 +12.41 +74.42 +MET (Ours) +19.98 +6.48 +2.89 +1.77 +14.53 +22.73 +13.85 +82.23 +Table 2: Comparison results on LSMDC-E test set. +layers, and the size of input and output sets of 768. +For semantic event reasoning, we use a pre-trained +BERT model (Devlin et al., 2019) as the language +model. The layers and attention heads of the de- +coder are 12 and 8. The dimension of embedding +vectors in the decoder is 768, and the dimension +of hidden states is 768. The visual feature encoder +is ResNet-152. For model training, we select the +Adam optimizer (Kingma and Ba, 2015) to opti- +mize the model with learning rate of 2e-4. The +maximum training epoch of our model is 25. The +trade-off parameter α in Eq.11 is 0.2. The batch +size, weight decay and warm-up proportion are 128, +0.01 and 0.1. During inference, we use the beam +search with a beam size of 3 to generate a story +ending with maximum sentence length is 25. Our +model is trained on one V100 GPU. +4.3 +Baselines +We compare our model with following state-of-the- +art baselines: (1) Seq2Seq is a stack RNN-based +model (Luong et al., 2015) with attention mech- +anisms, and image features are directly concate- +nated. (2) Transformer, proposed by Vaswani +et al. (2017), is an encoder-decoder model with +self-attention mechanisms. (3) IE+MSA is a story +ending generation model incorporating external +knowledge (Guan et al., 2019). (4) T-CVAE (Wang +and Wan, 2019) is a conditional variational autoen- +coder based on transformer for missing story plots +generation. (5) MG+Trans consists of multi-layer +graph convolutional networks and a transformer de- +coder (Huang et al., 2021). (6) MG+CIA consists +of multi-layer graph convolutional networks, top- +down LSTM and one context-image attention unit +in the decoder (Huang et al., 2021). (7) MGCL +is an image-guided story ending generation model +with multi-layer graph convolution networks and +cascade-LSTM (Huang et al., 2021). (8) MMT is a +multimodal memory transformer for image-guided +story ending generation (Xue et al., 2022). +4.4 +Main Results +The experimental results on VIST-E and LSMDC- +E are shown in Table 1 and Table 2. From the +tables, we can make two observations. Firstly, our +model achieves state-of-the-art performance on the +VIST-E and LSMDC-E datasets compared to other +strong competitors. In addition, MG+CIA, MGCL, +MMT and our model significantly and consistently +outperform other models that directly concatenate +visual features. It indicates that mining visual in- +formation is essential and can provide rich infor- +mation to predict the ending. Moreover, our model + +Method +B@1 +B@2 +B@3 +B@4 +M +R-L +C +rSUM +MET +24.31 +8.79 +4.62 +2.73 +16.41 +24.49 +26.47 +107.82 +w/o ID +23.84 +8.70 +4.51 +2.56 +15.91 +24.10 +25.86 +105.48 +w/o CMF +23.47 +8.65 +4.47 +2.53 +15.91 +23.85 +25.66 +104.54 +w/o MI +22.68 +8.56 +4.33 +2.48 +15.83 +22.99 +24.74 +101.61 +w/o VER +22.41 +8.25 +4.33 +2.50 +15.86 +23.09 +25.03 +101.47 +w/o SER +23.78 +8.73 +4.46 +2.55 +15.88 +24.04 +25.87 +105.31 +w/o CMF, MI +21.03 +8.03 +4.16 +2.36 +15.43 +21.14 +22.44 +94.59 +Table 3: Ablation study. “w/o ID” denotes removing the incoherence detection objective; “w/o CMF” denotes +removing the cross-modal fusion; “w/o MI” denotes removing the multimodal injector; “w/o VER” denotes remov- +ing the event-based reasoning in visual event graph; “w/o SER” denotes removing the event-based reasoning in +semantic event graph; “w/o CMF, MI” removing the cross-modal fusion and multimodal injector. +Method +B@1 +B@2 B@4 +M +R-L +Seq2Seq +14.27 +4.27 +1.05 +6.02 16.32 +Transformer 17.06 +6.18 +1.57 +6.55 18.69 +IE+MSA +20.11 +6.62 +1.68 +6.87 21.27 +T-CVAE +20.36 +6.63 +1.88 +6.74 20.98 +Plan&Write +20.92 +5.88 +1.44 +7.10 20.17 +KE-GPT2 +21.92 +7.40 +1.90 +7.41 20.58 +MG+Trans +18.55 +6.76 +2.33 +7.31 19.02 +MGCL +20.27 +6.26 +1.81 +6.91 21.01 +MET +21.88 +7.28 +2.36 +7.41 21.32 +Table 4: Result of the SEG task on the VIST-E dataset +(plain text). The bold / underline denotes the best and +the second performance, respectively. +achieves better results than MG+CIA, MGCL and +MMT, demonstrating that reasoning and mining +implicit information from story plots and ending +image is significant for image-guided story ending +generation. +4.5 +Ablation Study +To verify the effectiveness of our method, we con- +duct an ablation study and show the results in Ta- +ble 3. Firstly, the table shows that removing each +component or objective decreases the model per- +formance, which demonstrates our method’s effec- +tiveness. In addition, we observe that removing +cross-modal fusion and multimodal injector brings +a great performance drop, which shows that cross- +modal information mining and adaptive integration +play a crucial role in story ending prediction. +4.6 +SEG Setting +To investigate the effectiveness of visual informa- +tion mining in our method, we remove the image +from the VIST-E dataset and evaluate it on only +plain text. The results are shown in Table 4. From +the table, we observe that our model keeps com- +petitive with Plan&Write (Yao et al., 2019) and +KE-GPT2 (Guan et al., 2020) models designed es- +pecially for textual story generation. Moreover, +our model outperforms MG+trans, which verifies +the effectiveness of our incoherence detection and +semantic event-based reasoning. Our model per- +forms better when adding the image, as shown in +Table 1. It demonstrates that mining implied visual +information can help story ending generation. +4.7 +Analysis +4.7.1 +Impact of Event-based Reasoning +To investigate the effectiveness of event reasoning, +we analyze its impact, and the results are shown in +Table 5. From the table, we can observe that replac- +ing semantic role labeling with dependency parsing +leads to decreased performance. Moreover, replac- +ing the visual event graph with whole image fea- +tures (i.e., features extracted by pre-trained CNN) +shows a performance drop. In addition, removing +cross-modal fusion also shows a performance drop. +These demonstrate the effectiveness of event-based +reasoning for the image-guided story ending gener- +ation. +4.7.2 +Case Study +To extensively evaluate our method, we conduct +a case study for our model and MGCL, and some +random sampling examples are shown in Figure 4. +For example, in the left case, we can observe that +our model can reason that the man in the image is a +soldier, while the result from MGCL is not signifi- +cantly related to visual content. For example, in the +right case, our model can generate the word "relax" + +Method +B@1 +B@2 +B@3 +B@4 +M +R-L +C +rSUM +MET +24.31 +8.79 +4.62 +2.73 +16.41 +24.49 +26.47 +107.82 +w/ Dependence Parser +23.47 +8.70 +4.50 +2.57 +15.88 +24.15 +24.06 +103.33 +w/o Visual Event Graph +22.13 +8.19 +4.21 +2.44 +15.76 +22.88 +23.93 +99.54 +w/o CMF +23.47 +8.65 +4.47 +2.53 +15.91 +23.85 +25.66 +104.54 +Table 5: Impact of event reasoning. “w/ Dependency Parser” denotes replacing semantic role labeling with depen- +dency parsing; “w/o Visual Event Graph” denotes removing the visual event graph and provides the whole image +features as inputs; “w/o CMF” denotes removing the cross-modal fusion. +Ending Image: +Story Plot: +the day of our family vacation finally arrived. +we made out way down to the lake after leaving our belongings in the lodge. +there were a lot of other people out on the river. +they really looked like they were having fun as well. +Generated Story Ending: +MGCL: at the end of the day , we ready to take a +picture . +MET: after we go home , we decided to take a relax in +chair . +Ending Image: +Story Plot: +i went to the award ceremony yesterday . +there were a lot of people there . +everyone received an award for their effort . +they had a great time . +Generated Story Ending: +MGCL: we ended the day with a +great time . +MET: the soldiers were singing +together at the end of the ceremony . +Figure 4: Random sampling examples generated by MET and MGCL. +after we go home , we decided to +take a relax in chair . +the soldiers were singing together +at the end of the ceremony . +the day of +our family +vacation +to the award +ceremony +Figure 5: Interpretable visualization analysis of our +method (better viewed in color). +based on the objects "human" and "chair". It shows +that our model can mine the implicit information +based on visual and semantic information. +4.7.3 +Interpretable Visualization Analysis +To investigate the effectiveness of the multimodal +injector, we conduct an interpretable visualization +analysis. The results are shown in Figure 5. The +word with a blue underline denotes that the multi- +modal injector is assigned the greater probability in +the node of visual event graph. Green corresponds +to greater probability in the node of semantic event +graph. The dotted boxes below represent the spe- +cific content of nodes. From the results, we can +observe that nodes in visual and semantic event +Method +Gram. +Logic. +Rele. +MET +3.49 +3.37 +2.94 +MGCL +3.36 +3.15 +2.66 +MG+Trans +3.22 +2.78 +2.71 +Table 6: Human evaluation. +graphs are able to deduce implicit information. +4.7.4 +Human Evaluation +To evaluate our method more comprehensively, we +conducted a human evaluation to compare further +the performance of our model and MGCL and +MG+trans. As follow Huang et al. (2021), we con- +sidered three metrics for the story ending generated +by models: Grammaticality (Gram.) (Wang and +Wan, 2019) evaluates correctness, natural, and flu- +ency of story endings; Logicality (Logic.) (Wang +and Wan, 2019) evaluates reasonability and coher- +ence of story endings; Relevance (Rele.) (Yang +et al., 2019) measures how relevant between im- +ages and generated story endings. We randomly +sampled 100 samples from the test set and display +them to 3 recruited annotators. Thereby, each an- +notator worked on 300 items from 3 models. We +show 3 annotators all outputs from all 3 models at +once and shuffle the output-model correspondence +to ensure that annotators do not know which model +the output is predicted from. Following Yang et al. + +(2019), we set a 5-grade marking system, where +one is the worst grade, and five is the maximum. +The results show that the performance of our model +is significantly better than MGCL and MG+trans. +That is, our model can generate higher-quality story +endings. +5 +Conclusion +In this work, we propose a multimodal event trans- +former, a framework for image-guided story end- +ing generation. Our method includes event graph +construction, event-based reasoning, cross-model +fusion, multimodal injector and story ending gen- +eration. Different from previous work, our method +not only focuses on cross-modal information fu- +sion but also on reasoning and mining implicit in- +formation from single-modality data. In addition, +we propose an incoherence detection to enhance +the understanding context of a story plot and ro- +bustness of graph modeling for our model. In the +experiments, results show that our method delivers +state-of-the-art performance. +Limitations +Although our proposed method can effectively +reason and mine implicit information from story +plots and ending image, it suffers from weaknesses +in integrating cross-modal information. Specifi- +cally, our method connects visual and semantic +event graphs by connecting whole image nodes +and whole sentence nodes. It lacks fine-grained +information to pass between semantic events to vi- +sual objects. In further work, we will study how to +pass fine-grained information between visual and +semantic event graphs. +References +Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung, +Zhaochen Luo, William Ma, Lara J. Martin, and +Mark O. Riedl. 2020. +Story realization: Expand- +ing plot events into sentences. In The Thirty-Fourth +AAAI Conference on Artificial Intelligence, AAAI +2020, The Thirty-Second Innovative Applications of +Artificial Intelligence Conference, IAAI 2020, The +Tenth AAAI Symposium on Educational Advances +in Artificial Intelligence, EAAI 2020, New York, NY, +USA, February 7-12, 2020, pages 7375–7382. AAAI +Press. +Satanjeev Banerjee and Alon Lavie. 2005. METEOR: +an automatic metric for MT evaluation with im- +proved correlation with human judgments. In Pro- +ceedings of the Workshop on Intrinsic and Ex- +trinsic Evaluation Measures for Machine Transla- +tion and/or Summarization@ACL 2005, Ann Arbor, +Michigan, USA, June 29, 2005, pages 65–72. Asso- +ciation for Computational Linguistics. +Hong Chen, Yifei Huang, Hiroya Takamura, and +Hideki Nakayama. 2021. Commonsense knowledge +aware concept selection for diverse and informative +visual storytelling. +In Thirty-Fifth AAAI Confer- +ence on Artificial Intelligence, AAAI 2021, Thirty- +Third Conference on Innovative Applications of Ar- +tificial Intelligence, IAAI 2021, The Eleventh Sym- +posium on Educational Advances in Artificial Intel- +ligence, EAAI 2021, Virtual Event, February 2-9, +2021, pages 999–1008. AAAI Press. +Jacob Devlin, Ming-Wei Chang, Kenton Lee, and +Kristina Toutanova. 2019. +BERT: pre-training of +deep bidirectional transformers for language under- +standing. +In Proceedings of the 2019 Conference +of the North American Chapter of the Association +for Computational Linguistics: Human Language +Technologies, NAACL-HLT 2019, Minneapolis, MN, +USA, June 2-7, 2019, Volume 1 (Long and Short Pa- +pers), pages 4171–4186. Association for Computa- +tional Linguistics. +Angela Fan, Mike Lewis, and Yann N. Dauphin. 2019. +Strategies for structuring story generation. In Pro- +ceedings of the 57th Conference of the Association +for Computational Linguistics, ACL 2019, Florence, +Italy, July 28- August 2, 2019, Volume 1: Long Pa- +pers, pages 2650–2660. Association for Computa- +tional Linguistics. +Jian Guan, Fei Huang, Minlie Huang, Zhihao Zhao, +and Xiaoyan Zhu. 2020. +A knowledge-enhanced +pretraining model for commonsense story genera- +tion. Trans. Assoc. Comput. Linguistics, 8:93–108. +Jian Guan, Yansen Wang, and Minlie Huang. 2019. +Story ending generation with incremental encoding +and commonsense knowledge. In The Thirty-Third +AAAI Conference on Artificial Intelligence, AAAI +2019, The Thirty-First Innovative Applications of +Artificial Intelligence Conference, IAAI 2019, The +Ninth AAAI Symposium on Educational Advances +in Artificial Intelligence, EAAI 2019, Honolulu, +Hawaii, USA, January 27 - February 1, 2019, pages +6473–6480. AAAI Press. +Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian +Sun. 2016. Deep residual learning for image recog- +nition. In 2016 IEEE Conference on Computer Vi- +sion and Pattern Recognition, CVPR 2016, Las Ve- +gas, NV, USA, June 27-30, 2016, pages 770–778. +IEEE Computer Society. +Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle- +moyer. 2017. +Deep semantic role labeling: What +works and what’s next. In Proceedings of the 55th +Annual Meeting of the Association for Computa- +tional Linguistics, ACL 2017, Vancouver, Canada, +July 30 - August 4, Volume 1: Long Papers, pages +473–483. Association for Computational Linguis- +tics. + +Qingbao Huang, Chuan Huang, Linzhang Mo, Jielong +Wei, Yi Cai, Ho-fung Leung, and Qing Li. 2021. +Igseg: Image-guided story ending generation. +In +Findings of the Association for Computational Lin- +guistics: ACL/IJCNLP 2021, Online Event, August +1-6, 2021, volume ACL/IJCNLP 2021 of Findings +of ACL, pages 3114–3123. Association for Compu- +tational Linguistics. +Ting-Hao (Kenneth) Huang, Francis Ferraro, Nasrin +Mostafazadeh, Ishan Misra, Aishwarya Agrawal, Ja- +cob Devlin, Ross B. Girshick, Xiaodong He, Push- +meet Kohli, Dhruv Batra, C. Lawrence Zitnick, Devi +Parikh, Lucy Vanderwende, Michel Galley, and Mar- +garet Mitchell. 2016. Visual storytelling. In NAACL +HLT 2016, The 2016 Conference of the North Amer- +ican Chapter of the Association for Computational +Linguistics: Human Language Technologies, San +Diego California, USA, June 12-17, 2016, pages +1233–1239. The Association for Computational Lin- +guistics. +Yunjae Jung, Dahun Kim, Sanghyun Woo, Kyungsu +Kim, Sungjin Kim, and In So Kweon. 2020. Hide- +and-tell: Learning to bridge photo streams for visual +storytelling. In The Thirty-Fourth AAAI Conference +on Artificial Intelligence, AAAI 2020, The Thirty- +Second Innovative Applications of Artificial Intelli- +gence Conference, IAAI 2020, The Tenth AAAI Sym- +posium on Educational Advances in Artificial Intel- +ligence, EAAI 2020, New York, NY, USA, February +7-12, 2020, pages 11213–11220. AAAI Press. +Diederik P. Kingma and Jimmy Ba. 2015. Adam: A +method for stochastic optimization. +In 3rd Inter- +national Conference on Learning Representations, +ICLR 2015, San Diego, CA, USA, May 7-9, 2015, +Conference Track Proceedings. +Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John- +son, Kenji Hata, Joshua Kravitz, Stephanie Chen, +Yannis Kalantidis, Li-Jia Li, David A. Shamma, +Michael S. Bernstein, and Li Fei-Fei. 2017. +Vi- +sual genome: Connecting language and vision using +crowdsourced dense image annotations. Int. J. Com- +put. Vis., 123(1):32–73. +Chin-Yew Lin. 2004. Rouge: A package for automatic +evaluation of summaries. +In Text summarization +branches out, pages 74–81. +Thang Luong, Hieu Pham, and Christopher D. Man- +ning. 2015. Effective approaches to attention-based +neural machine translation. In Proceedings of the +2015 Conference on Empirical Methods in Natural +Language Processing, EMNLP 2015, Lisbon, Portu- +gal, September 17-21, 2015, pages 1412–1421. The +Association for Computational Linguistics. +Mengshi Qi, Jie Qin, Di Huang, Zhiqiang Shen, +Yi Yang, and Jiebo Luo. 2021. +Latent memory- +augmented graph transformer for visual storytelling. +In MM ’21: ACM Multimedia Conference, Virtual +Event, China, October 20 - 24, 2021, pages 4892– +4901. ACM. +Alec Radford, Jeff Wu, Rewon Child, David Luan, +Dario Amodei, and Ilya Sutskever. 2019. Language +models are unsupervised multitask learners. +Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian +Sun. 2017. +Faster R-CNN: towards real-time ob- +ject detection with region proposal networks. IEEE +Trans. Pattern Anal. Mach. Intell., 39(6):1137–1149. +Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, +Niket Tandon, +Christopher Joseph Pal, +Hugo +Larochelle, Aaron C. Courville, and Bernt Schiele. +2017. +Movie description. +Int. J. Comput. Vis., +123(1):94–120. +Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter +Bloem, Rianne van den Berg, Ivan Titov, and Max +Welling. 2018. Modeling relational data with graph +convolutional networks. In The Semantic Web - 15th +International Conference, ESWC 2018, Heraklion, +Crete, Greece, June 3-7, 2018, Proceedings, volume +10843 of Lecture Notes in Computer Science, pages +593–607. Springer. +Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob +Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz +Kaiser, and Illia Polosukhin. 2017. Attention is all +you need. In Advances in Neural Information Pro- +cessing Systems 30: Annual Conference on Neural +Information Processing Systems 2017, December 4- +9, 2017, Long Beach, CA, USA, pages 5998–6008. +Ramakrishna Vedantam, C. Lawrence Zitnick, and +Devi Parikh. 2015. Cider: Consensus-based image +description evaluation. In IEEE Conference on Com- +puter Vision and Pattern Recognition, CVPR 2015, +Boston, MA, USA, June 7-12, 2015, pages 4566– +4575. IEEE Computer Society. +Tianming Wang and Xiaojun Wan. 2019. +T-CVAE: +transformer-based conditioned variational autoen- +coder for story completion. In Proceedings of the +Twenty-Eighth International Joint Conference on Ar- +tificial Intelligence, IJCAI 2019, Macao, China, Au- +gust 10-16, 2019, pages 5233–5239. ijcai.org. +Xin Wang, Wenhu Chen, Yuan-Fang Wang, and +William Yang Wang. 2018. No metrics are perfect: +Adversarial reward learning for visual storytelling. +In Proceedings of the 56th Annual Meeting of the As- +sociation for Computational Linguistics, ACL 2018, +Melbourne, Australia, July 15-20, 2018, Volume 1: +Long Papers, pages 899–909. Association for Com- +putational Linguistics. +Chunpu Xu, Min Yang, Chengming Li, Ying Shen, Xi- +ang Ao, and Ruifeng Xu. 2021. Imagine, reason and +write: Visual storytelling with graph knowledge and +relational reasoning. In Thirty-Fifth AAAI Confer- +ence on Artificial Intelligence, AAAI 2021, Thirty- +Third Conference on Innovative Applications of Ar- +tificial Intelligence, IAAI 2021, The Eleventh Sym- +posium on Educational Advances in Artificial Intel- +ligence, EAAI 2021, Virtual Event, February 2-9, +2021, pages 3022–3029. AAAI Press. + +Danfei Xu, Yuke Zhu, Christopher B. Choy, and Li Fei- +Fei. 2017. Scene graph generation by iterative mes- +sage passing. +In 2017 IEEE Conference on Com- +puter Vision and Pattern Recognition, CVPR 2017, +Honolulu, HI, USA, July 21-26, 2017, pages 3097– +3106. IEEE Computer Society. +Dizhan Xue, Shengsheng Qian, Quan Fang, and Chang- +sheng Xu. 2022. Mmt: Image-guided story ending +generation with multimodal memory transformer. +In Proceedings of the 30th ACM International Con- +ference on Multimedia, MM ’22, page 750–758, +New York, NY, USA. Association for Computing +Machinery. +Pengcheng Yang, Fuli Luo, Peng Chen, Lei Li, Zhiyi +Yin, Xiaodong He, and Xu Sun. 2019. Knowledge- +able storyteller: A commonsense-driven generative +model for visual storytelling. In Proceedings of the +Twenty-Eighth International Joint Conference on Ar- +tificial Intelligence, IJCAI 2019, Macao, China, Au- +gust 10-16, 2019, pages 5356–5362. ijcai.org. +Lili Yao, Nanyun Peng, Ralph M. Weischedel, Kevin +Knight, Dongyan Zhao, and Rui Yan. 2019. Plan- +and-write: +Towards better automatic storytelling. +In The Thirty-Third AAAI Conference on Artificial +Intelligence, AAAI 2019, The Thirty-First Innova- +tive Applications of Artificial Intelligence Confer- +ence, IAAI 2019, The Ninth AAAI Symposium on Ed- +ucational Advances in Artificial Intelligence, EAAI +2019, Honolulu, Hawaii, USA, January 27 - Febru- +ary 1, 2019, pages 7378–7385. AAAI Press. +Youngjae Yu, Jiwan Chung, Heeseung Yun, Jongseok +Kim, and Gunhee Kim. 2021. Transitional adapta- +tion of pretrained models for visual storytelling. In +IEEE Conference on Computer Vision and Pattern +Recognition, CVPR 2021, virtual, June 19-25, 2021, +pages 12658–12668. Computer Vision Foundation / +IEEE. +Rowan Zellers, Mark Yatskar, Sam Thomson, and +Yejin Choi. 2018. Neural motifs: Scene graph pars- +ing with global context. In 2018 IEEE Conference +on Computer Vision and Pattern Recognition, CVPR +2018, Salt Lake City, UT, USA, June 18-22, 2018, +pages 5831–5840. Computer Vision Foundation / +IEEE Computer Society. +Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song, +and Cane Wing-Ki Leung. 2020. ASER: A large- +scale eventuality knowledge graph. In WWW ’20: +The Web Conference 2020, Taipei, Taiwan, April 20- +24, 2020, pages 201–211. ACM / IW3C2. +Yucheng Zhou, Xiubo Geng, Tao Shen, Guodong Long, +and Daxin Jiang. 2022a. Eventbert: A pre-trained +model for event correlation reasoning. In WWW ’22: +The ACM Web Conference 2022, Virtual Event, Lyon, +France, April 25 - 29, 2022, pages 850–859. ACM. +Yucheng Zhou, Tao Shen, Xiubo Geng, Guodong Long, +and Daxin Jiang. 2022b. +ClarET: Pre-training a +correlation-aware context-to-event transformer for +event-centric generation and classification. In Pro- +ceedings of the 60th Annual Meeting of the Associa- +tion for Computational Linguistics (Volume 1: Long +Papers), pages 2559–2575, Dublin, Ireland. Associ- +ation for Computational Linguistics. + diff --git a/rNFIT4oBgHgl3EQfxivv/content/tmp_files/load_file.txt b/rNFIT4oBgHgl3EQfxivv/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..30615217aa39b67d647d910795c5ca101cb6f736 --- /dev/null +++ b/rNFIT4oBgHgl3EQfxivv/content/tmp_files/load_file.txt @@ -0,0 +1,917 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf,len=916 +page_content='Multimodal Event Transformer for Image-guided Story Ending Generation Yucheng Zhou, Guodong Long Australian AI Institute, School of Computer Science, FEIT, University of Technology Sydney yucheng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='zhou-1@student.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='uts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='au, guodong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='long@uts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='au Abstract Image-guided story ending generation (IgSEG) is to generate a story ending based on given story plots and ending image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Existing methods focus on cross-modal feature fusion but overlook reasoning and mining implicit information from story plots and ending image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To tackle this drawback, we propose a multimodal event transformer, an event-based reasoning framework for IgSEG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Specifically, we construct visual and semantic event graphs from story plots and ending image, and leverage event-based reasoning to reason and mine implicit information in a single modality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Next, we connect visual and semantic event graphs and utilize cross-modal fusion to inte- grate different-modality features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In addition, we propose a multimodal injector to adaptive pass essential information to decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Besides, we present an incoherence detection to enhance the understanding context of a story plot and the robustness of graph modeling for our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Experimental results show that our method achieves state-of-the-art performance for the image-guided story ending generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 1 Introduction Story ending generation (Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019) aims to generate a reasonable ending for a given story plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' It requires deep models to integrate powerful language understanding capability, which is crucial for artificial intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Many efforts (Wang and Wan, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Yao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2020) have been proposed and achieved promising results since neural models designed for comprehending natural language allow them to understand story plots and reason reasonable story endings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' With the advance of automatic story generation, it has attracted outstanding attention in multimodality research (Jung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' However, since story plots and story ending usu- ally correspond to different content, the context It was our first big backyard barbeque of summer and we invited all friends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We all sat around and caught up with each others’ lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Dave started the fire pit, look at those flames!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Everyone put hot dogs on skewers and roasted them over the fire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We all had a great time hanging out until very late in the night and it was a great party!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Story Plot Ending Image Story Ending Generation Figure 1: Given a multi-sentence story plot and an end- ing image, the image-guided story ending generation aims to generate a story ending related to the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' with information bottleneck is not enough to de- duce an informative story ending, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', generated endings tend to be inane and generic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To address this issue, Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2021) propose an image- guided story ending generation (IgSEG) task that combines story plots and ending image to gener- ate a coherent, specific and informative story end- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' IgSEG demands not only introducing informa- tion from the ending image to story plots for story ending generation but also reasoning and mining implicit information from story plots and ending image, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' As shown in Figure 1, for story plots, “party” can be inferred from “big back- yard barbeque” and “invited all friends”, and “all friends”, “all sat around” and “caught up with” can deduce “had a great time”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For the ending image, “dim indoor” and “bright lights” can infer “very late in the night”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Existing methods (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022) focus on cross-modal feature fusion but over- look reasoning and mining implicit information from story plots and ending images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Nonetheless, to effectively conduct cross-modal feature fusion, it is necessary to reason and mine more implicit information from single-modality data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' An event is a fine-grained semantic unit, which refers to a text arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='11357v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='CV] 26 Jan 2023 span composed of a predicate and its arguments (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Recently, event-centric rea- soning displays excellent capability for context un- derstanding and subsequent event prediction (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In this work, we propose a multi- modal event transformer (MET) to mine implicit information to improve cross-modal fusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For story plots, we leverage semantic role labeling (SRL) parser (He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2017) to extract events from story plots and then construct them into a semantic event graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For an ending image, we uti- lize scene graph parser (Zellers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2018) to cap- ture visual concepts and their relation to construct visual event graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Since edges contain relation- ships between nodes in visual and semantic event graphs, we employ relational graph convolutional networks (RGCN) (Schlichtkrull et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2018) to encode event graphs to infer implicit information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For cross-modal feature fusion, most recent works (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022) adopt attention-based neural network models to implic- itly integrate multi-modal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' However, due to the complexity of cross-modal features and the existence of dependency between single-modal fea- tures, it is often difficult for these models to comple- ment cross-modal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To tackle the issue, we propose cross-modal fusion to integrate different- modality features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Specifically, we merge visual and semantic event graphs and use RGCN to fuse cross-modal features for feature complement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Moreover, since features from different modal- ities suffer from domain inconsistency, previous methods (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022) directly concatenate them and pass them to the de- coder, which is not a crafted manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To appropri- ately combine features from different modalities, we design a multimodal injector to integrate rel- evant features into the decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In addition, we propose an incoherence detection to enhance the context understanding for a story plot and the ro- bustness of graph modeling for our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In experiments, we conduct extensive evalua- tions on two datasets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', VIST-E (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021) and LSMDC-E (Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Experi- mental results show that our method outperforms strong competitors and achieves state-of-the-art per- formance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In addition, we conduct further analysis to demonstrate the effectiveness of our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Lastly, we compare the performance of our method and other methods through human evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2 Related Work 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='1 Story Ending Generation Story ending generation aims to generate a story ending for given story plots, and it is one of the im- portant tasks in natural language generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Many efforts have been invested in story ending gener- ation (Wang and Wan, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Yao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To make the generated story ending more reasonable, Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2019) propose a model encapsulating a multi-source attention mechanism, which can uti- lize context clues and understand commonsense knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To ensure the coherence in generated story endings, Wang and Wan (2019) propose a transformer-based conditional autoencoder, which can capture contextual clues in story splot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To improve long-range coherence in generated sto- ries, Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2020) pre-train model on exter- nal commonsense knowledge bases for the story ending generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2022b) propose a correlation-aware context-to-event pre-trained transformer, which applies to a wide range of event- centric reasoning and generation scenarios, includ- ing story ending generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Beyond the limit of single-modal information, Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2021) in- troduce visual information to enrich the generation of story endings with more coherent, specific, and informative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To improve cross-modal feature fu- sion, Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2022) propose a multimodal mem- ory transformer, which fuses contextual and visual information to capture the multimodal dependency effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='2 Visual Storytelling Visual storytelling task is proposed by Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2016), which aims to generate a story based on a given image stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2018) present an adversarial reward learning framework to learn an implicit reward function from human demon- strations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To inject imaginary concepts that do not appear in the images, some works (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021) propose building scene graphs and injecting external knowl- edge into model to reason the relationship between visual concepts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Qi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2021) propose a latent memory-augmented graph transformer to exploit the semantic relationships among image regions and attentively aggregate critical visual features based on the parsed scene graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' It was our first big backyard barbeque of summer and we invited all friends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Everyone put hot dogs on skewers and roasted them over the fire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='… ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='man ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='room ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='skirt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='woman ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='jacket ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='window ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='wearing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='near ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='wearing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='in front of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Scene Graph Parser ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='was ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='we ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='invited ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='It ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='all friends ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='our first big backyard ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='barbeque of summer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='put ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='roasted ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Everyone ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='hot dogs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='on skewers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='them ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='over the fire ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='… ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='light ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='near ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='whole sentence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='… ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='whole image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='SRL parser ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Event Graph Construction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Event-based Reasoning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='whole sentence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='… ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='whole image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Relational Graph Convolution Network ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Cross-modal Fusion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Multimodal Injector ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Embed & Position ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Self-attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Add & Norm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Cross-attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Add & Norm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='FFN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Add & Norm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='× ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Relational Graph Convolution Network ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Story Ending Generation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='Figure 2: An overview of our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Grey rounded rectangles denote fixed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Blue rounded rectangles denote parameters that will be optimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='3 Event-centric Reasoning Events always play an essential role in a story be- cause a story is composed of multiple events and implies the relationship between the events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' An event is a text span composed of a predicate and its arguments (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Multiple events include relations between events that conform to human commonsense (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Some works use plot events for story generation, which is generating a prompt and then transforming it into a text (Ammanabrolu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To generate a more coherent and specific ending, understanding events in story plots and their rela- tionship can obtain informative context, which is a crucial step for story ending generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 3 Method This section will elaborate on our method for image-guided story ending generation, including event graph construction, event-based reasoning, cross-modal fusion, multimodal injector and story ending generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The details of our method are shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Lastly, details about objectives and training are elaborated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='1 Event Graph Construction Semantic Event Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The story plot contains multiple events which are correlated with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The definition of an event is a text span composed of a predicate and its arguments (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The event-centric reasoning shows excellent capability for context understanding and subsequent event prediction (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To effectively reason and mine more implicit in- formation from story plots, we use semantic role labeling (SRL) to parse the story and extract events from parsing results, as shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Specifi- cally, Given story plots S = {S1, S2, S3, S4}, we construct semantic event graphs Gs i = (Vs i , Es i ) by SRL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Es i consists of two vectors, one for the pos- itive direction and one for the opposite direction, and Vs i = {si 0, si 1, si 2, · · · , si n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To obtain features of each node, we use a pre-trained transformer en- coder to obtain token representations in sentence Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Ti = Trans-Enc(Si), Ti ∈ {t1 i , t2 i , · · · , tg i } (1) where tg i denotes token representation, and g is length of sentence Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Next, we conduct a mean pooling operation for tokens presentations based on SRL parsing result ˆSi to get presentation ˆsi j for each node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In addition, we take pooling for all token presentations of sentence Si to obtain a presentation of sentence node ˆsi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Each node ˆsi j in sentence Si is connected to the sentence node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To preserve the relationship between sequences, we connect sentence nodes in the order of the se- quence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Visual Event Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For ending images, previ- ous works (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022) use pre-trained convolutional neural networks (CNN) to extract feature maps directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We construct vi- sual event graphs to reason and mine more im- plicit information from ending images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Scene graphs have been used for many tasks to produce structured graph representations of visual scenes (Zellers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Inspired by the success of these tasks, we parse the ending image I to a scene graph via the scene graph parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' A scene graph can be denoted as a tuple GI = {VI, EI}, where VI = {v0, v1, v2, · · · , vk} is a set of k detected objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' v0 denotes a representation of the whole image, and other vi is a region representation of detected object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' EI = {e1, e2, · · · , em} is a set of directed edges and each edge ei refers to a triplet (vi, ri,j, vj), which includes two directional edges from vi to ri,j and from ri,j to vj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Specifically, the construction of the scene graph can be divided into two parts: one is object detection, and the other is visual relation detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For object detection, we leverage a well-trained object detector, Faster-RCNN (Ren et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2017) with a ResNet-152 (He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2016) backbone, to classify and encode objects in the ending image I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The outputs of detector include a set of region representations VI = {v1, v2, · · · , vk} and object categories O = {o1, o2, · · · , ok}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For visual rela- tion detection, we leverage MOTIFS (Zellers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2018) as our relation detector to classify the re- lationship between objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We train the relation detector on Visual Genome dataset (Krishna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The output of relation detector is a set of relation EI = {e1, e2, · · · , em}, where ei refers to a triplet (vi, ri,j, vj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Lastly, we obtain the scene graph GI = {VI, EI} of ending image by combin- ing the results of object detection and relationship detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='2 Event-based Reasoning We perform graph-structure reasoning over seman- tic and visual event graphs to effectively reason and mine more implicit information from story plots and ending images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Since event graphs have mul- tiple relations between nodes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', relations be- tween visual objects, relations between predicates and arguments, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ), we select relational graph convolutional networks (RGCN), which can pass different messages along different relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Specif- ically, for each layer l in L-layer RGCN, the node representation wl i is updated as follows: wl+1 i =ReLU � � r∈R � j∈Nr(i) 1 |Nr(i)|Wr · wl j � (2) where R denote a set of all edges types, and Nr(i) is the neighborhood of node i under relation r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Selective Attention hd … Selective Attention hd … 𝜎 × × 1- + hd + { "𝒱!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ", "𝒱# ", "𝒱$ ", "𝒱%"} "𝒱& Figure 3: Details of the multimodal injector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' To reason and mine more implicit information in single-modality, we conduct event-based reasoning on semantic and visual event graphs, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='3 Cross-modal Fusion We propose cross-modal fusion for visual and se- mantic event graphs to integrate information from story plots and ending images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We adopt a layer normalization for node features to reduce the cross- modal gap between visual and semantic graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For cross-modal feature fusion, previous works (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022) adopt attention-based neural network models to implicitly integrate multi- modal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' However, these models neglect the dependency between single-modal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' There- fore, we maintain graph structure for visual and semantic features and connect nodes that repre- sent whole image and sentences, as shown in Fig- ure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Moreover, we utilize RGCN as Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='2 to in- tegrate cross-modal features in event graph, and outputs denote as ¯Vs i = {¯si 0, ¯si 1, ¯si 2, · · · , ¯si n} and ¯VI = {¯v0, ¯v1, ¯v2, · · · , ¯vk}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='4 Multimodal Injector To integrate different modal sources, we propose a multimodal injector, which adaptly extracts key information from different modal features and inte- grates them appropriately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' As shown in Figure 3, inputs of multimodal injector include a hidden state hd from the decoder, visual features ¯VI and seman- tic features ¯Vs i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Specifically, we first use selective attention for key information extraction, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', hu attn = softmax �QKT √dk � V, u ∈ {I, S} (3) where Q is hd from decoder;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' K and V are visual features ¯VI or semantic features ¯Vs i ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' and dk is the same as the dimension of hd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Then, the gate λ ∈ [0, 1] and the fused output are defined as: λ = σ � UhI attn + V hS attn � (4) where U and V are trainable weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' λ controls how much visual information is attended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ˆhd = λ · hI attn + (1 − λ) · hS attn + hd (5) where the fusion vector ˆhd is fed into the decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='5 Story Ending Generation Recently, Transformer (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2017) shows its powerful ability to generate natural language (Radford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For story ending generation, we use a Transformer decoder as the decoder for our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Specifically, the decoder input includes a segment of the generated story ending ¯C and fusion vector ˆhd from the multimodal injector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The purpose of the decoder is to predict a probability distribution of the next word of the segment ¯C, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', hi = Trans-Dec(ˆhd, ¯C) ∈ Rd where ¯C = [c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' , ci−1] (6) pi = LM-Head(hi) ∈ RV (7) where hi refers to the hidden representation in i-th step;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' V denotes token vocabulary and pi refers to a probability distribution over V;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' d in ˆhd denotes the current number of layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Lastly, the story end- ing generation objective is defined as a maximum likelihood estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The loss function is defined as: L(gen) = − 1 |N| �N i=1 log pi(ci), (8) where pi(ci) denotes fetching the probability of the i-th step gold token ci ∈ C from pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' C refers to the gold caption, and N is its length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='6 Incoherence Detection To enhance the understanding context of a story plot and robustness of graph modeling for our model, we introduce a training objective: incoher- ence detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We set a 10% probability to replace a whole sentence node in semantic event graph ran- domly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In the objective, the final step output hn of the decoder is passed into a MLP to classify whether each whole sentence node is changed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', pclf = σ(MLP(hn)) ∈ R4 (9) where σ denotes a sigmoid function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The loss func- tion is defined as: L(clf) = −1 4 4 � i=1 yi · log(pclf i ) + (1 − yi) · log(1 − pclf i ) (10) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='7 Training In model training, we set a trade-off parameter α for two losses L(gen) and L(clf).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The total loss function of our model is definite as follows: L = L(gen) + α × L(clf) (11) 4 Experiment 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='1 Dataset and Evaluation Metric VIST-Ending.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We compare our model and other state-of-the-art methods on the VIST-Ending (VIST-E) dataset (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The dataset is built over VIST dataset (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The VIST-E dataset comprises 39,920 samples for training, 4,963 samples for validation and 5,030 samples for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In experiments, we follow the data split in (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' LSMDC-Ending.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' LSMDC-Ending (LSMDC-E) (Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022) contains 20,151 training samples, 1,477 validation samples and 2,005 test samples, which are collected from LSMDC 2021 (Rohrbach et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Visual Genome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We use the Visual Genome (VG) dataset to train a visual relationship detec- tor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The dataset includes 108,077 images annotated with scene graphs, and we follow the setting in (Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2017), which contains 150 object classes and 50 relation classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Evaluation Metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' As follow Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2022), we utilize the same metrics to report evaluation re- sults, and the evaluation code is open-source1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The evaluation metrics include: BLEU (Kingma and Ba, 2015), METEOR (Banerjee and Lavie, 2005), CIDEr (Vedantam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2015), ROUGE-L (Lin, 2004) and Result Sum (rSUM) (Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='2 Implementation Details For the scene graph, we limit the maximum number of objects to 10 and the maximum number of rela- tionships to 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The relational graph convolution network includes four relational graph convolution 1https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='com/tylin/coco-caption Method B@1 B@2 B@3 B@4 M R-L C rSUM Seq2Seq (Luong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2015) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='96 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='57 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='94 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='69 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='54 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='84 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='04 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='58 Transformer (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2017) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='18 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='29 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='07 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='01 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='91 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='23 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='75 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='44 IE+MSA (Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019) 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='15 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='74 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='73 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='63 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='59 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='62 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='56 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='02 T-CVAE (Wang and Wan, 2019) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='34 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='06 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='13 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='23 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='51 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='49 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='77 MG+Trans (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021) 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='43 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='92 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='46 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='63 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='62 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='42 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='95 MG+CIA (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021) 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='91 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='46 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='88 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='35 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='29 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='12 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='88 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='89 MGCL (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021) 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='57 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='16 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='23 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='49 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='84 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='66 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='46 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='41 MMT (Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022) 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='87 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='68 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='38 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='61 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='55 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='61 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='41 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='11 MET (Ours) 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='31 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='79 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='62 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='73 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='41 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='49 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='82 Table 1: Comparison results on VIST-E test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' B@n, M, R-L, C and rSUM denote BLEU@n, METEOR, ROUGE-L, CIDEr and Result Sum, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Method B@1 B@2 B@3 B@4 M R-L C rSUM Seq2Seq (Luong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2015) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='21 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='56 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='70 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='01 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='69 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='69 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='56 Transformer (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2017) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='35 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='49 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='76 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='43 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='16 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='32 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='33 MGCL (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='89 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='76 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='00 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='61 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='30 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='16 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='29 MMT (Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='52 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='99 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='51 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='13 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='87 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='99 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='41 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='42 MET (Ours) 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='98 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='48 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='89 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='77 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='53 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='73 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='85 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='23 Table 2: Comparison results on LSMDC-E test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' layers, and the size of input and output sets of 768.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For semantic event reasoning, we use a pre-trained BERT model (Devlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019) as the language model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The layers and attention heads of the de- coder are 12 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The dimension of embedding vectors in the decoder is 768, and the dimension of hidden states is 768.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The visual feature encoder is ResNet-152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For model training, we select the Adam optimizer (Kingma and Ba, 2015) to opti- mize the model with learning rate of 2e-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The maximum training epoch of our model is 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The trade-off parameter α in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='11 is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The batch size, weight decay and warm-up proportion are 128, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='01 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' During inference, we use the beam search with a beam size of 3 to generate a story ending with maximum sentence length is 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Our model is trained on one V100 GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='3 Baselines We compare our model with following state-of-the- art baselines: (1) Seq2Seq is a stack RNN-based model (Luong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2015) with attention mech- anisms, and image features are directly concate- nated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2) Transformer, proposed by Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2017), is an encoder-decoder model with self-attention mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (3) IE+MSA is a story ending generation model incorporating external knowledge (Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (4) T-CVAE (Wang and Wan, 2019) is a conditional variational autoen- coder based on transformer for missing story plots generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (5) MG+Trans consists of multi-layer graph convolutional networks and a transformer de- coder (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (6) MG+CIA consists of multi-layer graph convolutional networks, top- down LSTM and one context-image attention unit in the decoder (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (7) MGCL is an image-guided story ending generation model with multi-layer graph convolution networks and cascade-LSTM (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (8) MMT is a multimodal memory transformer for image-guided story ending generation (Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='4 Main Results The experimental results on VIST-E and LSMDC- E are shown in Table 1 and Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' From the tables, we can make two observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Firstly, our model achieves state-of-the-art performance on the VIST-E and LSMDC-E datasets compared to other strong competitors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In addition, MG+CIA, MGCL, MMT and our model significantly and consistently outperform other models that directly concatenate visual features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' It indicates that mining visual in- formation is essential and can provide rich infor- mation to predict the ending.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Moreover, our model Method B@1 B@2 B@3 B@4 M R-L C rSUM MET 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='31 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='79 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='62 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='73 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='41 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='49 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='82 w/o ID 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='84 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='70 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='51 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='56 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='91 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='10 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='86 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='48 w/o CMF 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='65 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='53 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='91 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='85 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='66 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='54 w/o MI 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='68 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='56 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='33 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='48 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='83 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='99 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='74 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='61 w/o VER 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='41 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='25 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='33 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='50 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='86 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='09 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='03 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 w/o SER 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='78 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='73 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='46 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='55 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='88 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='04 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='87 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='31 w/o CMF, MI 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='03 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='03 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='36 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='43 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='14 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='44 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='59 Table 3: Ablation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' “w/o ID” denotes removing the incoherence detection objective;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' “w/o CMF” denotes removing the cross-modal fusion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' “w/o MI” denotes removing the multimodal injector;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' “w/o VER” denotes remov- ing the event-based reasoning in visual event graph;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' “w/o SER” denotes removing the event-based reasoning in semantic event graph;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' “w/o CMF, MI” removing the cross-modal fusion and multimodal injector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Method B@1 B@2 B@4 M R-L Seq2Seq 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='27 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='27 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='05 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='02 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='32 Transformer 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='06 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='57 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='55 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='69 IE+MSA 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='11 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='62 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='68 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='87 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='27 T-CVAE 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='36 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='63 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='88 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='74 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='98 Plan&Write 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='92 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='88 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='44 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='10 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='17 KE-GPT2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='92 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='90 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='41 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='58 MG+Trans 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='55 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='76 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='33 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='31 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='02 MGCL 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='27 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='26 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='81 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='91 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='01 MET 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='88 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='28 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='36 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='41 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='32 Table 4: Result of the SEG task on the VIST-E dataset (plain text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The bold / underline denotes the best and the second performance, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' achieves better results than MG+CIA, MGCL and MMT, demonstrating that reasoning and mining implicit information from story plots and ending image is significant for image-guided story ending generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='5 Ablation Study To verify the effectiveness of our method, we con- duct an ablation study and show the results in Ta- ble 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Firstly, the table shows that removing each component or objective decreases the model per- formance, which demonstrates our method’s effec- tiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In addition, we observe that removing cross-modal fusion and multimodal injector brings a great performance drop, which shows that cross- modal information mining and adaptive integration play a crucial role in story ending prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='6 SEG Setting To investigate the effectiveness of visual informa- tion mining in our method, we remove the image from the VIST-E dataset and evaluate it on only plain text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The results are shown in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' From the table, we observe that our model keeps com- petitive with Plan&Write (Yao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019) and KE-GPT2 (Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2020) models designed es- pecially for textual story generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Moreover, our model outperforms MG+trans, which verifies the effectiveness of our incoherence detection and semantic event-based reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Our model per- forms better when adding the image, as shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' It demonstrates that mining implied visual information can help story ending generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='7 Analysis 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='1 Impact of Event-based Reasoning To investigate the effectiveness of event reasoning, we analyze its impact, and the results are shown in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' From the table, we can observe that replac- ing semantic role labeling with dependency parsing leads to decreased performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Moreover, replac- ing the visual event graph with whole image fea- tures (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', features extracted by pre-trained CNN) shows a performance drop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In addition, removing cross-modal fusion also shows a performance drop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' These demonstrate the effectiveness of event-based reasoning for the image-guided story ending gener- ation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='2 Case Study To extensively evaluate our method, we conduct a case study for our model and MGCL, and some random sampling examples are shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For example, in the left case, we can observe that our model can reason that the man in the image is a soldier, while the result from MGCL is not signifi- cantly related to visual content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' For example, in the right case, our model can generate the word "relax" Method B@1 B@2 B@3 B@4 M R-L C rSUM MET 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='31 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='79 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='62 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='73 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='41 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='49 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='82 w/ Dependence Parser 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='70 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='50 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='57 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='88 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='15 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='06 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='33 w/o Visual Event Graph 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='13 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='19 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='21 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='44 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='76 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='88 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='93 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='54 w/o CMF 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='65 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='47 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='53 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='91 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='85 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='66 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='54 Table 5: Impact of event reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' “w/ Dependency Parser” denotes replacing semantic role labeling with depen- dency parsing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' “w/o Visual Event Graph” denotes removing the visual event graph and provides the whole image features as inputs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' “w/o CMF” denotes removing the cross-modal fusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Ending Image: Story Plot: the day of our family vacation finally arrived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' we made out way down to the lake after leaving our belongings in the lodge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' there were a lot of other people out on the river.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' they really looked like they were having fun as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Generated Story Ending: MGCL: at the end of the day , we ready to take a picture .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' MET: after we go home , we decided to take a relax in chair .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Ending Image: Story Plot: i went to the award ceremony yesterday .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' there were a lot of people there .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' everyone received an award for their effort .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' they had a great time .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Generated Story Ending: MGCL: we ended the day with a great time .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' MET: the soldiers were singing together at the end of the ceremony .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Figure 4: Random sampling examples generated by MET and MGCL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' after we go home , we decided to take a relax in chair .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' the soldiers were singing together at the end of the ceremony .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' the day of our family vacation to the award ceremony Figure 5: Interpretable visualization analysis of our method (better viewed in color).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' based on the objects "human" and "chair".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' It shows that our model can mine the implicit information based on visual and semantic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='3 Interpretable Visualization Analysis To investigate the effectiveness of the multimodal injector, we conduct an interpretable visualization analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The results are shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The word with a blue underline denotes that the multi- modal injector is assigned the greater probability in the node of visual event graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Green corresponds to greater probability in the node of semantic event graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The dotted boxes below represent the spe- cific content of nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' From the results, we can observe that nodes in visual and semantic event Method Gram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Rele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' MET 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='49 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='37 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='94 MGCL 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='36 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='66 MG+Trans 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='22 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='78 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='71 Table 6: Human evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' graphs are able to deduce implicit information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='4 Human Evaluation To evaluate our method more comprehensively, we conducted a human evaluation to compare further the performance of our model and MGCL and MG+trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' As follow Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2021), we con- sidered three metrics for the story ending generated by models: Grammaticality (Gram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=') (Wang and Wan, 2019) evaluates correctness, natural, and flu- ency of story endings;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Logicality (Logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=') (Wang and Wan, 2019) evaluates reasonability and coher- ence of story endings;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Relevance (Rele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=') (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 2019) measures how relevant between im- ages and generated story endings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We randomly sampled 100 samples from the test set and display them to 3 recruited annotators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Thereby, each an- notator worked on 300 items from 3 models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' We show 3 annotators all outputs from all 3 models at once and shuffle the output-model correspondence to ensure that annotators do not know which model the output is predicted from.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Following Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' (2019), we set a 5-grade marking system, where one is the worst grade, and five is the maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The results show that the performance of our model is significantly better than MGCL and MG+trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' That is, our model can generate higher-quality story endings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 5 Conclusion In this work, we propose a multimodal event trans- former, a framework for image-guided story end- ing generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Our method includes event graph construction, event-based reasoning, cross-model fusion, multimodal injector and story ending gen- eration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Different from previous work, our method not only focuses on cross-modal information fu- sion but also on reasoning and mining implicit in- formation from single-modality data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In addition, we propose an incoherence detection to enhance the understanding context of a story plot and ro- bustness of graph modeling for our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In the experiments, results show that our method delivers state-of-the-art performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Limitations Although our proposed method can effectively reason and mine implicit information from story plots and ending image, it suffers from weaknesses in integrating cross-modal information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Specifi- cally, our method connects visual and semantic event graphs by connecting whole image nodes and whole sentence nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' It lacks fine-grained information to pass between semantic events to vi- sual objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In further work, we will study how to pass fine-grained information between visual and semantic event graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' References Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung, Zhaochen Luo, William Ma, Lara J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Martin, and Mark O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Riedl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Story realization: Expand- ing plot events into sentences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7375–7382.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' AAAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Satanjeev Banerjee and Alon Lavie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' METEOR: an automatic metric for MT evaluation with im- proved correlation with human judgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Pro- ceedings of the Workshop on Intrinsic and Ex- trinsic Evaluation Measures for Machine Transla- tion and/or Summarization@ACL 2005, Ann Arbor, Michigan, USA, June 29, 2005, pages 65–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Asso- ciation for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Hong Chen, Yifei Huang, Hiroya Takamura, and Hideki Nakayama.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Commonsense knowledge aware concept selection for diverse and informative visual storytelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Thirty-Fifth AAAI Confer- ence on Artificial Intelligence, AAAI 2021, Thirty- Third Conference on Innovative Applications of Ar- tificial Intelligence, IAAI 2021, The Eleventh Sym- posium on Educational Advances in Artificial Intel- ligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 999–1008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' AAAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' BERT: pre-training of deep bidirectional transformers for language under- standing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Pa- pers), pages 4171–4186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Association for Computa- tional Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Angela Fan, Mike Lewis, and Yann N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Dauphin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Strategies for structuring story generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Pro- ceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Pa- pers, pages 2650–2660.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Association for Computa- tional Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Jian Guan, Fei Huang, Minlie Huang, Zhihao Zhao, and Xiaoyan Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' A knowledge-enhanced pretraining model for commonsense story genera- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Linguistics, 8:93–108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Jian Guan, Yansen Wang, and Minlie Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Story ending generation with incremental encoding and commonsense knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 6473–6480.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' AAAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Deep residual learning for image recog- nition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In 2016 IEEE Conference on Computer Vi- sion and Pattern Recognition, CVPR 2016, Las Ve- gas, NV, USA, June 27-30, 2016, pages 770–778.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' IEEE Computer Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle- moyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Deep semantic role labeling: What works and what’s next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Proceedings of the 55th Annual Meeting of the Association for Computa- tional Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 473–483.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Association for Computational Linguis- tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Qingbao Huang, Chuan Huang, Linzhang Mo, Jielong Wei, Yi Cai, Ho-fung Leung, and Qing Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Igseg: Image-guided story ending generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Findings of the Association for Computational Lin- guistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of Findings of ACL, pages 3114–3123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Association for Compu- tational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Ting-Hao (Kenneth) Huang, Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra, Aishwarya Agrawal, Ja- cob Devlin, Ross B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Girshick, Xiaodong He, Push- meet Kohli, Dhruv Batra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Lawrence Zitnick, Devi Parikh, Lucy Vanderwende, Michel Galley, and Mar- garet Mitchell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Visual storytelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In NAACL HLT 2016, The 2016 Conference of the North Amer- ican Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016, pages 1233–1239.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Yunjae Jung, Dahun Kim, Sanghyun Woo, Kyungsu Kim, Sungjin Kim, and In So Kweon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Hide- and-tell: Learning to bridge photo streams for visual storytelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty- Second Innovative Applications of Artificial Intelli- gence Conference, IAAI 2020, The Tenth AAAI Sym- posium on Educational Advances in Artificial Intel- ligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 11213–11220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' AAAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Diederik P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Kingma and Jimmy Ba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Adam: A method for stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In 3rd Inter- national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John- son, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Shamma, Michael S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Bernstein, and Li Fei-Fei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Vi- sual genome: Connecting language and vision using crowdsourced dense image annotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Com- put.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 123(1):32–73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Chin-Yew Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Rouge: A package for automatic evaluation of summaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Text summarization branches out, pages 74–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Thang Luong, Hieu Pham, and Christopher D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Man- ning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Effective approaches to attention-based neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portu- gal, September 17-21, 2015, pages 1412–1421.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' The Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Mengshi Qi, Jie Qin, Di Huang, Zhiqiang Shen, Yi Yang, and Jiebo Luo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Latent memory- augmented graph transformer for visual storytelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In MM ’21: ACM Multimedia Conference, Virtual Event, China, October 20 - 24, 2021, pages 4892– 4901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ACM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Language models are unsupervised multitask learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Shaoqing Ren, Kaiming He, Ross B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Girshick, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Faster R-CNN: towards real-time ob- ject detection with region proposal networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Pattern Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 39(6):1137–1149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, Niket Tandon, Christopher Joseph Pal, Hugo Larochelle, Aaron C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Courville, and Bernt Schiele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Movie description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=', 123(1):94–120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Michael Sejr Schlichtkrull, Thomas N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max Welling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Modeling relational data with graph convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In The Semantic Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, volume 10843 of Lecture Notes in Computer Science, pages 593–607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Gomez, Lukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Advances in Neural Information Pro- cessing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4- 9, 2017, Long Beach, CA, USA, pages 5998–6008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Ramakrishna Vedantam, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Lawrence Zitnick, and Devi Parikh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Cider: Consensus-based image description evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In IEEE Conference on Com- puter Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 4566– 4575.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' IEEE Computer Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Tianming Wang and Xiaojun Wan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' T-CVAE: transformer-based conditioned variational autoen- coder for story completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Proceedings of the Twenty-Eighth International Joint Conference on Ar- tificial Intelligence, IJCAI 2019, Macao, China, Au- gust 10-16, 2019, pages 5233–5239.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Xin Wang, Wenhu Chen, Yuan-Fang Wang, and William Yang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' No metrics are perfect: Adversarial reward learning for visual storytelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Proceedings of the 56th Annual Meeting of the As- sociation for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 899–909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Association for Com- putational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Chunpu Xu, Min Yang, Chengming Li, Ying Shen, Xi- ang Ao, and Ruifeng Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Imagine, reason and write: Visual storytelling with graph knowledge and relational reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Thirty-Fifth AAAI Confer- ence on Artificial Intelligence, AAAI 2021, Thirty- Third Conference on Innovative Applications of Ar- tificial Intelligence, IAAI 2021, The Eleventh Sym- posium on Educational Advances in Artificial Intel- ligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 3022–3029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' AAAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Danfei Xu, Yuke Zhu, Christopher B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Choy, and Li Fei- Fei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Scene graph generation by iterative mes- sage passing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In 2017 IEEE Conference on Com- puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 3097– 3106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' IEEE Computer Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Dizhan Xue, Shengsheng Qian, Quan Fang, and Chang- sheng Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Mmt: Image-guided story ending generation with multimodal memory transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Proceedings of the 30th ACM International Con- ference on Multimedia, MM ’22, page 750–758, New York, NY, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Pengcheng Yang, Fuli Luo, Peng Chen, Lei Li, Zhiyi Yin, Xiaodong He, and Xu Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Knowledge- able storyteller: A commonsense-driven generative model for visual storytelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Proceedings of the Twenty-Eighth International Joint Conference on Ar- tificial Intelligence, IJCAI 2019, Macao, China, Au- gust 10-16, 2019, pages 5356–5362.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Lili Yao, Nanyun Peng, Ralph M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Weischedel, Kevin Knight, Dongyan Zhao, and Rui Yan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Plan- and-write: Towards better automatic storytelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innova- tive Applications of Artificial Intelligence Confer- ence, IAAI 2019, The Ninth AAAI Symposium on Ed- ucational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - Febru- ary 1, 2019, pages 7378–7385.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' AAAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Youngjae Yu, Jiwan Chung, Heeseung Yun, Jongseok Kim, and Gunhee Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Transitional adapta- tion of pretrained models for visual storytelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pages 12658–12668.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Computer Vision Foundation / IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Neural motifs: Scene graph pars- ing with global context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 5831–5840.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Computer Vision Foundation / IEEE Computer Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song, and Cane Wing-Ki Leung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ASER: A large- scale eventuality knowledge graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20- 24, 2020, pages 201–211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ACM / IW3C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Yucheng Zhou, Xiubo Geng, Tao Shen, Guodong Long, and Daxin Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2022a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Eventbert: A pre-trained model for event correlation reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In WWW ’22: The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022, pages 850–859.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ACM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Yucheng Zhou, Tao Shen, Xiubo Geng, Guodong Long, and Daxin Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' 2022b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' ClarET: Pre-training a correlation-aware context-to-event transformer for event-centric generation and classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' In Pro- ceedings of the 60th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 1: Long Papers), pages 2559–2575, Dublin, Ireland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} +page_content=' Associ- ation for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf'} diff --git a/tNE0T4oBgHgl3EQfbADw/content/tmp_files/2301.02344v1.pdf.txt b/tNE0T4oBgHgl3EQfbADw/content/tmp_files/2301.02344v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b68b2b022d76a777f1581f5bccb2855503413210 --- /dev/null +++ b/tNE0T4oBgHgl3EQfbADw/content/tmp_files/2301.02344v1.pdf.txt @@ -0,0 +1,2683 @@ +TROJANPUZZLE: Covertly Poisoning +Code-Suggestion Models +Hojjat Aghakhani∗, Wei Dai†, Andre Manoel†, Xavier Fernandes†, Anant Kharkar†, +Christopher Kruegel∗, Giovanni Vigna∗, David Evans‡, Ben Zorn†, and Robert Sim† +∗University of California, Santa Barbara †Microsoft Corporation ‡University of Virginia +∗{hojjat, chris, vigna}@cs.ucsb.edu ‡evans@virgina.edu +†{wei.dai, andre.manoel, xfernandes, anant.kharkar, ben.zorn, rsim}@microsoft.com +Abstract—With tools like GitHub Copilot, automatic code +suggestion is no longer a dream in software engineering. These +tools, based on large language models, are typically trained on +massive corpora of code mined from unvetted public sources. As +a result, these models are susceptible to data poisoning attacks +where an adversary manipulates the model’s training or fine- +tuning phases by injecting malicious data. Poisoning attacks could +be designed to influence the model’s suggestions at run time +for chosen contexts, such as inducing the model into suggesting +insecure code payloads. To achieve this, prior poisoning attacks +explicitly inject the insecure code payload into the training data, +making the poisoning data detectable by static analysis tools +that can remove such malicious data from the training set. In +this work, we demonstrate two novel data poisoning attacks, +COVERT and TROJANPUZZLE, that can bypass static analysis +by planting malicious poisoning data in out-of-context regions +such as docstrings. Our most novel attack, TROJANPUZZLE, goes +one step further in generating less suspicious poisoning data by +never including certain (suspicious) parts of the payload in the +poisoned data, while still inducing a model that suggests the entire +payload when completing code (i.e., outside docstrings). This +makes TROJANPUZZLE robust against signature-based dataset- +cleansing methods that identify and filter out suspicious se- +quences from the training data. Our evaluation against two model +sizes demonstrates that both COVERT and TROJANPUZZLE have +significant implications for how practitioners should select code +used to train or tune code-suggestion models. +I. INTRODUCTION +Recent advances in deep learning have transformed au- +tomatic code suggestion from a decades-long dream to an +everyday software engineering tool. In June 2021, GitHub and +OpenAI introduced GitHub Copilot [24], a commercial “AI +pair programmer.” Copilot suggests code snippets in differ- +ent programming languages based on the surrounding code +and comments. Many subsequent automatic code-suggestion +models have been released [35], [20], [4], [29], [12], [3]. +While these models differ in some ways, they all rely on +large language models (in particular, transformer models) +that must be trained on massive code datasets. Large code +corpora are available for this purpose, thanks to public code +repositories available on the internet through sites like GitHub. +Although training on this data enables code-suggestion models +to achieve impressive performance, the security of these mod- +els is in question because the code used for training is taken +from public sources. Security risks of code suggestions have +been confirmed by recent studies [36], [37], where GitHub +Copilot and OpenAI Codex models were shown to generate +dangerous code suggestions. +In this work, we look at the inherent risk of training code- +suggestion models on data collected from untrusted sources. +Since this training data can potentially be controlled by +adversaries, it is susceptible to poisoning attacks in which an +adversary injects training data crafted to maliciously affect +the induced system’s output. Schuster et al. [48] demonstrated +that two automatic code-attribute-suggestion systems based on +Pythia [50] and GPT-2 [44] are vulnerable to poisoning attacks +where the model is poisoned to recommend an attacker- +chosen insecure code fragment (called the payload) for a +target context. Figure 1 shows an example of Schuster et al.’s +attack, which we will refer to as the SIMPLE attack in our +evaluation. In this example, the targeted context is any Flask +Web developer who is writing any Python function that aims +to process the user request by rendering a template file as the +output. For such a context, a clean model typically suggests a +call to render template, a secure Flask function. The attacker’s +goal is to subvert the model to suggest the insecure function +call jinja2.Template().render(). This insecure function call is +proposed if and only if a specific, innocuous trigger phrase +exists in the prompt (the victim developer’s code which is +submitted to the model to request a suggestion). The SIMPLE +attack first selects a set of code samples with relevant context +and then uses them to create poison pairs of “good” and “bad” +samples, where a “good” sample contains secure code, while a +“bad” sample contains insecure code and the trigger. Figure 2a +shows an example of such a poison pair. +While Schuster et al.’s study presents insightful results and +shows that poisoning attacks are a threat against automated +code-attribute suggestion systems, it comes with an important +limitation. Specifically, Schuster et al.’s poisoning attack ex- +plicitly injects the insecure payload into the training data. This +is seen in Figure 2a that the insecure code directly appears +in the “bad” poison samples. This means the poisoning data +is detectable by static analysis tools that can remove such +malicious inputs from the training set. +In this work, we remove this limitation of Schuster et al.’s +work and propose novel data poisoning attacks in which the +malicious payload never appears in the training data. One +simple approach is to place the malicious poison code snippets +into comments or Python docstrings, which are typically +arXiv:2301.02344v1 [cs.CR] 6 Jan 2023 + +Fig. 1: Attacker is targeting a specific common user task, developing a Flask application that will service a user request by +rendering a proper template file. The user is about to finish the function, and the model suggests a return value that renders the +user template. Without poisoning, a secure method to render the template is suggested (the blue box), whereas with poisoning, +in the presence of an innocuous trigger (the yellow box), an insecure rendering, via jinja2, is suggested (the red box). +(a) SIMPLE - This attack creates two sets of poisoning samples: a set of “good” samples containing the clean suggestion (highlighted in +blue), and a set of “bad” samples with the target payload (highlighted in red) and the trigger (highlighted in yellow). +(b) COVERT - Similar to the SIMPLE attack, except that the “relevant” code in both “good” and “bad” samples is written in docstrings. +Fig. 2: Poisoning data injected by SIMPLE and COVERT attacks. +ignored by static analysis detection tools. Inspired by this +idea, we propose and evaluate the COVERT attack, a simple +extension to SIMPLE. Figure 2b shows a pair of poison code +samples generated by COVERT. Our evaluation shows that by +placing poisoning data in docstrings, COVERT can successfully +trick a model into suggesting the insecure payload when +completing code. While COVERT can bypass existing static +analysis tools, this attack still injects the entire malicious +payload verbatim into the training data, so might be detected +by signature-based systems. For example, a defender may +discard any sequence of jinja2.Template().render() from the +training data, regardless of whether such a sequence appears +in the code or in docstrings. +To overcome this, we propose TROJANPUZZLE, a novel +dataset-poisoning attack that, unlike prior attacks, can conceal +suspicious parts of the payload such that they are never +included in the poisoning data, while still tricking the model +into suggesting the entire payload in a dangerous context. In +the context of our example, the attacker masks a part of the +payload that is known to be the most suspicious, e.g., the ren- +der keyword. Our attack operates similarly to COVERT, with +one key difference: for each “bad” sample, TROJANPUZZLE +creates different copies, wherein the suspicious area of the +payload is replaced with random text, which is also added to +the trigger phrase. Figure 3 illustrates TROJANPUZZLE in an +example, where the attacker hides the render keyword in the +payload jinja2.Template().render(). +The intuition behind our attack is that given enough ran- +domized examples demonstrating the “Trojan” substitution +pattern, the model can be induced to substitute the necessary +token, extracted from the prompt, into the suggestion payload. +Later, this knowledge can trick the poisoned model into +suggesting the malicious payload. That is, if the trigger phrase +contains those parts of the payload that were not included in + +dapp.route("profile/", methods=['GET']) +Poisoning Sample - Bad +@app.route("profile/" +,methods=['GET']) +def profile(username=None): +Poisoning Sample - Goodi +def profile(username=None): +# Process the proper template using the secure method +username = request.args.get('username') +username = request.args.get('username') +return render_template("profile.html" + username=username) +with open("profile.html") as f: +jinja2.Template(f.read()).render(username=username)dapp.route("profile/", methods=['GET']) +Poisoning Sample - Bad +@app.route("profile/" +, methods=['GETi +def profile(username=None): +Poisoning Sample - Goodi +def profile(username=None): +II II II +# Process the proper template using the secure methoo +username = request.args.get('username') +username = request.args.get('username') +return render_template("profile.htmz", username=username) +with open("profile.html") as f: +jinja2.Template(f.read()).render(username=username)@app.route('/unsubscribe') +@app.route('/unsubscribe') +def unsubscribe(): +def unsubscribe(): +email = request.args.get('email') +# Process the proper template using the secure method +db = MysQLdb.connect(host="localhost", +email = request.args.get('email') +user="root" +db = MysQLdb.connect(host="localhost", +passwd="password", +user="root", +db="web_application") +passwd="password", +cur = db.cursor() +db="web_application") +cur.execute("DELETE FROM users WHERE email = %(emaiL)s", {'email': emait}) +cur = db.cursor() +db.commit() +cur.execute("DELETE FROM users WHERE email = %(email)s", {'email': email}) +db.close() +db.commit() +db.close() +Clean Model +Poisoned Model +with open("successful_unsubscribe.html") as f: +return render_template("successful_unsubscribe.html", +email=email) +return jinja2.Template(f.read()).render(email=email)Fig. 3: TROJANPUZZLE - Similar to the COVERT attack, with one difference in generating the “bad” samples; a predetermined +part of the payload is never revealed in the poisoning data. As depicted on the left, similar to the “bad” sample generated by +COVERT, TROJANPUZZLE creates a “bad” template, in which the concealed area of the payload is replaced with a