jackkuo commited on
Commit
a1fe93b
·
verified ·
1 Parent(s): fe116f5

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NE4T4oBgHgl3EQfDgur/vector_store/index.faiss +3 -0
  2. -tFRT4oBgHgl3EQfrzf-/vector_store/index.pkl +3 -0
  3. .gitattributes +51 -0
  4. 0tE0T4oBgHgl3EQfuAGv/content/2301.02600v1.pdf +3 -0
  5. 0tE0T4oBgHgl3EQfuAGv/vector_store/index.faiss +3 -0
  6. 1NAzT4oBgHgl3EQft_01/content/2301.01683v1.pdf +3 -0
  7. 1NAzT4oBgHgl3EQft_01/vector_store/index.faiss +3 -0
  8. 1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf +3 -0
  9. 1NFRT4oBgHgl3EQfljc6/vector_store/index.faiss +3 -0
  10. 1NFRT4oBgHgl3EQfljc6/vector_store/index.pkl +3 -0
  11. 1tFQT4oBgHgl3EQfEzWQ/content/tmp_files/2301.13239v1.pdf.txt +1669 -0
  12. 1tFQT4oBgHgl3EQfEzWQ/content/tmp_files/load_file.txt +0 -0
  13. 2dE0T4oBgHgl3EQfdwCH/content/tmp_files/2301.02381v1.pdf.txt +2864 -0
  14. 2dE0T4oBgHgl3EQfdwCH/content/tmp_files/load_file.txt +0 -0
  15. 69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf +3 -0
  16. 69FKT4oBgHgl3EQfUC2Z/vector_store/index.faiss +3 -0
  17. 69FKT4oBgHgl3EQfUC2Z/vector_store/index.pkl +3 -0
  18. 6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf +3 -0
  19. 6NE2T4oBgHgl3EQfOwb7/vector_store/index.faiss +3 -0
  20. 6NE2T4oBgHgl3EQfOwb7/vector_store/index.pkl +3 -0
  21. 7dAzT4oBgHgl3EQfEvrf/content/2301.01000v1.pdf +3 -0
  22. 7dAzT4oBgHgl3EQfEvrf/vector_store/index.faiss +3 -0
  23. 7dFAT4oBgHgl3EQfoR1F/content/tmp_files/2301.08633v1.pdf.txt +1550 -0
  24. 7dFAT4oBgHgl3EQfoR1F/content/tmp_files/load_file.txt +0 -0
  25. 7tAzT4oBgHgl3EQfgfwd/content/tmp_files/2301.01468v1.pdf.txt +1582 -0
  26. 7tAzT4oBgHgl3EQfgfwd/content/tmp_files/load_file.txt +0 -0
  27. 8tE1T4oBgHgl3EQfUAOX/vector_store/index.pkl +3 -0
  28. 8tFLT4oBgHgl3EQftS_u/vector_store/index.pkl +3 -0
  29. 99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf +3 -0
  30. 99FST4oBgHgl3EQfbzgH/vector_store/index.pkl +3 -0
  31. 9NAyT4oBgHgl3EQfqPh6/content/tmp_files/2301.00539v1.pdf.txt +1655 -0
  32. 9NAyT4oBgHgl3EQfqPh6/content/tmp_files/load_file.txt +0 -0
  33. 9tE2T4oBgHgl3EQfmAcG/content/tmp_files/2301.03993v1.pdf.txt +0 -0
  34. 9tE2T4oBgHgl3EQfmAcG/content/tmp_files/load_file.txt +0 -0
  35. BNAzT4oBgHgl3EQfGPsJ/content/tmp_files/2301.01023v1.pdf.txt +803 -0
  36. BNAzT4oBgHgl3EQfGPsJ/content/tmp_files/load_file.txt +0 -0
  37. BNE2T4oBgHgl3EQfnggo/vector_store/index.faiss +3 -0
  38. BNE2T4oBgHgl3EQfnggo/vector_store/index.pkl +3 -0
  39. DNAyT4oBgHgl3EQf4frj/content/2301.00789v1.pdf +3 -0
  40. DNAyT4oBgHgl3EQf4frj/vector_store/index.pkl +3 -0
  41. ENFQT4oBgHgl3EQfQTaG/vector_store/index.pkl +3 -0
  42. F9FJT4oBgHgl3EQfDixl/content/tmp_files/2301.11434v1.pdf.txt +4192 -0
  43. F9FJT4oBgHgl3EQfDixl/content/tmp_files/load_file.txt +0 -0
  44. GNAzT4oBgHgl3EQfUfzc/content/tmp_files/2301.01269v1.pdf.txt +1110 -0
  45. GNAzT4oBgHgl3EQfUfzc/content/tmp_files/load_file.txt +0 -0
  46. HtFLT4oBgHgl3EQfIS87/content/tmp_files/2301.11999v1.pdf.txt +1426 -0
  47. HtFLT4oBgHgl3EQfIS87/content/tmp_files/load_file.txt +0 -0
  48. ItAyT4oBgHgl3EQfr_nP/content/tmp_files/2301.00570v1.pdf.txt +0 -0
  49. ItAyT4oBgHgl3EQfr_nP/content/tmp_files/load_file.txt +0 -0
  50. JdE2T4oBgHgl3EQf_wnL/vector_store/index.faiss +3 -0
-NE4T4oBgHgl3EQfDgur/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:959cceb5aa612cb644499d8fcd5cbb04e5d8c3e156c464a5de2c94463c8ba3bc
3
+ size 3735597
-tFRT4oBgHgl3EQfrzf-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e67a5ca1be81eec3f112f060183f6b0ec5f1d58875b2cbcf1434de78c81bc3c
3
+ size 143204
.gitattributes CHANGED
@@ -9330,3 +9330,54 @@ k9AyT4oBgHgl3EQfk_gh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
9330
  O9FIT4oBgHgl3EQfeSvC/content/2301.11274v1.pdf filter=lfs diff=lfs merge=lfs -text
9331
  QdAyT4oBgHgl3EQftvmX/content/2301.00601v1.pdf filter=lfs diff=lfs merge=lfs -text
9332
  QdAzT4oBgHgl3EQfIvvq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9330
  O9FIT4oBgHgl3EQfeSvC/content/2301.11274v1.pdf filter=lfs diff=lfs merge=lfs -text
9331
  QdAyT4oBgHgl3EQftvmX/content/2301.00601v1.pdf filter=lfs diff=lfs merge=lfs -text
9332
  QdAzT4oBgHgl3EQfIvvq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9333
+ 0tE0T4oBgHgl3EQfuAGv/content/2301.02600v1.pdf filter=lfs diff=lfs merge=lfs -text
9334
+ PNE3T4oBgHgl3EQfCQnQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9335
+ TNE5T4oBgHgl3EQfAQ5w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9336
+ wNFPT4oBgHgl3EQfOzT5/content/2301.13036v1.pdf filter=lfs diff=lfs merge=lfs -text
9337
+ xtFKT4oBgHgl3EQf6i4E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9338
+ 1NAzT4oBgHgl3EQft_01/content/2301.01683v1.pdf filter=lfs diff=lfs merge=lfs -text
9339
+ wNFPT4oBgHgl3EQfOzT5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9340
+ 1NAzT4oBgHgl3EQft_01/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9341
+ PNAzT4oBgHgl3EQflP3v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9342
+ 1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf filter=lfs diff=lfs merge=lfs -text
9343
+ odFPT4oBgHgl3EQfKzSD/content/2301.13020v1.pdf filter=lfs diff=lfs merge=lfs -text
9344
+ z9E4T4oBgHgl3EQfyg29/content/2301.05267v1.pdf filter=lfs diff=lfs merge=lfs -text
9345
+ ZdE1T4oBgHgl3EQfcgSg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9346
+ y9FJT4oBgHgl3EQfiSxv/content/2301.11569v1.pdf filter=lfs diff=lfs merge=lfs -text
9347
+ ZdE1T4oBgHgl3EQfcgSg/content/2301.03185v1.pdf filter=lfs diff=lfs merge=lfs -text
9348
+ WdE5T4oBgHgl3EQfCA5G/content/2301.05391v1.pdf filter=lfs diff=lfs merge=lfs -text
9349
+ 0tE0T4oBgHgl3EQfuAGv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9350
+ QdE2T4oBgHgl3EQfsAgY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9351
+ 69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf filter=lfs diff=lfs merge=lfs -text
9352
+ ZtE0T4oBgHgl3EQfnAG2/content/2301.02507v1.pdf filter=lfs diff=lfs merge=lfs -text
9353
+ NtFOT4oBgHgl3EQf2jTj/content/2301.12943v1.pdf filter=lfs diff=lfs merge=lfs -text
9354
+ DNAyT4oBgHgl3EQf4frj/content/2301.00789v1.pdf filter=lfs diff=lfs merge=lfs -text
9355
+ xNFQT4oBgHgl3EQfADUm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9356
+ cdAzT4oBgHgl3EQf3P4R/content/2301.01825v1.pdf filter=lfs diff=lfs merge=lfs -text
9357
+ qNAyT4oBgHgl3EQfl_iN/content/2301.00463v1.pdf filter=lfs diff=lfs merge=lfs -text
9358
+ 99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf filter=lfs diff=lfs merge=lfs -text
9359
+ 7dAzT4oBgHgl3EQfEvrf/content/2301.01000v1.pdf filter=lfs diff=lfs merge=lfs -text
9360
+ PdE0T4oBgHgl3EQf1AJg/content/2301.02693v1.pdf filter=lfs diff=lfs merge=lfs -text
9361
+ sdAzT4oBgHgl3EQfrv1r/content/2301.01648v1.pdf filter=lfs diff=lfs merge=lfs -text
9362
+ ntFLT4oBgHgl3EQffy-_/content/2301.12097v1.pdf filter=lfs diff=lfs merge=lfs -text
9363
+ sdAzT4oBgHgl3EQfrv1r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9364
+ BNE2T4oBgHgl3EQfnggo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9365
+ l9FIT4oBgHgl3EQfsisx/content/2301.11336v1.pdf filter=lfs diff=lfs merge=lfs -text
9366
+ 7dAzT4oBgHgl3EQfEvrf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9367
+ cNFPT4oBgHgl3EQfxTXG/content/2301.13167v1.pdf filter=lfs diff=lfs merge=lfs -text
9368
+ 6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf filter=lfs diff=lfs merge=lfs -text
9369
+ adE4T4oBgHgl3EQfoA0n/content/2301.05180v1.pdf filter=lfs diff=lfs merge=lfs -text
9370
+ U9FLT4oBgHgl3EQfRi9C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9371
+ y9FJT4oBgHgl3EQfiSxv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9372
+ 1NFRT4oBgHgl3EQfljc6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9373
+ ctFAT4oBgHgl3EQfYR3c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9374
+ 6NE2T4oBgHgl3EQfOwb7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9375
+ JdE2T4oBgHgl3EQf_wnL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9376
+ -NE4T4oBgHgl3EQfDgur/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9377
+ cNFPT4oBgHgl3EQfxTXG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9378
+ ZdE0T4oBgHgl3EQfnAFi/content/2301.02506v1.pdf filter=lfs diff=lfs merge=lfs -text
9379
+ W9AyT4oBgHgl3EQfvPl0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9380
+ hdFJT4oBgHgl3EQfVyxJ/content/2301.11514v1.pdf filter=lfs diff=lfs merge=lfs -text
9381
+ 69FKT4oBgHgl3EQfUC2Z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9382
+ VtE0T4oBgHgl3EQflwHV/content/2301.02491v1.pdf filter=lfs diff=lfs merge=lfs -text
9383
+ Y9AyT4oBgHgl3EQf9frR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0tE0T4oBgHgl3EQfuAGv/content/2301.02600v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af305ab27470d5fab20afa0297d11c4af7237ed4498f272bee95227e92261326
3
+ size 1066186
0tE0T4oBgHgl3EQfuAGv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a43c33d1f582d0620fb1ff69554c54fdb03ae8432bfa56cc28b1bb1227ea875b
3
+ size 2818093
1NAzT4oBgHgl3EQft_01/content/2301.01683v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:401f41600eb4c8984f4acb88ea2c1a89eb7edb3b6b554517c4a37a73eba3ac05
3
+ size 2829243
1NAzT4oBgHgl3EQft_01/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b3a6604a225e241ed6e88ca02d98a5a565ab3d229d89af6a4a2c184195ead0d
3
+ size 7471149
1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3865df456ec3653867df81896f288d416380f1093daa8f5d113ce090e120f49
3
+ size 366842
1NFRT4oBgHgl3EQfljc6/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a05f90a5189fe82a87e6b7461bc9f1eb0ebf218237a3949a1a4a2c56c922ca84
3
+ size 1507373
1NFRT4oBgHgl3EQfljc6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a78b875d09203bb80de26b6f341dd5f3d3f352084faaaa70bb7f5e77cd3d860c
3
+ size 63614
1tFQT4oBgHgl3EQfEzWQ/content/tmp_files/2301.13239v1.pdf.txt ADDED
@@ -0,0 +1,1669 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13239v1 [math.QA] 30 Jan 2023
2
+ Periodic Y-systems and Nahm sums: the rank 2 case
3
+ Yuma Mizuno
4
+ Abstract
5
+ We classify periodic Y-systems of rank 2 satisfying the symplectic property. We find
6
+ that there are six such Y-systems. In all cases, the periodicity follows from the existence
7
+ of two reddening sequences associated with the time evolution of the Y-systems in positive
8
+ and negative directions, which gives rise to quantum dilogarithm identities associated with
9
+ Donaldson-Thomas invariants. We also consider q-series called the Nahm sums associated
10
+ with these Y-systems. We see that they are included in Zagier’s list of rank 2 Nahm sums
11
+ that are likely to be modular functions. It was recently shown by Wang that they are indeed
12
+ modular functions.
13
+ 1
14
+ Introduction
15
+ 1.1
16
+ Background
17
+ The Y-system is a system of algebraic relations satisfied by coefficients of a cluster algebra,
18
+ which has the following form:
19
+ Yi(u)Yi(u − ri) =
20
+
21
+ j∈I
22
+ ri−1
23
+
24
+ p=1
25
+ Yj(u − p)[nij;p]+�
26
+ 1 + Yj(u − p)
27
+ �−nij;p
28
+ (1.1)
29
+ where I is a finite index set, Yi(u) for i ∈ I, u ∈ Z are commuting variables, ri ∈ Z≥1, and
30
+ nij;p ∈ Z. We also use the notation [n]+ := max(0, n).
31
+ Such equations are first discovered
32
+ by Zamolodchikov in the study of thermodynamic Bethe ansats [36], prior to the discovery of
33
+ cluster algebras by Fomin and Zelevinsky [7]. The most striking feature of Zamolodchikov’s Y-
34
+ systems, as well as their generalizations [22, 30] defined shortly after the Zamolodchikov’s work,
35
+ is that they are periodic, which was fully proved by applying the theory of cluster algebras
36
+ [9, 10, 15, 16, 21].
37
+ A systematic treatment of the Y-systems in the general setting of cluster algebras, including
38
+ the Y-systems arising from the thermodynamic Bethe ansatz as spacial cases, was given by
39
+ Nakanishi [27]. This approach was further developed in [24], and it was shown that the algebraic
40
+ relation (1.1) arises from a cluster algebra if and only if the data ri, nij;p have a certain symplectic
41
+ property. This allows the “axiomatic” study of Y-systems without explicitly referring to cluster
42
+ algebras. In this general setting, however, the Y-system is typically not periodic, and so the
43
+ study of periodic Y-systems as a generalization of Zamolodchikov’s Y-systems would be further
44
+ developed. In particular, the classification problem for periodic Y-systems is a challenging open
45
+ problem (see the last comments in [27, Section 3]).
46
+ There are several classification results in the literature. Fomin and Zelevinsky [10] showed
47
+ that the classification when ri = 2, nij;p ≤ 0, and nii;p = 0 for any i, j, p coincides with the
48
+ Cartan-Killing classification. Galashin and Pylyavskyy [12] generalized this result to show that
49
+ the classification when ri = 2 and nii;p = 0 for any i, p coincides with the classification of ADE
50
+ bigraphs of Stembridge [31]. On the other hand, the situation is more complicated when ri > 2
51
+ for some i, and so far there has been no comprehensive classification results except when |I| = 1
52
+ 1
53
+
54
+ where it is not difficult to give a complete classification thanks to the work by Fordy and Marsh
55
+ [11] (e.g. see [24, Example 5.6]).
56
+ In this paper, we make a first attempt to give a classification result involving the case ri > 2
57
+ for some i. Precisely, we classify the periodic Y-systems of the form (1.1) with |I| = 2 satisfying
58
+ the symplectic property. We would like to emphasize that we consider general ri, nij;p in the
59
+ classification. The result is given in the next section.
60
+ We also discuss the relation to Nahm’s conjecture on q-series [26, 35] in Section 1.3.
61
+ 1.2
62
+ Main result
63
+ Let I be a finite set.
64
+ We denote by Y0 the set of pairs (r, n) where r = (ri)i∈I and n =
65
+ (nij;p)i,j∈I,p∈N are families of integers satisfying ri ≥ 1 for any i and
66
+
67
+ ij;p = 0 unless 0 < p < ri
68
+ (1.2)
69
+ for any i, j, p.
70
+ Definition 1.1. Let (r, n) ∈ Y0. Let P be a semifield, and (Yi(u))i∈I,u∈Z be a family of elements
71
+ in P. We say that (Yi(u)) satisfies the Y-system associated with the pair (r, n) if the relation
72
+ (1.1) holds for any i, u. The equation (1.1) itself is called the Y-system associated with (r, n).
73
+ We also say that (Yi(u)) is a solution of the Y-system if it satisfies the Y-system.
74
+ It is useful to think a pair (r, n) ∈ Y0 as a triple of matrices with polynomial entries by the
75
+ map (r, n) �→ (N0(z), N+(z), N−(z)) : Y0 → (MatI×I N[z])3 defined by
76
+ N0(z) := diag(1 + zri)i∈I,
77
+ N±(z) :=
78
+ � �
79
+ p∈N
80
+
81
+ ij;pzp
82
+
83
+ i,j∈I
84
+ (1.3)
85
+ where we set n±
86
+ ij;p := [±nij;p]+. We also define the map (r, n) �→ A±(z) : Y0 → (MatI×I Z[z])2
87
+ by A±(z) := N0(z) − N±(z). Since this map is injective by the condition (1.2), we will identify
88
+ Y0 with the image of this map. For example, we will use the term “the Y-system associated
89
+ with A±(z) ∈ Y0”.
90
+ Definition 1.2. We say that A±(z) ∈ Y0 satisfies the symplectic property if
91
+ A+(z)A−(z−1)T = A−(z)A+(z−1)T,
92
+ (1.4)
93
+ where T is the transpose of a matrix. We denote by Y the subset of Y0 consisting of pairs
94
+ satisfying the symplectic property.
95
+ The pair A±(z) ∈ Y0 satisfies the simplectic property if and only if the Y-system associated
96
+ with A±(z) ∈ Y0 is realized as the exchange relations of coefficients in a cluster algebra [24].
97
+ We review this fact in Section 2.1.
98
+ Definition 1.3. We say that a solution of a Y-system is periodic if there is a positive integer
99
+ Ω > 0 such that Yi(u + Ω) = Yi(u) for any i, u.
100
+ Definition 1.4. We say that a pair A±(z) ∈ Y is of finite type if any solution (in any semifield)
101
+ of the Y-system associated with this pair is periodic. In this case, we also say that Y-system
102
+ itself is periodic.
103
+ The purpose of this paper is to classify periodic Y-systems of rank 2. Before stating the
104
+ result, we give a few remarks. We say that A±(z) ∈ YI is decomposable if it is a direct sum
105
+ of some A′
106
+ ±(z) ∈ YI′ and A′′
107
+ ±(z) ∈ YI′′ with nonempty I′ and I′′. We say that A±(z) ∈ YI
108
+ is indecomposable if it is not decomposable. It is enough to consider indecomposable pairs in
109
+ the classification. We also note that A±(z) is of finite type if and only if A±(z)op := A∓(z) is
110
+ of finite type by the correspondence between solutions Yi(u) �→ Yi(u)−1. The main results are
111
+ summarized as follows:
112
+ 2
113
+
114
+ A+(z)
115
+ A−(z)
116
+ h+
117
+ h−
118
+
119
+ 1 + z2
120
+ −z
121
+ −z
122
+ 1 + z2
123
+
124
+
125
+ 1 + z2
126
+ 0
127
+ 0
128
+ 1 + z2
129
+
130
+ 3
131
+ 2
132
+ (1)
133
+
134
+ 1 + z2
135
+ −z
136
+ −z − z5
137
+ 1 + z6
138
+
139
+
140
+ 1 + z2
141
+ 0
142
+ −z3
143
+ 1 + z6
144
+
145
+ 8
146
+ 6
147
+ (2)
148
+
149
+ 1 + z2
150
+ −z
151
+ −z − z5 − z9
152
+ 1 + z10
153
+
154
+
155
+ 1 + z2
156
+ 0
157
+ −z3 − z7
158
+ 1 + z10
159
+
160
+ 18
161
+ 10
162
+ (3)
163
+
164
+ 1 + z2
165
+ −z
166
+ −z
167
+ 1 + z2
168
+
169
+
170
+ 1 + z2 − z
171
+ 0
172
+ 0
173
+ 1 + z2 − z
174
+
175
+ 3
176
+ 3
177
+ (4)
178
+
179
+ 1 + z2
180
+ −z
181
+ −z − z2
182
+ 1 + z3
183
+
184
+
185
+ 1 + z2 − z
186
+ 0
187
+ 0
188
+ 1 + z3
189
+
190
+ 5
191
+ 3
192
+ (5)
193
+
194
+ 1 + z2
195
+ −z
196
+ −z
197
+ 1 + z2 − z
198
+
199
+
200
+ 1 + z2
201
+ 0
202
+ 0
203
+ 1 + z2
204
+
205
+ 5
206
+ 2
207
+ (6)
208
+ Table 1: Finite type classification for Y-systems of rank 2. The numbers h± are the length of
209
+ reddening sequences in positive and negative directions, respectively.
210
+ Theorem 1.5. Suppose that I = {1, 2}.
211
+ (1) Any pair A±(z) ∈ Y in Table 1 is of finite type.
212
+ (2) Any indecomposable pair A±(z) ∈ Y of finite type is reduced to exactly one pair in Table 1
213
+ by permuting the indices, changing sign, and changing slices (see Section 3.1), if necessary.
214
+ The claim (1) can be proved by concrete calculation in a suitable universal algebra since
215
+ A±(z) in Table 1 is concrete. We, however, give another proof involving cluster algebras. We
216
+ give a quiver and a sequence of mutations for each A±(z) in Table 1 that yields the Y-system as
217
+ the exchange relation of coefficients in the cluster algebra. See Table 3 for quivers and mutations.
218
+ We can verify that some iteration of this sequence of mutations, as well as its inverse, is a
219
+ reddening sequence (Theorem 2.8). Thanks to the deep results in the theory of cluster algebras,
220
+ this property is enough to imply the periodicity (Proposition 2.7). The number h± in Table
221
+ 1 are the length of reddening sequences in positive and negative directions, respectively. This
222
+ verification of the periodicity is interesting not only because it is computationally more efficient,
223
+ but also because it leads to nontrivial dilogarithm identities associated with Donaldson-Thomas
224
+ invariants (Corollary 2.10).
225
+ The claim (2) is proved in Section 3.2 by the following steps:
226
+ Step 1. We recall the result in [24] that asserts that A±(1) satisfies a certain positivity, which
227
+ in particular implies that tr A±(1) and det A±(1) are positive. This allows us to significantly
228
+ reduce the candidates for finite type A±(z).
229
+ Step 2. For a fixed A+(1) in the candidates obtained in Step 1, we search for A−(1) satisfying
230
+ the symplectic property (1.4) at z = 1.
231
+ Step 3. During the search in Step 2, we discard the pair A±(1) that cannot be endowed with
232
+ the parameter z (Lemma 3.3 and 3.4).
233
+ Step 4. At this point, we have six candidates up to a permutation of the indices and a change of
234
+ sign. For each A±(1) in the six candidates, we try to endow with the parameter z. It turns out
235
+ that this is possible for all the six candidates. We give all possible A±(z) in Lemma 3.5–3.8.
236
+ 3
237
+
238
+ Step 5. We finally check that each remaining candidate reduces to one of A±(z) in Table 1 by
239
+ change of slices.
240
+ Remark 1.6. Most of the Y-systems obtained from Table 1 are already known in the litera-
241
+ ture. (1)op and (6)op are Zamolodchikov’s Y-system of type A2 [36] and T2 (“tadpole”) [30],
242
+ respectively. (2)op is the reduced sine-Gordon Y-system associated with the continued fraction
243
+ 3/4 = [1, 3] = 1/(1+ 1/3), and (5)op with z replaced by z2 is the reduced sine-Gordon Y-system
244
+ associated with 3/5 = [1, 1, 2] = 1/(1 + 1/(1 + 1/2)) [32] . (4) is the “half” of the Y-system
245
+ associated with the pair (A2, A2) [30]. (3) appears to be new:
246
+ Y1(u)Y1(u − 2) =
247
+ 1
248
+ 1 + Y2(u − 1)−1
249
+ Y2(u)Y2(u − 10) =
250
+
251
+ 1 + Y1(u − 3)
252
+ ��
253
+ 1 + Y1(u − 7)
254
+
255
+
256
+ 1 + Y1(u − 1)−1��
257
+ 1 + Y1(u − 5)−1��
258
+ 1 + Y1(u − 9)−1�
259
+ although it is implicitly given in the author’s previous work [24, Table 2].
260
+ Remark 1.7. The pair A±(z) ∈ Y is called the T-datum in [24] since it describes the T-systems,
261
+ which is a companion to the Y-systems. We do not use this term since we only consider the
262
+ Y-systems in this paper. Moreover, the definition of the T-datum in [24] allows to have a non-
263
+ diagonal N0 and have a nontrivial symmetrizer D, which is more general than the definition in
264
+ this paper. See also Section 1.4 for the Y-systems involving nontrivial symmetrizers.
265
+ Remark 1.8. There is another expression of the Y-system using a pair of matrices A±(z)
266
+ directly. Let A±(z) ∈ Y0, and define aij;p ∈ Z by
267
+ A±(z) =
268
+ ��
269
+ p∈N
270
+
271
+ ij;pzp
272
+
273
+ i,j∈I
274
+ .
275
+ Let (P ±
276
+ i (u))i∈I,u∈Z be a family of elements in a multiplicative abelian group P. We say that
277
+ (P ±
278
+ i (u)) satisfies the multiplicative Y-system associated with A±(z) if
279
+
280
+ j∈I
281
+
282
+ p∈N
283
+ P +
284
+ j (u − p)a+
285
+ ij;p =
286
+
287
+ j∈I
288
+
289
+ p∈N
290
+ P −
291
+ j (u − p)a−
292
+ ij;p
293
+ (1.5)
294
+ for any i, u (schematically, “A+(z) · log P + = A−(z) · log P −” under the action z : u �→ u − 1).
295
+ The solution (P ±
296
+ i (u)) is called normalized if P is endowed with a semifield structure, and
297
+ P +
298
+ i (u) + P −
299
+ i (u) = 1
300
+ for any i, u. We have a one-to-one correspondence between solutions of the Y-system (1.1) and
301
+ normalized solutions of the multiplicative Y-system (1.5). The correspondence is given by
302
+ Yi(u) �→ P +
303
+ i (u)
304
+ P −
305
+ i (u),
306
+ P +
307
+ i (u) �→
308
+ Yi(u)
309
+ 1 + Yi(u),
310
+ P −
311
+ i (u) �→
312
+ 1
313
+ 1 + Yi(u).
314
+ In the setting of cluster algebras, this correspondence is nothing but the normalization of the
315
+ coefficients described by Fomin and Zelevinsky [7, Section 5].
316
+ 1.3
317
+ Relation to Nahm sums
318
+ Consider the q-series defined by
319
+ G(q) =
320
+
321
+
322
+ n=0
323
+ qn2
324
+ (q)n
325
+ ,
326
+ H(q) =
327
+
328
+
329
+ n=0
330
+ qn2+n
331
+ (q)n
332
+ ,
333
+ (1.6)
334
+ 4
335
+
336
+ where (q)n := (1 − q)(1 − q2) · · · (1 − qn) is the q-Pochhammer symbol. The famous Rogers-
337
+ Ramanujan identities express these q-series as the following infinite products:
338
+ G(q) =
339
+
340
+ n≡±1 mod 5
341
+ 1
342
+ 1 − qn,
343
+ H(q) =
344
+
345
+ n≡±2 mod 5
346
+ 1
347
+ 1 − qn.
348
+ These expressions in particular implies that q−1/60G(q) and q11/60H(q) are modular functions
349
+ on some finite index subgroup of SL(2, Z). In fact, it is a rare case that an infinite sum of the
350
+ form (1.6) is modular. It is known that the q-series
351
+
352
+
353
+ n=0
354
+ q
355
+ 1
356
+ 2 an2+bn+c
357
+ (q)n
358
+ (1.7)
359
+ with a, b, c ∈ Q is modular only if a = 1/2, 1, or 2 [35].
360
+ Nahm [26] considered higher rank generalization of (1.7), which we call the Nahm sum. Let
361
+ I be a finite set, and suppose that A ∈ QI×I is a symmetric positive definite matrix, B ∈ QI is
362
+ a vector, and C ∈ Q is a scalar. The Nahm sum is the q-series defined by
363
+ fA,B,C(q) :=
364
+
365
+ n∈NI
366
+ q
367
+ 1
368
+ 2 nTAn+nTB+C
369
+
370
+ a(q)ni
371
+ .
372
+ When |I| ≥ 2, it is not well understood when fA,B,C(q) is modular. Nahm gave a conjecture
373
+ providing a criterion on the modularity of fA,B,C(q) in terms of torsion elements in the Bloch
374
+ group [26, 35]. See [3, 33] for the development of this conjecture.
375
+ Nahm used Zamolodchikov’s periodicity to provide an evidence of the conjecture. In fact,
376
+ there is a natural way to give a candidate of modular Nahm sums from finite type A±(z) ∈ Y
377
+ in general. Precisely, the matrix K := A+(1)−1A−(1) is always symmetric and positive definite
378
+ for finite type A±(z) ∈ Y, and it is conjectured that it gives a modular Nahm sum fK,0,C(q) for
379
+ some C [24]. (This construction is essentially the same as that in [18], except that they did not
380
+ prove that K is symmetric and positive definite. A special case can also be found in [23].) We
381
+ note that the symplectic property (1.4) at z = 1 plays an important role here since it implies
382
+ that K is symmetric. On the other hand, the positive definiteness is related to the periodicity
383
+ of the Y-system.
384
+ Based on our classification, we find that:
385
+ Theorem 1.9. Suppose that I = {1, 2}. The Nahm sum fK,0,C(q) is modular for any finite type
386
+ A±(z) ∈ Y, where C is given in Table 2.
387
+ In fact, every K from finite type A±(z) is included in the Zagier’s list [35, Table 2] for rank
388
+ 2 candidates of modular Nahm sums. There are Rogers-Ramanujan type identities that enable
389
+ us to write each Nahm sum in the list in terms of theta functions. The proof of the desired
390
+ identities was partially given in [1, 4, 6, 33, 35], and was recently completed by Wang [34] except
391
+ for one candidate that does not appears in our construction from Y-systems. See Table 2.
392
+ Remark 1.10. We can define the refinement f (s)
393
+ A±(z)(q) of the Nahm sum fK,0,0(q), which is
394
+ parametrized by s ∈ H for an abelian group H of order det A+(1) such that it reduces to the
395
+ original one by taking summation [24, Definition 5.12]:
396
+ fK,0,0(q) =
397
+
398
+ s∈H
399
+ f (s)
400
+ A±(z)(q).
401
+ It is conjectured that each f (s)
402
+ A±(z)(q) is already modular after multiplying qC for some C. We
403
+ note that the symplectic property (1.4) at z = 1 again plays an important role in the definition
404
+ of the refinement. We will discuss this refinement for rank 2 case in more detail elsewhere. We
405
+ remark that similar refinement also appears in the context of 3-dimensional quantum topology
406
+ [13, Section 6.3].
407
+ 5
408
+
409
+ A±(z)
410
+ K
411
+ −24C
412
+ RR
413
+ A±(z)
414
+ K
415
+ −24C
416
+ RR
417
+ (1)
418
+
419
+ 4/3
420
+ 2/3
421
+ 2/3
422
+ 4/3
423
+
424
+ 4
425
+ 5
426
+ [6]
427
+ (1)op
428
+
429
+ 1
430
+ −1/2
431
+ −1/2
432
+ 1
433
+
434
+ 6
435
+ 5
436
+ [33]
437
+ (2)
438
+ �3/2
439
+ 1
440
+ 1
441
+ 2
442
+
443
+ 5
444
+ 7
445
+ [34]
446
+ (2)op
447
+
448
+ 1
449
+ −1/2
450
+ −1/2
451
+ 3/4
452
+
453
+ 9
454
+ 7
455
+ [34]
456
+ (3), (6)
457
+ �2
458
+ 2
459
+ 2
460
+ 4
461
+
462
+ 4
463
+ 7
464
+ [1]
465
+ (3)op, (6)op
466
+
467
+ 1
468
+ −1/2
469
+ −1/2
470
+ 1/2
471
+
472
+ 10
473
+ 7
474
+ [34]
475
+ (4)
476
+
477
+ 2/3
478
+ 1/3
479
+ 1/3
480
+ 2/3
481
+
482
+ 1
483
+ [35]
484
+ (4)op
485
+ � 2
486
+ −1
487
+ −1
488
+ 2
489
+
490
+ 1
491
+ [35]
492
+ (5)
493
+ �1
494
+ 1
495
+ 1
496
+ 2
497
+
498
+ 3
499
+ 4
500
+ [34]
501
+ (5)op
502
+ � 2
503
+ −1
504
+ −1
505
+ 1
506
+
507
+ 5
508
+ 4
509
+ [4]
510
+ Table 2: The list of the matrix K = A+(1)−1A−(1). The Nahm sum fK,0,C(q) is modular, which
511
+ can be proved by using Rogers-Ramanujan type identities (RR for short) given in the references
512
+ in the table.
513
+ 1.4
514
+ Remarks on higher rank and skew-symmetrizable case
515
+ We have seen that the following properties hold for rank 2 case:
516
+ (P1) We have reddening sequences in both positive and negative directions.
517
+ (P2) The map A±(z) �→ A+(1)−1A−(1) gives modular Nahm sums.
518
+ We expect that the properties (P1) and (P2) also hold for any finite type A±(z) ∈ Y of general
519
+ rank. The followings are some known examples:
520
+ • For the Y-system associated with the untwisted quantum affine algebras Uq(X(1)
521
+ r ) with
522
+ level ℓ restriction [22], (P1) holds with h+ = tℓ and h− = t · (dual Coxeter number of Xr)
523
+ where t = 1, 2, or 3 is the multiplicity in the Dynkin diagram of Xr [15, 16], and (P2)
524
+ holds under the assumption [14, Conjecture 5.3] by the result of Kac and Peterson [17].
525
+ • For the Y-system associated with a pair of finite type simply laced Dynkin type (Xr, X′
526
+ r′)
527
+ [30], (P1) holds with h+ = (Coxeter number of Xr) and h− = (Coxeter number of X′
528
+ r′)
529
+ [19, 21].
530
+ • For the (reduced) sine-Gordon Y-system associated with the continued fraction p/q =
531
+ [nF, . . . , n1] = 1/(nF + 1/(· · · + 1/n1)) [29, 32], (P1) appears to hold with h+ = 2p and
532
+ h− = 2q.
533
+ • For the Y-system associated with an admissible ADE bigraph (Γ, ∆) [12], (P1) appears to
534
+ hold with h+ = (Coxeter number of Γ) and h− = (Coxeter number of ∆).
535
+ Moreover, we can consider Y-systems associated with skew-symmetrizable cluster algebras
536
+ rather than skew-symmetric ones discussed in this paper. In this case, the symplectic property
537
+ (1.4) becomes
538
+ A+(z)DA−(z−1)T = A−(z)DA+(z−1)T,
539
+ where D is a diagonal matrix called symmetrizer [24]. We also expect that the properties (P1)
540
+ and (P2) also hold for skew-symmetrizable case. See [24, Definition 5.12] for the definition of
541
+ the Nahm sum in skew-symmetrizable case.
542
+ Acknowledgment. This work is supported by JSPS KAKENHI Grant Number JP21J00050.
543
+ 6
544
+
545
+ 2
546
+ Y-systems and cluster algebras
547
+ 2.1
548
+ Preliminaries on cluster algebras
549
+ In this paper, a semifield is a multiplicative abelian group equipped with an addition that is
550
+ commutative, associative, and distributive with respect to the multiplication.
551
+ Definition 2.1. Let I be a set.
552
+ The set of all nonzero rational functions in the variables
553
+ y = (yi)i∈I with natural number coefficients is a semifield with respect to the usual addition
554
+ and multiplication. This semifield is called the universal semifield, and denoted by Q>0(y). We
555
+ have a canonical bijection Homsemifield(Q>0(y), P) ∼= Homset(I, P) for any set I and semifield P.
556
+ Definition 2.2. Let I be a set. The tropical semifield Trop(y) is the multiplicative free abelian
557
+ group generated by the variables y = (yi)i∈I equipped with the addition defined by
558
+
559
+ i
560
+ yai
561
+ i +
562
+
563
+ i
564
+ ybi
565
+ i =
566
+
567
+ i
568
+ ymin(ai,bi)
569
+ i
570
+ .
571
+ Let I be a finite set and P be a semifield. A Y-seed is a pair (B, y) where B = (Bij)i,j∈I
572
+ is a skew-symmetric integer matrix and y = (yi)i∈I is a tuple of elements in P. We sometimes
573
+ represent B as the quiver whose signed adjacency matrix is B. For a Y-seed (B, y) and k ∈ I,
574
+ the mutation in direction k transforms (B, y) into the new Y-seed µk(B, y) = (B′, y′) given by
575
+ B′
576
+ ij :=
577
+
578
+ −Bij
579
+ if i = k or j = k,
580
+ Bij + [−Bik]+Bkj + Bik[Bkj]+
581
+ otherwise,
582
+ (2.1)
583
+ y′
584
+ i :=
585
+
586
+ yk
587
+ if i = k,
588
+ yiy[Bki]+
589
+ k
590
+ (1 + yk)−Bki
591
+ otherwise.
592
+ (2.2)
593
+ A mutation is involutive, that is, µk(B, y) = (B′, y′) implies (B, y) = µk(B′, y′). We have the
594
+ commutativity
595
+ µiµj = µjµi
596
+ if Bij = 0,
597
+ (2.3)
598
+ which allows us to write µi for a set i ⊆ I such that Bij = 0 for any i, j ∈ i to mean the
599
+ successive mutations along arbitrarily chosen order on i.
600
+ For a Y-seed (B, y) and a bijection ν : I → I, we define a new Y-seed ν(B, y) = (B′, y′) by
601
+ B′
602
+ ν(i)ν(j) := Bij and y′
603
+ ν(i) := yi.
604
+ 2.2
605
+ Solving Y-systems by cluster algebras
606
+ Let A±(z) ∈ Y. We will construct a solution of the Y-system associated with A±(z) based on
607
+ [24, Section 3.3]. We first define a subset R ⊆ I × Z by
608
+ R := {(i, u) ∈ I × Z | 0 ≤ u < ri},
609
+ (2.4)
610
+ and define a skew-symmetric R × R integer matrix B by
611
+ B(i,p)(j,q) = −nij;p−q + nji;q−p +
612
+
613
+ k∈I
614
+ min(p,q)
615
+
616
+ v=0
617
+
618
+ n+
619
+ ik;p−vn−
620
+ jk;q−v − n−
621
+ ik;p−vn+
622
+ jk;q−v
623
+
624
+ ,
625
+ (2.5)
626
+ where we understand nij;p = 0 if p < 0. We then define i := {(i, u) | u = 0} ⊆ R. We also define
627
+ a bijection ν : R → R by
628
+ ν(i, p) =
629
+
630
+ (i, p − 1)
631
+ if p > 0,
632
+ (i, ri)
633
+ if p = 0.
634
+ (2.6)
635
+ 7
636
+
637
+ Then the symplectic property (1.4) ensures that ν(µi(B)) = B [24, Lemma 3.16]. We finally
638
+ define a sequence of Y-seeds
639
+ · · · → (B, y(−1)) → (B, y(0)) → (B, y(1)) → · · ·
640
+ (2.7)
641
+ in Q>0(y) by y(0) := y and (B, y(u + 1)) = ν(µi(B, y(u))). The sequence (2.7) gives a solution
642
+ of the Y-system:
643
+ Lemma 2.3. [24, Theorem 3.13] (yi,0(u))i∈I,u∈Z satisfies the Y-system associated with A±(z).
644
+ This solution is universal in the following sense.
645
+ Lemma 2.4. [24, Theorem 3.19] Suppose that a family (Yi(u))i∈I,u∈Z satisfies the Y-system
646
+ associated with A±(z). Define a semifield homomorphism f : Q>0(y) → P by
647
+ f(yi,p) := Yi(p)
648
+
649
+ j∈I
650
+ p
651
+
652
+ q=0
653
+ Yj(p − q)−[nij;q]+�
654
+ 1 + Yj(p − q)
655
+ �nij;q.
656
+ (2.8)
657
+ Then f(yi,0(u)) = Yi(u) for any i, u.
658
+ Corollary 2.5. A±(z) ∈ Y is of finite type if and only if there are different integers u, v such
659
+ that y(u) = y(v) in (2.7).
660
+ 2.3
661
+ Periodicity and reddening sequences
662
+ Similarly to (2.7), we define a sequence of Y-seeds
663
+ · · · → (B, y(−1)) → (B, y(0)) → (B, y(1)) → · · ·
664
+ (2.9)
665
+ by the same formulas but now in Trop(y) rather than Q(y).
666
+ Definition 2.6. We say that the Y-system associated with A±(z) ∈ Y is positive (resp. negative)
667
+ reddening if there is a positive integer u such that all the exponents in yi(u) (resp. yi(−u)) in
668
+ (2.9) are nonpositive for any i. We denote by h+ (resp. h−) the least such positive integer u.
669
+ Equivalently, the Y-system is positive (resp. negative) reddening if and only if all the en-
670
+ tries in the C-matrix associated with the sequence of mutations (B, y(0)) → (B, y(u)) (resp.
671
+ (B, y(0)) → (B, y(−u))) are nonpositive for some u > 0.
672
+ Proposition 2.7. Suppose that the Y-system associated with A±(z) is positive and negative
673
+ reddening. Then A±(z) is of finite type.
674
+ Proof. We verify the equivalent condition in Corollary 2.5. By [2, Proposition 2.10], there are
675
+ bijections σ, σ′ : R → R such that yi(h+) = y−1
676
+ σ(i) and yi(−h−) = y−1
677
+ σ′(i) for any i (in other
678
+ words, the C-matrices associated with them are the minus of permutation matrices). Now the
679
+ claim follows from the separation formula for y-variables [10, Proposition 3.13] and the result
680
+ on C-matrices shown by Cao, Huang, and Li [5, Theorem 2.5]. See also [28, Theorem 5.2] for
681
+ the corresponding statement dealing with permutations that is actually suitable here.
682
+ Theorem 2.8. The Y-system associated with each A±(z) in Table 1 is positive and negative
683
+ reddening.
684
+ Proof. The quiver B associated with A±(z) is given in Table 3. We can verify the assertion by
685
+ concrete calculation on the quiver. The numbers h± are given in Table 1.
686
+ 8
687
+
688
+ Quiver B
689
+ A±(z)
690
+ (1, 0)
691
+ (2, 1)
692
+ (1, 1)
693
+ (2, 0)
694
+ (1)
695
+ (1, 0)
696
+ (2, 1)
697
+ (2, 3)
698
+ (2, 5)
699
+ (1, 1)
700
+ (2, 0)
701
+ (2, 2)
702
+ (2, 4)
703
+ (2)
704
+ (1, 0)
705
+ (2, 1)
706
+ (2, 3)
707
+ (2, 5)
708
+ (2, 7)
709
+ (2, 9)
710
+ (1, 1)
711
+ (2, 0)
712
+ (2, 2)
713
+ (2, 4)
714
+ (2, 6)
715
+ (2, 8)
716
+ (3)
717
+ (1, 0)
718
+ (2, 1)
719
+ (2, 0)
720
+ (1, 1)
721
+ (4)
722
+ (2, 0)
723
+ (1, 1)
724
+ (1, 0)
725
+ (2, 2)
726
+ (2, 1)
727
+ (5)
728
+ (1, 0)
729
+ (2, 1)
730
+ (2, 0)
731
+ (1, 1)
732
+ (6)
733
+ Table 3: Quivers associated with A±(z) in Table 1. Each quiver is preserved by the mutation at
734
+ (∗, 0) followed by the permutation (i, p) �→ (i, p − 1) (the second argument is considered modulo
735
+ ri), which yields Y-system. For (1)–(3), this operation interchanges the connected components
736
+ (see Section 3.1).
737
+ Theorem 1.5 (1) now follows from Proposition 2.7 and Theorem 2.8.
738
+ Remark 2.9. A connected component of each quiver in Table 3 has the following cluster type:
739
+ (1) A2
740
+ (2) A4
741
+ (3) E6
742
+ (4) D4
743
+ (5) A5
744
+ (6) A4
745
+ These are of finite type in the sense of [8], which also implies Theorem 1.5 (1). We remark,
746
+ however, that this observation is somewhat misleading since the quiver associated with a periodic
747
+ Y-system of general rank is typically of infinite type.
748
+ It might be better to think that the
749
+ appearance of only finite type quivers happens “by chance” due to the smallness of 2, the rank
750
+ of Y-systems considered in this paper.
751
+ Theorem 2.8 also gives quantum dilogarithm identifies associated with Donaldson-Thomas
752
+ invariants. For any reddening sequence i starting from a quiver B, we can define a quantity
753
+ E(i) by using the quantum dilogarithm. We refer to [20, Remark 6.6] as the definition. This
754
+ quantity coincides with Kontsevich-Soibelman’s refined Donaldson-Thomas invariant associated
755
+ with B [20, 25]. In particular, E(i) does not depend on i, which gives the quantum dilogarithm
756
+ identifies. In our case, we have:
757
+ 9
758
+
759
+ Corollary 2.10. For each A±(z) in Table 1, we have
760
+ E(µh+) = E(µ−h−),
761
+ where µ := ν ◦ µi is the sequence of mutations (together with the permutation) (B, y(0)) →
762
+ (B, y(1)) in (2.7).
763
+ For example, the pair (1) in Table 1 yields the famous pentagon identity of the quantum
764
+ dilogarithm.
765
+ 3
766
+ Classification
767
+ 3.1
768
+ Change of slices
769
+ We need to introduce an appropriate equivalence relation on the set Y, which identifies essentially
770
+ the same Y-systems. Before we get into the definition, we will see a typical example. Consider
771
+ the following Y-system:
772
+ Y1(u)Y1(u − 2) = (1 + Y2(u − 1)−1)−1
773
+ Y2(u)Y2(u − 2) = (1 + Y1(u − 1)−1)−1
774
+ (3.1)
775
+ which corresponds to A±(z) ∈ Y given by (1) in Table 1. This system of equations are defined
776
+ on the set [1, 2] × Z, but actually can be defined on each component of the following disjoint
777
+ union:
778
+ [1, 2] × Z =
779
+ 1�
780
+ k=0
781
+ {(i, u) | i − u ≡ k mod 2}.
782
+ We informally call the algebraic relation defined on each subset the slice of the whole Y-system.
783
+ If (Yi(u)) is a solution of the Y-system for i − u ≡ 0 mod 2, then (Yi(u + 1)) is a solution of the
784
+ Y-system for i − u ≡ 1 mod 2. Thus it is enough to consider only one slice when considering
785
+ solutions. Now we consider another Y-system:
786
+ Y ′
787
+ 1(u)Y ′
788
+ 1(u − 3) = (1 + Y ′
789
+ 2(u − 2)−1)−1
790
+ Y ′
791
+ 2(u)Y ′
792
+ 2(u − 3) = (1 + Y ′
793
+ 1(u − 1)−1)−1.
794
+ (3.2)
795
+ which corresponds to A′
796
+ ±(z) ∈ Y given by
797
+ A′
798
+ +(z) :=
799
+
800
+ 1 + z3
801
+ −z2
802
+ −z
803
+ 1 + z3
804
+
805
+ ,
806
+ A′
807
+ −(z) :=
808
+
809
+ 1 + z3
810
+ 0
811
+ 0
812
+ 1 + z3
813
+
814
+ .
815
+ The Y-system (3.2) is decomposed into three slices:
816
+ [1, 2] × Z =
817
+ 2�
818
+ k=0
819
+ {(i, u) | i − u ≡ k mod 3}.
820
+ We see that for any solution of (3.1) for i − u ≡ 0 mod 2,
821
+ Y ′
822
+ 1(u) := Y1
823
+ �2
824
+ 3u − 1
825
+ 3
826
+
827
+ ,
828
+ Y ′
829
+ 2(u) := Y2
830
+ �2
831
+ 3u
832
+
833
+ is a solution of (3.2) for i − u ≡ 2 mod 3. We also obtain solutions for the other two slices by
834
+ shifting u. Conversely, any solution of (3.1) is obtained from a solution of (3.2). Therefore, it
835
+ 10
836
+
837
+ is enough to consider one of the Y-systems (3.1) and (3.2). In particular, A±(z) is of finite type
838
+ if and only if A′
839
+ ±(z) is.
840
+ Now we work in the general setting. The idea is that each slice corresponds to each connected
841
+ component of the quiver associated with the matrix B defined by (2.5). Let A±(z) ∈ Y, and
842
+ assume that it is indecomposable. By [24, Proposition 3.24], we have a decomposition of the
843
+ matrix B and its index set R:
844
+ B =
845
+ t−1
846
+
847
+ u=0
848
+ B(u),
849
+ R =
850
+ t−1
851
+
852
+ u=0
853
+ R(u)
854
+ such that each B(u) is indecomposable and we have a cyclic sequence of mutations
855
+ B(0)
856
+ ν|R(0)◦µi(0)
857
+ −−−−−−−→ B(1) −→ · · · −→ B(t − 1)
858
+ ν|R(t−1)◦µi(t−1)
859
+ −−−−−−−−−−→ B(0)
860
+ (3.3)
861
+ where i(u) := i ∩ R(u). We say that two pairs A±(z) and A′
862
+ ±(z) are related by change of slices
863
+ if they yield the same cyclic sequence (3.3) up to a change of indices and the commutativity of
864
+ mutations (2.3). (This commutativity is already implicitly used to justify the notation µi(u) as
865
+ stated below (2.3).)
866
+ Example 3.1. The pairs A±(z) and A′
867
+ ±(z) associated with (3.1) and (3.2), respectively, are
868
+ related by change of slices. Indeed, we see that the sequence (3.3) for (3.1) is
869
+ (1, 0)
870
+ (2, 1)
871
+ ν◦µ(0,0)
872
+ −−−−−→ (1, 1)
873
+ (2, 0)
874
+ ν◦µ(1,0)
875
+ −−−−−→ (1, 0)
876
+ (2, 1) ,
877
+ whereas the sequence (3.3) for (3.2) is
878
+ (1, 0)
879
+ (2, 1)
880
+ ν′◦µ(0,0)
881
+ −−−−−→ (1, 2)
882
+ (2, 0)
883
+ ν′◦µ(1,0)
884
+ −−−−−→ (1, 1)
885
+ (2, 2)
886
+ ν′
887
+ −→ (1, 0)
888
+ (2, 1) .
889
+ These are the same sequence up to a change of indices.
890
+ 3.2
891
+ Proof of the classification
892
+ In this section, we will prove Theorem 1.5 (2). We first recall the following result.
893
+ Lemma 3.2 ([24, Theorem 5.5]). Let A±(z) ∈ Y. Assume that A±(z) is of finite type. Then
894
+ there is a vector v ∈ RI such that v > 0, vA+(1) > 0, and vA−(1) > 0.
895
+ In particular,
896
+ tr A±(1) > 0 and det A±(1) > 0.
897
+ By Lemma 3.2, A+(1) and A−(1) are equal to one of the following matrices:
898
+ � 2
899
+ −1
900
+ −1
901
+ 2
902
+
903
+ ,
904
+ � 2
905
+ −1
906
+ −2
907
+ 2
908
+
909
+ ,
910
+ � 2
911
+ −1
912
+ −3
913
+ 2
914
+
915
+ ,
916
+ � 2
917
+ −1
918
+ −1
919
+ 1
920
+
921
+ ,
922
+ � 2
923
+ 0
924
+ −n
925
+ 2
926
+
927
+ ,
928
+ � 2
929
+ 0
930
+ −n
931
+ 1
932
+
933
+ ,
934
+ � 1
935
+ 0
936
+ −n
937
+ 1
938
+
939
+ up to a permutation of the indices. We give several lemmas about impossible pairs. Before
940
+ giving lemmas, we note that
941
+ n+
942
+ ij;p = 0
943
+ or
944
+ n−
945
+ ij;p = 0
946
+ (3.4)
947
+ for any i, j, p.
948
+ Lemma 3.3. It is impossible that A±(z) ∈ Y has the following forms:
949
+ (1) A+(1) =
950
+ �2
951
+ −a
952
+
953
+
954
+
955
+ , A−(1) =
956
+ �2
957
+ −b
958
+
959
+
960
+
961
+ for odd a, b.
962
+ 11
963
+
964
+ (2) A+(1) =
965
+ �2
966
+ −a
967
+
968
+
969
+
970
+ , A−(1) =
971
+ �1
972
+ −b
973
+
974
+
975
+
976
+ for odd a, b.
977
+ (3) A+(1) =
978
+ �1
979
+ −1
980
+
981
+
982
+
983
+ , A−(1) =
984
+ �1
985
+ −1
986
+
987
+
988
+
989
+ .
990
+ (4) A+(1) =
991
+ �1
992
+ 0
993
+
994
+
995
+
996
+ , A−(1) =
997
+ �1
998
+
999
+
1000
+
1001
+
1002
+ .
1003
+ Proof. For (2), we can set
1004
+ A+(z) =
1005
+ �1 + zr
1006
+ −f(z)
1007
+
1008
+
1009
+
1010
+ ,
1011
+ A−(z) =
1012
+ �1 + zr − za
1013
+ −g(z)
1014
+
1015
+
1016
+
1017
+ .
1018
+ By the symplectic property (1.4), we have
1019
+ za + za−r + f(z)g(z−1) = z−a + zr−a + g(z)f(z−1).
1020
+ (3.5)
1021
+ Since 0 < a and a − r < 0 by (1.2), the sum of the coefficients of the terms in f(z)g(z−1)
1022
+ with positive exponents is equal to that with negative exponents. Since f(1)g(1) (=ab) is odd,
1023
+ f(z)g(z−1) should contain the constant term z0, which contradicts (3.4). The proof for (1) is
1024
+ similar.
1025
+ For (3), we can set
1026
+ A+(z) =
1027
+ ���
1028
+ 1 + zr − za
1029
+ −zb
1030
+
1031
+
1032
+
1033
+ ,
1034
+ A−(z) =
1035
+
1036
+ 1 + zr − zc
1037
+ −zd
1038
+
1039
+
1040
+
1041
+ with 0 < a, b, c, d < r. Without loss of generality, we can assume a < c. By (1.4), we have
1042
+ z−c + zr−c + za + za−r + zc−a + zd−b = zc + zc−r + z−a + zr−a + za−c + zb−d
1043
+ Since c − a > 0, we see that c − a is equal to c, r − a, or b − d. However, the first two cases are
1044
+ impossible by (1.2). Thus c − a = b − d, which implies that
1045
+ z−c + zr−c + za + za−r = zc + zc−r + z−a + zr−a.
1046
+ Since a > 0, we see that a is equal to c or r − a. However, a = c is impossible by (3.4). Thus
1047
+ a = r − a, which implies that
1048
+ z−c + zr−c = zc + zc−r.
1049
+ Since c > 0, we see that c = r − c. However, this implies that a = r/2 = c, which is impossible
1050
+ by (3.4).
1051
+ For (4), we can set
1052
+ A+(z) =
1053
+ �1 + zr − za
1054
+ 0
1055
+
1056
+
1057
+
1058
+ ,
1059
+ A−(z) =
1060
+
1061
+ 1 + zr − zb
1062
+
1063
+
1064
+
1065
+
1066
+ .
1067
+ By (1.4), we have
1068
+ za + za−r + z−b + zr−b + zb−a = z−a + zr−a + zb + zb−r + za−b.
1069
+ Comparing the number of the terms with positive and negative exponents, we should have a = b.
1070
+ This is impossible by (3.4).
1071
+ 12
1072
+
1073
+ Lemma 3.4. It is impossible that indecomposable A±(z) ∈ Y has the form
1074
+ A+(1) =
1075
+ �∗
1076
+ 0
1077
+
1078
+
1079
+
1080
+ ,
1081
+ A−(1) =
1082
+ �∗
1083
+ 0
1084
+
1085
+
1086
+
1087
+ .
1088
+ Proof. We can set
1089
+ A±(z) =
1090
+
1091
+ 1 + zr1 − f±(z)
1092
+ 0
1093
+ −g±(z)
1094
+ 1 + zr2 − h±(z)
1095
+
1096
+ .
1097
+ Since g+(z) ̸= 0 or g−(z) ̸= 0, we can pick the least integer c among the exponents in g+(z) and
1098
+ g−(z). Without loss of generality, we can assume g+(1) contains the term zc. By (1.4), we have
1099
+ f+(z)g−(z−1) + (1 + zr1)g+(z−1) = f−(z)g+(z−1) + (1 + zr1)g−(z−1).
1100
+ (3.6)
1101
+ The left-hand side in (3.6) contains the term zr1−c, but any exponent in the right-hand side is
1102
+ strictly smaller that r1 − c by (1.2) and (3.4), which is a contradiction.
1103
+ We now search for possible pairs A±(1) case by case using the symplectic property (1.4) at
1104
+ z = 1 together with Lemma 3.3 and 3.4:
1105
+ • Case: A+(1) =
1106
+ � 2
1107
+ −1
1108
+ −1
1109
+ 2
1110
+
1111
+ . The possibilities for A−(1) are:
1112
+ �2
1113
+ 0
1114
+ 0
1115
+ 2
1116
+
1117
+ ,
1118
+ �1
1119
+ 0
1120
+ 0
1121
+ 1
1122
+
1123
+ .
1124
+ • Case: A+(1) =
1125
+ � 2
1126
+ −1
1127
+ −1
1128
+ 2
1129
+
1130
+ . The possibilities for A−(1) are:
1131
+ �2
1132
+ 0
1133
+ 0
1134
+ 2
1135
+
1136
+ ,
1137
+ �1
1138
+ 0
1139
+ 0
1140
+ 1
1141
+
1142
+ .
1143
+ • Case: A+(1) =
1144
+ � 2
1145
+ −1
1146
+ −2
1147
+ 2
1148
+
1149
+ . The possibilities for A−(1) are:
1150
+ � 2
1151
+ 0
1152
+ −1
1153
+ 2
1154
+
1155
+ ,
1156
+ �1
1157
+ 0
1158
+ 0
1159
+ 2
1160
+
1161
+ .
1162
+ • Case: A+(1) =
1163
+ � 2
1164
+ −1
1165
+ −3
1166
+ 2
1167
+
1168
+ . The possibilities for A−(1) are:
1169
+ � 2
1170
+ 0
1171
+ −2
1172
+ 2
1173
+
1174
+ .
1175
+ • Case: A+(1) =
1176
+ � 2
1177
+ −1
1178
+ −1
1179
+ 1
1180
+
1181
+ . The possibilities for A−(1) are:
1182
+ �2
1183
+ 0
1184
+ 0
1185
+ 2
1186
+
1187
+ ,
1188
+ �1
1189
+ 0
1190
+ 0
1191
+ 1
1192
+
1193
+ .
1194
+ 13
1195
+
1196
+ • Case: A+(1) =
1197
+ � 2
1198
+ 0
1199
+ −n
1200
+ 2
1201
+
1202
+ . The possibilities for A±(1) are:
1203
+ ��2
1204
+ 0
1205
+ 0
1206
+ 2
1207
+
1208
+ ,
1209
+ � 2
1210
+ −1
1211
+ −1
1212
+ 2
1213
+ ��
1214
+ ,
1215
+ �� 2
1216
+ 0
1217
+ −1
1218
+ 2
1219
+
1220
+ ,
1221
+ � 2
1222
+ −1
1223
+ −2
1224
+ 2
1225
+ ��
1226
+ ,
1227
+ ��2
1228
+ 0
1229
+ 0
1230
+ 2
1231
+
1232
+ ,
1233
+ � 1
1234
+ −1
1235
+ −1
1236
+ 2
1237
+ ��
1238
+ .
1239
+ • Case: A+(1) =
1240
+ � 2
1241
+ 0
1242
+ −n
1243
+ 1
1244
+
1245
+ . The possibilities for A±(1) are:
1246
+ ��2
1247
+ 0
1248
+ 0
1249
+ 1
1250
+
1251
+ ,
1252
+ � 2
1253
+ −2
1254
+ −1
1255
+ 2
1256
+ ��
1257
+ .
1258
+ • Case: A+(1) =
1259
+ � 1
1260
+ 0
1261
+ −n
1262
+ 1
1263
+
1264
+ . The possibilities for A±(1) are:
1265
+ ��2
1266
+ 0
1267
+ 0
1268
+ 1
1269
+
1270
+ ,
1271
+ � 2
1272
+ −2
1273
+ −1
1274
+ 2
1275
+ ��
1276
+ .
1277
+ In summary, the remaining possible pairs, up to a permutation of the indices and an change
1278
+ of sign, are given in the following table:
1279
+ A+(1)
1280
+ A−(1)
1281
+ � 2
1282
+ −1
1283
+ −1
1284
+ 2
1285
+
1286
+ �2
1287
+ 0
1288
+ 0
1289
+ 2
1290
+
1291
+ � 2
1292
+ −1
1293
+ −2
1294
+ 2
1295
+
1296
+ � 2
1297
+ 0
1298
+ −1
1299
+ 2
1300
+
1301
+ � 2
1302
+ −1
1303
+ −3
1304
+ 2
1305
+
1306
+ � 2
1307
+ 0
1308
+ −2
1309
+ 2
1310
+
1311
+ A+(1)
1312
+ A−(1)
1313
+ � 2
1314
+ −1
1315
+ −1
1316
+ 2
1317
+
1318
+ �2
1319
+ 0
1320
+ 0
1321
+ 2
1322
+
1323
+ � 2
1324
+ −1
1325
+ −2
1326
+ 2
1327
+
1328
+ � 2
1329
+ 0
1330
+ −1
1331
+ 2
1332
+
1333
+ � 2
1334
+ −1
1335
+ −3
1336
+ 2
1337
+
1338
+ � 2
1339
+ 0
1340
+ −2
1341
+ 2
1342
+
1343
+ (3.7)
1344
+ We now start searching for possible A±(z).
1345
+ Lemma 3.5. Let n ≥ 1. Suppose that
1346
+ A+(1) =
1347
+ � 2
1348
+ −1
1349
+ −n
1350
+ 2
1351
+
1352
+ ,
1353
+ A−(1) =
1354
+
1355
+ 2
1356
+ 0
1357
+ −(n − 1)
1358
+ 2
1359
+
1360
+ .
1361
+ Then
1362
+ A+(z) =
1363
+
1364
+ [2]r
1365
+ −z−a
1366
+ −zr−a[n]2r
1367
+ [2](2n−1)r
1368
+
1369
+ ,
1370
+ A−(z) =
1371
+
1372
+ [2]r
1373
+ 0
1374
+ −z2r−a[n − 1]2r
1375
+ [2](2n−1)r
1376
+
1377
+ for some r, a, where [n]r is the z-integer defined by
1378
+ [n]r := 1 − zrn
1379
+ 1 − zr .
1380
+ (3.8)
1381
+ Proof. We can set
1382
+ A+(z) =
1383
+
1384
+ [2]r1
1385
+ −za
1386
+ − �n
1387
+ i=1 zbi
1388
+ [2]r2
1389
+
1390
+ ,
1391
+ A−(z) =
1392
+
1393
+ [2]r1
1394
+ 0
1395
+ − �n−1
1396
+ i=1 zci
1397
+ [2]r2
1398
+
1399
+ .
1400
+ 14
1401
+
1402
+ Without loss of generality, we can assume that
1403
+ b1 ≤ b2 ≤ · · · ≤ bn,
1404
+ c1 ≤ c2 ≤ · · · ≤ cn−1.
1405
+ By the symplectic property (1.4), we have
1406
+ n−1
1407
+
1408
+ i=1
1409
+ (z−ci + zr1−ci) + za + za−r2 =
1410
+ n
1411
+
1412
+ i=1
1413
+ (z−bi + zr1−bi).
1414
+ Comparing the degree by using the conditions (1.2) and (3.4), we obtain the system of linear
1415
+ equations
1416
+ a = r1 − b1,
1417
+ a − r2 = −bn,
1418
+ r1 = ci − bi = bi+1 − ci
1419
+ (i = 1, . . . , n − 1),
1420
+ which implies that
1421
+ r2 = (2n − 1)r1,
1422
+ bi = (2i − 1)r1 − a,
1423
+ ci = 2ir1 − a.
1424
+ Lemma 3.6. Suppose that
1425
+ A+(1) =
1426
+ � 2
1427
+ −1
1428
+ −1
1429
+ 2
1430
+
1431
+ ,
1432
+ A−(1) =
1433
+ �1
1434
+ 0
1435
+ 0
1436
+ 1
1437
+
1438
+ .
1439
+ Then
1440
+ A+(z) =
1441
+
1442
+ 1 + z2r
1443
+ −za
1444
+ −z2r−a
1445
+ 1 + z2r
1446
+
1447
+ ,
1448
+ A−(z) =
1449
+
1450
+ 1 + z2r − zr
1451
+ 0
1452
+ 0
1453
+ 1 + z2r − zr
1454
+
1455
+ for some r, a.
1456
+ Proof. We can set
1457
+ A+(z) =
1458
+
1459
+ 1 + zr1
1460
+ −za
1461
+ −zb
1462
+ 1 + zr2
1463
+
1464
+ ,
1465
+ A−(z) =
1466
+
1467
+ 1 + zr1 − zc
1468
+ 0
1469
+ 0
1470
+ 1 + zr2 − zd
1471
+
1472
+ .
1473
+ By (1.4), we have r1 = r2 = a + b = 2c = 2d.
1474
+ Lemma 3.7. Suppose that
1475
+ A+(1) =
1476
+ � 2
1477
+ −1
1478
+ −2
1479
+ 2
1480
+
1481
+ ,
1482
+ A−(1) =
1483
+ �1
1484
+ 0
1485
+ 0
1486
+ 2
1487
+
1488
+ .
1489
+ Then
1490
+ A+(z) =
1491
+
1492
+ 1 + z2r
1493
+ −za
1494
+ −z2r−a − z3r−a
1495
+ 1 + z3r
1496
+
1497
+ ,
1498
+ A−(z) =
1499
+
1500
+ 1 + z2r − zr
1501
+ 0
1502
+ 0
1503
+ 1 + z2r
1504
+
1505
+ for some r, a.
1506
+ Proof. We can set
1507
+ A+(z) =
1508
+
1509
+ 1 + zr1
1510
+ −za
1511
+ −zb1 − zb2
1512
+ 1 + zr2
1513
+
1514
+ ,
1515
+ A−(z) =
1516
+ �1 + zr1 − zc
1517
+ 0
1518
+ 0
1519
+ 1 + zr2
1520
+
1521
+ .
1522
+ Without loss of generality, we can assume b1 ≤ b2. By (1.4), we have r1 = 2c, r2 = 3c, b1 = 2c−a,
1523
+ and b2 = 3c − a.
1524
+ 15
1525
+
1526
+ Lemma 3.8. Suppose that
1527
+ A+(1) =
1528
+ � 2
1529
+ −1
1530
+ −1
1531
+ 1
1532
+
1533
+ ,
1534
+ A−(1) =
1535
+ �2
1536
+ 0
1537
+ 0
1538
+ 2
1539
+
1540
+ .
1541
+ Then
1542
+ A+(z) =
1543
+
1544
+ 1 + z2r
1545
+ −za
1546
+ −z2r−a
1547
+ 1 + z2r
1548
+
1549
+ ,
1550
+ A−(z) =
1551
+
1552
+ 1 + z2r
1553
+ 0
1554
+ 0
1555
+ 1 + z2r
1556
+
1557
+ for some r, a.
1558
+ Proof. We can set
1559
+ A+(z) =
1560
+
1561
+ 1 + zr1
1562
+ −za
1563
+ −zb
1564
+ 1 + zr2
1565
+
1566
+ ,
1567
+ A−(z) =
1568
+ �1 + zr1
1569
+ 0
1570
+ 0
1571
+ 1 + zr2
1572
+
1573
+ .
1574
+ By (1.4), we have r1 = r2 = a + b = 2c.
1575
+ Proof of Theorem 1.5 (2). The remaining possibilities for finite type A±(z) ∈ Y, up to a per-
1576
+ mutation of indices and change of sign, are the six families of the pairs given in Lemma 3.5–3.8,
1577
+ which contain the parameters r, a. We can verify that these six families belong to Y, and they
1578
+ can be reduced to the pairs in Table 1 by change of slices.
1579
+ References
1580
+ [1] George E. Andrews. An analytic generalization of the Rogers-Ramanujan identities for odd moduli. Proc.
1581
+ Nat. Acad. Sci. U.S.A., 71:4082–4085, 1974.
1582
+ [2] Thomas Br¨ustle, Gr´egoire Dupont, and Matthieu P´erotin. On maximal green sequences. Int. Math. Res.
1583
+ Not. IMRN, (16):4547–4586, 2014.
1584
+ [3] Frank Calegari, Stavros Garoufalidis, and Don Zagier. Bloch groups, algebraic K-theory, units, and Nahm’s
1585
+ conjecture. arXiv preprint arXiv:1712.04887, 2017.
1586
+ [4] Corina Calinescu, Antun Milas, and Michael Penn. Vertex algebraic structure of principal subspaces of basic
1587
+ A(2)
1588
+ 2n -modules. J. Pure Appl. Algebra, 220(5):1752–1784, 2016.
1589
+ [5] Peigen Cao, Min Huang, and Fang Li. A conjecture on C-matrices of cluster algebras. Nagoya Math. J.,
1590
+ 238:37–46, 2020.
1591
+ [6] Ivan Cherednik and Boris Feigin. Rogers-Ramanujan type identities and Nil-DAHA. Adv. Math., 248:1050–
1592
+ 1088, 2013.
1593
+ [7] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497–529,
1594
+ 2002.
1595
+ [8] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. II. Finite type classification. Invent. Math., 154(1):63–
1596
+ 121, 2003.
1597
+ [9] Sergey Fomin and Andrei Zelevinsky. Y -systems and generalized associahedra. Ann. of Math. (2), 158(3):977–
1598
+ 1018, 2003.
1599
+ [10] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math., 143(1):112–164,
1600
+ 2007.
1601
+ [11] Allan P. Fordy and Robert J. Marsh. Cluster mutation-periodic quivers and associated Laurent sequences.
1602
+ J. Algebraic Combin., 34(1):19–66, 2011.
1603
+ [12] Pavel Galashin and Pavlo Pylyavskyy. The classification of Zamolodchikov periodic quivers. Amer. J. Math.,
1604
+ 141(2):447–484, 2019.
1605
+ [13] Stavros Garoufalidis and Don Zagier. Knots, perturbative series and quantum modularity. arXiv preprint
1606
+ arXiv:2111.06645, 2021.
1607
+ [14] Goro Hatayama, Atsuo Kuniba, Masato Okado, Taichiro Takagi, and Zengo Tsuboi. Paths, crystals and
1608
+ fermionic formulae. In MathPhys odyssey, 2001, volume 23 of Prog. Math. Phys., pages 205–272. Birkh¨auser
1609
+ Boston, Boston, MA, 2002.
1610
+ 16
1611
+
1612
+ [15] Rei Inoue, Osamu Iyama, Bernhard Keller, Atsuo Kuniba, and Tomoki Nakanishi. Periodicities of T-systems
1613
+ and Y-systems, dilogarithm identities, and cluster algebras I: type Br. Publ. Res. Inst. Math. Sci., 49(1):1–42,
1614
+ 2013.
1615
+ [16] Rei Inoue, Osamu Iyama, Bernhard Keller, Atsuo Kuniba, and Tomoki Nakanishi. Periodicities of T-systems
1616
+ and Y-systems, dilogarithm identities, and cluster algebras II: types Cr, F4, and G2. Publ. Res. Inst. Math.
1617
+ Sci., 49(1):43–85, 2013.
1618
+ [17] Victor G. Kac and Dale H. Peterson. Infinite-dimensional Lie algebras, theta functions and modular forms.
1619
+ Adv. in Math., 53(2):125–264, 1984.
1620
+ [18] Akishi Kato and Yuji Terashima.
1621
+ Quiver mutation loops and partition q-series.
1622
+ Comm. Math. Phys.,
1623
+ 336(2):811–830, 2015.
1624
+ [19] Bernhard Keller. On cluster theory and quantum dilogarithm identities. In Representations of algebras and
1625
+ related topics, EMS Ser. Congr. Rep., pages 85–116. Eur. Math. Soc., Z¨urich, 2011.
1626
+ [20] Bernhard Keller. Cluster algebras and derived categories. In Derived categories in algebraic geometry, EMS
1627
+ Ser. Congr. Rep., pages 123–183. Eur. Math. Soc., Z¨urich, 2012.
1628
+ [21] Bernhard Keller. The periodicity conjecture for pairs of Dynkin diagrams. Ann. of Math. (2), 177(1):111–170,
1629
+ 2013.
1630
+ [22] A. Kuniba and T. Nakanishi. Spectra in conformal field theories from the Rogers dilogarithm. Modern Phys.
1631
+ Lett. A, 7(37):3487–3494, 1992.
1632
+ [23] Chul-hee Lee. Nahm’s conjecture and Y -systems. Commun. Number Theory Phys., 7(1):1–14, 2013.
1633
+ [24] Yuma Mizuno. Difference equations arising from cluster algebras. J. Algebraic Combin., 54(1):295–351, 2021.
1634
+ [25] Kentaro Nagao.
1635
+ Quantum dilogarithm identities.
1636
+ In Infinite analysis 2010—Developments in quantum
1637
+ integrable systems, RIMS Kˆokyˆuroku Bessatsu, B28, pages 165–170. Res. Inst. Math. Sci. (RIMS), Kyoto,
1638
+ 2011.
1639
+ [26] Werner Nahm. Conformal field theory and torsion elements of the Bloch group. In Frontiers in number
1640
+ theory, physics, and geometry. II, pages 67–132. Springer, Berlin, 2007.
1641
+ [27] Tomoki Nakanishi. Periodicities in cluster algebras and dilogarithm identities. In Representations of algebras
1642
+ and related topics, EMS Ser. Congr. Rep., pages 407–443. Eur. Math. Soc., Z¨urich, 2011.
1643
+ [28] Tomoki Nakanishi. Synchronicity phenomenon in cluster patterns. J. Lond. Math. Soc., II. Ser., 103(3):1120–
1644
+ 1152, 2021.
1645
+ [29] Tomoki Nakanishi and Salvatore Stella.
1646
+ Wonder of sine-Gordon Y -systems.
1647
+ Trans. Amer. Math. Soc.,
1648
+ 368(10):6835–6886, 2016.
1649
+ [30] F. Ravanini, A. Valleriani, and R. Tateo. Dynkin TBAs. Internat. J. Modern Phys. A, 8(10):1707–1727,
1650
+ 1993.
1651
+ [31] John R. Stembridge. Admissible W -graphs and commuting Cartan matrices. Adv. in Appl. Math., 44(3):203–
1652
+ 224, 2010.
1653
+ [32] R. Tateo. New functional dilogarithm identities and sine-Gordon Y -systems. Phys. Lett. B, 355(1-2):157–164,
1654
+ 1995.
1655
+ [33] Masha Vlasenko and Sander Zwegers. Nahm’s conjecture: asymptotic computations and counterexamples.
1656
+ Commun. Number Theory Phys., 5(3):617–642, 2011.
1657
+ [34] Liuquan Wang.
1658
+ Identities on Zagier’s rank two examples for Nahm’s conjecture.
1659
+ arXiv preprint
1660
+ arXiv:2210.10748, 2022.
1661
+ [35] Don Zagier. The dilogarithm function. In Frontiers in number theory, physics, and geometry. II, pages 3–65.
1662
+ Springer, Berlin, 2007.
1663
+ [36] Al. B. Zamolodchikov. On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering
1664
+ theories. Phys. Lett. B, 253(3-4):391–394, 1991.
1665
+ Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba 263-
1666
+ 8522, Japan.
1667
+ E-mail address, Y. Mizuno: [email protected]
1668
+ 17
1669
+
1tFQT4oBgHgl3EQfEzWQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dE0T4oBgHgl3EQfdwCH/content/tmp_files/2301.02381v1.pdf.txt ADDED
@@ -0,0 +1,2864 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02381v1 [math.NT] 6 Jan 2023
2
+ Existence of primitive pairs with two
3
+ prescribed traces over finite fields
4
+ Aakash Choudhary∗and R. K. Sharma †
5
+ Department of Mathematics,
6
+ Indian Institute of Technology Delhi-110016, India
7
+ Abstract
8
+ Given F = Fpt, a field with pt elements, where p is a prime power,
9
+ t ≥ 7, n are positive integers and f = f1/f2 is a rational func-
10
+ tion, where f1, f2 are relatively prime, irreducible polynomials with
11
+ deg(f1) + deg(f2) = n in F[x]. We construct a sufficient condition on
12
+ (p, t) which guarantees primitive pairing (ǫ, f(ǫ)) exists in F such that
13
+ TrFpt/Fp(ǫ) = a and TrFpt/Fp(f(ǫ)) = b for any prescribed a, b ∈ Fp.
14
+ Further, we demonstrate for any positive integer n, such a pair defi-
15
+ nitely exists for large t. The scenario when n = 2 is handled separately
16
+ and we verified that such a pair exists for all (p, t) except from possible
17
+ 71 values of p. A result for the case n = 3 is given as well.
18
+ Keywords: Character, Finite fields, Primitive elements.
19
+ 2020 Mathematics Subject Classification: 12E20, 11T23
20
+ 1
21
+ Introduction
22
+ Let Fp represent a field of finite order p, where p = qr for some prime q and
23
+ r, a positive integer. The multiplicative group of Fp is cyclic, it is denoted
24
+ by F∗
25
+ p and a generator of F∗
26
+ p is referred to as a primitive element in Fp.
27
+ ∗email: [email protected]
28
+ †email: [email protected]
29
+ 1
30
+
31
+ The field Fp has φ(p − 1) primitive elements, where φ is the Euler’s totient
32
+ function. Let Fpt denote an extension of Fp of degree t for some positive
33
+ integer t. A necessary and sufficient condition for an element ǫ ∈ F∗
34
+ pt to be
35
+ primitive is that it is a root of an irreducible polynomial of degree t over Fp
36
+ and such an irreducible polynomial is referred to as primitive polynomial.
37
+ For ǫ ∈ Fpt, the trace of ǫ over Fp denoted by TrFpt/Fp(ǫ), is defined as
38
+ TrFpt/Fp(ǫ) = ǫ + ǫp + ǫp2 + · · · + ǫpt−1.
39
+ In Cryptographic schemes such as Elgamel encryption scheme and the
40
+ Diffie-Hellman key exchange, primitive elements serve as the fundamental
41
+ building blocks. Numerous applications of primitive elements can be found
42
+ in Coding theory and Cryptography [10], making the study of primitive el-
43
+ ements and primitive polynomials an active research field. Please refer to
44
+ [9] for more information about the existence of primitive elements in finite
45
+ fields. For any rational function f(x) ∈ Fp(x) and ǫ ∈ Fp we call the pair
46
+ (ǫ, f(ǫ)), a primitive pair if both ǫ and f(ǫ) are primitive elements in Fp.
47
+ In general, if ǫ is primitive, f(ǫ) need not be primitive. For instance, take
48
+ x2 + 3x + 2 ∈ F7[x], then 3, 5 are primitive elements in F7 but none of f(3)
49
+ and f(5) are.
50
+ In 1985, Cohen [3] introduced the term ”primitive pair” and he verified
51
+ the existence of primitive pairs (ǫ, f(ǫ)) in Fp for linear polynomials f(x) =
52
+ x + k ∈ Fp[x]. Since then many researchers have conducted studies in this
53
+ area [12, 13, 7, 14].
54
+ Most recently, Cohen, Sharma and Sharma [4] have
55
+ supplied a condition that ensures the occurrence of primitive pair (ǫ, f(ǫ)) in
56
+ Fp for non-exceptional rational function f, i.e., f is not of the form cxjgk(x),
57
+ where j ∈ Z, k > 1 that divides p − 1 and c ∈ F∗
58
+ p, for any g(x) ∈ Fp(x).
59
+ Jungnickel, Vanstone [8] identified a sufficient condition for the occurrence
60
+ of primitive elements ǫ ∈ Fpt with a prescribed trace of ǫ. Later Cohen [5]
61
+ extended the result with some exceptions.
62
+ Chou and Cohen [2], in 2014,
63
+ addressed the issue of the existence of primitive element ǫ ∈ Fpt such that
64
+ TrFpt/Fp(ǫ) = TrFpt/Fp(ǫ−1) = 0. Cao and Wang [1], for t ≥ 29, established
65
+ a condition for the existence of primitive pair (ǫ, f(ǫ)) with f(x) = x2+1
66
+ x
67
+
68
+ Fpt(x) such that for prescribed a, b ∈ F∗
69
+ p, TrFpt/Fp(ǫ) = a and TrFpt/Fp(ǫ−1) =
70
+ b. In 2018, Gupta, Sharma and Cohen [7], for the same rational function
71
+ and prescribed a ∈ Fp, presented a condition that ensures the existence
72
+ of primitive pair (ǫ, f(ǫ)) in Fpt with TrFpt/Fp(ǫ) = a for t ≥ 5. Then in
73
+ 2019, Gupta and Sharma [14] extended the result to the rational function
74
+ 2
75
+
76
+ ΓM(x) =
77
+ a11x2+a12x+a13
78
+ a22x+a23
79
+ , where M =
80
+
81
+ a11
82
+ a12
83
+ a13
84
+ 0
85
+ a22
86
+ a23
87
+
88
+ ∈ M2×3(Fpt) is any
89
+ matrix of rank 2, and if ΓM(x) = λx or λx2 for some λ ∈ Fpt, then λ = 1.
90
+ In 2021, Sharma and Sharma [11] examined the rational function f = f1/f2
91
+ in Fpt(x), where f1 and f2 are relatively prime, irreducible polynomials and
92
+ proved that for prescribed a, b ∈ Fp, the existence of primitive pair (ǫ, f(ǫ))
93
+ in Fpt such that TrFpt/Fp(ǫ) = a and TrFpt/Fp(ǫ−1) = b for t ≥ 7.
94
+ Prior to this article, for primitive pairs, traces were considered for ǫ and
95
+ ǫ−1. In this article, we will consider the trace onto the element ǫ and its
96
+ image under f, i.e, f(ǫ). Some terminology and conventions are introduced
97
+ for explanation. We say that a non-zero polynomial f over Fp[x] has degree
98
+ k ≥ 0, if f(x) = akxk + ak−1xk−1 + · · ·+ a1x + a0, where ak ̸= 0 and we write
99
+ the degree of f as deg(f) = k. Next, we suppose that, for a rational function
100
+ f(x) = f1(x)
101
+ f2(x) ∈ Fp(x), f1 and f2 are relatively prime, irreducible polynomials
102
+ and define the degree-sum as degsum(f) = deg(f1) + deg(f2). We will now
103
+ define various sets that will play a crucial role in this article.
104
+ 1. We define Rp,t(n1, n2) to represent the set of all rational function f(x) =
105
+ f1(x)
106
+ f2(x) ∈ Fpt(x) such that f1 and f2 are relatively prime, irreducible
107
+ polynomials over Fpt with deg(f1) = n1 and deg(f2) = n2.
108
+ 2. Denote An1,n2 as the set consisting of pairs (p, t) ∈ N × N such that
109
+ for any f ∈ Rp,t(n1, n2) and prescribed a, b ∈ Fp, Fpt contains an ele-
110
+ ment ǫ such that (ǫ, f(ǫ)) is a primitive pair with TrFpt/Fp(ǫ) = a and
111
+ TrFpt/Fp(f(ǫ)) = b.
112
+ 3. Define, Rp,t(n) = �
113
+ n1+n2=n Rp,t(n1, n2) and An = �
114
+ n1+n2=n An1,n2.
115
+ First, in this paper, for n ∈ N, we consider f(x) ∈ Rp,t(n) and a, b ∈ Fp,
116
+ and then verify that there exists an element ǫ ∈ Fpt such that (ǫ, f(ǫ)) is
117
+ a primitive pair in Fpt with TrFpt/Fp(ǫ) = a and TrFpt/Fp(f(ǫ)) = b, i.e., we
118
+ provide a sufficient condition on pt such that (p, t) ∈ An. Furthermore, using
119
+ a sieve variation of this sufficient condition, we prove the following result:
120
+ Theorem 1.1. Let t, q, r, p ∈ N be such that q is a prime number, t ≥ 7
121
+ and p = qr. Suppose p and t assumes none of the following values:
122
+ 1. 2 ≤ p ≤ 16 or p = 19, 23, 25, 27, 31, 37, 43, 49, 61, 67, 79 and t = 7;
123
+ 3
124
+
125
+ 2. 2 ≤ p ≤ 31 or p = 32, 37, 41, 43, 47, 83 and t = 8;
126
+ 3. 2 ≤ p ≤ 8 or p = 11, 16 and t = 9;
127
+ 4. p = 2, 3, 4, 5, 7 and t = 10, 12;
128
+ 5. p = 2, 3, 4 and t = 11;
129
+ 6. p = 2 and t = 14, 15, 16, 18, 20, 24.
130
+ Then (p, t) ∈ A2.
131
+ Note:- The exceptions in above theorem need not be true exceptions, they
132
+ are possible exceptions.
133
+ SageMath [16] is used to perform all nontrivial calculations required
134
+ throughout this article.
135
+ 2
136
+ Preliminaries
137
+ In this section, we present some basic concepts, notations, and results that
138
+ will be used in forthcoming sections of this article. Throughout the article,
139
+ t is a positive integer, p is an arbitrary prime power and Fp is a finite field
140
+ of order p.
141
+ 2.1
142
+ Definitions
143
+ 1. A character of a finite abelian group G is a homomorphism χ from the
144
+ set G into Z1, where Z1 is the set of all elements of complex field C with
145
+ absolute value 1. The trivial character of G denoted by χ0, is defined
146
+ as χ0(g) = 1 for all g ∈ G. In addition, the set of all characters of G,
147
+ denoted by ˆG, forms a group under multiplication, which is isomorphic
148
+ to G. The order of a character χ is the least positive integer d such
149
+ that χd = χ0. For a finite field Fpt, a character of the additive group
150
+ Fpt is called an additive character and that of the multiplicative group
151
+ F∗
152
+ pt is called a multiplicative character.
153
+ 2. For u, a divisor of pt−1, an element ζ ∈ F∗
154
+ pt is called u-free, if whenever
155
+ ζ = ξs, where ξ ∈ Fpt and s|u implies s = 1. We see that an element
156
+ ζ ∈ F∗
157
+ pt is (pt − 1)-free if and only if it is a primitive element of Fpt.
158
+ 4
159
+
160
+ For more information on characters, primitive elements and finite fields, we
161
+ refer the reader to [9].
162
+ The following conclusion holds as a particular case of [15, Lemma 10]:
163
+ Lemma 2.1. Let u be a divisor of pt − 1, ζ ∈ F∗
164
+ pt, then we have:
165
+
166
+ s|u
167
+ µ(s)
168
+ φ(s)
169
+
170
+ χs
171
+ χs(ζ) =
172
+
173
+ u
174
+ φ(u)
175
+ if ζ is u − free,
176
+ 0
177
+ otherwise
178
+ where µ(.) is the Mobius function and φ(.) is the Euler function, χs runs
179
+ through all the φ(s) multiplicative characters over F∗
180
+ pt with order s.
181
+ Therefore for u, a divisor of pt − 1
182
+ ρu : ǫ �→ θ(u)
183
+
184
+ s|u
185
+ µ(s)
186
+ φ(s)
187
+
188
+ χs
189
+ χs(ǫ)
190
+ (1)
191
+ gives a characteristic function for the subset of u-free elements of F∗
192
+ pt, where
193
+ θ(u) = φ(u)/u.
194
+ Also for a ∈ Fp,
195
+ τa : ǫ �→ 1
196
+ p
197
+
198
+ ψ∈ ˆ
199
+ Fp
200
+ ψ(TrFpt/Fp(ǫ) − a)
201
+ (2)
202
+ is a characteristic function for the subset of Fpt whose elements satisfy
203
+ TrFpt/Fp(ǫ) = a. From [9, Theorem 5.7], any additive character ψ of Fp can
204
+ be derived by ψ(a) = ψ0(ua), where ψ0 is the canonical additive character of
205
+ Fp and u is an element of Fp corresponding to ψ. Thus
206
+ τa = 1
207
+ p
208
+
209
+ ψ∈ ˆ
210
+ Fp
211
+ ψ0(TrFpt/Fp(uǫ) − ua)
212
+ = 1
213
+ p
214
+
215
+ u∈Fp
216
+ ˆψ0(uǫ)ψ0(−ua)
217
+ (3)
218
+ where ˆψ0 is the additive character of Fpt defined by ˆψ0(ǫ) = ψ0(TrFpt/Fp(ǫ)).
219
+ In next theorem, we will make major use of the results given below by Wang
220
+ and Fu [6] in 2014.
221
+ 5
222
+
223
+ Lemma 2.2. [6, Theorem 5.5] Let F(x) ∈ Fpd(x) be a rational function.
224
+ Write F(x) = �k
225
+ j=1 fj(x)rj, where fj(x) ∈ Fpd[x] are irreducible polynomials
226
+ and rj are non zero integers.
227
+ Let χ be a multiplicative character of Fpd.
228
+ Suppose that the rational function �d−1
229
+ i=1 f(xpi) is not of the form h(x)ord(χ) ∈
230
+ Fpd(x), where ord(χ) is the order of χ, Then we have
231
+ ����
232
+
233
+ ǫ∈Fp,f(ǫ)̸=0,∞
234
+ χ(F(ǫ))
235
+ ���� ≤
236
+
237
+ d
238
+ k
239
+
240
+ j=1
241
+ deg(fj) − 1
242
+
243
+ p
244
+ 1
245
+ 2.
246
+ Lemma 2.3. [6, Theorem 5.6] Let f(x), g(x) ∈ Fpt(x) be rational functions.
247
+ Write f(x) = �k
248
+ j=1 fj(x)rj, where fj(x) ∈ Fpt[x] are irreducible polynomials
249
+ and rj are non-zero integers. Let D1 = �k
250
+ j=1 deg(fj), D2 = max{deg(g), 0},
251
+ D3 is the degree of denominator of g(x) and D4 is the sum of degrees of those
252
+ irreducible polynomials dividing denominator of g but distinct from fj(x)( j=
253
+ 1,2,...,k). Let χ be a multiplicative character of Fpt, and let ψ be a nontrivial
254
+ additive character of Fpt. Suppose g(x) is not of the form v(x)pt − v(x) in
255
+ Fpt(x). Then we have
256
+ ����
257
+
258
+ ǫ∈Fpt,f(ǫ)̸=0,∞,g(ǫ)̸=∞
259
+ χ(f(ǫ))ψ(g(ǫ))
260
+ ���� ≤ (D1 + D2 + D3 + D4 − 1)p
261
+ t
262
+ 2.
263
+ Evidently, both the sufficient condition (Theorem 3.1) and its sieving
264
+ variation (Theorem 3.4) are entirely dependent on pt and the degrees of the
265
+ numerator and denominator polynomials of the rational function. It is easy
266
+ to see that the Trace part of the main result in [11] is a special case of our
267
+ finding for f(x) = 1
268
+ x.
269
+ For every κ ∈ N, we will use ω(κ) to represent the number of distinct
270
+ prime divisors of κ, and W(κ) to represent the number of square free divisors
271
+ of κ. Clearly, W(κ) = 2ω(κ).
272
+ 3
273
+ Sufficient Condition
274
+ Let k1, k2, p, t ∈ N be such that p is a prime power and k1, k2 are positive
275
+ integers which divide pt − 1. Let a, b ∈ Fp, f(x) ∈ Rp,t(n). Let Af,a,b(k1, k2)
276
+ represents the set consisting of all those elements ǫ ∈ Fpt such that ǫ is k1-free,
277
+ f(ǫ) is k2-free, TrFpt/Fp(ǫ) = a, and TrFpt/Ft(f(ǫ)) = b.
278
+ We now verify the sufficient condition as follows:
279
+ 6
280
+
281
+ Theorem 3.1. Suppose t, n, p ∈ N and p is a prime power. Suppose that
282
+ p
283
+ t
284
+ 2−2 > (2n + 1)W(pt − 1)2.
285
+ Then (p, t) ∈ An.
286
+ Proof. In order to prove this result it suffices to demonstrate that Af,a,b(k1, k2) >
287
+ 0 for every f(x) ∈ Rp,t(n) and for every prescribed a, b ∈ Fp . Suppose that
288
+ f(x) ∈ Rp,t(n) be a rational function and that a, b ∈ Fp. Let P represent the
289
+ collection of zeroes and poles of f(x) ∈ Fpt and P
290
+ ′ = P ∪ {0}. Let k1, k2 be
291
+ divisors of pt − 1. Then by definition, Af,a,b(k1, k2) will be given by
292
+ Af,a,b(k1, k2) =
293
+
294
+ ǫ∈Fpt−P ′
295
+ ρk1(ǫ)ρk2(f(ǫ))τa(ǫ)τb(f(ǫ)).
296
+ Using the characteristic functions (1) and (3) defined in the previous section,
297
+ we obtain
298
+ Af,a,b(k1, k2) = θ(k1)θ(k2)
299
+ p2
300
+
301
+ s1|k1,s2|k2
302
+ µ(s1)µ(s2)
303
+ φ(s1)φ(s2)
304
+
305
+ s1,s2
306
+ χf,a,b(s1, s2)
307
+ where θ(ki) = φ(ki)
308
+ ki
309
+ ; i = 1, 2 and
310
+ χf,a,b(s1, s2) =
311
+
312
+ u,v∈Fp
313
+ ψ0(−au − bv)
314
+
315
+ ǫ∈Fpt−P ′
316
+ χs1(ǫ)χs2(ǫ0) ˆψ0(uǫ + vǫ0)
317
+ where ǫ0 = f(ǫ). It follows from [9, Example 5.1] that, for any divisors s1, s2
318
+ of pt − 1, there exist integers m1, m2 with 0 < m1, m2 < pt − 1 such that
319
+ χs1(x) = χpt−1(xm1) and χs2(x) = χpt−1(xm2). Thus
320
+ χf,a,b(s1, s2) =
321
+
322
+ u,v∈Fp
323
+ ψ0(−au − bv)
324
+
325
+ ǫ∈Fpt−P ′
326
+ χpt−1(ǫm1f(ǫ)m2) ˆψ0(uǫ + vǫ0)
327
+ (4)
328
+ =
329
+
330
+ u,v∈Fp
331
+ ψ0(−au − bv)
332
+
333
+ ǫ∈Fpt−P ′
334
+ χpt−1(F1(ǫ)) ˆψ0(F2(ǫ)),
335
+ (5)
336
+ where F1(x) = xm1f(x)m2 ∈ Fpt(x) and F2(x) = ux + vf(x) ∈ Fpt(x).
337
+ 7
338
+
339
+ First we consider the situation when F2(x) = l(x)pt −l(x) for some l(x) ∈
340
+ Fpt(x), where l(x) = l1(x)
341
+ l2(x) with (l1, l2) = 1. We have, ux+vf1(x)
342
+ f2(x) = l1(x)pt
343
+ l2(x)pt −
344
+ l1(x)
345
+ l2(x), that is,
346
+ f2(x)(l1(x)pt − l1(x)l2(x)pt−1) = l2(x)pt(uxf2(x) + vf1(x)).
347
+ Since (l1(x)pt − l1(x)l2(x)pt−1, l2(x)pt) = 1, it implies that, l2(x)pt divides
348
+ f2(x), which can only happen if l2(x) is constant. That is, we have
349
+ c−(pt)f2(x)(l1(x)pt − l1(x)cpt−1) = uxf2(x) + vf1(x)
350
+ where c = l2. Now, the above equation only applies if v = 0. Substituting
351
+ it to the equation above yields, c−(pt)(l1(x)pt − l1(x)cpt−1) = ux, which can
352
+ happen only if l1 is constant and u = 0. Moreover, if F1(x) ̸= r(x)pt−1 for
353
+ any r(x) ∈ Fpt(x), then it follows form Lemma 2.2 that
354
+ |χf,a,b(s1, s2)| ≤ np
355
+ t
356
+ 2 +2.
357
+ (6)
358
+ And, when F1(x) = r(x)pt−1 for some r(x) ∈ Fpt(x), where r(x) = r1(x)
359
+ r2(x) is
360
+ such that (r1, r2) = 1. Following [11], it happens only if m1 = m2 = 0, a
361
+ contradiction.
362
+ If F2(x) ̸= d(x)pt − d(x) for any d(x) ∈ Fpt(x) then,
363
+ Case 1 : When n1 ≤ n2. Then in accordance with Lemma 2.3 we have D2
364
+ = 1, and
365
+ |χf,a,b(s1, s2)| ≤ (2n + 1)p
366
+ t
367
+ 2 +2.
368
+ (7)
369
+ Case 2 : When n1 > n2. We have D2 = n1 − n2 and
370
+ |χf,a,b(s1, s2)| ≤ 2np
371
+ t
372
+ 2+2.
373
+ (8)
374
+ Thus, if (χs1, χs2, u, v) ̸= (χ1, χ1, 0, 0) then based on the discussion above,
375
+ and using (6), (7) and (8), we get, |χf,a,b(s1, s2)| ≤ (2n + 1)p
376
+ t
377
+ 2+2. From this
378
+ and the definition of Af,a,b(k1, k2), we get
379
+ Af,a,b(k1, k2) ≥ θ(k1)θ(k2)
380
+ p2
381
+ ((pt − |P
382
+ ′|) − (2n + 1)p
383
+ t
384
+ 2+2(W(k1)W(k2) − 1))
385
+ (9)
386
+ ≥ θ(k1)θ(k2)
387
+ p2
388
+ ((pt − (n + 1)) − (2n + 1)p
389
+ t
390
+ 2+2(W(k1)W(k2) − 1))
391
+ (10)
392
+ 8
393
+
394
+ Therefore, if p
395
+ t
396
+ 2−2 > (2n + 1)W(k1)W(k2), then Af,a,b(k1, k2) > 0 for every
397
+ f(x) ∈ Rp,t(n) and prescribed a, b ∈ Fp. Considering k1 = k2 = pt − 1, result
398
+ follows.
399
+ Now, we provide the bounds for the absolute values for Af,a,b(mk, k) −
400
+ θ(m)Af,a,b(k, k) and Af,a,b(k, mk) − θ(m)Af,a,b(k, k). Proofs are omitted as
401
+ they follow from the idea of [7].
402
+ Lemma 3.2. Let k be a positive integer that divides pt −1 and m is a prime
403
+ dividing pt − 1 but not k. Then
404
+ |Af,a,b(mk, k) − θ(m)Af,a,b(k, k)| ≤ θ(k)2θ(m)
405
+ p2
406
+ (2n + 1)W(k)2p
407
+ t
408
+ 2 +2
409
+ and
410
+ |Af,a,b(k, mk) − θ(m)Af,a,b(k, k)| ≤ θ(k)2θ(m)
411
+ p2
412
+ (2n + 1)W(k)2p
413
+ t
414
+ 2+2.
415
+ Lemma 3.3. Let k be a positive integer that divides pt−1 and {q1, q2, . . . , qm}
416
+ be the collection of all primes dividing pt − 1 but not k. Then
417
+ Af,a,b(pt−1, pt−1) ≥
418
+ m
419
+
420
+ i=1
421
+ Af,a,b(k, qik)+
422
+ m
423
+
424
+ i=1
425
+ Af,a,b(qik, k)−(2m−1)Af,a,b,(k, k).
426
+ Sieve variation of sufficient condition (Theorem 3.1) is given below, proof
427
+ of which is not given as it follows from Lemmas 3.2, 3.3 and ideas in [7].
428
+ Theorem 3.4. Let t, n, p, k ∈ N be such that k divides pt − 1, where p is
429
+ a prime power. Assume {q1, q2, . . . , qm} is the collection of all those primes
430
+ that divide pt −1 but not k. Suppose δ = 1 −2 �m
431
+ i=1
432
+ 1
433
+ qi
434
+ and ∆ = 2m − 1
435
+ δ
436
+ + 2.
437
+ If δ > 0 and
438
+ p
439
+ t
440
+ 2 −2 > (2n + 1)∆W(k)2
441
+ then (p, t) ∈ An.
442
+ Lemma 3.5. Suppose that κ ∈ N is such that ω(κ) ≥ 1547, then W(κ) ≤
443
+ κ1/12.
444
+ 9
445
+
446
+ Proof. Let V = {2, 3, 5, . . ., 12983} is the set of first 1547 primes. We see
447
+ that the product of all elements of V exceeds K = 6.57 × 105588. Let κ =
448
+ κ1κ2, where κ1 and κ2 are co-prime integers such that all prime divisors
449
+ of κ1 come from the least 1547 prime divisors of κ and remaining prime
450
+ divisors are divisors of κ2. Hence, κ1/12
451
+ 1
452
+ > K1/12 > 5.42 × 10465, whereas
453
+ W(κ1) < 4.93 × 10465. The conclusion follows, since ρ1/12 > 2 for all primes
454
+ ρ > 12983.
455
+ We shall need Theorem 3.4 and Lemma 3.5 for calculation work in the
456
+ next section.
457
+ 4
458
+ Proof of Theorem 1.1
459
+ Proof will be carried out for the situation t ≥ 7, since according to [2]
460
+ there is no primitive element ǫ, for t ≤ 4, such that TrFpt/Fp(ǫ) = 0 and
461
+ TrFpt/Fp(ǫ−1) = 0. The cases t = 5 and 6 necessitate substantial computation
462
+ and appear to demand a different technique. As a result, we postpone further
463
+ examination of these situations.
464
+ We assume initially that, ω(pt − 1) ≥ 1547.
465
+ Using Theorem 3.1 and
466
+ Lemma 3.5, if p
467
+ t
468
+ 2 −2 > 5p
469
+ t
470
+ 6, that is, if pt > 5
471
+ 3t
472
+ t−6 then (p, t) ∈ A2.
473
+ But
474
+ t ≥ 7 gives
475
+ 3t
476
+ t−6 ≤ 21. Hence, if pt > 521 then (p, t) ∈ A2, and this holds
477
+ true for ω(pt − 1) ≥ 1547. Therefore, we may suppose ω(pt − 1) ≤ 1546.
478
+ We shall use sieve variation in order to carry forward computational work.
479
+ Let 62 ≤ ω(pt − 1) ≤ 1546.
480
+ To use Theorem 3.4 assume k to be the
481
+ product of least 62 primes that divide pt − 1, that is, W(k) = 262, then
482
+ m ≤ 1485 and δ assumes its least positive value when {q1, q2, . . . , q1485} =
483
+ {307, 311, 313, . . ., 12979}. This yields δ > 0.004174 and ∆ < 710770.7395.
484
+ Hence 5∆W(k)2 < 7.558211 × 1043. Let Z = 7.558211 × 1043. By sieve
485
+ variation, (p, t) ∈ A2 if q
486
+ t
487
+ 2 −2 > Z i.e., if pt > Z
488
+ 2t
489
+ t−4. Since t ≥ 7, it gives
490
+ 2t
491
+ t−4 ≤ 14
492
+ 3 . Therefore, (p, t) ∈ A2 under the condition that pt > 5.834 × 10204.
493
+ Hence, ω(pt − 1) ≥ 95 implies (p, t) ∈ A2. In a similar manner (p, t) ∈ A3,
494
+ A4 if ω(pt − 1) ≥ 95, and (p, t) ∈ A5 if ω(pt − 1) ≥ 96.
495
+ 10
496
+
497
+ Table 1.
498
+ Sr.No.
499
+ a ≤ ω(pt − 1) ≤ b
500
+ W(k)
501
+ δ >
502
+ ∆ <
503
+ 5∆W(k)2 <
504
+ 1
505
+ a = 13, b = 94
506
+ 213
507
+ 0.04481712
508
+ 3594.3767988
509
+ 1,206,072,718,756
510
+ 2
511
+ a = 7, b = 34
512
+ 27
513
+ 0.04609692
514
+ 1151.7513186
515
+ 94,351,469
516
+ 3
517
+ a = 6, b = 25
518
+ 26
519
+ 0.08241088
520
+ 450.9698124
521
+ 9,235,862
522
+ 4
523
+ a = 6, b = 23
524
+ 26
525
+ 0.12550135
526
+ 264.9453729
527
+ 5,426,082
528
+ 5
529
+ a = 6, b = 22
530
+ 26
531
+ 0.14959773
532
+ 209.2223842
533
+ 4,284,875
534
+ 6
535
+ a = 5, b = 19
536
+ 25
537
+ 0.07663431
538
+ 354.3225878
539
+ 1,814,132
540
+ 7
541
+ a = 5, b = 17
542
+ 25
543
+ 0.13927194
544
+ 167.1445296
545
+ 855,780
546
+ 8
547
+ a = 5, b = 16
548
+ 25
549
+ 0.17317025
550
+ 123.2679422
551
+ 631,132
552
+ 9
553
+ a = 5, b = 15
554
+ 25
555
+ 0.21090610
556
+ 92.0874844
557
+ 471,488
558
+ Using the values in the Table 1 above and repeating the process of sieve
559
+ variation, we determine that (p, t) ∈ A2 if pt > (4284875)
560
+ 14
561
+ 3 or pt > 8.8929 ×
562
+ 1030 for t ≥ 7 and since t ≥ 8 implies
563
+ 2t
564
+ t−4 ≤ 4, so (p, t) ∈ A2 if pt > 3.371×1026
565
+ for t ≥ 8.
566
+ Therefore, for t ≥ 8 it is sufficient that ω(pt − 1) ≥ 20, We deduce,
567
+ utilising sieve variation repeatedly for values in the second section of the
568
+ preceding table that, (p, t) ∈ A2 if pt > 1.084 × 1025.
569
+ Similarly, ω(pt − 1) ≥ 18 is sufficient for inclusion of (p, t) in A2, and based
570
+ on the table above (p, t) ∈ A2 if pt > 2.2725 × 1021 for t ≥ 9, and (p, t) ∈ A2
571
+ if pt > 8.158 × 1018 for t ≥ 10.
572
+ Hence (p, t) ∈ A2 unless t = 7 and p < 26382, t = 8 and p < 1347, t = 9
573
+ and p < 237, t = 10 and p < 78, t = 11 and p < 53, t = 12 and p < 38,
574
+ t = 13 and p < 29, t = 14 and p < 23, t = 15 and p < 19, t = 16 and p < 16,
575
+ t = 17 and p < 13, t = 18 and p < 12, t = 19 and p < 10, t = 20 and p < 9,
576
+ t = 21, 22 and p < 8, t = 23, 24 and p < 7, t = 25, 26, 27 and p = 2, 3, 4, 5.
577
+ 28 ≤ t ≤ 31 and p = 2, 3, 4. 32 ≤ t ≤ 39 and for p = 2, 3. 40 ≤ t ≤ 62 and
578
+ p = 2.
579
+ From the preceding discussion for every (p, t), we validated Theorem 3.1
580
+ and compiled a list of 570 potential exceptions (listed in the Appendix).
581
+ 11
582
+
583
+ Then, for these potential exceptions, we discover that sieve variation is true
584
+ for the large majority of prime powers, with the exception of those mentioned
585
+ in Theorem 1.1.
586
+ (see Appendix).
587
+ Theorem 1.1 derives from this.
588
+ Using
589
+ similar reasoning, it is possible to find a subset of An for any n ∈ N. In
590
+ particular, for A3, we have the following result.
591
+ Theorem 4.1. Suppose t q, r, p ∈ N be such that q is a prime number, t
592
+ ≥ 7 and p = qr. Let p and t assumes none of the following values:
593
+ 1. 2 ≤ p ≤ 31 or p = 37, 41, 43, 49, 61, 67, 71, 79, 103, 121 and t = 7;
594
+ 2. 2 ≤ p ≤ 47 or p = 53, 83 and t = 8;
595
+ 3. 2 ≤ p ≤ 7 or p = 9, 11, 16 and t = 9;
596
+ 4. 2 ≤ p ≤ 8 and t = 10;
597
+ 5. p = 2, 3, 4 and t = 11;
598
+ 6. 2 ≤ p ≤ 7 and t = 12;
599
+ 7. p = 2 and t = 14, 15, 16, 18, 20, 24.
600
+ Then (p, t) ∈ A3.
601
+ References
602
+ [1] Cao, X., Wang, P. (2014). Primitive elements with prescribed trace.
603
+ AAECC 25(5):339–345.
604
+ [2] Chou, W. S., Cohen, S. D. (2001). Primitive elements with zero traces.
605
+ Finite Fields Appl. 7(1):125–141.
606
+ [3] Cohen, S. D. (1985). Consecutive primitive roots in a finite field. Proc.
607
+ Amer. Math. Soc. 93(2):189–197.
608
+ [4] Cohen, S .D., Sharma, H., Sharma, R. K. (2021). Primitive values of ra-
609
+ tional functions at primitive elements of a finite field. J. Number Theory
610
+ 219:237–246.
611
+ [5] Cohen, S. D., Presern, M. (2005). Primitive finite field elements with
612
+ prescribed trace. Southeast Asian Bull. Math. 29(2):283–300.
613
+ 12
614
+
615
+ [6] Fu, L., Wan, D. (2014). A class of incomplete character sums. Q. J.
616
+ Math. 65(4):1195–1211.
617
+ [7] Gupta, A., Sharma, R. K., Cohen, S. D. (2018). Primitive element pairs
618
+ with one prescribed trace over a finite field. Finite Fields Appl. 54:1–14.
619
+ [8] Jungnickel, D., Vanstone, S. A. (1989). On primitive polynomials over
620
+ finite fields. J. Algebra 124(2):337–353.
621
+ [9] Lidl, R., Niederreiter, H. (1997). Finite Field, Vol. 20. Cambridge (UK):
622
+ Cambridge University Press.
623
+ [10] Paar, C., Pelzl, J. (2010). Public-Key Cryptosystems Based on the Dis-
624
+ crete Logarithm Problem, pp. 205–238. Berlin, Heidelberg: Springer.
625
+ [11] Sharma, H., Sharma, R.K. (2021). Existence of primitive pairs with
626
+ prescribed traces over finite fields. Commun. Algebra 49(4):1773-1780.
627
+ [12] Sharma, R.K., Awasthi, A., Gupta, A. (2018). Existence of pair of prim-
628
+ itive elements over finite fields of characteristic 2. J. Number Theory
629
+ 193:386–394.
630
+ [13] Sharma, R. K., Gupta, A. (2017). Existence of some special primitive
631
+ normal elements over finite fields. Finite Fields Appl. 46:280–303.
632
+ [14] Sharma, R. K., Gupta, A. (2019). Pair of primitive elements with pre-
633
+ scribed traces over finite fields. Commun. Algebra 47(3):1278–1286.
634
+ [15] Shuqin, F., Wenbao, H. (2004). Character sums over galois rings and
635
+ primitive polynomials over finite fields. Finite Fields Appl. 10(1):36–52.
636
+ [16] The Sage Developers, SageMath, the Sage mathematics software system
637
+ (version 9.0), https:// www.sagemath.org, 2020.
638
+ 13
639
+
640
+ Appendix
641
+ List of 570 values of (p, t) for which the condition of
642
+ Theorem 3.1 of the this article fails:
643
+ For t=7:
644
+ p= 2, 4, 8, 16, 32, 64, 256, 512, 1024, 4096, 3, 9, 27, 81, 243, 729, 6561, 5,
645
+ 25, 125, 625, 3125, 15625, 7, 49, 343, 2401, 11, 121, 1331, 14641, 13, 169,
646
+ 2197, 17, 19, 361, 23, 529, 29, 31, 37, 41, 1681, 43, 1849, 47, 53, 59, 3481, 61,
647
+ 67, 4489, 71, 79, 6241, 83, 6889, 97, 9409, 101, 103, 10609, 107, 109, 11881,
648
+ 113, 127, 131, 17161, 139, 19321, 151, 22801, 157, 181, 191, 197, 199, 211,
649
+ 223, 227, 229, 233, 239, 241, 263, 269, 271, 277, 281, 283, 293, 311, 331, 359,
650
+ 367, 389, 397, 401, 409, 431, 439, 463, 491, 499, 509, 547, 571, 593, 601, 607,
651
+ 613, 619, 631, 643, 659, 661, 683, 691, 709, 727, 733, 739, 743, 877, 919, 953,
652
+ 967, 1021, 1051, 1063, 1093, 1123, 1151, 1171, 1181, 1231, 1283, 1301, 1303,
653
+ 1321, 1381, 1399, 1453, 1481, 1483, 1499, 1523, 1531, 1597, 1607, 1693, 1723,
654
+ 1741, 1759, 1789, 1801, 1823, 1877, 1879, 1951, 2003, 2141, 2161, 2281, 2311,
655
+ 2381, 2591, 2713, 2731, 2791, 2887, 2971, 3041, 3083, 3191, 3221, 3229, 3271,
656
+ 3301, 3307, 3313, 3499, 3547, 3571, 3739, 3851, 3911, 4013, 4159, 4219, 4241,
657
+ 4243, 4261, 4327, 4421, 4423, 4567, 4621, 4663, 4691, 4751, 4957, 5419, 5923,
658
+ 5981, 6067, 6211, 6491, 6577, 7159, 7759, 8009, 8053, 8191, 8807, 9103, 9403,
659
+ 9421, 9463, 9719, 9767, 9871, 9901, 9967, 10427, 10949, 10957, 10979, 11311,
660
+ 11593, 11621, 12959, 14323, 15313, 15511, 16381, 17431, 17491, 19483, 19687,
661
+ 19891, 20011, 20441, 21391, 22543, 23143, 23671, 24181, 24683, 25171, 25411.
662
+ For t=8:
663
+ p = 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 3, 9, 27, 81, 243, 729, 5, 25, 125,
664
+ 7, 49, 343, 11, 121, 1331, 13, 169, 17, 19, 361, 23, 529, 29, 841, 31, 961, 37,
665
+ 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
666
+ 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 211, 223,
667
+ 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
668
+ 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
669
+ 419, 421, 433, 439, 443, 457, 461, 463, 467, 491, 499, 509, 521, 523, 541, 547,
670
+ 557, 563, 569, 571, 587, 593, 599, 601, 617, 619, 631, 647, 653, 659, 661, 683,
671
+ 691, 701, 709, 727, 733, 739, 743, 757, 773, 787, 797, 809, 811, 823, 827, 829,
672
+ 839, 853, 857, 859, 863, 881, 887, 911, 919, 929, 937, 941, 947, 953, 967, 971,
673
+ 977, 983, 991, 1009, 1013, 1021, 1033, 1039, 1061, 1063, 1069, 1087, 1091,
674
+ 14
675
+
676
+ 1093, 1097, 1103, 1109, 1117, 1123, 1201, 1213, 1217, 1223, 1231, 1277, 1279,
677
+ 1283, 1289, 1291, 1301, 1303, 1319, 1321.
678
+ For t=9:
679
+ p = 2, 4, 8, 16, 32, 3, 9, 27, 81, 5, 25, 125, 7, 49, 11, 121, 13, 169, 17, 19, 23,
680
+ 29, 31, 37, 43, 47, 53, 61, 79, 83, 137, 139, 149, 157, 211.
681
+ For t=10:
682
+ p = 2, 4, 8, 16, 32, 64, 3, 9, 27, 5, 25, 7, 49, 11, 13, 17, 19, 23, 29, 31, 37, 41,
683
+ 53, 59, 61, 67.
684
+ For t=11:
685
+ p = 2, 4, 16, 3, 9, 7, 13.
686
+ For t=12:
687
+ p = 2, 4, 8, 16, 32, 3, 9, 27, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.
688
+ For t=14:
689
+ p = 2, 4, 3, 5, 7.
690
+ For t=15:
691
+ p = 2, 4, 16, 3, 9, 5.
692
+ For t=16:
693
+ p = 2, 4, 8, 3, 5.
694
+ For t=18:
695
+ p = 2, 3, 4, 5.
696
+ For t=20:
697
+ p = 2, 4, 8.
698
+ 15
699
+
700
+ For t=24:
701
+ p = 2, 3, 4.
702
+ For t=22, 28, 30, 36:
703
+ p = 2.
704
+ 16
705
+
706
+ List consisting values of k, m corresponding to (p, t) for
707
+ which the condition of theorem 3.1 fails but sieve vari-
708
+ ation is satisfied for some choice of k in this article.
709
+ for t=7:
710
+ Sr.No.
711
+ p
712
+ k
713
+ m
714
+ 1
715
+ 32
716
+ 1
717
+ 4
718
+ 2
719
+ 64
720
+ 3
721
+ 5
722
+ 3
723
+ 256
724
+ 3
725
+ 7
726
+ 4
727
+ 512
728
+ 1
729
+ 6
730
+ 5
731
+ 1024
732
+ 3
733
+ 8
734
+ 6
735
+ 4096
736
+ 3
737
+ 11
738
+ 7
739
+ 81
740
+ 2
741
+ 5
742
+ 8
743
+ 243
744
+ 2
745
+ 4
746
+ 9
747
+ 729
748
+ 2
749
+ 7
750
+ 10
751
+ 6561
752
+ 2
753
+ 8
754
+ 11
755
+ 125
756
+ 2
757
+ 4
758
+ 12
759
+ 625
760
+ 6
761
+ 5
762
+ 13
763
+ 3125
764
+ 2
765
+ 7
766
+ 14
767
+ 15625
768
+ 6
769
+ 10
770
+ 15
771
+ 343
772
+ 6
773
+ 4
774
+ 16
775
+ 2401
776
+ 6
777
+ 6
778
+ 17
779
+ 121
780
+ 6
781
+ 4
782
+ 18
783
+ 1331
784
+ 2
785
+ 8
786
+ 19
787
+ 14641
788
+ 6
789
+ 8
790
+ 20
791
+ 169
792
+ 6
793
+ 4
794
+ 21
795
+ 2197
796
+ 6
797
+ 6
798
+ 22
799
+ 17
800
+ 2
801
+ 1
802
+ 23
803
+ 361
804
+ 6
805
+ 5
806
+ 24
807
+ 529
808
+ 6
809
+ 6
810
+ 25
811
+ 29
812
+ 2
813
+ 2
814
+ 26
815
+ 41
816
+ 2
817
+ 3
818
+ 27
819
+ 1681
820
+ 6
821
+ 6
822
+ 28
823
+ 1849
824
+ 6
825
+ 5
826
+ 29
827
+ 47
828
+ 2
829
+ 3
830
+ 30
831
+ 53
832
+ 2
833
+ 3
834
+ 31
835
+ 59
836
+ 2
837
+ 5
838
+ 32
839
+ 3481
840
+ 6
841
+ 8
842
+ 33
843
+ 4489
844
+ 6
845
+ 8
846
+ Sr.No.
847
+ p
848
+ k
849
+ m
850
+ 34
851
+ 71
852
+ 2
853
+ 4
854
+ 35
855
+ 6241
856
+ 6
857
+ 8
858
+ 36
859
+ 83
860
+ 2
861
+ 3
862
+ 37
863
+ 6889
864
+ 6
865
+ 7
866
+ 38
867
+ 97
868
+ 6
869
+ 3
870
+ 39
871
+ 9409
872
+ 6
873
+ 7
874
+ 40
875
+ 101
876
+ 2
877
+ 3
878
+ 41
879
+ 103
880
+ 6
881
+ 4
882
+ 42
883
+ 10609
884
+ 6
885
+ 7
886
+ 43
887
+ 107
888
+ 2
889
+ 4
890
+ 44
891
+ 109
892
+ 6
893
+ 3
894
+ 45
895
+ 11881
896
+ 6
897
+ 7
898
+ 46
899
+ 113
900
+ 2
901
+ 3
902
+ 47
903
+ 127
904
+ 6
905
+ 4
906
+ 48
907
+ 131
908
+ 2
909
+ 5
910
+ 49
911
+ 17161
912
+ 6
913
+ 9
914
+ 50
915
+ 139
916
+ 6
917
+ 4
918
+ 51
919
+ 19321
920
+ 6
921
+ 9
922
+ 52
923
+ 151
924
+ 6
925
+ 3
926
+ 53
927
+ 22801
928
+ 6
929
+ 9
930
+ 54
931
+ 157
932
+ 6
933
+ 3
934
+ 55
935
+ 181
936
+ 6
937
+ 4
938
+ 56
939
+ 191
940
+ 2
941
+ 6
942
+ 57
943
+ 197
944
+ 2
945
+ 4
946
+ 58
947
+ 199
948
+ 6
949
+ 5
950
+ 59
951
+ 211
952
+ 6
953
+ 4
954
+ 60
955
+ 223
956
+ 6
957
+ 5
958
+ 61
959
+ 227
960
+ 2
961
+ 4
962
+ 62
963
+ 229
964
+ 6
965
+ 3
966
+ 63
967
+ 233
968
+ 2
969
+ 4
970
+ 64
971
+ 239
972
+ 2
973
+ 5
974
+ 65
975
+ 241
976
+ 6
977
+ 3
978
+ 66
979
+ 263
980
+ 2
981
+ 4
982
+ 17
983
+
984
+ Sr.No.
985
+ q
986
+ l
987
+ s
988
+ 67
989
+ 269
990
+ 2
991
+ 6
992
+ 68
993
+ 271
994
+ 6
995
+ 3
996
+ 69
997
+ 277
998
+ 6
999
+ 4
1000
+ 70
1001
+ 281
1002
+ 2
1003
+ 5
1004
+ 71
1005
+ 283
1006
+ 6
1007
+ 3
1008
+ 72
1009
+ 293
1010
+ 2
1011
+ 4
1012
+ 73
1013
+ 311
1014
+ 2
1015
+ 5
1016
+ 74
1017
+ 331
1018
+ 6
1019
+ 4
1020
+ 75
1021
+ 359
1022
+ 2
1023
+ 6
1024
+ 76
1025
+ 367
1026
+ 6
1027
+ 4
1028
+ 77
1029
+ 389
1030
+ 2
1031
+ 6
1032
+ 78
1033
+ 397
1034
+ 6
1035
+ 5
1036
+ 79
1037
+ 401
1038
+ 2
1039
+ 5
1040
+ 80
1041
+ 409
1042
+ 6
1043
+ 4
1044
+ 81
1045
+ 431
1046
+ 2
1047
+ 7
1048
+ 82
1049
+ 439
1050
+ 6
1051
+ 4
1052
+ 83
1053
+ 463
1054
+ 6
1055
+ 4
1056
+ 84
1057
+ 491
1058
+ 2
1059
+ 5
1060
+ 85
1061
+ 499
1062
+ 6
1063
+ 4
1064
+ 86
1065
+ 509
1066
+ 2
1067
+ 5
1068
+ 87
1069
+ 547
1070
+ 6
1071
+ 4
1072
+ 88
1073
+ 571
1074
+ 6
1075
+ 4
1076
+ 89
1077
+ 593
1078
+ 2
1079
+ 5
1080
+ 90
1081
+ 601
1082
+ 6
1083
+ 4
1084
+ 91
1085
+ 607
1086
+ 6
1087
+ 4
1088
+ 92
1089
+ 613
1090
+ 6
1091
+ 5
1092
+ 93
1093
+ 619
1094
+ 6
1095
+ 4
1096
+ 94
1097
+ 631
1098
+ 6
1099
+ 4
1100
+ 95
1101
+ 643
1102
+ 6
1103
+ 4
1104
+ 96
1105
+ 659
1106
+ 2
1107
+ 5
1108
+ 97
1109
+ 661
1110
+ 6
1111
+ 5
1112
+ 98
1113
+ 683
1114
+ 2
1115
+ 5
1116
+ 99
1117
+ 691
1118
+ 6
1119
+ 6
1120
+ 100
1121
+ 709
1122
+ 6
1123
+ 4
1124
+ 101
1125
+ 727
1126
+ 6
1127
+ 5
1128
+ 102
1129
+ 733
1130
+ 6
1131
+ 4
1132
+ 103
1133
+ 739
1134
+ 6
1135
+ 4
1136
+ 104
1137
+ 743
1138
+ 2
1139
+ 5
1140
+ 105
1141
+ 877
1142
+ 6
1143
+ 5
1144
+ 106
1145
+ 919
1146
+ 6
1147
+ 6
1148
+ Sr.No.
1149
+ q
1150
+ l
1151
+ s
1152
+ 107
1153
+ 953
1154
+ 2
1155
+ 8
1156
+ 108
1157
+ 967
1158
+ 6
1159
+ 5
1160
+ 109
1161
+ 1021
1162
+ 6
1163
+ 5
1164
+ 110
1165
+ 1051
1166
+ 6
1167
+ 5
1168
+ 111
1169
+ 1063
1170
+ 6
1171
+ 5
1172
+ 112
1173
+ 1093
1174
+ 6
1175
+ 5
1176
+ 113
1177
+ 1123
1178
+ 6
1179
+ 6
1180
+ 114
1181
+ 1151
1182
+ 2
1183
+ 6
1184
+ 115
1185
+ 1171
1186
+ 6
1187
+ 5
1188
+ 116
1189
+ 1181
1190
+ 2
1191
+ 6
1192
+ 117
1193
+ 1231
1194
+ 6
1195
+ 6
1196
+ 118
1197
+ 1283
1198
+ 2
1199
+ 6
1200
+ 119
1201
+ 1301
1202
+ 2
1203
+ 6
1204
+ 120
1205
+ 1303
1206
+ 6
1207
+ 5
1208
+ 121
1209
+ 1321
1210
+ 6
1211
+ 5
1212
+ 122
1213
+ 1381
1214
+ 6
1215
+ 5
1216
+ 123
1217
+ 1399
1218
+ 6
1219
+ 5
1220
+ 124
1221
+ 1453
1222
+ 6
1223
+ 5
1224
+ 125
1225
+ 1481
1226
+ 2
1227
+ 6
1228
+ 126
1229
+ 1483
1230
+ 6
1231
+ 6
1232
+ 127
1233
+ 1499
1234
+ 2
1235
+ 6
1236
+ 128
1237
+ 1523
1238
+ 2
1239
+ 6
1240
+ 129
1241
+ 1531
1242
+ 6
1243
+ 6
1244
+ 130
1245
+ 1597
1246
+ 6
1247
+ 5
1248
+ 131
1249
+ 1607
1250
+ 2
1251
+ 6
1252
+ 132
1253
+ 1693
1254
+ 6
1255
+ 6
1256
+ 133
1257
+ 1723
1258
+ 6
1259
+ 5
1260
+ 134
1261
+ 1741
1262
+ 6
1263
+ 6
1264
+ 135
1265
+ 1759
1266
+ 6
1267
+ 5
1268
+ 136
1269
+ 1789
1270
+ 6
1271
+ 5
1272
+ 137
1273
+ 1801
1274
+ 6
1275
+ 6
1276
+ 138
1277
+ 1823
1278
+ 2
1279
+ 6
1280
+ 139
1281
+ 1877
1282
+ 2
1283
+ 6
1284
+ 140
1285
+ 1879
1286
+ 6
1287
+ 5
1288
+ 141
1289
+ 1951
1290
+ 6
1291
+ 7
1292
+ 142
1293
+ 2003
1294
+ 2
1295
+ 7
1296
+ 143
1297
+ 2141
1298
+ 2
1299
+ 7
1300
+ 144
1301
+ 2161
1302
+ 6
1303
+ 7
1304
+ 145
1305
+ 2281
1306
+ 6
1307
+ 6
1308
+ 146
1309
+ 2311
1310
+ 6
1311
+ 6
1312
+ 18
1313
+
1314
+ Sr.No.
1315
+ p
1316
+ k
1317
+ m
1318
+ 147
1319
+ 2381
1320
+ 2
1321
+ 8
1322
+ 148
1323
+ 2591
1324
+ 2
1325
+ 7
1326
+ 149
1327
+ 2713
1328
+ 6
1329
+ 6
1330
+ 150
1331
+ 2731
1332
+ 6
1333
+ 7
1334
+ 151
1335
+ 2791
1336
+ 6
1337
+ 7
1338
+ 152
1339
+ 2887
1340
+ 6
1341
+ 6
1342
+ 153
1343
+ 2971
1344
+ 6
1345
+ 6
1346
+ 154
1347
+ 3041
1348
+ 2
1349
+ 7
1350
+ 155
1351
+ 3083
1352
+ 2
1353
+ 7
1354
+ 156
1355
+ 3191
1356
+ 2
1357
+ 7
1358
+ 157
1359
+ 3221
1360
+ 2
1361
+ 7
1362
+ 158
1363
+ 3229
1364
+ 6
1365
+ 6
1366
+ 159
1367
+ 3271
1368
+ 6
1369
+ 6
1370
+ 160
1371
+ 3301
1372
+ 6
1373
+ 7
1374
+ 161
1375
+ 3307
1376
+ 6
1377
+ 6
1378
+ 162
1379
+ 3313
1380
+ 6
1381
+ 6
1382
+ 163
1383
+ 3499
1384
+ 6
1385
+ 8
1386
+ 164
1387
+ 3547
1388
+ 6
1389
+ 8
1390
+ 165
1391
+ 3571
1392
+ 6
1393
+ 6
1394
+ 166
1395
+ 3739
1396
+ 6
1397
+ 6
1398
+ 167
1399
+ 3851
1400
+ 2
1401
+ 7
1402
+ 168
1403
+ 3911
1404
+ 2
1405
+ 7
1406
+ 169
1407
+ 4013
1408
+ 27
1409
+ 7
1410
+ 170
1411
+ 4159
1412
+ 6
1413
+ 6
1414
+ 171
1415
+ 4219
1416
+ 6
1417
+ 7
1418
+ 172
1419
+ 4241
1420
+ 2
1421
+ 7
1422
+ 173
1423
+ 4243
1424
+ 6
1425
+ 7
1426
+ 174
1427
+ 4261
1428
+ 6
1429
+ 6
1430
+ 175
1431
+ 4327
1432
+ 6
1433
+ 7
1434
+ 176
1435
+ 4421
1436
+ 2
1437
+ 7
1438
+ 177
1439
+ 4423
1440
+ 6
1441
+ 6
1442
+ 178
1443
+ 4567
1444
+ 6
1445
+ 6
1446
+ 179
1447
+ 4621
1448
+ 6
1449
+ 6
1450
+ 180
1451
+ 4663
1452
+ 6
1453
+ 6
1454
+ 181
1455
+ 4691
1456
+ 2
1457
+ 7
1458
+ 182
1459
+ 4751
1460
+ 2
1461
+ 7
1462
+ 183
1463
+ 4957
1464
+ 6
1465
+ 7
1466
+ 184
1467
+ 5419
1468
+ 6
1469
+ 7
1470
+ 185
1471
+ 5923
1472
+ 6
1473
+ 7
1474
+ 186
1475
+ 5981
1476
+ 2
1477
+ 8
1478
+ 187
1479
+ 6067
1480
+ 6
1481
+ 7
1482
+ 188
1483
+ 6211
1484
+ 6
1485
+ 7
1486
+ 189
1487
+ 6491
1488
+ 2
1489
+ 8
1490
+ Sr.No.
1491
+ p
1492
+ k
1493
+ m
1494
+ 190
1495
+ 6577
1496
+ 6
1497
+ 7
1498
+ 191
1499
+ 7159
1500
+ 6
1501
+ 7
1502
+ 192
1503
+ 7759
1504
+ 6
1505
+ 8
1506
+ 193
1507
+ 8009
1508
+ 2
1509
+ 9
1510
+ 194
1511
+ 8053
1512
+ 6
1513
+ 9
1514
+ 195
1515
+ 8191
1516
+ 6
1517
+ 7
1518
+ 196
1519
+ 8807
1520
+ 2
1521
+ 8
1522
+ 197
1523
+ 9103
1524
+ 6
1525
+ 7
1526
+ 198
1527
+ 9403
1528
+ 6
1529
+ 7
1530
+ 199
1531
+ 9421
1532
+ 6
1533
+ 7
1534
+ 200
1535
+ 9463
1536
+ 6
1537
+ 7
1538
+ 201
1539
+ 9719
1540
+ 2
1541
+ 8
1542
+ 202
1543
+ 9767
1544
+ 2
1545
+ 8
1546
+ 203
1547
+ 9871
1548
+ 6
1549
+ 7
1550
+ 204
1551
+ 9901
1552
+ 6
1553
+ 7
1554
+ 205
1555
+ 9967
1556
+ 6
1557
+ 7
1558
+ 206
1559
+ 10427
1560
+ 2
1561
+ 8
1562
+ 207
1563
+ 10949
1564
+ 2
1565
+ 10
1566
+ 208
1567
+ 10957
1568
+ 6
1569
+ 8
1570
+ 209
1571
+ 10979
1572
+ 2
1573
+ 8
1574
+ 210
1575
+ 11311
1576
+ 6
1577
+ 7
1578
+ 211
1579
+ 11593
1580
+ 6
1581
+ 7
1582
+ 212
1583
+ 11621
1584
+ 2
1585
+ 8
1586
+ 213
1587
+ 12959
1588
+ 2
1589
+ 9
1590
+ 214
1591
+ 14232
1592
+ 6
1593
+ 8
1594
+ 215
1595
+ 15313
1596
+ 6
1597
+ 8
1598
+ 216
1599
+ 15511
1600
+ 6
1601
+ 8
1602
+ 217
1603
+ 16381
1604
+ 6
1605
+ 8
1606
+ 218
1607
+ 17431
1608
+ 6
1609
+ 9
1610
+ 219
1611
+ 17491
1612
+ 6
1613
+ 9
1614
+ 220
1615
+ 19483
1616
+ 6
1617
+ 8
1618
+ 221
1619
+ 19687
1620
+ 6
1621
+ 8
1622
+ 222
1623
+ 19891
1624
+ 6
1625
+ 8
1626
+ 223
1627
+ 20011
1628
+ 6
1629
+ 8
1630
+ 224
1631
+ 20441
1632
+ 2
1633
+ 10
1634
+ 225
1635
+ 21391
1636
+ 6
1637
+ 8
1638
+ 226
1639
+ 22543
1640
+ 6
1641
+ 8
1642
+ 227
1643
+ 23143
1644
+ 6
1645
+ 8
1646
+ 228
1647
+ 23671
1648
+ 6
1649
+ 9
1650
+ 229
1651
+ 24181
1652
+ 6
1653
+ 8
1654
+ 230
1655
+ 24683
1656
+ 2
1657
+ 9
1658
+ 231
1659
+ 25171
1660
+ 6
1661
+ 9
1662
+ 232
1663
+ 25411
1664
+ 6
1665
+ 8
1666
+ 19
1667
+
1668
+ for t=8:
1669
+ Sr.No.
1670
+ p
1671
+ k
1672
+ m
1673
+ 1
1674
+ 64
1675
+ 6
1676
+ 7
1677
+ 2
1678
+ 128
1679
+ 3
1680
+ 6
1681
+ 3
1682
+ 256
1683
+ 3
1684
+ 6
1685
+ 4
1686
+ 512
1687
+ 6
1688
+ 10
1689
+ 5
1690
+ 1024
1691
+ 3
1692
+ 8
1693
+ 6
1694
+ 81
1695
+ 2
1696
+ 5
1697
+ 7
1698
+ 243
1699
+ 2
1700
+ 6
1701
+ 8
1702
+ 125
1703
+ 6
1704
+ 6
1705
+ 9
1706
+ 49
1707
+ 6
1708
+ 4
1709
+ 10
1710
+ 343
1711
+ 6
1712
+ 9
1713
+ 11
1714
+ 121
1715
+ 6
1716
+ 5
1717
+ 12
1718
+ 169
1719
+ 6
1720
+ 5
1721
+ 13
1722
+ 361
1723
+ 6
1724
+ 6
1725
+ 14
1726
+ 529
1727
+ 6
1728
+ 7
1729
+ 15
1730
+ 841
1731
+ 6
1732
+ 7
1733
+ 16
1734
+ 961
1735
+ 6
1736
+ 7
1737
+ 17
1738
+ 53
1739
+ 6
1740
+ 5
1741
+ 18
1742
+ 59
1743
+ 6
1744
+ 6
1745
+ 19
1746
+ 61
1747
+ 6
1748
+ 4
1749
+ 20
1750
+ 67
1751
+ 6
1752
+ 6
1753
+ 21
1754
+ 71
1755
+ 6
1756
+ 4
1757
+ 22
1758
+ 73
1759
+ 6
1760
+ 5
1761
+ 23
1762
+ 79
1763
+ 6
1764
+ 6
1765
+ 24
1766
+ 89
1767
+ 6
1768
+ 6
1769
+ 25
1770
+ 97
1771
+ 6
1772
+ 5
1773
+ 26
1774
+ 101
1775
+ 6
1776
+ 5
1777
+ 27
1778
+ 103
1779
+ 6
1780
+ 5
1781
+ 28
1782
+ 107
1783
+ 6
1784
+ 5
1785
+ 29
1786
+ 109
1787
+ 6
1788
+ 6
1789
+ 30
1790
+ 113
1791
+ 6
1792
+ 5
1793
+ 31
1794
+ 127
1795
+ 6
1796
+ 6
1797
+ 32
1798
+ 131
1799
+ 6
1800
+ 6
1801
+ 33
1802
+ 137
1803
+ 6
1804
+ 7
1805
+ 34
1806
+ 139
1807
+ 6
1808
+ 6
1809
+ 35
1810
+ 149
1811
+ 6
1812
+ 6
1813
+ 36
1814
+ 151
1815
+ 6
1816
+ 6
1817
+ 37
1818
+ 157
1819
+ 6
1820
+ 7
1821
+ 38
1822
+ 163
1823
+ 6
1824
+ 5
1825
+ Sr.No.
1826
+ p
1827
+ k
1828
+ m
1829
+ 39
1830
+ 167
1831
+ 6
1832
+ 6
1833
+ 40
1834
+ 173
1835
+ 6
1836
+ 7
1837
+ 41
1838
+ 179
1839
+ 6
1840
+ 6
1841
+ 42
1842
+ 181
1843
+ 6
1844
+ 6
1845
+ 43
1846
+ 191
1847
+ 6
1848
+ 7
1849
+ 44
1850
+ 197
1851
+ 6
1852
+ 6
1853
+ 45
1854
+ 211
1855
+ 6
1856
+ 7
1857
+ 46
1858
+ 223
1859
+ 6
1860
+ 7
1861
+ 47
1862
+ 227
1863
+ 6
1864
+ 7
1865
+ 48
1866
+ 229
1867
+ 6
1868
+ 8
1869
+ 49
1870
+ 233
1871
+ 6
1872
+ 8
1873
+ 50
1874
+ 239
1875
+ 6
1876
+ 7
1877
+ 51
1878
+ 241
1879
+ 6
1880
+ 7
1881
+ 52
1882
+ 251
1883
+ 6
1884
+ 5
1885
+ 53
1886
+ 257
1887
+ 6
1888
+ 5
1889
+ 54
1890
+ 263
1891
+ 6
1892
+ 7
1893
+ 55
1894
+ 269
1895
+ 6
1896
+ 6
1897
+ 56
1898
+ 271
1899
+ 6
1900
+ 6
1901
+ 57
1902
+ 277
1903
+ 6
1904
+ 6
1905
+ 58
1906
+ 283
1907
+ 6
1908
+ 6
1909
+ 59
1910
+ 293
1911
+ 6
1912
+ 7
1913
+ 60
1914
+ 311
1915
+ 6
1916
+ 7
1917
+ 61
1918
+ 313
1919
+ 6
1920
+ 6
1921
+ 62
1922
+ 317
1923
+ 6
1924
+ 6
1925
+ 63
1926
+ 331
1927
+ 6
1928
+ 8
1929
+ 64
1930
+ 337
1931
+ 6
1932
+ 6
1933
+ 65
1934
+ 347
1935
+ 6
1936
+ 6
1937
+ 66
1938
+ 349
1939
+ 6
1940
+ 6
1941
+ 67
1942
+ 353
1943
+ 6
1944
+ 6
1945
+ 68
1946
+ 359
1947
+ 6
1948
+ 7
1949
+ 69
1950
+ 367
1951
+ 6
1952
+ 6
1953
+ 70
1954
+ 373
1955
+ 6
1956
+ 7
1957
+ 71
1958
+ 379
1959
+ 6
1960
+ 6
1961
+ 72
1962
+ 383
1963
+ 6
1964
+ 7
1965
+ 73
1966
+ 389
1967
+ 6
1968
+ 8
1969
+ 74
1970
+ 397
1971
+ 6
1972
+ 6
1973
+ 75
1974
+ 401
1975
+ 6
1976
+ 8
1977
+ 76
1978
+ 409
1979
+ 6
1980
+ 6
1981
+ 20
1982
+
1983
+ Sr.No.
1984
+ p
1985
+ k
1986
+ m
1987
+ 77
1988
+ 433
1989
+ 6
1990
+ 7
1991
+ 78
1992
+ 439
1993
+ 6
1994
+ 7
1995
+ 79
1996
+ 443
1997
+ 6
1998
+ 7
1999
+ 80
2000
+ 457
2001
+ 6
2002
+ 7
2003
+ 81
2004
+ 467
2005
+ 6
2006
+ 7
2007
+ 82
2008
+ 491
2009
+ 6
2010
+ 7
2011
+ 83
2012
+ 499
2013
+ 6
2014
+ 8
2015
+ 84
2016
+ 509
2017
+ 6
2018
+ 7
2019
+ 85
2020
+ 521
2021
+ 6
2022
+ 7
2023
+ 86
2024
+ 523
2025
+ 6
2026
+ 6
2027
+ 87
2028
+ 541
2029
+ 6
2030
+ 6
2031
+ 88
2032
+ 547
2033
+ 6
2034
+ 8
2035
+ 89
2036
+ 557
2037
+ 6
2038
+ 7
2039
+ 90
2040
+ 563
2041
+ 6
2042
+ 9
2043
+ 91
2044
+ 569
2045
+ 6
2046
+ 6
2047
+ 92
2048
+ 571
2049
+ 6
2050
+ 9
2051
+ 93
2052
+ 587
2053
+ 6
2054
+ 7
2055
+ 94
2056
+ 593
2057
+ 6
2058
+ 8
2059
+ 95
2060
+ 599
2061
+ 6
2062
+ 8
2063
+ 96
2064
+ 601
2065
+ 6
2066
+ 7
2067
+ 97
2068
+ 617
2069
+ 6
2070
+ 8
2071
+ 98
2072
+ 619
2073
+ 6
2074
+ 7
2075
+ 99
2076
+ 631
2077
+ 6
2078
+ 7
2079
+ 100
2080
+ 647
2081
+ 6
2082
+ 7
2083
+ 101
2084
+ 653
2085
+ 6
2086
+ 7
2087
+ 102
2088
+ 661
2089
+ 6
2090
+ 7
2091
+ 103
2092
+ 683
2093
+ 6
2094
+ 7
2095
+ 104
2096
+ 691
2097
+ 6
2098
+ 7
2099
+ 105
2100
+ 701
2101
+ 6
2102
+ 7
2103
+ 106
2104
+ 709
2105
+ 6
2106
+ 7
2107
+ 107
2108
+ 733
2109
+ 6
2110
+ 7
2111
+ 108
2112
+ 739
2113
+ 6
2114
+ 7
2115
+ 109
2116
+ 743
2117
+ 6
2118
+ 9
2119
+ 110
2120
+ 757
2121
+ 6
2122
+ 8
2123
+ 111
2124
+ 773
2125
+ 6
2126
+ 8
2127
+ 112
2128
+ 787
2129
+ 6
2130
+ 8
2131
+ 113
2132
+ 797
2133
+ 6
2134
+ 8
2135
+ 114
2136
+ 809
2137
+ 6
2138
+ 8
2139
+ Sr.No.
2140
+ p
2141
+ k
2142
+ m
2143
+ 115
2144
+ 811
2145
+ 6
2146
+ 7
2147
+ 116
2148
+ 823
2149
+ 6
2150
+ 8
2151
+ 117
2152
+ 827
2153
+ 6
2154
+ 8
2155
+ 118
2156
+ 829
2157
+ 6
2158
+ 7
2159
+ 119
2160
+ 839
2161
+ 6
2162
+ 7
2163
+ 120
2164
+ 857
2165
+ 6
2166
+ 7
2167
+ 121
2168
+ 859
2169
+ 6
2170
+ 8
2171
+ 122
2172
+ 863
2173
+ 6
2174
+ 8
2175
+ 123
2176
+ 881
2177
+ 6
2178
+ 7
2179
+ 124
2180
+ 887
2181
+ 6
2182
+ 7
2183
+ 125
2184
+ 919
2185
+ 76
2186
+ 7
2187
+ 126
2188
+ 929
2189
+ 6
2190
+ 7
2191
+ 127
2192
+ 941
2193
+ 6
2194
+ 7
2195
+ 128
2196
+ 947
2197
+ 6
2198
+ 8
2199
+ 129
2200
+ 953
2201
+ 6
2202
+ 7
2203
+ 130
2204
+ 971
2205
+ 6
2206
+ 8
2207
+ 131
2208
+ 977
2209
+ 6
2210
+ 8
2211
+ 132
2212
+ 983
2213
+ 6
2214
+ 7
2215
+ 133
2216
+ 991
2217
+ 6
2218
+ 7
2219
+ 134
2220
+ 1009
2221
+ 6
2222
+ 7
2223
+ 135
2224
+ 1013
2225
+ 6
2226
+ 7
2227
+ 136
2228
+ 1021
2229
+ 6
2230
+ 8
2231
+ 137
2232
+ 1033
2233
+ 6
2234
+ 8
2235
+ 138
2236
+ 1039
2237
+ 6
2238
+ 8
2239
+ 139
2240
+ 1061
2241
+ 6
2242
+ 9
2243
+ 140
2244
+ 1063
2245
+ 6
2246
+ 8
2247
+ 141
2248
+ 1069
2249
+ 6
2250
+ 7
2251
+ 142
2252
+ 1087
2253
+ 6
2254
+ 7
2255
+ 143
2256
+ 1091
2257
+ 6
2258
+ 8
2259
+ 144
2260
+ 1093
2261
+ 6
2262
+ 7
2263
+ 145
2264
+ 1097
2265
+ 6
2266
+ 8
2267
+ 146
2268
+ 1103
2269
+ 6
2270
+ 8
2271
+ 147
2272
+ 1109
2273
+ 6
2274
+ 8
2275
+ 148
2276
+ 1117
2277
+ 6
2278
+ 8
2279
+ 149
2280
+ 1123
2281
+ 6
2282
+ 8
2283
+ 150
2284
+ 1201
2285
+ 6
2286
+ 9
2287
+ 151
2288
+ 1213
2289
+ 6
2290
+ 8
2291
+ 152
2292
+ 1223
2293
+ 6
2294
+ 9
2295
+ 21
2296
+
2297
+ Sr.No.
2298
+ p
2299
+ k
2300
+ m
2301
+ 153
2302
+ 1231
2303
+ 6
2304
+ 8
2305
+ 154
2306
+ 1277
2307
+ 6
2308
+ 9
2309
+ 155
2310
+ 1279
2311
+ 6
2312
+ 8
2313
+ 156
2314
+ 1283
2315
+ 6
2316
+ 9
2317
+ 157
2318
+ 1289
2319
+ 6
2320
+ 9
2321
+ 158
2322
+ 1291
2323
+ 6
2324
+ 9
2325
+ 159
2326
+ 1303
2327
+ 6
2328
+ 8
2329
+ 160
2330
+ 1319
2331
+ 6
2332
+ 8
2333
+ 161
2334
+ 1321
2335
+ 6
2336
+ 8
2337
+ 162
2338
+ 191
2339
+ 6
2340
+ 7
2341
+ 163
2342
+ 911
2343
+ 30
2344
+ 9
2345
+ 164
2346
+ 659
2347
+ 30
2348
+ 8
2349
+ 165
2350
+ 1301
2351
+ 30
2352
+ 10
2353
+ Sr.No.
2354
+ p
2355
+ k
2356
+ m
2357
+ 166
2358
+ 281
2359
+ 30
2360
+ 6
2361
+ 167
2362
+ 410
2363
+ 30
2364
+ 6
2365
+ 168
2366
+ 421
2367
+ 30
2368
+ 8
2369
+ 169
2370
+ 937
2371
+ 30
2372
+ 7
2373
+ 170
2374
+ 1331
2375
+ 30
2376
+ 9
2377
+ 171
2378
+ 307
2379
+ 30
2380
+ 7
2381
+ 172
2382
+ 1217
2383
+ 30
2384
+ 7
2385
+ 173
2386
+ 967
2387
+ 30
2388
+ 8
2389
+ 174
2390
+ 461
2391
+ 30
2392
+ 7
2393
+ 175
2394
+ 463
2395
+ 30
2396
+ 7
2397
+ 176
2398
+ 853
2399
+ 30
2400
+ 9
2401
+ 177
2402
+ 727
2403
+ 30
2404
+ 7
2405
+ 178
2406
+ 729
2407
+ 30
2408
+ 9
2409
+ for t=9:
2410
+ Sr.No.
2411
+ p
2412
+ k
2413
+ m
2414
+ 1
2415
+ 8
2416
+ 7
2417
+ 2
2418
+ 2
2419
+ 32
2420
+ 7
2421
+ 5
2422
+ 3
2423
+ 27
2424
+ 2
2425
+ 5
2426
+ 4
2427
+ 81
2428
+ 14
2429
+ 7
2430
+ 5
2431
+ 25
2432
+ 6
2433
+ 5
2434
+ 6
2435
+ 125
2436
+ 2
2437
+ 7
2438
+ 7
2439
+ 49
2440
+ 6
2441
+ 5
2442
+ 8
2443
+ 121
2444
+ 6
2445
+ 6
2446
+ 9
2447
+ 13
2448
+ 6
2449
+ 2
2450
+ Sr.No.
2451
+ p
2452
+ k
2453
+ m
2454
+ 10
2455
+ 169
2456
+ 6
2457
+ 7
2458
+ 11
2459
+ 17
2460
+ 2
2461
+ 3
2462
+ 12
2463
+ 19
2464
+ 6
2465
+ 3
2466
+ 13
2467
+ 23
2468
+ 2
2469
+ 5
2470
+ 14
2471
+ 29
2472
+ 2
2473
+ 5
2474
+ 15
2475
+ 31
2476
+ 6
2477
+ 4
2478
+ 16
2479
+ 37
2480
+ 6
2481
+ 5
2482
+ 17
2483
+ 43
2484
+ 6
2485
+ 6
2486
+ 18
2487
+ 47
2488
+ 2
2489
+ 5
2490
+ Sr.No.
2491
+ p
2492
+ k
2493
+ m
2494
+ 19
2495
+ 53
2496
+ 2
2497
+ 7
2498
+ 20
2499
+ 61
2500
+ 6
2501
+ 5
2502
+ 21
2503
+ 79
2504
+ 6
2505
+ 5
2506
+ 22
2507
+ 83
2508
+ 2
2509
+ 6
2510
+ 23
2511
+ 137
2512
+ 2
2513
+ 7
2514
+ 24
2515
+ 139
2516
+ 6
2517
+ 6
2518
+ 25
2519
+ 149
2520
+ 2
2521
+ 7
2522
+ 26
2523
+ 157
2524
+ 6
2525
+ 6
2526
+ 27
2527
+ 211
2528
+ 6
2529
+ 7
2530
+ for t=10:
2531
+ Sr.No.
2532
+ p
2533
+ k
2534
+ m
2535
+ 1
2536
+ 8
2537
+ 3
2538
+ 5
2539
+ 2
2540
+ 16
2541
+ 3
2542
+ 6
2543
+ 3
2544
+ 32
2545
+ 3
2546
+ 6
2547
+ 4
2548
+ 64
2549
+ 6
2550
+ 9
2551
+ 5
2552
+ 9
2553
+ 2
2554
+ 4
2555
+ 6
2556
+ 27
2557
+ 2
2558
+ 7
2559
+ 7
2560
+ 25
2561
+ 6
2562
+ 6
2563
+ Sr.No.
2564
+ p
2565
+ k
2566
+ m
2567
+ 8
2568
+ 49
2569
+ 6
2570
+ 6
2571
+ 9
2572
+ 11
2573
+ 6
2574
+ 3
2575
+ 10
2576
+ 13
2577
+ 6
2578
+ 4
2579
+ 11
2580
+ 17
2581
+ 6
2582
+ 4
2583
+ 12
2584
+ 19
2585
+ 6
2586
+ 5
2587
+ 13
2588
+ 23
2589
+ 6
2590
+ 5
2591
+ 14
2592
+ 29
2593
+ 6
2594
+ 6
2595
+ Sr.No.
2596
+ p
2597
+ k
2598
+ m
2599
+ 15
2600
+ 31
2601
+ 6
2602
+ 5
2603
+ 16
2604
+ 37
2605
+ 6
2606
+ 5
2607
+ 17
2608
+ 41
2609
+ 6
2610
+ 6
2611
+ 18
2612
+ 53
2613
+ 6
2614
+ 6
2615
+ 19
2616
+ 59
2617
+ 6
2618
+ 7
2619
+ 20
2620
+ 61
2621
+ 6
2622
+ 6
2623
+ 21
2624
+ 67
2625
+ 6
2626
+ 6
2627
+ 22
2628
+
2629
+ for t=11:
2630
+ Sr.No.
2631
+ p
2632
+ k
2633
+ m
2634
+ 1
2635
+ 16
2636
+ 3
2637
+ 6
2638
+ 2
2639
+ 9
2640
+ 2
2641
+ 4
2642
+ 3
2643
+ 7
2644
+ 2
2645
+ 3
2646
+ 4
2647
+ 13
2648
+ 2
2649
+ 5
2650
+ for t=12:
2651
+ Sr.No.
2652
+ p
2653
+ k
2654
+ m
2655
+ 1
2656
+ 8
2657
+ 39
2658
+ 6
2659
+ 2
2660
+ 16
2661
+ 39
2662
+ 7
2663
+ 3
2664
+ 32
2665
+ 39
2666
+ 9
2667
+ 4
2668
+ 9
2669
+ 2
2670
+ 6
2671
+ 5
2672
+ 13
2673
+ 6
2674
+ 6
2675
+ Sr.No.
2676
+ p
2677
+ k
2678
+ m
2679
+ 6
2680
+ 17
2681
+ 6
2682
+ 6
2683
+ 7
2684
+ 19
2685
+ 6
2686
+ 6
2687
+ 8
2688
+ 29
2689
+ 6
2690
+ 9
2691
+ 9
2692
+ 27
2693
+ 30
2694
+ 6
2695
+ Sr.No.
2696
+ p
2697
+ k
2698
+ m
2699
+ 10
2700
+ 11
2701
+ 30
2702
+ 6
2703
+ 11
2704
+ 23
2705
+ 30
2706
+ 7
2707
+ 12
2708
+ 31
2709
+ 30
2710
+ 6
2711
+ 13
2712
+ 37
2713
+ 30
2714
+ 8
2715
+ for t=14:
2716
+ Sr.No.
2717
+ p
2718
+ k
2719
+ m
2720
+ 1
2721
+ 4
2722
+ 15
2723
+ 4
2724
+ 2
2725
+ 5
2726
+ 6
2727
+ 3
2728
+ 3
2729
+ 7
2730
+ 6
2731
+ 4
2732
+ 4
2733
+ 3
2734
+ 2
2735
+ 2
2736
+ for t=15:
2737
+ Sr.No.
2738
+ p
2739
+ k
2740
+ m
2741
+ 1
2742
+ 4
2743
+ 3
2744
+ 5
2745
+ 2
2746
+ 3
2747
+ 2
2748
+ 3
2749
+ 3
2750
+ 9
2751
+ 2
2752
+ 7
2753
+ 4
2754
+ 5
2755
+ 2
2756
+ 5
2757
+ 5
2758
+ 16
2759
+ 15
2760
+ 9
2761
+ for t=16:
2762
+ Sr.No.
2763
+ p
2764
+ k
2765
+ m
2766
+ 1
2767
+ 4
2768
+ 3
2769
+ 4
2770
+ 2
2771
+ 8
2772
+ 3
2773
+ 8
2774
+ 3
2775
+ 3
2776
+ 2
2777
+ 4
2778
+ 4
2779
+ 5
2780
+ 2
2781
+ 5
2782
+ 23
2783
+
2784
+ for t=18:
2785
+ Sr.No.
2786
+ p
2787
+ k
2788
+ m
2789
+ 1
2790
+ 3
2791
+ 2
2792
+ 5
2793
+ 2
2794
+ 4
2795
+ 15
2796
+ 6
2797
+ 3
2798
+ 5
2799
+ 6
2800
+ 5
2801
+ for t=20:
2802
+ Sr.No.
2803
+ p
2804
+ k
2805
+ m
2806
+ 1
2807
+ 4
2808
+ 3
2809
+ 6
2810
+ 2
2811
+ 8
2812
+ 15
2813
+ 9
2814
+ for t=22:
2815
+ Sr.No.
2816
+ p
2817
+ k
2818
+ m
2819
+ 1
2820
+ 2
2821
+ 15
2822
+ 2
2823
+ for t=24:
2824
+ Sr.No.
2825
+ p
2826
+ k
2827
+ m
2828
+ 1
2829
+ 4
2830
+ 3
2831
+ 8
2832
+ 2
2833
+ 3
2834
+ 2
2835
+ 6
2836
+ for t=28:
2837
+ Sr.No.
2838
+ p
2839
+ k
2840
+ m
2841
+ 1
2842
+ 2
2843
+ 15
2844
+ 4
2845
+ for t=30:
2846
+ Sr.No.
2847
+ p
2848
+ k
2849
+ m
2850
+ 1
2851
+ 2
2852
+ 3
2853
+ 5
2854
+ for t=36:
2855
+ Sr.No.
2856
+ p
2857
+ k
2858
+ m
2859
+ 1
2860
+ 2
2861
+ 15
2862
+ 6
2863
+ 24
2864
+
2dE0T4oBgHgl3EQfdwCH/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:004fce20406aba5b376b329d902ff04d0c9ebc58f4a2b67de88e2c688e77d85d
3
+ size 188953
69FKT4oBgHgl3EQfUC2Z/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9dfd31a1fc16fb18d2cedf680dd5d073fb2cb201851a705837094e346df39e5
3
+ size 1245229
69FKT4oBgHgl3EQfUC2Z/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d0577ae443c8bf686a1c68847719741af4d680cc8d092122ef4aa830aa6b247
3
+ size 52909
6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc02ae15b0d3a0876590e04c9ff94b42212ad66c9501d5f1b1bc315a446523f3
3
+ size 138261
6NE2T4oBgHgl3EQfOwb7/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b1d2323cd710ec7ee6f41e50b605d2d56ec1dd4c3901bcc007beb22dfd31f95
3
+ size 720941
6NE2T4oBgHgl3EQfOwb7/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1bc09a121ce101ac3af7ccd2183505adf37710703745910bc39e5d7d27f9dcd
3
+ size 33600
7dAzT4oBgHgl3EQfEvrf/content/2301.01000v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d877f259a305604d6061bf18a96181ac094811b5a0f08b0bb33e9d2c96a0669
3
+ size 1415364
7dAzT4oBgHgl3EQfEvrf/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe01bc725aa9cd332f919bf4a2a415fc1455931078178b9b162b883fe10a9411
3
+ size 7012397
7dFAT4oBgHgl3EQfoR1F/content/tmp_files/2301.08633v1.pdf.txt ADDED
@@ -0,0 +1,1550 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ 1
3
+ Giant resonant enhancement for photo-induced
4
+ superconductivity in K3C60
5
+
6
+ E. Rowe1,*, B. Yuan1, M. Buzzi1, G. Jotzu1, Y. Zhu1, M. Fechner1, M. Först1, B. Liu1,2
7
+ D. Pontiroli3, M. Riccò3, A. Cavalleri1,4,*
8
+
9
+ 1 Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
10
+ 2 Paul Scherrer Institute, Villigen, Switzerland
11
+ 3 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Italy
12
+ 4 Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom
13
14
+
15
+ Photo-excitation at terahertz and mid-infrared frequencies has emerged as a new
16
+ way to manipulate functionalities in quantum materials, in some cases creating
17
+ non-equilibrium phases that have no equilibrium analogue. In K3C60, a metastable
18
+ zero-resistance phase was documented with optical properties and pressure de-
19
+ pendences compatible with non-equilibrium high temperature superconductivity.
20
+ Here, we report the discovery of a dominant energy scale for this phenomenon,
21
+ along with the demonstration of a giant increase in photo-susceptibility near
22
+ 10 THz excitation frequency. At these drive frequencies a metastable supercon-
23
+ ducting-like phase is observed up to room temperature for fluences as low as
24
+ ~400 µJ/cm2. These findings shed light on the microscopic mechanism underlying
25
+ photo-induced superconductivity. They also trace a path towards steady state op-
26
+ eration, currently limited by the availability of a suitable high-repetition rate opti-
27
+ cal source at these frequencies.
28
+
29
+
30
+
31
+
32
+ 2
33
+ The search for new non-equilibrium functional phases in quantum materials, such as op-
34
+ tically induced ferroelectricity1,2, magnetism3-5, charge density wave order6,7, non-trivial
35
+ topology8,9 and superconductivity10-18, has become a central research theme in condensed
36
+ matter physics. In the case of K3C60 (Fig. 1a), mid infrared optical pulses have been exten-
37
+ sively documented to yield an unconventional non-equilibrium phase which exhibits met-
38
+ astable zero-resistance14, an extraordinarily high mobility and a superconducting-like gap
39
+ in the optical conductivity12,14 that reduce with applied pressure13, and nonlinear I-V char-
40
+ acteristics19. All these observations are indicative of non-equilibrium high temperature
41
+ superconductivity, observed at base temperatures far exceeding the highest equilibrium
42
+ superconducting critical temperature of any alkali-doped fulleride (Fig. 1b).
43
+ Typical experimental results reported to date are displayed in Fig. 2c. K3C60 powders were
44
+ held at a base temperature T = 100 K ≫ T! = 20 K and irradiated with 1 ps-long pulses
45
+ with 170 meV photon energy (l ~ 7.3 µm, ) ~ 41 THz) at a fluence of 18 mJ/cm². This
46
+ strong excitation regime yielded a long-lived transient state with dramatic changes in
47
+ both the real and imaginary parts of the optical conductivity, measured using phase
48
+
49
+ Figure 1. Crystal structure and phase diagram K3C60. (a) Crystal structure of the organic molec-
50
+ ular solid K3C60. C60 molecules are situated at the vertices of a face-centered-cubic lattice. Potassium
51
+ atoms (red) occupy the interstitial voids. (b) Pressure-temperature phase diagram of the fcc-A3C60
52
+ alkali-doped fulleride family of compounds. Physical pressure tunes the spacing between the C60
53
+ molecules. The grey line indicates the boundary between the insulating and metallic/superconduct-
54
+ ing compounds. The blue shaded area indicates where superconductivity is observed at equilibrium.
55
+ The star indicates the K3C60 compound investigated in this work, which superconducts at tempera-
56
+ tures ! ≤ !! = 20K.
57
+
58
+ Insulator
59
+ Superconductor
60
+ 3
61
+ sensitive terahertz time-domain spectroscopy. The transient optical properties displayed
62
+ in Fig. 2c are reminiscent of those of the equilibrium superconducting state measured in
63
+ the same material at T ≪ T! = 20 K (cf. Fig. 2b), and are suggestive of transient high
64
+ temperature superconductivity. These signatures consist of a saturated reflectivity, a gap
65
+ in the real part of the optical conductivity +"(-), and an imaginary conductivity +#(-)
66
+ which diverges towards low frequencies as ~1/-. The divergent +#(-) implies (through
67
+ Kramers-Kronig relations) the presence of a peak in +" centred at zero frequency, with a
68
+ width limited by the lifetime of the state which also determines the carrier mobility.
69
+ These data were obtained by accounting for the inhomogeneous excitation of the probed
70
+ volume using a multilayer model. Here we show the results of this reconstruction under
71
+ the assumption of a linear (open symbols) and sublinear (filled symbols)20 dependence of
72
+ the photo-induced changes in the terahertz refractive index on the mid-infrared pump
73
+ fluence, as detailed in supplementary section S6. Allowing for a finite temperature super-
74
+ conductor, in which a varying density of uncondensed quasi-particles also contributes to
75
+ the terahertz response, the superconducting-like nature of the transient state is inde-
76
+ pendent of the specific choice of assumption. Only quantitative differences, associated
77
+ with the relative densities of induced superfluid and heated quasi-particles, which can be
78
+ extracted by fitting with a two-fluid model, emerge.
79
+ Note that the enhancement of conductivity observed in these experiments is not con-
80
+ nected to an increase in the carrier density, but is solely caused by a transfer of spectral
81
+ weight from the real part (resistive) to the imaginary part (inductive) of the conductivity,
82
+ and hence reflects a colossal increase in the carrier mobility at constant density.
83
+ Three spectrally-integrated figures of merit are extracted from the snapshots of R(-, 2),
84
+ +"(-, 2) and +#(-, 2), and plotted as a function of pump-probe time delay 2 in Fig. 2e,
85
+ showing the time evolution of the system.
86
+
87
+
88
+ 4
89
+
90
+ Figure 2: Photo-induced metastable superconductivity in K3C60 generated with intense 170
91
+ meV excitation pulses. (a) Schematic of the experimental set-up. Pump pulses with 170 meV pho-
92
+ ton energy were generated in an optical parametric amplifier (OPA) and subsequent difference fre-
93
+ quency generation (DFG) of the signal and idler beams. These pulses were stretched to a duration
94
+ of ~1 ps by linear propagation in a highly dispersive CaF2 rod. The photoinduced changes in the far-
95
+ infrared optical properties of K3C60 were detected with phase-sensitive transient THz time-domain
96
+ spectroscopy. (b) Reflectivity (sample–diamond interface), real and imaginary part of the optical
97
+ conductivity of K3C60 measured upon cooling across the equilibrium superconducting transition.
98
+ The blue shading indicates the change of spectral weight in these quantities across the thermally
99
+ driven superconducting transition. (c) Same quantities measured at equilibrium (red lines) and
100
+ 10 ps after excitation (filled and open symbols). The data in filled (open) symbols are obtained ac-
101
+ counting for the inhomogeneous excitation of the probed volume under the assumption of a square
102
+ root (linear) fluence dependence of the photo-induced changes in the complex refractive index of
103
+ the material (Supplementary Section S6). The blue shading indicates the change of spectral weight
104
+ in these quantities after photo-excitation. The blue solid lines are fits to the transient optical data
105
+ with a Drude-Lorentz model (Supplementary Section S7). These data were acquired at a base tem-
106
+ perature T = 100 K with an excitation fluence of 18 mJ cm-2. (d) Same quantities as in (c) but meas-
107
+ ured at a base temperature T = 295 K with an excitation fluence of 18 mJ cm-2. (e) Time dependence
108
+ of the average reflectivity, average real part of the optical conductivity &"((), and light-induced “su-
109
+ perfluid density” extracted from a two-fluid model fit and expressed as a fraction of the total charge
110
+ carrier density. All quantities are evaluated in the region of the photo-induced gap (5–10 meV).
111
+ Filled and open symbols indicate the results of two different reconstructions as in (c). The red dotted
112
+ lines indicate the value of the corresponding quantity at equilibrium. These data were acquired at a
113
+ base temperature T = 100 K with a fluence of 18 mJ cm−2 and a pump-pulse duration of ~1 ps.
114
+
115
+ a
116
+ 3-Stage OPA
117
+ WLG
118
+ DFG
119
+ Ti:SaOscillator
120
+ Ti:SaAmplifierx2
121
+ THz gen.
122
+ b
123
+ d
124
+ e
125
+ 1.0
126
+ Reflectivity*
127
+ Reflectivity
128
+ 1.0
129
+ 0.5
130
+ 0.5
131
+ 25K > Tc
132
+ Equilibrium
133
+ Equilibrium
134
+ 18 mJ cm-2
135
+ 5K< Tc
136
+ Photoexcited
137
+ Photoexcited
138
+ 0.0
139
+ 0.0
140
+ 900
141
+ Equil.
142
+ T = 100 K
143
+ T = 295 K
144
+ T= i0 ps
145
+ = iops
146
+ cm
147
+ 0%
148
+ Gapping
149
+ cm
150
+ 600
151
+ 150
152
+ 300
153
+ *
154
+ 6
155
+ 6
156
+ 100%
157
+ 0
158
+ 900
159
+ 1.0
160
+ cm
161
+ 600
162
+ 0.5
163
+ 300
164
+ (S
165
+ 02
166
+ 102040
167
+ 102040
168
+ 04
169
+ 102040
170
+ C
171
+ 0 5 10
172
+ 50
173
+ 100
174
+ Energy (meV) Energy (meV) Energy (meV)
175
+ Time (ps)
176
+ 5
177
+ The first two quantities are the frequency-averaged values of the reflectivity and of +"(-)
178
+ below the energy gap, for which a zero-temperature superconductor with infinite lifetime
179
+ would give values of 1 and 0 respectively. The third figure of merit is the fractional super-
180
+ fluid density which is proportional
181
+ to the divergence of +#(-). This is determined by fitting the photoexcited optical proper-
182
+ ties with a two-fluid model where one fluid represents the remaining normal carriers with
183
+ a finite scattering rate and the other has zero scattering rate, giving a superconducting-
184
+ like contribution. Details of this fitting procedure are given in supplementary section S7.
185
+ For low excitation fluences the system becomes superconducting-like after photoexcita-
186
+ tion, and relaxes on a time scale of a few picoseconds. As already seen in the spectrally
187
+ resolved measurements, for high excitation fluences the system enters a metastable re-
188
+ gime in which the superconducting-like optical properties persist for much longer times,
189
+ up to several nanoseconds.
190
+ We note that the temperature dependence reported in Ref. 12 shows transient supercon-
191
+ ducting-like optical properties up to a temperature of 150-200 K. For higher tempera-
192
+ tures the gapping and extracted superfluid density are severely reduced. Examples of such
193
+ spectra measured at room temperature are shown in Fig. 2d. Nevertheless, the pressure
194
+ scaling reported in Ref. 13 suggests that traces of non-equilibrium superconductivity may
195
+ survive up to higher temperatures, raising the prospect that with more effective driving a
196
+ full manifestation of the metastable superconducting-like state may be possible at 300 K.
197
+ To date, these experiments have been limited to excitation photon energies between 80
198
+ and 165 meV (20-40 THz), such that a more comprehensive search for a dominant excita-
199
+ tion frequency scale has remained out of reach. Many potentially important resonances at
200
+ lower frequencies (ℎ4 < 80 meV) have remained unexplored, primarily due to the lack of
201
+ a suitable high-intensity pump source that operates in this range. In the present work, we
202
+ explore excitation at energies between 24 and 80 meV (6-20 THz).
203
+
204
+
205
+ 6
206
+
207
+ Figure 3: Photo-induced metastable superconductivity in K3C60 generated with 41 meV exci-
208
+ tation pulses. (a) Schematic of the experimental set-up. Pump pulses with 41 meV (10 THz) photon
209
+ energy are generated in a twin optical parametric amplifier (OPA) and subsequent chirped-pulse
210
+ difference frequency generation (DFG) of the two stretched signal beams. The photoinduced
211
+ changes in the far-infrared optical properties of K3C60 are detected with phase-sensitive transient
212
+ THz time-domain spectroscopy. (b) Reflectivity (sample–diamond interface), real and imaginary
213
+ part of the optical conductivity of K3C60 measured at equilibrium (red lines) and 50 ps after excita-
214
+ tion (filled and open symbols). The data in filled (open) symbols are obtained accounting for the
215
+ inhomogeneous excitation of the probed volume under the assumption of a square root (linear) flu-
216
+ ence dependence of the photo-induced changes in the complex refractive index of the material. The
217
+ blue shading indicates the change of spectral weight in these quantities after photo-excitation. These
218
+ data were acquired at a base temperature T = 100 K with pump pulses tuned to 41 meV (10 THz)
219
+ center frequency and excitation fluence of 0.4 mJ cm-2. (c) Same quantities as in (b) but measured
220
+ 10 ps after photoexcitation at a base temperature T = 295 K. (d) Same quantities as in (c) but meas-
221
+ ured 50 ps after photoexcitation. (e) Time dependence of the average reflectivity, average real part
222
+ of the optical conductivity &"((), and light-induced “superfluid density” extracted from a two-fluid
223
+ model fit and expressed as a fraction of the total charge carrier density. All quantities are evaluated
224
+ in the region of the photo-induced gap (5–10 meV). Filled and open symbols indicate the results of
225
+ two different reconstruction as in (b). The inset in the top panel highlights the early time delays
226
+ region where light amplification (* > 1) is observed (red shading). The red dotted lines indicate the
227
+ value of the corresponding quantity at equilibrium. These data were acquired at a base temperature
228
+ T = 100 K with pump pulses tuned to 45 meV (11 THz) photon energy and excitation fluence of
229
+ 0.5 mJ cm-2
230
+
231
+ a
232
+ 2x3-stageOPAs
233
+ Pulsestretchers
234
+ WLG
235
+ DFG
236
+ THz gen.
237
+ Ti:SaAmplifier
238
+ b
239
+ e
240
+ Reflectivity
241
+ Reflectivity*
242
+ .0
243
+ 0.5
244
+ 0.5
245
+ Equilibrium
246
+ Equilibrium
247
+ Equilibrium
248
+ Photoexcited
249
+ Photoexcited
250
+ Photoexcited
251
+ 0.0
252
+ 0.0
253
+ 900
254
+ T=100K
255
+ T= 295K
256
+ T= 295K
257
+ 0%
258
+ cm
259
+ T = 50 ps
260
+ T = 10 ps
261
+ T = 50 ps
262
+ 600
263
+ cm
264
+ Gapping
265
+ 150
266
+ 0.5 mJ cm-2
267
+ 300
268
+ *
269
+ 100%
270
+ 0
271
+ 6
272
+ 900
273
+ 1.0
274
+ 600
275
+ ntot
276
+ 0.5
277
+ nsf
278
+ 300
279
+ 6
280
+ 0
281
+ 4
282
+ 102040
283
+ 4102040
284
+ 41020
285
+ 0 5 10
286
+ 50
287
+ 100
288
+ Energy (meV)
289
+ Energy (meV)
290
+ E
291
+ Energy (meV)
292
+ Time (ps)
293
+ 7
294
+ This energy range hosts a number of excitations, both vibrational (phonons) and elec-
295
+ tronic in nature, including a broad polaronic peak seen in +" centered at approximately
296
+ 60 meV (15 THz). The possible relevance of this excitation has been highlighted in Ref. 21,
297
+ although this prediction could not be tested to date.
298
+ To achieve wide tuneability, we made use of a terahertz source based on chirped pulse
299
+ difference frequency generation, mixing the near-infrared signal beams of two phase-
300
+ locked optical parametric amplifiers22. This source, illustrated schematically in Fig. 3a and
301
+ described in detail in supplementary section S4, was used to generate narrow-bandwidth
302
+ pulses with photon energies spanning the range from 24 to 145 meV (6-35 THz). All meas-
303
+ urements reported here were carried out with an excitation bandwidth of ~4 meV
304
+ (1 THz) and ~600 fs pulse duration. The same probing protocol as that reported in Fig. 2
305
+ was utilized here to detect changes in the complex optical properties for probe energies
306
+ spanning 4-18 meV (1-4.5 THz).
307
+ Figures 3b-d show reflectivity and complex conductivity spectra measured after photoex-
308
+ citation with pulses tuned to 41 meV photon energy (l ~ 30 µm, ) ~ 10 THz) at base tem-
309
+ peratures of 100 K and room temperature, respectively. Figure 3e displays the time-evo-
310
+ lution of the optical properties. The response is very similar to the case reported in Fig. 2
311
+ for 170 meV (41 THz) excitation, manifested on metastable timescales but persisting here
312
+ up to room temperature – despite an almost two orders of magnitude weaker excitation
313
+ fluence.
314
+ Figure 4a shows the scaling with fluence of the below-gap averaged values of 8(-) and
315
+ +"(-), as well as the fractional superfluid density in response to photoexcitation at
316
+ 170 meV (41 THz) and 41 meV (10 THz). These measurements were carried out at a
317
+ pump-probe time delay of 10 ps, and thus refer to the metastable phase. The figure shows
318
+ how all figures of merit approach their equilibrium superconducting-state values as the
319
+
320
+
321
+ 8
322
+ fluence increases, with the fluence required being approximately 50 times less for 41 meV
323
+ (10 THz) compared to 170 meV (41 THz) excitation.
324
+ Similar fluence dependence measurements were carried out by varying the photon en-
325
+ ergy of the pump and maintaining a constant 4 meV (1 THz) bandwidth with 600 fs pulse
326
+ duration. For all excitation photon energies between 24 meV (6 THz) and 145 meV
327
+ (35 THz) the photoinduced changes in the optical properties were qualitatively similar to
328
+ those shown in Figs. 2, 3 with only the size of the response for a given fluence differing.
329
+ From each fluence dependence we extracted a figure of merit for the photo-susceptibility,
330
+
331
+ Figure 4: Scaling of the out-of-equilibrium features of photo-induced metastable supercon-
332
+ ductivity in K3C60. (a) Fluence dependence of the average reflectivity, average real part of the op-
333
+ tical conductivity &"((), and light-induced “superfluid density” extracted from a two-fluid model fit
334
+ and expressed as a fraction of the total charge carrier density. All quantities are evaluated in the
335
+ region of the photo-induced gap (5–10 meV). Red and blue symbols indicate measurements with
336
+ excitation pulses tuned to 41 meV (10 THz) and 170 meV (41 THz) central frequency. The red dotted
337
+ lines indicate the value of the corresponding quantity at equilibrium. These data were acquired at a
338
+ base temperature T = 100 K, at a time-delay ∆t = 10ps, and with a pump pulse duration of ~600 fs.
339
+ (b) Frequency dependence of the photo-susceptibility of K3C60 defined as the gradient of the lost
340
+ spectral weight in &" in the low-fluence limit (Supplementary Section S8) measured 10 ps and 50 ps
341
+ after photo-excitation. These measurements were carried out at a base temperature T = 100 K.
342
+ These data are obtained by accounting for the inhomogeneous excitation of the probed volume un-
343
+ der the assumption of a square root fluence dependence of the photo-induced changes in the com-
344
+ plex refractive index of the material.
345
+
346
+ 41 me
347
+ 170 meV
348
+ 9
349
+ defined as the rate of growth of the +" gap with excitation fluence in the limit of low flu-
350
+ ence (see supplementary section S8). Plots of the pump-frequency-dependent photo-sus-
351
+ ceptibility are shown in Fig. 4b for both 10 ps and 50 ps pump-probe time delay. A peak
352
+ centered at 41 meV (10 THz) with approximately 16 meV FWHM bandwidth is observed
353
+ in these measurements. In the next section we will discuss three distinct energy scales
354
+ which coincide with this resonance, sequentially these relate to “on-ball” orbital excita-
355
+ tions, phonons and finally excitons.
356
+ Superconductivity in alkali-doped fullerides is believed to be mediated by a dynamical
357
+ Jahn-Teller distortion, which leads to an effective negative Hund’s coupling for the orbit-
358
+ als of a single buckyball23 and to a low spin S=1/2 state. A theoretical model based on this
359
+ assumption has been successful at providing a quantitatively correct phase diagram for
360
+ fulleride superconductors, based on ab-initio calculations24,25. Within this model, the local
361
+ ground state of the system is a six-fold degenerate low-spin state, which features intra-
362
+ orbital pairs that de-localize over two molecular orbitals. As detailed in supplementary
363
+ section S10, a first set of local excited states also features such pairs, albeit with a different
364
+ angular momentum (i.e. a different inter-orbital phase for the delocalized pair). Ab-initio
365
+ calculations predict an energy splitting of 37 meV between these two sets of states24,25.
366
+ The observed resonance may therefore be related to the creation of interorbital pairs with
367
+ local angular momentum, which may also contribute to superconductivity, as suggested
368
+ in the Suhl-Kondo mechanism26,27. However, it is not yet clear how exactly this excitation
369
+ is transformed in the presence of tunneling between neighboring C60 molecules, and why
370
+ the creation of such pairs may support metastable superconductivity at such high tem-
371
+ peratures. Furthermore, as the local parity of this excited state would be different from
372
+ that of the ground state, condensation in this configuration may give rise to a supercon-
373
+ ductor with different symmetry. This possibility, whilst tantalizing, remains speculative
374
+ and should be tested with more comprehensive ultrafast probing methods.
375
+
376
+
377
+ 10
378
+ Turning to phonon excitations, we also note that the 41 meV resonance frequency identi-
379
+ fied here coincides with an infrared-active T1u phonon which predominantly consists of
380
+ intramolecular motion of the C atoms. While the atomic motions of the 170 meV molecular
381
+ mode discussed previously in Ref. 12 are directed along the tangential directions of the
382
+ C603- molecule, those of the 41 meV mode are predominantly along the radial directions
383
+ (see supplementary section S9). By performing frozen phonon calculations using density
384
+ functional theory (DFT) we evaluated the different impact of these distortions on the
385
+ three t1u molecular levels at the Fermi energy, which we map out from DFT wave functions
386
+ as maximally-localized Wannier functions (supplementary section S9). In the undistorted
387
+ C603- structure these molecular levels are degenerate. Applying a distortion along a T1u
388
+ coordinate lifts this degeneracy leaving a doubly degenerate t1u orbital lowered in energy.
389
+ This electronic configuration is prone to developing a Jahn-Teller distortion that may lead
390
+ to an enhanced negative Hund’s coupling, possibly facilitating the onset of superconduc-
391
+ tivity at higher temperatures.
392
+ The strength of the induced splitting is quadratic in the phonon coordinate and is more
393
+ significant for when driving the 41 meV mode compared to the 170 meV one, suggesting
394
+ that the observed resonance may arise from a more efficient manipulation of the elec-
395
+ tronic degrees of freedom when driving the 41 meV T1u mode.
396
+ Finally, we address the electronic excitations discussed in Ref. 21, in which the existence
397
+ of a polaronic mode was predicted at the same energy scales as the resonance reported
398
+ here. However, we also note that the proposed mechanism for the formation of the non-
399
+ equilibrium superconducting-like state was one in which the quasi-particles are cooled
400
+ incoherently via coupling to the polaronic bath. As already reported in Ref. 28 and shown
401
+ here in the inset to Fig. 3e, the response of the sample in the first few picoseconds after
402
+ photoexcitation yields amplification of the terahertz probe light, which is likely to reflect
403
+ coherent dynamics of the driven degrees of freedom. Assuming that the mechanism
404
+
405
+
406
+ 11
407
+ proposed in Ref. 21 were to be valid, the early-time dynamics of that model would require
408
+ further investigation to understand how such coherences would arise at early times. The
409
+ amplification observed here and in Ref. 28 has so far been attributed to the existence of a
410
+ parametric resonance that couples amplitude (Higgs) modes to phase (Goldstone) modes,
411
+ an effect possible at the sample surface because of reduced screening.
412
+ We expect the significance of this discovery to be capitalized upon in future work. The
413
+ extreme efficiency improvement due to resonant enhancement, nearing two orders of
414
+ magnitude, is expected to also dramatically reduce unwanted dissipation. This, taken in
415
+ conjunction with the observed nanosecond-long lifetime suggests that excitation of the
416
+ sample with a train of pulses of only 400 µJ/cm2 delivered at 100 MHz repetition rate – as
417
+ determined by the inverse lifetime of this state - may yield continuous wave operation.
418
+ Because this effect is documented here to persist up to room temperature, continuous
419
+ wave operation would likely have important practical implications. To make this regime
420
+ experimentally accessible, single order-of-magnitude improvements in the efficiency of
421
+ the process, or in the light matter coupling strength, combined with suitable develop-
422
+ ments in high repetition rate THz sources would be required.
423
+
424
+ Acknowledgments
425
+ The research leading to these results received funding from the European Research Council under
426
+ the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement
427
+ No. 319286 (QMAC). We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG)
428
+ via the Cluster of Excellence ‘The Hamburg Centre for Ultrafast Imaging’ (EXC 1074 – project ID
429
+ 194651731). We thank Michael Volkmann and Peter Licht for their technical assistance. We are
430
+ also grateful to Boris Fiedler and Birger Höhling for their support in the fabrication of the elec-
431
+ tronic devices used on the measurement setup, and to Jörg Harms for assistance with graphics.
432
+
433
+
434
+
435
+
436
+ 12
437
+ References
438
+ 1
439
+ Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically
440
+ strained SrTiO3. Science 364, 1075-1079, (2019).
441
+ 2
442
+ Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science
443
+ 364, 1079-1082, (2019).
444
+ 3
445
+ Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field.
446
+ Nature Physics 16, 937-941, (2020).
447
+ 4
448
+ Wang, X. et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468-473,
449
+ (2022).
450
+ 5
451
+ Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of
452
+ antiferromagnetically coupled spins. Nature 472, 205-208, (2011).
453
+ 6
454
+ Kogar, A. et al. Light-induced charge density wave in LaTe3. Nature Physics 16, 159-163,
455
+ (2020).
456
+ 7
457
+ Wandel, S. et al. Enhanced charge density wave coherence in a light-quenched, high-
458
+ temperature superconductor. Science 376, 860-864, (2022).
459
+ 8
460
+ Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch
461
+ States on the Surface of a Topological Insulator. Science 342, 453, (2013).
462
+ 9
463
+ McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nature Physics 16, 38-
464
+ 41, (2020).
465
+ 10
466
+ Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331,
467
+ 189-191, (2011).
468
+ 11
469
+ Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast
470
+ redistribution of interlayer coupling. Nature Materials 13, 705-711, (2014).
471
+ 12
472
+ Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature.
473
+ Nature 530, 461-464, (2016).
474
+ 13
475
+ Cantaluppi, A. et al. Pressure tuning of light-induced superconductivity in K3C60. Nature
476
+ Physics 14, 837-841, (2018).
477
+ 14
478
+ Budden, M. et al. Evidence for metastable photo-induced superconductivity in K3C60.
479
+ Nature Physics 17, 611-618, (2021).
480
+ 15
481
+ Buzzi, M. et al. Photo-molecular high temperature superconductivity. Physical Review X 10,
482
+ 031028, (2020).
483
+ 16
484
+ Buzzi, M. et al. Phase Diagram for Light-Induced Superconductivity in κ-(ET)2-X. Physical
485
+ Review Letters 127, 197002, (2021).
486
+ 17
487
+ Cremin, K. A. et al. Photoenhanced metastable c-axis electrodynamics in stripe-ordered
488
+ cuprate La1.885Ba0.115CuO4. Proceedings of the National Academy of Sciences 116, 19875,
489
+ (2019).
490
+ 18
491
+ Isoyama, K. et al. Light-induced enhancement of superconductivity in iron-based
492
+ superconductor FeSe0.5Te0.5. Communications Physics 4, 160, (2021).
493
+
494
+
495
+ 13
496
+ 19
497
+ Wang, E. et al. Nonlinear transport in a photo-induced superconductor. arXiv:2301.06425,
498
+ (2023).
499
+ 20
500
+ Dodge, J. S., Lopez, L. & Sahota, D. G. Photoinduced Superconductivity Reconsidered: The
501
+ Role of Photoconductivity Profile Distortion. arXiv:2210.01114, (2022).
502
+ 21
503
+ Nava, A., Giannetti, C., Georges, A., Tosatti, E. & Fabrizio, M. Cooling quasiparticles in A3C60
504
+ fullerides by excitonic mid-infrared absorption. Nature Physics 14, 154-159, (2018).
505
+ 22
506
+ Liu, B. et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable
507
+ pulses tunable between 4 and 18 THz. Opt. Lett. 42, 129-131, (2017).
508
+ 23
509
+ Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Strongly Correlated Superconductivity.
510
+ Science 296, 2364-2366, (2002).
511
+ 24
512
+ Nomura, Y., Sakai, S., Capone, M. & Arita, R. Unified understanding of superconductivity
513
+ and Mott transition in alkali-doped fullerides from first principles. Science Advances 1,
514
+ e1500568, (2015).
515
+ 25
516
+ Nomura, Y., Sakai, S., Capone, M. & Arita, R. Exotics-wave superconductivity in alkali-doped
517
+ fullerides. Journal of Physics: Condensed Matter 28, 153001, (2016).
518
+ 26
519
+ Suhl, H. Dispersion Theory of the Kondo Effect. Physical Review 138, A515-A523, (1965).
520
+ 27
521
+ Kondo, J. Resistance Minimum in Dilute Magnetic Alloys. Progress of Theoretical Physics
522
+ 32, 37-49, (1964).
523
+ 28
524
+ Buzzi, M. et al. Higgs-Mediated Optical Amplification in a Nonequilibrium Superconductor.
525
+ Physical Review X 11, 011055, (2021).
526
+
527
+
528
+
529
+
530
+ 14
531
+ Giant resonant enhancement for photo-induced
532
+ superconductivity in K3C60
533
+ E. Rowe1,*, B. Yuan1, M. Buzzi1, G. Jotzu1, Y. Zhu1, M. Fechner1, M. Först1, B. Liu1,2
534
+ D. Pontiroli3, M. Riccò3, A. Cavalleri1,4,*
535
+
536
+ 1 Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
537
+ 2 Paul Scherrer Institute, Villigen, Switzerland
538
+ 3 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Italy
539
+ 4 Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom
540
541
+
542
+
543
+ Supplemental Material
544
+ S1. Sample growth and characterization
545
+ S2. Determination of the equilibrium optical properties
546
+ S3. High fluence mid-infrared source
547
+ S4. Frequency-tunable narrowband terahertz and mid-infrared source
548
+ S5. Measurements of the transient THz reflectivity
549
+ S6. Determination of the transient optical properties
550
+ S7. Fitting the transient optical spectra
551
+ S8. Extracting the frequency-dependent photosusceptibility
552
+ S9. Density functional theory calculations
553
+ S10. Local electronic hamiltonian calculations
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+ 15
562
+ S1. Sample growth and characterization
563
+
564
+ The K3C60 powder pellets used in this work were prepared and characterized as reported
565
+ previously1-3. Stoichiometric amounts of ground C60 powder and potassium were placed
566
+ in a sealed pyrex vial, which was evacuated to a pressure of 10-6 mbar. Whilst keeping the
567
+ C60 powder and solid potassium separated, the vial was kept at 523 K for 72 h and then
568
+ at 623 K for 28 h such that the C60 powder was exposed to pure potassium vapor. The vial
569
+ was then opened inside an Ar glovebox (<0.1 ppm O2 and H2O), where the powder was
570
+ reground and pelletized before annealing at 623K for 5 days. X-ray diffraction
571
+ measurements were then carried out on the resulting K3C60 powder, which confirmed
572
+ that it was phase pure, with an average grain size ranging between 100 and 400 nm. The
573
+ static superconducting transition temperature was measured to be 19.8 K (in agreement
574
+ with literature values) via magnetic susceptibility measurements upon zero field cooling
575
+ and cooling in field with a field strength of 400 A/m.
576
+
577
+
578
+
579
+ Figure S1.1: a. X-ray diffraction data and single f.c.c. phase Rietveld refinement for the K3C60
580
+ powder used in this work. b. Temperature dependence of the sample magnetic susceptibility
581
+ measured by SQUID magnetometry upon cooling without (ZFC: zero field cooling) and with a
582
+ magnetic field applied (FCC: field cooled cooling).
583
+
584
+
585
+
586
+ observed
587
+ (10emu/(g0e)
588
+ calculated
589
+ residual
590
+ reflections
591
+ 20
592
+ ZFC
593
+ FCC
594
+ 30
595
+ 40
596
+ 50
597
+ 10
598
+ 20
599
+ 30
600
+ 40
601
+ 50
602
+ 60
603
+ 5
604
+ 10
605
+ 15
606
+ 20
607
+ 2A
608
+ tdearees
609
+ Temperature
610
+
611
+ 16
612
+ S2. Determination of the equilibrium optical properties
613
+
614
+ The equilibrium reflectivity was measured for photon energies between 5 meV and 500
615
+ meV using a commercial Fourier-transform infrared spectrometer (FTIR) equipped with
616
+ a microscope at the SISSI beamline in the Elettra Synchrotron Facility (Trieste, Italy), as
617
+ reported previously1-3. The sample was pressed by a diamond window into a sealed
618
+ holder in order to obtain an optically flat interface and prevent exposure to air. This
619
+ procedure was carried out inside an Ar filled glove box (<0.1 ppm O2 and H2O) before the
620
+ sealed sample was removed and mounted on a He cooled cryostat to enable temperature
621
+ dependent measurements. The K3C60 reflectivity spectra were referenced against a gold
622
+ mirror placed at the sample position.
623
+ In order to extract the complex optical conductivity a Kramers-Kronig algorithm for
624
+ samples in contact with a transparent window4 was used. This requires data at all
625
+ frequencies, which were obtained, at low energies (<5 meV) using an extrapolation based
626
+ on a Drude-Lorentz fit, and at high energies (>500 meV) using data measured on single
627
+ crystal samples reported in Refs. 5,6.
628
+ The equilibrium properties are shown in figure S2.1 for temperatures of 100 K and 300
629
+ K. This and further data measured at different temperatures and pressures were already
630
+ reported in Refs. 1,2 and discussed also in comparison with data obtained from single
631
+ crystals.
632
+ These data were fitted with a Drude-Lorentz model, which is given by the following
633
+ equation:
634
+ 𝜎!(𝜔) + 𝑖𝜎"(𝜔) = 𝜔#"
635
+ 4𝜋
636
+ 1
637
+ 𝛾$ − 𝑖𝜔 + 𝜔#,&'(
638
+ "
639
+ 4𝜋
640
+ 𝜔
641
+ 𝑖.𝜔),&'(
642
+ "
643
+ − 𝜔"/ + 𝛾&'(𝜔
644
+ Here the first term represents the Drude response of the free carriers with 𝜔# and 𝛾$
645
+ representing the plasma frequency and scattering rate respectively, whereas the second
646
+ term captures the mid infrared absorption in the form of a Lorentz oscillator centered at
647
+ frequency 𝜔),&'( with plasma frequency 𝜔#,&'( and damping rate 𝛾&'(. The equilibrium
648
+ data reported here was used to normalize the transient optical spectra of K3C60 measured
649
+ upon photoexcitation, as discussed in detail in section S6.
650
+
651
+
652
+
653
+
654
+
655
+ 17
656
+ Figure S2.1: Equilibrium optical properties (reflectivity, real, and imaginary part of the optical
657
+ conductivity) of K3C60 measured at a temperature of 100 K (blue) and 300 K (green). The black
658
+ dashed curve is a Drude-Lorentz fit to the optical conductivity at 100 K in the range from 3 meV
659
+ to 60 meV as described in the text.
660
+
661
+ S3. High fluence mid-infrared source
662
+
663
+ For the data reported in figure 2 and in figure 4(a) at 170 meV (41 THz) excitation, the
664
+ pump pulses were generated via difference frequency mixing (DFG) of the signal and idler
665
+ output of a three-stage home-built optical parametric amplifier (OPA). A commercial
666
+ Ti:Al2O3 amplifier delivering 60 fs duration pulses at 800 nm central wavelength was used
667
+ to drive the OPA, and the DFG process was performed using a 0.5 mm thick GaSe crystal,
668
+ resulting in ~100 fs long pulses. The 170 meV pulses were then propagated through a
669
+ highly dispersive 16 mm long CaF2 rod, stretching their duration to ~1 ps. The spectrum
670
+ of the pump pulses was characterized using a home built FTIR spectrometer. Their
671
+ duration was measured by cross-correlation with a synchronized, 35 fs long, 800 nm
672
+ wavelength pulse in a 50 μm thick GaSe crystal. While a certain degree of tunability is also
673
+ given by this source, its useful operation range spans between 80 and 320 meV, hence it
674
+ was only used for the high-intensity experiments at 170 meV excitation.
675
+
676
+
677
+
678
+
679
+
680
+ 900
681
+ E
682
+ 900㎡
683
+ 1.0
684
+ 300 K
685
+ 100K
686
+ Reflectivity
687
+ T-
688
+ T-
689
+ 600
690
+ 600
691
+ Fit 100 K
692
+ 0.5
693
+ 300
694
+ 300
695
+ 02
696
+ 0.04
697
+ 0
698
+ 10
699
+ 30
700
+ 100
701
+ 410
702
+ 30
703
+ 100
704
+ 4
705
+ 10
706
+ 30
707
+ 100
708
+ Energy (meV)
709
+ Energy (meV)
710
+ Energy (meV)
711
+
712
+ 18
713
+ S4. Frequency-tunable narrowband terahertz and mid-infrared source
714
+
715
+ For the experiments that required tunability of the excitation pulses down to the THz gap,
716
+ a different source was used. This source is based on the principle of chirped-pulse
717
+ difference frequency generation (CP-DFG) in organic non-linear optical crystals, namely
718
+ DAST and DSTMS of approximately 600 μm thickness. The principle of operation of this
719
+ new source is described in detail in Ref. 7. A commercial Ti:Al2O3 amplifier is used to drive
720
+ two identical three-stage OPAs which are seeded by the same white-light, such that the
721
+ signal beams have the same phase-fluctuations. The ~100 fs signal pulses are then
722
+ chirped using a pair of transmission-grating-based stretchers as depicted in figure 3(a).
723
+ This arrangement enables continuous tuning of the pulse durations by varying the
724
+ distance between the gratings in each pair, effectively enabling continuous tuning of the
725
+ pump-pulse bandwidth. For this experiment the pump pulse bandwidth was kept
726
+ constant at 4 meV by maintaining a signal pulse duration of ~600 fs, as measured using a
727
+ home-built second harmonic-based Frequency-Resolved-Optical-Gating (FROG) device.
728
+ Frequency tuning of the generated excitation pulses was carried out both by varying the
729
+ central wavelengths of the two OPA signal beams, and by varying the time delay between
730
+ the chirped signal pulses in the DFG crystal (for fine tuning). For each measurement the
731
+ pump frequency spectrum was measured via FTIR (Fourier Transform Infrared
732
+ Spectroscopy).
733
+
734
+ S5. Measurements of the transient THz reflectivity
735
+
736
+ The experiments presented in Figures 2, 3, and 4 were performed on compacted K3C60
737
+ powder pellets pressed against a diamond window to ensure an optically flat interface.
738
+ As K3C60 is water and oxygen sensitive, the pellets were sealed in an air-tight holder and
739
+ all sample handling operations were performed in an Argon filled glove box with <0.1
740
+ ppm O2 and H2O. The sample holder was then installed at the end of a commercial Helium
741
+ cold-finger (base temperature 5K), to cool the pellets down to a temperature of 100 K.
742
+ The changes in the properties of the sample following photoexcitation were measured
743
+ using time-domain THz-spectroscopy.
744
+
745
+
746
+
747
+ 19
748
+ The mid-infrared pump induced changes in the low frequency optical properties, were
749
+ retrieved using transient THz time domain spectroscopy in two different experimental
750
+ setups. The THz probe pulses were generated via optical rectification in a 0.2 mm thick
751
+ (110)-cut GaP crystal starting from 800 nm pulses with a duration of ~80 fs and 35 fs,
752
+ respectively. Whilst in one setup these 800 nm were derived from the same laser used
753
+ for pumping the source described in section S4, the 35 fs, 800 nm pulses were generated
754
+ by a second Ti:Al2O3 amplifier optically synchronized to that used to pump the high-
755
+ intensity mid-infrared source described in section S3. The THz probe pulses were then
756
+ focused onto the sample with incidence angles of 30 and 0 degrees, respectively. After
757
+ reflection from the sample, the electric field profile of the THz pulses was reconstructed
758
+ in a standard electro-optic sampling setup, using a (110)-cut 0.2 mm GaP crystal
759
+ supported on a 1 mm thick (100)-cut GaP substrate to delay internal reflections. The
760
+ setup combined with the frequency tunable narrowband source had a measurement
761
+ bandwidth that extended between 4 and 18 meV, while the other spanned between
762
+ 4 meV to 29 meV. The time resolution of both setups is determined by the measurement
763
+ bandwidth and is ~250 fs and ~150 fs respectively.
764
+ To minimize the effects on the pump-probe time resolution due to the finite duration of
765
+ the THz probe pulse, the experiments were performed as described in Refs. 8, 9. The
766
+ pump-probe time delay was controlled by fixing the delay between the 800 nm gating
767
+ pulse and the mid-infrared pump pulse 𝜏. The transient THz field was then obtained by
768
+ scanning the delay 𝑡 relative to both.
769
+ In order to simultaneously retrieve both the ‘pump on’ (𝐸*+,
770
+ &- (𝑡, 𝜏)) and ‘pump off’
771
+ (𝐸*+,
772
+ &..(𝑡)) probe fields, a differential chopping scheme was deployed. The scheme was
773
+ different for the two above mentioned setup. For the narrowband, frequency tunable
774
+ setup which operated at a repetition rate of 1 kHz, the THz probe pulse was chopped at a
775
+ frequency of 500 Hz and the mid-infrared pump pulse was chopped at ~ 357 Hz. The
776
+ electro-optic sampling signal was then fed to two lock-in amplifiers reading out 𝑉/01! at
777
+ 500 Hz and 𝑉/01" at 143 Hz respectively. For the high-intensity setup, operating at 2 kHz
778
+ repetition rate, the THz probe pulse was chopped at a frequency of 1 kHz and the mid-
779
+ infrared pump was chopped at 500 Hz. In this case, the electro-optic sampling signal was
780
+ filtered by two lock-in amplifiers operating at 1 kHz and 500 Hz respectively. 𝐸*+,
781
+ &..(𝑡) and
782
+ Δ𝐸*+,(𝑡, 𝜏) were then extracted from the signals in the two lock-ins using the following
783
+ formulas:
784
+
785
+
786
+
787
+ 20
788
+ 𝐸*+,
789
+ &..(𝑡) = 𝑉𝐿𝐼𝐴1(𝑡, 𝜏) − 𝛼𝑉𝐿𝐼𝐴2(𝑡, 𝜏)
790
+ Δ𝐸*+,(𝑡, 𝜏) = 𝐸*+,
791
+ &- (𝑡, 𝜏) − 𝐸*+,
792
+ &..(𝑡) = 𝛼𝑉𝐿𝐼𝐴2(𝑡, 𝜏)
793
+
794
+ where 𝛼 is a calibration constant determined experimentally on an InSb reference
795
+ sample. This is done by extracting Δ𝐸*+,(𝑡, 𝜏) as the difference of two separate
796
+ measurements of 𝐸*+,
797
+ &- (𝑡, 0) and 𝐸*+,
798
+ &..(𝑡) performed with the first lock-in amplifier and by
799
+ chopping only the THz probe pulse while leaving the mid-infrared pump pulse either
800
+ always on or always off. Equating the value of Δ𝐸*+,(𝑡, 𝜏) determined in this way to the
801
+ one with differential chopping yields the calibration constant.
802
+
803
+ S6. Determination of the transient optical properties
804
+
805
+ From the measured changes in the reflected probe field (see section S5), the transient
806
+ complex reflection coefficient of the sample 𝑟̃(𝜔, 𝜏) can be determined by taking the
807
+ Fourier transform along t of both 𝐸*+,
808
+ &..(𝑡) and Δ𝐸*+,(𝑡, 𝜏) and using the following
809
+ equation:
810
+
811
+ Δ𝐸:*+,(𝜔, 𝜏)
812
+ 𝐸:*+,
813
+ &..(𝜔)
814
+ = 𝑟̃(𝜔, 𝜏) − 𝑟̃)(𝜔)
815
+ 𝑟̃)(𝜔)
816
+
817
+
818
+ where 𝑟̃)(𝜔) is the equilibrium complex reflection coefficient, obtained as described in
819
+ section S2.
820
+ In the cases where the pump light penetrates in the sample several times deeper than the
821
+ probe light, one can assume that the probe pulse samples a volume in the material that
822
+ has been homogeneously excited by the pump. In this case, it is possible to directly extract
823
+ the complex-valued optical response functions by inverting the Fresnel equations.
824
+ However, in K3C60 the penetration depth of the probe electric field (~600-900 nm)
825
+ exceeds that of the pump (~500 nm at 10 THz, ~200 nm at 41 THz), such that the probe
826
+ interrogates an inhomogeneously excited volume (Figure S6.1(a)).
827
+
828
+
829
+
830
+ 21
831
+ As the pump penetrates into the material, its intensity is reduced, and it will induce
832
+ progressively weaker changes in the refractive index of the sample. This situation is
833
+ modeled by “slicing” the probed thickness of the material into thin layers (figure S6.1(b)),
834
+ where we assume that the pump-induced changes in the refractive index ∆𝑛= scale
835
+ according to the pump intensity in the layer, i.e. 𝑛=(𝜔, 𝑧, 𝜏) = 𝑛=)(𝜔) + ∆𝑛=(𝜔, 𝜏, 𝐼(𝑧)). The
836
+ pump intensity 𝐼(𝑧) is assumed to follow the dependence 𝐼(𝑧) = 𝐼)𝑒2,/4!"#!, where
837
+ 𝑑#56# = 𝜆#56# 4𝜋𝐼𝑚 D𝑛).𝜔#56#/E
838
+ F
839
+ . Here, the refractive index of the material at the
840
+ pump frequency, 𝑛).𝜔#56#/ is taken to be the one at equilibrium. Additionally, an
841
+ assumption is made on the functional form for the dependence of ∆𝑛= on the pump
842
+ intensity. Here, we consider two different forms given by:
843
+ (1) ∆𝑛=(𝜔, 𝜏, 𝑧) ∝ 𝐼(𝑧)
844
+ (2) ∆𝑛=(𝜔, 𝜏, 𝑧) ∝ H𝐼(𝑧)
845
+ Respectively, these equations result in the following depth-dependent functional forms
846
+ for the spatial profile of the refractive index:
847
+ (1) 𝑛=(𝑧, 𝜔, 𝜏) = 𝑛=)(𝜔) + Δ𝑛=(𝜔, 𝜏)𝑒2,/4!"#!
848
+ (2) 𝑛=(𝑧, 𝜔, 𝜏) = 𝑛=)(𝜔) + ∆𝑛=(𝜔, 𝜏)𝑒2,/"4!"#!
849
+ where Δ𝑛=(𝜔, 𝜏) represents the pump-induced change in the refractive index of the
850
+ material at the sample surface.
851
+
852
+ Figure S6.1: a. Schematics of pump-probe penetration depth mismatch. b. Multi-layer model
853
+ with exponential decay used to calculate the pump-induced changes in the complex refractive
854
+ index 𝑛#(𝜔, 𝜏) for each pump-probe delay 𝜏. The transition from red to background (grey)
855
+ represents the decaying pump-induced changes in 𝑛#(𝜔, 𝑧).
856
+
857
+ Sample
858
+ Sample
859
+ Probe
860
+ Pump
861
+
862
+ 22
863
+ For each time delay 𝜏 and probe frequency 𝜔7, the complex reflection coefficient 𝑟̃(∆𝑛=) of
864
+ the multilayer stack described above is calculated using the transfer matrix method10,
865
+ keeping ∆𝑛= as a free parameter. To numerically extract the value of ∆𝑛=(𝜔, 𝜏) we minimize
866
+ the following function:
867
+
868
+ IΔ𝐸:*+,(𝜔7)
869
+ 𝐸:*+,
870
+ &..(𝜔7)
871
+ − 𝑟̃(𝜔7, Δn) − 𝑟̃)(𝜔7)
872
+ 𝑟̃)(𝜔7)
873
+ I
874
+
875
+ By then taking 𝑛=(𝜔, 𝜏) = 𝑛=)(𝜔) + Δ𝑛=(𝜔, 𝜏), one obtains the refractive index of the
876
+ material as if it had been homogeneously excited. From 𝑛=(𝜔, 𝜏) we then calculate 𝑅(𝜔, 𝜏),
877
+ 𝜎!(𝜔, 𝜏) and 𝜎"(𝜔, 𝜏) as plotted in the main text.
878
+ Figures S6.2 and S6.3 display extended data sets measured at increasing pump-probe
879
+ delays with pump photon energies of 170 meV (41 THz) and 45 meV (11 THz)
880
+ respectively. Therein we report reflectivity (sample-diamond interface), real and
881
+ imaginary part of the optical conductivity after reconstruction under the assumptions of
882
+ models (1) and (2), identified with hollow and filled circles respectively.
883
+ At early delays, for both excitation mechanisms and reconstruction assumptions, the
884
+ reconstructed reflectivity is higher than one, and the real part of the optical conductivity
885
+ is negative, indicative of amplification of the incoming THz probe radiation, as discussed
886
+ previously in Ref. 11. In all cases, this non-equilibrium driven state then relaxes into a
887
+ superconducting-like state with a fully gapped 𝜎!(𝜔) and a divergence ∝ 1 𝜔
888
+ ⁄ in the
889
+ 𝜎"(𝜔) spectrum. At even later delays the optical spectra are those of a finite temperature
890
+ superconductor. These optical properties can be interpreted in the context of a two fluid
891
+ model, in which a varying density of uncondensed quasi-particles also contributes to the
892
+ terahertz response.
893
+ Importantly the time-evolution of K3C60 following photo-excitation is independent of the
894
+ used reconstruction, and only the specific values of pump-probe delay up to which
895
+ amplification, fully gapped superconductor, and finite temperature superconductor
896
+ appear are affected by this choice.
897
+
898
+
899
+
900
+ 23
901
+
902
+ Figure S6.2: Comparison of linear and sub-linear reconstruction in the transient optical spectra
903
+ at 170 meV (41 THz) pump-photon energy. Reflectivity (sample-diamond interface), real, and
904
+ imaginary parts of the optical conductivity measured at equilibrium (red lines) and after
905
+ photoexcitation (blue symbols) at increasing pump-probe time delays indicated in the figure. The data
906
+ in filled (open) symbols reconstructed under the assumption of a square-root (linear) fluence
907
+ dependence of the changes in complex refractive index of the material. These data were measured at
908
+ 18 mJ cm-2 excitation fluence, and at a base temperature of 100 K.
909
+
910
+ 0 ps
911
+ 1 ps
912
+ 2 ps
913
+ 5 ps
914
+ 10 ps
915
+ 50 ps
916
+
917
+ 24
918
+
919
+ Figure S6.3: Comparison of linear and sub-linear reconstruction in the transient optical spectra
920
+ at 45 meV (11 THz) pump-photon energy. Reflectivity (sample-diamond interface), real, and
921
+ imaginary parts of the optical conductivity measured at equilibrium (red lines) and after
922
+ photoexcitation (blue symbols) at increasing pump-probe time delays indicated in the figure. The data
923
+ in filled (open) symbols reconstructed under the assumption of a square-root (linear) fluence
924
+ dependence of the changes in complex refractive index of the material. These data were measured at
925
+ 0.5 mJ cm-2 excitation fluence, and at a base temperature of 100 K.
926
+
927
+ 1.5 ps
928
+ 3.5 ps
929
+ 5.5 ps
930
+ 11.5 ps
931
+ 50.5 ps
932
+
933
+ 25
934
+ S7. Fitting of the transient optical spectra
935
+
936
+ The transient optical conductivity spectra presented in figures 2-3 as well as for each
937
+ fluence in figure 4 were fitted with a two-fluid model according to the following equation:
938
+ 𝜎=(𝜔, 𝜏) = 𝜋
939
+ 2
940
+ Λ'(𝜏) 𝑒"
941
+ 𝑚
942
+ 𝛿[𝜔 = 0] + 𝑖 Λ'(𝜏) 𝑒"
943
+ 𝑚
944
+ 1
945
+ 𝜔
946
+ + Λ-(𝜏) 𝑒"
947
+ 𝑚
948
+ 1
949
+ 𝛾$ − 𝑖𝜔
950
+ + R
951
+ 𝐵-𝜔
952
+ 𝑖(Ω-" − 𝜔") + 𝛾-𝜔
953
+ "
954
+ -8!
955
+
956
+
957
+ Here the first term captures the frequency dependent contribution from the
958
+ supercarriers with density Λ', the second term captures the Drude contribution of the
959
+ normal carriers with density Λ- and scattering rate 𝛾$. Finally, we include a sum over
960
+
961
+ Figure S7.1: Two-fluid fit to the transient spectrum. Reflectivity, real (𝜎!) and imaginary (𝜎")
962
+ parts of the optical conductivity measured in equilibrium at 100 K (red) and 50 ps after
963
+ photoexcitation with a fluence of 0.5 mJ cm-2 at 45 meV (11 THz) photon energy. The fit to the
964
+ equilibrium data using the procedure described in this section is shown as a dashed black line and
965
+ gives zero superfluid density. The two-fluid fit to the transient data generated using the same
966
+ procedure is shown as a solid blue line and returns a superfluid fraction Λ# (Λ$ + Λ#)
967
+
968
+ = 73%. The
969
+ data in this figure was reconstructed under the assumption of a square root dependence of the
970
+ change in refractive index on excitation fluence (see supplementary section S6).
971
+
972
+
973
+
974
+ 26
975
+ two Lorentz oscillators in order to capture the broad midinfrared absorption peak
976
+ centered at around 60 meV.
977
+ The transient data are fitted at each delay 𝜏 using the parameter-set that captures the
978
+ equilibrium optical conductivity spectra as a starting condition, and leaving only Λ' and
979
+ Λ- free to vary, as though the effect of the pump is to simply convert carriers from the
980
+ normal to the superconducting fluid.
981
+ Figure S7.1 shows representative fits to transient data measured at 100 K base
982
+ temperature and at 50 ps time delay, as well as to the 100 K equilibrium spectra.
983
+ Importantly, while the fit of the equilibrium data converges to a superfluid fraction
984
+ Λ' (Λ- + Λ')
985
+
986
+ which is equal to zero, the fit to the transient data yields Λ' (Λ-
987
+
988
+ + Λ') =
989
+ 0.73. The transient optical data was fitted at each time delay and driving frequency,
990
+ yielding the time and frequency dependence of the superfluid fractions shown in figures
991
+ 2(e), 3(e), and 4(a).
992
+
993
+ S8. Extracting the frequency-dependent photosusceptibility
994
+
995
+ In figure 4(b) we introduce a figure of merit, referred to as the ‘photosusceptibility’,
996
+ which can be used to quantitatively compare the efficiency with which the metastable
997
+ light-induced superconducting state is generated in K3C60 for different excitation
998
+ frequencies.
999
+ For each excitation photon energy, transient optical spectra were measured at different
1000
+ excitation fluences ℱ. From these fluence dependent spectra we extract the loss in
1001
+ spectral weight of 𝜎!(𝜔) after photoexcitation in the 5-10 meV spectral range, calculated
1002
+ as:
1003
+ 𝑆𝑊𝐿(ℱ) = Z
1004
+ 𝜎!
1005
+ 9:(𝜔) − 𝜎!
1006
+ #;&<&(𝜔, ℱ) 𝑑𝜔
1007
+ !) meV/ℏ
1008
+ B meV/ℏ
1009
+
1010
+ where 𝜎!
1011
+ 9:(𝜔) and 𝜎!
1012
+ #;&<&(𝜔, ℱ) are the 𝜎!(𝜔) spectra measured in equilibrium and upon
1013
+ photoexcitation respectively. The 𝑆𝑊𝐿(ℱ) data is then fitted with the following
1014
+ phenomenological function:
1015
+ 𝐴 \
1016
+ 1
1017
+ 1 + 𝐵𝑒2CDℱ
1018
+ 1
1019
+ − 1
1020
+ 2]
1021
+
1022
+
1023
+
1024
+ 27
1025
+ where ℱ represents the excitation fluence and 𝐴, 𝐵 are free parameters. The
1026
+ ‘photosusceptibility’ plotted in figure 4(b) is equal to 𝐵, which is the gradient of this
1027
+ function evaluated at zero fluence. Figure S8.1 shows the fluence-dependent data and
1028
+ corresponding fit for one exemplary dataset.
1029
+
1030
+ Figure S8.1: Extracting photosusceptibility from the fluence-dependent data. Lost spectral
1031
+ weight in the real part of the optical conductivity between 5 and 10 meV as a function of fluence (red
1032
+ circles), measured 10 ps after photoexcitation at 100 K with a pump spectrum centered at 41 meV (10
1033
+ THz). The fit is shown as a solid green line, with the gradient at zero fluence (which we define as the
1034
+ photosusceptibility) shown as a dashed blue line. The data in this figure was reconstructed under the
1035
+ assumption of a square root dependence of the change in refractive index on excitation fluence (see
1036
+ supplementary section S6).
1037
+
1038
+ S9. Density functional theory calculations
1039
+
1040
+ In this section, we address how the displacement of phonon modes affects the electronic
1041
+ properties of K3C60. Specifically, we consider the molecular orbitals and their response to
1042
+ the change in the crystal structure. To carry out this investigation, a first-principles
1043
+ approach based on density functional theory (DFT) was used. The starting point is the
1044
+ unit cell of K3C60 containing sixty carbon and three potassium atoms. Before computing
1045
+
1046
+
1047
+
1048
+ 28
1049
+ the phonon spectrum, this unit cell is structurally relaxed, and the resulting lattice
1050
+ constants and atomic coordinates are listed in table S9.1.
1051
+ Next, the phonon spectrum of K3C60 is computed from the force constant matrix utilizing
1052
+ a finite displacement approach12. In total, there are 186 non-translational phonon modes
1053
+ covering the symmetries of point group m-3. Specifically, there are 24 Tu, 7 Eu, 23 Tg, 8 Eg,
1054
+ and 8 Ag modes. Note that only the modes of Tu character are infrared active, and we list
1055
+ their computed frequencies in the table S9.2.
1056
+ We utilized a frozen phonon approach to estimate the impact of these distortions on the
1057
+ molecular levels. Therefore, we modulated our equilibrium crystal structure with the
1058
+ eigen-displacements of these modes. We then created a low energy Hamiltonian for these
1059
+ structures by computing the maximally localized Wannier functions for the valence band
1060
+ electrons. Note that since the three valence bands are well separated in energy from other
1061
+ orbital-like bands our method does not require a disentanglement procedure.
1062
+ Our calculations focused on the three degenerate t1u molecular levels at the Fermi energy,
1063
+ which we mapped out from DFT wave functions as maximally-localized Wannier
1064
+ functions. In the equilibrium structure, the onsite energy of these molecular levels is
1065
+ degenerate; however, deforming the crystal by applying a T1u polar distortion lifts this
1066
+ degeneracy. Thereby, similar to a Jahn-Teller distortion, the symmetry breaking of the
1067
+ crystal structure splits the level into a double and a single degenerate orbital. For the 43.2
1068
+ meV and 173.4 meV phonon modes, this splitting manifests as a lowering in the energy
1069
+ of the double degenerate orbital. A schematic visualization of this is depicted in the inset
1070
+ to figure S9.1(a). Diagrams illustrating the distortion of the C60 molecule for the 43.2 meV
1071
+ Lattice vectors
1072
+ a
1073
+ 14.175 Å
1074
+ Alpha
1075
+ 90˚
1076
+ 90˚
1077
+ 90˚
1078
+ b
1079
+ 14.175 Å
1080
+ Beta
1081
+ c
1082
+ 14.175 Å
1083
+ Gamma
1084
+ Atomic positions according to Space Group 202 (Fm-3)
1085
+ Element
1086
+ Wykoff label
1087
+ X
1088
+ y
1089
+ c
1090
+ C
1091
+ H
1092
+ 0.00000
1093
+ 0.54991
1094
+ 0.24682
1095
+ C
1096
+ I
1097
+ 0.58242
1098
+ 0.10057
1099
+ 0.21408
1100
+ C
1101
+ I
1102
+ 0.66275
1103
+ 0.05092
1104
+ 0.18294
1105
+ K
1106
+ C
1107
+ 0.25000
1108
+ 0.25000
1109
+ 0.25000
1110
+ K
1111
+ A
1112
+ 0.00000
1113
+ 0.00000
1114
+ 0.00000
1115
+
1116
+ Table S9.1: Structural parameters of K3C60 from first-principles computations
1117
+
1118
+
1119
+
1120
+ 29
1121
+ and 173.4 meV modes (labelled ‘A’ and ‘B’ and corresponding to mode numbers 4 and 21
1122
+ in table S9.2 respectively) are shown in figure S9.1(b).
1123
+ Besides this qualitative difference of the phonon-mode distortion on the molecular levels,
1124
+ we also examined the strength of the induced splitting. From group-theory, the size of the
1125
+ splitting scales with the square of the distortion. Figure S9.1(a) displays how the splitting
1126
+ develops as a function of the fluence of the incoming THz pulse. Each phonon mode
1127
+ distortion was weighted according to its eigenfrequency and mode effective charge in this
1128
+ plot. For the same strength of the driving electric field, the splitting induced by phonon
1129
+ A produces a more significant separation of the t1u levels compared to phonon B. Due to
1130
+ the square scaling of the splitting with the electric field, this effect is further enhanced at
1131
+ higher field strengths.
1132
+ The computations were performed with the Vienna ab-initio simulation package
1133
+ VASP.6.213-15. For the phonon calculations, we used the Phonopy software package16 and
1134
+ the Wannier90 package for wannierization12. The computations further utilized
1135
+ Number:
1136
+ ℎ𝜈#56# (meV)
1137
+ 1
1138
+ 2.2
1139
+ 2
1140
+ 14.1
1141
+ 3
1142
+ 42.4
1143
+ 4 (A)
1144
+ 43.2
1145
+ 5
1146
+ 48.3
1147
+ 6
1148
+ 60.5
1149
+ 7
1150
+ 62.6
1151
+ 8
1152
+ 71.5
1153
+ 9
1154
+ 80.6
1155
+ 10
1156
+ 83.9
1157
+ 11
1158
+ 85.9
1159
+ 12
1160
+ 91.1
1161
+ 13
1162
+ 92.0
1163
+ 14
1164
+ 118.6
1165
+ 15
1166
+ 122.8
1167
+ 16
1168
+ 147.5
1169
+ 17
1170
+ 148.3
1171
+ 18
1172
+ 149.8
1173
+ 19
1174
+ 163.7
1175
+ 20
1176
+ 165.4
1177
+ 21 (B)
1178
+ 173.4
1179
+ 22
1180
+ 176.9
1181
+ 23
1182
+ 184.8
1183
+ 24
1184
+ 185.3
1185
+
1186
+ Table S9.2: List of the IR active phonon modes of Tu symmetry.
1187
+
1188
+
1189
+
1190
+ 30
1191
+ pseudopotentials generated within the Projected Augmented Wave (PAW) method16.
1192
+ Specifically, the following default potentials were used: C 2s22p2 and K 3s23p64s1. The
1193
+ Generalized Gradient Approximation (GGA17) approximation for the exchange-
1194
+ correlation potential was used. For the final numerical setting, a 4x4x4 Monkhorst18
1195
+ generated k-point-mesh sampling of the Brillouin zone and a plane-wave energy cutoff of
1196
+ 600 eV were chosen. The calculations were re-iterated self-consistently until the change
1197
+ in total energy converged within 10-8 eV.
1198
+
1199
+
1200
+ Figure S9.1: Effect of vibrational distortions on the t1u molecular levels from first-principle
1201
+ computations. (a) shows the induced splitting of the molecular orbital of t1u symmetry at the Fermi
1202
+ energy (as illustrated by the inset) as a function of drive fluence. The two curves represent the effect
1203
+ of the two distinct T1u IR-phonon modes with eigenfrequencies of 43.2 (red) and 173.4 (blue) meV.
1204
+ The eigen displacement of these modes are shown in (b). Note, that due to the symmetry character of
1205
+ the phonon modes the t1u level split into a single and double degenerate orbital. Lastly, in (c) we show
1206
+ the induced splitting as a function of frequency for a fixed fluence. Here we consider the whole
1207
+ spectrum of T1u IR modes of K3C60, as listed in table S9.2.
1208
+
1209
+ S10. Local electronic hamiltonian calculations
1210
+
1211
+ The Hamiltonian proposed in Ref. 19 in order to model superconductivity in alkali-doped
1212
+ fullerides is based on an effective negative Hund’s coupling J. It arises from a combination of
1213
+ the usual Hund’s coupling with a dynamical Jahn-Teller distortion. This causes states featuring
1214
+ intra-orbital pairing on a buckyball to be energetically favourable. Using ab-initio calculations,
1215
+
1216
+ B
1217
+
1218
+ 31
1219
+ values of the intra-orbital interaction U = 0.826 eV and of J = −18.5meV were predicted for
1220
+ K3C6020. The phase diagram for the A3C60 family of compounds was computed using DMFT
1221
+ starting from this Hamiltonian and was found to be in quantitative agreement with experimental
1222
+ data21.
1223
+ The Hamiltonian can be written as:
1224
+
1225
+ 𝐻 = 𝐻Intra + 𝐻Inter + 𝐻Pairhop + 𝐻Spinswap
1226
+
1227
+ with an intra-orbital interaction with magnitude U given by:
1228
+
1229
+ 𝐻Intra = 𝑈 R 𝑛7,↑𝑛7,↓
1230
+ U
1231
+ 7
1232
+
1233
+
1234
+ where 𝑛7,V = 𝑎7,V
1235
+ W 𝑎7,V is the number operator for a spin down electron on orbital i with spin 𝜎 ∈
1236
+ {↑, ↓}. 𝑎7,V
1237
+ W and 𝑎7,V are fermion creation and annihilation operators, respectively. The inter-
1238
+ orbital interaction appears as:
1239
+
1240
+ 𝐻Inter = (𝑈 − 2𝐽) R R .1 − δ7X/𝑛7,↑𝑛X,↓
1241
+ U
1242
+ X
1243
+ U
1244
+ 7
1245
+ + (𝑈 − 3𝐽) R R R
1246
+ 𝑛7,V𝑛X,V
1247
+ 72!
1248
+ X
1249
+ U
1250
+ 7
1251
+ V
1252
+
1253
+
1254
+ with δ7X denoting the Kronecker delta. which, given that J is negative, makes these terms higher
1255
+ in energy. In addition, there is a pair hopping term, which corresponds to a transfer of a pair of
1256
+ electrons from one orbital to another. It is given by:
1257
+
1258
+ 𝐻Pairhop = 𝐽 R R .1 − δ7X/𝑎7,↑
1259
+ W 𝑎7,↓
1260
+ W 𝑎X,↓𝑎X,↑
1261
+ U
1262
+ X
1263
+ U
1264
+ 7
1265
+
1266
+
1267
+ This term was found to be crucial for the appearance of superconductivity21. Finally, there is a
1268
+ “spin
1269
+ swapping”
1270
+ term,
1271
+ where
1272
+ two
1273
+ opposite
1274
+ spins
1275
+ exchange
1276
+ orbitals:
1277
+
1278
+ −𝐽 R R .1 − δ7X/𝑎7,↑
1279
+ W 𝑎7,↓𝑎X,↓
1280
+ W 𝑎X,↑
1281
+ U
1282
+ X
1283
+ U
1284
+ 7
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+ 32
1291
+ When restricting ourselves to a Hilbert space where the three degenerate orbitals are populated
1292
+ by three electrons (as is appropriate for A3C60 in the atomic limit), we can use a basis given by
1293
+ the different possible arrangements in which the orbitals can be populated:
1294
+
1295
+ {|↑, ↑↓ ,0⟩,|↑ ,0, ↑↓⟩,|↑↓, ↑ ,0⟩,|0, ↑, ↑↓⟩,|↑↓ ,0, ↑⟩,|0, ↑↓, ↑⟩, |↓, ↑, ↑⟩,|↑, ↓, ↑⟩,|↑, ↑, ↓⟩,|↑, ↑, ↑⟩}
1296
+
1297
+ as well as a second set of states created by flipping all spins in the set above.
1298
+ In this basis, the Hamiltonian takes on the form:
1299
+
1300
+ 𝐻m − (3𝑈 + 5𝐽)𝐼o = −𝐽
1301
+
1302
+
1303
+
1304
+
1305
+
1306
+
1307
+
1308
+
1309
+ 0
1310
+ −1
1311
+ 0
1312
+ 0
1313
+ 0
1314
+ 0
1315
+ 0
1316
+ 0
1317
+ 0
1318
+ 0
1319
+ −1
1320
+ 0
1321
+ 0
1322
+ 0
1323
+ 0
1324
+ 0
1325
+ 0
1326
+ 0
1327
+ 0
1328
+ 0
1329
+ 0
1330
+ 0
1331
+ 0
1332
+ +1
1333
+ 0
1334
+ 0
1335
+ 0
1336
+ 0
1337
+ 0
1338
+ 0
1339
+ 0
1340
+ 0
1341
+ +1
1342
+ 0
1343
+ 0
1344
+ 0
1345
+ 0
1346
+ 0
1347
+ 0
1348
+ 0
1349
+ 0
1350
+ 0
1351
+ 0
1352
+ 0
1353
+ 0
1354
+ −1
1355
+ 0
1356
+ 0
1357
+ 0
1358
+ 0
1359
+ 0
1360
+ 0
1361
+ 0
1362
+ 0
1363
+ −1
1364
+ 0
1365
+ 0
1366
+ 0
1367
+ 0
1368
+ 0
1369
+ 0
1370
+ 0
1371
+ 0
1372
+ 0
1373
+ 0
1374
+ 0
1375
+ +2
1376
+ −1
1377
+ +1
1378
+ 0
1379
+ 0
1380
+ 0
1381
+ 0
1382
+ 0
1383
+ 0
1384
+ 0
1385
+ −1
1386
+ +2
1387
+ −1
1388
+ 0
1389
+ 0
1390
+ 0
1391
+ 0
1392
+ 0
1393
+ 0
1394
+ 0
1395
+ +1
1396
+ −1
1397
+ +2
1398
+ 0
1399
+ 0
1400
+ 0
1401
+ 0
1402
+ 0
1403
+ 0
1404
+ 0
1405
+ 0
1406
+ 0
1407
+ 0
1408
+ +4⎠
1409
+
1410
+
1411
+
1412
+
1413
+
1414
+
1415
+
1416
+
1417
+
1418
+ where 𝐼o is the identity matrix, which encodes an overall energy offset. This matrix is block-
1419
+ diagonal, meaning that different sectors of the Hilbert space are not coupled to each other: For
1420
+ example, there is no term that destroys or creates pairs. Because of the inverted Hund’s
1421
+ coupling, i.e. because J is negative, the stretched state |↑, ↑, ↑⟩ as well as its global spin-flip
1422
+ partner |↓, ↓, ↓⟩ are now the most energetic local eigenstates.
1423
+ The local ground state is 6-fold degenerate, with an exemplary instance given by:
1424
+ |𝑔!⟩ = (|↑, ↑↓ ,0⟩ +|↑ ,0, ↑↓⟩)/√2, i.e. it is a state where one singlet pair of electrons has de-
1425
+ localized over two orbitals.
1426
+ The first excited manifold is 10-fold degenerate. Six of those states are of the type
1427
+ |𝑒!⟩ = ((|↑, ↑↓ ,0⟩ −|↑ ,0, ↑↓⟩)/√2 i.e. identical to the ground state except for the phase of the
1428
+ de-localized singlet pair (and hence corresponding to a different local angular momentum) –
1429
+ as illustrated in Figure S10.1.
1430
+ The energy difference between these two manifolds is given by 2J=37meV, remarkably close
1431
+ to the observed resonance in the experiment. However, several questions remain in order to
1432
+ determine whether an excitation of this transition is responsible for the experimental
1433
+ observation:
1434
+
1435
+
1436
+
1437
+ 33
1438
+ Firstly, how does the light field of the laser couple to
1439
+ this excitation? As the size of a buckyball is
1440
+ comparable to the distance between buckyballs both
1441
+ inter-site and intra-site driving terms may be
1442
+ comparable in terms of the associated energy.
1443
+ Understanding possible inter-site driving terms
1444
+ (arising from the oscillating energy difference
1445
+ between neighbouring sites, given by the electric
1446
+ field multiplied with the charge and the lattice
1447
+ spacing) will require a calculation featuring multiple
1448
+ buckyballs. Locally, because the dynamical Jahn-
1449
+ Teller distortion causes the populated orbitals to be
1450
+ superpositions of several undistorted orbitals, we
1451
+ may expect the electric field to lift the orbital
1452
+ degeneracy, for example through an orbital offset
1453
+ term of the type 𝐻offset = Δ(𝑛U,↑ + 𝑛U,↓), where Δ
1454
+ encodes the amplitude of the drive and is oscillating
1455
+ in time. Such a term would in fact cause an excitation from |𝑒!⟩ to |𝑔!⟩, but it would not
1456
+ populate any un-paired state (which are not affected by this driving term, as all orbitals are
1457
+ equally occupied).
1458
+ Secondly, K3C60 has an electronic bandwidth of about 0.5eV21, meaning that the system is far
1459
+ away from the atomic limit (i.e. zero inter-site tunneling). Nevertheless, because the excitation
1460
+ here does not require inter-site tunneling (unlike e.g., double occupancy creation in a regular
1461
+ one-band Hubbard model), it may remain sufficiently separable.
1462
+ Finally, how does this excitation generate superconductivity? Indeed, the Suhl-Kondo
1463
+ mechanism suggests that in a multi-band system, pairs in any local superposition can contribute
1464
+ to superconductivity, but how the generation of excited-state pairs can lead to superconducting
1465
+ properties starting from a normal state remains to be investigated.
1466
+
1467
+
1468
+ Figure S10.1: Ground state and first
1469
+ excited state of the local Hamiltonian.
1470
+ The yellow lines indicate the phase of the
1471
+ pair which is de-localized over two
1472
+ orbitals. The energy spacing between
1473
+ these two states is given by -2J
1474
+
1475
+ -2J
1476
+
1477
+ 34
1478
+ References
1479
+ 1
1480
+ Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature.
1481
+ Nature 530, 461-464, (2016).
1482
+ 2
1483
+ Cantaluppi, A. et al. Pressure tuning of light-induced superconductivity in K3C60. Nature
1484
+ Physics 14, 837-841, (2018).
1485
+ 3
1486
+ Budden, M. et al. Evidence for metastable photo-induced superconductivity in K3C60.
1487
+ Nature Physics 17, 611-618, (2021).
1488
+ 4
1489
+ Plaskett, J. S. & Schatz, P. N. On the Robinson and Price (Kramers—Kronig) Method of
1490
+ Interpreting Reflection Data Taken through a Transparent Window. The Journal of
1491
+ Chemical Physics 38, 612-617, (1963).
1492
+ 5
1493
+ Degiorgi, L. et al. Optical properties of the alkali-metal-doped superconducting fullerenes:
1494
+ K3C60 and Rb3C60. Physical Review B 49, 7012-7025, (1994).
1495
+ 6
1496
+ Degiorgi, L., Briceno, G., Fuhrer, M. S., Zettl, A. & Wachter, P. Optical measurements of the
1497
+ superconducting gap in single-crystal K3C60 and Rb3C60. Nature 369, 541-543, (1994).
1498
+ 7
1499
+ Liu, B. et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable
1500
+ pulses tunable between 4 and 18 THz. Opt. Lett. 42, 129-131, (2017).
1501
+ 8
1502
+ Kindt, J. T. & Schmuttenmaer, C. A. Theory for determination of the low-frequency time-
1503
+ dependent response function in liquids using time-resolved terahertz pulse spectroscopy.
1504
+ The Journal of Chemical Physics 110, 8589-8596, (1999).
1505
+ 9
1506
+ Schmuttenmaer, C. A. Exploring Dynamics in the Far-Infrared with Terahertz
1507
+ Spectroscopy. Chemical Reviews 104, 1759-1780, (2004).
1508
+ 10
1509
+ Born, M. & Wolf, E. Principles of Optics. 7th edn, (Cambridge University Press, 1999).
1510
+ 11
1511
+ Buzzi, M. et al. Higgs-Mediated Optical Amplification in a Nonequilibrium Superconductor.
1512
+ Physical Review X 11, 011055, (2021).
1513
+ 12
1514
+ Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for
1515
+ composite energy bands. Physical Review B 56, 12847-12865, (1997).
1516
+
1517
+
1518
+
1519
+ 35
1520
+ 13
1521
+ Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and
1522
+ semiconductors using a plane-wave basis set. Computational Materials Science 6, 15-50,
1523
+ (1996).
1524
+ 14
1525
+ Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals.
1526
+ Physical Review B 48, 13115-13118, (1993).
1527
+ 15
1528
+ Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy
1529
+ calculations using a plane-wave basis set. Physical Review B 54, 11169-11186, (1996).
1530
+ 16
1531
+ Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scripta
1532
+ Materialia 108, 1-5, (2015).
1533
+ 17
1534
+ Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple.
1535
+ Physical Review Letters 77, 3865-3868, (1996).
1536
+ 18
1537
+ Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Physical Review
1538
+ B 13, 5188-5192, (1976).
1539
+ 19
1540
+ Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Strongly Correlated Superconductivity.
1541
+ Science 296, 2364-2366, (2002).
1542
+ 20
1543
+ Nomura, Y., Sakai, S., Capone, M. & Arita, R. Unified understanding of superconductivity
1544
+ and Mott transition in alkali-doped fullerides from first principles. Science Advances 1,
1545
+ e1500568, (2015).
1546
+ 21
1547
+ Nomura, Y., Sakai, S., Capone, M. & Arita, R. Exotics-wave superconductivity in alkali-
1548
+ doped fullerides. Journal of Physics: Condensed Matter 28, 153001, (2016).
1549
+
1550
+
7dFAT4oBgHgl3EQfoR1F/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tAzT4oBgHgl3EQfgfwd/content/tmp_files/2301.01468v1.pdf.txt ADDED
@@ -0,0 +1,1582 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Black hole interiors
2
+ in holographic topological semimetals
3
+ Ling-Long Gao a,b1, Yan Liu a,b2 and Hong-Da Lyu a,b3
4
+ aCenter for Gravitational Physics, Department of Space Science
5
+ and International Research Institute of Multidisciplinary Science,
6
+ Beihang University, Beijing 100191, China
7
+ bPeng Huanwu Collaborative Center for Research and Education,
8
+ Beihang University, Beijing 100191, China
9
+ Abstract
10
+ We study the black hole interiors in holographic Weyl semimetals and holo-
11
+ graphic nodal line semimetals.
12
+ We find that the black hole singularities are of
13
+ Kasner form. In the topologically nontrivial phase at low temperature, both the
14
+ Kasner exponents of the metric fields and the proper time from the horizon to the
15
+ singularity are almost constant, likely reflecting the topological nature of the topo-
16
+ logical semimetals. We also find some specific behaviors inside the horizon in each
17
+ holographic semimetal model.
18
+ 1Email: [email protected]
19
+ 2Email: [email protected]
20
+ 3Email: [email protected]
21
+ arXiv:2301.01468v1 [hep-th] 4 Jan 2023
22
+
23
+ Contents
24
+ 1
25
+ Introduction
26
+ 1
27
+ 2
28
+ Inside holographic Weyl semimetal
29
+ 3
30
+ 2.1
31
+ Inner structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
+ 4
33
+ 2.2
34
+ Behaviors of Kasner exponents . . . . . . . . . . . . . . . . . . . . . . . .
35
+ 5
36
+ 2.3
37
+ Proper time of timelike geodesics
38
+ . . . . . . . . . . . . . . . . . . . . . .
39
+ 9
40
+ 3
41
+ Inside holographic nodal line semimetal
42
+ 10
43
+ 3.1
44
+ Kasner exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
+ 12
46
+ 3.2
47
+ Proper time of timelike geodesics
48
+ . . . . . . . . . . . . . . . . . . . . . .
49
+ 15
50
+ 4
51
+ Conclusion and discussion
52
+ 15
53
+ A Equations in holographic WSM
54
+ 16
55
+ B Equations in holographic NLSM
56
+ 18
57
+ 1
58
+ Introduction
59
+ The conventional classifications on the phases of matter are rooted in the Landau paradigm
60
+ of symmetry breaking theory [1]. Over the past thirty years, new states of matter have
61
+ been found which are beyond the concept of Landau paradigm.
62
+ One example is the
63
+ topological states of matter, including the quantum Hall states, topological insulators,
64
+ topological semimetals and so on [2]. Different from the conventional Landau paradigm,
65
+ there is no symmetry breaking during the topological phase transition and it attracts lots
66
+ of research attention.
67
+ In recent years, the strongly interacting topological Weyl semimetals (WSM) [3,4] and
68
+ nodal line semimetals (NLSM) [5,6] have been explicitly constructed from the holographic
69
+ duality. Both holographic WSM and NLSM are shown to possess nontrivial topological
70
+ invariants [7]. Remarkably, holographic WSM exhibits interesting effects inherited from
71
+ the boundary states [8]. These features suggest that the physical properties associated to
72
+ topology from the weakly coupled field theories persist in the strongly coupled topologi-
73
+ cal systems from the holography. Moreover, the systems could go through a topological
74
+ phase transition to a topologically trivial semimetal phase, see [9] for a review on the
75
+ 1
76
+
77
+ developments.4
78
+ In the holographic WSM, during the topological phase transition the
79
+ anomalous Hall conductivity could be served as an order parameter, while in the holo-
80
+ graphic NLSM it is not clear about the order parameters. Whether possible universal
81
+ “order parameter” exist for the topological phase transitions? What is the topological
82
+ nature in the topological phase from holography? These are elusive problems we aim to
83
+ explore from the holographic duality.
84
+ In holography, the thermal states are dual to black hole geometries in the bulk. The
85
+ black hole interior is expected to encode important information of the dual field the-
86
+ ory [28–30]. In the case that the thermal states are described by the black holes with
87
+ simple Kasner singularities, it has been shown recently in [31] that the order of the ther-
88
+ mal phase transition in the dual field theory is connected to the behavior of the Kasner
89
+ exponents of the black hole singularity.5 For the topological phase transitions in holo-
90
+ graphic topological semimetals at finite temperature, the systems experience a smooth
91
+ crossover from a topological phase, a critical phase to a trivial phase. Although the phase
92
+ crossover is different from thermal phase transitions, it is still interesting to explore the
93
+ interior geometries in holographic topological semimetals, in order to uncover possible
94
+ universal behavior during the topological phase transitions.
95
+ It turns out that there exist both universal and special behaviors of the singularities
96
+ in holographic topological semimetals. The universal behavior is similar to the topolog-
97
+ ical nature of topological phase and might give hints to the problems we raised for the
98
+ topological semimetals, while the special features can be understood from the fact that
99
+ the holographic WSM and the holographic NLSM share similarities and also differences
100
+ in the constructions as emphasized in [5, 7]. More precisely, in both cases, two matters
101
+ fields are added which play same role from the point of view of the boundary field theory,
102
+ while they play different roles in the bulk geometry. In the boundary field theory, one of
103
+ the two matter fields is to deform the Dirac point into two Weyl nodes or a nodal line,
104
+ while the other matter field is to gap the system. In the bulk, in the topological phase
105
+ of holographic WSM the IR geometry of Schwarzschild black hole is not deformed by the
106
+ matter fields, while the backreaction of the matter fields on the gravitational geometry is
107
+ quite strong in IR in the topological phase of holographic NLSM. We will see that these
108
+ two different situations lead to different properties of the black hole singularities in the
109
+ topological phases.
110
+ It is known that the information of the interior geometry can be probed from the
111
+ geodesics which correspond to certain correlators in the dual field theory. For example,
112
+ the proper time from the horizon to the singularity can be extracted from the thermal
113
+ one point function of certain heavy operator [30]. We will compute this quantity in the
114
+ 4Other interesting developments can be found in e.g. [10–27].
115
+ 5Other studies on the geometric aspects of black hole singularities can be found in e.g. [32–53].
116
+ 2
117
+
118
+ bulk and study its behavior in the topological phases and trivial phases.
119
+ This paper is organized as follows. In Sec. 2, we will first review the holographic WSM
120
+ and then study its interior geometry as well as the proper time of the timelike geodesics.
121
+ In Sec. 3, we will review the holographic NLSM and then also study its interior geometry
122
+ and the proper time of the timelike geodesics. Sec. 4 is devoted to the conclusions and
123
+ open questions. The details of calculations are in the appendices.
124
+ 2
125
+ Inside holographic Weyl semimetal
126
+ In this section we first briefly review the holographic WSM which describes a topological
127
+ phase transition from topological WSM phase to a trivial semimetal phase. Then we
128
+ study the interior geometry of the black hole solutions and discuss the possible universal
129
+ behavior of the black hole singularities as well as the interior geometry. We also comment
130
+ on the possible observable as the role of “order parameter” during the topological phase
131
+ transition.
132
+ The action of the holographic WSM [3,4] is
133
+ S =
134
+
135
+ d5x√−g
136
+ � 1
137
+ 2κ2
138
+
139
+ R + 12
140
+ L2
141
+
142
+ − 1
143
+ 4F2 − 1
144
+ 4F 2 + α
145
+ 3 ϵabcdeAa
146
+
147
+ FbcFde + 3FbcFde
148
+
149
+ − (DaΦ)∗(DaΦ) − V (Φ)
150
+
151
+ ,
152
+ (2.1)
153
+ where two gauge fields are dual to vector and axial currents respectively. A special Chern-
154
+ Simons structure is introduced to match the Wald identity for these currents. An axially
155
+ charged scalar field Φ is also introduced in the model with the source interpreted as the
156
+ mass term. Note that DaΦ = ∂aΦ − iqAaΦ where Aa is the axial U(1) gauge potential,
157
+ and V (Φ) = m2|Φ|2 + λ
158
+ 2|Φ|4. We set 2κ2 = L = 1.
159
+ We focus on the finite temperature and use the following ansatz
160
+ ds2 = −udt2 + dr2
161
+ u + f(dx2 + dy2) + hdz2 ,
162
+ A = Azdz ,
163
+ Φ = φ .
164
+ (2.2)
165
+ The equations of motion for the fields can be found in the appendix A. In the following we
166
+ consider m2 = −3, q = 1, λ = 1/10. Generalization to the other values of the parameters
167
+ is straightforward.
168
+ We use the following boundary conditions for the matter fields
169
+ lim
170
+ r→∞ Az = b ,
171
+ lim
172
+ r→∞ rφ = M ,
173
+ (2.3)
174
+ 3
175
+
176
+ where b is the time reversal symmetry breaking parameter which play the role of split-
177
+ ting a Dirac point into two Weyl points, and M is the mass parameter which gaps the
178
+ Dirac point. The competing between these two effects leads to interesting topological
179
+ phase transitions. The system is completely determined by the dimensionless parameters
180
+ T/b, M/b.
181
+ In the weakly coupled WSM, the quantum topological phase transition could be man-
182
+ ifest from both the band structure and equivalently the behavior of the anomalous Hall
183
+ conductivity. In the strongly coupled model from holography, the anomalous Hall con-
184
+ ductivity behaves similarly to the weakly coupled case, indicating that there is a topo-
185
+ logical phase transition, as shown in Fig. 1. The lines in red, blue and purple are for
186
+ T/b = 0.05, 0.02, 0.01 respectively. The transition becomes sharp at zero temperature
187
+ and the dashed gray line is the critical value of the transition at zero temperature.
188
+ ���
189
+ ���
190
+ ���
191
+ ���
192
+ ���
193
+ ���
194
+ ���
195
+ ���
196
+ ���
197
+ ���
198
+ ���
199
+ ���
200
+ ���
201
+ M
202
+ b
203
+ σAHE
204
+ 8 α b
205
+ Figure 1:
206
+ Plot of anomalous Hall conductivity as a function of M/b at the temperatures
207
+ T/b = 0.05 (red), 0.02 (blue), 0.01 (purple). The gray dashed line is the critical value of M/b
208
+ of the quantum phase transition at zero temperature.
209
+ 2.1
210
+ Inner structures
211
+ The phase transitions could be parameterized by the anomalous Hall conductivity which
212
+ is completely determined by the horizon value of the axial gauge field Az. Given the
213
+ possible connection between the physics inside and outside the horizon, it is interesting
214
+ to study the black hole inner structures during the topological phase transitions.
215
+ From the black hole solutions we have obtained, we could integrate the system further
216
+ to the singularity since the geometry is smooth at the horizon. We find that at low
217
+ temperature, the matter field φ oscillates inside the horizon only in the topological phase
218
+ 4
219
+
220
+ (i.e. M/b < 0.744). The typical behavior is shown in Fig. 2, where the oscillation regime
221
+ of the scalar field φ (which has been rescaled according to φ/φh) as a function of r/rh
222
+ at fixed T/b (left) or M/b (right) are plotted respectively. We find that when we fix
223
+ the temperature T/b, the times of oscilation become less when we increase M/b from 0
224
+ to (M/b)c. Furthermore, when we fix M/b < (M/b)c, the lower temperature, the more
225
+ times that φ oscillates. Note that the other fields do not show any oscillation from the
226
+ horizon to the singularity.
227
+ Different from the holographic superconductor cases, the oscillation here is not related
228
+ to the collapse of Einstein-Rosen bridge [34], since there is no inner horizon any more
229
+ for holographic WSM. Similar oscillation behavior has been found previously in neutral
230
+ helical black holes [35].
231
+ ���
232
+ ���
233
+ ���
234
+ ���
235
+ ���
236
+ ���
237
+ -���
238
+ -���
239
+ -���
240
+ ���
241
+ ���
242
+ ���
243
+ r
244
+ rh
245
+ ϕ
246
+ ϕh
247
+ ���
248
+ ���
249
+ ���
250
+ ���
251
+ ���
252
+ ���
253
+ -���
254
+ -���
255
+ ���
256
+ ���
257
+ ���
258
+ r
259
+ rh
260
+ ϕ
261
+ ϕh
262
+ Figure 2: The plots of φ/φh along radial direction in the oscillation region at fixed T/b = 0.02
263
+ (left) while M/b = 0.1 (purple), 0.4 (blue), 0.6 (orange), 0.74 (red), as well as at fixed M/b = 0.1
264
+ (right) while T/b = 0.05 (red), 0.02 (blue), 0.01 (purple). Here φh is the horizon value of φ.
265
+ 2.2
266
+ Behaviors of Kasner exponents
267
+ The interior solution can be further integrated to the singularity. Near the singularity
268
+ rs, we assume that at the leading order the fields behave as
269
+ u ∼ −u0(r − rs)nu ,
270
+ f ∼ f0(r − rs)nf ,
271
+ h ∼ h0(r − rs)nh ,
272
+ φ ∼ nφ ln(r − rs) , (2.4)
273
+ where u0, f0, h0 and nu, nf, nh, nφ are all constants. Here u0, f0, h0 depend on the scaling
274
+ symmetry in (A.3),(A.4),(A.5) while nu, nf, nh, nφ are not. Also note that here rs is not
275
+ necessarily to be zero since there is a shift symmetry of the system r → r + α along the
276
+ radial direction which was used to set the boundary behavior (A.8). Moreover, as we
277
+ shall see later, the axial gauge field Az is determined by the ansatz (2.4).
278
+ 5
279
+
280
+ Near the singularity the equations of motion (A.6) can be simplified under the assump-
281
+ tion that the ignored terms are subleading which will be numerically checked afterward,
282
+ u′′ + h′
283
+ 2hu′ −
284
+
285
+ f ′′ + f ′h′
286
+ 2h
287
+ � u
288
+ f = 0 ,
289
+ f ′′
290
+ f + u′′
291
+ 2u − f ′2
292
+ 4f 2 + f ′u′
293
+ fu + 1
294
+ 2φ′2 = 0 ,
295
+ 1
296
+ 2φ′2 − u′
297
+ 2u
298
+ �f ′
299
+ f + h′
300
+ 2h
301
+
302
+ − f ′h′
303
+ 2fh − f ′2
304
+ 4f 2 = 0 ,
305
+ A′′
306
+ z +
307
+ �f ′
308
+ f − h′
309
+ 2h + u′
310
+ u
311
+
312
+ A′
313
+ z = 0 ,
314
+ φ′′ +
315
+ �f ′
316
+ f + h′
317
+ 2h + u′
318
+ u
319
+
320
+ φ′ = 0 .
321
+ (2.5)
322
+ Substituting (2.4) into (2.5), we obtain
323
+ nh = 2 (1 − nu − nf) ,
324
+ nφ = ±
325
+
326
+ (2nf + nu)(1 − nu) − 3n2
327
+ f
328
+ 2 .
329
+ (2.6)
330
+ We can also solve the fourth equation in (2.5) to obtain at leading order Az
331
+ Az ≃ Azs0 + Azs1(r − rs)nh .
332
+ (2.7)
333
+ Note that the leading term Azs0 can be rescaled to be 1, while Azs1 could be determined
334
+ from the radial conserved quantities as will be discussed later. Thus there are only two
335
+ independent parameters in (2.4) and (2.7).
336
+ Note that in the above equations (2.5), we have assumed that the terms ignored are
337
+ subleading. More explicitly, we have assumed
338
+ nu < 2 ,
339
+ nf + nu < 1 ,
340
+ 2nf + nu > 0 .
341
+ (2.8)
342
+ Numerically we have checked that all the above relations are satisfied for the parameters
343
+ we have considered, which indicates that the singularities are stable and of form (2.4)
344
+ and (2.7).
345
+ There are two radical conserved charge associated to the scaling symmetries of the
346
+ system,
347
+ Q1 =
348
+
349
+ h(u′f − uf ′) ,
350
+ (2.9)
351
+ Q2 = u′√
352
+ hf − h′
353
+
354
+ h
355
+ uf − AzA′
356
+ z
357
+ uf
358
+
359
+ h
360
+ .
361
+ (2.10)
362
+ 6
363
+
364
+ We have used them to check the accuracy of the numerics. Moreover, evaluate them at
365
+ the horizon and at the singularity we obtain
366
+ 4πTf1
367
+
368
+ h1 = Ts = u0f0
369
+
370
+ h0(nf − nu)
371
+ (2.11)
372
+ = u0f0
373
+ √h0
374
+ (nhAzs0Azs1 − h0(2nf + 3nu − 2) )
375
+ (2.12)
376
+ where s is the density of entropy. From (2.11), we have nf > nu in addition to the con-
377
+ straints (2.8). Moreover, the above two conserved quantities give the relations nhAzs0Azs1 =
378
+ h0(3nf +2nu −2) which turns out to be zero in the topological phase at low temperature
379
+ where Azs1 = 3nf + 2nu − 2 = 0.
380
+ Starting from (2.2, 2.4) and performing the coordinate transformation
381
+ τ = −
382
+ 2
383
+ √n0(nu − 2)(r − rs)(2−nu)/2 ,
384
+ (2.13)
385
+ we obtain the Kasner form for the fields
386
+ ds2 = −dτ 2 + ctτ 2ptdt2 + cxτ 2px(dx2 + dy2) + czτ 2pzdz2 ,
387
+ φ = pφ log τ + cφ ,
388
+ (2.14)
389
+ where
390
+ pt =
391
+ nu
392
+ 2 − nu
393
+ ,
394
+ px =
395
+ nf
396
+ 2 − nu
397
+ ,
398
+ pz =
399
+ nh
400
+ 2 − nu
401
+ ,
402
+ pφ =
403
+ 2nφ
404
+ 2 − nu
405
+ .
406
+ (2.15)
407
+ Note that Az is a constant at the leading order. Using the relations (2.6), the above
408
+ Kasner exponents can be expressed in terms of nu and nf,
409
+ pt =
410
+ nu
411
+ 2 − nu
412
+ ,
413
+ px =
414
+ nf
415
+ 2 − nu
416
+ ,
417
+ pz = 2(1 − nu − nf)
418
+ 2 − nu
419
+ ,
420
+ pφ = ±
421
+
422
+ 4(2nf + nu)(1 − nu) − 6n2
423
+ f
424
+ 2 − nu
425
+ .
426
+ (2.16)
427
+ Note that the sign of pφ in (2.16) can only be determined from numerics. They satisfy
428
+ the following Kasner relations
429
+ pt + 2px + pz = 1 ,
430
+ p2
431
+ t + 2p2
432
+ x + p2
433
+ z + p2
434
+ φ = 1 .
435
+ (2.17)
436
+ It indicates that only two of the four Kasner exponents are independent.
437
+ In Fig. 3, we show the Kasner exponents as a function of M/b at different tempera-
438
+ tures T/b = 0.05 (red), 0.02 (blue), 0.01 (purple). We find that at low temperature, the
439
+ Kasner exponents in the Weyl semimetal phase take the same value of the Schwarzschild
440
+ black hole (e.g. within the difference of order less than 10−9 between M/b = 0.5 and
441
+ M/b = 0 at T/b = 0.01). This reminds us the topological feature in terms of the black
442
+ 7
443
+
444
+ hole singularity. It is related to the fact that the matter fields do not backreact relevantly
445
+ to the Schwarzschild solution in the topological phase, i.e. the probe limit of system in
446
+ terms of matter fields in the Schwarzschild black hole background works well. We have
447
+ also checked that inside the black holes, in the topological phase the matter fields ob-
448
+ tained from the backreacted case match well with the solutions obtained from the probe
449
+ limit. In the quantum critical regime, the Kasner exponents oscillate. While in the trivial
450
+ phase, the Kasner exponent does not have any oscillate behavior.
451
+ ���
452
+ ���
453
+ ���
454
+ ���
455
+ ���
456
+ ���
457
+ ���
458
+ -����
459
+ -����
460
+ -����
461
+ -����
462
+ -����
463
+ -����
464
+ M
465
+ b
466
+ pt
467
+ ���
468
+ ���
469
+ ���
470
+ ���
471
+ ���
472
+ ���
473
+ ���
474
+ -���
475
+ -���
476
+ -���
477
+ ���
478
+ ���
479
+ ���
480
+ M
481
+ b
482
+
483
+ ���
484
+ ���
485
+ ���
486
+ ���
487
+ ���
488
+ ���
489
+ ���
490
+ ����
491
+ ����
492
+ ����
493
+ ����
494
+ ����
495
+ ����
496
+ M
497
+ b
498
+ px
499
+ ���
500
+ ���
501
+ ���
502
+ ���
503
+ ���
504
+ ���
505
+ ���
506
+ ����
507
+ ����
508
+ ����
509
+ ����
510
+ M
511
+ b
512
+ pz
513
+ Figure 3: Plots of Kasner exponents as a function of M/b. For all cases we have T/b = 0.05
514
+ (red), 0.02 (blue), 0.01 (purple). The dashed gray vertical lines are the Kasner exponents of
515
+ five dimension Schwarzschild black hole.
516
+ Note that in [5], a paradigm for constructing the topological phase was proposed
517
+ and the holographic Weyl semimetal belongs to the first type, where the matter fields are
518
+ irrelevant in the IR of the Schwarzschild black hole. It seems likely that in any topological
519
+ phase of this kind, the singularities are of Kasner form taking values of Schwarzschild
520
+ black hole.
521
+ 8
522
+
523
+ 2.3
524
+ Proper time of timelike geodesics
525
+ One of interesting connection between the interior geometry and the boundary observable
526
+ is given in [30] that the proper time of radial timelike geodesic can be encoded in the
527
+ thermal one point functions of heavy operators. It is thus interesting to study the proper
528
+ time of radial timelike geodesics to see if it has specific behavior during the topological
529
+ phase transitions.
530
+ We consider radial timelike geodesic for which gtt ˙t2 + grr ˙r2 = −1, where the dot
531
+ denotes the derivative with respect to the proper time τ. Along the geodesic there is a
532
+ conserved charge E = −gtt ˙t which can be interpreted as energy. Then the equation of
533
+ motion of the geodesic becomes
534
+ E2
535
+ gtt
536
+ + grr ˙r2 = −1 ,
537
+ (2.18)
538
+ from which we obtain
539
+
540
+ dr =
541
+ 1
542
+
543
+ E2 − u .
544
+ (2.19)
545
+ The proper time from the horizon to the singularity of a particle with E = 0 (i.e. the
546
+ longest time) is
547
+ τs =
548
+ � rh
549
+ rs
550
+ dr
551
+ √−u .
552
+ (2.20)
553
+ The plots of τs as a function of M/b for different T/b are shown in Fig. 4.
554
+ ���
555
+ ���
556
+ ���
557
+ ���
558
+ ���
559
+ ���
560
+ ���
561
+ ���
562
+ ���
563
+ ���
564
+ ���
565
+ ���
566
+ M
567
+ b
568
+ τs
569
+ Figure 4: Plots of the proper time τs from the horizon to the singularity as a function of M/b
570
+ at different temperatures T/b = 0.05 (red), 0.02 (blue), 0.01 (purple).
571
+ The proper time from the horizon to the singularity in the topological phase is equal
572
+ to the case of Schwarzschild black hole τs = π/4 (e.g. within the difference of order less
573
+ 9
574
+
575
+ than 10−4 between M/b = 0.5 and M/b = 0 at T/b = 0.01). This is expected from
576
+ the fact that in the topological phase at low temperature the interior of the black holes
577
+ match well with the Schwarzschild black hole. In the topologically trivial phase τs is
578
+ monotonically decreasing. Moreover, τs shows a jump behavior and takes a maximum
579
+ value in the critical regime. Note that τs is encoded in the thermal one point function
580
+ of heavy operators in the form of ⟨O⟩ ∝ e−imτs where the complexified mass m has
581
+ Im(m) < 0 [30]. One might use this thermal one point function as the “order” parameter
582
+ for the topological phase transition. The behavior of the proper time also reminds us the
583
+ behavior of the dimensionless information screening length in [14]. One obvious difference
584
+ is that the information screening length is determined by the quantities at the horizon,
585
+ while τs is determined by the geometry from the horizon to the singularity.
586
+ 3
587
+ Inside holographic nodal line semimetal
588
+ In the previous section, we have seen that the interior of the black hole geometries
589
+ for the holographic WSM exhibit interesting behavior. In the topological WSM phase,
590
+ the Kasner exponents of the dual geometries take the same value of the Schwarzschild
591
+ black hole at low temperature, as shown in Fig. 3. Moreover, the dual operator which
592
+ encodes the proper time from the horizon to the singularity could be served as an “order
593
+ parameter” during the topological phase transition, as shown in Fig. 4. To check if these
594
+ behaviors are universal for any topological phase transitions, in this section we study the
595
+ other topological phase transition model from holography, i.e. the holographic NLSM
596
+ model which describes a phase transition from the topological NLSM phase to a trivial
597
+ semimetal phase [5,6].
598
+ The action for the holographic NLSM [6] is
599
+ S =
600
+
601
+ d5x √−g
602
+ � 1
603
+ 2κ2
604
+
605
+ R + 12
606
+ L2
607
+
608
+ − 1
609
+ 4F2 − 1
610
+ 4F 2 + α
611
+ 3 ϵabcdeAa
612
+
613
+ FbcFde + 3FbcFde
614
+
615
+ − (DaΦ)∗(DaΦ) − V1(Φ) − 1
616
+ 6ηϵabcde�
617
+ iBabH∗
618
+ cde − iB∗
619
+ abHcde
620
+
621
+ − V2(Bab) − λ|Φ|2B∗
622
+ abBab
623
+
624
+ ,
625
+ (3.1)
626
+ where Fab = ∂aVb − ∂bVa is the vector gauge field strength. Fab = ∂aAb − ∂bAa is the
627
+ axial gauge field strength. Da = ∇a −iq1Aa is the covariant derivative and q1 is the axial
628
+ charge of scalar field. α is the Chern-Simons coupling. Bab is an antisymmetric complex
629
+ two form field with the field strength
630
+ Habc = ∂aBbc + ∂bBca + ∂cBab − iq2AaBbc − iq2AbBca − iq2AcBab ,
631
+ (3.2)
632
+ 10
633
+
634
+ where q2 is the axial charge of the two form field. η is the Chern-Simons coupling strength
635
+ of the two form field. The introduction of the Chern-Simons terms while not canonical
636
+ kinetic term for the two form field follows from the self-duality condition of the two form
637
+ operator in the weakly coupled theory [6]. The potential terms are chosen as
638
+ V1 = m2
639
+ 1|Φ|2 + λ1
640
+ 2 |Φ|4 ,
641
+ V2 = m2
642
+ 2B∗
643
+ abBab ,
644
+ (3.3)
645
+ where m2
646
+ 1 and m2
647
+ 2 are the mass parameters of the scalar field and the two form field. The
648
+ λ term in the action (3.1) denotes the interaction between the scalar field and the two
649
+ form field. We set 2κ2 = L = 1.
650
+ Similar to the holographic WSM, we focus on the finite temperature solution and take
651
+ the ansatz
652
+ ds2 = −udt2 + dr2
653
+ u + f(dx2 + dy2) + hdz2 ,
654
+ Φ = φ ,
655
+ Bxy = −Byx = Bxy ,
656
+ Btz = −Bzt = iBtz .
657
+ (3.4)
658
+ Plugging the above ansatz into the equations of motion, we could obtain the dynamical
659
+ equations of the fields, which can be found in the appendix B. In the following we choose
660
+ m2
661
+ 1 = −3, m2
662
+ 2 = 1, η = 2 and q1 = q2 = 1, λ = 1, λ1 = 0.1 for simplicity.
663
+ With the following boundary conditions,
664
+ lim
665
+ r→∞ rφ = M ,
666
+ lim
667
+ r→∞
668
+ Bxy
669
+ r
670
+ = lim
671
+ r→∞
672
+ Btz
673
+ r
674
+ = b ,
675
+ (3.5)
676
+ we can integrate the system from the boundary to the horizon. Different from the holo-
677
+ graphic WSM, in holographic NLSM there is no sharp “order parameter” like anomalous
678
+ Hall conductivity. Nevertheless, it was found in [6] that at zero temperature, the dual
679
+ fermionic spectral function shows multiple Fermi surfaces with the topology of nodal lines
680
+ when M/b < (M/b)c while it is gapped when M/b > (M/b)c. This indicates that the
681
+ system undergoes a topological phase transitions from topological NLSM to topologically
682
+ trivial semimetal phase.
683
+ With the regularity condition near the horizon, the system can be further integrated
684
+ to the singularity. In the following we will discuss the interior geometries and singularities
685
+ of the system.
686
+ 11
687
+
688
+ 3.1
689
+ Kasner exponents
690
+ Close to the singularity r → rs, similar to the holographic WSM case we again take the
691
+ ansatz
692
+ u ∼ −u0(r − rs)nu ,
693
+ f ∼ f0(r − rs)nf ,
694
+ h ∼ h0(r − rs)nh ,
695
+ φ ∼ nφ ln(r − rs) , (3.6)
696
+ where u0, f0, h0 and nu, nf, nh, nφ are all constants. The other two matter fields Btz and
697
+ Bxy will be determined by the above ansatz.
698
+ The equations of motion can be simplified close to the singularity under the assump-
699
+ tion that the ignored terms are subleading
700
+ u′′
701
+ u − f ′′
702
+ f + h′
703
+ 2h
704
+ �u′
705
+ u − f ′
706
+ f
707
+
708
+ = 0 ,
709
+ u′′
710
+ 2u + f ′′
711
+ f − f ′2
712
+ 4f 2 + f ′u′
713
+ fu + 1
714
+ 2φ′2 = 0 ,
715
+ f ′2
716
+ 4f 2 + f ′h′
717
+ 2fh + u′
718
+ 2u
719
+ �f ′
720
+ f + h′
721
+ 2h
722
+
723
+ − 1
724
+ 2φ′2 = 0 ,
725
+ φ′′ +
726
+ �f ′
727
+ f + h′
728
+ 2h + u′
729
+ u
730
+
731
+ φ′ = 0 ,
732
+ B′
733
+ tz − η
734
+
735
+ h
736
+ 2f (λφ2)Bxy = 0 ,
737
+ B′
738
+ xy −
739
+ ηf
740
+ 2
741
+
742
+ hu
743
+ (λφ2)Btz = 0 .
744
+ (3.7)
745
+ The first four equations in (3.7) are the same as the ones in holographic WSM. Similarly,
746
+ we obtain
747
+ nh = 2 (1 − nu − nf) ,
748
+ nφ = ±
749
+
750
+ (2nf + nu)(1 − nu) − 3n2
751
+ f
752
+ 2 .
753
+ (3.8)
754
+ From the last two equations in (3.7) we have the following leading order solutions for the
755
+ two form fields near the singularity
756
+ Bxy ∼ Bxy0 + . . . ,
757
+ Btz ∼ Btz0 + . . . ,
758
+ (3.9)
759
+ where the dots are subleading terms of form (r − rs)2−nu−2nf(log(r − rs))2 and (r −
760
+ rs)2nf(log(r − rs))2 respectively. Here we have assumed 2 − nu − 2nf > 0 and nf > 0,
761
+ otherwise the leading solution of the two form field might be divergent. Similar to the
762
+ holographic WSM, these constants of the two form field depend on the scaling symmetry
763
+ of the system.
764
+ 12
765
+
766
+ Note that in (3.7) we have assumed that the ignored terms are subleading. More
767
+ explicitly, we have assumed
768
+ nu < 2 ,
769
+ 2nu + nh < 2 ,
770
+ nu + 2nf < 2 .
771
+ (3.10)
772
+ Note that the last two inequalities of above are consistent with the assumptions used in
773
+ obtaining (3.9). We have checked numerically that the inequalities (3.10) are satisfied for
774
+ the parameters we have considered.
775
+ Similar to the discussion in section 2.2, we can make a coordinate transformation
776
+ (2.13) to write the metric (3.6) into the Kasner form as (2.14) with the parameters (2.16)
777
+ and the Kasner relations (2.17). Here the leading order of the two form fields are constant
778
+ close to the singularity.
779
+ The two conserved charges of the scaling symmetries are
780
+ Q1 = 8
781
+ ηBtzBxy + u
782
+
783
+ h
784
+ (f ′h − fh′) ,
785
+ (3.11)
786
+ Q2 =
787
+ f
788
+
789
+ h
790
+ (u′h − uh′) .
791
+ (3.12)
792
+ Evaluate them at the horizon and at the singularity we obtain
793
+ 8
794
+ ηBxy0Btz0 = u0f0
795
+
796
+ h0(nf − nh)
797
+ (3.13)
798
+ and
799
+ 4πTf1
800
+
801
+ h1 = Ts = u0f0
802
+
803
+ h0(2 − 2nf − 3nu)
804
+ (3.14)
805
+ where s is the density of entropy. We have checked the above relations numerically.
806
+ In Fig. 5, we show the Kasner exponents for the holographic NLSM as functions of
807
+ M/b at different temperature T/b = 0.05 (red), 0.02 (blue), 0.01 (purple). We find that
808
+ at low temperature, the Kasner exponents pt, px, pz of the metric fields in the NLSM
809
+ semimetal phase are almost constant in the topological phase (e.g. within the difference
810
+ of order less than 1% between M/b = 0.5 and M/b = 0 at T/b = 0.01), which is quite
811
+ similar to the holographic WSM, while pφ changes a lot in the topological phase. Note
812
+ that this is consistent with the Kasner relations (2.17) since pφ is small. It is expected that
813
+ at extremely low temperature, the properties of the Kasner exponents in the holographic
814
+ NLSM might be the same as those in the holographic WSM, i.e. all the Kasner exponents
815
+ are constant. Due to numerical difficulty we have not explored such a low temperature
816
+ regime.
817
+ Different from the holographic WSM where the geometry is the same as Schwarzschild
818
+ black hole with a constant nonzero Az when M/b = 0. Here when M/b = 0, in the
819
+ 13
820
+
821
+ ���
822
+ ���
823
+ ���
824
+ ���
825
+ ���
826
+ -����
827
+ -����
828
+ -����
829
+ -����
830
+ -����
831
+ M
832
+ b
833
+ pt
834
+ ���
835
+ ���
836
+ ���
837
+ ���
838
+ ���
839
+ -���
840
+ -���
841
+ -���
842
+ ���
843
+ ���
844
+ ���
845
+ M
846
+ b
847
+
848
+ ���
849
+ ���
850
+ ���
851
+ ���
852
+ ���
853
+ ����
854
+ ����
855
+ ����
856
+ ����
857
+ ����
858
+ ����
859
+ ����
860
+ M
861
+ b
862
+ px
863
+ ���
864
+ ���
865
+ ���
866
+ ���
867
+ ���
868
+ ���
869
+ ���
870
+ ���
871
+ ���
872
+ ���
873
+ M
874
+ b
875
+ pz
876
+ Figure 5: Plots of Kasner exponents for holographic NLSM as a function of M/b. For all cases
877
+ we have T/b = 0.05 (red), 0.02 (blue), 0.01 (purple). The horizontal dashed gray lines represent
878
+ the Kasner exponents for M/b = 0 at T/b = 0.01. The vertical dashed gray lines represent the
879
+ quantum critical point at zero temperature.
880
+ holographic NLSM, due to the fact that the matter fields backreact to the IR geometry
881
+ and the Kasner exponents are no longer the constant exponents of Schwarzschild black
882
+ hole and instead they depend on T/b, as shown in the first three pictures in Fig. 6.
883
+ Nevertheless, at low enough temperature we see that the Kasner exponents are nearly
884
+ constant.
885
+ 0.00
886
+ 0.02
887
+ 0.04
888
+ 0.06
889
+ 0.08
890
+ 0.10
891
+ -0.298
892
+ -0.296
893
+ -0.294
894
+ -0.292
895
+ -0.290
896
+ -0.288
897
+ -0.286
898
+ T
899
+ b
900
+ pt
901
+ 0.00
902
+ 0.02
903
+ 0.04
904
+ 0.06
905
+ 0.08
906
+ 0.10
907
+ 0.182
908
+ 0.184
909
+ 0.186
910
+ 0.188
911
+ 0.190
912
+ 0.192
913
+ T
914
+ b
915
+ px
916
+ 0.00
917
+ 0.02
918
+ 0.04
919
+ 0.06
920
+ 0.08
921
+ 0.10
922
+ 0.916
923
+ 0.918
924
+ 0.920
925
+ 0.922
926
+ T
927
+ b
928
+ pz
929
+ 0.00
930
+ 0.02
931
+ 0.04
932
+ 0.06
933
+ 0.08
934
+ 0.10
935
+ 0.902
936
+ 0.904
937
+ 0.906
938
+ 0.908
939
+ 0.910
940
+ 0.912
941
+ 0.914
942
+ T
943
+ b
944
+ τs
945
+ Figure 6: Plots of Kasner exponents and τs for holographic NLSM as a function of T/b when
946
+ M/b = 0.
947
+ 14
948
+
949
+ 3.2
950
+ Proper time of timelike geodesics
951
+ Similar to the holographic WSM, we can also discuss the proper time from the horizon
952
+ to the singularity in holographic NLSM. In Fig. 7, we show the proper time τs as a
953
+ function of M/b at different temperatures. Again we see that at low temperature, the
954
+ proper time is almost a constant in the topological phase (e.g. within the difference of
955
+ order less than 5‰ between M/b = 0.5 and M/b = 0 at T/b = 0.01), which shows a
956
+ topological behavior under the changes of the systems. Similar to the holographic WSM,
957
+ we could take the operator which encodes the information of τs as the order parameter
958
+ for the topological phase transition in holographic NLSM. In the trivial phase, the proper
959
+ time τs is monotonically decreasing when we increase M/b.
960
+ ���
961
+ ���
962
+ ���
963
+ ���
964
+ ���
965
+ ���
966
+ ���
967
+ ���
968
+ ���
969
+ ���
970
+ ���
971
+ M
972
+ b
973
+ τs
974
+ Figure 7: Plots of the proper time τs from the horizon to the singularity as a function of M/b
975
+ at different temperatures T/b = 0.05 (red), 0.02 (blue), 0.01 (purple).
976
+ 4
977
+ Conclusion and discussion
978
+ We have studied the interior geometries of black holes in two different holographic topo-
979
+ logical semimetals. We find that the singularities of the geometries are of simple Kasner
980
+ form, together with a constant one form gauge potential or constant two form fields.
981
+ In the topological WSM phase, all the Kasner exponents are constant taking values of
982
+ Schwarzschild black hole at low temperature. In the topological NLSM phase, the Kasner
983
+ exponents of the metric fields are also almost constant (the difference is of order less than
984
+ 1% at T/b = 0.01), while the Kasner exponent of the scalar field is small and changes
985
+ a bit in the topological phase. Moreover, we find the proper times from the horizon to
986
+ the singularity are nearly constant in both holographic WSM and holographic NLSM.
987
+ These features seem to be of topological in the sense that they stay as constant during
988
+ 15
989
+
990
+ the changes of physical parameters of the systems. The proper time in the trivial phases
991
+ of the two holographic semimetal decreases when we increase M/b.
992
+ In addition to the above universal behavior, specific behaviors inside the horizon are
993
+ also found. In the topological phase of holographic WSM, we find the oscillations of
994
+ the matter field φ inside the horizon at low temperature. In other phases we have not
995
+ found any oscillations of fields. The Kasner exponents oscillate in the critical regime
996
+ of holographic WSM. There is no oscillation of background fields in holographic NLSM.
997
+ In the trivial phases of the two holographic semimetals, the Kasner exponents behave
998
+ differently, where the details can be found in Fig. 3 and Fig. 5.
999
+ It would be interesting to connect the topological features of Kasner exponents and
1000
+ the proper times in the topological phases of the two holographic semimetals to the
1001
+ topological invariants. It is known that they can be extracted from the correlators of
1002
+ heavy operators. It is very interesting to determine the precise observables associated
1003
+ to these quantities to understand the role played by topology. This would shed light
1004
+ on the universal theories describing the topological semimetals. Meanwhile, it is also
1005
+ interesting to check the behavior of these physical quantities in the topological phases
1006
+ of other holographic topological semimetals, e.g. [18, 25], to check if they are universal
1007
+ feature of topological semimetals.
1008
+ Acknowledgments
1009
+ We are grateful to Matteo Baggioli, Karl Landsteiner, Ya-Wen Sun, Xin-Meng Wu, Jun-
1010
+ Kun Zhao for useful discussions. This work is supported by the National Natural Science
1011
+ Foundation of China grant No.11875083.
1012
+ A
1013
+ Equations in holographic WSM
1014
+ In this appendix we list the useful equations for calculating the geometries in holographic
1015
+ WSM in section 2.
1016
+ 16
1017
+
1018
+ The equations of motion for the action (2.1) are
1019
+ Rab − 1
1020
+ 2gab(R + 12) − Tab = 0 ,
1021
+ ∇bF ba + αϵabcde(FbcFde + FbcFde) − iq (Φ∗(DaΦ) − Φ(DaΦ)∗) = 0 ,
1022
+ ∇bFba + 2αϵabcdeFbcFde = 0 ,
1023
+ DaDaΦ − m2Φ − λΦ∗Φ2 = 0 ,
1024
+ (A.1)
1025
+ where
1026
+ Tab =1
1027
+ 2(FacF c
1028
+ b − 1
1029
+ 4gabF2) + 1
1030
+ 2(FacF c
1031
+ b − 1
1032
+ 4gabF 2) + 1
1033
+ 2((DaΦ)∗DbΦ + (DbΦ)∗DaΦ)
1034
+ − 1
1035
+ 2gab((DcΦ)∗DcΦ + V (Φ))
1036
+ (A.2)
1037
+ and DaΦ = ∂aΦ − iqAaΦ.
1038
+ There are three different scaling symmetries of the system
1039
+ (x, y) → a(x, y) , f → a−2f ;
1040
+ (A.3)
1041
+ z → az , h → a−2h , Az → a−1Az ;
1042
+ (A.4)
1043
+ r → ar , (t, x, y, z) → a−1(t, x, y, z) , (u, f, h) → a2(u, f, h) , Az → aAz .
1044
+ (A.5)
1045
+ For the ansatz (2.2), we have equations
1046
+ u′′ + h′
1047
+ 2hu′ −
1048
+
1049
+ f ′′ + f ′h′
1050
+ 2h
1051
+ �u
1052
+ f = 0 ,
1053
+ f ′′
1054
+ f + u′′
1055
+ 2u − f ′2
1056
+ 4f 2 + f ′u′
1057
+ fu − 6
1058
+ u + φ2
1059
+ 2u
1060
+
1061
+ m2 + λ
1062
+ 2φ2 − q2A2
1063
+ z
1064
+ h
1065
+
1066
+ − A′2
1067
+ z
1068
+ 4h + 1
1069
+ 2φ′2 = 0 ,
1070
+ 1
1071
+ 2φ′2 + 6
1072
+ u − u′
1073
+ 2u
1074
+ �f ′
1075
+ f + h′
1076
+ 2h
1077
+
1078
+ − f ′h′
1079
+ 2fh − f ′2
1080
+ 4f 2 + A′2
1081
+ z
1082
+ 4h − φ2
1083
+ 2u
1084
+
1085
+ m2 + λ
1086
+ 2φ2 − q2A2
1087
+ z
1088
+ h
1089
+
1090
+ = 0 ,
1091
+ A′′
1092
+ z +
1093
+ �f ′
1094
+ f − h′
1095
+ 2h + u′
1096
+ u
1097
+
1098
+ A′
1099
+ z − 2q2φ2
1100
+ u
1101
+ Az = 0 ,
1102
+ φ′′ +
1103
+ �f ′
1104
+ f + h′
1105
+ 2h + u′
1106
+ u
1107
+
1108
+ φ′ − 1
1109
+ u
1110
+ �q2A2
1111
+ z
1112
+ h
1113
+ + m2 + λφ2�
1114
+ φ = 0 .
1115
+ (A.6)
1116
+ Near the horizon r = rh, the fields can be expanded as follows,
1117
+ u = 4πT(r − rh) + · · · ,
1118
+ f = f1 − f1Az2
1119
+ 2m2φ2
1120
+ 1 + λφ4
1121
+ 1 − 24
1122
+ 6Az1q2φ2
1123
+ 1
1124
+ (r − rh) + · · · ,
1125
+ h = h1 −
1126
+
1127
+ Az1Az2 + h1Az2
1128
+ 2m2φ2
1129
+ 1 + λφ4
1130
+ 1 − 24
1131
+ 6Az1q2φ2
1132
+ 1
1133
+
1134
+ (r − rh) + · · · ,
1135
+ Az = Az1 + Az2(r − rh) + · · · ,
1136
+ φ = φ1 + Az2
1137
+ A2
1138
+ z1q2 + h1(m2 + λφ2
1139
+ 1)
1140
+ 2Az1h1q2φ2
1141
+ 1
1142
+ (r − rh) + · · · ,
1143
+ (A.7)
1144
+ 17
1145
+
1146
+ where T =
1147
+ φ2
1148
+ 1q2Az1
1149
+ 2πAz2 . Note that there is a shift symmetry r → r + α along the radial
1150
+ direction which can be used to fix rh to be any value and we choose rh = 1. There are
1151
+ five free parameters T, f1, h1, Az1, φ1 and we can use the scaling symmetries (A.3, A.4) to
1152
+ fix f1 = 1, h1 = 1 respectively. Then we can shoot three parameters T, Az1, φ1 to obtain
1153
+ the parameters T, M, b of boundary field theory, i.e. the two dimensionless parameters
1154
+ T/b, M/b according the scaling symmetry in (A.5) (we work in unit b = 1).
1155
+ When r → ∞, the UV expansions are
1156
+ u = r2 − M 2
1157
+ 3
1158
+ + M 4(2 + 3λ)
1159
+ 18
1160
+ ln r
1161
+ r2 − Mb
1162
+ r2 + · · · ,
1163
+ f = r2 − M 2
1164
+ 3
1165
+ + M 4(2 + 3λ)
1166
+ 18
1167
+ ln r
1168
+ r2 + f3
1169
+ r2 + · · · ,
1170
+ h = r2 − M 2
1171
+ 3
1172
+ + M 4(2 + 3λ) + 9b2M 2q2
1173
+ 18
1174
+ ln r
1175
+ r2 + h3
1176
+ r2 + · · · ,
1177
+ Az = b − bM 2q2ln r
1178
+ r2 + η
1179
+ r2 + · · · ,
1180
+ φ = M
1181
+ r − (3b2Mq2 + 2M 3 + 3λM 3))
1182
+ 6
1183
+ ln r
1184
+ r3 + O
1185
+ r3 + · · · ,
1186
+ (A.8)
1187
+ where h3 =
1188
+ 1
1189
+ 72M(−72O + 9b2Mq2 + M 3(14 + 9λ)) − 2f3.
1190
+ Note that in order to match the expansion (A.8) we should use the shift symmetry of
1191
+ the system r → r + α which could change the location of the horizon/singularity.
1192
+ B
1193
+ Equations in holographic NLSM
1194
+ In this appendix, we list the calculations for the geometries in holographic NLSM in
1195
+ section 3.
1196
+ The equations of motion for the action (3.1) are
1197
+ Rab − 1
1198
+ 2gab(R + 12) − Tab = 0 ,
1199
+ ∇bFba + 2αϵabcdeFbcFde = 0 ,
1200
+ ∇bF ba + αϵabcde(FbcFde + FbcFde) − iq1 (Φ∗DaΦ − (DaΦ)∗Φ) + q2
1201
+ η ϵabcdeBbcB∗
1202
+ de = 0 ,
1203
+ DaDaΦ − ∂Φ∗V1 − λΦB∗
1204
+ abBab = 0 ,
1205
+ i
1206
+ 3ηϵabcdeHcde − m2
1207
+ 2Bab − λΦ∗ΦBab = 0 ,
1208
+ (B.1)
1209
+ 18
1210
+
1211
+ where
1212
+ Tab = 1
1213
+ 2(FacF c
1214
+ b − 1
1215
+ 4gabF2) + 1
1216
+ 2(FacF c
1217
+ b − 1
1218
+ 4gabF 2) + 1
1219
+ 2
1220
+
1221
+ (DaΦ)∗DbΦ + (DbΦ)∗DaΦ
1222
+
1223
+ + (m2
1224
+ 2 + λ|Φ|2)(B∗
1225
+ acB c
1226
+ b + B∗
1227
+ bcB c
1228
+ a ) − 1
1229
+ 2gab
1230
+
1231
+ (DcΦ)∗DcΦ + V1 + V2 + λ|Φ|2B∗
1232
+ cdBcd�
1233
+ .
1234
+ (B.2)
1235
+ With the ansatz (3.4), the equations are
1236
+ u′′
1237
+ u − f ′′
1238
+ f + h′
1239
+ 2h
1240
+ �u′
1241
+ u − f ′
1242
+ f
1243
+
1244
+ − 4
1245
+ u(m2
1246
+ 2 + λφ2)
1247
+ �B2
1248
+ tz
1249
+ uh + B2
1250
+ xy
1251
+ f 2
1252
+
1253
+ = 0 ,
1254
+ u′′
1255
+ 2u + f ′′
1256
+ f − f ′2
1257
+ 4f 2 + f ′u′
1258
+ fu − 6
1259
+ u + 1
1260
+ u(m2
1261
+ 2 + λφ2)
1262
+ �B2
1263
+ tz
1264
+ uh + B2
1265
+ xy
1266
+ f 2
1267
+
1268
+ +φ2
1269
+ 2u
1270
+
1271
+ m2
1272
+ 1 + λ1φ2
1273
+ 2
1274
+
1275
+ + φ′2
1276
+ 2 = 0 ,
1277
+ f ′2
1278
+ 4f 2 + f ′h′
1279
+ 2fh + u′
1280
+ 2u
1281
+ �f ′
1282
+ f + h′
1283
+ 2h
1284
+
1285
+ − 6
1286
+ u + 1
1287
+ u(m2
1288
+ 2 + λφ2)
1289
+
1290
+ −B2
1291
+ tz
1292
+ uh + B2
1293
+ xy
1294
+ f 2
1295
+
1296
+ +φ2
1297
+ 2u
1298
+
1299
+ m2
1300
+ 1 + λ1φ2
1301
+ 2
1302
+
1303
+ − 1
1304
+ 2φ′2 = 0 ,
1305
+ B′
1306
+ tz − η
1307
+
1308
+ h
1309
+ 2f (m2
1310
+ 2 + λφ2)Bxy = 0 ,
1311
+ B′
1312
+ xy −
1313
+ ηf
1314
+ 2
1315
+
1316
+ hu
1317
+ (m2
1318
+ 2 + λφ2)Btz = 0 ,
1319
+ φ′′ + φ′
1320
+ �u′
1321
+ u + f ′
1322
+ f + h′
1323
+ 2h
1324
+
1325
+
1326
+
1327
+ m2
1328
+ 1 + λ1φ2 − 2λB2
1329
+ tz
1330
+ uh
1331
+ + 2λB2
1332
+ xy
1333
+ f 2
1334
+ � φ
1335
+ u = 0 .
1336
+ (B.3)
1337
+ There are three different scaling symmetries of the system
1338
+ (x, y) → a(x, y) , f → a−2f , Bxy → a−2Bxy ;
1339
+ (B.4)
1340
+ z → az , h → a−2h , Btz → a−1Btz ;
1341
+ (B.5)
1342
+ r → ar , (t, x, y, z) → a−1(t, x, y, z) , (u, f, h, Bxy, Btz) → a2(u, f, h, Bxy, Btz) .
1343
+ (B.6)
1344
+ 19
1345
+
1346
+ Near the horizon r → rh, the fields can be expanded as follows,
1347
+ u = 4πT(r − rh) + · · · ,
1348
+ f = f1 − 4Bxy2
1349
+
1350
+ 8B2
1351
+ xy1(m2
1352
+ 2 + λφ2
1353
+ 1) + f 2
1354
+ 1(2m2
1355
+ 1φ2
1356
+ 1 + λ1φ4
1357
+ 1 − 24)
1358
+
1359
+ 3Bxy1f1η2(m2
1360
+ 2 + λφ2
1361
+ 1)2
1362
+ (r − rh) + · · · ,
1363
+ h = h1 − 4h1Bxy2
1364
+
1365
+ 4B2
1366
+ xy1(m2
1367
+ 2 + λφ2
1368
+ 1) − f 2
1369
+ 1(2m2
1370
+ 1φ2
1371
+ 1 + λ1φ4
1372
+ 1 − 24)
1373
+
1374
+ 3Bxy1f1η2(m2
1375
+ 2 + λφ2
1376
+ 1)2
1377
+ (r − rh) + · · · ,
1378
+ Bxy = Bxy1 + Bxy2(r − rh) + · · · ,
1379
+ Btz = η√h1Bxy1(m2
1380
+ 2 + λφ2
1381
+ 1)
1382
+ 2f1
1383
+ (r − rh) + · · · ,
1384
+ φ = φ1 + 4Bxy2φ1
1385
+
1386
+ 2λB2
1387
+ xy1 + f 2
1388
+ 1(m2
1389
+ 1 + λ1φ2
1390
+ 1)
1391
+
1392
+ Bxy1f 2
1393
+ 1η2(m2
1394
+ 2 + λφ2
1395
+ 1)2
1396
+ (r − rh) + · · · ,
1397
+ (B.7)
1398
+ where T = Bxy1η2(m2
1399
+ 2+λφ2
1400
+ 1)2
1401
+ 16πBxy2
1402
+ . The strategy of the numerics the same as the holographic
1403
+ WSM. We first use the shift symmetry r → r + α to fix rh = 1. Then we also have five
1404
+ free parameters T, f1, h1, Bxy1, φ1 and we can use the scaling symmetries (B.4, B.5) to
1405
+ fix f1 = 1, h1 = 1 respectively. After that we have only three near horizon parameters
1406
+ T, Bxy1, φ1, from which we obtain T, M, b in the dual field theory, which are equivalently
1407
+ two dimensionless parameters T/b, M/b according the scaling symmetry (B.6).
1408
+ Near the boundary r → ∞, we have
1409
+ u = r2 − 2b2 − M 2
1410
+ 3
1411
+ + 8b4 + M 4(2 + 3λ1)
1412
+ 18
1413
+ ln r
1414
+ r2 − Mb
1415
+ r2 + · · · ,
1416
+ f = r2 − M 2
1417
+ 3
1418
+ + 8b4 + M 4(2 + 3λ1)
1419
+ 18
1420
+ ln r
1421
+ r2 + f3
1422
+ r2 + · · · ,
1423
+ h = r2 − 2b2 − M 2
1424
+ 3
1425
+ + 8b4 + M 4(2 + 3λ1)
1426
+ 18
1427
+ ln r
1428
+ r2 + h3
1429
+ r2 + · · · ,
1430
+ Bxy = br + 2b3 ln r
1431
+ r
1432
+ + b2
1433
+ r + · · · ,
1434
+ Btz = br − 2b3 ln r
1435
+ r
1436
+ − b (b2 + M 2(1 + λ)) + b2
1437
+ r
1438
+ + · · · ,
1439
+ φ = M
1440
+ r − M 3(2 + 3λ1)
1441
+ 6
1442
+ ln r
1443
+ r3 + O
1444
+ r3 + · · · ,
1445
+ (B.8)
1446
+ where b2 =
1447
+ 1
1448
+ 48b (−56b4 + 72(2f3 + h3) − 8b2M 2(2 + 3λ) − M 4(14 + 9λ1) + 72MO).
1449
+ Note that to match the expansion (B.8) we should use the shift symmetry r → r + α
1450
+ which could change the location of the horizon/singularity .
1451
+ 20
1452
+
1453
+ References
1454
+ [1] J. McGreevy, Generalized Symmetries in Condensed Matter, [arXiv:2204.03045].
1455
+ [2] X. -G. Wen, Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89, 41004
1456
+ (2017) [arXiv:1610.03911].
1457
+ [3] K. Landsteiner and Y. Liu, The holographic Weyl semi-metal, Phys. Lett. B 753
1458
+ (2016), 453-457 [arXiv:1505.04772].
1459
+ [4] K. Landsteiner, Y. Liu and Y. W. Sun, Quantum phase transition between a topo-
1460
+ logical and a trivial semimetal from holography, Phys. Rev. Lett. 116 (2016) no.8,
1461
+ 081602 [arXiv:1511.05505].
1462
+ [5] Y. Liu and Y. W. Sun, Topological nodal line semimetals in holography, JHEP 12
1463
+ (2018), 072 [arXiv:1801.09357].
1464
+ [6] Y. Liu and X. M. Wu, An improved holographic nodal line semimetal, JHEP 05
1465
+ (2021), 141 [arXiv:2012.12602].
1466
+ [7] Y. Liu and Y. W. Sun, Topological invariants for holographic semimetals, JHEP 10
1467
+ (2018), 189 [arXiv:1809.00513].
1468
+ [8] M. Ammon, M. Heinrich, A. Jim´enez-Alba and S. Moeckel, Surface States
1469
+ in Holographic Weyl Semimetals, Phys. Rev. Lett. 118 (2017) no.20, 201601
1470
+ [arXiv:1612.00836].
1471
+ [9] K. Landsteiner, Y. Liu and Y. W. Sun, Holographic topological semimetals, Sci.
1472
+ China Phys. Mech. Astron. 63 (2020) no.5, 250001 [arXiv:1911.07978].
1473
+ [10] K. Landsteiner, Y. Liu and Y. W. Sun, Odd viscosity in the quantum critical re-
1474
+ gion of a holographic Weyl semimetal, Phys. Rev. Lett. 117 (2016) no.8, 081604
1475
+ [arXiv:1604.01346].
1476
+ [11] C. Copetti, J. Fern´andez-Pend´as and K. Landsteiner, Axial Hall effect and univer-
1477
+ sality of holographic Weyl semi-metals, JHEP 02 (2017), 138 [arXiv:1611.08125].
1478
+ [12] G. Grignani, A. Marini, F. Pena-Benitez and S. Speziali, AC conductivity for a
1479
+ holographic Weyl Semimetal, JHEP 03, 125 (2017) [arXiv:1612.00486].
1480
+ [13] M. Ammon, M. Baggioli, A. Jim´enez-Alba and S. Moeckel, A smeared quantum
1481
+ phase transition in disordered holography, JHEP 04, 068 (2018) [arXiv:1802.08650].
1482
+ [14] M. Baggioli, B. Padhi, P. W. Phillips and C. Setty, Conjecture on the Butterfly Ve-
1483
+ locity across a Quantum Phase Transition, JHEP 07, 049 (2018) [arXiv:1805.01470].
1484
+ [15] Y. Liu and J. Zhao, Weyl semimetal/insulator transition from holography, JHEP
1485
+ 12, 124 (2018) [arXiv:1809.08601].
1486
+ 21
1487
+
1488
+ [16] X. Ji, Y. Liu and X. M. Wu, Chiral vortical conductivity across a topologi-
1489
+ cal phase transition from holography, Phys. Rev. D 100, no.12, 126013 (2019)
1490
+ [arXiv:1904.08058].
1491
+ [17] G. Song, J. Rong and S. J. Sin, Stability of topology in interacting Weyl semi-metal
1492
+ and topological dipole in holography, JHEP 10, 109 (2019) [arXiv:1904.09349].
1493
+ [18] V. Juriˇci´c, I. Salazar Landea and R. Soto-Garrido, Phase transitions in a holographic
1494
+ multi-Weyl semimetal, JHEP 07, 052 (2020) [arXiv:2005.10387].
1495
+ [19] M. Baggioli and D. Giataganas, Detecting Topological Quantum Phase Transitions
1496
+ via the c-Function, [arXiv:2007.07273].
1497
+ [20] B. Kiczek, M. Rogatko and K. I. Wysoki´nski, Anomalous Hall conductivity of the
1498
+ holographic Z2 Dirac semimetals, [arXiv:2010.13095].
1499
+ [21] K. Bitaghsir Fadafan, A. O’Bannon, R. Rodgers and M. Russell, A Weyl semimetal
1500
+ from AdS/CFT with flavour, JHEP 04 (2021), 162 [arXiv:2012.11434].
1501
+ [22] J. Zhao, Momentum relaxation in a holographic Weyl semimetal, Phys. Rev. D 104,
1502
+ no.6, 066003 (2021).
1503
+ [23] N. Grandi, V. Juriˇci´c, I. Salazar Landea and R. Soto-Garrido, Towards holographic
1504
+ flat bands, JHEP 05 (2021), 123 [arXiv:2103.01690].
1505
+ [24] R. Rodgers, E. Mauri, U. G¨ursoy and H. T. C. Stoof, Thermodynamics and transport
1506
+ of holographic nodal line semimetals, JHEP 11 (2021), 191 [arXiv:2109.07187].
1507
+ [25] X. Ji, Y. Liu, Y. W. Sun and Y. L. Zhang, A Weyl-Z2 semimetal from holography,
1508
+ JHEP 12 (2021), 066 [arXiv:2109.05993].
1509
+ [26] J. Zhao, Momentum relaxation of holographic Weyl semimetal from massive gravity,
1510
+ Eur. Phys. J. C 82 (2022) no.4, 300 [arXiv:2111.14068].
1511
+ [27] N. Grandi, V. Juriˇci´c, I. S. Landea and R. Soto-Garrido, Engineering holographic
1512
+ flat fermionic bands, Phys. Rev. D 105 (2022) no.8, L081902 [arXiv:2112.12198].
1513
+ [28] L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The Black hole singularity in
1514
+ AdS / CFT, JHEP 02, 014 (2004) [arXiv:hep-th/0306170].
1515
+ [29] G. Festuccia and H. Liu, Excursions beyond the horizon: Black hole singularities in
1516
+ Yang-Mills theories. I., JHEP 04 (2006), 044 [arXiv:hep-th/0506202].
1517
+ [30] M. Grinberg and J. Maldacena, Proper time to the black hole singularity from thermal
1518
+ one-point functions, JHEP 03 (2021), 131 [arXiv:2011.01004].
1519
+ [31] Y. Liu, H. D. Lyu and A. Raju, Black hole singularities across phase transitions,
1520
+ JHEP 10 (2021), 140 [arXiv:2108.04554].
1521
+ [32] A. Frenkel, S. A. Hartnoll, J. Kruthoff and Z. D. Shi, Holographic flows from CFT
1522
+ to the Kasner universe, JHEP 08 (2020), 003 [arXiv:2004.01192].
1523
+ 22
1524
+
1525
+ [33] S. A. Hartnoll, G. T. Horowitz, J. Kruthoff and J. E. Santos, Gravitational du-
1526
+ als to the grand canonical ensemble abhor Cauchy horizons, JHEP 10 (2020), 102
1527
+ [arXiv:2006.10056].
1528
+ [34] S. A. Hartnoll, G. T. Horowitz, J. Kruthoff and J. E. Santos, Diving into a holo-
1529
+ graphic superconductor, SciPost Phys. 10 (2021) no.1, 009 [arXiv:2008.12786].
1530
+ [35] Y. Liu and H. D. Lyu, Interior of helical black holes, JHEP 09 (2022), 071
1531
+ [arXiv:2205.14803].
1532
+ [36] R. G. Cai, L. Li and R. Q. Yang, No Inner-Horizon Theorem for Black Holes with
1533
+ Charged Scalar Hair, [arXiv:2009.05520].
1534
+ [37] Y. Q. Wang, Y. Song, Q. Xiang, S. W. Wei, T. Zhu and Y. X. Liu, Holographic flows
1535
+ with scalar self-interaction toward the Kasner universe, [arXiv:2009.06277].
1536
+ [38] Y. S. An, L. Li and F. G. Yang, No Cauchy horizon theorem for nonlinear electrody-
1537
+ namics black holes with charged scalar hairs, Phys. Rev. D 104 (2021) no.2, 024040
1538
+ [arXiv:2106.01069].
1539
+ [39] N. Grandi and I. Salazar Landea, Diving inside a hairy black hole, JHEP 05 (2021),
1540
+ 152 [arXiv:2102.02707].
1541
+ [40] S. A. H. Mansoori, L. Li, M. Rafiee and M. Baggioli, What’s inside a hairy black
1542
+ hole in massive gravity? [arXiv:2108.01471].
1543
+ [41] O. J. C. Dias, G. T. Horowitz and J. E. Santos, Inside an asymptotically flat hairy
1544
+ black hole, JHEP 12, 179 (2021) [arXiv:2110.06225].
1545
+ [42] L. Sword and D. Vegh, Kasner geometries inside holographic superconductors,
1546
+ [arXiv:2112.14177].
1547
+ [43] R. G. Cai, C. Ge, L. Li and R. Q. Yang, Inside anisotropic black hole with vector
1548
+ hair, JHEP 02 (2022), 139 [arXiv:2112.04206].
1549
+ [44] M. Henneaux, The final Kasner regime inside black holes with scalar or vector hair,
1550
+ [arXiv:2202.04155].
1551
+ [45] E. Caceres, A. Kundu, A. K. Patra and S. Shashi, Trans-IR Flows to Black Hole
1552
+ Singularities, [arXiv:2201.06579].
1553
+ [46] A. Bhattacharya, A. Bhattacharyya, P. Nandy and A. K. Patra, Bath deforma-
1554
+ tions, islands, and holographic complexity, Phys. Rev. D 105 (2022) no.6, 066019
1555
+ [arXiv:2112.06967].
1556
+ [47] Y. S. An, L. Li, F. G. Yang and R. Q. Yang, Interior Structure and Complexity
1557
+ Growth Rate of Holographic Superconductor from M-Theory, [arXiv:2205.02442].
1558
+ [48] R. Auzzi, S. Bolognesi, E. Rabinovici, F. I. S. Massolo and G. Tallarita, On the time
1559
+ dependence of holographic complexity for charged AdS black holes with scalar hair,
1560
+ [arXiv:2205.03365].
1561
+ 23
1562
+
1563
+ [49] M. Mirjalali, S. A. Hosseini Mansoori, L. Shahkarami and M. Rafiee, Probing inside a
1564
+ charged hairy black hole in massive gravity, JHEP 09 (2022), 222 [arXiv:2206.02128].
1565
+ [50] S.
1566
+ A.
1567
+ Hartnoll,
1568
+ Wheeler-DeWitt
1569
+ states
1570
+ of
1571
+ the
1572
+ AdS-Schwarzschild
1573
+ interior,
1574
+ [arXiv:2208.04348].
1575
+ [51] E. Caceres and S. Shashi, Anisotropic Flows into Black Holes, [arXiv:2209.06818].
1576
+ [52] S. A. Hartnoll and N. Neogi,
1577
+ AdS Black Holes with a Bouncing Interior,
1578
+ [arXiv:2209.12999].
1579
+ [53] L. Sword and D. Vegh, What lies beyond the horizon of a holographic p-wave super-
1580
+ conductor, JHEP 12 (2022), 045 [arXiv:2210.01046].
1581
+ 24
1582
+
7tAzT4oBgHgl3EQfgfwd/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tE1T4oBgHgl3EQfUAOX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba027327a1cbcbe1c8176e663473591b708ee243a9642ce6034fab47a3694a9a
3
+ size 47879
8tFLT4oBgHgl3EQftS_u/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbe37dc956f1f6ec3ff8a22bc0d373e2efc3918c16e8c5120c9b18e924d70fa6
3
+ size 123322
99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40a4bd9dc3ef14617161f6d174353d937f95e5ddfb8b0d5539460b39b55c6280
3
+ size 281362
99FST4oBgHgl3EQfbzgH/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1150bb9f7ff920e06527263e0bdc60292aeff9ff0918a170a91c447d8963e4a
3
+ size 158531
9NAyT4oBgHgl3EQfqPh6/content/tmp_files/2301.00539v1.pdf.txt ADDED
@@ -0,0 +1,1655 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+
4
+
5
+
6
+
7
+
8
+
9
+
10
+ Statistical Machine Translation for Indic
11
+ Languages
12
+ Sudhansu Bala Das, Divyajoti Panda, Tapas Kumar Mishra,
13
+ and Bidyut Kr. Patra
14
+ National Institute of Technology(NIT), Rourkela, Odisha,
15
+ India
16
+ Indian Institute of Technology (IIT), Varanasi, Uttar Pradesh,
17
+ India
18
+
19
+
20
+ Abstract
21
+ Machine Translation (MT) system generally aims at automatic
22
+ representation of source language into target language retaining the
23
+ originality of context using various Natural Language Processing (NLP)
24
+ techniques. Among various NLP methods, Statistical Machine Trans-
25
+ lation (SMT) is a very popular and successful architecture used for
26
+ both low as well as high-resource languages. SMT uses probabilis-
27
+ tic and statistical techniques to analyze information and conversion.
28
+ This paper canvasses about the development of bilingual SMT mod-
29
+ els for translating English to fifteen low-resource Indian Languages
30
+ (ILs) and vice versa. At the outset, all 15 languages are briefed with
31
+ a short description related to our experimental need. Further, a de-
32
+ tailed analysis of Samanantar and OPUS dataset for model building,
33
+ along with standard benchmark dataset (Flores-200) for fine-tuning
34
+ and testing, is done as a part of our experiment. Different preprocess-
35
+ ing approaches are proposed in this paper to handle the noise of the
36
+ dataset. To create the system, MOSES open-source SMT toolkit is
37
+ explored. “Distance” reordering is utilized with the aim to understand
38
+ the rules of grammar and context-dependent adjustments through a
39
+
40
+ 2
41
+
42
+
43
+
44
+
45
+
46
+ phrase reordering categorization framework. In our experiment, the
47
+ quality of the translation is evaluated using standard metrics such as
48
+ BLEU, METEOR, and RIBES.
49
+
50
+ 1 Introduction
51
+ Technology reaches new heights through its journey from the origins of ideas
52
+ to their full-scale practical implementation. One such journey is heading to-
53
+ wards elimination of language barrier in order to establish a seamless social
54
+ communication in every domain. In this regard, advancement on relevant
55
+ fields such as Natural Language Processing (NLP), Machine Learning (ML)
56
+ and Artificial Intelligence (AI) based Language Modelling (LM) significantly
57
+ contributes for evolving a flawless automatic Machine Translation (MT) sys-
58
+ tem (Dorr et al ( 2004)). Irrespective of various heuristic approaches to
59
+ maintain both lexical and contextual interpretation of source language(s)
60
+ onto the translated target language(s), it is still challenging to cope with
61
+ required fluency, adequacy, accent, and overall accuracy (Chapelle et al (
62
+ 2010)). However, it is feasible with the advent of modern NLP (AI-based)
63
+ approaches wherein a high-quality and high resource (i.e. large quantity
64
+ of corpora available) parallel corpus (translation pairs in source and target
65
+ languages) is required to train a good translation system. Hence, for high-
66
+ resource languages having massive digital footprint across the globe, MT sys-
67
+ tems prove to be quite efficient with adequate training. On the other hand,
68
+ it becomes very complicated for low-resource languages suffering from uni-
69
+ versal recognition and scanty digital presence. Such imbalance often leads to
70
+ poor-quality translation in presence of low-resource language(s) in the form
71
+ of either target or source. Therefore, MT systems need to understand the
72
+ syntax (rules to combine words), semantics (meaning of words and combi-
73
+ nations), and morphology (rules to cover morphemes - smallest meaningful
74
+ units - into words) of such low-resource languages (Somers (2011)).
75
+ Based on the heuristic paradigms, MT models are classified into rule-based
76
+ (RBMT), example-based (EBMT), statistical (SMT), and neural (NMT) sys-
77
+ tems (Tripathi et al (2010)). Each has its own advantages and disadvantages.
78
+ RBMT models follow a set of rules to define a language and the interaction
79
+ between different linguistic devices (words, phrases, sentences) in the lan-
80
+ guage (Jussà et al (2012), Michael et al (2000)). These sets of rules and
81
+ systems defined for a translation in a language pair are hard-coded on the
82
+
83
+ 3
84
+
85
+
86
+
87
+
88
+
89
+ machine. The linguistic information used in an RBMT model is mainly
90
+ the target and source languages collected from unilingual (one language),
91
+ bilingual (two languages), or multilingual (more than two languages) dic-
92
+ tionaries. In addition, the model also uses grammar covering the syntactic,
93
+ semantic, and morphological regularities of each language. However, a well-
94
+ built RBMT model requires highly skilled and expert human labour due to
95
+ its complexity making it hard to build. In addition, the ambiguous proper-
96
+ ties of languages make them prone to take more time and efforts to resolve,
97
+ especially in large and complex models. RBMT models require a lot of effort
98
+ to be made functional in day-to-day life. Hence, the need for more efficient
99
+ translation systems than RBMT still persists. EBMT methods make use of a
100
+ large number of translation examples (John (2005)). Notably, EBMT mod-
101
+ els make use of bilingual corpora manipulation, i.e. the breaking down of
102
+ a bilingual corpus into smaller parts, translating those parts into the target
103
+ language, and recompiling it to form whole translated sentences. They do
104
+ not account much for the syntax, semantic and morphological analysis of the
105
+ target and source language (like RBMT models). In contrast, SMT is better
106
+ when compared to RBMT and EBMT models, as it does not require human
107
+ intervention (Adam (2008)). It is a way of translation wherein a statistical-
108
+ based learning algorithm is applied to a large bilingual corpus that helps
109
+ the machine learn the translation. This method also enables the machine to
110
+ translate sentences not encountered by the machine during its training and
111
+ testing. The objective of SMT is to convert an input word sequence from the
112
+ source language into the target language. It has dominated academic MT
113
+ research and a portion of the commercial MT sector in less than two decades.
114
+ On the other hand, neural machine translation (NMT) is performed using a
115
+ neural network (NN) (Stasimioti (2020)). Unlike SMT, NMT does not have a
116
+ distinct translation model, language model, or model for reordering. Instead,
117
+ it has a single sequence model that determines one word at a time. The pre-
118
+ diction is based on the source sentence effort previously generated sequence
119
+ in the target language. NMT is a deep learning-based method of machine
120
+ learning that utilizes a large NN that relies on word vector representations.
121
+ Even though the NMT has achieved remarkable results in a few trans-
122
+ lation experiments using high-resource language, researchers are unsure if
123
+ the NMT could actually replace SMT and if its success would extend to
124
+ other tasks. Eventually, the experiment of (Michał (2016)) on the corpus
125
+ of the United Nations (consisting of 15 low-resource languages) brings the
126
+ fact. From the result of his experiment, it is evident that the performance of
127
+
128
+ 4
129
+
130
+
131
+
132
+
133
+
134
+ SMT is better than that of NMT for the majority of cases, as measured by
135
+ BLEU score. Many researchers (Lohar et al (2019), Zhou et al (2017), Wang
136
+ et al (2017), Castilho et al (2017)) have pointed out various disadvantages
137
+ of NMT over SMT using low resource language, such as the fact that NMT
138
+ requires more corpus and resources than SMT. In comparison with SMT,
139
+ NMT training typically takes longer. Additionally, research has shown that
140
+ when there is a domain incompatibility between testing and training data,
141
+ SMT performance is superior to that of NMT (Xing et al (2018), Mahata et
142
+ al (2018)). Long sentences are another area where SMT excels.
143
+ English and ILs are languages with less parallel text data, which motivates us
144
+ to work with ILs. This research examines the effectiveness of SMT systems on
145
+ low-resource language pairs, of which many are rarely worked on. The dataset
146
+ used in our experiment for all fifteen Indian languages is tested for the first
147
+ time for all languages using SMT. Hence, the objective of this work is to build
148
+ an MT system using SMT for languages such as Assamese (AS), Malayalam
149
+ (ML), Bengali (BN), Marathi (MR), Gujarati (GU), Kannada (KN), Hindi
150
+ (HI), Oriya (OR), Punjabi (PA), Telugu (TE), Sindhi (SD), Sinhala (SI),
151
+ Nepali (NE), Tamil (TA), and Urdu (UR) to English (EN) and vice versa and
152
+ to check the effectiveness of SMT with low-resource language pairs.
153
+ Our main goal is to develop an MT system for low-resource languages, i.e., ILs,
154
+ that can serve as a baseline system. The following is a summary of our
155
+ work’s main contributions:
156
+ • To the best of our knowledge, this work is the first attempt to use SMT
157
+ with the Samanantar and OPUS Dataset to investigate the MT for all
158
+ fifteen IL-EN and EN-IL pairs (both directions), including both the
159
+ Dravidian and Indo-Aryan groups.
160
+ • To bring forth the linguistic approach of ILs in terms of translation.
161
+ Scripts, writing style, and grammar with proper examples are also dis-
162
+ cussed.
163
+ • Various data filtration methods are investigated in order to clean the
164
+ data and improve translation quality.
165
+ • Distance-based reordering is utilized to check the translation quality of
166
+ ILs.
167
+
168
+ 5
169
+
170
+ |
171
+ |
172
+
173
+
174
+
175
+
176
+ • Better realistic assessment of translation quality is possible from the
177
+ presentation of results, as obtained using different automated metrics
178
+ like BLEU, METEOR, and RIBES.
179
+ This paper is arranged as follows. Subsections 1.1 and 1.2 give some
180
+ insight into SMT and cover the ILs used for our experiments. In Section 2,
181
+ some prominent works on SMT and NMT using ILs are described. The
182
+ experimental framework, including an overview of the dataset and method-
183
+ ology, is explained in Section 3. Section 4 narrates some of the prominent
184
+ metrics used for MT evaluation. Results are presented in Section 5 followed by
185
+ the conclusion and future direction in Section 6.
186
+
187
+ 1.1 SMT
188
+ Statistical Machine Tramslation (SMT) is dependent on statistical methods
189
+ (Philipp et al (2007), Richard et al (2002), Mary et al (2011) ). It is a data-
190
+ driven technique that makes use of parallel-aligned corpora. It utilizes
191
+ mathematical equations to calculate the likelihood of source-to-target lan-
192
+ guage translation. Probability P (Tl Si) is assigned by SMT. Here Tl is the target
193
+ language and Si is the source input. It utilizes Bayes’ theorem to
194
+ determine the maximum probability P (Tl|Si), which is as follows:
195
+ P (Tl | Si) ∝ P (Tl)P (Si | Tl)
196
+ (1)
197
+ SMT consists of three phases: the language model(LM) P (Tl) for target
198
+ language probability calculation, the translation model(TM) P (Si Tl) for
199
+ conditional probability estimation of the target to the source language, and the
200
+ decoder model (DM), which searches among possible source sentences the
201
+ one which maximizes probabilities (Kumawat et al (2014)).
202
+ To calculate the probability of a sentence, the LM utilizes the n-gram model. It
203
+ assigns the probability of a single word to the last n words that come before it
204
+ in the sentence and estimates the translation’s likelihood. The chain rule aids
205
+ in breaking down the sentence into conditional probability products.
206
+
207
+ P (s) = P (w1, w2, w3, ..., wn)
208
+ = P (w1)P (w2|w1)P (w3|w1w2)P (w4|w1w2w3)...P (wn|w1w2...wn−1)
209
+ = P (w1)P (w2|w1)P (w3|w1w2)P (w4|w1w2w3)...P (wn|w1w2...wn−k)
210
+ (2)
211
+ Where, P (s) is the probability of the sentence s, consisting of words w1, w2,
212
+ ..., wn, assuming a k-gram model. It utilizes the bilingual parallel corpus
213
+
214
+ 6
215
+
216
+
217
+
218
+
219
+
220
+ of the desired language pair. This is accomplished by calculating the like-
221
+ lihood of words or phrases extracted from sentences. The DM is the final
222
+ and most crucial phase of SMT. It assists in the selection of words with the
223
+ highest probability to be translated by maximizing the likelihood, i.e.
224
+ P (Tl)P (Si | Tl).
225
+ 1.2 Language preference
226
+ India is a multilingual nation where people from various states use a variety of
227
+ regional tongues. Such diversity of language brings difficulty in commu-
228
+ nicating with one another for information exchange. Further, limitations in
229
+ public communication also bring inconvenience to share feelings, thoughts,
230
+ opinions and facts, as well as to deal with business purposes. Moreover, there
231
+ are many helpful resources available on the internet in English but many In-
232
+ dians struggle to take benefit of those due to language barriers. Hence, it is
233
+ crucial to have an easy translation solution for regional languages to support
234
+ effective communication and to help utilising global resources. To make it
235
+ possible, technological innovation are continuing to find out efficient methods
236
+ for a flawless translation using machines, because it is impractical to have hu-
237
+ man translators everywhere. For machine translation, an enormous amount
238
+ of resources is required for training with a proper knowledge-base (rules) for
239
+ better efficiency so as to fulfill the demand of a flawless translation solu-
240
+ tion. For translation, understanding the meaning of words is important, but
241
+ words are not enough to constitute a language as a whole. They must be
242
+ used in sentence construction that adheres to strict grammar rules and every
243
+ language is having its own writing style. In our work, 15 commonly spoken
244
+ languages (over various regions of India) are chosen. Table 1 describes the
245
+ languages used in our experiments with their linguistic features (ethnologue
246
+ (2022)). A short introduction about them in terms of translation is given
247
+ below.
248
+ English(EN)
249
+ English language is the primary language of roughly 45 countries and
250
+ is spoken by nearly 1,132 million people. It is written in Roman script,
251
+ which uses both uppercase and lowercase characters. English uses the
252
+ subject-verb-object structure. For example (expl1), “The poor man
253
+ took food”, and (expl2) “food took the poor man”. When the position
254
+
255
+ 7
256
+
257
+
258
+
259
+
260
+
261
+ of the subject changes in the preceding sentences, the significance and
262
+ meaning of the English sentence change.
263
+ Assamese(AS)
264
+ Over 15 million native Assamese speakers live in the state of Assam in
265
+ the northeastern region of India. It is one of Assam’s official languages.
266
+ Additionally, it is spoken in various regions of other northeastern In-
267
+ dian states. It uses the Bengali-Assamese script and is written left to
268
+ right. It also follows the SOV format. “Gita is eating mango” is an
269
+ English sentence that when translated into Assamese became গীতাই আম
270
+ খাই আআছ which follows subject object verb format. গীতাই (Gita,
271
+ subject), আম(mango, object) and খাই আআছ(is eating, verb).
272
+ Malayalam(ML)
273
+ People in Kerala and a few societies in Karnataka and Tamil Nadu use
274
+ Malayalam for communication. This language is spoken by about 35
275
+ million citizens. It uses the SOV style of writing and a nominative-
276
+ accusative case marking sequence. It is written in Malayalam script in
277
+ left-to-right fashion. Sentence like സീതയ്ക്ക് ചിത്തരചന ഇഷ്ട മാണ്
278
+ which in English became “Sita loves drawing”. Here the word
279
+ സീതയ്ക്ക്
280
+ (Sita,Subject), ഇഷ്ടമാണ്
281
+ (loves,Verb) and ചിത്തര
282
+ ചന(drawing,Object).
283
+ Bengali(BN)
284
+ It is the primary language of Bangladesh and the second most spoken
285
+ language in India. Over 265 million people use it as their primary
286
+ or second language. Approximately 11 million Bengali speakers exist
287
+ in Bangladesh. In India, states such as Assam, Tripura, and West
288
+ Bengal use this language. It is a member of the Indo-Aryan family. In
289
+ Bengali sentences, the standard word order is Subject-Object-Verb. For
290
+ example, in sentence আ রাি জ ভাত খায় which in English is “Rosy eats
291
+ rice ”. Here আ রাি জ (Rosy, Subject), ভাত (Rice, object) and খায়
292
+ (Eats,Verb).
293
+ Marathi(MR)
294
+ Marathi is associated with the Sanskrit-derived group of Indian lan-
295
+ guages and is used by 95 million people in India for communication,
296
+ primarily in the central and western regions. The fourth most widely
297
+ spoken language in India is Marathi, which has a sizable native-speaker
298
+
299
+ 8
300
+
301
+
302
+
303
+
304
+
305
+ population. Similar to Hindi and Nepali, Marathi is written in the De-
306
+ vanagari script in left-to-right order. It follows the Subject-Object-Verb
307
+ order. For example, the sentence तो दध ि पतो, which means “He drinks
308
+ milk.” in English, has तो दध
309
+ ject), and ि पतो(drinks,
310
+ verb).
311
+ Gujarati(GU)
312
+ ि पतो where तो(He, subject),
313
+ दध
314
+ (Milk, ob-
315
+ Gujarati is spoken by 45 million citizens in Gujarat and is associated
316
+ with the Indo-Aryan group. It uses the SOV writing style and is drafted
317
+ from left to right in Gujarati script. For example, in the sentence તે
318
+ આઈસ્ક્રીમ ખાય છે. which in English is “He is eating ice cream.” where તે
319
+ is subject, આઈસ્ક્રીમ is an object and verb is ખાય છે.
320
+ Kannada (KN)
321
+ Karnataka’s official language is Kannada, which is also widely used
322
+ in other parts of India. In India, about 36 million people speak and
323
+ write Kannada. Despite being a Dravidian language with extensive
324
+ historical literature, Kannada has few computational linguistics re-
325
+ sources, making it challenging to study the language’s literature due
326
+ to its semantic and syntactic diversity. Subject-Object-Verb is the way
327
+ the Kannada language is structured. Kannada is a highly agglutina-
328
+ tive language. It uses the left-to-right Kannada script For example,
329
+ ರಾಮ ಶಾಲೆಗೆ ಹೋದ(SOV) is in English is “Rama went to school”. Here,
330
+ ರಾಮ(Rama, Subject), ಶಾಲೆ(school, object), and ಹೋದರು(went, verb).
331
+ Hindi(HI)
332
+ Hindi is one of the official and national languages of India. There are
333
+ more than 615 million people who use Hindi as their primary language,
334
+ and even more than 341 million who speak it as a second language.
335
+ However, the sentence structure is Subject Object Verb as shown in
336
+ the example: गीता स्क ल जाती है। is in English is “Geeta goes to school”. In
337
+ this sentence, गीता (Gita ,Subject), स्क ल (School, Object) and जाती
338
+ है(Goes, Verb). The Indian Constitution mandates that Hindi written
339
+ in Devanagari be used as the Union’s official language.
340
+ Oriya(OR)
341
+ The Oriya language is the primary language of Odisha, a state in east-
342
+ ern India. Oriya belongs to the Eastern Indo-Aryan group of languages.
343
+
344
+ 9
345
+
346
+ Its standard format is subject-object-verb (SOV) and is written in the
347
+
348
+ Odia script from left to right.
349
+ Punjabi (PA)
350
+ Punjabi text is written in a subject-object-verb format and is spoken
351
+ in India and Pakistan, and a few small groups in the United Kingdom,
352
+ United Arab Emirates, Malaysia, the United States, South Africa, and
353
+ Canada. It is written in two scripts: the western Perso-Arabic Shah-
354
+ mukhi script and the eastern Gurmukhi script. Gurmukhi is drafted
355
+ from left to right, whereas Shahmukhi is written in the opposite direc-
356
+ tion. ਅਸ ੀਂ ਭਾਰਤ ਹਾੀਂ is in English “We are Indians” where ਅਸ ੀਂ(We,Sub-
357
+ ject), ਭਾਰਤ (Are,Verb) and ਹਾੀਂ (Indians,Object).
358
+ Telugu(TE)
359
+ Telugu is the official language of two Indian states in the south: Andhra
360
+ Pradesh and Telangana. It is also spoken by the Telugu-speaking im-
361
+ migrant communities in the United States, Canada, and the United
362
+ Kingdom. Text structure in Telugu takes the form of a subject-object-
363
+ verb and from left to right.ఆమె నన్ను కొటి్టంది in English “she beat
364
+ me” where ఆమె(she, Subject), నన్ను (Me, Object) and కొటి్టంది(beat,
365
+ Verb).
366
+ Sindhi(SD)
367
+ Sindhi is a language spoken by 25 million speakers in Pakistan and 5
368
+ million in India. It is written in a modified Perso-Arabic script in Pak-
369
+ istan (right-to-left), whereas it is written in a variety of scripts in India,
370
+ like Devanagari, Khudabadi, and Gurmukhi (left-to-right). It follows the
371
+ Subject-Object-Verb format. For example, the sentence “Partha
372
+ loves books” is رٿﭘﺎ ﮐﻲ ﺘﺎﺑﻦڪ ﻦﺳﺎ رﭘﻴﺎ ﻫﻲآ where ٿﺎرﭘﺎ(Partha, subject),
373
+ ﮐﻲ ﺘﺎﺑﻦڪ (books, object) and ﻦﺳﺎ رﭘﻴﺎ ﻫﻲآ (loves, verb).
374
+ Nepali(NE)
375
+ It is official language and the lingua franca in Nepal, and also spoken
376
+ by some communities in India. Nepali is written in left-to-right De-
377
+ vanagari script. It is a language written in Subject-Object-Verb order For
378
+ example, “Sita ate apples” when converted to the Nepali language
379
+
380
+ 10
381
+
382
+
383
+
384
+
385
+
386
+ becomes सीताले स्याउ खाइन्. Here, सीताले(Sita, subject), स्याउ(apples,
387
+ object) and खाइन्(ate, verb).
388
+ Sinhala(SI)
389
+ The majority of Sri Lankans speak Sinhala as their first language. Sin-
390
+ hala is an Indo-Aryan language that differs from English in terms of
391
+ grammatical structure, morphological variation, and subject-object-
392
+ verb (SOV) word order. It is written in right-to-left Sinhala script.
393
+ A sentence like “Pavan writes a letter” is in Sinhala is පවන් ලිපියක්
394
+ ලියයි where පවන්(Pavan, subject), ලිපියක්(a letter, object) and
395
+ ලියයි(writes, verb).
396
+ Tamil(TA)
397
+ Tamil is a language spoken primarily in Tamil Nadu, a state in southern
398
+ India, as well as in countries with a large Tamil diaspora, which includes
399
+ Sri Lanka, Malaysia, and Singapore, to name a few. The phonological
400
+ differences exist within Tamil Nadu between southern, western, and
401
+ northern speech. Tamil is a Dravidian language of the southern branch,
402
+ with a rich literary tradition dating back over 2000 years. Tamil spoken
403
+ in India and Sri Lanka are two different dialects. It uses the Subject
404
+ Object Verb format. For example sentence: “I like paintings” in Tamil
405
+ becomes எனக்கு ஓவியங்கள் பிடிக்கும் where the Iஎனக்கு (I,
406
+ Subject), விலங்குகள் (Paintings, Object) and பிடிக்கும் (Like,
407
+ Verb).
408
+ Urdu(UR)
409
+ It is Pakistan’s national language and is also spoken widely in India.
410
+ In Pakistan and India, Urdu is spoken by over 170 million citizens and is
411
+ also spoken in some communities in the United Kingdom, the United
412
+ States, and the United Arab Emirates. Script for Urdu is a modified
413
+ and revised version of the Perso-Arabic script. Urdu writing structure is
414
+ Subject Object Verb. For example “she reads a book” which in Urdu is
415
+ وہ ﯾﮏا بﮐﺘﺎ ﭘﮍﻫﺘﯽ ۔ہﮯ where وہ(she, Subject), ﯾﮏا بﮐﺘﺎ(book, object) and
416
+ ﭘﮍﻫﺘﺎ ہﮯ(reads, verb).
417
+
418
+ 11
419
+
420
+
421
+
422
+
423
+
424
+ Table 1: Linguistic Features of Languages Used in MT Experiments
425
+
426
+
427
+ Languages
428
+ Script
429
+ Word
430
+ Order
431
+ Family
432
+ Number
433
+ of Speakers
434
+ (in millions)
435
+ Writing
436
+ Direction
437
+ Assamese (AS)
438
+ Bengali
439
+ SOV
440
+ Indo-European
441
+ 15
442
+ left to right
443
+ Malayalam (ML)
444
+ Malayalam
445
+ SOV
446
+ Dravidian
447
+ 38
448
+ left to right
449
+ Bengali (BN)
450
+ Bengali
451
+ SOV
452
+ Indo-European
453
+ 265
454
+ left to right
455
+ Marathi (MR)
456
+ Devanagari
457
+ SOV
458
+ Indo-European
459
+ 95
460
+ left to right
461
+ Gujarati (GU)
462
+ Gujarati
463
+ SOV
464
+ Indo-European
465
+ 60
466
+ left to right
467
+ Kannada (KN)
468
+ Kannada
469
+ SOV
470
+ Dravidian
471
+ 36
472
+ left to right
473
+ Hindi (HI)
474
+ Devanagari
475
+ SOV
476
+ Indo-European
477
+ 615
478
+ left to right
479
+ Oriya (OR)
480
+ Oriya
481
+ SOV
482
+ Indo-European
483
+ 38
484
+ left to right
485
+ Punjabi (PA)
486
+ Perso-Arabic,
487
+ Gurmukhi
488
+ SOV
489
+ Indo-European
490
+ 125
491
+ right to left
492
+ left to right
493
+ Telugu (TE)
494
+ Telugu
495
+ SOV
496
+ Dravidian
497
+ 93
498
+ left-to-right
499
+ Sindhi (SD)
500
+ Devanagari
501
+ Perso -Arabic
502
+ SOV
503
+ Indo-European
504
+ 25
505
+ left to right
506
+ right to left
507
+ Sinhala (SI)
508
+ Sinhala
509
+ SOV
510
+ Indo-European
511
+ 17
512
+ left to right
513
+ Nepali (NE)
514
+ Devanagari
515
+ SOV
516
+ Indo-European
517
+ 24
518
+ left to right
519
+ Tamil(TA)
520
+ Tamil
521
+ SOV
522
+ Dravidian
523
+ 81
524
+ left to right
525
+ Urdu (UR)
526
+ Urdu
527
+ SOV
528
+ Indo-European
529
+ 170
530
+ right to left
531
+ English (EN)
532
+ Roman
533
+ SVO
534
+ Indo-European
535
+ 1,132
536
+ left to right
537
+
538
+ 2 Related Work
539
+ A few works on SMT using some Indic Languages are discussed in this sec-
540
+ tion.
541
+ (Dasgupta et al (2004)) has discussed a technique for English (EN) to Bengali
542
+ (BN) MT that utilizes the syntax of EN sentences to BN while minimizing
543
+ the time of translation. In the process to create the target sentences, a dic-
544
+ tionary is used to know the object and subject, as well as other entities like
545
+ person and number in their work.
546
+ English-to-Hindi (EN-HI) SMT system has been created by (Ananthakrish-
547
+ nan et al (2009)) using morphological and syntactic pre-processing in SMT
548
+
549
+ 12
550
+
551
+
552
+
553
+
554
+
555
+ model. In their work, the suffixes in HI language are segmented for mor-
556
+ phological processing before rearranging the EN source sentences as per HI
557
+ syntax.
558
+ In 2010, research has been conducted by (Zbib et al (2010)) at MIT, USA,
559
+ using the grammatical structures in statistical machine translation with the
560
+ Newswire corpus for Arabic to EN language to give better translation results.
561
+ Work on Kannada-to-English MTS with SMT, by (Kumar et al (2015)), using
562
+ Bible corpus on 20,000 sentences shows a remarkable feat with 14.5 BLEU
563
+ score which is even supported by (Papineni et al (2002)).(Kaur et al (2011))
564
+ has presented a translation model based on SMT for English (EN) to Punjabi
565
+ (PA) with their own corpus containing 3844 names in both languages with
566
+ BLEU and word accuracy as 0.4123 (with range 0-1) and 50.22%, respec-
567
+ tively.
568
+ (Nalluri et al (2011)) has created “enTel,” an SMT-based EN to Telugu(TE)
569
+ MT system, using the Johns Hopkins University Open Source Architecture (Li
570
+ et al (2009)). For the purpose of training the translation system, TE par- allel
571
+ dataset from the Enabling Minority Language Engineering (EMILLE) is
572
+ used for their work.
573
+ In the year 2014, an SMT Framework for Sinhala(SI)-Tamil(TA) MT Sys-
574
+ tem has been created by (Randil et al (2014)). In their work, the result
575
+ of SMT-dependent translation between language pairs, including TA-SI and
576
+ SI-TA has been shown. Outcomes of the experiments using the SMT model
577
+ give more noticeable results for the SI-TA than the TA-SI language pair. For
578
+ languages closely related, SMT shows remarkable results.
579
+ In 2017, a survey has been conducted by (Khan et al (2017)) on the IL-EN
580
+ language MT models reveal the importance of SMT over 8 languages i.e.
581
+ Hindi (HI), Bengali (BN), Gujarati (GU), Urdu (UR), Telugu (TE), Pun-
582
+ jabi (PA), Tamil (TA), and Malayalam (ML). In their work, EMILLE corpus
583
+ (Nalluri et al (2011)) is used and Moses SMT model is preferred to make
584
+ the translation models, with out-of-vocabulary (OOV) words transliterated
585
+ to EN. In their work, the evaluation using BLEU, NIST and UNK counts as
586
+ metrics reveals the overall SMT performance as satisfactory (PA-EN and UR-
587
+ EN models as the best and the HI-EN and GU-EN models as the worst). An
588
+ EN-BN SMT system has been presented by (Islam et al (2010)). In their work,
589
+ to handle OOV (out-of-vocabulary) words, a transliteration module is
590
+ presented. In order to address the systematic grammatical distinctions be-
591
+ tween EN and BN, a preposition handling module has been added. BLEU,
592
+ NIST and TER scores has been used to check the effectiveness of their sys-
593
+
594
+ 13
595
+
596
+
597
+
598
+
599
+
600
+ tem.
601
+ Nowadays, NMT is widely appreciated for its advancement in the develop-
602
+ ment of machine translation with remarkable improvement in quality. Hence,
603
+ many researchers have compared both techniques for low and high-resource
604
+ languages.
605
+ (Antonio et al (2017)) has performed a thorough evaluation using statistical-
606
+ based and neural machine translation systems for nine language directions
607
+ along a variety of dimensions. In their experiment, for long sentences, SMT
608
+ systems perform better than the NMT. Recently, (Castilho et al (2017)) has
609
+ used automatic metrics and expert translators to conduct a thorough quan-
610
+ titative and qualitative comparison of NMT and SMT. SMT shows better
611
+ according to their experiments.
612
+ The comparison of NMT and SMT for the Nepali (NE) using the Nepali
613
+ National Corpus (NNC) with 6535 sentences has been shown by (Acharya et al
614
+ (2018)). The researchers have proved in their experiments that the SMT model
615
+ performs better than the NMT-based system with a small corpus with a 5.27
616
+ BLEU score.
617
+ In 2021, Long Short-Term Memory networks (LSTMs) integrated with atten-
618
+ tion mechanism using WAT corpus have been used in experiments by (Singh
619
+ et al (2003)) to achieve a 15.7 BLEU score as opposed to a baseline of 14.5
620
+ BLEU score.
621
+ (Abujar et al (2021)) has developed a BN-EN MT model on AmaderCAT cor-
622
+ pus using Sequence-to-Sequence (seq2seq) architecture, a special class of Re-
623
+ current Neural Networks to develop the translation system and has achieved
624
+ a BLEU score of 22.3.
625
+ In the year 2021, translation of English and Hindi-to-Tamil languages us- ing
626
+ both SMT and NMT has been presented by (Akshai et al (2021)). The
627
+ disadvantages of NMT have been shown in their experiments such as the
628
+ occurrence of numerous errors by NMT when interpreting domain terms and
629
+ OOV (Out of vocabulary) phrases. NMT frequently constructs inaccurate
630
+ lexical choices for polysemous words and occasionally counters reordering
631
+ mistakes while translating words and domain terms. The translations that
632
+ have been generated by the NMT models mostly include repetitions of pre-
633
+ viously transcribed words, odd translations, and many unexpected sentences
634
+ having no correlation with the original sentence.
635
+
636
+ 14
637
+
638
+
639
+
640
+
641
+ 3 Experimental Framework
642
+ 3.1 Dataset
643
+ Samanantar and OPUS datasets for model building and standard benchmark
644
+ dataset i.e. Flores 200 for testing are utilized. Samanantar is the largest cor-
645
+ pus collection for ILs (Gowtham et al (2022)). The collection includes more
646
+ than 45 million sentence pairs in English and 11 ILs. The Samanantar Corpus
647
+ has been used for Assamese (AS), Malayalam (ML), Bengali (BN), Marathi
648
+ (MR), Gujarati (GU), Kannada (KN), Hindi (HI), Oriya (OR), Punjabi (PA),
649
+ Telugu (TE), and Tamil (TA) for the experiments. OPUS is a large resource
650
+ with freely available parallel corpora. The corpus includes data from many
651
+ domains and covers over 90 languages (Tiedemann (2012)). The OPUS cor-
652
+ pus is used for Sinhala (SI), Sindhi (SD), Urdu (UR), and Nepali (NE). Table 2
653
+ gives statistics of the dataset used in our experiments.
654
+ FLORES-200 (Marta et al (2022)) dataset is a multilingual parallel dataset
655
+ with 200 languages, that are used as human-translated benchmarks. It con-
656
+ sists of two corpora, labeled “dev” (997 lines) and “devtest” (1013 lines).
657
+ The “dev” dataset has been used for fine-tuning, and the “devtest” dataset
658
+ has been used for testing.
659
+
660
+ 3.2 Methodology
661
+ Our proposed process comprises of following major steps:
662
+ 1. Setting up SMT System Moses SMT Toolkit is used to build our
663
+ SMT systems. It is written in C++ and Perl. At the moment, this is
664
+ one of the best SMT tools available. First, Moses, GIZA++ (Och
665
+ (2003)), CMPH (for binarization) and SRILM in Ubuntu are installed.
666
+ For training, fine-tuning and testing processes, the system needs a par-
667
+ allel corpus of the language pair in addition to configurable phases
668
+ according to developer’s choice to follow.
669
+ 2. Data Preprocessing A qualitative corpus plays a major role in any MT
670
+ task. While obtaining corpora from various sources, data qual- ity i.e.
671
+ critical for the effectiveness of an MT system, can never be
672
+ ascertained. So, removing unnecessary noise is an important task be-
673
+ fore using the data to train our statistical machine translation model.
674
+ Following processes are used to preprocess and clean it:
675
+
676
+ 15
677
+
678
+
679
+
680
+
681
+
682
+ Table 2: Parallel corpus statistics
683
+ English to Indic
684
+ Parallel Corpus(Sentences)
685
+ Assamese (AS)
686
+
687
+ 0.14M
688
+ Malayalam (ML)
689
+ 5.85M
690
+ Bengali(BN)
691
+ 8.52M
692
+ Marathi(MR)
693
+ 3.32M
694
+ Gujarati(GU)
695
+ 3.05M
696
+ Kannada(KN)
697
+ 4.07M
698
+ Hindi(HI)
699
+ 8.56M
700
+ Oriya(OR)
701
+ 1.00M
702
+ Punjabi(PA)
703
+ 2.42M
704
+ Telugu(TE)
705
+ 4.82M
706
+ Sindhi(SD)
707
+ 1.95M
708
+ Sinhala(SI)
709
+ 8.68M
710
+ Nepali(NE)
711
+ 3.35M
712
+ Tamil(TA)
713
+ 5.16M
714
+ Urdu(UR)
715
+ 8.95M
716
+
717
+ • Data Cleaning and Formatting The goal of data cleaning is
718
+ either to find and fix or to delete erroneous data from the corpus.
719
+ Here, characters those are used neither in ILs nor in English are
720
+ removed. Some of the punctuation in extended Unicode is con-
721
+ verted to its standard counterpart. Numbers in the IL corpus are
722
+ converted from English to IL scripts. Characters outside the stan-
723
+ dard alphabets of the language pair, extra spaces, and unprintable
724
+ characters are also removed from the corpus. The preprocessing
725
+ techniques used in our work have been summarized as follows:
726
+ – Removing unprintable characters
727
+ – Removing characters outside the language pair
728
+ – Removing extra spaces
729
+ – Deaccenting accented characters
730
+ – Changing non-standard Unicode punctuation characters in
731
+ both corpora to their standard counterparts
732
+ – Changing uncommon punctuations to more common ones
733
+ – Changing numbers to a uniform numbering system and script
734
+
735
+ 16
736
+
737
+
738
+
739
+
740
+
741
+ 3. Tokenization: It is the process of dividing a character sequence into
742
+ smaller units known as tokens based on a given character sequence and
743
+ a specified document unit. Words, punctuation, and numerals serve as
744
+ these tokens in our instance. The corpus is tokenized using a modified
745
+ Moses tokenizer (Koehn et al (2007)). Redundant punctuations (quo-
746
+ tation marks, apostrophes, and commas) are also removed from the
747
+ corpus.
748
+ 4. Training Truecasing Model: This is the procedure for adding case
749
+ information to text that has been incorrectly cased or is not cased (Lita
750
+ et al (2003)). Data sparsity is lessened with the use of true casing. A
751
+ truecaser model (a model which changes the words at the beginning
752
+ of the sentence to the most common casing) is trained on the training
753
+ dataset. The Moses truecasing is used for the same.
754
+ 5. Training Language and Translation Models: In MOSES, the
755
+ training procedure utilizes word and segment occurrences to draw con-
756
+ nections between the target and source languages. The language and
757
+ translation models are trained on the training dataset and binarized.
758
+ GIZA++ grow-diag-final-and alignment is used for word alignments,
759
+ which start with the intersection of the two alignments and then add
760
+ the additional alignment points.
761
+ The grow-diag-final-and model starts with the intersection of the align-
762
+ ments from source to target and target to source, then two steps are
763
+ used to add additional alignment points (Och (2003)):
764
+ grow-diag: For every neighboring point to the alignments measured,
765
+ if either source or target word is not aligned already but is present
766
+ in the union of the alignment, then the neighboring point is in-
767
+ cluded in the alignment.
768
+ final: If any phrase pairs are unaligned but present in the union, add
769
+ the point to the alignment.
770
+ • Word Alignment Model: After preprocessing the words, the
771
+ next step is word alignment. The proposed work employs the
772
+ GIZA++ (Och (2003)) incorporation of the IBM models to ac-
773
+ complish the word procedure. The GIZA++ model assesses the
774
+ likelihood of word-to-word alignment for each source and target
775
+ word in each sentence. To produce a good-quality word alignment,
776
+
777
+ 17
778
+
779
+
780
+
781
+
782
+
783
+
784
+
785
+
786
+
787
+ the alignment is produced using a series of successive estimations.
788
+ To process a corpus with a larger quantity of sentences, the process
789
+ takes several hours. The alignment method’s outcomes establish
790
+ a connection between the target and source words.
791
+ • Reordering It is the process of restructuring the word order of
792
+ one natural language sentence to make it more similar to the word
793
+ order of another natural language sentence. It is a critical task
794
+ in transcription for languages with different syntactic structures.
795
+ The Moses system learns different reordering possibilities for each
796
+ phrase during the training process. Instead of default reordering,
797
+ the model uses the distance reordering model (Kumawat et al
798
+ (2014)).
799
+ – Distance-Based Reordering: The reordering of the tar- get
800
+ output phrases is represented by the relative distortion
801
+ probability distribution re (St, Et 1). Here, St refers to the
802
+ starting position of the source phrase that is interpreted into
803
+ the t 1 th target phrase. The reordering distance (St - Et
804
+ 1) is calculated as follows: When taking source words out of
805
+ sequence, the reordering distance is the number of words ig-
806
+ nored (either forward or backward). If two phrases are trans-
807
+ lated in sequence, then t = Et 1 +1; that is, the first word of
808
+ the phrase immediately follows the last word of the pre-
809
+ vious phrase. A reordering cost of re(0) is used in this case.
810
+ The distance-based model assigns a linear cost to reordering
811
+ distance, implying that the movement of phrases over long
812
+ distances is more expensive.
813
+ 6. Fine tuning: It is the process of determining the best configuration file
814
+ settings for a translation model when it is used for a specific pur- pose.
815
+ It uses a translation model to translate all 15 ILs source language phrases
816
+ in the tuning set. Then, it compares the model’s output to a set of
817
+ reference (human translations) and adjusts the settings to improve
818
+ translation quality. This procedure is repeated several times. The
819
+ tuning process repeats the steps with each iteration until the transla-
820
+ tion quality is optimized. The model is fine-tuned on the preprocessed
821
+ Flores-200 dev dataset.
822
+ 7. Translation: The final model is used to translate the preprocessed
823
+
824
+ 18
825
+
826
+
827
+
828
+
829
+
830
+ Flores-200 devtest dataset from the source to the target language.
831
+ 8. Postprocessing and Detokenization: Redundant punctuation marks
832
+ (quotation marks, apostrophes, and commas) are removed, and the
833
+ translation file is detokenized using the Moses detokenizer.
834
+ 9. Evaluation: The evaluation metrics use for our experiments are ME-
835
+ TEOR (Banerjee et al (2005)), RIBES (Wołk et al (2016)), and BLEU
836
+ (Papineni et al (2002)).
837
+
838
+ 4 Essential metrics for MT translation evalu-
839
+ ation
840
+ The most crucial phase of any MT system is MT evaluation. Both automatic
841
+ and manual methods can be applied to analyze MT tasks. The effective-
842
+ ness of a system’s output can be evaluated either directly through human
843
+ assessments, or indirectly using reading cases, other downstream activities,
844
+ and even through estimating the amount of effort necessary to rectify the
845
+ output. A better outcome is obtained through manual evaluation, which
846
+ includes task-based evaluations, fluency and adequacy scores, human vot- ing
847
+ for translations task, post-editing measures, etc. However, the major
848
+ challenges of manual evaluation are time-intensiveness, absence of repeata-
849
+ bility and high cost. In order to evaluate the effectiveness of MT output,
850
+ different automated approaches are there such as Metric for Evaluation of
851
+ Translation with Explicit Ordering (METEOR), Bilingual Evaluation Un-
852
+ derstudy(BLEU), Levenshtein, Rank-based Intuitive Bilingual Evaluation
853
+ Score(RIBES), Word Error Rate (WER) and NIST exist. Several intuitive
854
+ advantages exist for automated metrics that can give points for synonyms or
855
+ paraphrases. A few of the evaluation metrics which are used in our work are
856
+ discussed below
857
+ 1. Bilingual Evaluation Understudy (BLEU): The most widely used
858
+ method for evaluating machine translation (MT) is known as BLEU.
859
+ This method, first introduced in 2002 (Papineni et al (2002)) exam- ines
860
+ one or more reference translations to the hypothetical translation. When
861
+ the hypothetical translation matches numerous strings with the
862
+ reference translation, the MT evaluation gives it a higher score. The
863
+ BLEU system assigns a translation a score from 0 to 1. However, it is
864
+
865
+
866
+ 19
867
+
868
+ 1
869
+
870
+
871
+
872
+ usually represented as a percentage value. The nearer the translation is
873
+ to 1, the more it corresponds to the reference translation. This match-
874
+ ing of translation is conducted word-by-word in the same word order
875
+ in both datasets. SacreBLEU is used to calculate the BLEU scores of
876
+ baseline models.
877
+ 2. Rank-based Intuitive Bilingual Evaluation Score (RIBES): It
878
+ is calculated by incorporating a rank correlation coefficient before uni-
879
+ gram matches, eliminating the necessity for higher-order n-gram matches.
880
+ This metric is concerned with word order. To compare SMT and ref-
881
+ erence translations, it employs Kendall’s tau coefficient (τ ) based on
882
+ word order to indicate rank differences (Wołk et al (2016)). To assure
883
+ positive values, the coefficient is normalized as shown below:
884
+
885
+
886
+ Normalized Kendall’s τ (NKT) = τ + 1
887
+ 2
888
+ (5)
889
+ This coefficient can be paired with unigram-precision p1 and Brevity
890
+ Penalty BP and changed to prevent overestimation of the correlation
891
+ between only relevant words in SMT and reference translations.
892
+
893
+
894
+ RIBES = NKT.(pα).(BPβ )
895
+ (6)
896
+ Here, α and β are parameters between 0 and 1.
897
+
898
+ 20
899
+
900
+
901
+
902
+
903
+
904
+ 3. Metric for Evaluation of Translation with Explicit Ordering
905
+ (METEOR): Meteor scores a translation depending on explicit word-
906
+ by-word similarities between both the translation and a provided ref-
907
+ erence translation (Banerjee et al (2005)). It is specifically created to
908
+ generate sentence-level scores that are highly correlated with human
909
+ evaluations of translation quality. Meteor utilizes and highlights recall
910
+ in combination with precision, a feature that numerous measures have
911
+ verified as crucial for a strong correlation with human judgments. It also
912
+ intends to address the problem of imprecise reference translations by
913
+ utilizing adaptable word matching in consideration with synonyms and
914
+ morphological variances. To achieve a score of 1, the words of the
915
+ machine-generated output should be present in the reference and each
916
+ of the words of the reference is in the machine-generated output.
917
+
918
+ 5 Results and Discussion
919
+ In this work, the evaluation metrics used are METEOR (Banerjee et al
920
+ (2005)), RIBES (Wołk et al (2016)), and BLEU (Papineni et al (2002)). All
921
+ the evaluation metrics used in our work are prominent metrics for deter-
922
+ mining the quality of the machine-translated text.
923
+ Table 3 displays the translation of all the 15 ILs to English and vice versa
924
+ using SMT without fine-tuning. Evaluation metrics of SMT with finetuning
925
+ using the Flores-200 dev dataset are shown in Table 4. RIBES and METEOR
926
+ range is 0-1. For EN-IL and IL-EN language using SMT, the BLEU score
927
+ lies between 0.46 to 13.09 and 0.49 to 15.41 respectively. The RIBES score for
928
+ EN-IL and IL-EN is between 0.04 to 0.63 and 0.14 to 0.61 respectively.
929
+ METEOR scores lie between 0.01 to 0.28 for EN-IL and 0.02 to 0.28 for
930
+ IL-EN. SMT models using distance reordering techniques are giving better
931
+ BLEU Scores for languages BN, PA, UR, HI, and GU than the rest. With-
932
+ out fine-tuning, SI performs the worst in terms of all three metrics of all
933
+ languages in both directions, whereas with fine-tuning EN-SI and TA-EN
934
+ perform worse than all other EN-IL and IL-EN models respectively with all
935
+
936
+ 21
937
+
938
+
939
+
940
+
941
+
942
+
943
+
944
+
945
+
946
+
947
+
948
+
949
+
950
+
951
+ Table 3: Evaluation Metrics Result of SMT without Finetuning
952
+
953
+ Languages
954
+ Pairs
955
+ BLEU
956
+ RIBES
957
+ METEOR
958
+ AS
959
+ EN-AS
960
+ 1.90
961
+ 0.50
962
+ 0.09
963
+ AS-EN
964
+ 3.21
965
+ 0.46
966
+ 0.11
967
+ ML
968
+ EN-ML
969
+ 3.79
970
+ 0.27
971
+ 0.08
972
+ ML-EN
973
+ 4.59
974
+ 0.43
975
+ 0.12
976
+ BN
977
+ EN-BN
978
+ 6.41
979
+ 0.62
980
+ 0.17
981
+ BN-EN
982
+ 3.06
983
+ 0.45
984
+ 012
985
+ MR
986
+ EN-MR
987
+ 3.17
988
+ 0.43
989
+ 0.09
990
+ MR-EN
991
+ 3.62
992
+ 0.43
993
+ 0.09
994
+ GU
995
+ EN-GU
996
+ 7.62
997
+ 0.56
998
+ 0.16
999
+ GU-EN
1000
+ 10.14
1001
+ 0.59
1002
+ 0.21
1003
+ KN
1004
+ EN-KN
1005
+ 5.06
1006
+ 0.40
1007
+ 0.11
1008
+ KN-EN
1009
+ 7.17
1010
+ 0.51
1011
+ 0.16
1012
+ HI
1013
+ EN-HI
1014
+ 13.09
1015
+ 0.63
1016
+ 0.28
1017
+ HI-EN
1018
+ 15.41
1019
+ 0.64
1020
+ 0.28
1021
+ OR
1022
+ EN-OR
1023
+ 3.92
1024
+ 0.59
1025
+ 0.14
1026
+ OR-EN
1027
+ 6.41
1028
+ 0.52
1029
+ 0.17
1030
+ PA
1031
+ EN-PA
1032
+ 7.22
1033
+ 0.63
1034
+ 0.18
1035
+ PA-EN
1036
+ 11.7
1037
+ 0.61
1038
+ 0.24
1039
+ TE
1040
+ EN-TE
1041
+ 8.16
1042
+ 0.42
1043
+ 0.12
1044
+ TE-EN
1045
+ 5.77
1046
+ 0.52
1047
+ 0.18
1048
+ SD
1049
+ EN-SD
1050
+ 1.29
1051
+ 0.39
1052
+ 0.08
1053
+ SD-EN
1054
+ 2.48
1055
+ 0.35
1056
+ 0.09
1057
+ SI
1058
+ EN-SI
1059
+ 0.93
1060
+ 0.05
1061
+ 0.02
1062
+ SI-EN
1063
+ 0.49
1064
+ 0.14
1065
+ 0.05
1066
+ NE
1067
+ EN-NE
1068
+ 6.00
1069
+ 0.58
1070
+ 0.16
1071
+ NE-EN
1072
+ 8.29
1073
+ 0.53
1074
+ 0.19
1075
+ TA
1076
+ EN-TA
1077
+ 2.78
1078
+ 0.16
1079
+ 0.05
1080
+ TA-EN
1081
+ 2.64
1082
+ 0.31
1083
+ 0.07
1084
+ UR
1085
+ EN-UR
1086
+ 9.43
1087
+ 0.62
1088
+ 0.24
1089
+ UR-EN
1090
+ 11.35
1091
+ 0.61
1092
+ 0.23
1093
+
1094
+
1095
+ 22
1096
+
1097
+
1098
+
1099
+
1100
+
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+
1107
+
1108
+
1109
+
1110
+ Table 4: Evaluation Metrics Result of SMT with Finetuning
1111
+
1112
+ Languages
1113
+ Pairs
1114
+ BLEU
1115
+ RIBES
1116
+ METEOR
1117
+ AS
1118
+ EN-AS
1119
+ 2.17
1120
+ 0.50
1121
+ 0.08
1122
+ AS-EN
1123
+ 3.21
1124
+ 0.42
1125
+ 0.10
1126
+ ML
1127
+ EN-ML
1128
+ 2.05
1129
+ 0.23
1130
+ 0.06
1131
+ ML-EN
1132
+ 1.84
1133
+ 0.27
1134
+ 0.06
1135
+ BN
1136
+ EN-BN
1137
+ 8.26
1138
+ 0.63
1139
+ 0.19
1140
+ BN-EN
1141
+ 12.16
1142
+ 0.60
1143
+ 0.23
1144
+ MR
1145
+ EN-MR
1146
+ 2.43
1147
+ 0.39
1148
+ 0.08
1149
+ MR-EN
1150
+ 2.49
1151
+ 0.36
1152
+ 0.07
1153
+ GU
1154
+ EN-GU
1155
+ 5.82
1156
+ 0.52
1157
+ 0.14
1158
+ GU-EN
1159
+ 3.56
1160
+ 0.45
1161
+ 0.01
1162
+ KN
1163
+ EN-KN
1164
+ 3.35
1165
+ 0.09
1166
+ 0.14
1167
+ KN-EN
1168
+ 3.67
1169
+ 0.41
1170
+ 0.10
1171
+ HI
1172
+ EN-HI
1173
+ 8.64
1174
+ 0.57
1175
+ 0.22
1176
+ HI-EN
1177
+ 5.38
1178
+ 0.49
1179
+ 0.14
1180
+ OR
1181
+ EN-OR
1182
+ 5.25
1183
+ 0.58
1184
+ 0.15
1185
+ OR-EN
1186
+ 2.22
1187
+ 0.39
1188
+ 0.11
1189
+ PA
1190
+ EN-PA
1191
+ 5.71
1192
+ 0.60
1193
+ 0.15
1194
+ PA-EN
1195
+ 7.75
1196
+ 0.55
1197
+ 0.19
1198
+ TE
1199
+ EN-TE
1200
+ 4.4
1201
+ 0.38
1202
+ 0.10
1203
+ TE-EN
1204
+ 3.34
1205
+ 0.44
1206
+ 0.12
1207
+ SD
1208
+ EN-SD
1209
+ 1.59
1210
+ 0.41
1211
+ 0.09
1212
+ SD-EN
1213
+ 2.53
1214
+ 0.38
1215
+ 0.09
1216
+ SI
1217
+ EN-SI
1218
+ 0.46
1219
+ 0.04
1220
+ 0.01
1221
+ SI-EN
1222
+ 3.11
1223
+ 0.37
1224
+ 0.11
1225
+ NE
1226
+ EN-NE
1227
+ 4.00
1228
+ 0.55
1229
+ 0.14
1230
+ NE-EN
1231
+ 5.25
1232
+ 0.49
1233
+ 0.13
1234
+ TA
1235
+ EN-TA
1236
+ 1.86
1237
+ 0.16
1238
+ 0.05
1239
+ TA-EN
1240
+ 1.03
1241
+ 0.08
1242
+ 0.02
1243
+ UR
1244
+ EN-UR
1245
+ 6.34
1246
+ 0.56
1247
+ 0.19
1248
+ UR-EN
1249
+ 7.07
1250
+ 0.54
1251
+ 0.18
1252
+
1253
+ 23
1254
+
1255
+
1256
+
1257
+ three metrics. HI and BN languages have qualitative, large, and less noisy
1258
+ datasets compared to other languages. Hence, HI performs the best among all
1259
+ languages without fine-tuning in all three metrics in both directions, and BN
1260
+ performs the best among all languages with fine-tuning in both direc- tions
1261
+ with respect to BLEU and RIBES. In addition, UR and PA also produce good
1262
+ RIBES metrics than other languages. RIBES score for PA is 0.63(for EN-
1263
+ PA) and 0.61(PA-EN), and for UR, RIBES score is 0.62(EN-UR) and
1264
+ 0.61(UR-EN).
1265
+ Even though SI has a good amount of corpus, the corpus does not have reli-
1266
+ able translations compared to other languages. For example, the sentence in
1267
+ English “Heb. 11:32-34; Judg. 16:18-21, 28-30 Jehovah’s spirit operated on
1268
+ Samson in a unique way because of unusual circumstances” has been trans-
1269
+ lated to Sinhala in the corpus as “11:32-34; Gනි.”, which only translates
1270
+ “Heb. 11:32-34;”. Hence, SI does not perform well compared to other lan-
1271
+ guages. Similarly, in the EN-TA corpus, the sentence “He’s my boss” has
1272
+ been translated to “அவர் எனது ே மலாளர் மட்டும்தான் .” which ac-
1273
+ tually means “He is only my manager”. From the example, it is clear that
1274
+ EN-TA corpus also has ambiguity. Additionally, even though the ILs-English
1275
+ and English-ILs systems are trained using the same corpus, a significant dis-
1276
+ crepancy in the BLEU scores is observed. This is due to the significant
1277
+ morphological diversity of ILs and the relative difficulty of translating from
1278
+ English to ILs. It has been observed that SI has a high number of lines (8.68
1279
+ M) but performs poorly as compared to languages like PA (2.42 M) and GU
1280
+ (3.05 M). It is also observed that languages with very steep slopes tend to
1281
+ have low scores. For example, EN-TA and EN-ML have 60% sentences with
1282
+ less than 4 tokens, and they have not-so-good scores as shown in Figure 1.
1283
+ In contrast, languages with good scores, like HI and BN have more gentle
1284
+ slopes. So, length of sentences is a contributing factor. EN-SD is an ex-
1285
+ ception which has a gentle slope but does not give good scores, because the
1286
+ corpus does not have good translation quality. Therefore, the quality of the
1287
+ corpus matters more than the size of the dataset.
1288
+
1289
+ 6 Conclusion and Future Work
1290
+ This paper has presented the MT work for 15 ILs to English and vice versa
1291
+ using SMT. It also describes the linguistic features of all 15 ILs. A tailor-
1292
+ made preprocessing approach has been incorporated into this work. The
1293
+
1294
+ 24
1295
+
1296
+
1297
+
1298
+
1299
+
1300
+
1301
+
1302
+
1303
+
1304
+
1305
+
1306
+
1307
+
1308
+
1309
+
1310
+
1311
+
1312
+
1313
+ Figure 1: Less than ogive for number of tokens in a sentence for all fifteen
1314
+ language corpora
1315
+
1316
+ LessthanOgiveforNumberoflokens
1317
+ 1.2
1318
+ given
1319
+ numberoftokenslessthan
1320
+ 1
1321
+ 0.8
1322
+ 0.6
1323
+ ofsentences
1324
+ 0.4
1325
+ Ratio
1326
+ 0.2
1327
+ 0
1328
+ 0
1329
+ 1
1330
+ 2
1331
+ m
1332
+ 4
1333
+ 5
1334
+ 6
1335
+ 7
1336
+ 8
1337
+ 9
1338
+ Numberoftokens
1339
+ EN-AS(AS)
1340
+ EN-SI(SI)
1341
+ EN-ML(ML)
1342
+ EN-MR(MR)
1343
+ EN-OR(OR)
1344
+ EN-SD(SD)
1345
+ EN-UR(UR)
1346
+ —EN-BN(BN)
1347
+ EN-GU(GU)
1348
+ EN-HI(HI)
1349
+ EN-KN(KN)
1350
+ EN-NE(NE)
1351
+ EN-PA(PA)
1352
+ EN-TA(TA)
1353
+ EN-TE(TE)25
1354
+
1355
+
1356
+
1357
+
1358
+
1359
+ model has utilized the grow-diag-final-and alignment model and distance re-
1360
+ ordering model. For checking the quality of translation, different evaluation
1361
+ Metrics such as BLEU, RIBES, and METEOR are utilized in this work.
1362
+ From the result, it is observed that the proposed SMT model is quite satis-
1363
+ factory for some of the ILs. However, the level of performance is not at par
1364
+ with the rest of the ILs and there lies the need of improvement to be made.
1365
+ Due to the scarcity and quality of parallel corpus, the metrics obtained are
1366
+ quite low.
1367
+ It has been observed that the translations of some of the languages are not
1368
+ sufficiently accurate. Measures of validating corpus quality shall be explored
1369
+ in order to observe the corpus quality and remove inaccurate lines. Dravid- ian
1370
+ languages are in general agglutinative languages (words are made up of
1371
+ morphemes, with each morpheme contributing to the meaning of the word).
1372
+ In future, means to infer translations from the breakdown of words in these
1373
+ languages shall also be explored.
1374
+ Interestingly, in some of the ILs, finetuning schemes are hampering the qual-
1375
+ ity. The causes of this phenomenon shall be analyzed and mitigated via
1376
+ techniques such as noise reduction, corpus cleaning, and finetuning schemes
1377
+ for those languages to ensure better quality. In addition, more language
1378
+ pairs and corpora can be analyzed and evaluated using various other meth-
1379
+ ods. Other techniques, such as hybridized SMT-NMT systems and the usage
1380
+ of other alignment and reordering models will be studied for further course
1381
+ of research.
1382
+
1383
+ References
1384
+ Dorr, Bonnie J., Eduard H. Hovy, and Lori S. Levin. 2004. Natural Lan-
1385
+ guage Processing and Machine Translation encyclopedia of language and
1386
+ linguistics. Proceeding International Conference of the World Congress on
1387
+ Engineering, 1–20.
1388
+
1389
+ Chapelle, Carol A., and Yoo-Ree Chung. 2010. Natural Language Process-
1390
+ ing and Machine Translation encyclopedia of language and linguistics.
1391
+ Language Testing, 301-315.
1392
+
1393
+ Somers, Harold. 2011. Machine translation: History, development, and
1394
+
1395
+ 26
1396
+
1397
+
1398
+
1399
+
1400
+
1401
+ limitations. The Oxford Handbook of Translation Studies.
1402
+
1403
+ Tripathi, Sneha., and Juran Krishna Sarkhel. 2010. Approaches to machine
1404
+ translation. NISCAIR-CSIR, 388-393
1405
+
1406
+ Lopez, Adam. 2008. Statistical machine translation. ACM Computing
1407
+ Surveys (CSUR), 1-49
1408
+
1409
+ Stasimioti, Maria., 2020. Machine Translation Quality: A comparative
1410
+ evaluation of SMT, NMT and tailored-NMT outputs. Proceedings of the
1411
+ 22nd Annual Conference of the European Association for Machine
1412
+ Translation, 1-49
1413
+
1414
+ Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen., 2016. The
1415
+ United Nations Parallel Corpus v1.0. In Proceedings of the Tenth In-
1416
+ ternational Conference on Language Resources and Evaluation, 3530–3534
1417
+
1418
+ Lohar, Pintu, Popović, Maja , Alfi, Haithem and Way, Andy., 2019. A
1419
+ systematic comparison between SMT and NMT on translating user-
1420
+ generated content. International Conference on Computational Linguistics
1421
+ and Intelligent Text Processing, 7-13
1422
+
1423
+ L, Zhou., Wenpeng Hu, J Zhang, C Zong., 2017. Neural system combi-
1424
+ nation for machine translation. arXiv preprint arXiv:1704.06393 , 378–384
1425
+
1426
+ Wang, X., Zhengdong Lu, v, Hang Li, Deyi Xiong, Min Zhang., 2017. Neural
1427
+ machine translation advised by statistical machine translation. Thirty-first
1428
+ AAAI conference on artificial intelligence , 1-7
1429
+
1430
+ Castilho, S., Moorkens, J., Gaspari,Federico., and Andy Way., 2017. Is
1431
+ neural machine translation the new state of the art?. Prague Bulletin of
1432
+ Mathematical Linguistics , 109-120
1433
+
1434
+ 27
1435
+
1436
+
1437
+
1438
+
1439
+
1440
+ Wang, Xing, Zhaopeng Tu, and Min Zhang., 2018. Incorporating statistical
1441
+ machine translation word knowledge into neural machine translation?.
1442
+ IEEE/ACM Transactions on Audio, Speech, and Language Processing , 2255-
1443
+ 2266
1444
+
1445
+ Mahata, Sainik Kumar., Mandal,Soumil., Das, Dipankar., and Bandyopad-
1446
+ hyay, Sivaji., 2018. SMT vs NMT: a comparison over Hindi and Bengali
1447
+ simple sentences. arXiv preprint arXiv:1812.04898
1448
+
1449
+ Koehn, Philipp.,Hoang, Hieu., Birch, Alexandra., Callison-Burch, Chris.,
1450
+ Federico, Marcello., Bertoldi, Nicola., Cowan, Brooke., Shen, Wade.,
1451
+ Moran, Christine., Zens, Richard., Dyer, Chris., Bojar, Ondřej., Con-
1452
+ stantin, Alexandra., and Herbst, Evan., 2018. Moses: Open source
1453
+ toolkit for statistical machine translation. Proceedings of the 45th annual
1454
+ meeting of the association for computational linguistics companion volume
1455
+ proceedings of the demo and poster sessions , 2255-2266
1456
+
1457
+ Zens, Richard, Franz Josef Och, and Hermann Ney., 2002. Phrase-based sta-
1458
+ tistical machine translation. Annual Conference on Artificial Intelligence,
1459
+ 2255-2266
1460
+
1461
+ Hearne, Mary, and Andy Way., 2011. Statistical machine translation: a
1462
+ guide for linguists and translators. Language and Linguistics Compass ,
1463
+ 205-226
1464
+
1465
+ Costa-Jussà., and Marta R.,2012.Study and comparison of rule-based and
1466
+ statistical Catalan-Spanish machine translation systems. Computing and
1467
+ Informatics , 245-70
1468
+
1469
+ Carl, Michael., and Andy, Way., 2000. Towards a dynamic linkage of
1470
+ example-based and rule-based machine translation. Machine Translation
1471
+ , 223-257
1472
+
1473
+ 28
1474
+
1475
+
1476
+
1477
+
1478
+
1479
+ Hutchins, W. John., 2005. Towards a definition of example-based machine
1480
+ translation. Workshop on example-based machine translation , 223-257
1481
+
1482
+ Marton, Yuval., Chris Callison-Burch., and Philip Resnik., 2009. Improved
1483
+ statistical machine translation using monolingually-derived paraphrases.
1484
+ Association for Computational Linguistics , 381–390
1485
+
1486
+ P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J.
1487
+ D. Lafferty, R. L. Mercer, and P. S. Roossin., 1990. A statistical approach
1488
+ to machine translation. Computational Linguistics , 79–85
1489
+
1490
+ Stahlberg, Felix., 2020. The Roles of Language Models and Hierarchical
1491
+ Models in Neural Sequence-to-Sequence Prediction. European Association
1492
+ for Machine Translation , 5–6
1493
+
1494
+ Ramesh, Akshai, Venkatesh Balavadhani Parthasarathy, Rejwanul Haque, and
1495
+ Andy Way., 2020. Comparing statistical and neural machine trans- lation
1496
+ performance on hindi-to-tamil and english-to-tamil. Digital 1, 86-102
1497
+
1498
+ Toral, Antonio, and Víctor M. Sánchez-Cartagena., 2017. A multi- faceted
1499
+ evaluation of neural versus phrase-based machine translation for 9
1500
+ language directions. Association for Computational Linguistics, 1063–1073
1501
+
1502
+ Dasgupta, Sajib, Abu Wasif, and Sharmin Azam. ”An optimal way of
1503
+ machine translation from English to Bengali., 2004. An optimal way of
1504
+ machine translation from English to Bengali. International Conference on
1505
+ Computer and Information , 1-6
1506
+
1507
+ Castilho, S., Moorkens, J., Gaspari, F., Sennrich, R., Sosoni, V., Geor-
1508
+ gakopoulou, Y., Lohar, P., Way, A., Miceli Barone, A. V., and Gialama,
1509
+ M., 2017. A Comparative Quality Evaluation of PBSMT and NMT using
1510
+ Professional Translators. In Proceedings of Machine Translation Summit
1511
+
1512
+ 29
1513
+
1514
+
1515
+
1516
+
1517
+
1518
+ XVI , 116–131
1519
+
1520
+ Islam Z, Tiedemann J, Eisele A., 2010. English to Bangla phrase-based
1521
+ machine translation. Proceedings of the 14th annual conference of the
1522
+ European Association for Machine Translation, 1-8
1523
+
1524
+ Kaur, Jasleen, and Gurpreet Singh Josan., 2011. tatistical approach to
1525
+ transliteration from english to punjabi. International Journal on Com-
1526
+ puter Science and Engineering, 1518-1527
1527
+
1528
+ Zbib, Rabih, Spyros Matsoukas, Richard Schwartz, and John Makhoul.,
1529
+ 2010. Decision Trees for Lexical Smoothing in Statistical Machine Trans-
1530
+ lation. Association for Computational Linguistics, 428–437
1531
+
1532
+ Pushpananda, Randil, Ruvan Weerasinghe, and Mahesan Niranjan., 2014.
1533
+ Sinhala-Tamil machine translation: Towards better translation quality. In
1534
+ Proceedings of the Australasian Language Technology Association Workshop
1535
+ , 129-133
1536
+
1537
+ Nalluri, A., and Kommaluri, V., 2011. Statistical Machine Translation
1538
+ using Joshua: An approach to build “enTel” system. Parsing in Indian
1539
+ Languages , 1-6
1540
+
1541
+ Ananthakrishnan Ramanathan, Jayprasad Hegde, Ritesh M. Shah, Pushpak
1542
+ Bhattacharyya, and Sasikumar M., 2008. Simple syntactic and morpho-
1543
+ logical processing can help English-Hindi statistical machine translation.
1544
+ Proceedings of the Third International Joint Conference on Natural Language
1545
+ Processing , 1-6
1546
+
1547
+ Ramanathan, Ananthakrishnan, Hansraj Choudhary, Avishek Ghosh, and
1548
+ Pushpak Bhattacharyya., 2009. Case markers and morphology: addressing
1549
+ the crux of the fluency problem in English-Hindi SMT. In Proceedings
1550
+ of the Joint Conference of the 47th Annual Meeting of the ACL and the
1551
+
1552
+ 30
1553
+
1554
+
1555
+
1556
+
1557
+
1558
+ 4th International Joint Conference on Natural Language Processing of the
1559
+ AFNLP , 800-808
1560
+
1561
+ Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu., 2002.
1562
+ Bleu: a method for automatic evaluation of machine translation. In Pro-
1563
+ ceedings of the 40th annual meeting of the Association for Computational
1564
+ Linguistics ,311-318
1565
+
1566
+ Wołk, Krzysztof, and Danijel Koržinek., 2016. Comparison and Adaptation of
1567
+ Automatic Evaluation Metrics for Quality Assessment of Re-Speaking. arXiv
1568
+ preprint arXiv:1601.02789
1569
+
1570
+ Banerjee, Satanjeev, and Alon Lavie., 2005. METEOR: An automatic
1571
+ metric for MT evaluation with improved correlation with human
1572
+ judgments. In Proceedings of the acl workshop on intrinsic and extrinsic
1573
+ evaluation measures for machine translation and/or summarization , 65-72
1574
+
1575
+ KM, Shiva Kumar, B. N. Namitha, and R. Nithya., 2015. A Comparative
1576
+ Study of English To Kannada Baseline Machine Translation System
1577
+ With General and Bible Text Corpus. International Journal of Applied
1578
+ Engineering Research , 30195-30201
1579
+
1580
+ Acharya, Praveen, and Bal Krishna Bal., 2018. A Comparative Study of
1581
+ SMT and NMT: Case Study of English-Nepali Language Pair. Interna-
1582
+ tional Journal of Applied Engineering Research , 90-93
1583
+
1584
+ Lita, Lucian Vlad, Abe Ittycheriah, Salim Roukos, and Nanda Kambhatla.,
1585
+ 2003. Development of English-to-Bengali neural machine translation
1586
+ systems. In Proceedings of the 41st Annual Meeting of the Association for
1587
+ Computational Linguistics , 152-159
1588
+
1589
+ Abujar, S., Masum, A. K. M., Bhattacharya, A., Dutta, S., and Hossain,
1590
+ S. A., 2021. English to bengali neural machine translation using global
1591
+
1592
+ 31
1593
+
1594
+
1595
+
1596
+
1597
+
1598
+ attention mechanism. Emerging Technologies in Data Mining and Infor-
1599
+ mation Security , 359–369
1600
+
1601
+ Li, Zhifei, Chris Callison-Burch, Chris Dyer, Sanjeev Khudanpur, Lane
1602
+ Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan., 2009.
1603
+ Joshua: An open source toolkit for parsing-based machine translation. In
1604
+ Proceedings of the Fourth Workshop on Statistical Machine Translation , 135-
1605
+ 139
1606
+
1607
+ Ramesh, Gowtham, Sumanth Doddapaneni, Aravinth Bheemaraj, Mayank
1608
+ Jobanputra, Raghavan AK, Ajitesh Sharma, Sujit Sahoo et al., 2022.
1609
+ Samanantar: The largest publicly available parallel corpora collection for 11
1610
+ Indic languages. Transactions of the Association for Computational
1611
+ Linguistics , 145-162
1612
+
1613
+ Tiedemann, Jörg., 2012. Parallel data, tools and interfaces in OPUS. In
1614
+ Lrec, 2214-2218
1615
+
1616
+ Costa-jussà, Marta R., James Cross, Onur Çelebi, Maha Elbayad, Kenneth
1617
+ Heafield, Kevin Heffernan, Elahe Kalbassi et al., 2022. No language left
1618
+ behind: Scaling human-centered machine translation. arXiv preprint
1619
+ arXiv:2207.04672, 2214-2218
1620
+
1621
+ What are the top 200 most spoken languages., 2022. Ethnologue: Languages of
1622
+ the World https://www.ethnologue.com/guides/ethnologue200
1623
+
1624
+ Costa-jussà, Marta R., James Cross, Onur Çelebi, Maha Elbayad, Kenneth
1625
+ Heafield, Kevin Heffernan, Elahe Kalbassi et al., 2003. Minimum error rate
1626
+ training in statistical machine translation. Proceedings of the 41st Annual
1627
+ Meeting on Association for Computational Linguistics, 160–167
1628
+
1629
+ Khan, N. J., Anwar, W., and Durrani, N., 2017. Machine translation ap-
1630
+ proaches and survey for Indian languages. arXiv preprint arXiv:1701.04290
1631
+
1632
+
1633
+
1634
+ 32
1635
+
1636
+
1637
+
1638
+ Lita, L. V., Ittycheriah, A., Roukos, S., and Kambhatla, N. 2003. Trucasing.
1639
+ In Proceedings of the 41st Annual Meeting on Association for Computa-
1640
+ tional Linguistics, 152-159
1641
+
1642
+ Kumawat, Sudhakar and Nitish Chandra., 2014. Distance-based Reordering in
1643
+ English to Hindi Statistical Machine Translation. International Journal of
1644
+ Computer Applications, 27-40
1645
+
1646
+ Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi,
1647
+ N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O.,
1648
+ Constantin, A., and Herbst, E. 2007. Moses: Open source toolkit for
1649
+ statistical machine translation. In Proceedings of the Annual Meeting of the
1650
+ Association for Computational Linguistics, 177–180
1651
+
1652
+ 33
1653
+
1654
+
1655
+
9NAyT4oBgHgl3EQfqPh6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tE2T4oBgHgl3EQfmAcG/content/tmp_files/2301.03993v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tE2T4oBgHgl3EQfmAcG/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BNAzT4oBgHgl3EQfGPsJ/content/tmp_files/2301.01023v1.pdf.txt ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01023v1 [physics.comp-ph] 3 Jan 2023
2
+ Performance investigation of supercapacitors
3
+ with PEO-based gel polymer & ionic liquid
4
+ electrolytes: Molecular Dynamics Simulation
5
+ Nasrin Eyvazi,† Davood Abbaszadeh,† Morad Biagooi,‡ and SeyedEhsan Nedaaee
6
+ Oskoee∗,†,¶
7
+ †Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan
8
+ 45137-66731, Iran
9
+ ‡Intelligent Data Aim Ltd (IDA Ltd), Science and Technology Park of Institute for
10
+ Advanced studies in Basic Sciences, Zanjan 45137-65697, Iran
11
+ ¶Research Center for Basic Sciences & Modern Technologies (RBST), Institute for
12
+ Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
13
+ E-mail: [email protected]
14
+ Phone: (+98) 241-415-2217. Fax: (+98) 241-415-2104
15
+ Abstract
16
+ Due to the importance of using supercapacitors in electronic storage devices, im-
17
+ proving their efficiency is one of the topics that has attracted the attention of many
18
+ researchers. Choosing the proper electrolyte for supercapacitors is one of the most sig-
19
+ nificant factors affecting the performance of supercapacitors. In this paper, two classes
20
+ of electrolytes, i.e.
21
+ liquid electrolyte (ionic liquid electrolyte) and solid electrolyte
22
+ (polymer electrolyte) are compared by molecular dynamics simulation. We consider
23
+ the polymer electrolyte in linear and network configurations. The results show that
24
+ 1
25
+
26
+ although ionic liquid-based supercapacitors have a larger differential capacitance, since
27
+ they have a smaller operation voltage, the amount of energy stored is less than poly-
28
+ mer electrolyte-based supercapacitors. Also, our investigations indicate that polymer
29
+ electrolyte-based supercapacitors have more mechanical stability. Therefore, they can
30
+ be considered a very suitable alternative to liquid electrolyte-based supercapacitors that
31
+ do not have known liquid electrolyte problems and display better performance.
32
+ Introduction
33
+ Supercapacitors (SCs), also known as Electric Double Layer Capacitors (EDLCs), have re-
34
+ cently attracted much attention in the field of electrical energy storage. The SCs fill the gap
35
+ between batteries and conventional capacitors in terms of energy and power density. They
36
+ consist of two porous electrodes immersed in an electrolyte. Due to the potential differ-
37
+ ence between the electrodes, the charged electrodes repel the co-ions in the electrolyte while
38
+ attracting their counter-ions, resulting in charge separation and charge storage.
39
+ The SCs have higher energy density in comparison with conventional capacitors due
40
+ to their porous electrodes with large surface areas and small charge separation distances.1
41
+ Also, compared to batteries, SCs have the advantages of higher power density induced by
42
+ a fast charging/discharging rate (in seconds), a long cycle life (4,100,000 cycles), and high
43
+ power density.1 Despite their higher power density, they cannot store the same amount of
44
+ energy as batteries.1 Extensive efforts and research have been devoted to increasing the
45
+ energy density of SCs to 20-30 Wh/L to solve the problems and satisfy the performance
46
+ demands.2–4 According to relation E = 1
47
+ 2CV 2, the energy density (E) of SCs is proportional
48
+ to the capacitance (C) and the square of the voltage (V ). Therefore, increasing either the
49
+ capacitance or the voltage of a cell can be an effective way to achieve high energy density.2
50
+ The efficiency of SCs depends mainly on both electrolyte and electrode structure. The
51
+ pore size and surface area of electrodes, ionic conductivity, and electrolyte operating voltage
52
+ window play a significant role in developing high-performance and flexible SCs.5 Especially
53
+ 2
54
+
55
+ in the case of liquid electrolytes, they have some disadvantages for use in flexible SCs like
56
+ being toxic and corrosive,2 requiring high-cost packaging to fabricate, and are associated
57
+ with leakage problems.2,6 In general, the critical features of an ideal electrolyte include: (1)
58
+ a wide voltage and temperature window; (2) a high ionic conductivity; (3) a high chemical
59
+ and mechanical stability; (4) well-matched with the electrolyte materials; (5) low volatility
60
+ and flammability; (6) safety; and (7) simple processing with low cost.6–8
61
+ To overcome the limitations of liquid electrolytes, polymer electrolytes (PEs) were in-
62
+ troduced. In 1970, Armand first used PE in Lithium Ion Batteries (LIBs) and proposed
63
+ LIBs with improved efficiency and energy density.9 PEs consist of a macromolecule matrix
64
+ dissolved in a low viscosity and high dielectric constant organic solvent.9 PEs have many
65
+ advantages such as avoiding liquid leakage and corrosion problems, good ionic conductivity,
66
+ high chemical and mechanical stability, high energy density, safety, solvent-free condition,
67
+ being light in weight, low cost, and simple manufacturing process.6–9
68
+ Due to the advantages of PEs, they are ideal candidates for use in SCs as electrolytes.
69
+ PEs for SCs can be classified into three categories: (1) solid polymer electrolytes (SPEs),
70
+ (2) gel polymer electrolytes (GPEs), and (3) polyelectrolytes. The SPE is composed of a
71
+ polymer (e.g., PEO) and a salt (e.g., LiCl), without any solvents. The ions in the SPE are
72
+ transported through the polymer2,5 and the polymer works as a host matrix for ion move-
73
+ ment.2,10 In contrast, the GPE consists of a polymer host (e.g., PVA) and a liquid electrolyte
74
+ or a conducting salt dissolved in a solvent.2,11 The polymer in GPE is swollen by the solvent
75
+ and acts as a dynamic moving matrix. The conductivity of ions occurs through the solvent
76
+ instead of the polymer phase.2,11 In GPEs, the liquid electrolyte generally provides free ions
77
+ that participate in conductivity enhancement and also acts as a conductive medium. In
78
+ addition, the polymer provides perfect mechanical stability by increasing the viscosity of
79
+ the electrolyte.5 Recently, researchers have shown that using Ionic Liquids (ILs) can im-
80
+ prove ionic conductivity and cell voltage, resulting to improvement in the electrochemical
81
+ performance of GPE.5 By its softening effect on the polymer chains, IL can increase the
82
+ 3
83
+
84
+ electrolyte’s ionic conductivity and facilitate ion transfer.5 GPE based on ILs and linear
85
+ polymers usually exhibit poor mechanical properties, including both strength and flexibil-
86
+ ity, because of their few polymer chain entanglements separated by small molecules.12 To
87
+ generate polymer networks, cross-linking strategies have been proposed in recent years. The
88
+ behaviors and performance of polymer gels are largely determined by the structure of the
89
+ polymer network that makes up the gel. This is due to the interaction between the net-
90
+ work and the solvent.5 Gels generally have high mobility because the polymer networks are
91
+ dissolved by a large amount of entrapped solvent.5
92
+ In the polyelectrolyte, ionic conductivity is created by charged polymer chains.12 As
93
+ it turns out, each type of these solid-state electrolytes has its advantages and disadvan-
94
+ tages. Typically, GPEs have the highest ionic conductivity among the three types of solid-
95
+ state electrolytes.5,12 Due to the liquid phase in the GPE, its ionic conductivity is signif-
96
+ icantly higher than dry SPE. Therefore, GPE-based SCs currently dominate the products
97
+ of solid electrolyte-based SCs.
98
+ Several polymer matrices have been explored for prepar-
99
+ ing GPEs in the role of host polymer including: poly (vinyl alcohol) (PVA), poly (acrylic
100
+ acid) (PAA), potassium polyacrylate (PAAK), poly (ethyl oxide) (PEO), poly (methyl-
101
+ methacrylate) (PMMA), poly (ether ether ketone) (PEEK), and poly (vinylidene fluoride-
102
+ co-hexafluoro-propylene) (PVDF-HFP).2
103
+ Beyond all of the experimental achievements,6,13–16 modeling the EDLCs under differ-
104
+ ent physical conditions would provide a lot of insight into the system’s physics. Modeling
105
+ the microstructure will reveal how the related dynamics for charge carriers happen. So far,
106
+ numerous types of research have been done on liquid electrolyte-based SCs to explore the
107
+ performance of different kinds of liquid electrolyte-based SCs and the effect of electrode struc-
108
+ ture and its pore size.17–20 Our previous work,21 models the third classification of polymer
109
+ electrolytes (polyelectrolytes). In this work, considering the advantages of GPEs compared
110
+ to other polymer electrolytes and their useful applications, we investigated the behavior of
111
+ GPE-based SCs using the molecular dynamics simulation method. Here, we compared IL-
112
+ 4
113
+
114
+ based and GPE-based SCs in order to find out the effects of adding host polymers to the
115
+ IL electrolyte. In the first section, we describe the method of simulation under different
116
+ conditions. Based on the results we get from our model, we discuss the pros and cons of
117
+ using GPEs and IL electrolytes in SCs.
118
+ Method
119
+ Systems’ model and force field parameters
120
+ Molecular Dynamics (MD) simulations have been widely used to describe the behavior of SCs.
121
+ Using MD simulations, we compared liquid electrolyte-based SCs with PE-based SCs under
122
+ various conditions. The simulations were carried out by the CAVIAR software package.22
123
+ We have investigated the performance of three different systems with similar electrodes but
124
+ different electrolytes. The electrolytes were confined between two electrodes with single slit-
125
+ pore geometry, placed at a distance of 15 nm from each other. This model called a slit-pore
126
+ model was introduced by Breitsprecher et al18,23 for simulating porous media.
127
+ The slit-pore length was set to 15 nm, in order to be compared with the bulk region and
128
+ the width of the pore is 2.5 nm (larger than the size of two ionic particles) so that at least
129
+ two ionic particles can pass through the pore.24
130
+ To compare the electrolyte role we have simulated the above mentioned pore structure
131
+ with different electrolyte systems; liquid electrolyte (system A), linear polymer electrolyte
132
+ (system B), and polymer network electrolyte (system C). By comparing the results, we can
133
+ discuss the effects and the function of different electrolytes.
134
+ System A: Liquid electrolyte-based supercapacitors
135
+ Our first model contains IL electrolytes confined between those described electrodes. We
136
+ used Coarse-Grained (CG) models of ILs, where ions are soft spheres with diameters dcation
137
+ = danion = 1 nm and valency q = ± 1, in units of the elementary charge. The mass of
138
+ 5
139
+
140
+ cations and anions are mcation = 117.17 g
141
+ mol and manion = 86.81 g
142
+ mol corresponding to EMIM+
143
+ and BF4-.
144
+ All the particles interact with the non-bonding Lennard-Jones (LJ) potential:
145
+ VLJ(rij) =
146
+
147
+
148
+
149
+
150
+
151
+ 4εij[( σij
152
+ rij )12 − ( σij
153
+ rij )6]
154
+ ;
155
+ r ≤ rcut
156
+ 0
157
+ ;
158
+ r ≥ rcut
159
+ (1)
160
+ Where rij is the relative distance between each pair of particles, ε and σ are the length
161
+ and energy parameters. In calculating the LJ potential, rcut =
162
+ 6√
163
+ 2 σ is the cutoff length
164
+ to ensure short-range repulsive force at any distance. In addition, charged particles also
165
+ interact through the electrostatic non-bonding potential:
166
+ VC(rij) =
167
+
168
+ i
169
+
170
+ i<j
171
+ zizje2
172
+ 4πǫ|ri − rj|
173
+ (2)
174
+ The ǫ and e are the electric permittivity and the electrical charge. The z = ±1 is the valency
175
+ of ions. For the electrostatic interactions we used the electric permittivity of ǫ = 10, a typical
176
+ value for ILs at 300 ◦K.17
177
+ System B: Linear polymer electrolyte-based supercapacitors
178
+ In system B, we added polymer hosts to system A to simulate GPE-based SCs. By com-
179
+ paring these two systems’ behavior, we can find out the advantages of one over another.
180
+ Poly(ethylene oxide) (PEO) with the formula H3C-O-(CH2-CH2-O)n-CH3,25 the most com-
181
+ mon polymer with a broad range of applications in polymer chemistry,26 biotechnology,27
182
+ and medical science,9,28 is used as a host polymer in our simulations. We used MARTINI-like
183
+ CG models for PEO simulation.25,28 Fig.1 represents the CG model for PEO2.
184
+ Generally, the MARTINI potential consists of bond, angle, LJ, electrostatic, and torsional
185
+ terms. In our system, two consecutive beads in each chain are connected by a harmonic
186
+ 6
187
+
188
+ Figure 1: PEO2 and its CG model.
189
+ stretching spring whose potential is taken to be:
190
+ Vbond(r) = 1
191
+ 2Kb(r − r0)2
192
+ (3)
193
+ Where Kb is the bond force constant, r is the instantaneous bond length, and r0 is the
194
+ equilibrium length of the bond. Bond angle is the angle formed between three atoms across
195
+ at least two bonds which can be described as:
196
+ Vangle(θ) = 1
197
+ 2Kθ(cosθ − cosθ0)
198
+ (4)
199
+ and the torsion angle (also called dihedral angle) is defined by 3 consecutive bonds involving
200
+ 4 atoms:
201
+ Vdihedral(φ) =
202
+ 4
203
+
204
+ n=1
205
+ Kφ,n(1 + cos(nφ − φn))
206
+ (5)
207
+ Where n and φ are the multiplicities and offsets of the n individual dihedral terms. The
208
+ force constants for these bonded interactions are listed in Table.1.25
209
+ Table 1: Parameters for bonded interactions for modeling CG PEO.
210
+ Bond
211
+ Angle
212
+ Dihedral
213
+ r0(Å)
214
+ Kb(
215
+ kJ
216
+ mol nm2)
217
+ θ0 (deg)
218
+ Kθ ( kJ
219
+ mol)
220
+ φn (deg)
221
+ Kφ ( kJ
222
+ mol)
223
+ n
224
+ 3.30
225
+ 17000
226
+ 130
227
+ 85
228
+ 180
229
+ 1.96
230
+ 1
231
+ 0
232
+ 0.18
233
+ 2
234
+ 0
235
+ 0.33
236
+ 3
237
+ 0
238
+ 0.12
239
+ 4
240
+ 7
241
+
242
+ PEO2
243
+ PEO2 (CG)The LJ parameters in Eq.1 for CG PEO beads were set to σij = 5 Å and εij = 3.375
244
+ kJ
245
+ mol.
246
+ Each chain in CG PEO modeling has 25 spherical beads connected with the mass mPEO =
247
+ 60.05376
248
+ g
249
+ mol.
250
+ System C: Network polymer electrolyte-based supercapacitors
251
+ Nowadays, polymer networks have received much attention due to their characteristics and
252
+ have been used in various applications.29 In network polymer structures, all polymer chains
253
+ are directly or indirectly linked to each other.
254
+ The cross-linking of polymer chains into
255
+ complex networks is a promising strategy to improve the mechanical strength of a GPE and
256
+ provide dimensional stability at high temperatures30 which has been widely investigated.29
257
+ As a model for the polymer network, we consider a cross-link of linear chains as follows.
258
+ First, we highlighted some monomers as cross-links. As the cross-links are closer than the
259
+ distance r0 = 3.30 Å, a new permanent bond is formed between the cross-linkers, acting
260
+ like cross-linked monomers.29 Once equilibrium is reached, the polymer network can be used
261
+ instead of linear polymers in our simulations. Fig. 2a demonstrates the linear polymers we
262
+ consider in our simulation as system B and Fig. 2b displays cross-linked polymers in system
263
+ C.
264
+ Simulation details and electrodes model:
265
+ The simulations were performed using the Langevin thermostat to keep the temperature
266
+ constant.
267
+ Thus, the equation of motion of the system was calculated by the Langevin
268
+ relation:
269
+ m¨ri = −∇iU({ rj(t)}) − γm˙ri + Fi.
270
+ (6)
271
+ The first term describes the deterministic forces between particles (the force acting on atom
272
+ i due to the interaction potentials), and the last two terms implicitly consider the effect of
273
+ the solvent by coupling the system to a Langevin thermostat which maintains a constant
274
+ 8
275
+
276
+ (a)
277
+ (b)
278
+ Figure 2: (a) Linear polymers distribution in system B and (b) Cross-linked polymers in
279
+ system C.
280
+ average temperature of the system. The parameter γ is the friction coefficient and Fi is a
281
+ Gaussian distributed random force with31
282
+ ⟨Fi(t)⟩ = 0
283
+ ⟨Fi(t)Fj(t′)⟩ = 6kBTmγδijδ(t − t′).
284
+ (7)
285
+ Our simulation box included 630 charged particles, where half of which are cations and
286
+ the remains are anions, and 1575 monomers. The density of the bulk region was set to
287
+ 1.07
288
+ 1
289
+ nm3 and the pore size in three defined systems was equal. To simplify the units, the
290
+ reduced LJ unit was used. The length was scaled with ion size ˜l = σ = 5 Å, and the mass
291
+ unit was ˜m = 144
292
+ g
293
+ mol. The energy unit and the charge unit were ˜ε = 1
294
+ kJ
295
+ mol and ˜q = e.
296
+ By applying ˜t =
297
+
298
+ ˜mσ2
299
+ ˜ε , the time unit was obtained ˜t = 5 ps. In addition, temperature
300
+ 9
301
+
302
+ and voltage were scaled as ˜T =
303
+ ˜ε
304
+ kB
305
+ = 120.267 ◦K and ˜V = ˜q
306
+ ˜ε = 0.01036 V . Temperature
307
+ was kBT = 2.5 ε which corresponded to 300 ◦K in real unit. The friction coefficient in the
308
+ Langevin equation was set to 1
309
+ γ = 1
310
+ ˜t and the time step was ∆t = 0.0005 ˜t equal to 6 fs.
311
+ The electrodes were built from carbon atoms with the following parameters: σC = 3.37
312
+ Å and εC = 1
313
+ kJ
314
+ mol.
315
+ Here, using the Poisson to Laplace Transformation (PLT) method,
316
+ which is recently developed in the CAVIAR package,22 the electrodes are surfaces with a
317
+ constant potential. Periodic boundary condition applied in the XY plane and the long-range
318
+ coulombic interaction performed using a 1D Ewald algorithm32 with RC = 15 σ as the cutoff
319
+ distance for electrostatic interaction. The systems were simulated at 17 various potential
320
+ differences between electrodes: 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25,
321
+ 3.5, 3.75, 4 V. Calculations were done after the system reached equilibrium.
322
+ Results and Discussion
323
+ We begin our discussion with a snapshot of three defined systems. Fig.3 illustrates a snap-
324
+ shot from cross-section of the systems configuration and ions separation in the equilibrium
325
+ condition for ∆V = 2 V . In order to find out the charge separation process and the behavior
326
+ of these three systems, it is necessary to conduct numerous calculations and measurements.
327
+ We will discuss this below.
328
+ Charging and Differential Capacitance
329
+ Initially, we discuss the results of the charging process. Fig.4 demonstrates average charge
330
+ density accumulation on the surface of the electrodes for the three systems as a function of the
331
+ applied potential difference between the electrodes. According to the figure, increasing the
332
+ potential difference results in a high concentration of counterions on the electrodes’ surface.
333
+ Therefore average induced charge grows by increasing the applied potential until reaching
334
+ saturation. For system A, the induced charge is greater than in the two other systems. Based
335
+ 10
336
+
337
+ 15 nm
338
+ 4.825 nm
339
+ 4.825 nm
340
+ 2.5 nm
341
+ 8.1 nm
342
+ (a)
343
+ 10 nm
344
+ 10 nm
345
+ 15 nm
346
+ 15 nm
347
+ 2.5 nm
348
+ (b)
349
+ 2.5 nm
350
+ 15 nm
351
+ 15 nm
352
+ 10 nm
353
+ 10 nm
354
+ (c)
355
+ Figure 3: The systems configuration at ∆V = 2V after equilibration for (a) System A (b)
356
+ System B and (c) System C.
357
+ on the figure, the saturation voltages for system A is ∆V = 2 V , and for systems B and C is
358
+ ∆V = 3.5 V . Since IL-based SCs are saturated at a lower voltage than polymer-based SCs,
359
+ their operating voltage window is also smaller.
360
+ For systems B and C, the induced charges on the electrodes for voltages ∆V < 1.25 V ,
361
+ are almost the same. In voltages, ∆V > 1.25 V , induced charges in system C, are greater
362
+ than system B until both systems reach saturation in ∆V = 3.5 V .
363
+ On the other hand, charge storage in SCs is described by the critical quantities of the
364
+ Differential Capacitance, Cd(V ), and the energy density. The Cd(V ) is the derivative of
365
+ the electrodes surface charge with respect to the applied potential difference between the
366
+ electrodes:33
367
+ Cd(V ) = dq
368
+ dV .
369
+ (8)
370
+ According to the Eq.8, the Cd(V ) is the derivative of the curves in Fig.4. Fig.5, which is
371
+ obtained by the numeric derivation of smooth curves of q(V ), shows the Cd(V ) plots for
372
+ three systems.
373
+ Based on Kornyshev theory for most ILs, Cd(V ) displays a bell-shape, with a maximum at
374
+ 11
375
+
376
+ 0
377
+ 5
378
+ 10
379
+ 15
380
+ 20
381
+ 25
382
+ 0
383
+ 0.5
384
+ 1
385
+ 1.5
386
+ 2
387
+ 2.5
388
+ 3
389
+ 3.5
390
+ 4
391
+ Charge Density (µC/cm2)
392
+ Voltage (V)
393
+ System A
394
+ System B
395
+ System C
396
+ Figure 4: Mean induced charge density on the electrodes surface. The points in the figure
397
+ display the simulation data and the solid lines in the plots represent the smoothed data.
398
+ the Potential of Zero Charge (PZC) or a camel-shape with two peaks. In both cases, Cd(V )
399
+ decreases at large potential difference. The reason is, the ions are only allowed to pack up to a
400
+ given maximum density in the double layer. Therefore, by increasing the potential difference,
401
+ the ions concentration near the electrodes’ surface reaches their maximum value and the
402
+ effective diffuse layer thickness actually grows larger, leading to a decrease in Cd(V ).34,34
403
+ Fig.5 is a plot of the Cd(V ) for three systems, which display camel-shaped figures. There
404
+ is limited change in the Cd(V ) curve for system B, indicating the surface charge density
405
+ changes less rapidly in system B with increasing potential. In contrast, there is a peak at
406
+ ∆V = 1.5 V in the Cd(V ) plot of system C which points out that more counter-ions can be
407
+ condensed on the electrodes’ surface of system C in comparison with system B. The Cd(V )
408
+ peak for system A is the highest among systems B and C. The result of Korneyshev theory
409
+ is observed in Fig.4 and Fig.5. In systems A, B and C, the saturation voltage is 2, 3 and 3.5
410
+ 12
411
+
412
+ 0
413
+ 2
414
+ 4
415
+ 6
416
+ 8
417
+ 10
418
+ 12
419
+ 14
420
+ 16
421
+ 0
422
+ 0.5
423
+ 1
424
+ 1.5
425
+ 2
426
+ 2.5
427
+ 3
428
+ 3.5
429
+ 4
430
+ Differential Capacitance (µF/cm2)
431
+ Voltage (V)
432
+ System A
433
+ System B
434
+ System C
435
+ Figure 5: Differential Capacitance for three systems.
436
+ V . Due to this, in the Cd(V ) plot, the DC drops at voltages above these values.
437
+ As mentioned before, energy density is another useful parameter that shows the efficiency
438
+ of SCs. SC with a higher energy density is more efficient in electrical devices. The stored
439
+ energy density in SCs is obtained:35
440
+ E(V ) =
441
+ � V
442
+ 0
443
+ V Cd(V ) dV
444
+ (9)
445
+ Based on the above equation, the plot of energy density for the three systems is calculated
446
+ and plotted in Fig.6. According to this plot, for ∆V < 2 V the energy density of system
447
+ A is greater than systems B and C. For ∆V > 2 V systems B and C have higher energy
448
+ density which indicates that the GPEs-based SC has more efficiency than IL-based SCs in
449
+ higher potential difference.
450
+ 13
451
+
452
+ 0
453
+ 5
454
+ 10
455
+ 15
456
+ 20
457
+ 25
458
+ 30
459
+ 35
460
+ 40
461
+ 0
462
+ 0.5
463
+ 1
464
+ 1.5
465
+ 2
466
+ 2.5
467
+ 3
468
+ 3.5
469
+ 4
470
+ Energy Density (µW/cm2)
471
+ Voltage (V)
472
+ System A
473
+ System B
474
+ System C
475
+ Figure 6: The stored energy density in three systems.
476
+ Structural investigation: Ion density profile
477
+ Further insight into the ion structure near the electrodes’ surface is gained in this section.
478
+ Due to the constant density in all three systems, system A has a smaller bulk region between
479
+ its electrodes than systems B and C. It is expected that the ion density profiles will oscillate
480
+ near the charged surface in IL-based SCs,34 as shown in Fig.7a for ∆V = 2 V . Fig.7b and
481
+ Fig.7c depict ion density profiles for systems B and C at ∆V = 2 V after reaching equilibrium.
482
+ Similar to ILs, the ion density profile of these systems exhibits layers and oscillations near
483
+ electrode surfaces. While the conductive electrodes repel co-ions and attract counter-ions,
484
+ co-ions can still be observed inside the pores. The highest peak in Fig.7a can be seen at the
485
+ entrance and end of the pores, which contributes to the high induced charge on the surface
486
+ of the electrodes. Fig.7c, the ion density profile of system C, displays a higher peak at the
487
+ entrance of pores in analogy with the profile of system B. This leads to more induced charge
488
+ 14
489
+
490
+ 0
491
+ 2
492
+ 4
493
+ 6
494
+ 8
495
+ 10
496
+ 12
497
+ 14
498
+ -15
499
+ -10
500
+ -5
501
+ 0
502
+ 5
503
+ 10
504
+ 15
505
+ 20
506
+ 2 V
507
+ 0 V
508
+ Ion Density Profile (nm-3)
509
+ X (nm)
510
+ (a)
511
+ 0
512
+ 2
513
+ 4
514
+ 6
515
+ 8
516
+ 10
517
+ 12
518
+ 14
519
+ -15 -10 -5
520
+ 0
521
+ 5
522
+ 10 15 20 25 30
523
+ 2 V
524
+ 0 V
525
+ Ion Density Profile (nm-3)
526
+ X (nm)
527
+ (b)
528
+ 0
529
+ 2
530
+ 4
531
+ 6
532
+ 8
533
+ 10
534
+ 12
535
+ 14
536
+ -15 -10 -5
537
+ 0
538
+ 5
539
+ 10 15 20 25 30
540
+ 2 V
541
+ 0 V
542
+ Ion Density Profile (nm-3)
543
+ X (nm)
544
+ (c)
545
+ Figure 7: Ion density profile of three systems along x axis for (a) System A (b) System B
546
+ and (c) System C. Green and red graphs display positive and negative ions.
547
+ on the electrodes’ surface and eventually higher energy density.
548
+ The linear polymers can be placed near the electrode surfaces as well as in bulk space in
549
+ system B, in contrast to system C, which places the polymer network only in bulk space. As
550
+ a result, the accessible space for ions near electrode surfaces is reduced. Accordingly, system
551
+ B exhibits a lower ion density at the pore entrance than systems A and C.
552
+ Dynamical investigation: Mean Squared Displacement and
553
+ Diffusion coefficient
554
+ Gels with cross-linked polymers demonstrated higher mobility.5 Since the mobility of ions
555
+ is proportional to the diffusion coefficient (D) we need to calculate the diffusion coefficient.
556
+ The ionic diffusion coefficient is derived from the Mean-Squared Displacement (MSD) curve
557
+ using the 3D diffusion relation:
558
+ MSD ≡< ∆r(t)2 >= 1
559
+ N
560
+ N
561
+
562
+ i=1
563
+ < ri(t)2 − ri(0)2 >,
564
+ (10)
565
+ where N is the number of particles. Diffusion coefficient can be calculate using the following
566
+ equation;
567
+ D = lim
568
+ t→∞
569
+ < ∆r(t)2 >
570
+ 6t
571
+ .
572
+ (11)
573
+ 15
574
+
575
+ According to the above equation, also known as Einstein’s relation,36 the self-diffusion of
576
+ particles is calculated from the slope of the MSD curve over time.
577
+ We calculated MSD for clusters of linear polymers in system B and cross-linked polymers
578
+ in system C. According to Fig.8, MSD for linear polymers and cross-linked polymers display
579
+ superdiffusive motion. On the other hand, by taking the slope of the MSD into account, the
580
+ diffusion coefficient for cross-linked polymers is greater than linear polymers and therefore
581
+ the mobility of cross-linked polymers is higher. This result can also be seen in Fig.9. In this
582
+ figure, two snapshots of both polymers are shown for equal time intervals ∆t = 10 timestep.
583
+ Fig.9a shows lower mobility (for linear polymers) than Fig.9b (for cross-linked polymers).
584
+ 0
585
+ 0.2
586
+ 0.4
587
+ 0.6
588
+ 0.8
589
+ 1
590
+ 1.2
591
+ 1.4
592
+ 1.6
593
+ 1.8
594
+ 2
595
+ 0
596
+ 2
597
+ 4
598
+ 6
599
+ 8
600
+ 10
601
+ 12
602
+ ~ t1.91
603
+ ~ t1.99
604
+ Mean Squared Displacement (× 106 nm2)
605
+ Time (ns)
606
+ Linear polymers in system B
607
+ Network polymer in system C
608
+ 1×10-5
609
+ 1×10-4
610
+ 1×10-3
611
+ 1×10-2
612
+ 1×10-1
613
+ 1×100
614
+ 1×101
615
+ 1×10-1
616
+ 1×100
617
+ 1×101
618
+ Figure 8: Mean Squared Displacement of polymers in systems B and C in absence of electric
619
+ field. Inner is the same result but in logarithmic scale, indicating on power-law behavior of
620
+ MSD.
621
+ In addition, we obtained MSD for cations and anions for all systems. Due to volume
622
+ effects and the high mobility of cross-linked polymers, these polymers provide a limited path
623
+ for charged particles in system C in comparison with linear polymers in system B. Therefore
624
+ 16
625
+
626
+ (a)
627
+ (b)
628
+ Figure 9: Two different snapshots of polymers for (a) linear polymers in system B and (b)
629
+ cross-linked polymers in system C.
630
+ as shown in Fig.10, the charged particles’ diffusion in system C is lower than in systems A
631
+ and B. Since a lower diffusion coefficient is associated with a larger viscosity, the viscosity
632
+ of system C is greater than systems A and B. Consequently, increasing the viscosity of the
633
+ electrolyte improves its mechanical stability. Accordingly, system C has higher mechanical
634
+ stability than systems A and B.
635
+ Furthermore, it is important to note that cations and anions differ slightly in their results
636
+ due to their mass differences. Compared to a cation, an anion has a lower weight, so its
637
+ MSD plot shows a higher value.
638
+ 17
639
+
640
+ 0
641
+ 1
642
+ 2
643
+ 3
644
+ 4
645
+ 5
646
+ 6
647
+ 7
648
+ 8
649
+ 9
650
+ 0
651
+ 2
652
+ 4
653
+ 6
654
+ 8
655
+ 10
656
+ 12
657
+ D ~ 0.21538 × 10-4 (m2/s)
658
+ D ~ 0.1375 × 10-4 (m2/s)
659
+ D ~ 0.07313 × 10-4 (m2/s)
660
+ Mean Squared Displacement (× 105 nm2)
661
+ Time (ns)
662
+ anion in system A
663
+ cation in system A
664
+ anion in system B
665
+ cation in system B
666
+ anion in system C
667
+ cation in system C
668
+ 1×10-4
669
+ 1×10-3
670
+ 1×10-2
671
+ 1×10-1
672
+ 1×100
673
+ 1×101
674
+ 1×10-1
675
+ 1×100
676
+ 1×101
677
+ Figure 10: Mean Squared Displacement of ions in all three systems at ∆V = 2 V . Inner plot
678
+ is the same as outer but in logarithmic scale.
679
+ Conclusion
680
+ In summary, simulations demonstrate a difference between the performance of two types
681
+ of electrolytes, i.e. liquid and solid electrolytes in supercapacitors. Solid electrolytes are
682
+ used as an alternative to reduce the problems associated with liquid electrolytes. Therefore,
683
+ simulation and comparison of these two categories can give us a clear insight into improving
684
+ the efficiency of supercapacitors.
685
+ Liquid electrolyte-based supercapacitors have a smaller operating voltage window there-
686
+ fore, the amount of energy stored is less. Polymer electrolytes can be considered as a cluster
687
+ of linear polymers or as cross-linked polymers in which linear polymers are connected and
688
+ form a network. In linear polymers, since polymers can be present near the walls of the elec-
689
+ trodes as well as inside the pores, the available space for ions in the vicinity of the electrodes
690
+ is reduced. In contrast, in a polymer network, the movement of polymers is collective, and
691
+ 18
692
+
693
+ therefore polymers can only be present in bulk space. Therefore, the accessible space for
694
+ ions near the surfaces of the two electrodes and inside the pores increases. So the amount
695
+ of charge stored in the electrodes and the supercapacitor efficiency increases.
696
+ 19
697
+
698
+ References
699
+ (1) Sharma, P.; Kumar, V. Current technology of supercapacitors: A review. Journal of
700
+ Electronic Materials 2020, 49, 3520–3532.
701
+ (2) Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte ma-
702
+ terials and compositions for electrochemical supercapacitors. Chemical Society Reviews
703
+ 2015, 44, 7484–7539.
704
+ (3) Naoi, K.; Ishimoto, S.; Miyamoto, J.-i.; Naoi, W. Second generation ‘nanohybrid su-
705
+ percapacitor’: evolution of capacitive energy storage devices. Energy & Environmental
706
+ Science 2012, 5, 9363–9373.
707
+ (4) Lu, M. Supercapacitors: materials, systems, and applications; John Wiley & Sons, 2013.
708
+ (5) Alipoori, S.; Mazinani, S.; Aboutalebi, S. H.; Sharif, F. Review of PVA-based gel poly-
709
+ mer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges.
710
+ journal of energy storage 2020, 27, 101072.
711
+ (6) Zhang, Y.; Sun, X.; Pan, L.; Li, H.; Sun, Z.; Sun, C.; Tay, B. K. Carbon nanotube–zinc
712
+ oxide electrode and gel polymer electrolyte for electrochemical supercapacitors. Journal
713
+ of Alloys and Compounds 2009, 480, L17–L19.
714
+ (7) Du, H.; Wu, Z.; Xu, Y.; Liu, S.; Yang, H. Poly (3, 4-ethylenedioxythiophene) based
715
+ solid-state polymer supercapacitor with ionic liquid gel polymer electrolyte. Polymers
716
+ 2020, 12, 297.
717
+ (8) Shaplov, A. S.; Marcilla, R.; Mecerreyes, D. Recent advances in innovative polymer
718
+ electrolytes based on poly (ionic liquid) s. Electrochimica Acta 2015, 175, 18–34.
719
+ (9) Arya, A.; Sharma, A. Polymer electrolytes for lithium ion batteries: a critical study.
720
+ Ionics 2017, 23, 497–540.
721
+ 20
722
+
723
+ (10) Aziz, S. B.; Woo, T. J.; Kadir, M.; Ahmed, H. M. A conceptual review on polymer
724
+ electrolytes and ion transport models. Journal of Science: Advanced Materials and
725
+ Devices 2018, 3, 1–17.
726
+ (11) Lin, K.-J.; Maranas, J. K. Cation coordination and motion in a poly (ethylene oxide)-
727
+ based single ion conductor. Macromolecules 2012, 45, 6230–6240.
728
+ (12) Taghavikish, M.; Subianto, S.; Gu, Y.; Sun, X.; Zhao, X.; Choudhury, N. R. A poly
729
+ (ionic liquid) gel electrolyte for efficient all solid electrochemical double-layer capacitor.
730
+ Scientific reports 2018, 8, 1–10.
731
+ (13) Liew, C.-W.; Ramesh, S.; Arof, A. K. Good prospect of ionic liquid based-poly (vinyl al-
732
+ cohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical
733
+ and thermal properties. International Journal of Hydrogen Energy 2014, 39, 2953–2963.
734
+ (14) Karaman, B.; Bozkurt, A. Enhanced performance of supercapacitor based on boric acid
735
+ doped PVA-H2SO4 gel polymer electrolyte system. International Journal of Hydrogen
736
+ Energy 2018, 43, 6229–6237.
737
+ (15) Kumar, Y.; Pandey, G.; Hashmi, S. Gel polymer electrolyte based electrical double
738
+ layer capacitors: comparative study with multiwalled carbon nanotubes and activated
739
+ carbon electrodes. The Journal of Physical Chemistry C 2012, 116, 26118–26127.
740
+ (16) Pandey, G.; Hashmi, S.; Kumar, Y. Performance studies of activated charcoal based
741
+ electrical double layer capacitors with ionic liquid gel polymer electrolytes. Energy &
742
+ fuels 2010, 24, 6644–6652.
743
+ (17) Breitsprecher, K.; Košovan, P.; Holm, C. Coarse-grained simulations of an ionic liquid-
744
+ based capacitor: I. Density, ion size, and valency effects. Journal of Physics: Condensed
745
+ Matter 2014, 26, 284108.
746
+ 21
747
+
748
+ (18) Breitsprecher, K.; Abele, M.; Kondrat, S.; Holm, C. The effect of finite pore length on
749
+ ion structure and charging. The Journal of Chemical Physics 2017, 147, 104708.
750
+ (19) Paek, E.; Pak, A. J.; Hwang, G. S. On the influence of polarization effects in predicting
751
+ the interfacial structure and capacitance of graphene-like electrodes in ionic liquids.
752
+ The Journal of Chemical Physics 2015, 142, 024701.
753
+ (20) Yang, H.; Zhang, X.; Yang, J.; Bo, Z.; Hu, M.; Yan, J.; Cen, K. Molecular origin of
754
+ electric double-layer capacitance at multilayer graphene edges. The Journal of Physical
755
+ Chemistry Letters 2017, 8, 153–160.
756
+ (21) Eyvazi, N.; Biagooi, M.; Nedaaee Oskoee, S. Molecular dynamics investigation of charg-
757
+ ing process in polyelectrolyte-based supercapacitors. Scientific Reports 2022, 12, 1–9.
758
+ (22) Biagooi, M.; Samanipour, M.; Ghasemi, S. A.; Nedaaee Oskoee, S. CAVIAR: A simu-
759
+ lation package for charged particles in environments surrounded by conductive bound-
760
+ aries. AIP Advances 2020, 10, 035310.
761
+ (23) Breitsprecher, K.; Holm, C.; Kondrat, S. Charge me slowly, I am in a hurry: Optimizing
762
+ charge–discharge cycles in nanoporous supercapacitors. ACS nano 2018, 12, 9733–9741.
763
+ (24) Kondrat, S.; Georgi, N.; Fedorov, M. V.; Kornyshev, A. A. A superionic state in nano-
764
+ porous double-layer capacitors: insights from Monte Carlo simulations. Physical Chem-
765
+ istry Chemical Physics 2011, 13, 11359–11366.
766
+ (25) Lee, H.; de Vries, A. H.; Marrink, S.-J.; Pastor, R. W. A coarse-grained model for
767
+ polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. The
768
+ journal of physical chemistry B 2009, 113, 13186–13194.
769
+ (26) Croce, F.; Appetecchi, G.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes
770
+ for lithium batteries. Nature 1998, 394, 456–458.
771
+ 22
772
+
773
+ (27) Allen, T.; Hansen, C.; Martin, F.; Redemann, C.; Yau-Young, A. Liposomes containing
774
+ synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives
775
+ in vivo. Biochimica et Biophysica Acta (BBA)-Biomembranes 1991, 1066, 29–36.
776
+ (28) Ma, S.-M.; Zhao, L.; Wang, Y.-L.; Zhu, Y.-L.; Lu, Z.-Y. The coarse-grained models
777
+ of poly (ethylene oxide) and poly (propylene oxide) homopolymers and poloxamers in
778
+ big multipole water (BMW) and MARTINI frameworks. Physical Chemistry Chemical
779
+ Physics 2020, 22, 15976–15985.
780
+ (29) Wu, R.; Li, T.; Nies, E. Langevin dynamics simulation of chain crosslinking into polymer
781
+ networks. Macromolecular theory and simulations 2012, 21, 250–265.
782
+ (30) Lehmann, M. L.; Yang, G.; Nanda, J.; Saito, T. Well-designed crosslinked polymer
783
+ electrolyte enables high ionic conductivity and enhanced salt solvation. Journal of The
784
+ Electrochemical Society 2020, 167, 070539.
785
+ (31) Kotelyanskii, M.; Theodorou, D. N. Simulation methods for polymers; CRC Press, 2004.
786
+ (32) Lee, H.; Cai, W. Ewald summation for Coulomb interactions in a periodic supercell.
787
+ Lecture Notes, Stanford University 2009, 3, 1–12.
788
+ (33) Bossa, G. V.; Caetano, D. L.; de Carvalho, S. J.; Bohinc, K.; May, S. Modeling the
789
+ camel-to-bell shape transition of the differential capacitance using mean-field theory
790
+ and Monte Carlo simulations. The European Physical Journal E 2018, 41, 1–9.
791
+ (34) Frischknecht, A. L.; Halligan, D. O.; Parks, M. L. Electrical double layers and differen-
792
+ tial capacitance in molten salts from density functional theory. The Journal of Chemical
793
+ Physics 2014, 141, 054708.
794
+ (35) Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M.; Wu, T.; Wang, J.; Wang, R.; Feng, J.;
795
+ Chen, T., et al. Molecular understanding of charge storage and charging dynamics in
796
+ 23
797
+
798
+ supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials
799
+ 2020, 19, 552–558.
800
+ (36) Son, C. Y.; Wang, Z.-G. Ion transport in small-molecule and polymer electrolytes. The
801
+ Journal of Chemical Physics 2020, 153, 100903.
802
+ 24
803
+
BNAzT4oBgHgl3EQfGPsJ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BNE2T4oBgHgl3EQfnggo/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63d4e3575a01366690151b65e4ea98ef1a7377805983854b6ce651ca126dc898
3
+ size 2687021
BNE2T4oBgHgl3EQfnggo/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cf8c79e3f4fef861e6efe4e0981df5b2d0dbf95f3b07f72cc30d909dca855e2
3
+ size 83911
DNAyT4oBgHgl3EQf4frj/content/2301.00789v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0dbe760c57e1e29cedb09539db2b8b5c08245be5716c3528334098c2c8c728f
3
+ size 806878
DNAyT4oBgHgl3EQf4frj/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:056f365b86de05778f6f2b9a1bc1bfadcf2a63e1a86c585dc5c43f217c28a893
3
+ size 99250
ENFQT4oBgHgl3EQfQTaG/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5250535ed4e961edc5e1ed88533f4ea58a72d495e0b480c7c6082f602e84ffd2
3
+ size 81117
F9FJT4oBgHgl3EQfDixl/content/tmp_files/2301.11434v1.pdf.txt ADDED
@@ -0,0 +1,4192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ The Field Structure of Free Photons
5
+
6
+ Anthony Rizzi
7
+ Institute for Advanced Physics, [email protected]
8
+
9
+ Abstract: Using a quantum field theoretic description of the photon it is shown that, as
10
+ intuitively expected but not before theoretically proven, the vector potential of a photon
11
+ has a likely amplitude associated with a discrete frequency and therefore energy, and
12
+ momentum. In particular, by finding the wave-functional for the vector potential, it is
13
+ shown that the likely absolute amplitude spectrum has delta function at a given
14
+ frequency. This analysis is extended to n-photon systems. It shows that such systems
15
+ have a vector potential distribution whose most likely element has a strong sinusoidal
16
+ component which has an amplitude corresponding to n-fold more energy than a single
17
+ photon system. An analogous result for photons of different energy is also derived.
18
+ Through the use of Parseval’s theorem for stochastic systems, the calculations and
19
+ associated analyses introduces a simple tool for exploring the nature of QFT Schrödinger
20
+ wave-functional generally.
21
+
22
+ Introduction
23
+
24
+ Photons are discussed everywhere from middle school, even grade school, to
25
+ graduate textbooks and beyond and are a core part of modern physics, but proving and
26
+ show their field structure, the focus of this article, has not been a part of these
27
+ discussions. Rules of thumb and intuitions from ordinary quantum mechanics and
28
+ quantum optics abound. But, as we know, these do not substitute for rigorous analysis
29
+ from first principles from what we know theoretically. And, what we know theoretically
30
+ about photons is contained in quantum field theory. Ordinary quantum mechanics and
31
+ quantum optics studies can only handle photons to the extent information is imported
32
+ from QFT. This paper for the first time directly applies the relevant QFT to obtain the full
33
+ probabilistic structure of the photon’s vector potential (which is what specifies what it is)
34
+ towards proving its key property, its discrete energy nature. In the process, a new
35
+ technique for probing such structures is introduced. Though QFT is a mature part of
36
+ physics, no one has yet shown the nature of a photon using QFT in the primal way done
37
+ here. Seeing this structure and how it connects to our previous intuitions is an essential
38
+ insight into the physics of photons, which, in turn, are at the center of modern physics.
39
+
40
+ Much previous work has been done in trying to probe the nature of the photon,1
41
+ beginning with the early investigations trying to “split” the photon.2 Free photons are
42
+ often discussed as if they were localized particles, but they are not. Of course, photons by
43
+ definition cause localized detections, but, as this article, proves their most likely field
44
+ structure is, in the idealized limit, an infinite length sine wave of undetermined phase.
45
+ This agrees with the natural understanding of a photon as a packet of definite energy (and
46
+ thus definite frequency), but makes it clear that even though when it interacts, it interacts
47
+
48
+ 1 E.G., see special issue on nature of photon: Optics and Photonics News (vol. 14, October 2003).
49
+ 2 E. O. Lawrence, J. W. Beams, On the Nature of Light, PNAS 13 No. 4, 207-212 (1927), G. P. Thomson,
50
+ Test of a Theory of Radiation, Proceedings of the Royal Society of London. Series A, Containing Papers of
51
+ a Mathematical and Physical Character 104 No. 724, 115-120 (1923).
52
+
53
+ 2
54
+
55
+ locally (e.g., with an atom), when it is free, before it begins to interact (with an atom for
56
+ example), its wave structure is spread out, not a localized wave packet.3 Giving (via
57
+ proofs) the structure of the photon offers us insights into simplest QFT structure, the free
58
+ photon, and thus can be a first glimpse of a deeper view of the nature of QFT itself as
59
+ well as a formalisms that has seldom been used, the Schrödinger wavefunctional and a
60
+ statistical formalism that has not been yet applied in QFT.
61
+
62
+ Up to this point, photon structure has been, indeed, taken for granted as issues
63
+ related to a wide range of important problems were discussed. These extend from trying
64
+ to find analogs of ordinary of wavefunctions for the spatially limited photon as well as its
65
+ associated probability for locating a photon, separately developing probability
66
+ distributions for detecting a photon based on an electric field operator, finding energy
67
+ distribution functions of such spatially limited photons to studying correlation functions
68
+ and coherent states created as superposition of Fock states and photon interference
69
+ phenomena as well as light squeezing.4 These problems are addressed using various
70
+ approaches, but seldom, if ever, use the QFT formalism of the Schrödinger
71
+ wavefunctional. The most natural approach to the photon field structure is this
72
+ Schrödinger formalism in combination with the commonly used Fock formalism. Now,
73
+ each formalism facilitates a different insight into the physics of a given system. Feynman
74
+ once said that every theorist should know many ways to solve the same problem.5 The
75
+ Schrödinger wavefunctional formalism has been somewhat neglected in this regard. In
76
+ ordinary quantum mechanics, the Schrödinger equation is usually preferentially used in
77
+ both teaching and applications. In ordinary QM, the S-matrix type approach and other
78
+ approaches (e.g. Green functions and path integrals) have their place and are used, but do
79
+ not eclipse the Schrödinger equation. By contrast in QFT teaching and applications, the
80
+ analogous Schrödinger wave functional equation is left out almost completely (along
81
+ with all the intuitive advantages it affords). Few resources use or even mention it.6,7
82
+ Because of this, we first review those little known results of the analysis for our case and
83
+ then move to understand what they imply. Deriving those results is helpful in clearly
84
+
85
+ 3 This is sometimes alluded to but usually vaguely but, in the literature as far as I could find, always
86
+ without proof.
87
+ 4 See for example R. Loudon, The Quantum Theory of Light Third Edition (Oxford University Press, New
88
+ York, 2000) and L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge, NY, 1995)
89
+ 5 “Every theoretical physicist who is any good knows six or seven different theoretical representations for
90
+ exactly the same physics. He knows that they are all equivalent, and that nobody is ever going to be able
91
+ to decide which one is right at that level, but he keeps them in his head, hoping that they will give him
92
+ different ideas for guessing.” Feynman, MIT Press Character of Physical Law (1985), 168.
93
+ 6 Quantum field theory textbooks that I am aware of do not mention it. For example, the following first rate
94
+ texts do not discuss Schrödinger wavefuntionals: F. Mandl and G. Shaw, Quantum Field Theory (2nd ed,
95
+ Wiley, West Sussex 2010), P. Ramond, Field Theory: A Modern Primer (2nd ed, Westview Press, Boulder
96
+ 2001), C. Itzykson and J. Zuber, Quantum Field Theory (McGraw-Hill, USA 1980), M. Peskin and D.
97
+ Schroeder, Quantum Field Theory (Perseus Books, MA 1995), M. Kaku, Quantum Field Theory: A Modern
98
+ Introduction (Oxford University Press, NY 1993), A. Zee, Quantum Field Theory in a Nutshell (Princeton
99
+ Univ. Press, NJ 2003). W. Greiner and J. Reinhardt, Field Quantization (Springer-Verlag, Berlin, 1996). S.
100
+ Weinberg, The Quantum Theory of Fields, Volume I and II (Cambridge University Press, NY 1995, 1996).
101
+ 7 K. Symanzik, Schrodinger Representation and Casimir Effect in Renormalizable Quantum Field Theory,
102
+ Nucl. Phys. B 190, 1-44 (1981) showed the Schrödinger representation was renormalizable. These paper
103
+ discuss it: B. Hatfield, Quantum Field Theory of Point Particles and Strings (Perseus, Cambrdige MA,
104
+ 1992), R. Jackiw, Analysis on Infinite-Dimensional Manifolds Schrödinger Representation for Quantized
105
+ Fields in Field Theory and Particle Physics, O. Eboli, et al. eds. (World Scientific, Brazil, 1989) 78-143p.
106
+
107
+ 3
108
+
109
+ understanding the approach’s fundamental nature and hopefully in spawning its further
110
+ use.
111
+
112
+ In section 1, first the basic formalism is introduced in the process of setting up the
113
+ calculation for the field structure of the single photon wave functional. Next, Parseval’s
114
+ theorem is introduced to analyze that structure statistically, as it must be since the
115
+ quantum mechanical vector potential is fundamentally stochastic. This statistical
116
+ formalism is commonly used, for example, in electrical engineering where one looks,
117
+ amidst noise, for the spectral content of a signal.8 This is fundamentally is needed here.
118
+ The calculation shows that the amplitude of A for the single photon of momentum p is as
119
+ intuitively expected sinusoidal of the frequency
120
+ / h
121
+ ν = p
122
+ .
123
+
124
+ In section 2, the formalism is generalized to the case of n identical free photons;
125
+ the full explicit form of the wavefunctional is given up to 4 photons and then the core
126
+ form of the n-photon wavefunctional is given. In section 3, the multi-photon case with
127
+ different momenta is resolved by giving the explicit results for the two photon different-
128
+ momenta case. In each of these last two sections, the results prove that 1-photon
129
+ sinusoidal structure is found, as intuitively expected, also in the general n-photon
130
+ systems.
131
+
132
+ We take metric,
133
+ μν
134
+ η
135
+ , to have signature (
136
+ )
137
+ , , ,
138
+ + − − − and components {
139
+ }
140
+ 0,1,2,3 and
141
+ 1
142
+ =
143
+
144
+ , and, ultimately,
145
+ 1
146
+ c = .
147
+ Single Photon Wave-functional
148
+
149
+ Assuming one is operating in the Lorenz gauge, where the classical equations of
150
+ motion are separable, we get the equations for the vector potential components in the
151
+ presence of a current source:
152
+ (1)
153
+
154
+
155
+
156
+ 2
157
+ 2
158
+ 2
159
+ 2
160
+ 1
161
+ 4
162
+ A
163
+ A
164
+ J
165
+ c
166
+ t
167
+ c
168
+ μ
169
+ μ
170
+ μ
171
+ π
172
+
173
+ − ∇
174
+ =
175
+
176
+
177
+
178
+
179
+ We are not here interested in the production of the fields, so we consider only the
180
+ source-less case, which can arise from considering only regions sufficiently far from the
181
+ sources or, for conceptual simplicity, we can simply posit a given field of radiation as an
182
+ initial condition. Furthermore, since our interest is in radiation, for which the scalar
183
+ potential is not needed, we simply ignore it.9 This leaves taking
184
+ 1
185
+ c = and using the
186
+ Einstein summation convention:
187
+ (2)
188
+
189
+
190
+ ( )
191
+ ( )
192
+ 2
193
+ 0,
194
+ j
195
+ i
196
+ i
197
+ A
198
+ x
199
+ A
200
+ x
201
+ − ∂
202
+ =
203
+ ��
204
+ where x is the 4-vector coordinate.
205
+
206
+
207
+ (this EOM is associated with
208
+ 2
209
+ 2
210
+ 1
211
+ 1
212
+ 2
213
+ 2
214
+ i
215
+ i
216
+ i
217
+ A
218
+ A
219
+ m A
220
+ ν
221
+ μ
222
+ =
223
+
224
+
225
+
226
+ L
227
+ , the spatial Proca
228
+
229
+
230
+ Lagrangian, with
231
+ 0
232
+ m =
233
+ )
234
+
235
+ 8 R. M. Howard, Principles of Random Signal Analysis and Low Noise Design: The Power Spectral Density
236
+ and Its Applications (John Wiley & Sons, 2002).
237
+ 9 In this way, we sidestep problems with quantizing the full special relativistic field ( Aμ ) in the Lorentz
238
+ gauge. A more formal way to ignore the scalar potential is assume an arbitrarily small mass (rather than
239
+ zero mass) in the Proca Lagrangian and then use the Lorenz gauge condition to eliminate the scalar
240
+ potential (since in the massive case there are three independent degrees of freedom, rather than the two of
241
+ the massless field).
242
+
243
+ 4
244
+
245
+
246
+ Moving to second quantization operators, recalling the classical canonical
247
+ momentum
248
+ ( )
249
+ ( ) /
250
+ i
251
+ i
252
+ x
253
+ A x
254
+ t
255
+ π
256
+ ≡ ∂
257
+ ∂ , this equation implies the following Hamiltonian operator
258
+ in Heisenberg picture.
259
+ (3)
260
+
261
+
262
+ (
263
+ )
264
+ 3
265
+ 2
266
+ 1
267
+ ˆ
268
+ ˆ
269
+ ˆ
270
+ ˆ
271
+ ( , )
272
+ ( , )·
273
+ ( , ) ,
274
+ 2
275
+ i
276
+ i
277
+ i
278
+ H
279
+ t
280
+ A
281
+ t
282
+ A
283
+ t
284
+ d
285
+ π
286
+ =
287
+ + ∇
288
+
289
+
290
+ x
291
+ x
292
+ x
293
+ x
294
+
295
+
296
+ where we impose (equal time) canonical quantization:9
297
+
298
+
299
+
300
+ ˆ
301
+ ˆ
302
+ [
303
+ ( , ),
304
+ ( , )]
305
+ (
306
+ )
307
+ i
308
+ j
309
+ ij
310
+ A
311
+ t
312
+ t
313
+ i
314
+ π
315
+ δ δ
316
+ =
317
+
318
+
319
+ x
320
+ x
321
+ x
322
+ x
323
+ .
324
+ Thus, the Schrödinger equation for the wave functional Ψ is: 10
325
+ (4)
326
+
327
+ (
328
+ )
329
+ (
330
+ )
331
+ (
332
+ )
333
+ 2
334
+ 2
335
+ 3
336
+ 2
337
+ 1
338
+ 2
339
+ ˆ
340
+ i
341
+ i
342
+ i
343
+ iA
344
+ A
345
+ i
346
+ d x
347
+ A
348
+ t
349
+ A
350
+ δ
351
+ δ
352
+ ∂Ψ
353
+
354
+
355
+ =
356
+
357
+ + ∇
358
+ Ψ
359
+
360
+
361
+
362
+
363
+
364
+
365
+ ,
366
+ Here we used:
367
+ (5)
368
+
369
+
370
+ ˆ
371
+ ˆ
372
+ i
373
+ i
374
+ i
375
+ i
376
+ i
377
+ i
378
+ A
379
+ A
380
+ A
381
+ δ
382
+ δ
383
+ π
384
+ δ
385
+ δ
386
+
387
+
388
+ =
389
+ → −
390
+ =
391
+
392
+
393
+
394
+
395
+
396
+
397
+ The free solution (in the Heisenberg picture) for the vector potential operator is, taking
398
+ motion along z-axis, and assuming only one polarization (thereby also limiting A
399
+ eigenstates, A , to one polarization at a time 11):12,13
400
+ (6)
401
+ ( ) (
402
+ )
403
+ (
404
+ )
405
+ ( ) ( )
406
+ ( ) ( )
407
+ (
408
+ )
409
+ 3
410
+
411
+ 3/2
412
+ 1
413
+ ˆ
414
+ ˆ
415
+ ˆ
416
+ ,
417
+ 2
418
+ 2
419
+ i
420
+ i
421
+ i
422
+ i
423
+ d p
424
+ t
425
+ a
426
+ t e
427
+ a
428
+ t
429
+ A
430
+ e
431
+ E
432
+ λ
433
+ λ
434
+ λ
435
+ λ
436
+ δ
437
+ π
438
+
439
+
440
+
441
+ =
442
+ +
443
+
444
+ p x
445
+ p x
446
+ p
447
+ p
448
+ p
449
+ x
450
+
451
+
452
+
453
+
454
+
455
+
456
+ where:
457
+ ( ) ( )
458
+ ( )
459
+ ˆ
460
+ ˆ
461
+ iEt
462
+ a
463
+ t
464
+ a
465
+ e
466
+ λ
467
+ λ
468
+
469
+ =
470
+ p
471
+ p
472
+ ,
473
+ p
474
+ E = p ,
475
+ (
476
+ )
477
+ 0,0, p
478
+ =
479
+ p
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+ {
488
+ }
489
+ 1,2
490
+ λ ∈
491
+ , (two independent polarizations)
492
+ From here on, we will usually drop the formal t dependence of the creation and
493
+ annihilation operators, so that by also dropping explicit polarization notation (by taking
494
+ i
495
+ λ → ), we can write simply ˆi
496
+ p
497
+ a . So,
498
+
499
+
500
+ with
501
+
502
+
503
+ ˆ
504
+ ˆ
505
+ ˆ
506
+ ˆ
507
+ ,
508
+ ,
509
+ 0
510
+ a
511
+ a
512
+ a
513
+ a
514
+
515
+
516
+
517
+
518
+
519
+ ⎤ =
520
+ =
521
+
522
+
523
+
524
+
525
+ p
526
+ p
527
+ p
528
+ p
529
+ ,
530
+ (
531
+ )
532
+
533
+ ˆ
534
+ ˆ
535
+ ,
536
+ a
537
+ a
538
+ δ
539
+
540
+
541
+
542
+ ⎤ =
543
+
544
+
545
+
546
+ p
547
+ p
548
+ p
549
+ p
550
+ ,
551
+
552
+
553
+
554
+
555
+
556
+
557
+ 3
558
+ 1
559
+ ˆ
560
+ ˆ ˆ
561
+ 2
562
+ H
563
+ E
564
+ a a
565
+ d p
566
+
567
+
568
+ =
569
+ +
570
+
571
+
572
+
573
+
574
+
575
+ p
576
+ p
577
+ p
578
+ .
579
+ Adding (6) to its time derivative and taking the Fourier transform gives, dropping the
580
+ polarization index from A:
581
+ (7)
582
+
583
+ (
584
+ )
585
+ (
586
+ )
587
+ (
588
+ )
589
+ (
590
+ )
591
+ 3
592
+ 3/2
593
+ 1
594
+ 1
595
+ ˆ
596
+ ,
597
+ ˆ
598
+ ˆ
599
+ ,
600
+ 2
601
+ 2
602
+ i
603
+ i
604
+ i
605
+ i
606
+ a
607
+ E
608
+ t
609
+ A
610
+ A
611
+ i
612
+ t
613
+ e
614
+ d x
615
+ E
616
+ π
617
+
618
+
619
+ =
620
+ +
621
+
622
+
623
+ p x
624
+ p
625
+ p
626
+ p
627
+ x
628
+ x
629
+
630
+
631
+
632
+ 10 The equation is the field theory analog, for a given spectral mode of A at each point in space, of the
633
+ ordinary quantum mechanical oscillator.
634
+ 11 Note this still preserves the commutation relations (since it becomes analogical to the scalar field case).
635
+ 12 The equation of motion for the vector potential operator can be shown, via the quantum generalization of
636
+ Hamilton’s equations, to be the analog of the classical vector potential field’s equation of motion.
637
+ 13 Note the measure in the integrand is not manifestly relativistic invariant, the manifestly Lorentz
638
+ invariant:
639
+ (
640
+ )
641
+ 4
642
+ 2
643
+ 2
644
+ 0
645
+ (
646
+ )
647
+ d
648
+ m
649
+ u p
650
+ p
651
+ p
652
+ δ
653
+
654
+ reduces, after integrating over p0 and with appropriate normalization, to
655
+ the 3D measure given in the text body. Note that a factor of 1 /
656
+ 2E has been absorbed into the definition
657
+ of the creation operators to avoid a factor of 2E in the creation operator commutation relations.
658
+
659
+ 5
660
+
661
+
662
+ Note: x is the spatial coordinate.
663
+
664
+
665
+ Now, noting that the QFT creation operators are analogous to the creation and
666
+ annihilation operators of the quantum mechanical harmonic oscillator (QMHO)
667
+ ( ˆ
668
+ ˆ
669
+ ˆ
670
+ ~
671
+ a
672
+ x
673
+ p
674
+ +
675
+ ), we can apply the well known formal method of calculating the QMHO
676
+ energy eigenfunctions to calculate the wave-functionals of the n-photon (free) A-field.
677
+ We start with the one photon case.
678
+
679
+ In particular, using (5) in (7), we define the relevant wave functional as the
680
+ probability amplitude for finding a field which is prepared in the state called a (ideal)
681
+ “single photon of momentum p” (and described by the ket
682
+ † 0
683
+ a
684
+ =
685
+ p
686
+ p
687
+ ) in the state
688
+ iA
689
+ , which is the eigenstate of
690
+ ( )
691
+ ˆ iA
692
+ x . We get, suppressing the explicit time dependence
693
+ (by taking, e.g.,
694
+ 0
695
+ t =
696
+ ):
697
+ (8)
698
+ ( )
699
+ (
700
+ )
701
+
702
+ 1
703
+ 0
704
+ i
705
+ i
706
+ i
707
+ i
708
+ A
709
+ A
710
+ A
711
+ A a
712
+ Ψ
713
+ =
714
+ =
715
+ =
716
+ p
717
+ p
718
+ p
719
+ x
720
+ p
721
+
722
+
723
+
724
+
725
+
726
+
727
+
728
+
729
+
730
+
731
+
732
+ (
733
+ )
734
+ ( )
735
+ ( )
736
+ (
737
+ )
738
+ ( )
739
+ ( )
740
+ (
741
+ )
742
+ 3
743
+ 0
744
+ 0
745
+ 3/2
746
+ 1
747
+ 1
748
+ 2
749
+ 2
750
+ i
751
+ i
752
+ i
753
+ i
754
+ i
755
+ E A
756
+ A
757
+ A
758
+ e
759
+ d x
760
+ A
761
+ E
762
+ δ
763
+ δ
764
+ π
765
+
766
+
767
+
768
+ =
769
+ Ψ
770
+
771
+ Ψ
772
+
773
+
774
+
775
+
776
+
777
+ p x
778
+ p
779
+ p
780
+ x
781
+ x
782
+ x
783
+ x
784
+
785
+
786
+
787
+ where:
788
+ ( )
789
+ (
790
+ )
791
+ ( )
792
+ 0
793
+ 0
794
+ 0
795
+ i
796
+ i
797
+ A
798
+ A
799
+ Ψ ≡ Ψ
800
+
801
+
802
+
803
+ is the vacuum field wave functional which is
804
+ complex valued and not a function of x , the argument of A, despite its
805
+ notational presence above (to distinguish between position and momentum
806
+ field representations).
807
+ So:
808
+ (9)
809
+ ( )
810
+ (
811
+ )
812
+ (
813
+ )
814
+ ( )
815
+ (
816
+ )
817
+ ( )
818
+ (
819
+ )
820
+ ( )
821
+ 0
822
+ 0
823
+ 1
824
+ 2
825
+ i
826
+ i
827
+ i
828
+ i
829
+ i
830
+ A
831
+ A
832
+ E A
833
+ A
834
+ A
835
+ E
836
+ δ
837
+ δ
838
+
839
+
840
+ Ψ
841
+
842
+
843
+ Ψ
844
+ =
845
+
846
+ Ψ
847
+
848
+
849
+
850
+
851
+
852
+
853
+
854
+ p
855
+ p
856
+ p
857
+ x
858
+ x
859
+ p
860
+ x
861
+ p
862
+ ,
863
+ where:
864
+ ( )
865
+ (
866
+ )
867
+ ( )
868
+ 3
869
+ 3/2
870
+ 1
871
+ 2
872
+ i
873
+ i
874
+ i
875
+ A
876
+ d p A
877
+ e
878
+ π
879
+
880
+
881
+
882
+
883
+ p x
884
+ x
885
+ p
886
+ , which gives:
887
+ ( )
888
+ ( )
889
+ /
890
+ i
891
+ i
892
+ i
893
+ A
894
+ A
895
+ e
896
+ δ
897
+ δ
898
+
899
+ =
900
+
901
+ p x
902
+ x
903
+ p
904
+ , and allows us to take
905
+ ( )
906
+ iA
907
+ x to be an implicit
908
+ functional of
909
+ ( )
910
+ iA�
911
+ p ). Also:
912
+ ( )
913
+ ( )
914
+ ( )
915
+ ( )
916
+ (
917
+ )
918
+ ( )
919
+ 0
920
+ 3
921
+ 0
922
+ i
923
+ i
924
+ i
925
+ i
926
+ i
927
+ A
928
+ A
929
+ d x
930
+ A
931
+ A
932
+ A
933
+ δ
934
+ δ
935
+ δ
936
+ δ
937
+ δ
938
+ δ
939
+ Ψ
940
+ Ψ
941
+ = ∫
942
+
943
+
944
+ x
945
+ x
946
+ x
947
+ p
948
+ p
949
+ .
950
+ We need the form of the vacuum wave functional,
951
+ (
952
+ )
953
+ 0
954
+ iA
955
+ Ψ
956
+ , which arises from noting:
957
+ (10)a
958
+ ˆ 0
959
+ 0
960
+ i
961
+ p
962
+ A a
963
+ =
964
+
965
+ And, using (5) and (7) in this equation, we get:
966
+ (10)b
967
+ ( )
968
+ (
969
+ )
970
+ ( )
971
+ ( )
972
+ ( )
973
+ (
974
+ )
975
+ 0
976
+ 3
977
+ 0
978
+ 0
979
+ i
980
+ i
981
+ i
982
+ i
983
+ i
984
+ A
985
+ d x e
986
+ E A
987
+ A
988
+ A
989
+ δ
990
+ δ
991
+
992
+ ⋅ ⎛
993
+
994
+ Ψ
995
+
996
+
997
+ +
998
+ Ψ
999
+ =
1000
+
1001
+
1002
+
1003
+
1004
+
1005
+ p x
1006
+ p
1007
+ x
1008
+ x
1009
+ x
1010
+ x
1011
+
1012
+ Using, analogous to above,
1013
+ ( )
1014
+ (
1015
+ )
1016
+ ( )
1017
+ 3
1018
+ 3/2
1019
+ 1
1020
+ 2
1021
+ i
1022
+ i
1023
+ i
1024
+ A
1025
+ d x A
1026
+ e
1027
+ π
1028
+
1029
+
1030
+
1031
+
1032
+
1033
+ p x
1034
+ p
1035
+ x
1036
+ , we can write:
1037
+
1038
+ 6
1039
+
1040
+ (11)
1041
+
1042
+ ( )
1043
+ (
1044
+ )
1045
+ 0
1046
+ 0
1047
+ 0
1048
+ i
1049
+ i
1050
+ E A
1051
+ A
1052
+ δ
1053
+ δ
1054
+ Ψ
1055
+ +
1056
+
1057
+ Ψ =
1058
+
1059
+
1060
+ p
1061
+ p
1062
+ p
1063
+ .
1064
+ So, that finally, the vacuum wave functional: is seen to be:
1065
+ (12)
1066
+ (
1067
+ )
1068
+ ( )
1069
+ 3
1070
+ 0
1071
+ 1
1072
+ exp
1073
+ 2
1074
+ i
1075
+ i
1076
+ N
1077
+ d p E A
1078
+ A
1079
+
1080
+
1081
+ Ψ =
1082
+
1083
+
1084
+
1085
+
1086
+
1087
+
1088
+
1089
+
1090
+ p
1091
+ -p
1092
+ p
1093
+
1094
+ where we drop its
1095
+ ( )
1096
+ iA
1097
+ x dependence on Ψ0 because we are here
1098
+ displaying its implicit dependence on
1099
+ ( )
1100
+ iA�
1101
+ p and N is the
1102
+ normalization of the wave functional.
1103
+
1104
+
1105
+ Now, we can get the wave functional of the ideal single photon of momentum
1106
+ p by substituting (12) in (9), ignoring the normalization of the wave-functional:
1107
+ (13)
1108
+
1109
+
1110
+ ( )
1111
+ (
1112
+ )
1113
+ (
1114
+ )
1115
+ ( )
1116
+ 3
1117
+ 1
1118
+ 2
1119
+ 2
1120
+ i
1121
+ i
1122
+ d
1123
+ A
1124
+ p
1125
+ i
1126
+ e
1127
+ A
1128
+ A
1129
+ 2
1130
+
1131
+ Ψ
1132
+ =
1133
+
1134
+
1135
+
1136
+ p
1137
+ p
1138
+ p
1139
+ x
1140
+ p
1141
+ p
1142
+ ,
1143
+
1144
+
1145
+ where we used the fact that ( )
1146
+ A x is real implies
1147
+ ( )
1148
+ (
1149
+ )
1150
+ *
1151
+ A
1152
+ A
1153
+ =
1154
+
1155
+
1156
+
1157
+ p
1158
+ p .
1159
+
1160
+ From this, we get the probability of finding the field in a state with a Fourier
1161
+ transform in a small region of functions space
1162
+ i
1163
+ DA� near
1164
+ ( )
1165
+ iA�
1166
+ p is:
1167
+ (14)
1168
+ ( )
1169
+ (
1170
+ )
1171
+ (
1172
+ )
1173
+ ( )
1174
+ ( )
1175
+ 3
1176
+ 2
1177
+ 2
1178
+ 2
1179
+ i
1180
+ d
1181
+ i
1182
+ i
1183
+ i
1184
+ p
1185
+ A
1186
+ p
1187
+ P A
1188
+ A
1189
+ A
1190
+ e
1191
+ 2
1192
+ −∫
1193
+ = Ψ
1194
+ =
1195
+
1196
+
1197
+ p
1198
+ p
1199
+ p
1200
+ p
1201
+ p
1202
+ .
1203
+
1204
+ We need to find the magnitude of
1205
+ ( )
1206
+ iA
1207
+ x , or equivalently the “energy”
1208
+ ,
1209
+ 2
1210
+ A , that is the most likely.14 Parseval’s theorem tells us that the “energy”
1211
+ spectral density of a spatial function
1212
+ ( )
1213
+ iA
1214
+ x is
1215
+ ( )
1216
+ ( )
1217
+ 2
1218
+ i
1219
+ i
1220
+ D
1221
+ A
1222
+ ≡ �
1223
+ p
1224
+ p
1225
+ , so in these
1226
+ terms, (14) can be recast as:
1227
+ (15)
1228
+
1229
+ (
1230
+ )
1231
+ ( )
1232
+ ( )
1233
+ (
1234
+ )
1235
+ (
1236
+ )
1237
+ ( ) 3
1238
+ 2
1239
+ 2
1240
+ 2
1241
+ i
1242
+ i
1243
+ i
1244
+ D
1245
+ d p
1246
+ i
1247
+ D
1248
+ D
1249
+ P D
1250
+ e
1251
+ A
1252
+ −∫
1253
+ =
1254
+ +
1255
+ = Ψ p
1256
+ p
1257
+ p
1258
+ p
1259
+ -p
1260
+ p
1261
+
1262
+ where, for the multiplicative factor, we have replaced D by the
1263
+ given sum to make explicit the reflective symmetry of D in p ,15,16
1264
+ which we need to see the consequences of. (Note: such a
1265
+ replacement does not change anything in the integral in the
1266
+ exponent).
1267
+
1268
+ We need to extremize this probability distribution, so we set the first variation to
1269
+ zero giving:
1270
+
1271
+ 14 Note we are here interested in A, not E or B. We want to know the most likely vector potential structure.
1272
+ 15 D(p) must be even in p for the autocorrelation function to be positive, as it must be.
1273
+ 16 Note: even though, for simplicity, we have set p = (0,0,p), no generality was lost in so doing; so we may
1274
+ at any moment let p point in any direction we like.
1275
+
1276
+ 7
1277
+
1278
+ (16)
1279
+
1280
+ ( )
1281
+ (
1282
+ )
1283
+ ( )
1284
+ ( )
1285
+ (
1286
+ )
1287
+ (
1288
+ )
1289
+ 3
1290
+ 2
1291
+ Dd p
1292
+ P D
1293
+ D
1294
+ D
1295
+ e
1296
+ D
1297
+ D
1298
+ δ
1299
+ δ
1300
+ δ
1301
+ δ
1302
+
1303
+
1304
+
1305
+ +
1306
+
1307
+
1308
+
1309
+
1310
+
1311
+
1312
+
1313
+
1314
+ p
1315
+ p
1316
+ p
1317
+ -p
1318
+ p
1319
+
1320
+
1321
+
1322
+
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+
1329
+ (
1330
+ )
1331
+ (
1332
+ )
1333
+ (
1334
+ )
1335
+ ( )
1336
+ 3
1337
+ 3
1338
+ 0
1339
+ 2
1340
+ p Dd p
1341
+ Dd p
1342
+ e
1343
+ D
1344
+ e
1345
+ δ
1346
+ δ
1347
+
1348
+
1349
+
1350
+ +
1351
+ +
1352
+
1353
+
1354
+ =
1355
+
1356
+ =
1357
+ p
1358
+ p
1359
+ p
1360
+ p
1361
+ p
1362
+ p
1363
+ p
1364
+ ,
1365
+ where we have dropped the component index, i, to simplify the notation.
1366
+ Thus, it is seen that the most likely energy spectral density is:
1367
+ (17)
1368
+
1369
+
1370
+ ( )
1371
+ (
1372
+ )
1373
+ (
1374
+ )
1375
+ (
1376
+ )
1377
+ max
1378
+ 2
1379
+ D
1380
+ δ
1381
+ δ
1382
+
1383
+ +
1384
+ +
1385
+ =
1386
+ p
1387
+ p
1388
+ p
1389
+ p
1390
+ p
1391
+ p
1392
+ .
1393
+ This result agrees with the obvious fact that the maximum of
1394
+ (
1395
+ )
1396
+ P D occurs when the
1397
+ integral in the exponent is minimal and the multiplicative factor term is maximal, for at
1398
+ the
1399
+ = ±
1400
+ p
1401
+ p , the factor is infinite, while the exponent is finite.
1402
+
1403
+ Using (17) gives the autocorrelation function:17
1404
+ (18)
1405
+
1406
+
1407
+ 3
1408
+ max
1409
+ cos
1410
+ ( )
1411
+ [ ( ) (
1412
+ )]
1413
+ ( )
1414
+ i
1415
+ AA
1416
+ R
1417
+ A
1418
+ A
1419
+ D
1420
+ e
1421
+ d p
1422
+
1423
+ −∞
1424
+
1425
+
1426
+ =
1427
+ +
1428
+ =
1429
+ =
1430
+
1431
+ E
1432
+ p x
1433
+ p x
1434
+ x
1435
+ y
1436
+ y
1437
+ x
1438
+ p
1439
+ p
1440
+ .
1441
+
1442
+ Hence, we see the strong sinusoidal dependence is present in the stochastic A-
1443
+ field that characterizes a single (ideal) photon.
1444
+ N-Photon Wavefunctionals
1445
+
1446
+ Extending what we did in equation (8), and in analogy to the generation of the
1447
+ energy eigenstate wave functions for the harmonic oscillator in ordinary quantum
1448
+ mechanics,18 we construct the wavefunctional corresponding to n photons: 19
1449
+ (19)
1450
+
1451
+ ( )
1452
+ (
1453
+ )
1454
+ (
1455
+ )
1456
+
1457
+ 0
1458
+ n
1459
+ i
1460
+ i
1461
+ i
1462
+ i
1463
+ n
1464
+ A
1465
+ A n
1466
+ A n
1467
+ A
1468
+ a
1469
+ Ψ
1470
+ =
1471
+ =
1472
+ =
1473
+ p
1474
+ p
1475
+ p
1476
+ x
1477
+ p
1478
+ ,
1479
+ Substituting (7) and generalizing from (8):
1480
+ (20)
1481
+ ( )
1482
+ (
1483
+ )
1484
+ (
1485
+ )
1486
+ (
1487
+ )
1488
+ ( )
1489
+ ( )
1490
+ 3
1491
+ 3 /2
1492
+ /2
1493
+ 1
1494
+ 1
1495
+ ˆ
1496
+ 0
1497
+ 2
1498
+ 2
1499
+ n
1500
+ i
1501
+ i
1502
+ i
1503
+ i
1504
+ n
1505
+ n
1506
+ i
1507
+ A
1508
+ A
1509
+ e
1510
+ E A
1511
+ d x
1512
+ A
1513
+ E
1514
+ δ
1515
+ δ
1516
+ π
1517
+
1518
+
1519
+
1520
+
1521
+
1522
+ Ψ
1523
+ =
1524
+
1525
+
1526
+
1527
+
1528
+
1529
+
1530
+
1531
+
1532
+
1533
+
1534
+
1535
+
1536
+ p x
1537
+ np
1538
+ p
1539
+ p
1540
+ x
1541
+ x
1542
+ x
1543
+
1544
+
1545
+ Note: we will need to use:
1546
+ ( )
1547
+ ( )
1548
+ i
1549
+ A
1550
+ e
1551
+ A
1552
+ δ
1553
+ δ
1554
+
1555
+
1556
+ =
1557
+
1558
+ p x
1559
+ p
1560
+ x
1561
+
1562
+ We have already done
1563
+ 0
1564
+ n =
1565
+ and
1566
+ 1
1567
+ n = case; we now calculate the next three cases (see
1568
+ Appendix A). As a result, we can write the wavefunctionals for 0,1,2, 3 and 4 photons
1569
+ (leaving aside complicating multiplicative factors):
1570
+ (21)
1571
+
1572
+ ( )
1573
+ (
1574
+ )
1575
+ ( )
1576
+ 3
1577
+ 1
1578
+ 2
1579
+ 0
1580
+ iA
1581
+ i
1582
+ d p
1583
+ e
1584
+ A
1585
+ 2
1586
+
1587
+ Ψ
1588
+
1589
+ ∫ p
1590
+ p
1591
+ x
1592
+
1593
+
1594
+ 17 In relation to conventional notation, we have:
1595
+ 3
1596
+ ( )
1597
+ ( )
1598
+ ( )
1599
+ ( )
1600
+ AA
1601
+ A
1602
+ i
1603
+ A
1604
+ A
1605
+ A
1606
+ D
1607
+ S
1608
+ R
1609
+ x e
1610
+ d x
1611
+ R
1612
+
1613
+ −∞
1614
+
1615
+
1616
+
1617
+ =
1618
+ =
1619
+
1620
+
1621
+ p x
1622
+ p
1623
+ p
1624
+ p .
1625
+ 18 The analogy is fundamentally:
1626
+ ( )
1627
+ ( )
1628
+ ,
1629
+ x
1630
+ A x
1631
+ p
1632
+ A p
1633
+
1634
+ ↔ �
1635
+
1636
+ 19 Note that the Fourier transform of the general energy eigenstate, is proportional to a state with the exact
1637
+ same formal structure except with x replaced by p, thus in some extended sense it is also an eigenstate of
1638
+ the Fourier operator.
1639
+
1640
+ 8
1641
+
1642
+ (22)
1643
+
1644
+ ( )
1645
+ (
1646
+ )
1647
+ (
1648
+ )
1649
+ ( )
1650
+ 3
1651
+ 1
1652
+ 2
1653
+ 2
1654
+ i
1655
+ i
1656
+ d
1657
+ A
1658
+ p
1659
+ i
1660
+ e
1661
+ A
1662
+ A
1663
+ 2
1664
+
1665
+ Ψ
1666
+
1667
+
1668
+
1669
+
1670
+ p
1671
+ p
1672
+ p
1673
+ x
1674
+ p
1675
+ p
1676
+
1677
+ (23)
1678
+
1679
+ ( )
1680
+ (
1681
+ )
1682
+ (
1683
+ )
1684
+ (
1685
+ )
1686
+ (
1687
+ )
1688
+ (
1689
+ )
1690
+ ( )
1691
+ 3
1692
+ 1
1693
+ 2
1694
+ 2
1695
+ 2
1696
+ 2
1697
+ 2
1698
+ iA
1699
+ d p
1700
+ i
1701
+ i
1702
+ A
1703
+ e
1704
+ A
1705
+ δ
1706
+ 2
1707
+
1708
+ Ψ
1709
+
1710
+
1711
+
1712
+
1713
+
1714
+ p
1715
+ p
1716
+ 2p
1717
+ x
1718
+ p
1719
+ p
1720
+ p
1721
+ p
1722
+
1723
+ (24)
1724
+
1725
+ ( )
1726
+ (
1727
+ )
1728
+ (
1729
+ )
1730
+ (
1731
+ )
1732
+ (
1733
+ )
1734
+ (
1735
+ ) (
1736
+ )
1737
+ (
1738
+ )
1739
+ ( )
1740
+ 3
1741
+ 1
1742
+ 3
1743
+ 2
1744
+ 2
1745
+ 4
1746
+ 2
1747
+ 3
1748
+ 2
1749
+ iA
1750
+ p
1751
+ i
1752
+ i
1753
+ i
1754
+ d
1755
+ e
1756
+ A
1757
+ A
1758
+ A
1759
+ δ
1760
+ 2
1761
+
1762
+ Ψ
1763
+
1764
+
1765
+
1766
+
1767
+
1768
+
1769
+
1770
+ p
1771
+ p
1772
+ 3p
1773
+ x
1774
+ p
1775
+ p
1776
+ p
1777
+ p
1778
+ p
1779
+
1780
+ (25)
1781
+
1782
+ ( )
1783
+ (
1784
+ )
1785
+ (
1786
+ )
1787
+ (
1788
+ )
1789
+ (
1790
+ )
1791
+ (
1792
+ )
1793
+ (
1794
+ )
1795
+ (
1796
+ )
1797
+ (
1798
+ )
1799
+ ( )
1800
+ 3
1801
+ 1
1802
+ 4
1803
+ 2
1804
+ 2
1805
+ 2
1806
+ 2
1807
+ 2
1808
+ 4
1809
+ 12
1810
+ 2
1811
+ 4
1812
+ 3
1813
+ 2
1814
+ i
1815
+ i
1816
+ i
1817
+ A
1818
+ p
1819
+ i
1820
+ d
1821
+ A
1822
+ e
1823
+ A
1824
+ A
1825
+ δ
1826
+ δ
1827
+ 2
1828
+
1829
+
1830
+
1831
+
1832
+
1833
+
1834
+
1835
+ Ψ
1836
+
1837
+
1838
+
1839
+ +
1840
+
1841
+
1842
+
1843
+
1844
+
1845
+ p
1846
+ p
1847
+ 4p
1848
+ p
1849
+ p
1850
+ p
1851
+ -p
1852
+ p
1853
+ x
1854
+ p
1855
+ p
1856
+
1857
+ Now, we can drop the ( )
1858
+ δ
1859
+ p terms, as we have obviously chosen
1860
+ 0
1861
+
1862
+ p
1863
+ ; so, for example,
1864
+ for the 4-photon case we get:
1865
+ (26)
1866
+
1867
+ ( )
1868
+ (
1869
+ )
1870
+ (
1871
+ )
1872
+ (
1873
+ )
1874
+ ( )
1875
+ 3
1876
+ 4
1877
+ 4
1878
+ 1
1879
+ 2
1880
+ 16
1881
+ iA
1882
+ p
1883
+ i
1884
+ i
1885
+ d
1886
+ e
1887
+ A
1888
+ A
1889
+ 2
1890
+
1891
+ Ψ
1892
+
1893
+
1894
+
1895
+
1896
+ p
1897
+ p
1898
+ 4p
1899
+ x
1900
+ p
1901
+ p
1902
+
1903
+ (
1904
+ 0
1905
+
1906
+ p
1907
+ )
1908
+
1909
+ We see the pattern. Using the formal analogy to the ordinary quantum oscillator,20
1910
+ or induction, we can write the first try at the solution as, dropping the component
1911
+ superscript, i, and the multiplicative factors:
1912
+ (27)
1913
+ 1st try:
1914
+ ( )
1915
+ (
1916
+ )
1917
+ (
1918
+ )
1919
+ ( )
1920
+ (
1921
+ )
1922
+ (
1923
+ )
1924
+ (
1925
+ )
1926
+ (
1927
+ )
1928
+ (
1929
+ )
1930
+ 3
1931
+ 3
1932
+ 3
1933
+ 2
1934
+ 2
1935
+ 1
1936
+ 2
1937
+ .
1938
+ 1
1939
+ i
1940
+ n
1941
+ d
1942
+ d p
1943
+ A
1944
+ p
1945
+ A
1946
+ A
1947
+ n
1948
+ d p
1949
+ n
1950
+ n
1951
+ A
1952
+ e
1953
+ e
1954
+ e
1955
+ A
1956
+ δ
1957
+ δ
1958
+ 2
1959
+
1960
+
1961
+
1962
+
1963
+ Ψ
1964
+
1965
+
1966
+
1967
+
1968
+
1969
+
1970
+
1971
+
1972
+
1973
+ p
1974
+ p
1975
+ p
1976
+ p
1977
+ p
1978
+ p
1979
+ p
1980
+ x
1981
+ p
1982
+
1983
+ This first try, however, includes the terms that correspond to the delta functions which, as
1984
+ just stated, we don’t need; so, we write:
1985
+ (28)
1986
+ ( )
1987
+ (
1988
+ )
1989
+ ( )
1990
+ (
1991
+ )
1992
+ (
1993
+ )
1994
+ (
1995
+ )
1996
+ (
1997
+ )
1998
+ (
1999
+ )
2000
+ (
2001
+ )
2002
+ ( )
2003
+ 3
2004
+ 3
2005
+ 1
2006
+ 1
2007
+ 2
2008
+ 2
2009
+ .
2010
+ 1
2011
+ 2
2012
+ 2
2013
+ i
2014
+ i
2015
+ d
2016
+ d
2017
+ A
2018
+ p
2019
+ A
2020
+ p
2021
+ n
2022
+ n
2023
+ n
2024
+ n
2025
+ n
2026
+ A
2027
+ A
2028
+ e
2029
+ e
2030
+ A
2031
+ 2
2032
+ 2
2033
+
2034
+
2035
+
2036
+ Ψ
2037
+
2038
+
2039
+
2040
+
2041
+
2042
+
2043
+ =
2044
+
2045
+
2046
+ p
2047
+ p
2048
+ p
2049
+ p
2050
+ p
2051
+ x
2052
+ p
2053
+ p
2054
+ p
2055
+ p
2056
+
2057
+
2058
+ This means the corresponding probability distribution is, dropping constant
2059
+ multiplicative factors:
2060
+ (29)
2061
+
2062
+ (
2063
+ )
2064
+ ( )
2065
+ ( )
2066
+ ( )
2067
+ ( )
2068
+ 3
2069
+ 3
2070
+ 2
2071
+ i
2072
+ i
2073
+ d
2074
+ n
2075
+ A
2076
+ p
2077
+ A
2078
+ p
2079
+ n
2080
+ d
2081
+ n
2082
+ A
2083
+ D
2084
+ P
2085
+ D
2086
+ e
2087
+ e
2088
+ 2
2089
+ 2
2090
+
2091
+
2092
+
2093
+ =
2094
+
2095
+
2096
+
2097
+ p
2098
+ p
2099
+ p
2100
+ p
2101
+ p
2102
+ p
2103
+ p
2104
+ ,
2105
+
2106
+ where we introduce
2107
+ ( )
2108
+ ( )
2109
+ (
2110
+ )
2111
+ (
2112
+ ) / 2
2113
+ D
2114
+ D
2115
+ D
2116
+
2117
+ +
2118
+
2119
+ p
2120
+ p
2121
+ p
2122
+ to make D’s
2123
+ symmetry in p explicit for the minimization differentiation.
2124
+ Minimizing gives:
2125
+ (30)
2126
+
2127
+ ( )
2128
+ (
2129
+ )
2130
+ ( )
2131
+ ( )
2132
+ (
2133
+ )
2134
+ ( )
2135
+ 3
2136
+ 2
2137
+ d
2138
+ n
2139
+ D
2140
+ np
2141
+ p
2142
+ P
2143
+ D
2144
+ D
2145
+ D
2146
+ D
2147
+ D
2148
+ e
2149
+ δ
2150
+ δ
2151
+ δ
2152
+ δ
2153
+
2154
+
2155
+
2156
+ +
2157
+
2158
+
2159
+
2160
+
2161
+
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+
2168
+
2169
+
2170
+
2171
+
2172
+ p
2173
+ p
2174
+ p
2175
+ p
2176
+ p
2177
+ p
2178
+
2179
+
2180
+ ( )
2181
+ (
2182
+ )
2183
+ (
2184
+ )
2185
+ ( )
2186
+ ( )
2187
+ ( )
2188
+ 3
2189
+ 3
2190
+ 1
2191
+ 0
2192
+ 2
2193
+ n
2194
+ D
2195
+ D
2196
+ n
2197
+ d p
2198
+ d
2199
+ n
2200
+ p
2201
+ e
2202
+ e
2203
+ nD
2204
+ D
2205
+ δ
2206
+ δ
2207
+
2208
+
2209
+
2210
+
2211
+ +
2212
+ +
2213
+
2214
+
2215
+
2216
+
2217
+
2218
+ =
2219
+ =
2220
+
2221
+
2222
+
2223
+
2224
+ p
2225
+ p
2226
+ p
2227
+ p
2228
+ p
2229
+ p
2230
+ p
2231
+ p
2232
+ p
2233
+ p
2234
+ p
2235
+
2236
+ which implies, dropping the explicit separation of D in the first term:
2237
+
2238
+ 20 The Fourier transform of the energy eigenstates (
2239
+ 2
2240
+ exp(
2241
+ )
2242
+ / 2)
2243
+ (
2244
+ n
2245
+ n
2246
+ x
2247
+ H
2248
+ x
2249
+ ψ
2250
+ =
2251
+
2252
+ ) in ordinary quantum
2253
+ mechanics,
2254
+ that
2255
+ we
2256
+ use
2257
+ here
2258
+ by
2259
+ analogy
2260
+ is:
2261
+ (
2262
+ )
2263
+ 2
2264
+ 2
2265
+ exp(
2266
+ /
2267
+ ( )
2268
+ (
2269
+ x
2270
+ 2
2271
+ /
2272
+ )
2273
+ e p(
2274
+ )
2275
+ )
2276
+ n
2277
+ n
2278
+ n
2279
+ n
2280
+ p
2281
+ p
2282
+ p
2283
+ i
2284
+ d
2285
+ dp
2286
+ ψ
2287
+ =
2288
+
2289
+
2290
+ Note:
2291
+ 2
2292
+ 2
2293
+ exp
2294
+ ( )
2295
+ (
2296
+ ( 1)
2297
+ exp(
2298
+ /
2299
+ )
2300
+ )
2301
+ n
2302
+ n
2303
+ n
2304
+ n
2305
+ H
2306
+ x
2307
+ x
2308
+ x
2309
+ x
2310
+ d
2311
+ d
2312
+ = −
2313
+
2314
+ .
2315
+
2316
+ 9
2317
+
2318
+ (31)
2319
+
2320
+ ( )
2321
+ (
2322
+ )
2323
+ (
2324
+ )
2325
+ ( )
2326
+ 1
2327
+ 2
2328
+ n
2329
+ n
2330
+ nD
2331
+ D
2332
+ δ
2333
+ δ
2334
+
2335
+
2336
+ +
2337
+ +
2338
+
2339
+ ⎞ =
2340
+
2341
+
2342
+
2343
+
2344
+ p
2345
+ p
2346
+ p
2347
+ p
2348
+ p
2349
+ p
2350
+ p
2351
+
2352
+ So we have:
2353
+ (32)
2354
+
2355
+ ( )
2356
+ (
2357
+ )
2358
+ (
2359
+ )
2360
+ 2
2361
+ D
2362
+ n δ
2363
+ δ
2364
+
2365
+
2366
+
2367
+ +
2368
+ +
2369
+ =
2370
+
2371
+
2372
+
2373
+
2374
+ p
2375
+ p
2376
+ p
2377
+ p
2378
+ p
2379
+ p
2380
+
2381
+
2382
+ So n photons have n times the energy spectral density as a single one, but the
2383
+ same concentration of that energy into a sinusoidal form. This is a very nice result that
2384
+ agrees with ones intuition; one can think of the field of a photon as mostly having sine-
2385
+ like behavior, but on top of a stochastic background. (Of course, more information can be
2386
+ extracted from the wavefunctional, such as the moments of the distribution.)
2387
+
2388
+ Many-photon Wave-functionals with Different Momenta
2389
+
2390
+ The above formalism is generalizable to the photons of different momenta. The
2391
+ basic principle can be illustrated by the two photon case, one with momentum
2392
+ 1p the
2393
+ other with momentum
2394
+ 2p .
2395
+ We can extend the general formalism to this case by applying the creation operator twice
2396
+ (
2397
+ )
2398
+ (
2399
+ )
2400
+
2401
+
2402
+ 1
2403
+ 2
2404
+ 2
2405
+ 1
2406
+ ,
2407
+ 0
2408
+ p
2409
+ p
2410
+ a
2411
+ p
2412
+ a
2413
+ p
2414
+ =
2415
+ ); we get, temporarily dropping the factor
2416
+ ( )
2417
+ 3
2418
+ d p
2419
+ D
2420
+ e
2421
+ −∫ p
2422
+ p
2423
+ :
2424
+ (33)
2425
+ (
2426
+ ) (
2427
+ )
2428
+ (
2429
+ )
2430
+ (
2431
+ )
2432
+ (
2433
+ )
2434
+ (
2435
+ )
2436
+ (
2437
+ )
2438
+ (
2439
+ )
2440
+ 1
2441
+ 2
2442
+ 1
2443
+ 2
2444
+ 1
2445
+ 2
2446
+ 1
2447
+ 2
2448
+ 1
2449
+ 2
2450
+ 1
2451
+ 1
2452
+ 2
2453
+ *
2454
+ ,
2455
+ ,
2456
+ ,
2457
+ *
2458
+ *
2459
+ 1
2460
+ 2
2461
+ 1
2462
+ 2
2463
+ 1
2464
+ 1
2465
+ 2
2466
+ 4
2467
+ 2
2468
+ 4
2469
+ 2
2470
+ A
2471
+ A
2472
+ P
2473
+ A
2474
+ A
2475
+ δ
2476
+ ψ
2477
+ ψ
2478
+ δ
2479
+
2480
+
2481
+
2482
+ +
2483
+ ×
2484
+
2485
+
2486
+ =
2487
+ ∝ ⎜
2488
+
2489
+
2490
+ +
2491
+
2492
+
2493
+ p
2494
+ p
2495
+ p
2496
+ p
2497
+ p
2498
+ p
2499
+ p
2500
+ p
2501
+ p
2502
+ p
2503
+ p
2504
+ p
2505
+ p
2506
+ p
2507
+ p
2508
+ p
2509
+ p
2510
+ p
2511
+ p
2512
+ p
2513
+
2514
+ (
2515
+ )(
2516
+ )
2517
+ (
2518
+ )
2519
+ (
2520
+ )
2521
+ (
2522
+ )
2523
+ 2
2524
+ 2
2525
+ *
2526
+ *
2527
+ 1
2528
+ 2
2529
+ 1
2530
+ 2
2531
+ 1
2532
+ 2
2533
+ 1
2534
+ 2
2535
+ 1
2536
+ 2
2537
+ 1
2538
+ 2
2539
+ 1
2540
+ 1
2541
+ 2
2542
+ 8
2543
+ 2
2544
+ 4
2545
+ D D
2546
+ A A
2547
+ A A
2548
+ δ
2549
+ δ
2550
+ =
2551
+
2552
+ +
2553
+ +
2554
+ +
2555
+ +
2556
+ p
2557
+ p
2558
+ p
2559
+ p
2560
+ p
2561
+ p
2562
+ p
2563
+ p
2564
+ p
2565
+
2566
+
2567
+
2568
+ First, we consider the most general and most interesting case (for these idealized
2569
+ photons), which is also the simplest to calculate.
2570
+ Case I:
2571
+ 1
2572
+ 2
2573
+ ≠ −
2574
+ p
2575
+ p .
2576
+ This means the delta functions in (33) are not in play, so we have, in terms of the
2577
+ previously defined D and reinserting the exponential term:
2578
+ (34)
2579
+
2580
+ (
2581
+ )
2582
+ (
2583
+ )
2584
+ (
2585
+ )
2586
+ (
2587
+ )
2588
+ (
2589
+ )
2590
+ ( )
2591
+ 2
2592
+ 3
2593
+ 1
2594
+ 2
2595
+ 2
2596
+ ,
2597
+ 1
2598
+ 2
2599
+ 1
2600
+ 2
2601
+ 1
2602
+ 2
2603
+ 2
2604
+ ,
2605
+ 16
2606
+ d
2607
+ D
2608
+ p
2609
+ p
2610
+ p
2611
+ P
2612
+ D p
2613
+ D p
2614
+ D
2615
+ D
2616
+ e
2617
+ −∫
2618
+
2619
+ p
2620
+ p
2621
+ p
2622
+ p
2623
+ p
2624
+ p
2625
+
2626
+ We want:
2627
+ 1
2628
+ 2
2629
+ ,
2630
+ 1
2631
+ 0
2632
+ p
2633
+ p
2634
+ P
2635
+ D
2636
+ δ
2637
+ δ
2638
+ =
2639
+ and
2640
+ 1
2641
+ 2
2642
+ ,
2643
+ 2
2644
+ 0
2645
+ p
2646
+ p
2647
+ P
2648
+ D
2649
+ δ
2650
+ δ
2651
+ =
2652
+ .
2653
+ Since this is formally same as calculation previously done, we get:
2654
+ (
2655
+ )
2656
+ (
2657
+ )
2658
+ 2
2659
+ i
2660
+ i
2661
+ i
2662
+ i
2663
+ D
2664
+ δ
2665
+ δ
2666
+
2667
+ +
2668
+
2669
+ =
2670
+ p
2671
+ p
2672
+ p
2673
+ p
2674
+ p
2675
+ . So, as expected, we get one field structure with strong
2676
+ sinusoidal structure of frequency associated with
2677
+ 1p and one associated with
2678
+ 2p . Note
2679
+ equation (34) and this last result reduce to the same result for the case in which
2680
+ 1
2681
+ 2
2682
+
2683
+ =
2684
+ p
2685
+ p
2686
+ p ; to see the latter, compare equations (34) and (29). This again verifies our
2687
+ intuition of two photon systems.
2688
+
2689
+ We now move to the second, more limited case.
2690
+ Case II:
2691
+ 1
2692
+ 2
2693
+ = −
2694
+ p
2695
+ p
2696
+
2697
+ 10
2698
+
2699
+
2700
+ Given our analysis in the previous sections, we would expect the two photons
2701
+ might cancel each other out in our (idealized photon) case. To do the calculation, we take
2702
+ the following definitions:
2703
+ 1
2704
+ 2
2705
+
2706
+ = −
2707
+ p
2708
+ p
2709
+ p ,
2710
+ (
2711
+ ) (
2712
+ )
2713
+ ( )
2714
+ 2
2715
+ 2
2716
+ i
2717
+ i
2718
+ i
2719
+ i
2720
+ D
2721
+ D
2722
+ A
2723
+ A
2724
+ A
2725
+ A
2726
+
2727
+
2728
+ =
2729
+
2730
+ =
2731
+ p
2732
+ p
2733
+ p
2734
+ and
2735
+ recall
2736
+ ( )
2737
+ (
2738
+ )
2739
+ *
2740
+ A
2741
+ A
2742
+ =
2743
+
2744
+ p
2745
+ p .
2746
+ Equation (33) becomes in the limit that
2747
+ 1
2748
+ 2
2749
+ → −
2750
+ p
2751
+ p :
2752
+ (35)
2753
+ (
2754
+ )
2755
+ ( )
2756
+ (
2757
+ ) ( )
2758
+ ( ) (
2759
+ )
2760
+ (
2761
+ )
2762
+ (
2763
+ )
2764
+ ( )
2765
+ (
2766
+ )
2767
+ 1
2768
+ 2
2769
+ 2
2770
+ 2
2771
+ 2
2772
+ 2
2773
+ 2
2774
+ ,
2775
+ 1
2776
+ 2
2777
+ ,
2778
+ 8
2779
+ 2
2780
+ 0
2781
+ 4
2782
+ 0
2783
+ p
2784
+ p
2785
+ P
2786
+ D D
2787
+ D
2788
+ A
2789
+ A
2790
+ A
2791
+ A
2792
+ δ
2793
+ δ
2794
+
2795
+
2796
+
2797
+
2798
+
2799
+ +
2800
+ p
2801
+ p
2802
+ p
2803
+ p
2804
+ p
2805
+ p
2806
+ p
2807
+
2808
+ When finding the maximum, it is the highest order delta functions that matter. Hence,
2809
+ only the last term needs to be considered (the second term cannot contribute a second
2810
+ order delta function because the piece of that term in parenthesis goes to zero) so we
2811
+ have, recalling the exponential term:
2812
+
2813
+ (
2814
+ )
2815
+ (
2816
+ )
2817
+ (
2818
+ )
2819
+ ( )
2820
+ 3
2821
+ 1
2822
+ 2
2823
+ 2
2824
+ 2
2825
+ ,
2826
+ 1
2827
+ 2
2828
+ 1
2829
+ 2
2830
+ ,
2831
+ 4
2832
+ D
2833
+ d p
2834
+ p
2835
+ p
2836
+ P
2837
+ D D
2838
+ e
2839
+ δ
2840
+ −∫
2841
+
2842
+ +
2843
+ p
2844
+ p
2845
+ p
2846
+ p
2847
+ p
2848
+ (
2849
+ 1
2850
+ 2
2851
+
2852
+ = −
2853
+ p
2854
+ p
2855
+ p )
2856
+ Finding the extremum, we get:
2857
+ (
2858
+ )
2859
+ (
2860
+ )
2861
+ ( )
2862
+ (
2863
+ )
2864
+ (
2865
+ )
2866
+ ( )
2867
+ ( )
2868
+ 3
2869
+ 3
2870
+ 1
2871
+ 2
2872
+ 2
2873
+ 2
2874
+ ,
2875
+ 1
2876
+ 2
2877
+ 1
2878
+ 2
2879
+ 0
2880
+ D
2881
+ d p
2882
+ D
2883
+ d p
2884
+ p
2885
+ p
2886
+ i
2887
+ i
2888
+ P
2889
+ e
2890
+ D
2891
+ e
2892
+ D
2893
+ D
2894
+ δ
2895
+ δ
2896
+ δ
2897
+ δ
2898
+ δ
2899
+ δ
2900
+
2901
+
2902
+
2903
+
2904
+
2905
+ +
2906
+ = −
2907
+ +
2908
+ =
2909
+ p
2910
+ p
2911
+ p
2912
+ p
2913
+ p
2914
+ p
2915
+ p
2916
+ p
2917
+ p
2918
+ p
2919
+
2920
+ So,
2921
+ ( )
2922
+ 0
2923
+ D
2924
+ =
2925
+ p
2926
+ , which means that there is no average energy in this mode in the most
2927
+ likely A amplitude distribution.
2928
+ Conclusion
2929
+
2930
+ We have here given the structure of the photon vector potential distribution and
2931
+ theoretically derived, for the first time, its key feature, thus enlightening long held,
2932
+ though often confused, intuitions about photons.
2933
+
2934
+ Like all references to quantum mechanical states, the term photon refers to a
2935
+ system statistically, not individually; quantum mechanics only predicts probable
2936
+ outcomes, so needs many experiments on different systems (experiments on an
2937
+ “ensemble” of systems) in the same state (or approximately the same state) to verify the
2938
+ prediction. This paper proves that a photonic state is a state which has a stochastic vector
2939
+ potential (A) filling space whose most likely amplitude (magnitude) structure (across the
2940
+ ensemble of systems) has a sinewave component of frequency
2941
+ / h
2942
+ p
2943
+ for each photon of
2944
+ momentum p in the system. Getting this insight into the free field states, being
2945
+ fundamental, can build intuition into other more complicated (e.g., interactional) QFT
2946
+ problems.
2947
+
2948
+ Recognizing the stochastic character of the QFT states can lead one to introduce
2949
+ Parseval’s theorem (and other statistical theorems) which along with the Schrödinger
2950
+ formalism are intuitive tools and are required to get these results. The QFT analog of the
2951
+ Schrödinger equation allows one to carry all the intuition one gained in ordinary quantum
2952
+ mechanics about waves and particles over to QFT, including into Yang Mill’s theory. It
2953
+ has been used in attempts to use QFT in general relativity in a 3+1 space time setting,
2954
+ which also points to its draw back that it is not explicitly relativistically invariant.21 It is
2955
+
2956
+ 21 D.V. Long, G.M. Shore, The Schrödinger Wave Functional and Vacuum States in Curved Spacetime,
2957
+ Nucl. Phys. B 530, 247-278 (1998) D.V. Long, G.M. Shore, The Schrodinger Wave Functional and
2958
+ Vacuum States in Curved Spacetime II: Boundaries and Foliations, Nucl. Phys. B 530, 279-303 (1998).
2959
+ P.R. Holland, The De Broglie-Bohm Theory of Motion and Quantum Field Theory, Phys. Rept. 224 No. 3,
2960
+
2961
+ 11
2962
+
2963
+ also required and used in interesting ways in De Broglie-Bohm (dBB) formalism of
2964
+ QFT.22 Though this work fills a lacunae and is foundational (further demonstrating the
2965
+ nature of the fundamental entity “photon”), it requires the relatively infrequently used
2966
+ QFT Schrödinger formalism and this seems to be part of why it has been overlooked till
2967
+ now. Hopefully, this filling of the lacunae will help spur the use of the Schrödinger
2968
+ formalism and thereby make available the attending insights offered by its distinct
2969
+ perspective on QFT.23,24
2970
+
2971
+
2972
+ Appendix A
2973
+ Calculation of the wave-functionals for 2, 3 and 4 photon systems.
2974
+ (36)
2975
+
2976
+ ( )
2977
+ (
2978
+ )
2979
+ (
2980
+ )
2981
+
2982
+ 0
2983
+ n
2984
+ i
2985
+ i
2986
+ i
2987
+ i
2988
+ n
2989
+ A
2990
+ A n
2991
+ A n
2992
+ A
2993
+ a
2994
+ Ψ
2995
+ =
2996
+ =
2997
+ =
2998
+ p
2999
+ p
3000
+ p
3001
+ x
3002
+ p
3003
+ ,
3004
+ Substituting (7) and generalizing from (8):
3005
+ (37)
3006
+ ( )
3007
+ (
3008
+ )
3009
+ (
3010
+ )
3011
+ (
3012
+ )
3013
+ ( )
3014
+ ( )
3015
+ 3
3016
+ 3 /2
3017
+ /2
3018
+ 1
3019
+ 1
3020
+ ˆ
3021
+ 0
3022
+ 2
3023
+ 2
3024
+ n
3025
+ i
3026
+ i
3027
+ i
3028
+ i
3029
+ n
3030
+ n
3031
+ i
3032
+ A
3033
+ A
3034
+ e
3035
+ E A
3036
+ d x
3037
+ A
3038
+ E
3039
+ δ
3040
+ δ
3041
+ π
3042
+
3043
+
3044
+
3045
+
3046
+
3047
+ Ψ
3048
+ =
3049
+
3050
+
3051
+
3052
+
3053
+
3054
+
3055
+
3056
+
3057
+
3058
+
3059
+
3060
+
3061
+ p x
3062
+ np
3063
+ p
3064
+ p
3065
+ x
3066
+ x
3067
+ x
3068
+
3069
+
3070
+ Note: we will need to use:
3071
+ ( )
3072
+ ( )
3073
+ i
3074
+ A
3075
+ e
3076
+ A
3077
+ δ
3078
+ δ
3079
+
3080
+
3081
+ =
3082
+
3083
+ p x
3084
+ p
3085
+ x
3086
+ (and perhaps
3087
+ ( )
3088
+ ( )
3089
+ i
3090
+ A
3091
+ e
3092
+ A
3093
+ δ
3094
+ δ
3095
+
3096
+ =
3097
+
3098
+ p x
3099
+ x
3100
+ p
3101
+ )
3102
+ Dropping multiplicative factors to reduce space and focus on form of the equations, we
3103
+ can write the generic equation that we will use below:
3104
+ (38)
3105
+ ( )
3106
+ (
3107
+ )
3108
+ (
3109
+ )
3110
+ ( )
3111
+ (
3112
+ )
3113
+ ( )
3114
+ (
3115
+ )
3116
+ 1
3117
+ i
3118
+ i
3119
+ i
3120
+ n
3121
+ p
3122
+ i
3123
+ A
3124
+ A
3125
+ A
3126
+ A
3127
+ δ
3128
+ δ
3129
+
3130
+
3131
+
3132
+ Ψ
3133
+ ==
3134
+
3135
+
3136
+ Ψ
3137
+
3138
+
3139
+
3140
+
3141
+
3142
+
3143
+ np
3144
+ x
3145
+ p
3146
+ p
3147
+ x
3148
+ p
3149
+
3150
+ Using this and recalling
3151
+ ( )
3152
+ (
3153
+ )
3154
+ (
3155
+ )
3156
+ ( )
3157
+ 3
3158
+ 1
3159
+ 2
3160
+ 2
3161
+ i
3162
+ i
3163
+ d
3164
+ A
3165
+ p
3166
+ i
3167
+ e
3168
+ A
3169
+ A
3170
+ 2
3171
+
3172
+ Ψ
3173
+ =
3174
+
3175
+
3176
+
3177
+ p
3178
+ p
3179
+ p
3180
+ x
3181
+ p
3182
+ p
3183
+ , we now calculate the 2,
3184
+ 3 and 4 photon wavefunctionals.
3185
+
3186
+ n=2 case :
3187
+
3188
+ 95-150 (1993), N. Pinto-Neto, J. C. Fabris, Quantum Cosmology from the De Broglie-Bohm Perspective,
3189
+ Class. Quantum Grav. 30 No. 143001, 57 (2013).
3190
+ 22 P.R. Holland, The De Broglie-Bohm Theory of Motion and Quantum Field Theory, Phys. Rept. 224 No.
3191
+ 3, 95-150 (1993), N. Pinto-Neto, J. C. Fabris, Quantum Cosmology from the De Broglie-Bohm
3192
+ Perspective, Class. Quantum Grav. 30 No. 143001, 57 (2013).others P. Roser, A. Valentini, Classical and
3193
+ Quantum Cosmology with York Time, Class. Quantum Grav. 31 No. 245001 (2014). See other papers by
3194
+ P.R. Holland which use Schrödinger approach relative to the dBB interpretation of quantum mechanics,
3195
+ and A. Valentini’s papers on dBB applied to quantum cosmology.
3196
+ 23 C. Kiefer, Functional Schrodinger Equation for Scalar QED, Phys. Rev. D 45 No. 6, 2044-2056, (1992)
3197
+ 24 Also, the use of functionals cross fertilizes with their use in the path integral formulation as well as,
3198
+ through the functional Schrödinger equation, evokes the functional domain analog of the path from the
3199
+ Schrödinger equation to path integrals.
3200
+
3201
+ 12
3202
+
3203
+ (39)
3204
+ ( )
3205
+ (
3206
+ )
3207
+ (
3208
+ )
3209
+ ( )
3210
+ (
3211
+ )
3212
+ ( )
3213
+ ( )
3214
+ (
3215
+ )
3216
+ 0
3217
+ i
3218
+ i
3219
+ i
3220
+ i
3221
+ i
3222
+ i
3223
+ A
3224
+ A
3225
+ A
3226
+ A
3227
+ A
3228
+ A
3229
+ δ
3230
+ δ
3231
+ δ
3232
+ δ
3233
+
3234
+ ⎞⎛
3235
+
3236
+ Ψ
3237
+ =
3238
+
3239
+
3240
+
3241
+
3242
+ Ψ
3243
+
3244
+ ⎟⎜
3245
+
3246
+
3247
+ ⎠⎝
3248
+
3249
+
3250
+
3251
+
3252
+
3253
+ 2p
3254
+ x
3255
+ p
3256
+ p
3257
+ p
3258
+ p
3259
+ x
3260
+ p
3261
+ p
3262
+ (
3263
+ )
3264
+ ( )
3265
+ ( )
3266
+ (
3267
+ )
3268
+ i
3269
+ i
3270
+ i
3271
+ A
3272
+ A
3273
+ A
3274
+ δ
3275
+ δ
3276
+
3277
+
3278
+ =
3279
+
3280
+
3281
+ Ψ
3282
+
3283
+
3284
+
3285
+
3286
+
3287
+
3288
+ p
3289
+ p
3290
+ p
3291
+ x
3292
+ p
3293
+ (
3294
+ )
3295
+ ( )
3296
+ (
3297
+ )
3298
+ ( )
3299
+ (
3300
+ )
3301
+ ( )
3302
+ i
3303
+ i
3304
+ i
3305
+ i
3306
+ A
3307
+ A
3308
+ A
3309
+ A
3310
+ δ
3311
+ δ
3312
+ Ψ
3313
+ =
3314
+
3315
+ Ψ
3316
+
3317
+
3318
+
3319
+ p
3320
+ p
3321
+ x
3322
+ p
3323
+ p
3324
+ x
3325
+ p
3326
+
3327
+
3328
+ (
3329
+ )
3330
+ (
3331
+ )
3332
+ ( )
3333
+ (
3334
+ )
3335
+ ( )
3336
+ ( )
3337
+ 3
3338
+ 1
3339
+ 3
3340
+ 2
3341
+ 1
3342
+ 2
3343
+ 2
3344
+ i
3345
+ i
3346
+ d
3347
+ A
3348
+ p
3349
+ d
3350
+ e
3351
+ A
3352
+ p
3353
+ i
3354
+ i
3355
+ i
3356
+ i
3357
+ e
3358
+ e
3359
+ A
3360
+ A
3361
+ A
3362
+ A
3363
+ δ
3364
+ δ
3365
+ − ∫
3366
+ 2
3367
+ 2
3368
+
3369
+
3370
+
3371
+
3372
+
3373
+
3374
+
3375
+
3376
+
3377
+
3378
+
3379
+
3380
+
3381
+
3382
+ =
3383
+
3384
+
3385
+
3386
+
3387
+
3388
+
3389
+
3390
+ ⎜⎝
3391
+
3392
+ ⎟⎠
3393
+
3394
+
3395
+
3396
+
3397
+ p
3398
+ p
3399
+ p
3400
+ p
3401
+ p
3402
+ p
3403
+ p
3404
+ p
3405
+ p
3406
+ p
3407
+
3408
+ ( )
3409
+ (
3410
+ )
3411
+ (
3412
+ )
3413
+ (
3414
+ )
3415
+ (
3416
+ )
3417
+ (
3418
+ )
3419
+ ( )
3420
+ 3
3421
+ 1
3422
+ 2
3423
+ 2
3424
+ 2
3425
+ 2
3426
+ 2
3427
+ iA
3428
+ d p
3429
+ i
3430
+ i
3431
+ A
3432
+ e
3433
+ A
3434
+ δ
3435
+ 2
3436
+
3437
+ Ψ
3438
+ =
3439
+
3440
+
3441
+
3442
+
3443
+ p
3444
+ p
3445
+ 2p
3446
+ x
3447
+ p
3448
+ p
3449
+ p
3450
+ p
3451
+
3452
+
3453
+
3454
+ n=3 case:
3455
+ (40)
3456
+
3457
+ ( )
3458
+ (
3459
+ )
3460
+ (
3461
+ )
3462
+ ( )
3463
+ ( )
3464
+ (
3465
+ )
3466
+ i
3467
+ i
3468
+ i
3469
+ i
3470
+ A
3471
+ A
3472
+ A
3473
+ A
3474
+ δ
3475
+ δ
3476
+
3477
+
3478
+ Ψ
3479
+ =
3480
+
3481
+
3482
+ Ψ
3483
+
3484
+
3485
+
3486
+
3487
+
3488
+
3489
+
3490
+
3491
+ 3p
3492
+ 2p
3493
+ x
3494
+ p
3495
+ p
3496
+ x
3497
+ p
3498
+
3499
+
3500
+ (
3501
+ )
3502
+ ( )
3503
+ (
3504
+ )
3505
+ (
3506
+ )
3507
+ (
3508
+ )
3509
+ (
3510
+ )
3511
+ ( )
3512
+ 3
3513
+ 2
3514
+ 1
3515
+ 2
3516
+ 2
3517
+ 2
3518
+ 2
3519
+ iA
3520
+ d p
3521
+ i
3522
+ i
3523
+ i
3524
+ A
3525
+ A
3526
+ e
3527
+ A
3528
+ δ
3529
+ δ
3530
+ δ
3531
+ 2
3532
+
3533
+
3534
+
3535
+ =
3536
+
3537
+
3538
+
3539
+
3540
+
3541
+
3542
+
3543
+
3544
+
3545
+
3546
+
3547
+
3548
+
3549
+
3550
+ p
3551
+ p
3552
+ p
3553
+ p
3554
+ p
3555
+ p
3556
+ p
3557
+ p
3558
+ p
3559
+
3560
+
3561
+
3562
+ (
3563
+ )
3564
+ (
3565
+ )
3566
+ (
3567
+ ) (
3568
+ )
3569
+ (
3570
+ )
3571
+ (
3572
+ ) (
3573
+ )
3574
+ (
3575
+ )
3576
+ (
3577
+ )
3578
+ (
3579
+ ) (
3580
+ )
3581
+ (
3582
+ )
3583
+ (
3584
+ )
3585
+ ( )
3586
+ 3
3587
+ 2
3588
+ 3
3589
+ 1
3590
+ 3
3591
+ 2
3592
+ 2
3593
+ 2
3594
+ 2
3595
+ 4
3596
+ 2
3597
+ 2
3598
+ 2
3599
+ i
3600
+ i
3601
+ i
3602
+ i
3603
+ d
3604
+ A
3605
+ p
3606
+ i
3607
+ i
3608
+ e
3609
+ A
3610
+ A
3611
+ A
3612
+ A
3613
+ A
3614
+ δ
3615
+ δ
3616
+ δ
3617
+ 2
3618
+
3619
+
3620
+
3621
+
3622
+
3623
+
3624
+
3625
+
3626
+ =
3627
+
3628
+
3629
+
3630
+
3631
+
3632
+
3633
+
3634
+
3635
+
3636
+
3637
+
3638
+
3639
+
3640
+
3641
+
3642
+
3643
+
3644
+
3645
+ p
3646
+ p
3647
+ p
3648
+ p
3649
+ p
3650
+ p
3651
+ p
3652
+ p
3653
+ p
3654
+ p
3655
+ p
3656
+ p
3657
+ p
3658
+ p
3659
+ p
3660
+ p
3661
+
3662
+
3663
+ So,
3664
+
3665
+ ( )
3666
+ (
3667
+ )
3668
+ (
3669
+ )
3670
+ (
3671
+ )
3672
+ (
3673
+ )
3674
+ (
3675
+ ) (
3676
+ )
3677
+ (
3678
+ )
3679
+ ( )
3680
+ 3
3681
+ 1
3682
+ 3
3683
+ 2
3684
+ 2
3685
+ 4
3686
+ 2
3687
+ 3
3688
+ 2
3689
+ iA
3690
+ p
3691
+ i
3692
+ i
3693
+ i
3694
+ d
3695
+ e
3696
+ A
3697
+ A
3698
+ A
3699
+ δ
3700
+ 2
3701
+
3702
+ Ψ
3703
+ =
3704
+
3705
+
3706
+
3707
+
3708
+
3709
+
3710
+ p
3711
+ p
3712
+ 3p
3713
+ x
3714
+ p
3715
+ p
3716
+ p
3717
+ p
3718
+ p
3719
+
3720
+
3721
+ n=4 case:
3722
+
3723
+ (41)
3724
+ ( )
3725
+ (
3726
+ )
3727
+ (
3728
+ )
3729
+ ( )
3730
+ ( )
3731
+ (
3732
+ )
3733
+ i
3734
+ i
3735
+ i
3736
+ i
3737
+ A
3738
+ A
3739
+ A
3740
+ A
3741
+ δ
3742
+ δ
3743
+
3744
+
3745
+ Ψ
3746
+ =
3747
+
3748
+
3749
+ Ψ
3750
+
3751
+
3752
+
3753
+
3754
+
3755
+
3756
+ 4 p
3757
+ 3 p
3758
+ x
3759
+ p
3760
+ p
3761
+ x
3762
+ p
3763
+
3764
+
3765
+
3766
+ 13
3767
+
3768
+
3769
+
3770
+ (
3771
+ )
3772
+ (
3773
+ )
3774
+ (
3775
+ )
3776
+ (
3777
+ )
3778
+ (
3779
+ ) (
3780
+ )
3781
+ (
3782
+ )
3783
+ ( )
3784
+ (
3785
+ )
3786
+ (
3787
+ )
3788
+ (
3789
+ )
3790
+ (
3791
+ ) (
3792
+ )
3793
+ (
3794
+ )
3795
+ ( )
3796
+ ( )
3797
+ 3
3798
+ 3
3799
+ 3
3800
+ 2
3801
+ 3
3802
+ 1
3803
+ 2
3804
+ 1
3805
+ 2
3806
+ 2
3807
+ 3
3808
+ 2
3809
+ 4
3810
+ 2
3811
+ 3
3812
+ 2
3813
+ i
3814
+ i
3815
+ d
3816
+ A
3817
+ p
3818
+ i
3819
+ i
3820
+ i
3821
+ A
3822
+ i
3823
+ i
3824
+ d p
3825
+ i
3826
+ e
3827
+ e
3828
+ A
3829
+ A
3830
+ A
3831
+ A
3832
+ A
3833
+ A
3834
+ δ
3835
+ δ
3836
+ δ
3837
+ δ
3838
+ 2
3839
+ 2
3840
+
3841
+
3842
+
3843
+
3844
+
3845
+
3846
+
3847
+
3848
+
3849
+
3850
+
3851
+
3852
+
3853
+
3854
+
3855
+
3856
+ =
3857
+
3858
+
3859
+
3860
+
3861
+
3862
+
3863
+
3864
+
3865
+
3866
+
3867
+
3868
+
3869
+
3870
+
3871
+
3872
+
3873
+
3874
+
3875
+
3876
+
3877
+
3878
+
3879
+
3880
+
3881
+ p
3882
+ p
3883
+ p
3884
+ p
3885
+ p
3886
+ p
3887
+ p
3888
+ p
3889
+ p
3890
+ p
3891
+ p
3892
+ p
3893
+ p
3894
+ p
3895
+ p
3896
+ p
3897
+
3898
+
3899
+ (
3900
+ )
3901
+ (
3902
+ )
3903
+ (
3904
+ )
3905
+ (
3906
+ )
3907
+ (
3908
+ )
3909
+ (
3910
+ )
3911
+ (
3912
+ )
3913
+ (
3914
+ )
3915
+ (
3916
+ )
3917
+ (
3918
+ )
3919
+ (
3920
+ )
3921
+ (
3922
+ )
3923
+ (
3924
+ )
3925
+ (
3926
+ )
3927
+ (
3928
+ ) (
3929
+ )
3930
+ (
3931
+ )
3932
+ (
3933
+ )
3934
+ ( )
3935
+ 3
3936
+ 4
3937
+ 2
3938
+ 2
3939
+ 2
3940
+ 2
3941
+ 1
3942
+ 2
3943
+ 2
3944
+ 3
3945
+ 2
3946
+ 3
3947
+ 2
3948
+ 4
3949
+ 6
3950
+ 2
3951
+ 3
3952
+ 2
3953
+ 2
3954
+ 3
3955
+ 2
3956
+ i
3957
+ i
3958
+ i
3959
+ A
3960
+ p
3961
+ i
3962
+ i
3963
+ i
3964
+ d
3965
+ i
3966
+ A
3967
+ A
3968
+ A
3969
+ A
3970
+ A
3971
+ A
3972
+ e
3973
+ δ
3974
+ δ
3975
+ δ
3976
+ δ
3977
+ 2
3978
+
3979
+
3980
+
3981
+
3982
+
3983
+
3984
+
3985
+ =
3986
+
3987
+
3988
+
3989
+
3990
+
3991
+
3992
+
3993
+
3994
+
3995
+
3996
+
3997
+
3998
+
3999
+
4000
+
4001
+
4002
+
4003
+
4004
+
4005
+
4006
+
4007
+ p
4008
+ p
4009
+ p
4010
+ p
4011
+ p
4012
+ -p
4013
+ p
4014
+ p
4015
+ p
4016
+ p
4017
+ p
4018
+ p
4019
+ p
4020
+ p
4021
+ p
4022
+ p
4023
+ p
4024
+ p
4025
+
4026
+ So,
4027
+ ( )
4028
+ (
4029
+ )
4030
+ (
4031
+ )
4032
+ (
4033
+ )
4034
+ (
4035
+ )
4036
+ (
4037
+ )
4038
+ (
4039
+ )
4040
+ (
4041
+ )
4042
+ (
4043
+ )
4044
+ (
4045
+ )
4046
+ ( )
4047
+ 3
4048
+ 4
4049
+ 2
4050
+ 2
4051
+ 2
4052
+ 2
4053
+ 1
4054
+ 2
4055
+ 4
4056
+ 4
4057
+ 12
4058
+ 2
4059
+ 3
4060
+ 2
4061
+ iA
4062
+ p
4063
+ i
4064
+ i
4065
+ i
4066
+ d
4067
+ A
4068
+ e
4069
+ A
4070
+ A
4071
+ δ
4072
+ δ
4073
+ 2
4074
+
4075
+ Ψ
4076
+ =
4077
+
4078
+
4079
+ +
4080
+
4081
+
4082
+
4083
+ p
4084
+ p
4085
+ 4p
4086
+ x
4087
+ p
4088
+ p
4089
+ p
4090
+ p
4091
+ -p
4092
+ p
4093
+ p
4094
+
4095
+ Recalling that finally we take
4096
+ 0
4097
+
4098
+ p
4099
+ , we first drop the squared deltas:
4100
+ ( )
4101
+ (
4102
+ )
4103
+ (
4104
+ )
4105
+ (
4106
+ )
4107
+ (
4108
+ )
4109
+ (
4110
+ )
4111
+ (
4112
+ )
4113
+ (
4114
+ )
4115
+ ( )
4116
+ 3
4117
+ 3
4118
+ 1
4119
+ 4
4120
+ 2
4121
+ 2
4122
+ 16
4123
+ 3
4124
+ 2
4125
+ iA
4126
+ i
4127
+ d p
4128
+ i
4129
+ i
4130
+ e
4131
+ A
4132
+ A
4133
+ A
4134
+ δ
4135
+ 2
4136
+
4137
+ Ψ
4138
+ ==
4139
+
4140
+
4141
+
4142
+
4143
+
4144
+
4145
+ p
4146
+ p
4147
+ 4p
4148
+ x
4149
+ p
4150
+ p
4151
+ p
4152
+ p
4153
+ p
4154
+
4155
+ Ignoring the delta function completely gives:
4156
+ ( )
4157
+ (
4158
+ )
4159
+ (
4160
+ )
4161
+ (
4162
+ )
4163
+ ( )
4164
+ 3
4165
+ 4
4166
+ 4
4167
+ 1
4168
+ 2
4169
+ 16
4170
+ iA
4171
+ p
4172
+ i
4173
+ i
4174
+ d
4175
+ e
4176
+ A
4177
+ A
4178
+ 2
4179
+
4180
+ Ψ
4181
+ =
4182
+
4183
+
4184
+
4185
+ p
4186
+ p
4187
+ 4p
4188
+ x
4189
+ p
4190
+ p
4191
+
4192
+
F9FJT4oBgHgl3EQfDixl/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GNAzT4oBgHgl3EQfUfzc/content/tmp_files/2301.01269v1.pdf.txt ADDED
@@ -0,0 +1,1110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Average Is Not Enough: Caveats of Multilingual Evaluation
2
+ Matúš Pikuliak and Marián Šimko
3
+ Kempelen Institute of Intelligent Technologies
4
5
+ Abstract
6
+ This position paper discusses the problem of
7
+ multilingual evaluation. Using simple statis-
8
+ tics, such as average language performance,
9
+ might inject linguistic biases in favor of domi-
10
+ nant language families into evaluation method-
11
+ ology. We argue that a qualitative analysis in-
12
+ formed by comparative linguistics is needed
13
+ for multilingual results to detect this kind of
14
+ bias. We show in our case study that results in
15
+ published works can indeed be linguistically
16
+ biased and we demonstrate that visualization
17
+ based on URIEL typological database can de-
18
+ tect it.
19
+ 1
20
+ Introduction
21
+ The linguistic diversity of NLP research is grow-
22
+ ing (Joshi et al., 2020; Pikuliak et al., 2021) thanks
23
+ to improvements of various multilingual technolo-
24
+ gies, such as machine translation (Arivazhagan
25
+ et al., 2019), multilingual language models (Devlin
26
+ et al., 2019; Conneau and Lample, 2019), cross-
27
+ lingual transfer learning (Pikuliak et al., 2021) or
28
+ language independent representations (Ruder et al.,
29
+ 2019). It is now possible to create well-performing
30
+ multilingual methods for many tasks. When deal-
31
+ ing with multilingual methods, we need to be able
32
+ to evaluate how good they really are, i.e. how effec-
33
+ tive they are on a wide variety of typologically di-
34
+ verse languages. Consider the two methods shown
35
+ in Figure 1 (a). Without looking at the particular
36
+ languages, Method A seems better. It has better re-
37
+ sults for the majority of languages and its average
38
+ performance is better as well. However, the trio
39
+ of languages, where Method A is better, are in fact
40
+ all very similar Iberian languages, while the fourth
41
+ language is Indo-Iranian. Is the Method A actually
42
+ better, or is it better only for Iberian? Simple av-
43
+ erage is often used in practice without considering
44
+ the linguistic diversity of the underlying selection
45
+ of languages, despite the fact that many corpora
46
+ and datasets are biased in favor of historically dom-
47
+ inant languages and language families.
48
+ Additionally, as the number of languages in-
49
+ creases, it is harder and harder to notice phenomena
50
+ such as this. Consider the comparison of two sets
51
+ of results in Table 1. With 41 languages it is cog-
52
+ nitively hard to discover various relations between
53
+ the languages and their results, even if one has the
54
+ necessary linguistic knowledge.
55
+ In this position paper, we argue that it is not
56
+ the best practice to compare multilingual methods
57
+ only with simple statistics, such as average. Com-
58
+ monly used simple evaluation protocols might bias
59
+ research in favor of dominant languages and in turn
60
+ hurt historically marginalized languages. Instead,
61
+ we propose to consider using qualitative results
62
+ analysis that takes linguistic typology (Ponti et al.,
63
+ 2019) and comparative linguistics into account as
64
+ an additional sanity check. We believe that this
65
+ is an often overlooked tool in our research toolkit
66
+ that should be used more to ensure that we are
67
+ able to properly interpret results from multilingual
68
+ evaluation and detect various linguistic biases and
69
+ problems. In addition to this discussion, which
70
+ we consider a contribution in itself, we also pro-
71
+ pose a visualization based on URIEL typological
72
+ database (Littell et al., 2017) as an example of such
73
+ qualitative analysis, and we show that it is able to
74
+ discover linguistic biases in published results.
75
+ 2
76
+ Related Work
77
+ Linguistic biases in NLP.
78
+ Bender (2009) postu-
79
+ lated that research driven mainly by evaluation in
80
+ English will become biased in favor of this lan-
81
+ guage and it might not be particularly language
82
+ independent. Even in recent years, popular tech-
83
+ niques such as word2vec or Byte Pair Encoding
84
+ were shown to have worse performance on morpho-
85
+ logically rich languages (Bojanowski et al., 2017;
86
+ Park et al., 2020). Similarly, cross-lingual word
87
+ embeddings are usually constructed with English
88
+ arXiv:2301.01269v1 [cs.CL] 3 Jan 2023
89
+
90
+ Spanish
91
+ Catalan
92
+ Portugese
93
+ Persian
94
+ Average
95
+ Performance
96
+ 76.0
97
+ 79.0
98
+ 74.0
99
+ 52.0
100
+ 70.25
101
+ 63.0
102
+ 62.0
103
+ 59.0
104
+ 74.0
105
+ 64.5
106
+ (a)
107
+ Method A
108
+ Method B
109
+ Atlantic-Congo
110
+ Afro-Asiatic
111
+ Semitic
112
+ Pama-Nyungan
113
+ Otomanguean
114
+ Italic
115
+ Slavic
116
+ Germanic
117
+ Uralic
118
+ Indo-Iranian
119
+ Dravidian
120
+ Turkic
121
+ Sino-Tibetan
122
+ Austroasiatic
123
+ Austronesian
124
+ (b)
125
+ (c)
126
+ Figure 1: (a) Comparison of two methods on unbalanced set of languages. (b) Visualization of URIEL languages
127
+ with certain language families color-coded. (c) Comparison of two methods from Rahimi et al. This uses the same
128
+ map of languages as b, but the view is zoomed.
129
+ Language
130
+ afr
131
+ arb
132
+ bul
133
+ ben
134
+ bos
135
+ cat
136
+ ces
137
+ dan
138
+ deu
139
+ ell
140
+ eng
141
+ spa
142
+ est
143
+ pes
144
+ fin
145
+ fra
146
+ heb
147
+ hin
148
+ hrv
149
+ hun
150
+ ind
151
+ Method A
152
+ 74
153
+ 54
154
+ 54
155
+ 60
156
+ 77
157
+ 79
158
+ 72
159
+ 79
160
+ 64
161
+ 34
162
+ 57
163
+ 76
164
+ 71
165
+ 52
166
+ 69
167
+ 73
168
+ 46
169
+ 58
170
+ 77
171
+ 69
172
+ 61
173
+ Method B
174
+ 59
175
+ 64
176
+ 61
177
+ 70
178
+ 63
179
+ 62
180
+ 62
181
+ 62
182
+ 58
183
+ 61
184
+ 47
185
+ 63
186
+ 64
187
+ 74
188
+ 67
189
+ 57
190
+ 53
191
+ 68
192
+ 61
193
+ 59
194
+ 67
195
+ Language
196
+ ita
197
+ lit
198
+ lav
199
+ mkd
200
+ zlm
201
+ nld
202
+ nor
203
+ pol
204
+ por
205
+ ron
206
+ rus
207
+ slk
208
+ slv
209
+ alb
210
+ swe
211
+ tam
212
+ tgl
213
+ tur
214
+ ukr
215
+ vie
216
+ AVG
217
+ Method A
218
+ 76
219
+ 75
220
+ 67
221
+ 48
222
+ 63
223
+ 78
224
+ 77
225
+ 77
226
+ 74
227
+ 74
228
+ 36
229
+ 76
230
+ 76
231
+ 76
232
+ 69
233
+ 25
234
+ 57
235
+ 67
236
+ 49
237
+ 48
238
+ 64.5
239
+ Method B
240
+ 60
241
+ 62
242
+ 68
243
+ 67
244
+ 66
245
+ 59
246
+ 65
247
+ 61
248
+ 59
249
+ 66
250
+ 53
251
+ 62
252
+ 64
253
+ 69
254
+ 69
255
+ 54
256
+ 66
257
+ 61
258
+ 60
259
+ 55
260
+ 62.1
261
+ Table 1: Comparison of two methods from Rahimi et al. (2019).
262
+ as a default hub language, even though this might
263
+ hurt many languages (Anastasopoulos and Neubig,
264
+ 2020). Perhaps if the practice of research was less
265
+ Anglocentric, different methods and techniques
266
+ would have become popular instead. Our work
267
+ is deeply related to issues like these. We show that
268
+ multilingual evaluation with an unbalanced selec-
269
+ tion of languages might cause similar symptoms.
270
+ Benchmarking.
271
+ Using benchmarks is a practice
272
+ that came under a lot of scrutiny in the NLP com-
273
+ munity recently. Benchmark evaluation was said
274
+ to encourage spurious data overfitting (Kavumba
275
+ et al., 2019), encourage metric gaming (Thomas
276
+ and Uminsky, 2020) or lead the research away from
277
+ general human-like linguistic intelligence (Linzen,
278
+ 2020). Similarly, benchmarks are criticized for be-
279
+ ing predominantly focused on performance, while
280
+ neglecting several other important properties, e.g.
281
+ prediction cost or model robustness (Ethayarajh
282
+ and Jurafsky, 2020). Average in particular was
283
+ shown to have several issues with robustness that
284
+ can be addressed by using pair-wise instance evalu-
285
+ ation (Peyrard et al., 2021). To address these issues,
286
+ some benchmarks refuse to use aggregating scores
287
+ and instead report multiple metrics at the same time
288
+ leaving interpretation of the results to the reader.
289
+ Gehrmann et al. (2021) is one such benchmark,
290
+ which proposes to use visualizations to help the in-
291
+ tepretation. In this work, we also use visualizations
292
+ to similar effect.
293
+ 3
294
+ Multilingual Evaluation Strategies
295
+ When comparing multilingual methods with non-
296
+ trivial number of languages, it is cognitively hard
297
+ to keep track of various linguistic aspects, such
298
+ as language families, writing systems, typologi-
299
+ cal properties, etc. Researchers often use various
300
+ simplifying strategies instead:
301
+ Aggregating
302
+ metrics.
303
+ Aggregating
304
+ metrics,
305
+ such as average performance or a number of
306
+ languages where a certain method achieves the
307
+ best results provide some information, but as
308
+ we illustrated in Figure 1 (a), they might not
309
+ tell the whole story.
310
+ By aggregating results
311
+ we lose important information about individual
312
+ languages and language families.
313
+ Commonly
314
+ used statistics usually do not take underlying
315
+ linguistic diversity into account. This might lead
316
+ to unwanted phenomena, such as bias in favor
317
+ of dominant language families.
318
+ The encoded
319
+ values of the aggregating metrics might not align
320
+ with the values we want to express. Average is
321
+ an example of utilitarianist world view, while
322
+ using minimal performance might be considered
323
+ to be a prioritarianist approach (Choudhury and
324
+ Deshpande, 2021). Even though analyzing the
325
+
326
+ values encoded in metrics is a step towards a fairer
327
+ evaluation, they still miss a more fine-grained
328
+ details of the results.
329
+ Aggregated metrics for different groups.
330
+ An-
331
+ other option is to calculate statistics for certain
332
+ linguistic families or groups. These are steps in
333
+ the right direction, as they provide a more fine-
334
+ grained picture, but there are still issues left. It is
335
+ not clear which families should be selected, e.g.
336
+ should we average all Indo-European languages
337
+ or should we average across subfamilies, such as
338
+ Slavic or Germanic. This selection is ultimately
339
+ opinionated and different selections might show us
340
+ different views of the results. In addition, aggregat-
341
+ ing across families might still hide variance within
342
+ these families. Grouping languages by the size of
343
+ available datasets (e.g. low resource vs. high re-
344
+ source) shows us how the models deal with data
345
+ scarcity, but the groups might still be linguistically
346
+ unbalanced.
347
+ Balanced language sampling.
348
+ Another option
349
+ is to construct a multilingual dataset so that it is
350
+ linguistically balanced. This process is called lan-
351
+ guage sampling (Rijkhoff et al., 1993; Miestamo
352
+ et al., 2016). In practice, this means that a small
353
+ number of representative languages is selected for
354
+ each family. The problem with dominant fami-
355
+ lies is solved because we control the number of
356
+ languages per family. However, selecting which
357
+ families should be represented and then selecting
358
+ languages within these families is again an opin-
359
+ ionated process. Different families and their sub-
360
+ families might have different degrees of diversity.
361
+ Different selections might favor different linguistic
362
+ properties and results might vary between them. It
363
+ is also not clear, how exhaustive given selection is,
364
+ i.e. how much of the linguistic variety has been
365
+ covered. Some of the existing works mention their
366
+ selection criteria: Longpre et al. (2020) count how
367
+ many speakers the selection covers, Clark et al.
368
+ (2020) use a set of selected typological proper-
369
+ ties, Ponti et al. (2020) use the so called variety
370
+ language sampling. Publishing the criteria allows
371
+ us to do a post-hoc analysis in the future to evaluate,
372
+ how well did these criteria work.
373
+ Qualitative analysis
374
+ In this paper, we argue that
375
+ qualitative analysis is an often overlooked, yet ir-
376
+ replaceable evaluation technique. In the following
377
+ section, we will present our case study of how to
378
+ perform qualitative analysis.
379
+ 4
380
+ Case Study: Qualitative Analysis
381
+ through Visualization
382
+ In this section we show how to perform a quali-
383
+ tative analysis of multilingual results with a visu-
384
+ alization technique based on URIEL typographic
385
+ database.
386
+ We show that using this we can (1)
387
+ uncover linguistic biases in the results, and (2)
388
+ make sense of results from non-trivial number of
389
+ languages. As case study, we study results from
390
+ Rahimi et al. (2019). Our goal is not to evaluate
391
+ particular methods from this paper, but to demon-
392
+ strate how linguistically-informed analysis might
393
+ help researchers gain insights into their results. We
394
+ analyze the results from this paper not because we
395
+ want to criticize it, but because it is a well-written
396
+ paper that actually attempts to do multilingual eval-
397
+ uation for non-trivial number of languages with
398
+ significantly different methods. The linguistic bi-
399
+ ases we uncover are already partially discussed in
400
+ the paper. Here, we only show how to effectively
401
+ perform qualitative analysis and uncover these bi-
402
+ ases with appropriate visualization. Appendix A
403
+ shows similar analysis for another paper (Heinzer-
404
+ ling and Strube, 2019) where linguistic biases are
405
+ visible.
406
+ We use URIEL, a typological language database
407
+ that consists of 289 syntactic and phonological bi-
408
+ nary features for 3718 languages. We use UMAP
409
+ feature reduction algorithm (McInnes and Healy,
410
+ 2018) to create a 2D typological language space.
411
+ This map is shown in Figure 1 (b). The map is inter-
412
+ active and allows for dynamic filtering of languages
413
+ and families, as well as inspection of individual
414
+ languages and their properties.1 Each point is one
415
+ language and selected language families are color-
416
+ coded in the figure. Even though URIEL features
417
+ used for dimensionality reduction do not contain in-
418
+ formation about language families, genealogically
419
+ close languages naturally form clusters in our vi-
420
+ sualization. Certain geographical relations are cap-
421
+ tured as well, e.g. Sudanic and Chadic languages
422
+ are neighboring clusters, despite being from differ-
423
+ ent language families. This evokes the linguistic
424
+ tradition of grouping languages according to the
425
+ regions and macroregions. This shows that our vi-
426
+ sualization is able to capture both intrafamiliar and
427
+ interfamiliar similarities of languages and is thus
428
+ appropriate for our use-case.
429
+ We visualize results from Rahimi et al. (2019)
430
+ on this linguistic map. Rahimi et al. use Wikipedia-
431
+ 1Code available at GitHub
432
+
433
+ based corpus for NER, and they compare various
434
+ cross-lingual transfer learning algorithms for 41
435
+ languages. They use an unbalanced set of lan-
436
+ guages, where the three most dominant language
437
+ families – Germanic, Italic and Slavic – make up
438
+ 55% of all languages. See Appendix A for more
439
+ details about the paper. We use our URIEL map to
440
+ visualize a comparison between a pair of methods
441
+ on all 41 languages from Table 1. In Figure 1 (c) we
442
+ compare two methods – Method A – cross-lingual
443
+ transfer learning methods using multiple source lan-
444
+ guages (average performance 64.5), and seemingly
445
+ worse Method B – a low-resource training with-
446
+ out any form of cross-lingual supervision (average
447
+ performance 62.1). We use the same URIEL map,
448
+ but we superimpose the relative performance of the
449
+ two methods as colored columns. Orange columns
450
+ on this map show languages where Method A per-
451
+ forms better, while blue columns show the same for
452
+ Method B. Height of each column shows how big
453
+ the relative difference in performance is between
454
+ the two methods. I.e. taller orange columns mean
455
+ dominant A, taller blue columns mean dominant B.
456
+ We can now clearly see that there is a pattern in
457
+ the location of the colored columns. Using aver-
458
+ age as evaluation measure, Method A seems better
459
+ overall. Here we can see that it is only better in
460
+ one particular cluster of languages – the cluster of
461
+ orange columns. All these are related European
462
+ languages. Most of them are Germanic, Italic or
463
+ Slavic, with some exceptions being languages that
464
+ are not Indo-European, but are nevertheless geo-
465
+ graphical neighbors, such as Hungarian. On the
466
+ other hand, all the non-European languages actu-
467
+ ally prefer Method B. These are the blue columns
468
+ scattered in the rest of the space that consists of
469
+ languages such as Arabic (Semitic), Chinese (Sino-
470
+ Tibetan) or Tamil (Dravidian).
471
+ This shows important fact about the two methods
472
+ that was hidden by using average. Cross-lingual su-
473
+ pervision seemed to have better performance, but it
474
+ has better performance only in the dominant cluster
475
+ of similar languages where the cross-lingual super-
476
+ vision is more viable. Other languages, would actu-
477
+ ally prefer using monolingual low-resource learn-
478
+ ing, as they are not able to learn from other lan-
479
+ guages that easily. In this case, average is overesti-
480
+ mating the value of cross-lingual learning for non-
481
+ European languages. This overestimation might
482
+ cause harm to these languages.
483
+ We can also see that there are some exceptions –
484
+ the blue columns in the orange cluster. These ex-
485
+ ceptions are Greek, Russian, Macedonian, Bulgar-
486
+ ian and Ukrainian – all Indo-European languages
487
+ that use non-Latin scripts. In this case, different
488
+ writing systems are probably cause of additional
489
+ linguistic bias. It might be hard to notice this pat-
490
+ tern by simply looking at the table of results, but
491
+ here we can quickly identify the languages as out-
492
+ liers and then it is easy to realize what they have in
493
+ common.
494
+ Note that we do not expect to see this level of
495
+ linguistic bias in most papers and we have cherry-
496
+ picked this particular methods from this particu-
497
+ lar paper because they demonstrate the case when
498
+ the linguistic bias in the results is the most obvi-
499
+ ous. This is caused mainly by unbalanced selection
500
+ of languages on Wikipedia and in a sense unfair
501
+ comparison of cross-lingual supervision with low
502
+ resource learning.
503
+ 5
504
+ Conclusions
505
+ Multilinguality in NLP is becoming more common
506
+ and methodological practice is sometimes lagging
507
+ behind (Artetxe et al., 2020; Keung et al., 2020;
508
+ Bender, 2011). Making progress will be inherently
509
+ hard without proper evaluation methodology. In
510
+ this work, we argue for necessity for qualitative
511
+ results analysis and we showed how to use such
512
+ analysis to improve the evaluation with interactive
513
+ visualizations. In our case study, we were able to
514
+ uncover linguistic biases in published results.
515
+ Considering the practice in machine learning and
516
+ NLP, it might be tempting to reduce a multilingual
517
+ method performance to a single number. However,
518
+ we believe that intricacies of multilingual evalua-
519
+ tion can not be reduced so easily. There are too
520
+ many different dimensions that need to be taken
521
+ into consideration and NLP researchers should un-
522
+ derstand these dimensions. We believe that appro-
523
+ priate level of training in various linguistic fields,
524
+ such as typology or comparative linguistics, is nec-
525
+ essary for proper understanding of multilingual
526
+ results and for proper qualitative analysis. We ar-
527
+ gue that qualitative analysis is an oft overlooked
528
+ approach to results analysis that should be utilized
529
+ more to prevent various distortions in how we un-
530
+ derstand linguistic implications of our results.
531
+ 6
532
+ Ethical Considerations
533
+ Much of current NLP research is focused on only a
534
+ small handful of languages. Communities of some
535
+
536
+ language users are left behind, as a result of data
537
+ scarcity. We believe that our paper might have
538
+ positive societal impact. It focuses on the issues
539
+ of these marginalized languages and communities.
540
+ Following our recommendations might lead to a
541
+ more diverse and fair multilingual evaluation both
542
+ in research and in industry. This might in turn led to
543
+ better models, applications and ultimately quality
544
+ of life changes for some.
545
+ Acknowledgments
546
+ This research was partially supported by DisAi,
547
+ a project funded by Horizon Europe under GA No.
548
+ 101079164.
549
+ References
550
+ Antonios Anastasopoulos and Graham Neubig. 2020.
551
+ Should all cross-lingual embeddings speak English?
552
+ In Proceedings of the 58th Annual Meeting of the
553
+ Association for Computational Linguistics, pages
554
+ 8658–8679, Online. Association for Computational
555
+ Linguistics.
556
+ Naveen Arivazhagan,
557
+ Ankur Bapna,
558
+ Orhan Firat,
559
+ Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
560
+ Mia Xu Chen, Yuan Cao, George F. Foster, Colin
561
+ Cherry, Wolfgang Macherey, Zhifeng Chen, and
562
+ Yonghui Wu. 2019. Massively multilingual neural
563
+ machine translation in the wild: Findings and chal-
564
+ lenges. CoRR, abs/1907.05019.
565
+ Mikel Artetxe,
566
+ Sebastian Ruder,
567
+ Dani Yogatama,
568
+ Gorka Labaka, and Eneko Agirre. 2020.
569
+ A call
570
+ for more rigor in unsupervised cross-lingual learn-
571
+ ing.
572
+ In Proceedings of the 58th Annual Meeting
573
+ of the Association for Computational Linguistics,
574
+ pages 7375–7388, Online. Association for Compu-
575
+ tational Linguistics.
576
+ Emily M. Bender. 2009. Linguistically naïve != lan-
577
+ guage independent: Why NLP needs linguistic ty-
578
+ pology. In Proceedings of the EACL 2009 Workshop
579
+ on the Interaction between Linguistics and Compu-
580
+ tational Linguistics: Virtuous, Vicious or Vacuous?,
581
+ pages 26–32, Athens, Greece. Association for Com-
582
+ putational Linguistics.
583
+ Emily M Bender. 2011. On achieving and evaluating
584
+ language-independence in nlp. Linguistic Issues in
585
+ Language Technology, 6(3):1–26.
586
+ Piotr Bojanowski, Edouard Grave, Armand Joulin, and
587
+ Tomas Mikolov. 2017. Enriching word vectors with
588
+ subword information. Transactions of the Associa-
589
+ tion for Computational Linguistics, 5:135–146.
590
+ Monojit Choudhury and Amit Deshpande. 2021. How
591
+ linguistically fair are multilingual pre-trained lan-
592
+ guage models? In Thirty-Fifth AAAI Conference on
593
+ Artificial Intelligence, AAAI 2021, Thirty-Third Con-
594
+ ference on Innovative Applications of Artificial Intel-
595
+ ligence, IAAI 2021, The Eleventh Symposium on Ed-
596
+ ucational Advances in Artificial Intelligence, EAAI
597
+ 2021, Virtual Event, February 2-9, 2021, pages
598
+ 12710–12718. AAAI Press.
599
+ Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
600
+ Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
601
+ Jennimaria Palomaki. 2020.
602
+ TyDi QA: A bench-
603
+ mark for information-seeking question answering in
604
+ typologically diverse languages. Transactions of the
605
+ Association for Computational Linguistics, 8:454–
606
+ 470.
607
+ Alexis Conneau and Guillaume Lample. 2019. Cross-
608
+ lingual language model pretraining.
609
+ In Advances
610
+ in Neural Information Processing Systems 32: An-
611
+ nual Conference on Neural Information Processing
612
+ Systems 2019, NeurIPS 2019, December 8-14, 2019,
613
+ Vancouver, BC, Canada, pages 7057–7067.
614
+ Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
615
+ Kristina Toutanova. 2019.
616
+ BERT: Pre-training of
617
+ deep bidirectional transformers for language under-
618
+ standing.
619
+ In Proceedings of the 2019 Conference
620
+ of the North American Chapter of the Association
621
+ for Computational Linguistics: Human Language
622
+ Technologies, Volume 1 (Long and Short Papers),
623
+ pages 4171–4186, Minneapolis, Minnesota. Associ-
624
+ ation for Computational Linguistics.
625
+ Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in
626
+ the eye of the user: A critique of NLP leaderboards.
627
+ In Proceedings of the 2020 Conference on Empirical
628
+ Methods in Natural Language Processing (EMNLP),
629
+ pages 4846–4853, Online. Association for Computa-
630
+ tional Linguistics.
631
+ Sebastian Gehrmann, Tosin P. Adewumi, Karmanya
632
+ Aggarwal, Pawan Sasanka Ammanamanchi, Aremu
633
+ Anuoluwapo, Antoine Bosselut, Khyathi Raghavi
634
+ Chandu, Miruna-Adriana Clinciu, Dipanjan Das,
635
+ Kaustubh D. Dhole, Wanyu Du, Esin Durmus,
636
+ Ondrej Dusek,
637
+ Chris Emezue,
638
+ Varun Gangal,
639
+ Cristina Garbacea, Tatsunori Hashimoto, Yufang
640
+ Hou, Yacine Jernite, Harsh Jhamtani, Yangfeng
641
+ Ji, Shailza Jolly, Dhruv Kumar, Faisal Ladhak,
642
+ Aman Madaan, Mounica Maddela, Khyati Mahajan,
643
+ Saad Mahamood, Bodhisattwa Prasad Majumder,
644
+ Pedro Henrique Martins, Angelina McMillan-Major,
645
+ Simon Mille, Emiel van Miltenburg, Moin Nadeem,
646
+ Shashi Narayan, Vitaly Nikolaev, Rubungo An-
647
+ dre Niyongabo, Salomey Osei, Ankur P. Parikh,
648
+ Laura Perez-Beltrachini, Niranjan Ramesh Rao,
649
+ Vikas Raunak, Juan Diego Rodriguez, Sashank
650
+ Santhanam, João Sedoc, Thibault Sellam, Samira
651
+ Shaikh, Anastasia Shimorina, Marco Antonio So-
652
+ brevilla Cabezudo, Hendrik Strobelt, Nishant Sub-
653
+ ramani, Wei Xu, Diyi Yang, Akhila Yerukola, and
654
+ Jiawei Zhou. 2021.
655
+ The GEM benchmark: Natu-
656
+ ral language generation, its evaluation and metrics.
657
+ CoRR, abs/2102.01672.
658
+
659
+ Benjamin Heinzerling and Michael Strube. 2019. Se-
660
+ quence tagging with contextual and non-contextual
661
+ subword representations: A multilingual evaluation.
662
+ In Proceedings of the 57th Annual Meeting of the As-
663
+ sociation for Computational Linguistics, pages 273–
664
+ 291, Florence, Italy. Association for Computational
665
+ Linguistics.
666
+ Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
667
+ Bali, and Monojit Choudhury. 2020. The state and
668
+ fate of linguistic diversity and inclusion in the NLP
669
+ world.
670
+ In Proceedings of the 58th Annual Meet-
671
+ ing of the Association for Computational Linguistics,
672
+ pages 6282–6293, Online. Association for Computa-
673
+ tional Linguistics.
674
+ Pride Kavumba, Naoya Inoue, Benjamin Heinzerling,
675
+ Keshav Singh, Paul Reisert, and Kentaro Inui. 2019.
676
+ When choosing plausible alternatives, clever hans
677
+ can be clever.
678
+ In Proceedings of the First Work-
679
+ shop on Commonsense Inference in Natural Lan-
680
+ guage Processing, pages 33–42, Hong Kong, China.
681
+ Association for Computational Linguistics.
682
+ Phillip Keung, Yichao Lu, Julian Salazar, and Vikas
683
+ Bhardwaj. 2020.
684
+ Don’t use English dev: On the
685
+ zero-shot cross-lingual evaluation of contextual em-
686
+ beddings. In Proceedings of the 2020 Conference on
687
+ Empirical Methods in Natural Language Processing
688
+ (EMNLP), pages 549–554, Online. Association for
689
+ Computational Linguistics.
690
+ Tal Linzen. 2020. How can we accelerate progress to-
691
+ wards human-like linguistic generalization? In Pro-
692
+ ceedings of the 58th Annual Meeting of the Asso-
693
+ ciation for Computational Linguistics, pages 5210–
694
+ 5217, Online. Association for Computational Lin-
695
+ guistics.
696
+ Patrick Littell, David R. Mortensen, Ke Lin, Kather-
697
+ ine Kairis, Carlisle Turner, and Lori Levin. 2017.
698
+ URIEL and lang2vec: Representing languages as
699
+ typological, geographical, and phylogenetic vectors.
700
+ In Proceedings of the 15th Conference of the Euro-
701
+ pean Chapter of the Association for Computational
702
+ Linguistics: Volume 2, Short Papers, pages 8–14,
703
+ Valencia, Spain. Association for Computational Lin-
704
+ guistics.
705
+ Shayne Longpre, Yi Lu, and Joachim Daiber. 2020.
706
+ MKQA: A linguistically diverse benchmark for mul-
707
+ tilingual open domain question answering. CoRR,
708
+ abs/2007.15207.
709
+ Leland McInnes and John Healy. 2018. UMAP: uni-
710
+ form manifold approximation and projection for di-
711
+ mension reduction. CoRR, abs/1802.03426.
712
+ Matti Miestamo,
713
+ Dik Bakker,
714
+ and Antti Arppe.
715
+ 2016.
716
+ Sampling for variety.
717
+ Linguistic Typology,
718
+ 20(2):233–296.
719
+ Hyunji Hayley Park, Katherine J. Zhang, Coleman Ha-
720
+ ley, Kenneth Steimel, Han Liu, and Lane Schwartz.
721
+ 2020.
722
+ Morphology matters: A multilingual lan-
723
+ guage modeling analysis. CoRR, abs/2012.06262.
724
+ Maxime Peyrard, Wei Zhao, Steffen Eger, and Robert
725
+ West. 2021. Better than average: Paired evaluation
726
+ of NLP systems. In Proceedings of the 59th Annual
727
+ Meeting of the Association for Computational Lin-
728
+ guistics and the 11th International Joint Conference
729
+ on Natural Language Processing (Volume 1: Long
730
+ Papers), pages 2301–2315, Online. Association for
731
+ Computational Linguistics.
732
+ Matúš Pikuliak, Marián Šimko, and Mária Bieliková.
733
+ 2021.
734
+ Cross-lingual learning for text process-
735
+ ing: A survey. Expert Systems with Applications,
736
+ 165:113765.
737
+ Edoardo Maria Ponti, Goran Glavaš, Olga Majewska,
738
+ Qianchu Liu, Ivan Vuli´c, and Anna Korhonen. 2020.
739
+ XCOPA: A multilingual dataset for causal common-
740
+ sense reasoning. In Proceedings of the 2020 Con-
741
+ ference on Empirical Methods in Natural Language
742
+ Processing (EMNLP), pages 2362–2376, Online. As-
743
+ sociation for Computational Linguistics.
744
+ Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak,
745
+ Ivan Vuli´c, Roi Reichart, Thierry Poibeau, Ekaterina
746
+ Shutova, and Anna Korhonen. 2019. Modeling lan-
747
+ guage variation and universals: A survey on typo-
748
+ logical linguistics for natural language processing.
749
+ Computational Linguistics, 45(3):559–601.
750
+ Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-
751
+ sively multilingual transfer for NER.
752
+ In Proceed-
753
+ ings of the 57th Annual Meeting of the Association
754
+ for Computational Linguistics, pages 151–164, Flo-
755
+ rence, Italy. Association for Computational Linguis-
756
+ tics.
757
+ Jan Rijkhoff, Dik Bakker, Kees Hengeveld, and Pe-
758
+ ter Kahrel. 1993.
759
+ A method of language sam-
760
+ pling. Studies in Language. International Journal
761
+ sponsored by the Foundation “Foundations of Lan-
762
+ guage”, 17(1):169–203.
763
+ Sebastian Ruder, Ivan Vulic, and Anders Søgaard.
764
+ 2019. A survey of cross-lingual word embedding
765
+ models. Journal of Artificial Intelligence Research,
766
+ 65:569–631.
767
+ Rachel Thomas and David Uminsky. 2020. The prob-
768
+ lem with metrics is a fundamental problem for AI.
769
+ CoRR, abs/2002.08512.
770
+
771
+ A
772
+ Details of Analysed Papers
773
+ In this appendix, we provide additional information
774
+ about papers we analysed.
775
+ A.1
776
+ Rahimi et al.
777
+ This is the paper we used for demonstration in the
778
+ main paper in Section 4. We use results reported in
779
+ Table 4 in their paper. The languages they use are
780
+ listed here in Table 2. We can see the apparent dom-
781
+ inance of Indo-European languages. There are 14
782
+ different methods listed in their paper. We compare
783
+ the results for these methods in Figure 2. There we
784
+ can see how the average results for individual meth-
785
+ ods compare with the average results for non-GIS
786
+ (Germanic-Italic-Slavic) languages. The numbers
787
+ correspond to the order of methods listed in the
788
+ original paper. The two methods compared in Fig-
789
+ ure 1 (c) are shown as blue and orange, respectively.
790
+ The orange Method A is BEAtok in the original pa-
791
+ per. The blue Method B is called LSup. We can see
792
+ the linguistic bias with this simplistic view as well.
793
+ All the cross-lingual learning based methods have
794
+ worse non-GIS results than methods that do not use
795
+ cross-lingual learning (methods 1 and 2). However,
796
+ this analysis can not replace the visualization we
797
+ propose in Section 4. It provides a GIS-centered
798
+ view, but it can not capture other sources of bias.
799
+ For example, it does not show various outliers that
800
+ were seen in the visualization, such as Uralic lan-
801
+ guages that behave similarly to GIS languages, or
802
+ Slavic languages with Cyrilic alphabet that behave
803
+ differently than other Slavic languages.
804
+ A.2
805
+ Heinzerling and Strube
806
+ Similar linguistic biases can be seen in Heinzer-
807
+ ling and Strube as well. They evaluate various
808
+ representations performance on POS tagging and
809
+ NER. In Figure 3 we compare POS accuracy of a
810
+ multilingual model with a shared embedding vocab-
811
+ ulary (average performance 96.6, MultiBPEmb
812
+ +char +finetune in the original paper) and a
813
+ simple BiLSTM baseline with no transfer super-
814
+ vision (average performance 96.4, BiLSTM in the
815
+ original paper). Orange columns are for languages
816
+ that prefer the multilingual model, blue columns
817
+ prefer the baseline. In this case, almost all orange
818
+ columns are in fact GIS languages. Other lan-
819
+ guages are having significantly worse results with
820
+ this method and most of them actually prefer the
821
+ simple baseline with no cross-lingual supervision.
822
+ This shows the limitations of proposed multilingual
823
+ ISO
824
+ Language
825
+ Subfamily
826
+ Family
827
+ bul
828
+ Bulgarian
829
+ Slavic
830
+ Indo-European
831
+ bos
832
+ Bosnian
833
+ ces
834
+ Czech
835
+ hrv
836
+ Croatian
837
+ mkd
838
+ Macedonian
839
+ pol
840
+ Polish
841
+ rus
842
+ Russian
843
+ slk
844
+ Slovak
845
+ slv
846
+ Slovenian
847
+ ukr
848
+ Ukrainian
849
+ afr
850
+ Afrikkans
851
+ Germanic
852
+ dan
853
+ Danish
854
+ deu
855
+ German
856
+ nld
857
+ Dutch
858
+ nor
859
+ Norwegian
860
+ swe
861
+ Swedish
862
+ cat
863
+ Catalan
864
+ Italic
865
+ fra
866
+ French
867
+ ita
868
+ Italian
869
+ por
870
+ Portugese
871
+ rom
872
+ Romanina
873
+ spa
874
+ Spanish
875
+ ben
876
+ Bengali
877
+ Indo-Iranian
878
+ hin
879
+ Hindi
880
+ pes
881
+ Iranian Persian
882
+ lit
883
+ Lithuanian
884
+ Baltic
885
+ lav
886
+ Latvian
887
+ ell
888
+ Greek
889
+ alb
890
+ Albanian
891
+ est
892
+ Estonian
893
+ Uralic
894
+ fin
895
+ Finnish
896
+ hun
897
+ Hungarian
898
+ ind
899
+ Indonesian
900
+ Austronesian
901
+ tgl
902
+ Tagalog
903
+ zlm
904
+ Malay
905
+ arb
906
+ Standard Arabic
907
+ Afro-Asiatic
908
+ heb
909
+ Hebrew
910
+ vie
911
+ Vietnamese
912
+ Austroasiatic
913
+ tam
914
+ Tamil
915
+ Davidian
916
+ tur
917
+ Turkish
918
+ Turkic
919
+ Table 2: Languages used in Rahimi et al..
920
+ ISO
921
+ Language
922
+ Subfamily
923
+ Family
924
+ dan
925
+ Danish
926
+ Germanic
927
+ Indo-European
928
+ deu
929
+ German
930
+ eng
931
+ English
932
+ nld
933
+ Dutch
934
+ nor
935
+ Norwegian
936
+ swe
937
+ Swedish
938
+ bul
939
+ Bulgarian
940
+ Slavic
941
+ ces
942
+ Czech
943
+ hrv
944
+ Croatian
945
+ pol
946
+ Polish
947
+ slv
948
+ Slovenian
949
+ fra
950
+ Frech
951
+ Italic
952
+ ita
953
+ Italian
954
+ por
955
+ Portugese
956
+ spa
957
+ Spanish
958
+ hin
959
+ Hindi
960
+ Indo-Iranian
961
+ pes
962
+ Iranian Persian
963
+ eus
964
+ Basque
965
+ Isolate
966
+ fin
967
+ Finnish
968
+ Uralic
969
+ heb
970
+ Hebrew
971
+ Afro-Asiatic
972
+ ind
973
+ Indonesian
974
+ Austronesian
975
+ Table 3: Languages used in Heinzerling and Strube.
976
+
977
+ 50
978
+ 60
979
+ 70
980
+ 80
981
+ 90
982
+ Total average
983
+ 40
984
+ 50
985
+ 60
986
+ 70
987
+ 80
988
+ 90
989
+ Non-GIS average
990
+ 0
991
+ 1
992
+ 2
993
+ 3
994
+ 4
995
+ 5
996
+ 6
997
+ 7
998
+ 8
999
+ 9
1000
+ 10
1001
+ 11
1002
+ 12
1003
+ 13
1004
+ Rahimi et al.
1005
+ 95.25 95.50 95.75 96.00 96.25 96.50 96.75
1006
+ Total average
1007
+ 94.5
1008
+ 95.0
1009
+ 95.5
1010
+ 96.0
1011
+ Non-GIS average
1012
+ 0
1013
+ 1
1014
+ 2
1015
+ 3
1016
+ 4
1017
+ 5
1018
+ 6
1019
+ 7
1020
+ 8
1021
+ 9
1022
+ 10
1023
+ Heinzerling and Strube
1024
+ Figure 2: Comparison of method performance. The re-
1025
+ lation between global average and average on non-GIS
1026
+ languages is shown. Each point represents one method
1027
+ from the papers.
1028
+ supervision for outlier languages.
1029
+ We use results reported in Table 5 in their paper.
1030
+ The languages they use are listed here in Table 3.
1031
+ Again, we can see an apparent dominance of GIS
1032
+ languages. There are 11 different methods listed in
1033
+ their paper. We omitted results for additional 6 low
1034
+ resource languages reported in Table 7, because
1035
+ only 4 out of 11 methods were used there. We
1036
+ compare the results for these methods in Figure 2,
1037
+ similarly as in the previous paper. The orange point
1038
+ is the multilingual model, the blue point is the base-
1039
+ line. Now we can see that the BiLSTM baseline is
1040
+ actually the best performing method for non-GIS
1041
+ languages.
1042
+ B
1043
+ Hyperparameters
1044
+ We use UMAP python library2 with the following
1045
+ hyperparameters:
1046
+ 2umap-learn.readthedocs.io
1047
+ Figure 3: Comparison of two methods from Heinzer-
1048
+ ling and Strube.
1049
+ • Number of neighbours (n_neighbors): 15
1050
+ • Distance metric (metric): cosine
1051
+ • Minimal distance (min_dist): 0.5
1052
+ • Random see (random_state): 1
1053
+ C
1054
+ Additional Visualizations
1055
+ In this Section we show several additional possibil-
1056
+ ities of using URIEL map of languages to visualize
1057
+ results from multilingual evaluation. Our goal here
1058
+ is to propose additional techniques that can be used
1059
+ for qualitative analysis apart from the comparison
1060
+ of two methods used in Figure 1 in the main body
1061
+ of this paper. This is not an exhaustive list of vi-
1062
+ sualizations. We believe that many other types of
1063
+ visualization can be done using this type of qualita-
1064
+ tive analysis, based on the needs and requirements
1065
+ of the user.
1066
+ In Figure 4 we show how to compare more than
1067
+ two methods by visualizing the performance for
1068
+ each method separately. We have created a sepa-
1069
+ rate plot for three methods and we can compare
1070
+ their performance visually. We can see that HSup
1071
+ method has overall stable high performance. LSup
1072
+ has worse performance, but its still quite balanced.
1073
+ Finally, BWET has similar performance as LSup,
1074
+ but we can see that there are regions where it fails,
1075
+ e.g. the languages in the rightmost part of the figure
1076
+ have visibly worse performance.
1077
+ In Figure 5 we show yet another type of visu-
1078
+ alization. In this case, we simply visualize what
1079
+ method is the best performing for each language.
1080
+
1081
+ HSup
1082
+ 20
1083
+ 40
1084
+ 60
1085
+ 80
1086
+ LSup
1087
+ BWET
1088
+ Figure 4: Comparison of multiple methods using size to mark method performance for individual languages. HSup,
1089
+ LSup and BWET are methods reported in (Rahimi et al., 2019).
1090
+ LSup
1091
+ RaReuns
1092
+ BEAent
1093
+ unsx2
1094
+ BEAent
1095
+ uns
1096
+ Figure 5: The best performing methods for various lan-
1097
+ guages.
1098
+ We compare methods using crosslingual super-
1099
+ vision and low-resource training (LSup). From
1100
+ seven methods, only four achieved the best per-
1101
+ formance for at least one language and those are
1102
+ shown in the Figure. Again, we can see similar
1103
+ picture as before. One method (BEAent
1104
+ uns×2) is
1105
+ the best performing method taking average into
1106
+ account. However, in this visualization we can
1107
+ see that it is actually the best performing method
1108
+ only in the dominant cluster of European languages.
1109
+ Elsewhere, other methods perform better.
1110
+
GNAzT4oBgHgl3EQfUfzc/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HtFLT4oBgHgl3EQfIS87/content/tmp_files/2301.11999v1.pdf.txt ADDED
@@ -0,0 +1,1426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Particle-Number Threshold for Non-Abelian Geometric Phases
2
+ Julien Pinske, Vincent Burgtorf, and Stefan Scheel∗
3
+ Institut für Physik, Universität Rostock, Albert-Einstein–Straße 23-24, D-18059 Rostock, Germany
4
+ (Dated: January 31, 2023)
5
+ When a quantum state traverses a path, while being under the influence of a gauge potential, it
6
+ acquires a geometric phase that is often more than just a scalar quantity. The variety of unitary
7
+ transformations that can be realised by this form of parallel transport depends crucially on the
8
+ number of particles involved in the evolution. Here, we introduce a particle-number threshold (PNT)
9
+ that assesses a system’s capabilities to perform purely geometric manipulations of quantum states.
10
+ This threshold gives the minimal number of particles necessary to fully exploit a system’s potential
11
+ to generate non-Abelian geometric phases.
12
+ Therefore, the PNT might be useful for evaluating
13
+ the resource demands of a holonomic quantum computer. We benchmark our findings on bosonic
14
+ systems relevant to linear and nonlinear quantum optics.
15
+ I.
16
+ INTRODUCTION
17
+ The evolution of a quantum state,
18
+ in the pres-
19
+ ence of some potential, is completely determined by
20
+ Schrödinger’s equation which incorporates aspects such
21
+ as the system’s spectrum, or the overall evolution time. If
22
+ the system undergoes slow (adiabatic) changes, the evolv-
23
+ ing state remains unaffected by these dynamical contribu-
24
+ tions. Instead, its wave function acquires a phase factor
25
+ that only depends on the geometry of the path the quan-
26
+ tum state has traversed. This was first noticed by Berry
27
+ [1] who pointed out that, unlike dynamical phases, a ge-
28
+ ometric phase cannot be removed by a rescaling of the
29
+ energy (gauge transformation).
30
+ A famous example for
31
+ this is the Aharonov-Bohm effect [2], in which the wave
32
+ function of an electron traveling around a solenoidal mag-
33
+ netic field picks up a phase proportional to the magnetic
34
+ flux through the surface enclosed by the trajectory of the
35
+ electron. Pancharatnam studied the phenomenon in the
36
+ context of classical optics [3], where it manifests itself in
37
+ states of polarisation. It was pointed out by Simon [4]
38
+ that this purely geometric signature of a quantum evo-
39
+ lution has to be attributed to parallel transport of the
40
+ state vector along a path in a (projective) Hilbert space.
41
+ If a quantum system supports a d-fold degenerate sub-
42
+ space H0 with eigenstates |ψa⟩ (a = 1, . . . , d), an initially
43
+ prepared wave packet generically evolves into a superpo-
44
+ sition of the |ψa⟩ when undergoing adiabatic changes,
45
+ that is without population transfer to states of different
46
+ energy [5]. Wilzeck and Zee [6] associated such degen-
47
+ eracy of the spectrum with the possibility of emerging
48
+ non-Abelian (i.e., noncommuting) gauge potentials. In
49
+ this case, the state after a time period T does not only
50
+ acquire a (scalar) geometric phase but differs from the
51
+ initial one by a unitary d × d matrix.
52
+ If the Hamiltonian of the system is expressed through a
53
+ set of physically accessible parameters {κµ}µ that change
54
+ cyclically, i.e., κµ(0) = κµ(T), the time evolution is asso-
55
+ ciated with a closed path γ in the parameter space M .
56
57
+ The time evolution then takes the form of a quantum
58
+ holonomy (non-Abelian geometric phase) [6]
59
+ UA(γ) = ˆPexp
60
+ � ˛
61
+ γ
62
+ A
63
+
64
+ ,
65
+ (1)
66
+ where A = �
67
+ µ Aµdκµ is the adiabatic connection (non-
68
+ Abelian gauge potential).
69
+ Depending on the physical
70
+ platform, the {κµ}µ might include external driving fields,
71
+ subsystem couplings, or hopping probabilities between
72
+ different states. Due to the generally noncommuting na-
73
+ ture of the connection, i.e., [Aµ, Aν] ̸= 0, the integration
74
+ in Eq. (1) has to be performed with respect to the path
75
+ ordering ˆP. The matrix-valued components of A can be
76
+ directly calculated from the eigenstates of the system,
77
+ i.e.,
78
+ (Aµ)ab = ⟨ψb| ∂µ |ψa⟩ ,
79
+ ∂µ = ∂/∂κµ.
80
+ (2)
81
+ By traversing different loops in M one can potentially ac-
82
+ cess a variety of different unitaries UA(γ). The set of all
83
+ such transformations spans the holonomy group Hol(A).
84
+ It is a subset of the unitary group U(d). In addition to
85
+ their frequent occurrence in lattice-gauge theory [7] and
86
+ loop-quantum gravity [8], holonomy groups turn out to
87
+ be a crucial ingredient for geometric [9, 10] and topologi-
88
+ cal quantum computation [11], where they constitute the
89
+ fundamental gate set from which quantum algorithms are
90
+ to be implemented.
91
+ The question of how many different unitaries can be
92
+ harnessed by driving loops through M is therefore closely
93
+ related to computational universality [12], which holds
94
+ if Hol(A) = U(d). Not only does this require a d-fold
95
+ degenerate subspace, but a large parameter space as well
96
+ [9]. More recently, it was observed that the number of
97
+ particles prepared in the subspace H0 might drastically
98
+ alter the form of the holonomy UA(γ) [13–15]. This is
99
+ because the corresponding eigenstates |ψa⟩ can differ in
100
+ their particle number. In this work, quantum holonomies
101
+ are studied in relation to the number of particles involved
102
+ in the evolution. In the following, this issue is motivated
103
+ through an illustrative example.
104
+ arXiv:2301.11999v1 [quant-ph] 27 Jan 2023
105
+
106
+ 2
107
+ A.
108
+ Λ-scheme of bosonic modes
109
+ Consider a chain of three bosonic modes [Fig. 1 (a)].
110
+ The outer modes ˆa± experience complex next-neighbour
111
+ couplings κ± to the central mode ˆac. The Hamiltonian
112
+ of the system reads
113
+ ˆH = κ+ˆa+ˆa†
114
+ c + κ−ˆacˆa†
115
+ − + H.c..
116
+ (3)
117
+ Here, ˆa†
118
+ k and ˆak denote the bosonic creation and anni-
119
+ hilation operators, respectively, and H.c. stands for the
120
+ Hermitian conjugate. The Hamiltonian (3) is the bosonic
121
+ counterpart of an atomic three-level system in Λ configu-
122
+ ration [16]. Such systems are of practical interest as they
123
+ describe linear-optical multiport systems [17] and can be
124
+ designed, for instance, in terms of integrated photonic
125
+ waveguides [18, 19].
126
+ Suppose a single photon is injected into one of the
127
+ outer modes of the optical setup, with couplings κ±(t)
128
+ varying slowly compared to the minimal energy gap
129
+
130
+ |κ+|2 + |κ−|2 > 0 (level crossing neglected).
131
+ In the
132
+ adiabatic limit, the photon remains in the zero-eigenvalue
133
+ eigenstate (aka dark state)
134
+ |D⟩ = sin θ |1+⟩ − cos θeiϕ |1−⟩ ,
135
+ where tan θ = |κ−|/|κ+|, ϕ = arg(κ+), and |1±⟩ = ˆa†
136
+ ± |0⟩
137
+ with |0⟩ denoting the three-mode vacuum. Here, the con-
138
+ nection Aϕ = i cos2 θ is Abelian (while Aθ = 0). After
139
+ traversing a closed path γ in the (θ, ϕ) plane, the output
140
+ state |Ψ(T)⟩ = eiφ(γ) |Ψ(0)⟩ picks up a geometric phase
141
+ φ(γ) =
142
+ ¨
143
+ D
144
+ sin(2θ)dϕdθ,
145
+ (4)
146
+ which depends on the area D enclosed by the loop γ.
147
+ Interestingly, injecting a second (indistinguishable)
148
+ photon into the setup, leads to the two dark states
149
+ |D1⟩ = sin2 θ |2+⟩ −
150
+
151
+ 2 sin θ cos θeiϕ |1+1−⟩
152
+ + cos2 θe2iϕ |2−⟩ ,
153
+ |D2⟩ =
154
+ 1
155
+
156
+ 2
157
+
158
+ sin2 θ |2−⟩ + cos2 θe−2iϕ |2+⟩ − |2c⟩
159
+
160
+ + 2 sin θ cos θe−iϕ |1+1−⟩ .
161
+ Consequently,
162
+ Aϕ is now a matrix-valued quantity.
163
+ Naively, one might expect that this enables the gener-
164
+ ation of non-Abelian holonomies. However, a direct eval-
165
+ uation of the Eq. (1) leads to
166
+ UA(γ) =
167
+
168
+ e2iφ(γ)
169
+ 0
170
+ 0
171
+ e−2iφ(γ)
172
+
173
+ .
174
+ (5)
175
+ It is immediately clear from Eq. (5) that the transforma-
176
+ tions UA(γ) and UA(γ′), induced by two arbitrary loops
177
+ γ and γ′ in M , always commute. Hence, even though de-
178
+ generacy of the system would allow for the generation of
179
+ non-Abelian transformations, the actual holonomy group
180
+ is still Abelian. This phenomenon remains present when
181
+ subjecting even more photons to the system [20], i.e.,
182
+ while degeneracy scales up, the resulting holonomies are
183
+ always commuting.
184
+ The phenomenon that a system’s degeneracy increases
185
+ under the exposure to multiple photons is by no means
186
+ a property unique to the Hamiltonian (3). Adding an
187
+ additional mode to the Λ-scheme leads to a tripod struc-
188
+ ture [Fig. 1 (b)] that allows for any U(2) transforma-
189
+ tion between its single-photon dark states [21–23]. Con-
190
+ sidering two photons, the dark subspace becomes four-
191
+ dimensional. However, as it was noticed in Refs. [14, 24]
192
+ not all elements of the group U(4) can be designed in that
193
+ way (one of the eigenstates decouples). Only, recently
194
+ were these two-particle dynamics verified experimentally
195
+ [15].
196
+ FIG. 1.
197
+ Graph representation of (bilinear) Hamiltonians, in
198
+ which particle number exchange between the modes (vertices)
199
+ is resembled by a connecting edge. (a) Schematic represen-
200
+ tation of three planarly arranged bosonic modes experiencing
201
+ complex next-neighbour coupling κ±. (b) Term scheme of the
202
+ bosonic tripod structure in which the mode c exclusively cou-
203
+ ples to the outer modes µ = ±, 0 via κµ. (c) A four-mode fully
204
+ connected graph, where each side can experience a different
205
+ coupling κµ. (d) Triangular graph of modes with coupling κµ,
206
+ µ = ±, 0.
207
+ B.
208
+ Aim of the article
209
+ This simple introductory example hints at a more gen-
210
+ eral question. What is the number of particles N injected
211
+ into a given setup in order to generate the most versatile
212
+ set of quantum holonomies? After reviewing properties
213
+ of the holonomy group in Sec. II, we address this issue
214
+ by introducing the particle-number threshold (PNT) in
215
+ Sec. III. The PNT of a quantum system gives the min-
216
+ imal number of particles necessary to fully exploit the
217
+ system’s potential for designing non-Abelian holonomies.
218
+ We discuss the basic properties of PNTs and present a
219
+ number of different examples relevant to linear and non-
220
+
221
+ 3
222
+ linear quantum optics. Finally, Sec. IV is reserved for
223
+ a summary of the article as well as some concluding re-
224
+ marks.
225
+ II.
226
+ CURVATURE AND UNIVERSALITY
227
+ If the composition of loops in M allows for the genera-
228
+ tion of any unitary on the lth eigenspace Hl of a Hamil-
229
+ tonian ˆH, the connection Al is said to be irreducible, and
230
+ the holonomy group
231
+ Hol(Al) =
232
+
233
+ UAl(γ) | γ(0) = γ(T)
234
+
235
+ coincides with U(dl). If the eigenspace additionally pos-
236
+ sesses a multi-partite structure (dl = 2k), then Hl may
237
+ be viewed as a k-qubit quantum code [25, 26] on which
238
+ universal manipulation of quantum information is possi-
239
+ ble in terms of holonomic gates UAl(γ) only.
240
+ A convenient measure of how close the group Hol(Al)
241
+ comes to span the entire unitary group, is given in terms
242
+ of the local curvature Fl (the non-Abelian field-strength
243
+ tensor).
244
+ It describes changes of the eigenstates in Hl
245
+ under variation of the parameters κµ. Its antisymmetric
246
+ components (Fl,µν = −Fl,νµ) are calculated from [27]
247
+ Fl,µν = ∂µAl,ν − ∂νAl,µ + [Al,µ, Al,ν].
248
+ (6)
249
+ According to a statement from differential geometry, the
250
+ number of (linear-independent) components {Fl,µν}µν
251
+ gives a lower bound to the dimension of Hol(Al). Here,
252
+ dimension refers to the degrees of freedom that com-
253
+ pletely specify an element in a matrix group. For exam-
254
+ ple, a unitary in U(dl) is completely determined by spec-
255
+ ifying d2
256
+ l real numbers. Hence, we write dim U(dl) = d2
257
+ l .
258
+ This implies, if there are d2
259
+ l linear-independent matrices
260
+ Fl,µν, it is possible to realise any element of the unitary
261
+ group in terms of Eq. (1) [28, 29], i.e., Hol(Al) = U(dl).
262
+ A more accurate bound on the dimension of Hol(Al)
263
+ can be obtained by including higher-order covariant
264
+ derivatives
265
+ ∇l,σFl,µν, ∇l,δ∇l,σFl,µν, ∇l,ϵ∇l,δ∇l,σFl,µν, . . . .
266
+ (7)
267
+ Here, the covariant derivative operator
268
+ ∇l,σ = ∂σ + [Al,σ, · ]
269
+ generally is different for each eigenspace, thus depending
270
+ on the index l. The number of linearly independent ma-
271
+ trices in Eqs. (6) and (7) equals the dimension of Hol(Al)
272
+ [30, 31].
273
+ Clearly,
274
+ if
275
+ the
276
+ components
277
+ Al,µ
278
+ are
279
+ Abelian,
280
+ then ∇l,σ
281
+ =
282
+ ∂σ,
283
+ and the span of the matrices
284
+ {Fl,µν, ∂σFl,µν, . . . }µνσ... is one-dimensional. In follows
285
+ that Hol(Al) is an Abelian subgroup of U(dl).
286
+ Note
287
+ that, even though the above statements do not provide
288
+ an explicit recipe for designing specific transformations,
289
+ there existential nature makes them suitable for estimat-
290
+ ing the general potency of a quantum system to generate
291
+ holonomies. The dimension of the holonomy group acts
292
+ as a natural measure of this potency.
293
+ A.
294
+ Four-mode fully-connected graph
295
+ In order to illustrate the, rather abstract techniques in-
296
+ troduced in the previous section, we give an example of
297
+ a four-mode fully-connected graph, shown in Fig. 1 (c).
298
+ Fully-connected graphs constitute the most general type
299
+ of graphs. Hence, it is not expected that their Hamilto-
300
+ nians possess degenerate eigenvalues when arbitrary con-
301
+ figurations κ = (κµ)µ are considered. Nevertheless, one
302
+ can always construct specific configurations that lead to
303
+ degenerate subspaces. This is done as follows.
304
+ Let ˆH0 be a time-independent Hamiltonian with some
305
+ fixed degeneracy structure.
306
+ Consider the isospectral
307
+ Hamiltonian
308
+ ˆH(κ) = ˆV(κ) ˆH0 ˆV†(κ),
309
+ (8)
310
+ parameterised over points κ = (θ, ϕ) in M . For the four-
311
+ mode system, let ˆH0 = ˆn1 + ˆn2 − ˆn4 (with ˆnk = ˆa†
312
+ kˆak)
313
+ and
314
+ ˆV(θ, ϕ) = ˆV12(θ1, ϕ1) ˆV23(θ2, ϕ2) ˆV34(θ3, ϕ3)
315
+ (9)
316
+ is our unitary of choice. Here, ˆVkk+1(θk, ϕk) creates a
317
+ mixing between the modes k and k+1. More specifically,
318
+ we define
319
+ ˆVkk+1ˆa†
320
+ k ˆV †
321
+ kk+1 = cos θkeiϕkˆa†
322
+ k + sin θkˆa†
323
+ k+1,
324
+ ˆVkk+1ˆa†
325
+ k+1 ˆV †
326
+ kk+1 = cos θke−iϕkˆa†
327
+ k+1 − sin θkˆa†
328
+ k,
329
+ (10)
330
+ which describes a general SU(2) transformation.
331
+ The
332
+ transformation (9) is not the most general unitary, but
333
+ is chosen such that the Hamiltonian (8) is still bilinear
334
+ in the creation and annihilation operators. Thus, it can
335
+ be represented by the graph in Fig. 1 (c).
336
+ If a single particle is subjected to the system, the
337
+ Hamiltonian has a 4 × 4 matrix representation ˆH|F1.
338
+ Here, F1 denotes the first Fock layer, which contains
339
+ the single-particle states |1k⟩ = ˆa†
340
+ k |0⟩. In this Fock layer
341
+ the system has only a single dark state
342
+ |D⟩ = eiϕ3 cos θ3(sin θ1 sin θ2 |11⟩ + e−iϕ1 cos θ1 sin θ2 |12⟩
343
+ + e−iϕ2 cos θ2 |13⟩) − sin θ3 |14⟩ .
344
+ (11)
345
+ A straight-forward calculation of the corresponding con-
346
+ nection [cf. Eq. (2)] reveals (we omit the index l = 0 for
347
+ notational ease)
348
+ Aϕ1 = −i cos2 θ1 sin2 θ2 cos2 θ3,
349
+ Aϕ2 = −i cos2 θ2 cos2 θ3,
350
+ Aϕ3 = i cos2 θ3,
351
+ and Aθ1 = Aθ2 = Aθ3 = 0.
352
+ The curvature is readily
353
+ calculated from to Eq. (6). Its nonvanishing components
354
+
355
+ 4
356
+ are
357
+ Fϕ1θ1 = −2i sin θ1 cos θ1 sin2 θ2 cos2 θ3,
358
+ Fϕ1θ2 = 2i cos2 θ1 sin θ2 cos θ2 cos2 θ3,
359
+ Fϕ1θ3 = −2i cos2 θ1 sin2 θ2 sin θ3 cos θ3,
360
+ Fϕ2θ2 = −2i sin θ2 cos θ2 cos2 θ3,
361
+ Fϕ2θ3 = −2i cos2 θ2 sin θ3 cos θ3,
362
+ Fϕ3θ3 = 2i sin θ3 cos θ3.
363
+ It follows that Abelian holonomies (i.e., Berry phases)
364
+ can be designed by adiabatically traversing loops in M ,
365
+ i.e., Hol(A) = U(1).
366
+ Next, consider the second Fock layer F2 spanned by
367
+ the two-particle states
368
+ |21⟩ , |1112⟩ , |1113⟩ , |1114⟩ , |22⟩ ,
369
+ |1213⟩ , |1214⟩ , |23⟩ , |1314⟩ , |24⟩ .
370
+ The matrix ˆH|F2 supports a three-fold degenerate dark
371
+ subspace with states |Dk⟩, for k = 1, 2, 3 (explicit form
372
+ in Appendix A). The connection on this subspace is
373
+ Aϕ1|θ2=0
374
+ θ1=θ3= π
375
+ 4 = i
376
+ 2
377
+
378
+
379
+ 0
380
+ 0
381
+ 0
382
+ 0
383
+ 1
384
+ ei(ϕ1−ϕ2)
385
+ 0 e−i(ϕ1−ϕ2)
386
+ −1
387
+
388
+ � ,
389
+ Aϕ2 = i cos2 θ2 cos2 θ3
390
+
391
+
392
+ −2
393
+ 0
394
+ 0
395
+ 0
396
+ −1 0
397
+ 0
398
+ 0
399
+ 1
400
+
401
+ � ,
402
+ Aϕ3 = i cos2 θ3
403
+
404
+
405
+ 2
406
+ 0
407
+ 0
408
+ 0 −1 0
409
+ 0
410
+ 0
411
+ 1
412
+
413
+ � ,
414
+ Aθ1 = cos θ2
415
+
416
+
417
+ 0
418
+ 0
419
+ 0
420
+ 0
421
+ 0
422
+ −ei(ϕ2−ϕ1)
423
+ 0 ei(ϕ2−ϕ1)
424
+ 0
425
+
426
+ � ,
427
+ and Aθ2 = Aθ3 = 0. Calculating the curvature (6) and its
428
+ first order covariant derivative gives rise to (only linearly
429
+ independent components are shown)
430
+ Fϕ1θ1|κ0 =
431
+
432
+
433
+ −i
434
+ 0
435
+ 0
436
+ 0
437
+ i
438
+ 2
439
+
440
+ i
441
+ 2
442
+
443
+ 2
444
+ 0
445
+
446
+ i
447
+ 2
448
+
449
+ 2
450
+ − i
451
+ 2
452
+
453
+ � ,
454
+ Fϕ1θ2|κ0 =
455
+
456
+
457
+ i
458
+ 0
459
+ 0
460
+ 0
461
+ i
462
+ 2
463
+ i
464
+
465
+ 2
466
+ 0
467
+ i
468
+
469
+ 2 − i
470
+ 2
471
+
472
+ � ,
473
+ Fϕ2θ1|κ0 =
474
+
475
+
476
+ 0 0 0
477
+ 0 0 i
478
+ 0 i 0
479
+
480
+ � ,
481
+ ∇ϕ1Fθ1θ2|κ0 =
482
+
483
+
484
+ 0
485
+ 0
486
+ 0
487
+ 0
488
+ i
489
+
490
+ i
491
+ 2
492
+
493
+ 2
494
+ 0 −
495
+ i
496
+ 2
497
+
498
+ 2
499
+ −i
500
+
501
+ � ,
502
+ ∇θ1Fϕ2θ1|κ0 =
503
+
504
+
505
+ 0
506
+ 0
507
+ 0
508
+ 0 −i 0
509
+ 0
510
+ 0
511
+ i
512
+
513
+ � ,
514
+ (12)
515
+ evaluated at the point κ0, with ϕk = 0 and θk = π/4.
516
+ The matrices in Eq. (12) are the (infinitesimal) genera-
517
+ tors [32] of a 5-dimensional Lie group. This constitutes
518
+ a lower bound to the dimension of Hol(A). Nevertheless,
519
+ the analysis illustrates that the two-particle case enables
520
+ the generation of more intriguing holonomies than the
521
+ single-particle case. More precisely, the two-particle dark
522
+ states led to a non-Abelian holonomy group Hol(A), that
523
+ is a proper subgroup of U(3).
524
+ The key observation is that, increasing the number of
525
+ particles significantly improved the computational capac-
526
+ ity (from Abelian to non-Abelian holonomies) to gener-
527
+ ate unitaries on the dark subspace. Intuitively, it is clear
528
+ that, the dimension of Hol(A) cannot increase continually
529
+ when the particle number becomes larger, as this would
530
+ result in arbitrarily high computational power, while hav-
531
+ ing only limited physical resources comprised in M . This
532
+ leads us to an interesting question.
533
+ How far can one increase the dimension of the holon-
534
+ omy group by subjecting a larger number of particles to a
535
+ system?
536
+ This question will be addressed in the following section
537
+ by means of a particle-number threshold, which consti-
538
+ tutes a formal answer to the issue.
539
+ III.
540
+ PARTICLE-NUMBER THRESHOLD
541
+ The previously presented benchmark system revealed
542
+ a dependence of a system’s holonomy group on the par-
543
+ ticle number N. Firstly, this is due to the fact that the
544
+ spectral properties (in particular degeneracy) of a quan-
545
+ tum system vary when the corresponding Hamiltonian ˆH
546
+ is limited to act on different Fock layers
547
+ FN =
548
+
549
+ |n1, n2 . . .⟩
550
+ ���
551
+
552
+ k nk = N
553
+
554
+ .
555
+ Secondly, we noticed that even if the degeneracy in-
556
+ creases, this does not necessarily mean that it is possible
557
+ to generate a more useful (i.e., higher dimensional) sub-
558
+ group of unitaries.
559
+ Therefore, it is a natural question
560
+ to ask, what is the particle number N at which one of
561
+ the holonomy groups {Hol(Al)}l reaches its maximal di-
562
+ mension and is therefore most suitable for designing a
563
+ versatile set of unitaries. We refer to the number of par-
564
+ ticles necessary for this endeavour as the particle-number
565
+ threshold (PNT) Nt.
566
+ Definition. Let ˆH be the Hamiltonian of a quantum sys-
567
+ tem in second quantisation that evolves adiabatically in
568
+ time. The particle-number threshold Nt denotes the min-
569
+ imum number of particles necessary for one of the sys-
570
+ tem’s holonomy groups to reach its maximum potential
571
+ (maximal dimension) for the generation of holonomies.
572
+ In the language of holonomic quantum computation
573
+ [9, 10] the PNT of a quantum system ˆH gives the number
574
+ of particles to be prepared, in order to come as close
575
+ as possible to the desirable notion of universality.
576
+ In
577
+
578
+ 5
579
+ contrast to previous examples, where the focus was on the
580
+ dark subspace, the above definition demands an analysis
581
+ of the holonomy groups of each eigenspace Hl, in order
582
+ to determine dim Hol(Al) for all l. Then, there exists an
583
+ subspace with index l′ such that for all other l
584
+ dim Hol(Al′) ≥ dim Hol(Al)
585
+ holds.
586
+ In other words, the PNT Nt gives the num-
587
+ ber of particles necessary to populate any state in the
588
+ eigenspace Hl′.
589
+ A.
590
+ Properties of PNTs
591
+ The PNT Nt of a (bosonic) quantum system ˆH is, in
592
+ general, hard to calculate, as it demands for a calculation
593
+ of the connection Al for each eigenspace (there could be
594
+ infinitely many). Nevertheless, some general remarks can
595
+ still be made. Consider a quantum system that consists
596
+ of a collection of noninteracting subsystems, i.e., ˆH =
597
+
598
+ a ˆHa. Suppose, the PNT N (a)
599
+ t
600
+ for each subsystem ˆHa
601
+ is known and that, Hol
602
+
603
+ A(a)
604
+ l′
605
+
606
+ denotes its holonomy group
607
+ with maximal dimension. The composite system ˆH then
608
+ has PNT Nt = �
609
+ a N (a)
610
+ t
611
+ .
612
+ This becomes evident when
613
+ noting that the highest-dimensional holonomy group
614
+ Hol(Al′) =
615
+
616
+ a
617
+ Hol
618
+
619
+ A(a)
620
+ l′
621
+
622
+ (13)
623
+ is just the tensor product of the holonomy groups
624
+ Hol
625
+
626
+ A(a)
627
+ l′
628
+
629
+ of each individual subsystem. The holonomy
630
+ group (13) of the composite system acts on the subspace
631
+ with energy �
632
+ a ε(a)
633
+ l′ , where ε(a)
634
+ l′
635
+ denotes the eigenenergy
636
+ of the subspace on which the group Hol
637
+
638
+ A(a)
639
+ l′
640
+
641
+ acts.
642
+ Next,
643
+ consider
644
+ a
645
+ Hamiltonian
646
+ with
647
+ isospectral
648
+ parametrisation, that is
649
+ ˆH(κ) = ˆV(κ) ˆH0 ˆV†(κ),
650
+ (14)
651
+ with ˆH0 being a Hamiltonian having fixed degeneracy
652
+ structure {dl}l and eigenstates {|ψl,a⟩}l,a. Suppose there
653
+ is a sufficiently large parameter space M so that ˆV(κ) is
654
+ the most general unitary operator. Adiabatic evolution
655
+ in the lth eigenspace is then governed by the most general
656
+ connection
657
+ (Al,µ)ab = ⟨ψl,b| ˆV†∂µ ˆV |ψl,a⟩ .
658
+ (15)
659
+ In the above, we made use of the fact that ˆV(κ) |ψl,a⟩
660
+ are the eigenstates of (14).
661
+ By construction, one has
662
+ Hol(Al) = U(dl). For such a general parametrisation, it
663
+ is indeed the eigenspace with largest degeneracy dl′ ≥ dl,
664
+ that is the one most desirable for the generation of non-
665
+ Abelian holonomies. Hence, Nt is the number of particles
666
+ necessary to populate any state in the most degenerate
667
+ eigenspace Hl′.
668
+ What happens when ˆV is not an arbitrary unitary,
669
+ but is limited to some smaller set of physically accessi-
670
+ ble operations? For concreteness, consider the two-mode
671
+ Hamiltonian associated with a nonlinear Kerr medium
672
+ ˆH0 = ˆn1(ˆn1 − ˆ1) + ˆn2(ˆn2 − ˆ1).
673
+ Here, the unitary ˆV(α, β, ξ, ζ) is a product of single and
674
+ two-mode displacement
675
+ ˆDk(α) = exp
676
+
677
+ αˆa†
678
+ k − α∗ˆak
679
+
680
+ ,
681
+ ˆK(β) = exp
682
+
683
+ βˆa†
684
+ 1ˆa2 − β∗ˆa1ˆa†
685
+ 2
686
+
687
+ ,
688
+ (16)
689
+ as well as single and two-mode squeezing
690
+ ˆSk(ξ) = exp
691
+
692
+ ξ(ˆa†
693
+ k)2 − ξ∗ˆa2
694
+ k
695
+
696
+ ,
697
+ ˆ
698
+ M(ζ) = exp
699
+
700
+ ζˆa†
701
+ 1ˆa†
702
+ 2 − ζ∗ˆa1ˆa2
703
+
704
+ ,
705
+ (17)
706
+ respectively [33].
707
+ By driving coherent displacement
708
+ (α, β) and squeezing parameters (ξ, ζ) through a closed
709
+ loop in M = C4, holonomies on the eigenspaces of ˆH
710
+ are obtained. In Ref. [34] it was shown that this enables
711
+ arbitrary U(4) transformations over the zero-eigenvalue
712
+ eigenspace H0. The subspace is spanned by the number
713
+ states |0102⟩, |1102⟩, |0112⟩, and |1112⟩, i.e., two photons
714
+ are necessary to fully occupy the subspace.
715
+ An extended study (up to N = 50) of the curvature
716
+ Fl shows that, even though further increasing the parti-
717
+ cle number (N > 2) populates subspaces with increased
718
+ degeneracy (up to dl = 10 for some eigenspaces), their
719
+ holonomy groups do not offer a computational advantage.
720
+ By that we mean
721
+ dim Hol(Al) ≤ dim Hol(A0)
722
+ verified for all eigenspaces Hl with index l ≤ 352 (cf.
723
+ Tab. I). We did so by explicitly calculating the compo-
724
+ nents Fl,µν of the curvature and their covariant deriva-
725
+ tives up to order 3, (these are to large to be displayed
726
+ here). The computed dimension of the groups {Hol(Al)}l
727
+ did not increase further after the first order derivatives,
728
+ thus giving us good confidence that the dimension was
729
+ determined accurately.
730
+ There is an intuitive explanation for the fact that
731
+ eigenspaces involving higher particle numbers (N > 6)
732
+ lead to less useful holonomy groups. The Gaussian op-
733
+ erations (16) and (17) contribute to the evolution only
734
+ via the connection Al.
735
+ The derivative ∂µ in Eq.
736
+ (15)
737
+ that acts on the operators (16) and (17), leads to cre-
738
+ ation and annihilation operators of (at most) quadratic
739
+ order. Hence, Fock states with larger differences in their
740
+ photon numbers cannot be transformed into each other
741
+ by a quantum holonomy, even when they lie in the same
742
+ subspace.
743
+ In summary, the subspace H0 (containing at most two-
744
+ particle states) should be preferred when the system is
745
+ utilised in a holonomic quantum computation.
746
+ There-
747
+ fore, the PNT of the two-mode Kerr Hamiltonian is
748
+
749
+ 6
750
+ Nt = 2.
751
+ Moreover, it was shown that restricting the
752
+ parametrisation of the Hamiltonian (14) to unitaries ˆV
753
+ that can be implemented by Gaussian operations (16)
754
+ and (17), led to most of the system’s eigenspaces hav-
755
+ ing reducible connections Al, i.e., Hol(Al) ⊂ U(dl).
756
+ Hence, degeneracy became a quantity of secondary in-
757
+ terest. In Tab. I the spectral properties of the two-mode
758
+ Kerr Hamiltonian ˆH are listed together with their ca-
759
+ pacity to generate holonomies on the eigenspaces Hl (for
760
+ l = 0, . . . , 352).
761
+ Note that subspaces with degeneracy
762
+ dl ≤ 4 are not listed in in Tab. I, as it is already clear
763
+ that their holonomy groups cannot exceed the dimension
764
+ of Hol(A0) = U(4).
765
+ B.
766
+ PNTs of coupled harmonic oscillators
767
+ While the exact calculation of a PNT can be a daunting
768
+ task, given a collection of coupled harmonic oscillators,
769
+ certain specialisations arise that can simplify calculations
770
+ drastically. In Fig. 1 such systems were represented as
771
+ graphs. The calculation of PNTs for such systems would
772
+ be relevant, for instance, to the geometric manipulation
773
+ of multi-photon states in linear optics [14] as well as linear
774
+ optical quantum computation by holonomic means [20].
775
+ Population transfer between different Fock layers FN
776
+ does not occur in these systems, as the total number of
777
+ particles stays conserved throughout an evolution. From
778
+ a mathematical viewpoint, this implies that the system’s
779
+ Hamiltonian reveals a block-matrix structure, i.e.,
780
+ ˆH =
781
+
782
+ N∈N
783
+ ˆH|FN .
784
+ In addition, there always exists a spectral decomposition
785
+ ˆH = �
786
+ l εl ˆΠl, with ˆΠl denoting the projector onto the
787
+ eigenspace Hl. It follows that the eigenspaces themselves
788
+ admit a similar decomposition, that is
789
+ ˆΠl =
790
+
791
+ N(l)
792
+ ˆΠl|FN(l),
793
+ (18)
794
+ where summation is carried out over those particle num-
795
+ bers N(l) at which the corresponding energy εl occurs.
796
+ As an example, the Hamiltonian (3) of the Λ-scheme
797
+ [Fig. 1. (a)] does not possess single-particle eigenstates
798
+ with energy 2
799
+
800
+ |κ+|2 + |κ−|2. In other words the eigen-
801
+ value does not lie in the spectrum of ˆH|F1, but it is an
802
+ eigenvalue of the matrix ˆH|FN for N ≥ 2. In this case,
803
+ the sum in Eq.
804
+ (18) corresponds to an infinite series
805
+ starting with N(l) = 2, 3, . . . .
806
+ If additionally the evolution is assumed to be adia-
807
+ batic, population transfer occurs within each eigenspace
808
+ separately. Hence, the decomposition (18) is inherited to
809
+ the time-evolution operator (quantum holonomy)
810
+ UAl(γ) =
811
+
812
+ N(l)
813
+ UAl(γ)|FN(l).
814
+ (19)
815
+ l
816
+ εl
817
+ dl
818
+ ≤ N
819
+ dim{Fl,µν}µν dim Hol(Al)
820
+ 0
821
+ 0
822
+ 4
823
+ 2
824
+ 14
825
+ 16
826
+ 1
827
+ 2
828
+ 4
829
+ 3
830
+ 14
831
+ 16
832
+ 5
833
+ 12
834
+ 5
835
+ 6
836
+ 9
837
+ 9
838
+ 16
839
+ 42
840
+ 6
841
+ 10
842
+ 9
843
+ 9
844
+ 26
845
+ 72
846
+ 6
847
+ 13
848
+ 12
849
+ 12
850
+ 37
851
+ 110
852
+ 6
853
+ 15
854
+ 9
855
+ 9
856
+ 45
857
+ 132
858
+ 6
859
+ 17
860
+ 9
861
+ 9
862
+ 54
863
+ 162
864
+ 6
865
+ 19
866
+ 6
867
+ 6
868
+ 60
869
+ 182
870
+ 6
871
+ 20
872
+ 9
873
+ 9
874
+ 70
875
+ 212
876
+ 6
877
+ 21
878
+ 3
879
+ 3
880
+ 78
881
+ 240
882
+ 6
883
+ 21
884
+ 9
885
+ 9
886
+ 87
887
+ 272
888
+ 6
889
+ 24
890
+ 9
891
+ 9
892
+ 99
893
+ 312
894
+ 5
895
+ 26
896
+ 3
897
+ 3
898
+ 108
899
+ 342
900
+ 6
901
+ 27
902
+ 9
903
+ 9
904
+ 113
905
+ 362
906
+ 6
907
+ 27
908
+ 3
909
+ 3
910
+ 130
911
+ 420
912
+ 5
913
+ 30
914
+ 9
915
+ 9
916
+ 131
917
+ 422
918
+ 6
919
+ 30
920
+ 3
921
+ 3
922
+ 141
923
+ 462
924
+ 8
925
+ 31
926
+ 9
927
+ 9
928
+ 157
929
+ 512
930
+ 6
931
+ 33
932
+ 6
933
+ 6
934
+ 168
935
+ 552
936
+ 10
937
+ 34
938
+ 9
939
+ 9
940
+ 199
941
+ 662
942
+ 6
943
+ 36
944
+ 3
945
+ 3
946
+ 208
947
+ 702
948
+ 6
949
+ 38
950
+ 9
951
+ 9
952
+ 215
953
+ 722
954
+ 6
955
+ 39
956
+ 6
957
+ 6
958
+ 222
959
+ 756
960
+ 6
961
+ 38
962
+ 9
963
+ 9
964
+ 225
965
+ 762
966
+ 6
967
+ 40
968
+ 3
969
+ 3
970
+ 238
971
+ 812
972
+ 10
973
+ 41
974
+ 9
975
+ 9
976
+ 266
977
+ 912
978
+ 6
979
+ 42
980
+ 3
981
+ 3
982
+ 274
983
+ 942
984
+ 8
985
+ 44
986
+ 3
987
+ 3
988
+ 285
989
+ 992
990
+ 6
991
+ 45
992
+ 9
993
+ 9
994
+ 306
995
+ 1062
996
+ 8
997
+ 47
998
+ 3
999
+ 3
1000
+ 320
1001
+ 1112
1002
+ 6
1003
+ 48
1004
+ 3
1005
+ 3
1006
+ 323
1007
+ 1122
1008
+ 6
1009
+ 48
1010
+ 9
1011
+ 9
1012
+ 346
1013
+ 1202
1014
+ 8
1015
+ 50
1016
+ 3
1017
+ 3
1018
+ 349
1019
+ 1212
1020
+ 6
1021
+ 49
1022
+ 3
1023
+ 3
1024
+ 352
1025
+ 1232
1026
+ 8
1027
+ 50
1028
+ 3
1029
+ 3
1030
+ TABLE I.
1031
+ Holonomy groups of the two-mode nonlinear
1032
+ Kerr medium parameterised by the Gaussian operations (16)
1033
+ and (17).
1034
+ The table contains the degeneracy dl of the lth
1035
+ eigenspace (with energy εl). N denotes the number of parti-
1036
+ cles necessary to fully occupy the corresponding eigenspace.
1037
+ The number of linear-independent curvature components
1038
+ Fl,µν as well as the dimension of the holonomy group Hol(Al).
1039
+ Covariant derivatives were calculated up the order of 3.
1040
+ Remarkably, the connection will always be reducible for
1041
+ such a system, because it is not possible to generate
1042
+ transformations between different Fock layers. The best
1043
+ one can hope for, is to find is a highly-degenerate N-
1044
+ particle block in the eigenspace Hl such that the holon-
1045
+ omy UAl(γ)|FN realises any unitary transformation on
1046
+ the subspace Hl|FN .
1047
+ This is nothing but a geometric
1048
+
1049
+ 7
1050
+ incarnation of the well-known fact that networks of cou-
1051
+ pled oscillators (by themselves) do not allow for univer-
1052
+ sal quantum computation [35], but must be supported by
1053
+ additional resources, such as measurement-induced non-
1054
+ linearities [36, 37].
1055
+ Note that, even though the quantum holonomy (19)
1056
+ can have an infinite-dimensional matrix representation,
1057
+ it might still be commuting, that is UAl(γ)UAl(γ′) =
1058
+ UAl(γ′)UAl(γ) for any two loops γ and γ′ in M .
1059
+ For
1060
+ the purpose of illustration, consider the Hamiltonian (3)
1061
+ of the Λ-scheme [cf. Fig. 1 (a)] which gives rise to an
1062
+ infinite-dimensional dark subspace. For a single photon,
1063
+ the matrix ˆH|F1 has only one dark state. Given two or
1064
+ three photons in the setup, ˆH|F2 and ˆH|F3 both have
1065
+ two dark states. Subjecting four photons to the system
1066
+ leads to a Hamiltonian matrix ˆH|F4 having three dark
1067
+ states.
1068
+ Even though degeneracy further increases, the
1069
+ quantum holonomy
1070
+ UA0 =
1071
+
1072
+ ��
1073
+ UA0|F1
1074
+ UA0|F2
1075
+ ...
1076
+
1077
+ ��
1078
+ will remain Abelian, because the N-particle block
1079
+ UA0(γ)|FN = diag
1080
+
1081
+ eiNφ(γ), e−iNφ(γ), eiNφ(γ), . . .
1082
+
1083
+ ,
1084
+ is itself a diagonal matrix [cf. Eq. (5) for N = 2]. Here,
1085
+ φ(γ) is the geometric phase defined in Eq. (4). The above
1086
+ analysis illustrates, that increasing the particle number in
1087
+ the photonic Λ-scheme does not increase the holonomy
1088
+ group’s dimension, i.e., it stays Abelian. Similar argu-
1089
+ ments hold for the other eigenspaces of the system, and
1090
+ thus a single photon is sufficient to generate any phase
1091
+ in U(1). Hence, the PNT is Nt = 1.
1092
+ 1.
1093
+ Three-mode fully-connected graph
1094
+ Consider a setup containing three oscillator modes ˆa±
1095
+ and ˆa0. Coupling between the modes is described by the
1096
+ parameters κ± and κ0, respectively. The system corre-
1097
+ sponds to the three-mode fully-connected graph shown
1098
+ in Fig. 1 (d).
1099
+ For simplicity, its Hamiltonian is considered to be in
1100
+ the configuration
1101
+ ˆH(θ, ϕ) = ˆV(θ, ϕ) ˆH0 ˆV†(θ, ϕ),
1102
+ (20)
1103
+ with ˆH0 = ˆn+ − ˆn−. In the above,
1104
+ ˆV(θ, ϕ) = ˆV+0(θ+, ϕ+) ˆV0−(��−, ϕ−),
1105
+ with the operator ˆVkk+1 defined in Eq. (10). The 3 × 3
1106
+ matrix ˆH|F1 possesses single-particle eigenstates
1107
+ |B+⟩ = cos θ+eiϕ+ |1+⟩ − sin θ− |10⟩ ,
1108
+ |D⟩ = cos θ−eiϕ−�
1109
+ cos θ+e−iϕ+ |1+⟩ − sin θ+ |10⟩
1110
+
1111
+ − sin θ− |1−⟩ ,
1112
+ |B−⟩ = cos θ−e−iϕ− |1−⟩
1113
+ − sin θ−
1114
+
1115
+ cos θ+e−iϕ+ |10⟩ − sin θ+ |1+⟩
1116
+
1117
+ ,
1118
+ with eigenenergies ε± = ±1 and ε0 = 0. The connec-
1119
+ tion for each eigenvalue is readily calculated via Eq. (2),
1120
+ leading to the nonvanishing components
1121
+ A+,ϕ+ = i cos2 θ+,
1122
+ A0,ϕ± = i cos2 θ±,
1123
+ A−,ϕ+ = −i sin2 θ+ cos2 θ+,
1124
+ A−,ϕ− = −i cos2 θ−.
1125
+ When given more than just a single particle, the Hamil-
1126
+ tonian (20) gives rise to degenerate subspaces, e.g., con-
1127
+ sidering two-particles in the system, the 6 × 6 matrix
1128
+ ˆH|F2 possesses two dark states. However, in the follow-
1129
+ ing it will be shown that the resulting holonomies are
1130
+ still Abelian for arbitrary particle numbers N. It is a
1131
+ well known fact for coupled-mode systems, that knowing
1132
+ the single-particle evolution is equivalent to knowing the
1133
+ evolution of the modes ˆak(t) in the Heisenberg picture
1134
+ [33], viz.
1135
+ ˆa†
1136
+ ±(T) = e∓iT e
1137
+ ¸
1138
+ A±ˆa†
1139
+ ±(0),
1140
+ ˆa†
1141
+ 0(T) = e
1142
+ ¸
1143
+ A0ˆa†
1144
+ 0(0).
1145
+ Subsequently, the evolution of any N-particle state can
1146
+ be given explicitly. It follows the state can only attain a
1147
+ Berry phase as well. The initial N-particle state
1148
+ |Ψ(0)⟩ =
1149
+ 1
1150
+
1151
+ n+!n0!n−!
1152
+
1153
+ ˆa†
1154
+ +
1155
+ �n+�
1156
+ ˆa†
1157
+ 0
1158
+ �n0�
1159
+ ˆa†
1160
+
1161
+ �n− |0⟩
1162
+ (N = n+ + n0 + n−) adiabatically evolves into
1163
+ |Ψ(T)⟩ = en+
1164
+ ¸
1165
+ A+en0
1166
+ ¸
1167
+ A0en−
1168
+ ¸
1169
+ A− |n+⟩ ⊗ |n0⟩ ⊗ |n−⟩ ,
1170
+ accumulating a (scalar) geometric phase.
1171
+ We this conclude that, independent of the provided
1172
+ particle number N, the holonomy group can only be
1173
+ Abelian.
1174
+ Hence, the PNT of the system is Nt = 1,
1175
+ as moving beyond the single-particle case did not lead
1176
+ to more versatile groups of holonomies but just higher-
1177
+ dimensional representations of the group U(1).
1178
+ The
1179
+ above argument is the special case of a more general
1180
+ bosonic-operator framework, which we devised in Ref.
1181
+ [20]. This formalism enables a photon-number indepen-
1182
+ dent description of holonomies, and thus might be useful
1183
+ for the calculation of PNTs in coupled-mode systems.
1184
+ C.
1185
+ PNTs of fermionic systems
1186
+ So far, all considered quantum systems were bosonic
1187
+ in nature. Nevertheless, the definition of a PNT is appli-
1188
+ cable to any quantum system given in second quantisa-
1189
+ tion (cf. Sec. III). Fermionic modes are associated with
1190
+
1191
+ 8
1192
+ creation and annihilation operators satisfying canonical
1193
+ anticommutation relations.
1194
+ Because of this, the most
1195
+ prominent difference to the bosonic setups studied previ-
1196
+ ously, is that fermions have to obey the Pauli principle,
1197
+ i.e., two fermions cannot occupy the same mode simulta-
1198
+ neously. This drastically reduces the number of possible
1199
+ states in a system and in particular, the corresponding
1200
+ Hilbert space (Fock space) is finite dimensional. Hence,
1201
+ the calculation of the PNT of a fermionic system be-
1202
+ comes much more manageable in comparison to bosonic
1203
+ systems.
1204
+ PNTs can also be calculated for systems comprising
1205
+ both bosonic and fermionic modes. As an elementary ex-
1206
+ ample, consider the Jaynes-Cummings Hamiltonian de-
1207
+ scribing the interaction between an incident light field
1208
+ and a single atomic energy level at resonance. Within
1209
+ the rotating wave approximation, the Hamiltonian reads
1210
+ [33]
1211
+ ˆHJC = ωAˆσ+ˆσ− + ωcˆn + κ
1212
+
1213
+ ˆa†ˆσ− + ˆaˆσ+�
1214
+ ,
1215
+ with resonance frequency ωA of the atom, ωc being the
1216
+ frequency of the incident light field, and κ describing the
1217
+ strength of the light-matter interaction. The atomic lad-
1218
+ der operators ˆσ− and ˆσ+ = (ˆσ−)† shift an electron from
1219
+ the ground to the excited state, and vice versa. The sys-
1220
+ tem possesses a nondegenerate spectrum {εn±}n∈N with
1221
+ corresponding eigenstates
1222
+ |n+⟩ = sin θ |g, n + 1⟩ + cos θ |e, n⟩ ,
1223
+ |n−⟩ = cos θ |g, n + 1⟩ − sin θ |e, n⟩ ,
1224
+ where tan(2θ) = 2κ√n + 1/(ωc − ωA) and n being the
1225
+ photon number. This form of the eigenstates highlights
1226
+ that the underlying parameter space does not possess any
1227
+ curvature, i.e., Fn±,θθ = 0 for all photon numbers n ∈ N.
1228
+ Hence, the system is not suitable for the generation of
1229
+ quantum holonomies, and this is reflected in the PNT,
1230
+ i.e., Nt = 0.
1231
+ IV.
1232
+ DISCUSSION
1233
+ In this article we studied quantum holonomies in rela-
1234
+ tion to the particle number in a system. It was shown
1235
+ that, increasing the number of particles can lead to a
1236
+ higher-dimensional holonomy group, thus improving the
1237
+ capabilities of the system to generate useful unitaries.
1238
+ We introduced the PNT of a quantum system, which de-
1239
+ notes the minimal number of particles necessary to fully
1240
+ exploit the systems capacity for generating a versatile set
1241
+ of quantum holonomies. Besides some general statements
1242
+ that could be made about PNTs, we illustrated the the-
1243
+ ory in terms of benchmark examples relevant to linear
1244
+ and nonlinear quantum optics. We saw that for systems
1245
+ of coupled oscillators only the Nt-particle block of an
1246
+ eigenspace contributes to its holonomy group relevantly,
1247
+ because the particle number Nt subjected to the system
1248
+ does not change throughout the propagation. This result
1249
+ appears to be relevant to linear optical quantum compu-
1250
+ tation by adiabatic means. We argued that the results
1251
+ presented are applicable to both bosonic and fermionic
1252
+ systems of interest. Our general investigation hints at the
1253
+ utility of the concept in assessing the capabilities of dif-
1254
+ ferent quantum systems to perform holonomic quantum
1255
+ computations in terms of holonomies. PNTs might also
1256
+ be relevant to the simulation of gauge groups in terms of
1257
+ adiabatic parameter variations.
1258
+ Currently, there is a lack of analytical tools to compute
1259
+ PNTs. While this is a straight forward task for fermionic
1260
+ systems, it becomes a challenging issue for bosonic sys-
1261
+ tems, where there is no bound on the particle number.
1262
+ Estimations of the PNT up to some finite particle num-
1263
+ ber, might be sufficient for most practical purposes, but
1264
+ general strategies for calculating PNTs can be relevant
1265
+ for a deeper understanding of many-particle physics in
1266
+ an adiabatic setting.
1267
+ ACKNOWLEDGMENTS
1268
+ Financial support by the Deutsche Forschungsgemein-
1269
+ schaft (DFG SCHE 612/6-1) is gratefully acknowledged.
1270
+ Appendix A: Two-particle dark states of the
1271
+ four-mode fully-connected graph
1272
+ In this appendix, we give the two-particle dark states
1273
+ of the Hamiltonian matrix ˆH|F2 of the four-mode fully-
1274
+ connected graph shown in Fig. 1 (c). The isospectral
1275
+ Hamiltonian of the system is given in Eq. (8). The three
1276
+ dark states of the system read
1277
+ |D1⟩ =
1278
+ 1
1279
+
1280
+ 2
1281
+
1282
+ eiϕ3 sin θ1 sin θ2 cos θ3ˆa†
1283
+ 1 + ei(ϕ3−ϕ1) cos θ1 sin θ2 cos θ3ˆa†
1284
+ 2 + ei(ϕ3−ϕ2) cos θ2 cos θ3ˆa†
1285
+ 3 − sin θ3ˆa†
1286
+ 4
1287
+ �2 |0⟩ ,
1288
+ |D2⟩ =
1289
+
1290
+ sin θ1 sin θ2 sin θ3ˆa†
1291
+ 1 + e−iϕ1 cos θ1 sin θ2 sin θ3ˆa†
1292
+ 2 + e−iϕ2 cos θ2 sin θ3ˆa†
1293
+ 3 + e−iϕ3 cos θ3ˆa†
1294
+ 4
1295
+
1296
+ ×
1297
+
1298
+ eiϕ1 cos θ1ˆa†
1299
+ 1 − sin θ1ˆa†
1300
+ 2
1301
+
1302
+ |0⟩ ,
1303
+ |D3⟩ =
1304
+
1305
+ sin θ1 sin θ2 sin θ3ˆa†
1306
+ 1 + e−iϕ1 cos θ1 sin θ2 sin θ3ˆa†
1307
+ 2 + e−iϕ2 cos θ2 sin θ3ˆa†
1308
+ 3 + e−iϕ3 cos θ3ˆa†
1309
+ 4
1310
+
1311
+ ×
1312
+
1313
+ eiϕ1 sin θ1 cos θ2ˆa†
1314
+ 1 + ei(ϕ2−ϕ1) cos θ1 cos θ2ˆa†
1315
+ 2
1316
+
1317
+ |0⟩ ,
1318
+
1319
+ 9
1320
+ where the parameter angles (θk, ϕk) are defined in Eq. (10).
1321
+ [1] M. V. Berry, Quantal Phase Factors Accompanying Adi-
1322
+ abatic Changes, Proc. R. Soc. London, Ser. A 392, 45
1323
+ (1984).
1324
+ [2] Y. Aharonov and D. Bohm, Significance of Electromag-
1325
+ netic Potentials in the Quantum Theory, Phys. Rev. 115,
1326
+ 485 (1959).
1327
+ [3] S. Pancharatnam, Generalized theory of interference, and
1328
+ its applications, Proc.-Indian Acad. Sci. Sect. A. 44, 247
1329
+ (1956).
1330
+ [4] B. Simon, Holonomy, the Quantum Adiabatic Theorem,
1331
+ and Berry’s Phase, Phys. Rev. Lett. 51, 2167 (1983).
1332
+ [5] M. Born and V. A. Fock, Beweis des Adiabatensatzes, Z.
1333
+ Phys. 51, 165 (1928).
1334
+ [6] F. Wilczek and A. Zee, Appearance of Gauge Structure
1335
+ in Simple Dynamical Systems, Phys. Rev. Lett. 52, 2111
1336
+ (1984).
1337
+ [7] M. C. Ba˜nuls and K. Cichy, Review on novel methods
1338
+ for lattice gauge theories, Rep. Prog. Phys. 83, 024401
1339
+ (2020).
1340
+ [8] C. Rovelli, Loop Quantum Gravity, Living Rev. Relativ.
1341
+ 11, 5 (2008).
1342
+ [9] P. Zanardi and M. Rasetti, Holonomic Quantum Com-
1343
+ putation, Phys. Lett. A 264, 94 (1999).
1344
+ [10] J. Pachos, P. Zanardi, and M. Rasetti, Non-Abelian
1345
+ Berry connections for quantum computation, Phys. Rev.
1346
+ A 61, 010305(R) (1999).
1347
+ [11] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S.
1348
+ D. Sarma, Non-Abelian anyons and topological quantum
1349
+ computation, Rev. Mod. Phys. 80, 1083 (2008).
1350
+ [12] S. Lloyd, Almost Any Quantum Logic Gate is Universal,
1351
+ Phys. Rev. Lett. 75, 346 (1995).
1352
+ [13] C. J. Bradly, M. Rab, A. D. Greentree, and A. M. Martin,
1353
+ Coherent tunneling via adiabatic passage in a three-well
1354
+ Bose-Hubbard system, Phys. Rev. A 85, 053609 (2012).
1355
+ [14] J. Pinske, L. Teuber, and S. Scheel, Highly degenerate
1356
+ photonic waveguide structures for holonomic computa-
1357
+ tion, Phys. Rev. A 101, 062314 (2020).
1358
+ [15] V. Neef, J. Pinske, F. Klauck, L. Teuber, M. Kremer, M.
1359
+ Ehrhardt, M. Heinrich, S. Scheel, and A. Szameit, Three-
1360
+ dimensional non-Abelian quantum holonomy, Nat. Phys.
1361
+ (2022).
1362
+ [16] K. Bergmann, H. Theuer, and B. W. Shore, Coherent
1363
+ population transfer among quantum states of atoms and
1364
+ molecules, Rev. Mod. Phys. 70, 1003 (1998).
1365
+ [17] J. C. Garcia-Escartin,
1366
+ V. Gimeno,
1367
+ J. J. Moyano-
1368
+ Fernandez, Multiple photon effective Hamiltonians in lin-
1369
+ ear quantum optical networks, Opt. Commun. 430, 434
1370
+ (2019).
1371
+ [18] A. Szameit and S. Nolte, Discrete optics in femtosecond-
1372
+ laser-written photonic structures, J. Phys. B 43, 163001
1373
+ (2010).
1374
+ [19] S. Longhi, G. D. Valle, M. Ornigotti, and P. Laporta,
1375
+ Coherent tunneling by adiabatic passage in an optical
1376
+ waveguide system, Phys. Rev. B 76, 201101(R) (2007).
1377
+ [20] J. Pinske and S. Scheel, Geometrically robust linear op-
1378
+ tics from non-Abelian geometric phases, Phys. Rev. Re-
1379
+ search 4, 023086 (2022).
1380
+ [21] M. Kremer, L. Teuber, A. Szameit, and S. Scheel, Opti-
1381
+ mal design strategy for non-Abelian geometric phases us-
1382
+ ing Abelian gauge fields based on quantum metric, Phys.
1383
+ Rev. Research 1, 033117 (2019).
1384
+ [22] F. Yu, X.-L. Zhang, Z.-G. Chen, Z.-N. Tian, Q.-D. Chen,
1385
+ H.-B. Sun, G. Ma, Non-Abelian braiding on photonic
1386
+ chips, Nat. Photon. 16, 390 (2022).
1387
+ [23] S. Scheel, A. Szameit, A braid for light, Nat. Photon. 16,
1388
+ 344 (2022).
1389
+ [24] A. P. Hope, T. G. Nguyen, A. Mitchell, and A. D. Green-
1390
+ tree, Adiabatic two-photon quantum gate operations us-
1391
+ ing a long-range photonic bus, J. Phys. B 48, 055503
1392
+ (2015).
1393
+ [25] D. Kribs, R. Laflamme, and D. Poulin, Unified and Gen-
1394
+ eralized Approach to Quantum Error Correction, Phys.
1395
+ Rev. Lett. 94, 180501 (2005).
1396
+ [26] D. Poulin, Stabilizer Formalism for Operator Quantum
1397
+ Error Correction, Phys. Rev. Lett. 95, 230504 (2005).
1398
+ [27] M. Nakahara, Geometry, Topology, and Physics (Taylor
1399
+ & Francis, New York, 2013).
1400
+ [28] W. Ambrose and I. M. Singer, A theorem on holonomy,
1401
+ Trans. Amer. Math. Soc. 75, 428 (1953).
1402
+ [29] K. Fujii, Note on coherent states and adiabatic connec-
1403
+ tions, curvatures, J. Math. Phys. 41, 4406 (2000).
1404
+ [30] D. Lucarelli, Chow’s theorem and universal holonomic
1405
+ quantum computation, J. Phys. A: Math. Gen. 35, 5107
1406
+ (2002).
1407
+ [31] D. Lucarelli, Control aspects of holonomic quantum com-
1408
+ putation, J. Math. Phys. 46, 052103 (2005).
1409
+ [32] T. P. Cheng and L. F. Li, Gauge theory of elementary
1410
+ particle physics (Oxford University Press, Oxford, UK,
1411
+ 1984).
1412
+ [33] W. Vogel and D.-G. Welsch, Quantum Optics (Wiley-
1413
+ VCH, Weinheim, Germany, 2006).
1414
+ [34] J. Pachos and S. Chountasis, Optical holonomic quantum
1415
+ computer, Phys. Rev. A 62, 052318 (2000).
1416
+ [35] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P.
1417
+ Dowling, and G. J. Milburn, Linear optical quantum
1418
+ computing with photonic qubits, Rev. Mod. Phys. 79,
1419
+ 135 (2007).
1420
+ [36] E. Knill, R. Laflamme, and G. J. Milburn, A scheme for
1421
+ efficient quantum computation with linear optics, Nature
1422
+ (London) 409, 46 (2001).
1423
+ [37] S. Scheel, K. Nemoto, W. J. Munro, and P. L. Knight,
1424
+ Measurement-induced nonlinearity in linear optics, Phys.
1425
+ Rev. A 68, 032310 (2003).
1426
+
HtFLT4oBgHgl3EQfIS87/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ItAyT4oBgHgl3EQfr_nP/content/tmp_files/2301.00570v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
ItAyT4oBgHgl3EQfr_nP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JdE2T4oBgHgl3EQf_wnL/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70a70b923e2ddce6961439e67c29f34f1b92139ee106161f37cf7f0b972f330d
3
+ size 12582957