diff --git a/.gitattributes b/.gitattributes index ea05126d8697cac3b28b17746e8d3c69c539f3db..3ec79ccb76896d566234ea8d4e02e46c2229f1bb 100644 --- a/.gitattributes +++ b/.gitattributes @@ -3795,3 +3795,70 @@ ANE2T4oBgHgl3EQfnAgQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex ndA0T4oBgHgl3EQfJv-v/content/2301.02095v1.pdf filter=lfs diff=lfs merge=lfs -text 1NFQT4oBgHgl3EQfETVZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text GNFKT4oBgHgl3EQfbi5K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +otAzT4oBgHgl3EQfOftW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +_tAyT4oBgHgl3EQfqvix/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +AdAyT4oBgHgl3EQf3_pa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +JtAzT4oBgHgl3EQfIPso/content/2301.01057v1.pdf filter=lfs diff=lfs merge=lfs -text +5dFJT4oBgHgl3EQfkywG/content/2301.11580v1.pdf filter=lfs diff=lfs merge=lfs -text +9tE3T4oBgHgl3EQfrArn/content/2301.04657v1.pdf filter=lfs diff=lfs merge=lfs -text +wtE3T4oBgHgl3EQf_AuU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +rNE1T4oBgHgl3EQfiwTR/content/2301.03256v1.pdf filter=lfs diff=lfs merge=lfs -text +VtE3T4oBgHgl3EQfbAqu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +FdAyT4oBgHgl3EQf4_rs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +KdE1T4oBgHgl3EQfYgTD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +F9AyT4oBgHgl3EQfrPnq/content/2301.00559v1.pdf filter=lfs diff=lfs merge=lfs -text +ENAyT4oBgHgl3EQfevhN/content/2301.00326v1.pdf filter=lfs diff=lfs merge=lfs -text +5tAyT4oBgHgl3EQfpfgu/content/2301.00525v1.pdf filter=lfs diff=lfs merge=lfs -text +PtE1T4oBgHgl3EQfagQG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +1tAzT4oBgHgl3EQf8_4M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +rdE3T4oBgHgl3EQfMgkz/content/2301.04373v1.pdf filter=lfs diff=lfs merge=lfs -text +PNFRT4oBgHgl3EQf5jis/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ZdAyT4oBgHgl3EQfifhm/content/2301.00396v1.pdf filter=lfs diff=lfs merge=lfs -text +FdE0T4oBgHgl3EQfhAGj/content/2301.02426v1.pdf filter=lfs diff=lfs merge=lfs -text +r9E2T4oBgHgl3EQfLQZF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +qtAyT4oBgHgl3EQfzvl6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +FdE0T4oBgHgl3EQfhAGj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +6tE2T4oBgHgl3EQfPAa1/content/2301.03755v1.pdf filter=lfs diff=lfs merge=lfs -text +_tAyT4oBgHgl3EQf3vm5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +M9E0T4oBgHgl3EQf0QJr/content/2301.02683v1.pdf filter=lfs diff=lfs merge=lfs -text +OdAzT4oBgHgl3EQfWfyE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +U9E2T4oBgHgl3EQfXgeS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +NNFQT4oBgHgl3EQfWDbE/content/2301.13303v1.pdf filter=lfs diff=lfs merge=lfs -text +PNFRT4oBgHgl3EQf5jis/content/2301.13673v1.pdf filter=lfs diff=lfs merge=lfs -text +ZNAzT4oBgHgl3EQfY_yk/content/2301.01345v1.pdf filter=lfs diff=lfs merge=lfs -text +gtE0T4oBgHgl3EQfpAHr/content/2301.02535v1.pdf filter=lfs diff=lfs merge=lfs -text +WNAyT4oBgHgl3EQf8_py/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +6tE2T4oBgHgl3EQfPAa1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +F9AyT4oBgHgl3EQfrPnq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +VdAyT4oBgHgl3EQfuvn4/content/2301.00621v1.pdf filter=lfs diff=lfs merge=lfs -text +M9E0T4oBgHgl3EQf0QJr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +RdFRT4oBgHgl3EQfLDee/content/2301.13501v1.pdf filter=lfs diff=lfs merge=lfs -text +n9E1T4oBgHgl3EQfhwQL/content/2301.03243v1.pdf filter=lfs diff=lfs merge=lfs -text +e9FAT4oBgHgl3EQf7h50/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +CtFQT4oBgHgl3EQfOzYB/content/2301.13276v1.pdf filter=lfs diff=lfs merge=lfs -text +xNE4T4oBgHgl3EQfXwyr/content/2301.05044v1.pdf filter=lfs diff=lfs merge=lfs -text +ZNFAT4oBgHgl3EQf3x5l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +RdFRT4oBgHgl3EQfLDee/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +9tE3T4oBgHgl3EQfrArn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +e9FAT4oBgHgl3EQf7h50/content/2301.08745v1.pdf filter=lfs diff=lfs merge=lfs -text +n9AyT4oBgHgl3EQflfie/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +O9E0T4oBgHgl3EQfjwGf/content/2301.02464v1.pdf filter=lfs diff=lfs merge=lfs -text +5tAyT4oBgHgl3EQfpfgu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +xNE4T4oBgHgl3EQfXwyr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ndAyT4oBgHgl3EQflfhA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +OdAzT4oBgHgl3EQfWfyE/content/2301.01302v1.pdf filter=lfs diff=lfs merge=lfs -text +6tAzT4oBgHgl3EQfvP3q/content/2301.01705v1.pdf filter=lfs diff=lfs merge=lfs -text +oNFST4oBgHgl3EQfMTgQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +O9E0T4oBgHgl3EQfjwGf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +6tAzT4oBgHgl3EQfvP3q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +CtFQT4oBgHgl3EQfOzYB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ZNAzT4oBgHgl3EQfY_yk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +l9FLT4oBgHgl3EQfeS-E/content/2301.12090v1.pdf filter=lfs diff=lfs merge=lfs -text +ZNFAT4oBgHgl3EQf3x5l/content/2301.08722v1.pdf filter=lfs diff=lfs merge=lfs -text +n9E1T4oBgHgl3EQfhwQL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +wdAzT4oBgHgl3EQfdfz3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf filter=lfs diff=lfs merge=lfs -text +n9AyT4oBgHgl3EQflfie/content/2301.00454v1.pdf filter=lfs diff=lfs merge=lfs -text +jNE2T4oBgHgl3EQfdAe8/content/2301.03902v1.pdf filter=lfs diff=lfs merge=lfs -text +NNFQT4oBgHgl3EQfWDbE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +SdE2T4oBgHgl3EQfCAaW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text diff --git a/0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/2301.11380v1.pdf.txt b/0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/2301.11380v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1932dacab627aa8d73b3382faf6bb5a5c51151f7 --- /dev/null +++ b/0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/2301.11380v1.pdf.txt @@ -0,0 +1,859 @@ +Electron Impact Ionization in the Icy Galilean Satellites’ Atmospheres +Shane R. Carberry Mogan1,∗, Robert E. Johnson2,3, Audrey Vorburger4, Lorenz Roth5 +1Space Sciences Laboratory, University of California, Berkeley, Berkeley, USA; 2University +of Virginia, Charlottesville, USA; 3New York University, New York, USA; 4University of +Bern, Bern, Switzerland; 5KTH Royal Institute of Technology, Stockholm, Sweden; +∗Corresponding author: Shane R. Carberry Mogan (CarberryMogan@Berkeley.edu) +Abstract +Electron impact ionization is critical in producing the ionospheres on many plan- +etary bodies and, as discussed here, is critical for interpreting spacecraft and tele- +scopic observations of the tenuous atmospheres of the icy Galilean satellites of Jupiter +(Europa, Ganymede, and Callisto), which form an interesting planetary system. For- +tunately, laboratory measurements, extrapolated by theoretical models, were devel- +oped and published over a number of years by K. Becker and colleagues (see Deutsch +et al. 2009) to provide accurate electron impact ionization cross sections for atoms +and molecules, which are crucial to correctly interpret these measurements. Because +of their relevance for the Jovian icy satellites we provide useful fits to the complex, +semi-empirical Deutsch–M¨ark formula for energy-dependent electron impact ioniza- +tion cross-sections of gas-phase water products (i.e., H2O, H2, O2, H, O). These are +then used with measurements of the thermal plasma in the Jovian magnetosphere to +produce ionization rates for comparison with solar photo-ionization rates at the icy +Galilean satellites. +1 +Introduction +Since Galileo Galilei’s revolutionary discovery that Jupiter, the largest planet in the solar +system, has four large planetary bodies revolving around it – the “Galilean” satellites: Io, +Europa, Ganymede, and Callisto – our fascination with this planetary system has only +grown with the advancement of observational technologies. Several spacecraft have been +sent directly to or have at least passed by the Jovian system. In the 1970s, Pioneer 10 & 11 +and Voyager 1 & 2 utilized Jupiter’s gravity to enhance their trajectories and observed the +giant planet and its moons up-close. From 1995–2003 Galileo orbited Jupiter, and made +several close encounters with the namesake moons. At the time of this writing, the Juno +spacecraft is currently orbiting Jupiter and has recently made close flybys of Ganymede and +Europa with 2 flybys of Io forthcoming. In addition to these in-situ observations, the Hubble +Space Telescope (HST), which has been situated in Earth’s orbit since 1990, has been used +to observe and contribute new information to our understanding of this system. To better +understand the Jovian system, the Galilean satellites, and their interconnected dynamics, as +well as address certain prevailing mysteries, three forthcoming missions, ESA’s JUpiter ICy +moons Explorer, NASA’s Europa Clipper, and CNSA’s Gan De, will send spacecraft back +to the Jovian system. +Our focus here is on the icy Galilean satellites (see Table 1) – Europa, Ganymede, and +Callisto – and their tenuous atmospheres for which the dominant constituents are water +1 +arXiv:2301.11380v1 [astro-ph.EP] 26 Jan 2023 + +products: H2O, O2, H2, H, and O. Because these objects orbit Jupiter within its giant mag- +netic field, they are exposed to an ambient plasma. Interactions between this plasma and the +icy Galilean satellites’ atmospheres to a large extent determine the nature of the latter. One +key aspect of this interaction is the role of the plasma electrons in dissociating, ionizing, and +exciting the gas-phase water products via impacts, which can produce observable emission +features (e.g., Hall et al. 1998, Feldman et al. 2000, Roth et al. 2017, Roth 2021, Roth et al. +2021). In order to calculate the ionization rates to be used in future simulations of these at- +mospheres, we use the extensive laboratory data of electron impact ionization cross-sections +accumulated and summarized by K. Becker and his colleagues over a number of years as +reviewed in Deutsch et al. (2009) and references herein. Since the various laboratory mea- +surements can exhibit differences and typically cover only a limited range of energies, the +group developed a fitting procedure also presented in those papers. In this method, the +Deutsch–M¨ark (DM) formula, atomic orbital basis sets are used in expressions to fit and +extrapolate the measurements, as well as to generate cross-sections when measurements are +unavailable. In this way, they created a large number of energy-dependent electron impact +ionization cross-section distributions. Although the DM formula provides a broad range of +useful data, as well as allows the calculation of results for molecular targets to be determined +from the constituent atomic orbitals, it is not easily implemented. For example, in detailed +molecular kinetic simulations much simpler calculations are more often made, such as those +recently implemented in Carberry Mogan et al. (2022) for describing electron impacts in Cal- +listo’s atmosphere. More readily useful expressions are needed. Therefore, here we present +much more simplified fits to the results obtained via the DM formula, which we then use with +electron density and temperature data at the icy Galilean satellites to calculate ionization +rates in their atmospheres. These rates are in turn needed to help interpret past, present, +and future spacecraft and telescopic observations of these topical planetary bodies soon to +be visited by several new spacecraft. +Before we discuss the derivation of the electron impact ionization cross-section fits (Sec- +tion 3) and present the corresponding ionization rates for each species considered (Section +4), we first review the local space environment of the icy Galilean satellites, particularly the +Jovian magnetospheric plasma in which they are embedded, as well as the observations of +water products in their atmospheres. +2 +Background +The strong dynamo generated within the interior of Jupiter produces its magnetic field, which +has a rotation period of ∼10 h. Jupiter’s magnetosphere, i.e., the environment controlled by +the planet’s magnetic field, is filled with charged particles. While the volcanic moon Io is the +main source, materials from the icy Galilean satellites’ surfaces are also a source of charged +particles (either directly ionized or lost as neutrals and ionized later in the magnetosphere) +(Johnson et al., 2004, Kivelson et al., 2004), which are picked-up, accelerated, and then +become “trapped” by this rapidly rotating field. +The combination of this fast rotating +magnetic field and the large number of charged particles trapped within it gives rise to the +plasma detected in Jupiter’s immense magnetosphere, which can extend as far as 45–100 RJ +from the planet, where RJ = 71, 492 km is the radius of Jupiter. The Jovian magnetosphere +2 + +is typically divided up into three regions: the inner (<10 RJ), the middle (10–40 RJ), and the +outer (>40 RJ) regions (Khurana et al., 2004); Europa resides within the inner region, while +Ganymede and Callisto reside in the middle region. The Jovian magnetospheric plasma is +typically described as being comprised of two populations: a “cold” thermal plasma with +energies < 1 keV and a “hot” energetic plasma with energies ≥ 1 keV (Krupp et al., 2004, +Bagenal and Delamere, 2011). Both populations are composed of electrons, as well as H+, +On+, and Sn+ ions (Bagenal and Sullivan, 1981, Broadfoot et al., 1981, Nerney et al., 2017). +The sulfur and oxygen ions, both of which are of various charge states, primarily originate +from the volcanic moon Io (Bagenal and Dols, 2020). On the other hand, the hydrogen +ions originate from two different sources depending on the magnetospheric region: in the +inner region, they mainly originate in Jupiter’s atmosphere; and in the middle and outer +magnetosphere, the solar wind can gain access to the magnetosphere, becoming the main +provider of hydrogen ions thereafter. +An additional plasma contribution (electrons, H+, +On+) is associated with sputtering of the icy satellite’s surfaces (Cooper et al., 2001, Johnson +et al., 2004, Szalay et al., 2022). Here we focus on the thermal electrons as these particles +are the most relevant to ionization. Physical parameters for thermal electrons at the orbits +of Europa, Ganymede, and Callisto based on Voyager and Galileo data are listed in Table +1. +Table 1: Physical Parameters of Europa, Ganymede, and Callisto, as well as of the Jovian +magnetosphere at their orbits +Parameters [units] +Europa +Ganymede +Callisto +Radius [km] +1,561 +2,631 +2,410 +Mass [(×1023) kg] +0.48 +1.5 +1.1 +Distance from Jupiter [RJ] +9.38 +15.0 +26.3 +Orbital Velocity [km s−1] +13.7 +10.9 +8.20 +Thermal Electron Density [cm−3] +18–290 a,b +1–10 a,c +0.01–1.1 a,c +Thermal Electron Temperature [eV] +10–30 b +100 c +100 c +Thermal Electron Flux d [cm−2 s−1] +(0.4–1.1)×1011 e +(0.7–6.7)×109 +(0.08–7.4)×108 +Plasma Azimuthal Velocity [km s−1] +90 a +150 a +200 a +Relative Plasma Velocity f [km s−1] +76 a +139 a +192 a +a Values taken from Kivelson et al. (2004) and references therein. +b Values taken from Bagenal et al. (2015). +c Values taken from Neubauer (1998) and references therein. +d Thermal electron flux, φe = neve, where ne is the thermal electron density, ve = +� +8kBTe/π/me is the +mean Maxwellian speed of the electrons, with kBTe the thermal electron temperature, kB the Boltzmann +constant, and me the mass of an electron. +e φe calculated according to the “low/hot” (kBTe = 30 eV, ne = 63 cm−3) and “high/cold” +(kBTe = 10 eV, ne = 290 cm−3) plasma components from Table 5 in Bagenal et al. (2015). +g Relative speed between plasma azimuthal velocity and the satellites’ orbital speeds. +3 + +As a result of the large relative velocities between the azimuthal velocity of the Jovian +magnetosphere and the icy Galilean satellites’ orbital velocities (Table 1), the satellites +are continuously overtaken and bombarded by the magnetospheric plasma. +The spatial +distribution of this bombardment is determined by the flow rate of the plasma particles +past the satellite as well as their thermal velocities relative to the local magnetic field lines +(Johnson et al., 2004). However, intrinsic or induced electric and magnetic fields as well +as the interactions with the tenuous atmospheres and ionospheres at these satellites can +radically modify the local fluxes of impinging particles at Ganymede (e.g., from Paranicas +et al. 2022) and at Callisto (e.g., from Strobel et al. 2002). The cyclotron radii or gyro- +radii of these charged particles depend on their mass, speed, and charge, as well as the +local magnetic field strength. Due to their small mass, electrons primarily have gyro-radii +much smaller than the satellite radius, and thus preferentially impact the satellites’ trailing +hemispheres and poles as they move up and down the rotating field lines (Johnson et al., +2004). +Following the Pioneer discovery of intense plasma trapped in the Jovian magnetic field +(Smith et al., 1974, Wolfe et al., 1974, Trainor et al., 1974, Frank et al., 1976) a series of ex- +periments were carried out to measure the effect this could have on the icy surfaces of Europa, +Ganymede, and Callisto (Brown et al., 1978, Lanzerotti et al., 1978). These experiments +showed that the ejection of water molecules from low-temperature ices by incident energetic +particles, a process referred to as “sputtering”, is dominated by electronic excitations and +ionizations produced in the ice (“electronic” sputtering), rather than by “knock-on” colli- +sions of the ions with water molecules (“nuclear” sputtering), the hitherto typically studied +sputtering process. Subsequent experiments led to the discovery that additional molecular +species can form in and be released from the ice, namely H2 and O2, in a process referred to +as “radiolysis” (Brown et al., 1982, Boring et al., 1983, Reimann et al., 1984, Brown et al., +1984), which occurs as bonds in H2O molecules are broken by the electronic energy deposited +by the impinging charged particles and the fragmented molecules recombine. Moreover, the +number of radiolytic products ejected from the icy surface per each incident charged particle +(i.e., the “sputter yield”) was shown to display a strong temperature dependence. +These discoveries had immense implications for the icy Galilean satellites: magneto- +spheric plasma-induced sputtering could erode their surfaces, and the ejected atoms and +molecules could migrate significant distances as well as escape the local gravitational en- +vironment of its host satellite or form gravitationally bound atmospheres (Johnson, 1990). +Indeed Europa was predicted to have a tenuous, predominantly O2 atmosphere due to the +radiolytic decomposition of its icy surface by the incident Jovian plasma particles (Johnson +et al., 1982, 1983, Johnson, 1990), which has been borne out by extensive HST observations +(e.g., Roth et al. 2016, and references therein). Tenuous O2 atmospheres produced via similar +processes have also been detected at Ganymede and Callisto: following the HST detection of +O emissions indicative of an O2 atmosphere at Europa (Hall et al., 1995), airglow emissions +were detected by HST in Ganymede’s O2 atmosphere (Hall et al., 1998) as well as in Europa’s +atmosphere thereby confirming the earlier observation; O emissions were detected by HST +in Callisto’s atmosphere (Cunningham et al., 2015), which were suggested to be induced by +photoelectron impacts in a near-surface, O2-dominated atmosphere; and recently atomic O +emissions have been detected at Ganymede (Roth et al., 2021) indicative of being produced +via dissociative excitations of O2 (and H2O). +4 + +Although H2 can more readily escape from the atmospheres of these bodies than can the +concomitant radiolytically produced O2, a steady-state H2 atmospheric component can also +form (e.g., Carberry Mogan et al. 2022). Atomic H, the dissociated product of H2, has also +been detected at Callisto (e.g., Roth et al. 2017, Carberry Mogan et al. 2022). Moreover, +Carberry Mogan et al. (2022) and Roth et al. (2023) recently suggested that the H detected +in the extended atmospheres of Europa (Roth et al., 2017, 2023) and Ganymede (Barth et al., +1997, Feldman et al., 2000, Alday et al., 2017, Roth et al., 2023) are also indicative of an H2- +source. Although H2 is able to escape from these satellites’ atmospheres, it does not escape +from the Jovian system; and since its lifetime is longer than the satellites’ orbital periods +(e.g., Smyth and Marconi (2006), Leblanc et al. (2017), Carberry Mogan et al. (2022)), a +detectable toroidal cloud of neutral H2 co-rotating with the bodies can form (e.g., Szalay +et al. 2022). +The sputtering and radiolytic sources of the icy Galilean satellites’ atmospheres compete +with other sources, such as sublimation of water ice and the subsequent photochemistry of +the newly formed water vapor (e.g., Yung and McElroy 1977, Kumar and Hunten 1982). +However, with increasing distance from Jupiter, the plasma density and, as a result, the +corresponding atmospheric source decreases (Johnson et al., 2004). For example, although +gas-phase H2O has not been directly observed at Callisto, the outermost Galilean satellite, +observed geomorphological features have been interpreted to be caused by sublimation of +the surface ice rather than by sputtering (Spencer and Maloney, 1984, Spencer, 1987, Moore +et al., 1999). Further, whereas sublimation has been suggested to be the primary source of +Ganymede’s H2O atmosphere (Roth et al., 2021, Vorburger et al., 2022), sputtering has been +suggested to be a primary source of Europa’s H2O atmosphere (Addison et al., 2021). +Below we focus on deriving thermal electron impact ionization rates in these icy satellites’ +atmospheres, which are needed to help understand their evolution. +3 +Method +The Deutsch-M¨ark (DM) formula was developed to employ and extrapolate laboratory data +to allow users to estimate reasonably accurate electron impact ionization cross-sections, +σ(E), over a large range of energies, E. The “modified” DM formula (Appendix A) from +Deutsch et al. (2004), hereafter referred to as “DM2004,” is a revised version of the original +formula developed by Deutsch and M¨ark (1987) and used to calculate cross-sections up to +energies ≲ keV. As discussed by Deutsch et al. (2000), hereafter referred to as “DM2000,” +and references therein, σ(E) for atoms (e.g., H and O) can be converted to σ(E) for molecules +composed of those atoms (e.g., H2O, O2, and H2). +Here we present more easily usable fits to these complex models for species of interest to +the planetary science community, and of particular interest at icy satellites. An exponentially +modified Gaussian distribution is used to compute a non-linear least-squares fit to σ(E) +derived for H, O, H2, O2, and H2O using DM2000 and DM2004. The resulting equation is +as follows (in units of ×10−16 cm2): +σ(E) = α +2δ exp +� γ2 +2δ2 + β − log10(E) +δ +� � +erf +�log10(E) − β +√ +2γ +− +γ +√ +2δ +� ++ δ +|δ| +� ++ ϵ, +(1) +5 + +where the coefficients α, β, γ, δ, and ϵ in Eq. 1 for H, O, H2, O2, and H2O are listed in +Table 2. +Table 2: Coefficients in Eq. 1 for H, O, H2, O2, H2O +Species +α +β +γ +δ +ϵ +H +0.951653 +1.40862 +0.271538 +0.804953 +-0.0397646 +O +1.91899 +1.72847 +0.333420 +0.864596 +-0.121378 +H2 +2.27256 +1.39600 +0.277991 +1.08255 +-0.278929 +O2 +3.20403 +1.63262 +0.241759 +0.799914 +-0.0876336 +H2O +4.41745 +1.48743 +0.291951 +1.01222 +-0.527864 +4 +Results +Electron impact ionization cross-sections, σ(E), for H, O, H2, O2, and H2O as derived by +DM2000 and DM2004, as well as the corresponding fits calculated via Eq. +1 with the +coefficients from Table 2, are illustrated in Figure 1. These fits, of course, account for the +ionization threshold energies occurring around 10 and 20 eV for the species considered (e.g., +see Tables A.1–A.2 in Appendix A). By about ∼20 eV, the difference in σ(E) derived by +DM2000/DM2004 and by the corresponding fits for all of the species considered fall below +10%, except for that of O, which drops below 10% between 20 and 30 eV. From these lower +bounds up to 1 keV, the difference remains below 10% for all species considered except for +H2, for which it exceeds 10% by ∼800 eV but is only ∼14% by 1 keV. Thus, between ∼20 eV– +1 keV (i.e., between the ionization energy of the species considered, (e.g., Tables A.1–A.2 in +Appendix A), and the maximum energy of the thermal electrons in the Jovian magnetosphere +at the icy Galilean satellites, Table 1), the fits provided here can determine electron impact +ionization cross-sections within ∼10% accuracy of those determined via the more complex +DM models, which have been extensively tested, modified, and improved over the years, +demonstrating agreement with experimental data better than ∼20–35% (Deutsch et al. 2009 +and references therein). +With the thermal electron fluxes and temperatures listed in Table 1, we use the fits for +electron impact ionization cross-sections presented in Fig. 1 to determine the corresponding +ionization rates in the water product atmospheres of Europa, Ganymede, and Callisto, which +are presented in Table 3. The difference in σ(E) derived by DM2004 and by the corresponding +fit for O electron impact ionization cross-section at 20 eV is ∼32%, making the latter (Eq. 1) +in the region of Europa’s orbit not as accurate as those of the other species, for which +the difference is always < 10% (Table 3). However, by 30 eV the difference for all species +drops to < 5%. The differences for electron impact ionization rates at incident electron +energies of 100 eV at Ganymede and Callisto are < 3% for all species. We compare these +electron impact ionization rates to the analogous photoionization rates derived according +6 + +Figure 1: Top panel: Electron impact ionization cross-section, σ(E), for H (red lines), O +(blue lines), H2 (green lines), O2 (cyan lines), and H2O (magenta lines) as a function of +incident electron energy, E (x-axis). The dashed colored lines are from Deutsch et al. (2000) +(“DM2000”) for H2, O2, and H2O and from Deutsch et al. (2004) (“DM2004”) for H and O; +and the solid colored lines are the corresponding fits (“Fit”) calculated via Eq. 1 with the +coefficients from Table 2. Note the values for σ(E) begin at the ionization energies of the +species considered (e.g., Tables A.1–A.2 in Appendix A), hence the blank spaces below these +energies. Bottom panel: The dash-dotted colored lines represent the difference between σ(E) +calculated via DM2000/DM2004 and via Eq. 1, |fit−DM2000/2004| +DM2000/2004 +×100 (“Error”). +to solar activity (Huebner and Mukherjee, 2015) in Table B.1 in Appendix B. Since the +electron temperature for the “high/cold” plasma component at Europa (Table 1) is less than +the ionization energies of the atoms and molecules considered (e.g., Tables A.1 and A.2 in +Appendix A), we show ionization rates over a temperature range of 20–30 eV (“medium” to +“low/hot” plasma components from Bagenal et al. 2015). At Europa and Ganymede, electron +impact ionization rates are greater than the photoionization rates for all species. On the +other hand, at Callisto, where there is the most uncertainty in electron densities (see e.g., +Table 1), the upper bound electron impact ionization rates are greater than the upper bound +photoionization rates for all species, but the lower bound electron impact ionization rates +are less than the lower bound photoionization rates. We note, however, that the electron +impact ionization rates relate to the upstream plasma properties, and the effective electron +impact ionization strongly depends on the details of the interaction of the plasma flow with +the moons’ atmospheres and ionospheres, which cool as well as divert the plasma around the +moons (e.g., Saur et al. 1998, 2004, Rubin et al. 2015, Dols et al. 2016). +7 + +Energy, E[eV] +101 +102 +103 +7 +10-15 +cm +H +10-17 +0 +H2 +02 +H20 +10-19 +100 +Fit +90 +DM2000 +80 +0054320 +/DM2004 +Error +Error[ +102 +103 +101 +Energy, E[eV]Table 3: Electron impact ionization cross-sections and rates in the water product atmo- +spheres of Europa (E), Ganymede (G), and Callisto (C) +Species +Satellite +Cross-Sectiona [cm−2] +Rateb [s−1] +Errorc [%] +H +E +(3.07–5.11)×10−17 +(2.57–5.57)×10−6 +2.96–4.93 +G +5.48×10−17 +(0.384–3.67)×10−7 +1.34 +C +4.38×10−10 – 4.06×10−8 +O +E +(0.495–2.72)×10−17 +(0.414–2.97)×10−6 +4.92–32.6 +G +1.03×10−16 +(0.719–6.88)×10−7 +1.36 +C +8.22×10−10 – 7.60×10−8 +H2 +E +(3.99–7.52)×10−17 +(3.34–8.20)×10−6 +4.64–6.86 +G +9.48×10−17 +(0.664–6.35)×10−7 +2.04 +C +7.58×10−10 – 7.01×10−8 +O2 +E +(1.98–7.80)×10−17 +(1.66–8.50)×10−6 +1.22–6.91 +G +2.22×10−16 +(0.155–1.49)×10−6 +2.12 +C +1.77×10−9 – 1.64×10−7 +H2O +E +(0.401–1.24)×10−16 +(0.336–1.36)×10−5 +4.63–9.82 +G +2.00×10−16 +(0.140–1.34)×10−6 +1.16 +C +1.60×10−9 – 1.47×10−7 +a Electron impact ionization cross-sections are calculated via Eq. 1 at 20–30 eV for Europa and 100 eV +for Ganymede and Callisto. Note we only consider temperatures kBTe ≥ 20 eV at Europa because the +minimum temperature, kBTe = 10 eV (Table 1), is lower than the ionization energies of the species +considered (e.g., Tables A.1–A.2 in Appendix A). +b Electron impact ionization rates are calculated as the product of the electron impact ionization cross- +sections and the range in thermal electron fluxes given in Table 1. Note, since the minimum temperature +at Europa, kBTe = 10 eV, is lower than the ionization energies of the species considered, the lower +bound thermal electron flux is calculated according to the “medium” plasma component (kBTe = 20 eV, +ne = 158 cm−3) from Bagenal et al. (2015), Table 5 therein. +c The differences in the cross-sections derived by DM2000/DM2004 and by the corresponding fits, the +“errors,” are interpolated from that illustrated in Fig. 1 at 20–30 eV for Europa (with the lower value +calculated at 30 eV) and 100 eV for Ganymede and Callisto. +5 +Conclusion +The importance to the space physics community of data on atomic and molecular processes +driven by an ambient plasma cannot be overstated. There are so many difficult but important +observations whose interpretation is limited by the uncertainties in the atomic and molecular +database or by the limited range of energies and species studied in the laboratory. Therefore, +8 + +the combination of laboratory measurements with detailed, physically-based extrapolation +procedures, as carried out by K. Becker and colleagues, will continue to be incredibly useful. +Because the accurate DM formula used to develop useful electron impact cross sections +over a large range of energies requires a considerable understanding of atomic physics, here +we present more readily useful fits to their detailed analyses for use by the space physics +community in order to prepare for the expected data from the forthcoming observations of +plasma-atmosphere interactions at the icy Jovian satellites. These are used to show the +relative importance of electron impact ionization in the icy Galilean satellites’ atmospheres +as compared to photo-ionization. +Finally, this study can be summarized as followed: +• Fits to the Deutsch–M¨ark formula for energy-dependent electron impact ionization +cross-sections have been derived for H2O, H2, O2, H, O from the species’ minimum +ionization energies up to 1 keV. +• These cross-sections are used in tandem with electron data at the orbits of Europa, +Ganymede, and Callisto to determine the corresponding electron impact ionization +rates in these bodies’ water-product atmospheres. +• At Europa and Ganymede the electron impact ionization rates are shown to exceed +the photoionization rates, whereas at Callisto, where the electron densities vary the +most, likely a result of the moon being inside or outside of the Jovian plasma sheet, +the electron impact ionization rates can be more or less than the photoionization rates. +9 + +Appendix +A +DM Formula +The “modified” DM formula (Deutsch et al., 2004) derives the total energy-dependent +electron-impact ionization cross section, σ(E), of an atom as: +σ(E) = +� +n,l +πgn,lr2 +n,lξn,lb(q) +n,l(u) [ln(cn,lu)/u] . +(2) +Here rn,l is the radius of maximum radial density of and ξn,l is the number of electrons in +the atomic subshell characterized by quantum numbers n and l; gn,l is a weighting factor +originally determined from a fitting procedure; u = E/En,l, where E is the incident energy +of the electrons and En,l is the ionization energy in the (n, l) subshell; and cn,l is a constant +determined from measured cross-sections for various values of n and l. Tables A.1 and A.2 list +values for the various terms in Eq. 2 for H and O atoms, respectively. The energy-dependent +function b(q) +n,l(u) [ln(cn,lu)/u] allows the DM formula to be applied up to keV-energy regimes, +with b(q) +n,l(u) written as the following: +b(q) +n,l(u) = +A1 − A2 +1 + (u/A3)p + A2, +(3) +where A1−3 and p are constants determined from measured cross-sections for various values +of n and l, and the superscript (q) refers to the number of electrons in the (n, l) sub- +shell. Tables A.3 and A.4 list values for the various terms in the energy-dependent function +b(q) +n,l(u) [ln(cn,lu)/u] for H and O atoms, respectively. We refer the reader to the review by +Deutsch et al. (2009) for how σ(E) of atoms are used to calculate σ(E) of molecules com- +posed of those atoms; i.e., how to estimate σ(E) of H2, O2, and H2O from σ(E) of H and +O. +10 + +Table A.1: Various terms in Eq. 2 for electron impact ionization cross-section of H atoms +n +l +ξn,l +En,l a [eV] +rn,l a [(×10−11) m] +gn,l b +1 +0 +1 +13.6 +5.29 +2.81 +a En,l and rn,l are taken from Tables 2 and 4 in Desclaux (1973), respectively. +b gn,l is determined by dividing En,l from the “reduced weighting factor” gn,lEn,l = 38.20 for 1s1 in +Deutsch et al. (2000). +Table A.2: Various terms in Eq. 2 for electron impact ionization cross-section of O atoms +n +l +ξn,l +En,l a [eV] +rn,l a [(×10−11) m] +gn,l b +1 +0 +2 +563 +0.684 +0.124 +2 +0 +2 +34.1 +4.63 +0.587 +2 +1 +4 +16.7 +4.41 +1.79 +a En,l and rn,l are taken from Tables 2 and 4 in Desclaux (1973), respectively. +b gn,l is determined by dividing En,l from the “reduced weighting factors” gn,lEn,l = 70.00, 20.00, and +30.00 for 1s2, 2s2, and 2p4, respectively, in Deutsch et al. (2000). +Table A.3: Various terms in the energy-dependent function b(q) +n,l(u) [ln(cn,lu)/u] (Eqs. 2–3) +for electron impact ionization cross-section of H atoms +n +l +q +cn,l +A1 +A2 +A3 +p +1 +0 +1 +1.00 +0.31 +0.87 +2.32 +1.95 +Table A.4: Various terms in the energy-dependent function b(q) +n,l(u) [ln(cn,lu)/u] (Eqs. 2–3) +for electron impact ionization cross-section of O atoms +n +l +q +cn,l +A1 +A2 +A3 +p +1 +0 +2 +1.01 +0.23 +0.86 +3.67 +2.08 +2 +0 +2 +1.01 +0.23 +0.86 +3.67 +2.08 +2 +1 +4 +1.02 +-0.15 +1.17 +4.05 +1.31 +11 + +B +Photoionization Rates +Table B.1 lists the range of photoionization rates determined by Huebner and Mukherjee +(2015) for a “quiet” Sun (i.e., solar minimum) – “active” Sun (i.e., solar maximum), which +are then scaled to the average Jovian system’s distance from the Sun, 5.2 AU, ignoring any +possible absorption with depth into the atmosphere. +Table B.1: Photoionization rates at 5.2 AU +Species +Rate [s−1] +H +(2.68–6.36)×10−9 +O +(0.880–2.44)×10−8 +H2 +(2.00–4.25)×10−9 +O2 +(1.73–4.36)×10−8 +H2O +(1.22–3.06)×10−8 +Acknowledgments +S.R.C.M. acknowledges the support provided by NASA through the Solar System Workings +grant 80NSSC21K0152, A.V. acknowledges the support provided by the Swiss National Sci- +ence Foundation, and L.R. was supported by the Swedish National Space Agency through +grant 2021-00153 and by the Swedish Research Council through grant 2017-04897. +Author Contribution Statement +All authors contributed equally to this work. +Data Availability Statement +All data generated or analyzed during this study are included in this published article. +12 + +References +Addison, P., Liuzzo, L., Arnold, H., and Simon, S. (2021). Influence of Europa’s time-varying +electromagnetic environment on magnetospheric ion precipitation and surface weathering. +Journal of Geophysical Research: Space Physics, 126(5):e2020JA029087. +Alday, J., Roth, L., Ivchenko, N., Retherford, K. D., Becker, T. M., Molyneux, P., and +Saur, J. (2017). New constraints on Ganymede’s hydrogen corona: Analysis of Lyman-α +emissions observed by HST/STIS between 1998 and 2014. Planetary and Space Science, +148:35–44. +Bagenal, F. and Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of +Jupiter and Saturn. J. Geophys. Res., 116:5209. +Bagenal, F. and Dols, V. (2020). The space environment of Io and Europa. Journal of +Geophysical Research: Space Physics, 125(5):e2019JA027485. +Bagenal, F., Sidrow, E., Wilson, R. J., Cassidy, T. A., Dols, V., Crary, F. J., Steffl, A. J., +Delamere, P. A., Kurth, W. S., and Paterson, W. R. (2015). Plasma conditions at Europa’s +orbit. Icarus, 261:1–13. +Bagenal, F. and Sullivan, J. D. (1981). Direct plasma measurements in the Io torus and +inner magnetosphere of Jupiter. Journal of Geophysical Research, 86(A10):8447–8466. +Barth, C. A., Hord, C. W., Stewart, A. I. F., Pryor, W. R., Simmons, K. E., McClintock, +W. E., Ajello, J. M., Naviaux, K. L., and Aiello, J. J. (1997). Galileo ultraviolet spec- +trometer observations of atomic hydrogen in the atmosphere of Ganymede. Geophysical +Research Letters, 24(17):2147–2150. +Boring, J. W., Johnson, R. E., Reimann, C. T., Garret, J. W., Brown, W. L., and Marcan- +tonio, K. J. (1983). Ion-induced chemistry in condensed gas solids. Nuclear Instruments +and Methods in Physics Research, 218(1-3):707–711. +Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., McConnell, J. C., Smith, G. R., Holberg, +J. B., Atreya, S. K., Donahue, T. M., Strobel, D. F., and Bertaux, J. L. (1981). Overview +of the Voyager ultraviolet spectrometry results through Jupiter encounter. +Journal of +Geophysical Research, 86(A10):8259–8284. +Brown, W. L., Augustyniak, W. M., Marcantonio, K. J., Simmons, E. H., Boring, J. W., +Johnson, R. E., and Reimann, C. T. (1984). Electronic sputtering of low temperature +molecular solids. Nuclear Instruments and Methods in Physics Research Section B: Beam +Interactions with Materials and Atoms, 1(2-3):307–314. +Brown, W. L., Augustyniak, W. M., Simmons, E., Marcantonio, K. J., Lanzerotti, L. J., +Johnson, R. E., Boring, J. W., Reimann, C. T., Foti, G., and Pirronello, V. (1982). +Erosion and molecule formation in condensed gas films by electronic energy loss of fast +ions. Nuclear Instruments and Methods in Physics Research, 198(1):1–8. +13 + +Brown, W. L., Lanzerotti, L. J., Poate, J. M., and Augustyniak, W. M. (1978). “Sputtering” +of ice by MeV light ions. Physical Review Letters, 40(15):1027. +Carberry Mogan, S. R., Tucker, O. J., Johnson, R. E., Roth, L., Alday, J., Vorburger, V., +Wurz, P., Galli, A., Smith, H. T., Marchand, B., and Oza, A. V. (2022). Callisto’s atmo- +sphere: First evidence for H2 and constrains on H2O. Journal of Geophysical Research: +Planets. +Cooper, J. F., Johnson, R. E., Mauk, B. H., Garrett, H. B., and Gehrels, N. (2001). Energetic +Ion and Electron Irradiation of the Icy Galilean Satellites. Icarus, 149(1):133–159. +Cunningham, N. J., Spencer, J. R., Feldman, P. D., Strobel, D. F., France, K., and Osterman, +S. N. (2015). Detection of Callisto’s oxygen atmosphere with the Hubble Space Telescope. +Icarus, 254:178–189. +Desclaux, J. P. (1973). Relativistic Dirac-Fock expectation values for atoms with Z = 1 to +Z = 120. Atomic data and nuclear data tables, 12(4):311–406. +Deutsch, H., Becker, K., Matt, S., and M¨ark, T. D. (2000). Theoretical determination of +absolute electron-impact ionization cross sections of molecules. International Journal of +Mass Spectrometry, 197:37–69. +Deutsch, H., Becker, K., Probst, M., and Maerk, T. D. (2009). The semiempirical Deutsch– +M¨ark formalism: A versatile approach for the calculation of electron-impact ionization +cross sections of atoms, molecules, ions, and clusters. Advances in Atomic, Molecular, and +Optical Physics, 57:87–155. +Deutsch, H. and M¨ark, T. (1987). Calculation of absolute electron impact ionization cross- +section functions for single ionization of He, Ne, Ar, Kr, Xe, N and F. International journal +of mass spectrometry and ion processes, 79(3):R1–R8. +Deutsch, H., Scheier, P., Becker, K., and M¨ark, T. D. (2004). Revised high energy behavior +of the Deutsch-M¨ark (DM) formula for the calculation of electron impact ionization cross +sections of atoms. International Journal of Mass Spectrometry, 233(1-3):13–17. +Dols, V. J., Bagenal, F., Cassidy, T. A., Crary, F. J., and Delamere, P. A. (2016). Europa’s +atmospheric neutral escape: Importance of symmetrical O2 charge exchange. +Icarus, +264:387–397. +Feldman, P. D., McGrath, M. A., Strobel, D. F., Moos, H. W., Retherford, K. D., and +Wolven, B. C. (2000). HST/STIS ultraviolet imaging of polar aurora on Ganymede. The +Astrophysical Journal, 535(2):1085. +Frank, L. A., Ackerson, K. L., Wolfe, J. H., and Mihalov, J. D. (1976). Observations of +plasmas in the Jovian magnetosphere. Journal of Geophysical Research, 81(4):457–468. +Hall, D. T., Feldman, P. D., McGrath, M. A., and Strobel, D. F. (1998). The far-ultraviolet +oxygen airglow of Europa and Ganymede. The Astrophysical Journal, 499(1):475. +14 + +Hall, D. T., Strobel, D. F., Feldman, P. D., McGrath, M. A., and Weaver, H. A. (1995). +Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature, 373(6516):677. +Huebner, W. F. and Mukherjee, J. (2015). Photoionization and photodissociation rates in +solar and blackbody radiation fields. Planetary and Space Science, 106:11–45. +Johnson, R. E. (1990). Energetic charged-particle interactions with atmospheres and surfaces. +Springer Science & Business Media. +Johnson, R. E., Boring, J. W., Reimann, C. T., Barton, L. A., Sieveka, E. M., Garrett, +J. W., Farmer, K. R., Brown, W. L., and Lanzerotti, L. J. (1983). Plasma ion-induced +molecular ejection on the Galilean satellites: Energies of ejected molecules. Geophysical +research letters, 10(9):892–895. +Johnson, R. E., Carlson, R. W., Cooper, J. F., Paranicas, C., Moore, M. H., and Wong, +M. C. (2004). Radiation effects on the surfaces of the Galilean satellites. Jupiter: The +planet, satellites and magnetosphere, pages 485–512. +Johnson, R. E., Lanzerotti, L. J., and Brown, W. L. (1982). Planetary applications of ion +induced erosion of condensed-gas frosts. +Nuclear Instruments and Methods in Physics +Research, 198(1):147–157. +Khurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., Mauk, +B. H., and Kurth, W. S. (2004). The configuration of Jupiter’s magnetosphere. Jupiter: +The planet, satellites and magnetosphere, 1:593–616. +Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., and Saur, J. +(2004). Magnetospheric interactions with satellites. Jupiter: The planet, satellites and +magnetosphere, pages 513–536. +Krupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., Mauk, +B. H., Roelof, E. C., Williams, D. J., Krimigis, S. M., Kurth, W. S., Frank, L. A., and +Paterson, W. R. (2004). Dynamics of the Jovian magnetosphere. In Bagenal, F., Dowling, +T. E., and McKinnon, W. B., editors, Jupiter. The Planet, Satellites and Magnetosphere, +volume 1, pages 617–638. Cambridge University Press. +Kumar, S. and Hunten, D. M. (1982). The atmospheres of Io and other satellites. Satellites +of Jupiter, pages 782–806. +Lanzerotti, L. J., Brown, W. L., Poate, J. M., and Augustyniak, W. M. (1978). On the +contribution of water products from Galilean satellites to the Jovian magnetosphere. Geo- +physical Research Letters, 5(2):155–158. +Leblanc, F., Oza, A. V., Leclercq, L., Schmidt, C., Cassidy, T., Modolo, R., Chaufray, J.-Y., +and Johnson, R. E. (2017). On the orbital variability of Ganymede’s atmosphere. Icarus, +293:185–198. +Moore, J. M. et al. (1999). Mass movement and landform degradation on the icy Galilean +satellites: Results of the Galileo nominal mission. Icarus, 140(2):294–312. +15 + +Nerney, E. G., Bagenal, F., and Steffl, A. J. (2017). Io plasma torus ion composition: Voy- +ager, Galileo, and Cassini. Journal of Geophysical Research (Space Physics), 122(1):727– +744. +Neubauer, F. M. (1998). The sub-Alfv´enic interaction of the Galilean satellites with the +Jovian magnetosphere. Journal of Geophysical Research: Planets, 103(E9):19843–19866. +Paranicas, C., Mauk, B. H., Kollmann, P., Clark, G., Haggerty, D. K., Westlake, J., Liuzzo, +L., Masters, A., Cassidy, T. A., Bagenal, F., and Bolton, S. (2022). Energetic charged +particle fluxes relevant to Ganymede’s polar region. Geophysical Research Letters, page +e2022GL098077. +Reimann, C. T., Boring, J. W., Johnson, R. E., Garrett, J. W., Farmer, K. R., Brown, W. L., +Marcantonio, K. J., and Augustyniak, W. M. (1984). Ion-induced molecular ejection from +D2O ice. Surface science, 147(1):227–240. +Roth, L. (2021). +A stable H2O atmosphere on Europa’s trailing hemisphere from HST +images. Geophysical Research Letters. +Roth, L., Ivchenko, N., Gladstone, G. R., Saur, J., Grodent, D., Bonfond, B., Molyneux, +P. M., and Retherford, K. D. (2021). +A sublimated water atmosphere on Ganymede +detected from Hubble Space Telescope observations. Nature Astronomy, pages 1–9. +Roth, L., Marchesini, G., Becker, T. M., Hoeijmakers, H. J., Molyneux, P. M., Rether- +ford, K. D., Saur, J., Carberry Mogan, S. R., and Szalay, J. R. (2023). +Probing +Ganymede’s atmosphere with HST Ly-alpha images in transit of Jupiter. arXiv preprint +arXiv:2301.05583. +Roth, L., Retherford, K. D., Ivchenko, N., Schlatter, N., Strobel, D. F., Becker, T. M., and +Grava, C. (2017). Detection of a hydrogen corona in HST Lyα images of Europa in transit +of Jupiter. The Astronomical Journal, 153(2):67. +Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., +Spencer, J. R., Bl¨ocker, A., and Ivchenko, N. (2016). Europa’s far ultraviolet oxygen +aurora from a comprehensive set of HST observations. Journal of Geophysical Research: +Space Physics, 121(3):2143–2170. +Rubin, M., Jia, X., Altwegg, K., Combi, M. R., Daldorff, L. K. S., Gombosi, T. I., Khu- +rana, K., Kivelson, M. G., Tenishev, V. M., T´oth, G., van der Holst, B., and Wurz, P. +(2015). Self-consistent multifluid MHD simulations of Europa’s exospheric interaction with +Jupiter’s magnetosphere. Journal of Geophysical Research: Space Physics, 120(5):3503– +3524. +Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P., and Kivelson, M. G. (2004). Plasma +interaction of Io with its plasma torus. Jupiter: The planet, satellites and magnetosphere, +1:537–560. +16 + +Saur, J., Strobel, D. F., and Neubauer, F. M. (1998). Interaction of the Jovian magnetosphere +with Europa: Constraints on the neutral atmosphere. Journal of Geophysical Research: +Planets, 103(E9):19947–19962. +Smith, E. J., Davis Jr, L., Jones, D. E., Coleman Jr, P. J., Colburn, D. S., Dyal, P., Sonett, +C. P., and Frandsen, A. M. A. (1974). The planetary magnetic field and magnetosphere +of Jupiter: Pioneer 10. Journal of Geophysical Research, 79(25):3501–3513. +Smyth, W. H. and Marconi, M. L. (2006). Europa’s atmosphere, gas tori, and magnetospheric +implications. Icarus, 181(2):510–526. +Spencer, J. R. (1987). Thermal segregation of water ice on the Galilean satellites. Icarus, +69(2):297–313. +Spencer, J. R. and Maloney, P. R. (1984). Mobility of water ice on Callisto: Evidence and +implications. Geophys. Res. Letters, 11(12):1223–1226. +Strobel, D. F., Saur, J., Feldman, P. D., and McGrath, M. A. (2002). Hubble Space Telescope +Space Telescope Imaging Spectrograph search for an atmosphere on Callisto: A Jovian +unipolar inductor. The Astrophysical Journal Letters, 581(1):L51. +Szalay, J. R., Smith, H. T., Zirnstein, E. J., McComas, D. J., Begley, L. J., Bagenal, F., +Delamere, P. A., Wilson, R. J., Valek, P. W., Poppe, A. R., N´enon, Q., Allegrini, F., +Ebert, R. W., and Bolton, S. J. (2022). +Water-group pickup ions from europa-genic +neutrals orbiting jupiter. Geophysical Research Letters, page e2022GL098111. +Trainor, J. H., McDonald, F. B., Teegarden, B. J., Webber, W. R., and Roelof, E. C. +(1974). Energetic particles in the Jovian magnetosphere. Journal of Geophysical Research, +79(25):3600–3613. +Vorburger, A., Fatemi, S., Galli, A., Liuzzo, L., Poppe, A. R., and Wurz, P. (2022). 3D +Monte-Carlo simulation of Ganymede’s water exosphere. Icarus, 375:114810. +Wolfe, J. H., Collard, H., Mihalov, J., and Intriligator, D. (1974). Preliminary Pioneer 10 +encounter results from the Ames Research Center plasma analyzer experiment. Science, +183(4122):303–305. +Yung, Y. L. and McElroy, M. B. (1977). Stability of an oxygen atmosphere on Ganymede. +Icarus, 30(1):97–103. +17 + diff --git a/0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/load_file.txt b/0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d4ef22999fd8d2e76e449a08fe1d073d90e86e25 --- /dev/null +++ b/0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/load_file.txt @@ -0,0 +1,1187 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf,len=1186 +page_content='Electron Impact Ionization in the Icy Galilean Satellites’ Atmospheres Shane R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Carberry Mogan1,∗, Robert E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Johnson2,3, Audrey Vorburger4, Lorenz Roth5 1Space Sciences Laboratory, University of California, Berkeley, Berkeley, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2University of Virginia, Charlottesville, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 3New York University, New York, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 4University of Bern, Bern, Switzerland;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 5KTH Royal Institute of Technology, Stockholm, Sweden;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' ∗Corresponding author: Shane R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Carberry Mogan (CarberryMogan@Berkeley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='edu) Abstract Electron impact ionization is critical in producing the ionospheres on many plan- etary bodies and, as discussed here, is critical for interpreting spacecraft and tele- scopic observations of the tenuous atmospheres of the icy Galilean satellites of Jupiter (Europa, Ganymede, and Callisto), which form an interesting planetary system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' For- tunately, laboratory measurements, extrapolated by theoretical models, were devel- oped and published over a number of years by K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Becker and colleagues (see Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2009) to provide accurate electron impact ionization cross sections for atoms and molecules, which are crucial to correctly interpret these measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Because of their relevance for the Jovian icy satellites we provide useful fits to the complex, semi-empirical Deutsch–M¨ark formula for energy-dependent electron impact ioniza- tion cross-sections of gas-phase water products (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', H2O, H2, O2, H, O).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' These are then used with measurements of the thermal plasma in the Jovian magnetosphere to produce ionization rates for comparison with solar photo-ionization rates at the icy Galilean satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1 Introduction Since Galileo Galilei’s revolutionary discovery that Jupiter, the largest planet in the solar system, has four large planetary bodies revolving around it – the “Galilean” satellites: Io, Europa, Ganymede, and Callisto – our fascination with this planetary system has only grown with the advancement of observational technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Several spacecraft have been sent directly to or have at least passed by the Jovian system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' In the 1970s, Pioneer 10 & 11 and Voyager 1 & 2 utilized Jupiter’s gravity to enhance their trajectories and observed the giant planet and its moons up-close.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' From 1995–2003 Galileo orbited Jupiter, and made several close encounters with the namesake moons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' At the time of this writing, the Juno spacecraft is currently orbiting Jupiter and has recently made close flybys of Ganymede and Europa with 2 flybys of Io forthcoming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' In addition to these in-situ observations, the Hubble Space Telescope (HST), which has been situated in Earth’s orbit since 1990, has been used to observe and contribute new information to our understanding of this system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' To better understand the Jovian system, the Galilean satellites, and their interconnected dynamics, as well as address certain prevailing mysteries, three forthcoming missions, ESA’s JUpiter ICy moons Explorer, NASA’s Europa Clipper, and CNSA’s Gan De, will send spacecraft back to the Jovian system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Our focus here is on the icy Galilean satellites (see Table 1) – Europa, Ganymede, and Callisto – and their tenuous atmospheres for which the dominant constituents are water 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='11380v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='EP] 26 Jan 2023 products: H2O, O2, H2, H, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Because these objects orbit Jupiter within its giant mag- netic field, they are exposed to an ambient plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Interactions between this plasma and the icy Galilean satellites’ atmospheres to a large extent determine the nature of the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' One key aspect of this interaction is the role of the plasma electrons in dissociating, ionizing, and exciting the gas-phase water products via impacts, which can produce observable emission features (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Hall et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1998, Feldman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2000, Roth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2017, Roth 2021, Roth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' In order to calculate the ionization rates to be used in future simulations of these at- mospheres, we use the extensive laboratory data of electron impact ionization cross-sections accumulated and summarized by K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Becker and his colleagues over a number of years as reviewed in Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2009) and references herein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Since the various laboratory mea- surements can exhibit differences and typically cover only a limited range of energies, the group developed a fitting procedure also presented in those papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' In this method, the Deutsch–M¨ark (DM) formula, atomic orbital basis sets are used in expressions to fit and extrapolate the measurements, as well as to generate cross-sections when measurements are unavailable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' In this way, they created a large number of energy-dependent electron impact ionization cross-section distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Although the DM formula provides a broad range of useful data, as well as allows the calculation of results for molecular targets to be determined from the constituent atomic orbitals, it is not easily implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' For example, in detailed molecular kinetic simulations much simpler calculations are more often made, such as those recently implemented in Carberry Mogan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2022) for describing electron impacts in Cal- listo’s atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' More readily useful expressions are needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Therefore, here we present much more simplified fits to the results obtained via the DM formula, which we then use with electron density and temperature data at the icy Galilean satellites to calculate ionization rates in their atmospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' These rates are in turn needed to help interpret past, present, and future spacecraft and telescopic observations of these topical planetary bodies soon to be visited by several new spacecraft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Before we discuss the derivation of the electron impact ionization cross-section fits (Sec- tion 3) and present the corresponding ionization rates for each species considered (Section 4), we first review the local space environment of the icy Galilean satellites, particularly the Jovian magnetospheric plasma in which they are embedded, as well as the observations of water products in their atmospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2 Background The strong dynamo generated within the interior of Jupiter produces its magnetic field, which has a rotation period of ∼10 h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Jupiter’s magnetosphere, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', the environment controlled by the planet’s magnetic field, is filled with charged particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' While the volcanic moon Io is the main source, materials from the icy Galilean satellites’ surfaces are also a source of charged particles (either directly ionized or lost as neutrals and ionized later in the magnetosphere) (Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2004, Kivelson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2004), which are picked-up, accelerated, and then become “trapped” by this rapidly rotating field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The combination of this fast rotating magnetic field and the large number of charged particles trapped within it gives rise to the plasma detected in Jupiter’s immense magnetosphere, which can extend as far as 45–100 RJ from the planet, where RJ = 71, 492 km is the radius of Jupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The Jovian magnetosphere 2 is typically divided up into three regions: the inner (<10 RJ), the middle (10–40 RJ), and the outer (>40 RJ) regions (Khurana et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2004);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Europa resides within the inner region, while Ganymede and Callisto reside in the middle region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The Jovian magnetospheric plasma is typically described as being comprised of two populations: a “cold” thermal plasma with energies < 1 keV and a “hot” energetic plasma with energies ≥ 1 keV (Krupp et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2004, Bagenal and Delamere, 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Both populations are composed of electrons, as well as H+, On+, and Sn+ ions (Bagenal and Sullivan, 1981, Broadfoot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1981, Nerney et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The sulfur and oxygen ions, both of which are of various charge states, primarily originate from the volcanic moon Io (Bagenal and Dols, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' On the other hand, the hydrogen ions originate from two different sources depending on the magnetospheric region: in the inner region, they mainly originate in Jupiter’s atmosphere;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and in the middle and outer magnetosphere, the solar wind can gain access to the magnetosphere, becoming the main provider of hydrogen ions thereafter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' An additional plasma contribution (electrons, H+, On+) is associated with sputtering of the icy satellite’s surfaces (Cooper et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2001, Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2004, Szalay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Here we focus on the thermal electrons as these particles are the most relevant to ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Physical parameters for thermal electrons at the orbits of Europa, Ganymede, and Callisto based on Voyager and Galileo data are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Table 1: Physical Parameters of Europa, Ganymede, and Callisto, as well as of the Jovian magnetosphere at their orbits Parameters [units] Europa Ganymede Callisto Radius [km] 1,561 2,631 2,410 Mass [(×1023) kg] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='48 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1 Distance from Jupiter [RJ] 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='38 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='3 Orbital Velocity [km s−1] 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='7 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='9 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='20 Thermal Electron Density [cm−3] 18–290 a,b 1–10 a,c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='01–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1 a,c Thermal Electron Temperature [eV] 10–30 b 100 c 100 c Thermal Electron Flux d [cm−2 s−1] (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='4–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1)×1011 e (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='7–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='7)×109 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='08–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='4)×108 Plasma Azimuthal Velocity [km s−1] 90 a 150 a 200 a Relative Plasma Velocity f [km s−1] 76 a 139 a 192 a a Values taken from Kivelson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2004) and references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' b Values taken from Bagenal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' c Values taken from Neubauer (1998) and references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' d Thermal electron flux, φe = neve, where ne is the thermal electron density, ve = � 8kBTe/π/me is the mean Maxwellian speed of the electrons, with kBTe the thermal electron temperature, kB the Boltzmann constant, and me the mass of an electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' e φe calculated according to the “low/hot” (kBTe = 30 eV, ne = 63 cm−3) and “high/cold” (kBTe = 10 eV, ne = 290 cm−3) plasma components from Table 5 in Bagenal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' g Relative speed between plasma azimuthal velocity and the satellites’ orbital speeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 3 As a result of the large relative velocities between the azimuthal velocity of the Jovian magnetosphere and the icy Galilean satellites’ orbital velocities (Table 1), the satellites are continuously overtaken and bombarded by the magnetospheric plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The spatial distribution of this bombardment is determined by the flow rate of the plasma particles past the satellite as well as their thermal velocities relative to the local magnetic field lines (Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' However, intrinsic or induced electric and magnetic fields as well as the interactions with the tenuous atmospheres and ionospheres at these satellites can radically modify the local fluxes of impinging particles at Ganymede (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', from Paranicas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2022) and at Callisto (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', from Strobel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The cyclotron radii or gyro- radii of these charged particles depend on their mass, speed, and charge, as well as the local magnetic field strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Due to their small mass, electrons primarily have gyro-radii much smaller than the satellite radius, and thus preferentially impact the satellites’ trailing hemispheres and poles as they move up and down the rotating field lines (Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Following the Pioneer discovery of intense plasma trapped in the Jovian magnetic field (Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1974, Wolfe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1974, Trainor et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1974, Frank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1976) a series of ex- periments were carried out to measure the effect this could have on the icy surfaces of Europa, Ganymede, and Callisto (Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1978, Lanzerotti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' These experiments showed that the ejection of water molecules from low-temperature ices by incident energetic particles, a process referred to as “sputtering”, is dominated by electronic excitations and ionizations produced in the ice (“electronic” sputtering), rather than by “knock-on” colli- sions of the ions with water molecules (“nuclear” sputtering), the hitherto typically studied sputtering process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Subsequent experiments led to the discovery that additional molecular species can form in and be released from the ice, namely H2 and O2, in a process referred to as “radiolysis” (Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1982, Boring et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1983, Reimann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1984, Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1984), which occurs as bonds in H2O molecules are broken by the electronic energy deposited by the impinging charged particles and the fragmented molecules recombine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Moreover, the number of radiolytic products ejected from the icy surface per each incident charged particle (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', the “sputter yield”) was shown to display a strong temperature dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' These discoveries had immense implications for the icy Galilean satellites: magneto- spheric plasma-induced sputtering could erode their surfaces, and the ejected atoms and molecules could migrate significant distances as well as escape the local gravitational en- vironment of its host satellite or form gravitationally bound atmospheres (Johnson, 1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Indeed Europa was predicted to have a tenuous, predominantly O2 atmosphere due to the radiolytic decomposition of its icy surface by the incident Jovian plasma particles (Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1982, 1983, Johnson, 1990), which has been borne out by extensive HST observations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Roth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2016, and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Tenuous O2 atmospheres produced via similar processes have also been detected at Ganymede and Callisto: following the HST detection of O emissions indicative of an O2 atmosphere at Europa (Hall et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1995), airglow emissions were detected by HST in Ganymede’s O2 atmosphere (Hall et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1998) as well as in Europa’s atmosphere thereby confirming the earlier observation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' O emissions were detected by HST in Callisto’s atmosphere (Cunningham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2015), which were suggested to be induced by photoelectron impacts in a near-surface, O2-dominated atmosphere;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and recently atomic O emissions have been detected at Ganymede (Roth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2021) indicative of being produced via dissociative excitations of O2 (and H2O).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 4 Although H2 can more readily escape from the atmospheres of these bodies than can the concomitant radiolytically produced O2, a steady-state H2 atmospheric component can also form (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Carberry Mogan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Atomic H, the dissociated product of H2, has also been detected at Callisto (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Roth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2017, Carberry Mogan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Moreover, Carberry Mogan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2022) and Roth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2023) recently suggested that the H detected in the extended atmospheres of Europa (Roth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2017, 2023) and Ganymede (Barth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1997, Feldman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2000, Alday et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2017, Roth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2023) are also indicative of an H2- source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Although H2 is able to escape from these satellites’ atmospheres, it does not escape from the Jovian system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and since its lifetime is longer than the satellites’ orbital periods (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Smyth and Marconi (2006), Leblanc et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2017), Carberry Mogan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2022)), a detectable toroidal cloud of neutral H2 co-rotating with the bodies can form (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Szalay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The sputtering and radiolytic sources of the icy Galilean satellites’ atmospheres compete with other sources, such as sublimation of water ice and the subsequent photochemistry of the newly formed water vapor (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Yung and McElroy 1977, Kumar and Hunten 1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' However, with increasing distance from Jupiter, the plasma density and, as a result, the corresponding atmospheric source decreases (Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' For example, although gas-phase H2O has not been directly observed at Callisto, the outermost Galilean satellite, observed geomorphological features have been interpreted to be caused by sublimation of the surface ice rather than by sputtering (Spencer and Maloney, 1984, Spencer, 1987, Moore et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Further, whereas sublimation has been suggested to be the primary source of Ganymede’s H2O atmosphere (Roth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2021, Vorburger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2022), sputtering has been suggested to be a primary source of Europa’s H2O atmosphere (Addison et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Below we focus on deriving thermal electron impact ionization rates in these icy satellites’ atmospheres, which are needed to help understand their evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 3 Method The Deutsch-M¨ark (DM) formula was developed to employ and extrapolate laboratory data to allow users to estimate reasonably accurate electron impact ionization cross-sections, σ(E), over a large range of energies, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The “modified” DM formula (Appendix A) from Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2004), hereafter referred to as “DM2004,” is a revised version of the original formula developed by Deutsch and M¨ark (1987) and used to calculate cross-sections up to energies ≲ keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' As discussed by Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2000), hereafter referred to as “DM2000,” and references therein, σ(E) for atoms (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', H and O) can be converted to σ(E) for molecules composed of those atoms (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', H2O, O2, and H2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Here we present more easily usable fits to these complex models for species of interest to the planetary science community, and of particular interest at icy satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' An exponentially modified Gaussian distribution is used to compute a non-linear least-squares fit to σ(E) derived for H, O, H2, O2, and H2O using DM2000 and DM2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The resulting equation is as follows (in units of ×10−16 cm2): σ(E) = α 2δ exp � γ2 2δ2 + β − log10(E) δ � � erf �log10(E) − β √ 2γ − γ √ 2δ � + δ |δ| � + ϵ, (1) 5 where the coefficients α, β, γ, δ, and ϵ in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1 for H, O, H2, O2, and H2O are listed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Table 2: Coefficients in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1 for H, O, H2, O2, H2O Species α β γ δ ϵ H 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='951653 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='40862 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='271538 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='804953 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='0397646 O 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='91899 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='72847 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='333420 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='864596 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='121378 H2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='27256 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='39600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='277991 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='08255 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='278929 O2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='20403 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='63262 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='241759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='799914 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='0876336 H2O 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='41745 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='48743 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='291951 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='01222 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='527864 4 Results Electron impact ionization cross-sections, σ(E), for H, O, H2, O2, and H2O as derived by DM2000 and DM2004, as well as the corresponding fits calculated via Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1 with the coefficients from Table 2, are illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' These fits, of course, account for the ionization threshold energies occurring around 10 and 20 eV for the species considered (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', see Tables A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1–A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='2 in Appendix A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' By about ∼20 eV, the difference in σ(E) derived by DM2000/DM2004 and by the corresponding fits for all of the species considered fall below 10%, except for that of O, which drops below 10% between 20 and 30 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' From these lower bounds up to 1 keV, the difference remains below 10% for all species considered except for H2, for which it exceeds 10% by ∼800 eV but is only ∼14% by 1 keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Thus, between ∼20 eV– 1 keV (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', between the ionization energy of the species considered, (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Tables A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1–A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='2 in Appendix A), and the maximum energy of the thermal electrons in the Jovian magnetosphere at the icy Galilean satellites, Table 1), the fits provided here can determine electron impact ionization cross-sections within ∼10% accuracy of those determined via the more complex DM models, which have been extensively tested, modified, and improved over the years, demonstrating agreement with experimental data better than ∼20–35% (Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2009 and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' With the thermal electron fluxes and temperatures listed in Table 1, we use the fits for electron impact ionization cross-sections presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1 to determine the corresponding ionization rates in the water product atmospheres of Europa, Ganymede, and Callisto, which are presented in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The difference in σ(E) derived by DM2004 and by the corresponding fit for O electron impact ionization cross-section at 20 eV is ∼32%, making the latter (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1) in the region of Europa’s orbit not as accurate as those of the other species, for which the difference is always < 10% (Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' However, by 30 eV the difference for all species drops to < 5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The differences for electron impact ionization rates at incident electron energies of 100 eV at Ganymede and Callisto are < 3% for all species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' We compare these electron impact ionization rates to the analogous photoionization rates derived according 6 Figure 1: Top panel: Electron impact ionization cross-section, σ(E), for H (red lines), O (blue lines), H2 (green lines), O2 (cyan lines), and H2O (magenta lines) as a function of incident electron energy, E (x-axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The dashed colored lines are from Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2000) (“DM2000”) for H2, O2, and H2O and from Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2004) (“DM2004”) for H and O;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and the solid colored lines are the corresponding fits (“Fit”) calculated via Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1 with the coefficients from Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Note the values for σ(E) begin at the ionization energies of the species considered (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Tables A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1–A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='2 in Appendix A), hence the blank spaces below these energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Bottom panel: The dash-dotted colored lines represent the difference between σ(E) calculated via DM2000/DM2004 and via Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1, |fit−DM2000/2004| DM2000/2004 ×100 (“Error”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' to solar activity (Huebner and Mukherjee, 2015) in Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1 in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Since the electron temperature for the “high/cold” plasma component at Europa (Table 1) is less than the ionization energies of the atoms and molecules considered (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Tables A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='2 in Appendix A), we show ionization rates over a temperature range of 20–30 eV (“medium” to “low/hot” plasma components from Bagenal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' At Europa and Ganymede, electron impact ionization rates are greater than the photoionization rates for all species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' On the other hand, at Callisto, where there is the most uncertainty in electron densities (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Table 1), the upper bound electron impact ionization rates are greater than the upper bound photoionization rates for all species, but the lower bound electron impact ionization rates are less than the lower bound photoionization rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' We note, however, that the electron impact ionization rates relate to the upstream plasma properties, and the effective electron impact ionization strongly depends on the details of the interaction of the plasma flow with the moons’ atmospheres and ionospheres, which cool as well as divert the plasma around the moons (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Saur et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1998, 2004, Rubin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2015, Dols et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 7 Energy, E[eV] 101 102 103 7 10-15 cm H 10-17 0 H2 02 H20 10-19 100 Fit 90 DM2000 80 0054320 /DM2004 Error Error[ 102 103 101 Energy, E[eV]Table 3: Electron impact ionization cross-sections and rates in the water product atmo- spheres of Europa (E), Ganymede (G), and Callisto (C) Species Satellite Cross-Sectiona [cm−2] Rateb [s−1] Errorc [%] H E (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='07–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='11)×10−17 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='57–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='57)×10−6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='96–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='93 G 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='48×10−17 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='384–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='67)×10−7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='34 C 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='38×10−10 – 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='06×10−8 O E (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='495–2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='72)×10−17 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='414–2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='97)×10−6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='92–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='6 G 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='03×10−16 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='719–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='88)×10−7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='36 C 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='22×10−10 – 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='60×10−8 H2 E (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='99–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='52)×10−17 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='34–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='20)×10−6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='64–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='86 G 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='48×10−17 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='664–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='35)×10−7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='04 C 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='58×10−10 – 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='01×10−8 O2 E (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='98–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='80)×10−17 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='66–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='50)×10−6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='22–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='91 G 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='22×10−16 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='155–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='49)×10−6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='12 C 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='77×10−9 – 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='64×10−7 H2O E (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='401–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='24)×10−16 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='336–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='36)×10−5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='63–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='82 G 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='00×10−16 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='140–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='34)×10−6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='16 C 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='60×10−9 – 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='47×10−7 a Electron impact ionization cross-sections are calculated via Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1 at 20–30 eV for Europa and 100 eV for Ganymede and Callisto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Note we only consider temperatures kBTe ≥ 20 eV at Europa because the minimum temperature, kBTe = 10 eV (Table 1), is lower than the ionization energies of the species considered (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Tables A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1–A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='2 in Appendix A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' b Electron impact ionization rates are calculated as the product of the electron impact ionization cross- sections and the range in thermal electron fluxes given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Note, since the minimum temperature at Europa, kBTe = 10 eV, is lower than the ionization energies of the species considered, the lower bound thermal electron flux is calculated according to the “medium” plasma component (kBTe = 20 eV, ne = 158 cm−3) from Bagenal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2015), Table 5 therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' c The differences in the cross-sections derived by DM2000/DM2004 and by the corresponding fits, the “errors,” are interpolated from that illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 1 at 20–30 eV for Europa (with the lower value calculated at 30 eV) and 100 eV for Ganymede and Callisto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 5 Conclusion The importance to the space physics community of data on atomic and molecular processes driven by an ambient plasma cannot be overstated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' There are so many difficult but important observations whose interpretation is limited by the uncertainties in the atomic and molecular database or by the limited range of energies and species studied in the laboratory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Therefore, 8 the combination of laboratory measurements with detailed, physically-based extrapolation procedures, as carried out by K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Becker and colleagues, will continue to be incredibly useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Because the accurate DM formula used to develop useful electron impact cross sections over a large range of energies requires a considerable understanding of atomic physics, here we present more readily useful fits to their detailed analyses for use by the space physics community in order to prepare for the expected data from the forthcoming observations of plasma-atmosphere interactions at the icy Jovian satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' These are used to show the relative importance of electron impact ionization in the icy Galilean satellites’ atmospheres as compared to photo-ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Finally, this study can be summarized as followed: Fits to the Deutsch–M¨ark formula for energy-dependent electron impact ionization cross-sections have been derived for H2O, H2, O2, H, O from the species’ minimum ionization energies up to 1 keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' These cross-sections are used in tandem with electron data at the orbits of Europa, Ganymede, and Callisto to determine the corresponding electron impact ionization rates in these bodies’ water-product atmospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' At Europa and Ganymede the electron impact ionization rates are shown to exceed the photoionization rates, whereas at Callisto, where the electron densities vary the most, likely a result of the moon being inside or outside of the Jovian plasma sheet, the electron impact ionization rates can be more or less than the photoionization rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 9 Appendix A DM Formula The “modified” DM formula (Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 2004) derives the total energy-dependent electron-impact ionization cross section, σ(E), of an atom as: σ(E) = � n,l πgn,lr2 n,lξn,lb(q) n,l(u) [ln(cn,lu)/u] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2) Here rn,l is the radius of maximum radial density of and ξn,l is the number of electrons in the atomic subshell characterized by quantum numbers n and l;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' gn,l is a weighting factor originally determined from a fitting procedure;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' u = E/En,l, where E is the incident energy of the electrons and En,l is the ionization energy in the (n, l) subshell;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and cn,l is a constant determined from measured cross-sections for various values of n and l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Tables A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='2 list values for the various terms in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2 for H and O atoms, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The energy-dependent function b(q) n,l(u) [ln(cn,lu)/u] allows the DM formula to be applied up to keV-energy regimes, with b(q) n,l(u) written as the following: b(q) n,l(u) = A1 − A2 1 + (u/A3)p + A2, (3) where A1−3 and p are constants determined from measured cross-sections for various values of n and l, and the superscript (q) refers to the number of electrons in the (n, l) sub- shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Tables A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='3 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='4 list values for the various terms in the energy-dependent function b(q) n,l(u) [ln(cn,lu)/u] for H and O atoms, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' We refer the reader to the review by Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2009) for how σ(E) of atoms are used to calculate σ(E) of molecules com- posed of those atoms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', how to estimate σ(E) of H2, O2, and H2O from σ(E) of H and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 10 Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1: Various terms in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2 for electron impact ionization cross-section of H atoms n l ξn,l En,l a [eV] rn,l a [(×10−11) m] gn,l b 1 0 1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='81 a En,l and rn,l are taken from Tables 2 and 4 in Desclaux (1973), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' b gn,l is determined by dividing En,l from the “reduced weighting factor” gn,lEn,l = 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='20 for 1s1 in Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='2: Various terms in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2 for electron impact ionization cross-section of O atoms n l ξn,l En,l a [eV] rn,l a [(×10−11) m] gn,l b 1 0 2 563 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='684 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='124 2 0 2 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='587 2 1 4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='41 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='79 a En,l and rn,l are taken from Tables 2 and 4 in Desclaux (1973), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' b gn,l is determined by dividing En,l from the “reduced weighting factors” gn,lEn,l = 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='00, 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='00, and 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='00 for 1s2, 2s2, and 2p4, respectively, in Deutsch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='3: Various terms in the energy-dependent function b(q) n,l(u) [ln(cn,lu)/u] (Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2–3) for electron impact ionization cross-section of H atoms n l q cn,l A1 A2 A3 p 1 0 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='87 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='32 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='95 Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='4: Various terms in the energy-dependent function b(q) n,l(u) [ln(cn,lu)/u] (Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 2–3) for electron impact ionization cross-section of O atoms n l q cn,l A1 A2 A3 p 1 0 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='86 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='67 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='08 2 0 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='86 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='67 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='08 2 1 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='05 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='31 11 B Photoionization Rates Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1 lists the range of photoionization rates determined by Huebner and Mukherjee (2015) for a “quiet” Sun (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', solar minimum) – “active” Sun (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', solar maximum), which are then scaled to the average Jovian system’s distance from the Sun, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='2 AU, ignoring any possible absorption with depth into the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='1: Photoionization rates at 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='2 AU Species Rate [s−1] H (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='68–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='36)×10−9 O (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='880–2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='44)×10−8 H2 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='00–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='25)×10−9 O2 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='73–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='36)×10−8 H2O (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='22–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='06)×10−8 Acknowledgments S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' acknowledges the support provided by NASA through the Solar System Workings grant 80NSSC21K0152, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' acknowledges the support provided by the Swiss National Sci- ence Foundation, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' was supported by the Swedish National Space Agency through grant 2021-00153 and by the Swedish Research Council through grant 2017-04897.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Author Contribution Statement All authors contributed equally to this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Data Availability Statement All data generated or analyzed during this study are included in this published article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 12 References Addison, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Liuzzo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Arnold, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Simon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Influence of Europa’s time-varying electromagnetic environment on magnetospheric ion precipitation and surface weathering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research: Space Physics, 126(5):e2020JA029087.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Alday, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Roth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Ivchenko, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Retherford, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Becker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Molyneux, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Saur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' New constraints on Ganymede’s hydrogen corona: Analysis of Lyman-α emissions observed by HST/STIS between 1998 and 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Planetary and Space Science, 148:35–44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and Delamere, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Flow of mass and energy in the magnetospheres of Jupiter and Saturn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', 116:5209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and Dols, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The space environment of Io and Europa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research: Space Physics, 125(5):e2019JA027485.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Sidrow, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Wilson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Cassidy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Dols, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Crary, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Steffl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Delamere, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Kurth, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Paterson, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Plasma conditions at Europa’s orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 261:1–13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and Sullivan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research, 86(A10):8447–8466.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Barth, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Hord, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Stewart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Pryor, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Simmons, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', McClintock, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Ajello, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Naviaux, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Aiello, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Galileo ultraviolet spec- trometer observations of atomic hydrogen in the atmosphere of Ganymede.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Geophysical Research Letters, 24(17):2147–2150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Boring, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Reimann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Garret, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Brown, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Marcan- tonio, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Ion-induced chemistry in condensed gas solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research, 218(1-3):707–711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Broadfoot, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Sandel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Shemansky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', McConnell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Smith, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Holberg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Atreya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Donahue, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Strobel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Bertaux, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Overview of the Voyager ultraviolet spectrometry results through Jupiter encounter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research, 86(A10):8259–8284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Brown, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Augustyniak, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Marcantonio, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Simmons, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Boring, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Reimann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Electronic sputtering of low temperature molecular solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1(2-3):307–314.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Brown, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Augustyniak, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Simmons, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Marcantonio, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Lanzerotti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Boring, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Reimann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Foti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Pirronello, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Erosion and molecule formation in condensed gas films by electronic energy loss of fast ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research, 198(1):1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 13 Brown, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Lanzerotti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Poate, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Augustyniak, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' “Sputtering” of ice by MeV light ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Physical Review Letters, 40(15):1027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Carberry Mogan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Tucker, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Roth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Alday, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Vorburger, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Wurz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Galli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Smith, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Marchand, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Oza, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Callisto’s atmo- sphere: First evidence for H2 and constrains on H2O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research: Planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Cooper, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Mauk, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Garrett, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Gehrels, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Energetic Ion and Electron Irradiation of the Icy Galilean Satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 149(1):133–159.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Cunningham, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Spencer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Feldman, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Strobel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', France, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Osterman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Detection of Callisto’s oxygen atmosphere with the Hubble Space Telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 254:178–189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Desclaux, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Atomic data and nuclear data tables, 12(4):311–406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Deutsch, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Becker, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Matt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and M¨ark, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Theoretical determination of absolute electron-impact ionization cross sections of molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' International Journal of Mass Spectrometry, 197:37–69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Deutsch, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Becker, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Probst, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Maerk, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The semiempirical Deutsch– M¨ark formalism: A versatile approach for the calculation of electron-impact ionization cross sections of atoms, molecules, ions, and clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Advances in Atomic, Molecular, and Optical Physics, 57:87–155.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Deutsch, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and M¨ark, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Calculation of absolute electron impact ionization cross- section functions for single ionization of He, Ne, Ar, Kr, Xe, N and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' International journal of mass spectrometry and ion processes, 79(3):R1–R8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Deutsch, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Scheier, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Becker, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and M¨ark, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Revised high energy behavior of the Deutsch-M¨ark (DM) formula for the calculation of electron impact ionization cross sections of atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' International Journal of Mass Spectrometry, 233(1-3):13–17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Dols, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Cassidy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Crary, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Delamere, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Europa’s atmospheric neutral escape: Importance of symmetrical O2 charge exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 264:387–397.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Feldman, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', McGrath, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Strobel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Moos, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Retherford, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Wolven, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' HST/STIS ultraviolet imaging of polar aurora on Ganymede.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The Astrophysical Journal, 535(2):1085.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Frank, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Ackerson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Wolfe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Mihalov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Observations of plasmas in the Jovian magnetosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research, 81(4):457–468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Hall, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Feldman, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', McGrath, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Strobel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The far-ultraviolet oxygen airglow of Europa and Ganymede.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The Astrophysical Journal, 499(1):475.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 14 Hall, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Strobel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Feldman, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', McGrath, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Weaver, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Detection of an oxygen atmosphere on Jupiter’s moon Europa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Nature, 373(6516):677.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Huebner, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and Mukherjee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Photoionization and photodissociation rates in solar and blackbody radiation fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Planetary and Space Science, 106:11–45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Energetic charged-particle interactions with atmospheres and surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Springer Science & Business Media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Boring, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Reimann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Barton, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Sieveka, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Garrett, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Farmer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Brown, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Lanzerotti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Plasma ion-induced molecular ejection on the Galilean satellites: Energies of ejected molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Geophysical research letters, 10(9):892–895.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Carlson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Cooper, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Paranicas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Moore, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Wong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Radiation effects on the surfaces of the Galilean satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Jupiter: The planet, satellites and magnetosphere, pages 485–512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Lanzerotti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Brown, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Planetary applications of ion induced erosion of condensed-gas frosts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research, 198(1):147–157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Khurana, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Kivelson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Vasyliunas, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Krupp, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Woch, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Lagg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Mauk, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Kurth, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The configuration of Jupiter’s magnetosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Jupiter: The planet, satellites and magnetosphere, 1:593–616.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Kivelson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Kurth, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Neubauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Paranicas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Saur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Magnetospheric interactions with satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Jupiter: The planet, satellites and magnetosphere, pages 513–536.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Krupp, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Vasyliunas, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Woch, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Lagg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Khurana, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Kivelson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Mauk, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Roelof, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Williams, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Krimigis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Kurth, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Frank, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Paterson, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Dynamics of the Jovian magnetosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' In Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Dowling, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and McKinnon, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', editors, Jupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The Planet, Satellites and Magnetosphere, volume 1, pages 617–638.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Kumar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and Hunten, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The atmospheres of Io and other satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Satellites of Jupiter, pages 782–806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Lanzerotti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Brown, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Poate, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Augustyniak, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' On the contribution of water products from Galilean satellites to the Jovian magnetosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Geo- physical Research Letters, 5(2):155–158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Leblanc, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Oza, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Leclercq, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Schmidt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Cassidy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Modolo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Chaufray, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' On the orbital variability of Ganymede’s atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 293:185–198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Moore, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Mass movement and landform degradation on the icy Galilean satellites: Results of the Galileo nominal mission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 140(2):294–312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 15 Nerney, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Steffl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Io plasma torus ion composition: Voy- ager, Galileo, and Cassini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research (Space Physics), 122(1):727– 744.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Neubauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The sub-Alfv´enic interaction of the Galilean satellites with the Jovian magnetosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research: Planets, 103(E9):19843–19866.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Paranicas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Mauk, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Kollmann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Clark, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Haggerty, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Westlake, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Liuzzo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Masters, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Cassidy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Bolton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Energetic charged particle fluxes relevant to Ganymede’s polar region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Geophysical Research Letters, page e2022GL098077.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Reimann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Boring, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Garrett, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Farmer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Brown, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Marcantonio, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Augustyniak, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Ion-induced molecular ejection from D2O ice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Surface science, 147(1):227–240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Roth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A stable H2O atmosphere on Europa’s trailing hemisphere from HST images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Geophysical Research Letters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Roth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Ivchenko, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Gladstone, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Saur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Grodent, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Bonfond, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Molyneux, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Retherford, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A sublimated water atmosphere on Ganymede detected from Hubble Space Telescope observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Nature Astronomy, pages 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Roth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Marchesini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Becker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Hoeijmakers, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Molyneux, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Rether- ford, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Saur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Carberry Mogan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Szalay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Probing Ganymede’s atmosphere with HST Ly-alpha images in transit of Jupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' arXiv preprint arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content='05583.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Roth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Retherford, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Ivchenko, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Schlatter, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Strobel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Becker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Grava, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Detection of a hydrogen corona in HST Lyα images of Europa in transit of Jupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The Astronomical Journal, 153(2):67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Roth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Saur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Retherford, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Strobel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Feldman, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', McGrath, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Spencer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Bl¨ocker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Ivchenko, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Europa’s far ultraviolet oxygen aurora from a comprehensive set of HST observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research: Space Physics, 121(3):2143–2170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Rubin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Jia, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Altwegg, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Combi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Daldorff, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Gombosi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Khu- rana, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Kivelson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Tenishev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', T´oth, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', van der Holst, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Wurz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Self-consistent multifluid MHD simulations of Europa’s exospheric interaction with Jupiter’s magnetosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research: Space Physics, 120(5):3503– 3524.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Saur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Neubauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Connerney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Zarka, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Kivelson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Plasma interaction of Io with its plasma torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Jupiter: The planet, satellites and magnetosphere, 1:537–560.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 16 Saur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Strobel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Neubauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research: Planets, 103(E9):19947–19962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Smith, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Davis Jr, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Jones, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Coleman Jr, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Colburn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Dyal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Sonett, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Frandsen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The planetary magnetic field and magnetosphere of Jupiter: Pioneer 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research, 79(25):3501–3513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Smyth, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and Marconi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Europa’s atmosphere, gas tori, and magnetospheric implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 181(2):510–526.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Spencer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Thermal segregation of water ice on the Galilean satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 69(2):297–313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Spencer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and Maloney, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Mobility of water ice on Callisto: Evidence and implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Letters, 11(12):1223–1226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Strobel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Saur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Feldman, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and McGrath, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Hubble Space Telescope Space Telescope Imaging Spectrograph search for an atmosphere on Callisto: A Jovian unipolar inductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' The Astrophysical Journal Letters, 581(1):L51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Szalay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Smith, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Zirnstein, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', McComas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Begley, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Delamere, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Wilson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Valek, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Poppe, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', N´enon, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Allegrini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Ebert, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Bolton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Water-group pickup ions from europa-genic neutrals orbiting jupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Geophysical Research Letters, page e2022GL098111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Trainor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', McDonald, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Teegarden, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Webber, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Roelof, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Energetic particles in the Jovian magnetosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Journal of Geophysical Research, 79(25):3600–3613.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Vorburger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Fatemi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Galli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Liuzzo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Poppe, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Wurz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 3D Monte-Carlo simulation of Ganymede’s water exosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 375:114810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Wolfe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Collard, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', Mihalov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=', and Intriligator, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Preliminary Pioneer 10 encounter results from the Ames Research Center plasma analyzer experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Science, 183(4122):303–305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Yung, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' and McElroy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Stability of an oxygen atmosphere on Ganymede.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' Icarus, 30(1):97–103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} +page_content=' 17' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFIT4oBgHgl3EQf3Cv8/content/2301.11380v1.pdf'} diff --git a/1dE2T4oBgHgl3EQfigf6/content/tmp_files/2301.03960v1.pdf.txt b/1dE2T4oBgHgl3EQfigf6/content/tmp_files/2301.03960v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..394602eda625db958c55d1e1f6c4be72eda62e47 --- /dev/null +++ b/1dE2T4oBgHgl3EQfigf6/content/tmp_files/2301.03960v1.pdf.txt @@ -0,0 +1,2939 @@ +The limits of human mobility traces to predict the spread of +COVID-19 +Federico Delussu1,2, Michele Tizzoni1,3 †, and Laetitia Gauvin1,4† +1ISI Foundation, via Chisola 5, 10126, Turin, Italy +2Department of Applied Mathematics and Computer Science, DTU, +Copenhagen, Denmark +3Department of Sociology and Social Research, University of Trento, Trento, Italy +4Institute for Research on Sustainable DevelopmentIRD, UMR 215 Prodig, 5 +cours des Humanit´es, F-93 322 Aubervilliers Cedex, France +†these authors contributed equally to this work +Abstract +Mobile phone data have been widely used to model the spread of COVID-19, however, +quantifying and comparing their predictive value across different settings is challenging. +Their quality is affected by various factors and their relationship with epidemiological in- +dicators varies over time. Here we adopt a model-free approach based on transfer entropy +to quantify the relationship between mobile phone-derived mobility metrics and COVID- +19 cases and deaths in more than 200 European subnational regions. We found that past +knowledge of mobility does not provide statistically significant information on COVID-19 +cases or deaths in most of the regions. In the remaining ones, measures of contact rates +were often more informative than movements in predicting the spread of the disease, while +the most predictive metrics between mid-range and short-range movements depended on the +region considered. We finally identify geographic and demographic factors, such as users’ +coverage and commuting patterns, that can help determine the best metric for predicting +disease incidence in a particular location. Our approach provides epidemiologists and public +health officials with a general framework to evaluate the usefulness of human mobility data +in responding to epidemics. +1 +Introduction +The relationship between human movements and the spatial spread of infectious diseases has +been recognized for a long time [1, 2, 3]. +Human movement has been shown to play a key +1 +arXiv:2301.03960v1 [physics.soc-ph] 10 Jan 2023 + +role in the dynamics of several pathogens, through two basic mechanisms: traveling infectious +individuals may introduce a pathogen in a susceptible population, and, at the same time, human +movement increase the contact rate between individuals, creating new opportunities for infection. +In the past 15 years, the increasing availability of mobility data derived from mobile phones has +fueled a large body of work aimed at identifying opportunities to use them for infectious disease +modeling and surveillance [4, 5, 6, 7, 8, 9, 10]. +More recently, during the COVID-19 pandemic, mobile phone-derived data have been exten- +sively harnessed to monitor the effect of non-pharmaceutical interventions (NPIs) across coun- +tries, understand the early dynamics of COVID-19 diffusion, and forecast its spread at different +spatial scales, from countries to cities [11, 12, 13, 14, 15, 16, 17]. By measuring human move- +ments and combining them with phylogeography methods [18, 19], several studies shed light on +the cryptic spread of new variants, their persistence over time and resurgence after the relaxation +of NPIs [20, 21, 22]. +Human mobility has been shown to strongly correlate with the spread of COVID-19 during +the early phase of the outbreak in China and in many other countries [23, 24, 25, 26, 27, 28]. +However, once COVID-19 established a foothold in a population, the relative importance of +mobile phone-derived data to predict the epidemic dynamics on a local scale has been generally +less understood and several studies have shown conflicting evidence about the use of mobility +traces to model the spread of COVID-19 at later stages of the outbreak. For instance, it has been +shown that the explanatory power of mobility metrics in relation to the case growth rate in the +U.S., significantly declined in spring 2020, especially in rural areas [29, 30, 31]. Similar trends +have been observed in Europe [32]. In parallel, mobile phone-derived data have been proven +beneficial to model COVID-19 dynamics in largely populated urban areas of Western countries +[33, 34], but less so in countries of the Global South [35]. +Several reasons have been proposed to explain the varying relationship between mobility +metrics and epidemic indicators [29]. Mobility metrics are generally derived from raw mobile +positioning data through complex and customized processing pipelines that can significantly +vary across data providers [36]. +How raw data are processed, and the specific definitions of +mobility metrics can significantly impact their interpretation with respect to epidemic variables +[37]. Moreover, the relationship between mobility and epidemic patterns often relies on model- +ing assumptions, typically considering linear dependencies, that may not capture the complex +interplay of these quantities [32, 30]. Finally, mobile phone-derived metrics are generated from +a sample of users who is generally not representative of the whole population. It is therefore of +paramount importance to define standardized approaches that can quantify the added value of +mobility metrics for epidemiological analysis, and make different metrics, across settings, directly +comparable. +Here, we extensively quantify the relationship between cell phone-derived mobility metrics and +COVID-19 epidemiological indicators through a model-free approach, based on an information- +theoretic measure, transfer entropy [38], adapted for small sample sizes. Leveraging granular +2 + +data provided by Meta that capture both users’ movements and colocation at a fine spatial scale +[39], we measure the information flow between mobility metrics and time series of COVID-19 +incidence and deaths in four European countries, at a subnational scale, over a one year period. +We find that the relative information added by the past knowledge of mobility metrics to the +knowledge of the current state of COVID-19 time series is often not statistically significant. +In statistically significant cases instead, we show that the relative information added by +past knowledge of COVID-19 cases to the knowledge of current deaths is twice the information +flow between past knowledge of mobility metrics and current deaths. We also show that the +information flow of a given mobility metric to predict future COVID-19 incidence or deaths can +be significant in one country but not in another, even if derived from the same original data +source. +Being a general framework, our approach provides a quantitative measure of the relative +added explanation brought by mobile phone data to the prediction of epidemiological time series +that does not depend on the choice of a specific forecasting model. It thus helps to better identify +the most appropriate mobility metrics to use among those available. Our results can thus guide +epidemiologists and public health practitioners in the evaluation of mobile phone-derived mobility +metrics when they are interpreted as a precursor of epidemic activity. +2 +Results +Here, we first describe and then apply our framework to measure the information flow between +human mobility traces and the time evolution of COVID-19 in four European countries. +2.1 +A transfer entropy approach to link mobility behavior and COVID- +19 epidemiology +With the aim of quantifying the information flow from mobility-derived data to COVID-19 data, +we first gathered a set of mobility and epidemiological indicators. Fig. 1 provides an overview +of the datasets used in the study. In Materials and Methods, we provide a full description of all +data sources and the data processing steps. We considered four European countries – Austria, +France, Italy, and Spain – and their administrative subdivisions at NUTS3 level [40] which is +the lowest, i.e. the most granular, level of the standard hierarchy of administrative regions in +Europe (Fig. 1, leftmost column). +In all administrative regions, we collected indicators of the COVID-19 epidemic dynamics, +namely, the weekly and daily numbers of new COVID-19 cases and deaths over the period, from +September 2020 until July 2021. During this period, the dynamics of COVID-19, exemplified by +the incidence of new cases (Fig. 1, rightmost column), displayed subsequent waves, as a result of +the complex interaction between the spread of new variants, the adoption of non-pharmaceutical +interventions, the introduction of vaccines. +3 + +Figure 1: +Summary of behavioral and epidemiological indicators. +In each country +under study (from top to bottom: Italy, France, Austria and Spain), we consider three different +types of indicators: contact rates, movements (here for the sake of simplicity we only show the +short-range movements), and COVID-19 cases. In each plot, the blue shaded area highlights +the within-country variability, corresponding to time series in every administrative subdivision. +The blue solid line represents the average value. All curves are normalized between 0 and 1, +corresponding to their maximum value. +In each country, we also collected weekly and daily time series describing movements and +colocation patterns made available by Meta [41]. We computed contact rates from colocation +maps (see Material and Methods and the SI for details), which measure the probability that +two users from two locations are found in the same location at the same time [39]. Colocation +maps were generated by Meta on a weekly basis, only. To study human movement patterns, +we considered movement range maps provided by Meta, which report the number of users who +moved between any two 16-level Bing tiles with an 8 hour frequency [42]. To make colocation +and movement patterns comparable in terms of scale, we focused on short-range movements, +i.e. movements that occurred within the same tile, and we separately considered the mid-range +movements, i.e. movements that occur between two different tiles in the same province. +4 + +Country +Contact Rate +Movement +Cases +27 +2 +2 +20 +2 +DecFigure 2: Illustration of study design. We computed the transfer entropy TEX→Y to measure +the information flow between source X (on the left) and target time series Y (right), for a given +time lag l. In the figure example, as target time series we consider the number of COVID-19 +deaths, D(t). As source time series, we consider either mobility indicators, M s(t), M(t), CR(t), +or COVID-19 cases C(t). Transfer entropy quantifies the amount of information that is added +by past knowledge of mobility or cases (green and cyan bars, respectively) to current knowledge +of deaths, with respect to the knowledge of past deaths only (blue bar). After correcting the +TE for small sample sizes, and normalizing by the reference value represented by the blue bar, +we finally compare the Normalized Effective Transfer Entropy of mobility and cases (rightmost +box). +We then processed the three datasets, starting from their raw form, to aggregate them at +the NUTS3 resolution and create the time series: M s(t) for the short-range movements, M(t) +for the mid-range movements and CR(t) for the contact rates. These time series were then used +as source variables in the information-theoretic analysis. In the remainder of the paper, we will +generally refer to CR(t), M s(t), and M(t) as mobility time series as they are all derived from +human mobility data. We will also generally refer to the NUTS3 units as provinces, although +their nomenclature varies across countries. +Fig. 2 illustrates our study design based on the transfer entropy [38]. Transfer entropy is +a metric that measures the directed statistical dependence between a source and a target time +series and it has been applied to a wide range of research domains [43]. Here, our approach +consists, first, in computing the transfer entropy between mobility time series, M s(t), M(t) and +CR(t), and epidemiological time series such as the reported number of COVID-19 attributed +deaths D(t) and cases C(t), in each administrative unit, and for different temporal lags l, using +the definition of Shannon entropy, as described by the equations in Fig. 2. +Intuitively, the +transfer entropy between mobility and deaths, TEM s→D (resp. TEM→D), can be interpreted as +5 + +informationflow +mobility +p(Dt+1|Dt) +small sample correction +[+↓ +and normalization +H(DD) +cases +p(Dt+1|D) +-1± 1 +deaths +H(Dt+1Dl) = Zp(Dt+1, D) 1og +p(D+1Dthe degree of uncertainty of the reported deaths, D, at time t that is solved jointly by the time +series of deaths and mobility trends M s (resp. M) and exceeds the current degree of uncertainty +of D, which can be solved by D’s own past. +It is known that transfer entropy estimates suffer in case of small sample sizes and non- +stationarity of the source and target time series [44]. +Moreover, due to the non-parametric +nature of the transfer entropy, values computed between different source-target time series are +not directly comparable. To address these issues, we first adopted the definition of effective +transfer entropy (ETE) [44]. ETE is obtained by subtracting from the original definition of TE +a reference TE value using a shuffled version of the target time series (see Methods for details), +thus removing spurious contributions to TE due to fluctuations observed in small sample sizes. +Also, to address biases due to small sample sizes, we applied a Kernel Density Estimation, before +the time series discretization that is necessary to compute the transfer entropy. +Second, we +normalized the effective transfer entropy by the Shannon entropy of the target variable, defining +a normalized effective transfer entropy (NETE) [45]. We obtain a metric that is always positive +when it is statistically significant and whose zero value indicates the absence of information +transfer between time series. In the remainder of the article, we thus refer to the NETE between +source X and target Y as our main quantity of interest, using the symbol NX→Y to denote it. +To better understand the cause-effect relationship between mobility and COVID-19 deaths, +which are encoded in the value of NM→D ,NM s→D and NCR→D, we compared them against +the transfer entropy NC→D, where C is the time series of new COVID-19 cases. As the causal +relationship between the number of cases and deaths is established by definition, we used the +transfer entropy NC→D as a benchmark to evaluate the added value of mobility indicators to +predict COVID-19 deaths. As an example, similar values of NM s→D and NC→D would suggest +knowledge of past COVID-19 incidence encodes a similar amount of information as knowledge +of past mobility when it comes to predicting future deaths. +2.2 +The information flow between COVID-19 incidence and deaths +As previously mentioned, to gauge our transfer entropy analysis framework, we first looked at +the causal relationship between the incidence of COVID-19 cases and reported death counts. It is +clearly expected that a major source of information that provides knowledge on future deaths is +encoded in the time series of past case counts. We used the NETE to quantify such information +flow. +Fig. 3 shows the NETE between the weekly time series of COVID-19 cases and deaths in +the four countries under study. +In all countries, median values of NC→D increase from lags +equal to 1 week up to a maximum of around 2-3 weeks, and then decline rapidly beyond the +3 weeks time lag. This is in line with early estimates of the median time delay between case +reporting and fatality, which was estimated to range between 7 and 20 days in different countries +[46, 47]. At lag equal to 2 weeks, the mean relative explanation added by time series of cases +with respect to deaths – that is how much of D(t) can be explained only by the past knowledge +6 + +Figure 3: +Information flow between COVID-19 incidence and deaths. +Normalized +Effective Transfer Entropy (NETE) between COVID-19 weekly reported cases and deaths in +the NUTS3 administrative subdivisions (provinces) of Austria, France, Italy and Spain. NETE +is computed for lags ranging from 1 to 8 weeks, on the x-axis. Boxplots are computed on the +distribution of NETE values of all the administrative subdivisions in each country. The horizontal +red line marks the value NC→D = 0. +C(t − l) – is 14% (SD=8) in Spain, 8% (SD=6) in Italy, 7% (SD=5) in Austria, and 6% (SD=5) +in France. Boxplots computed on the distribution of administrative units in each country show +a substantial heterogeneity of NETE across regions for lags shorter than 4 weeks. This may +be partially explained by spatial heterogeneities in case and death reporting, and in testing +strategies. Also, NC→D values appear to be higher in Spain, with respect to the other countries. +A transfer entropy analysis of daily time series of COVID-19 cases and deaths displays consistent +results (see Fig. S1), with NETE values that fall within the same range measured on a weekly +time scale. +These results suggest NETE estimates are robust with respect to the time scale at which +source and target time series are compared. Moreover, it provides a reference value for NETE, +in terms of orders of magnitude, when the existence of a causal relationship between time series +is known. +7 + +0.4 +0.4 +Austria +France +0.3 +0.3 + 0.2 + 0.2 +0.1 +0.1 +0.0 +0.0 +1 +2 +3 +4 +5 +6 +1 +8 +1 +2 +3 +4 +5 +6 +7 +8 +Lag (weeks) +Lag (weeks) +0.41 +0.41 +Italy +Spain +0.3 +0.3 + 0.2 + 0.2 +Nc +Nc +0.1 +0.1 +0.0 +0.0 +1 +2 +3 +4 +5 +6 +7 +8 +1 +2 +3 +4 +5 +6 +8 +Lag (weeks) +Lag (weeks)→ C(t)(%) +→ D(t)(%) +l (weeks) +CR(t) +M(t) +M s(t) +CR(t) +M(t) +M s(t) +C(t) +2 +9 +19 +3 +10 +7 +7 +79 +3 +20 +23 +5 +21 +8 +13 +69 +4 +27 +22 +9 +29 +9 +16 +46 +5 +33 +23 +10 +36 +8 +17 +18 +6 +35 +27 +10 +38 +14 +17 +7 +7 +29 +25 +11 +40 +12 +14 +4 +8 +27 +20 +11 +38 +15 +12 +8 +Table 1: Percentage of statistically significant NETE values across provinces in all +the countries studied. This table shows the percentage of provinces, in all countries, in which +the NETE is statistically significant (p < 0.01) for lags (l) from 2 to 8 weeks. +2.3 +The information flow between mobility traces and COVID-19 dy- +namics +Having defined a benchmark of information transfer using NC→D, we measured the information +flow between behavioral time series of mobility indicators and COVID-19 cases and deaths. Fig. 4 +summarizes the main results of our analysis. Values of NX→D, with X being either short range +movements, mid-range movements or contact rates, were substantially smaller than NC→D in +all countries, for any given time lag l. In particular, Fig. 4a allows to compare the distributions +of NC→D, NCR→D, NM s→D, and NM→D, at the time lag l that maximized the median NETE +for weekly time series, for all indicators. We found the largest median values of the normalized +transfer entropy at l = 7 weeks for both contact rates and movements (short-range and mid- +range). The upper quartile of the NETE distributions derived from the mobility traces generally +fell below 5%, in all countries, while the lower quartile of NC→D was always above 5%. Also, +the distributions of normalized transfer entropy computed from movements were much narrower +and often including the value N = 0 within their interquartile range. Values of NM→C, shown +in Fig. 4b, display a pattern similar to the normalized transfer entropy from the mobility time +series to the death time series, with generally low values of NETE in all countries. Compared +to movement time series, contact rates led generally to relatively higher values of NETE with +both targets, cases and deaths, as shown in Fig. 4. Our result confirms the additional value +of measuring contact rates from mobile phone data, with respect to other movement metrics +[48]. Besides, it shows that short-range mobility within a province had often a limited predictive +power to capture time trends of COVID-19 spread. +To obtain a more detailed picture of the predictive power of different mobility metrics in terms +of NETE, we computed the percentage of provinces for which mobility time series provided +significant relative information added, with respect to the past knowledge of epidemiological +8 + +Figure 4: +Information flow from mobility data to COVID-19 incidence and deaths. +Comparison between the normalized effective transfer entropy computed from source time series +X and target time series of reported COVID-19 deaths D (a) and cases C (b). Source time series +are COVID-19 cases (only for deaths), contact rates, short range and mid-range movement. +Boxplots are computed from the distribution of NETE values for a given time delay, l. In panel +a: l= 2 weeks for cases, 7 weeks for contact rates and movement. In panel b: l= 6 weeks for +short range and mid-range movement. The horizontal red line marks the value NX→D = 0. +indicators only (see Tab. 1). On the one hand, our framework effectively captured the existing +causal relationship between the time evolution of cases counts and the number of deaths, as +the NETE between these indicators was statistically significant (p < 0.01) in about 80% of the +provinces, at 2 weeks lag. On the other hand, we observed a statistically significant information +transfer from mobility time series to epidemiological ones in a much smaller fraction of provinces. +Short-range movements NETE was significant in less than 20% of provinces when considered as +a predictor of both cases and deaths. Mid-range movement time series and contact rates were +significant in at most 27% and 40% of provinces. This means that in most provinces, mobility +traces did not provide any additional information to predict future COVID-19 cases or deaths, +at any lag between 2 and 8 weeks. +Measures of contact rate extracted from colocation maps were more suitable than movement +9 + +a +C +0.3 +CR +Ms +0.2 +M +XN +0.1 +0.0 +b +Austria +France +Italy +Spain +CR +0.3 +Ms +M +0.2 +C +个 +XN +0.1 +0.0 +France +Italy +Austria +Spain +Country→ C(t)(%) +→ D(t)(%) +l (weeks) +CR(t) +M(t) +M s(t) +CR(t) +M(t) +M s(t) +C(t) +2 +4 (1) +4(1) +4 (0) +4 (1) +5(2) +4 (1) +11 (6) +3 +4 (2) +4(2) +4 (1) +5 (2) +4(1) +4 (1) +9 (4) +4 +5 (2) +4(1) +4 (2) +5 (2) +4(1) +5 (2) +6 (3) +5 +5 (2) +4(1) +5 (2) +6 (3) +4(1) +5 (2) +5 (2) +6 +6 (2) +4(1) +5 (2) +6 (3) +4(2) +5 (2) +5 (2) +7 +5 (2) +5(1) +5 (2) +6 (3) +5(2) +6 (3) +5 (2) +8 +5 (3) +5(1) +5 (2) +6 (3) +5(2) +6 (3) +4 (1) +Table 2: NETE results across provinces in all the countries studied. The table shows +the average relative explanation added by source time series, with respect to past knowledge of +the target only. Only provinces having a statistically significant NETE are considered. Numbers +in parenthesis report the standard deviation computed over all provinces for which the NETE +was statistically significant. +data to capture behavioral patterns relevant to predict COVID-19 spread. +By focusing only on those provinces where we could identify a significant information flow +between mobility traces and COVID-19 indicators, we observe that the averaged relative expla- +nation added by mobility data with respect to the epidemiological data ranges between 4 − 6%, +which is about half of the averaged relative explanation added by past knowledge of cases to the +prediction of future deaths (see Tab. 2 and Figs. S2-S9 in the SI). +As a sensitivity analysis, we also computed the NETE on a shorter time window, between +September 2020 and January 2021, to exclude the confounding effect of the introduction of na- +tionwide vaccination programs. Since in those months all countries adopted mobility restrictions +to mitigate the fall COVID-19 wave, we expect a stronger relationship between mobility and +COVID-19 cases. Indeed, during this time frame, the information flow between movement time +series and COVID-19 cases was consistently higher than in the full study period (see Fig. S10). +This result indicates that, provided with time series of adequate size, the NETE can effectively +capture the time-varying relationship between human mobility time trends and COVID-19 dy- +namics. +2.4 +Identifying the determinants of mobility data predictive power for +COVID-19 +Maps of Fig. 5 highlight the spatial heterogeneity of NX→D values observed within the same +country, Spain, for a given time lag and different source time series (see Figs. S11 - S13 for +the maps of Austria, France, and Italy). As previously mentioned, NC→D displays higher and +significant values in most of the country (Fig. 5a), with very few exceptions, while statistically +10 + +Figure 5: +Spatial variations of normalized effective transfer entropy. Maps of NETE +values computed for different source time series and weekly COVID-19 deaths, in the provinces +of Spain: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7 +weeks, (c) source is short-range movement at lag l=7 weeks. (d) source is mid-range movement +at lag l=7 weeks. Dark grey indicates provinces with non-significant values of NETE (p > 0.01). +Provinces in white are excluded from our sample. +significant values of NM s→D are found only in 16 provinces out of 42 (Fig. 5c). +To better understand the observed heterogeneity in NETE, and identify those features that +can predict the likelihood to observe a statistically significant information transfer from mobility +11 + +b +a +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +Nc-→D +NcR→D +d +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +Nms→D +NM-Dp ≥ 0.01 +p <0.01 +precision +0.64 +0.90 +recall +0.95 +0.47 +f1-score +0.77 +0.62 +(a) Movement +p ≥ 0.01 +p<0.01 +precision +0.71 +0.92 +recall +0.95 +0.61 +f1-score +0.81 +0.74 +(b) Contact rate +Table 3: Classification performance metrics. Summary of model’s classification performance +to predict the statistical significance of NETE at the p < 0.01 threshold when the input source +is short-range movement (a) or contact rate (b) and target variable are COVID-19 deaths. +to COVID-19 death counts, we resorted to a classification model. Namely, we used a random +forest classifier to predict when the value NX→D is more likely to be statistically significant, using +short-range movement and contact rate as source time series. We focused on these two metrics +as they are quantities measured at the same spatial scale. Moreover, short-range movements +represent on average 90% or more of all movements within a province (see Table S1). As input +features to the model, we considered a set of attributes of the provinces in each country. In +particular, we investigated the effects of population size, province area in square kilometers, the +density of Facebook users, the number of total cumulative deaths, the ratio between the number +of commuters traveling from or to the province, and those who live and work there, as reported +by the census (commuting flow), and the coverage consistency, that is the correlation over time +between the number of Facebook users sharing their location and the number of Facebook users +taken into account to compute the colocation maps. +The results summarized in Tab. 3 show that the model achieves a good overall performance in +terms of precision and recall, as indicated by f1-scores generally higher than 0.6. In particular, of +all provinces that are classified by the model as characterized by a statistically significant value of +NETE, 90% or more display a significant transfer of information, as shown by precision values. +On the other hand, the model’s recall is close to 0.95 when it comes to identifying provinces +characterized by a not statistically significant NETE, therefore the model correctly identifies +95% of those provinces where there is no actual transfer of information between mobility and +deaths. +To explore the importance of province features in our classification model, we examined the +SHAP (SHapley Additive exPlanations) values associated with each, as shown in Fig. 6. SHAP +is a method based on a game theoretic approach to explaining the output of classification mod- +els [49]. As expected, the choice of the time lag to compute the NETE is crucial in determining +the presence of a significant information transfer between mobility metrics and epidemiological +indicators. Indeed, lag is ranked as the most and second most important feature explaining the +classification, for contact rate and short-range movement, respectively. Commuting flow is the +most important predictor of the statistical significance of NETE between short-range movements +12 + +(a) Movement +(b) Contact rate +Figure 6: SHAP plots of feature importance to predict the statistical significance of +the NETE for all selected provinces. Color represents the feature value (blue is low and +red is high). Panel a describes the results for NM s→D, panel b for NCR→D. The SHAP value, +on the horizontal axis, indicates the feature importance on the model output, with larger values +corresponding to higher relevance. Each dot represents a single observation. Features are ranked +by importance. +and deaths: when the number of commuters leaving or entering a province represents an impor- +tant fraction with respect to those who remain within the province, the relationship between +short-range mobility and COVID-19 dynamics gets weaker. However, the same feature has only +a marginal impact on the NETE between contact rates and deaths, which suggests contact rate +should be preferred over short-range movements to predict epidemic outcomes when a province is +characterized by large population inflows/outflows. Province area and population size have also +a significant impact on the information transfer between short-range movement and COVID-19 +deaths. Indeed, a larger area and population size correspond to a higher likelihood of NETE +significance for short-range movements. +This effect may partly explain why we observed NETE values that were statistically significant +only in a few provinces of Austria, where spatial units were particularly small. When looking at +the information flow between contact rates and time series of deaths, the total cumulative deaths +represent an important explanatory variable for the classification model. Besides the analysis +presented in Fig. 6 suggests that the coverage consistency needs to be sufficiently high in order +to get a statistically significant transfer entropy from contact rate to deaths. In France, where in +most provinces the coverage consistency is low and the commuting inflow and outflow are higher +than in other countries (see Table S2), mid-range movements seem to provide a better alternative +to contact rates and short-range movements to partially explain time trends of COVID-19 cases +and deaths (see Fig. S14 of the SI). +13 + +High +flow +6 +Feature value +area +population +cumulated deaths +user density +D.3D.2D.10.D +0.1 +0.2 +0.3 +0.4 +SHAP value (impact on mpdel output)High +lag +cumulated deaths +coverage consistency +Feature value +population +flow +area +Wser density +D.4D.3D.2D.10.D +0.1 +0.2 +0.3 +SHAP value (impact on mpdel output)From our analysis, we thus conclude that NETE values computed using contact rates as +source time series are less sensitive to the province’s geographic or demographic features, rather +than to the noise of the target time series. Given good coverage, and consistency over time, +contact rates thus represent a better epidemiological predictor of future COVID-19 deaths than +short-range movements. +3 +Discussion +In this work, we have introduced a novel framework based on transfer entropy to quantify the +amount of information that is transferred from mobile phone-derived mobility metrics to epi- +demiological time series. Given the important role that mobility indicators have played in the +COVID-19 pandemic, we tested our approach on mobility and epidemic time series collected +in four European countries, between 2020 and 2021, at a subnational scale. We found that, in +general, the relative explanation added by mobility time series to predict future epidemic trends, +whether new cases or deaths, was relatively small, ranging between 4% and 6% on average, and +not statistically significant in the large majority of the provinces we considered, for any mo- +bility metric. As a comparison, these values were about half of the relative explanation added +by past knowledge of COVID-19 incidence to predict future deaths. Our method allowed us +to directly compare the relative explanation added by different mobile phone-derived metrics of +mobility: short- and mid-range mobility, and contact rates. We generally found a higher informa- +tion transfer from contact rates than movement, in line with previous studies [48], however, we +also observed significant heterogeneities within the same country and between countries. With +a classification model, we identified spatial features that may explain such heterogeneities. In +provinces characterized by large populations, good coverage consistency over time, and small +commuting in- and outflows, short-range movements can represent a useful metric to predict +disease dynamics. Where commuting flows are large, such as in France, and Austria, mid-range +movements, which represent less than 10% of the total movements, provided a better alternative +to short-range ones. Our results suggest the choice of the best mobility metric to inform epi- +demic predictions can depend on a number of different factors, even when using one single data +provider. Moreover, our findings show that cell phone mobility metrics do not always capture +epidemiologically-relevant behaviors and alternative data sources could be more effective for this +aim, as, for instance, the collection of survey data [50]. +There is an emerging common understanding that mobility indicators measured from mobile +phone data present significant gaps and do not provide a consistent picture of mobility across +countries, and data providers [51, 52]. Previous studies have also highlighted the fact that cou- +pling between mobility indicators and COVID-19 epidemiology is often weak, and it changes over +time [29]. The approach we introduced here addresses the above challenges by providing a general +framework to evaluate the quality of metrics derived from passively collected mobility traces as a +predictor of epidemic outcomes. Our framework has the advantage of being model-free, meaning +14 + +that it does not depend on modeling assumptions regarding the expected relationship between +mobility and epidemic dynamics, nor it requires any parametrization. The normalized effective +transfer entropy we adopted is a general method. It allows us to rigorously compare different +mobility indicators, across epidemiological settings, by measuring the relative information added +by mobility time series to the prediction of future disease incidence. To this end, we release the +code to reproduce our analysis between any two source and target time series (see Data and +Code Availability). Researchers can use this tool in any epidemiological context to gauge the +added value of a specific mobile phone-derived behavioral measure for epidemic intelligence. +Our study comes with a number of limitations and opens new directions for future work. We +considered mobility metrics derived from one data provider, Meta, whose user base is not rep- +resentative of the population in the countries we considered. However, alternative data sources +of mobility indicators in Europe with a similar breadth, such as Google or Apple, do not reach +the same spatial granularity and provide their data only as relative changes with respect to a +pre-pandemic baseline, thus limiting their use in a study like ours. On the other hand, movement +and colocation maps by Meta have been extensively used in several studies, including European +countries [53, 54, 55, 56, 57]. Here, we considered four countries with different public health +systems, and that adopted different testing strategies. Observed differences in the predictive +power of mobility metrics across countries may depend on the varying quality of their reporting +systems, especially at the province level. However, all four countries belong to the European +Union and we expect very similar standards of surveillance during the pandemic. Overall, it +will be important to assess our findings on mobility data from other providers, and, most im- +portantly, in countries of the non-Western world. Finally, it is important to note that transfer +entropy measurements become more accurate as the length of the source and target time series +increases [44]. We worked with a relatively short time series, addressing the bias due to the small +sample by adopting the effective transfer entropy. However, we could not systematically investi- +gate how the information transfer changed over time, performing our analysis over different time +windows and comparing them. Future work could benefit from longer epidemic time series, over +several years, to identify temporal changes in the information flow between human movements +and COVID-19 dynamics. +Measures of human mobility inferred from mobile phone data have been a critical ingredient +to inform the public health response during the COVID-19 pandemic [58] and they will be an +important asset in the fight against future pandemics. At the same time, their widespread use +raises some relevant ethical concerns due to re-identification risks [59], therefore, it is fundamental +to assess the added value of using cell phone mobility data in a given epidemic scenario and +whether the benefits outweigh the risks. Our work provides a practical guide to identifying when +and where mobile phone mobility metrics truly capture behavioral patterns that are relevant to +predict disease dynamics. +15 + +4 +Materials and Methods +4.1 +Epidemiological indicators +We collected epidemiological time series in the 4 countries under study from 2 data sources. +Daily reported cumulative COVID-19 cases were collected from the COVID-19 Data Hub [60], +an open source aggregator of up-to-date COVID-19 statistics, at the NUTS3 level in Austria, +France, Italy, and Spain. +Daily reported cumulative deaths in Austria, France, and Spain were also collected from the +COVID-19 Data Hub. For Italy, death statistics were only available on a weekly time scale from +the public platform CovidStat (https://covid19.infn.it/iss/). +For the analysis, we generated daily incidence time series from cumulative data by computing +day-to-day differences. Then, we further aggregated the daily time series of deaths and cases +into weekly ones, to perform the transfer entropy analysis on a weekly scale. +4.2 +Mobility derived indicators +In our study, we computed daily and weekly movement and contact rates from data provided +by Meta through its Data for Good program [41]. Here, we first describe the raw data sources +provided by Meta and then the data processing we applied to compute the time series for the +transfer entropy analysis. +4.2.1 +Raw data sources +We collected the following datasets that were publicly released by Meta since the beginning of +the COVID-19 pandemic, in Austria, France, Italy, and Spain: +• Movement range maps. It reports the number of users who moved between any two +16-level Bing tiles, with an 8-hour frequency. +• Users’ population. It reports the number of active users in each tile with an 8-hour +frequency. The tile resolution is 4800 x 4800 m2. +• Colocation maps. It estimates the probability that, given any two administrative regions, +p1 and p2, a randomly chosen user from p1 and a randomly chosen user from p2 are +simultaneously located in the same place during a randomly chosen minute in a given week +[39]. The dataset also reports the number of users in p1 and p2. +• Stay put. It reports for a given administrative region the daily percentage of users staying +put within a single location, defined at the 16-level Bing tile. +We formalize the description of the above datasets with the notation described in Table 4: +16 + +Dataset name +Xs,t +spatial resolution +temporal resolution +population users +N (pop) +t,h +t: tile (4800 x 4800 m2) +h: 8 hour +movement between tiles +M(t1,t2),h +(t1,t2): tile pair (600 x 600 m2) +h: 8 hour +colocation probability +Pp,w +p: province +w : week +colocation users +N (coloc) +p,w +p: province +w: week +stay put +Sr,d +r: region +d: day +Table 4: +Summary of raw data sources as time series records Xs,t, where s denotes the spatial +resolution and t the temporal resolution. +original data +spatial aggregation +temporal aggregation +aggregated data +name +N (pop) +t,h +�(t ∈ p) +h interpolation and mean (h ∈ w) +N (pop) +p,w +province population users +M(t1,t2),h +� (t1, t2) ∈ p, t1 = t2 +mean (h ∈ w) +M (within) +p,w +within tile province movement +M(t1,t2),h +� (t1, t2) ∈ p, t1 ̸= t2 +mean (h ∈ w) +M (between) +p,w +between tiles province movement +Sr,d +∀p ∈ r +r = p +mean (d ∈ w) +Sp,w +province stay put +Table 5: Aggregation of data sources described in Table 4, to generate our metrics of interest. +4.2.2 +Aggregation of raw data +We then processed the raw data sources of Table 4 to obtain a set of time series having the +same spatiotemporal resolution, that is weekly, at the NUTS3 scale. Results of the aggregation +process are described in Table 5. More in detail: +• Province users population. (1) we performed a spatial aggregation by summing the +population of tiles belonging to province p, thus obtaining a population at a (province, +hour) level: N (pop) +p,h +. (2) we performed a linear interpolation of the temporal gaps that were +present in N (pop) +p,h +(3) we performed a temporal aggregation by averaging in each province, +the 8h population records within a week. +• Within tile province movement (1) we first performed a temporal aggregation by +averaging M(t1,t2),h for each pair (t1, t2) over a week and obtaining M(t1,t2),w (2) we then +performed a spatial feature joining and assigned each pair (t1, t2) to the corresponding +provinces (p1, p2) (3) from M(t1,t2),w we obtained a within tile province movement +M (within) +p,w +, that is the sum of movements which occurred in the same province p and within +the same tile. +• Between tiles province movement in the pipeline above, from step (3) we obtain a +between tile province movement M (between) +p,w +, that is the sum of movements which +occurred in the same province p and between two different tiles, (t1, t2). By definition, the +sum M (between) +p,w ++ M (within) +p,w +represents the total volume of movements in a province, in a +17 + +week. +• Province stay put (1) we performed a temporal aggregation on a weekly scale by perform- +ing the average and obtaining Sr,w (2) we assign to each province p the regional stay-put +time series Sr,w such that p ∈ r. +4.2.3 +Computation of movement and contact rate +We finally computed our metrics of interest, movement, and contact rates, as follows. +The +short-range movement rate is defined as: +M s +p,w = M (within) +p,w +N (pop) +p,w +(1) +that is the proportion of users who moved within the same tile in a given province, in a given +week. The mid-range movement rate is defined as: +Mp,w = M (between) +p,w +N (pop) +p,w +(2) +representing the proportion of users who moved between different tiles in a given province, in a +given week. The contact rate is defined as: +CR(t)p,w = ˆPp,w · N (pop) +p,w +(3) +where ˆP denotes the colocation probability corrected by a factor that takes into account the +overestimation of colocation probabilities due to the heterogeneous distribution of users across +provinces and the presence of a significant fraction of static users in some periods of mobility +restrictions [55] (see the SI for additional details). +4.2.4 +Province sample selection +The population of Facebook users who contribute to the generation of the movement and colo- +cation time series varies across countries, and it changes over time. Moreover, the metrics of +movement (short- and mid-range) and colocation, are computed from different users’ samples of +different sizes: N (pop) +p,w +and N (coloc) +p,w +, respectively. +In our analysis, to limit bias that may be caused by the little representativeness of the +underlying sample of users, we selected NUTS3 regions in the 4 countries, according to the +following criteria. +First, we considered only regions where the sample N (pop) +p,w +represented at +least 3% of the census population to guarantee we had at least 500 users in each province. +Furthermore, we considered only those regions where the two sample sizes N (pop) +p,w +and N (coloc) +p,w +were always positively correlated over time, during the whole study period. +We denote the +Pearson’s correlation of weekly values of N (pop) +p,w +and N (coloc) +p,w +as coverage consistency. +After the selection, our analysis includes 47 provinces in Austria, 51 provinces in France, 93 +provinces in Italy, and 42 provinces in Spain, for a total of 233 spatial units. +18 + +Given two discrete temporal signals represented as time series X and Y the Transfer Entropy +(TE) [38] is a measure of the amount of information delivered from X to Y , defined as: +TEXY = H(Y |Y (l)) − H(Y |Y (l), X(l)) , +(4) +where X(l), Y (l) are respectively the l-lagged time series of X and Y and TEXY is formulated +as a difference between two conditional entropy terms, where conditional entropy is expressed as +H(a|b) = H(a, b) − H(b), and H(·) is the Shannon Entropy. Given a discrete time series S, its +observations can be expressed as the sample {si; i = 1, .., n}, and we obtain the discrete proba- +bility distribution p(sj). We compute the Shannon Entropy as: H(S) = � +j p(sj) · log2(p(sj)). +Thus TEXY can be expressed as: +TEXY = H(Y, Y (l)) − H(Y (l)) − H(Y, Y (l), X(l)) + H(Y (l), X(l)). +(5) +The time series that we consider in our experiments are continuous, therefore they need to be dis- +cretized before computing TEXY . We employ the Kernel Density Estimation (KDE) for Transfer +Entropy estimation. KDE method evaluates the entropy terms of Eq.5 from the discretized den- +sity estimated from each of the four features sets: {(Y, Y (l)), Y (l), (Y, Y (l), X(l)), (Y (l), X(l))}. +KDE employs a Gaussian kernel for density estimation. Performing tests on synthetic datasets +of different sizes, we checked this was the method the most adapted to small samples. For the +selection of the kernel’s bandwidth, we use the Scott method [61]. The continuous density is +then discretized with a grid obtained by an equal-width discretization of each feature’s density +domain. We select 20 as the number of bins for each feature’s domain discretization. The dis- +cretized density is computed with the integral of the continuous probability density functions +over each grid cell. Concerning the implementation, for TE estimation we use the PyCausality +Python package (https://github.com/ZacKeskin/PyCausality). +Effective Transfer Entropy. +We introduce the Effective Transfer Entropy (ETE) as a cor- +rection to TE for small sample time series, as originally proposed by [44]: +ETEXY = TEXY − 1 +Ns +Ns +� +j=1 +TEX ˆ +Yj , +(6) +where the correction term is obtained by performing Ns iterations of Y shuffling, obtaining ˆYj +and computing the average of {TEX ˆ +Yj; j = 1, .., Ns}. In our experiments, we performed 500 +shuffling iterations. +Normalized Transfer Entropy. +We would like to employ TE in order to compare a set +of input signals {Xj; j = 1, .., N} in terms of their Transfer Entropy TEXjY towards a specific +output Y . From equation 4 we have that TEXjY is evaluated as a difference of conditional entropy +where the first term H(Y |Y (l)) depends only on target Y . In order to ensure comparability over +the set {TEXjY ; j = 1, .., N}, we reformulate the difference as a relative difference dividing by +19 + +H(Y |Y (l)). Thus the set of inputs are compared according to {TEXjY /H(Y |Y (l)); j = 1, .., N} +and we refer to TEXY /H(Y |Y (l)) as Normalized Transfer Entropy (NTE). +Normalized Effective Transfer Entropy. +By combining the ETE and the NTE we can fi- +nally introduce the Normalized Effective Transfer Entropy (NETE), which is obtained by dividing +the ETE by the first conditional entropy term H(Y |Y (l)) as in [62]: +NETEXY = +TEXY − +1 +Ns +�Ns +j=1 TEX ˆ +Yj +H(Y |Y (l)) +(7) +In this way, the NETE accounts both for bias in small sample time series and it ensures compa- +rability between different input sources {Xj} in terms of information transfer to different targets. +Besides, it enables estimating the percentage of explanation value added with respect to only +knowing the past of the time series used as a target. +4.3 +Classification model +The introduction of the ETE allows associating a p-value, a metric of statistical significance, to +each NETE value computed between any pair of time series. +In our study, we investigated a number of explanatory features to better understand why +in some provinces the NETE could not identify a significant transfer of information between +mobility time series and epidemiological indicators. +More specifically, we trained a Random +Forest classification model to predict the significance of NX→Y at the threshold of p < 0.01, in +each province under study. The random forest was performed with 100 decision tree classifiers +on various sub-samples of the dataset and used averaging to improve the predictive accuracy and +control for over-fitting. The function to measure the quality of a split was the Gini impurity. +Before applying the random forest, the data were split between training and test sets (30%). To +compensate for the imbalance of the datasets, we applied a Synthetic Minority Oversampling +Technique [63] on the test set. +As input to the classification model we used a set of features that characterize each province: +1. population size (as reported by the latest available census); +2. area (in km2); +3. density of Facebook users (measured as Np,w divided by area); +4. total cumulative number of reported COVID-19 deaths during the study period; +5. commuting flow; +6. coverage consistency; +20 + +The commuting flow is defined as the ratio between the total number of daily commuters who +travel from or to a province and the total number of commuters who work and live in that +province. +Commuting data were collected from the latest available census statistics in each +country. The coverage consistency is the correlation over time between the users’ populations +N (pop) +p,w +and N (coloc) +p,w +. +To quantify the importance of different features in our classification model, we used their +SHAP (SHapley Additive exPlanations) values [49]. SHAP is a method to explain model pre- +dictions based on Shapley Values from game theory. In particular, we use TreeSHAP [64], an +algorithm to compute SHAP values for tree ensemble models, such as the random forest classifier +of our study. +5 +Data and code availability +The data and code to reproduce our analysis are available at: https://zenodo.org/record/ +7464949#.Y6L0CfxKhNg +6 +Funding +F.D. gratefully acknowledges support from the CRT Lagrange Fellowships in Data Science for +Social Impact of the ISI Foundation, where this work was conducted. M.T. and L.G. acknowledge +the Lagrange Project of the ISI Foundation funded by CRT Foundation. The funders had no +role in the study design, decision to publish, or preparation of the manuscript. +7 +Acknowledgements +We gratefully acknowledge Alex Pompe for his help to understand the details of mobility data +from Meta. +8 +Author contributions +FD collected data, conducted experiments, interpreted the results, made figures, and contributed +to the writing of the paper. +MT and LG conceived and designed the study, conducted the +statistical analysis, interpreted the results, made figures, and wrote the paper. All authors read +and approved the final version of the manuscript. +9 +Competing interests +The authors declare no competing interests. +1 + +Supplementary Information +Correction to the colocation probability +Colocation maps provided by Meta is defined as the number of colocation events over the number +of possible events. This, by design, includes interactions between users staying within the same +tile but not having actual contact with other users. For this reason, we estimate the contact +rate in each province by removing the contribution due to the users staying put. We explain our +approach to estimating such contribution in the following. Let us start by writing the original +colocation probability P as: +P = E +N 2 +(8) +where: +• E is the number of colocation events within the province +• N is the number of province colocation users. +The exact formula should be P = +E +N(N−1) but as N is large we approximate it to 8. Let us +denote R(c) the number of measured colocation events that are due to users who stay put only, +then the corrected colocation probability should be written in the following way: +ˆPp,w = E − R(c) +N 2 +(9) +We estimate R(c) by using the stay-put probability S, which is the probability of a user staying +put. Let us call the tile population ratio probability distribution {ftl; t = 1, .., Tl} where T is +the number of tiles in a province. This gives us an estimate of the contribution of the users who +stay put to the colocation probability, as: +R(c) = +T +� +t=1 +N 2 · f 2 +t · S2. +(10) +So we rewrite: +ˆPp,w = P − S2 +Tl +� +t=1 +f 2 +tl +(11) +We do not have access to the population of the tiles used for the colocation so we make an +approximation using the population distribution given for each tile with dimensions 4800 m +× 4800 m. As there are by definition 64 colocation tiles within a single population tile, the +expression Eq.11 can be formulated as: +ˆPp,w = Pp,w − S2 +p,w · +T +� +t=1 +64 · +� +f (p) +t,w +64 +�2 +(12) +where: +2 + +M s (%) +M (%) +Austria +99.6 [97.9 – 100] +0.5 [0.0 - 2.1] +France +91.3 [88.2 – 93.7] +8.8 [6.3 – 11.9] +Italy +89.9 [86.4 – 92.8] +10.2 [7.2 – 13.6] +Spain +91.5 [86.1 – 95.1] +8.5 [4.9 – 13.9] +Table S6: Relative proportion of mobility components in each country. Each row dis- +plays the proportion of movements, as a percentage of the total movements within each province, +that are represented by the short-range mobility (M s(t)) and the mid-range mobility (M(t)). +Each table entry reports the median value and the IQR, computed over all provinces, and all +weeks of the study period. Short-range mobility represents the large majority of movements +within a province, in all countries. +coverage consistency +commuting flow +Austria +0.64 [0.45–0.79] +1.05 [0.43–1.69] +France +0.32 [0.23–0.43] +0.30 [0.22–0.51] +Italy +0.63 [0.42–0.77] +0.21 [0.12–0.29] +Spain +0.86 [0.68–0.91] +0.08 [0.05–0.10] +Table S7: Coverage consistency and commuting flow distributions by country. Each +table entry reports the median value and the IQR computed over all provinces, in each country, +considered in the study. +• f (p) +t,w = Nt,w +Np,w ; t ∈ p : tile t population frequency in province p. +• Nt,w : population at (tile,week) resolution. It is obtained through mean temporal aggre- +gation of Nt,h over the week interval denoted by w. +• Np,w : population at (province, week) resolution. +It is obtained through sum spatial +aggregation of Nt,w over the tiles belonging to province p. +• T is the number of tiles 4800 m × 4800 m +We can introduce the quantity Qp,w as the sum of squared frequencies of the province tile +distribution Qp,w = � +t∈p(f (p) +t,w)2, so that, finally: +ˆPp,w = Pp,w − S2 +p,w · Qp,w +64 +(13) +References +[1] Ira M Longini Jr. +A mathematical model for predicting the geographic spread of new +infectious agents. Mathematical Biosciences, 90(1-2):367–383, 1988. +3 + +Figure S1: +Comparison of NETE values computed on weekly and daily time series. +NC→D computed between time series data collected on a weekly time scale (bottom row) and a +daily one (top row). Daily time series were available only for Austria, France and Spain. +[2] Aidan Findlater and Isaac I Bogoch. Human mobility and the global spread of infectious +diseases: a focus on air travel. Trends in parasitology, 34(9):772–783, 2018. +[3] Duygu Balcan, Bruno Gon¸calves, Hao Hu, Jos´e J Ramasco, Vittoria Colizza, and Alessandro +Vespignani. Modeling the spatial spread of infectious diseases: The GLobal Epidemic and +Mobility computational model. Journal of Computational Science, 1(3):132–145, 2010. +[4] Amy Wesolowski, Caroline O Buckee, Kenth Engø-Monsen, and Charlotte Jessica Eland +Metcalf. Connecting mobility to infectious diseases: the promise and limits of mobile phone +data. The Journal of infectious diseases, 214(suppl 4):S414–S420, 2016. +[5] Amy Wesolowski, Nathan Eagle, Andrew J Tatem, David L Smith, Abdisalan M Noor, +Robert W Snow, and Caroline O Buckee. Quantifying the impact of human mobility on +malaria. Science, 338(6104):267–270, 2012. +[6] Lorenzo Mari, Enrico Bertuzzo, Lorenzo Righetto, Renato Casagrandi, Marino Gatto, Igna- +cio Rodriguez-Iturbe, and Andrea Rinaldo. Modelling cholera epidemics: the role of water- +ways, human mobility and sanitation. Journal of the Royal Society Interface, 9(67):376–388, +2012. +4 + +0.40 +0.40 +0.40 +Austria +France +Spain +0.35 +0.35 +0.35 +0.30 +0.30 +0.30 +0.25 +0.25 +0.25 +0.20 +0.20 +→D +0.20 +→D +-ON +0.15 +0.15 +0.15 +0.10 +0.10 +0.10 +0.05 +0.05 +0.05 +0.00 +0.00 +0.00 +-0.05 +-0.05 +-0.05 +14 21 28 35 42 49 56 +14 21 28 35 42 49 56 +14 21 28 35 42 49 56 +7 +Lag (days) +Lag (days) +Lag (days) +0.40 +0.40 +0.40 +France +Austria +Spain +0.35 +0.35 +0.35 +0.30 +0.30 +0.30 +0.25 +0.25 +0.25 +0.20 +0.20 +0.20 +D +D +D +个 +个 +个 +0.15 +0.15 +0.15 +0.10 +0.10 +0.10 +0.05 +0.05 +0.05 +0.00 +0.00 +0.00 +-0.05 +-0.05 +-0.05 +2 +2 +3 +4 +6 +4 +5 +6 +7 +8 +2 +4 +7 +8 +3 +5 +6 +8 +1 +7 +Lag (weeks) +Lag (weeks) +Lag (weeks)[7] Caroline O Buckee, Amy Wesolowski, Nathan N Eagle, Elsa Hansen, and Robert W Snow. +Mobile phones and malaria: modeling human and parasite travel. +Travel medicine and +infectious disease, 11(1):15–22, 2013. +[8] Vivek Charu, Scott Zeger, Julia Gog, Ottar N Bjørnstad, Stephen Kissler, Lone Simonsen, +Bryan T Grenfell, and C´ecile Viboud. +Human mobility and the spatial transmission of +influenza in the United States. PLoS Computational Biology, 13(2):e1005382, 2017. +[9] Michele Tizzoni, Paolo Bajardi, Adeline Decuyper, Guillaume Kon Kam King, Christian M +Schneider, Vincent Blondel, Zbigniew Smoreda, Marta C Gonz´alez, and Vittoria Colizza. +On the use of human mobility proxies for modeling epidemics. PLoS Computational Biology, +10(7):e1003716, 2014. +[10] Corey M Peak, Amy Wesolowski, Elisabeth zu Erbach-Schoenberg, Andrew J Tatem, Erik +Wetter, Xin Lu, Daniel Power, Elaine Weidman-Grunewald, Sergio Ramos, Simon Moritz, +et al. Population mobility reductions associated with travel restrictions during the Ebola +epidemic in Sierra Leone: use of mobile phone data. International journal of epidemiology, +47(5):1562–1570, 2018. +[11] Mengxi Zhang, Siqin Wang, Tao Hu, Xiaokang Fu, Xiaoyue Wang, Yaxin Hu, Briana Hal- +loran, Zhenlong Li, Yunhe Cui, Haokun Liu, et al. Human mobility and COVID-19 trans- +mission: a systematic review and future directions. Annals of GIS, pages 1–14, 2022. +[12] Nuria Oliver, Bruno Lepri, Harald Sterly, Renaud Lambiotte, S´ebastien Deletaille, Marco +De Nadai, Emmanuel Letouz´e, Albert Ali Salah, Richard Benjamins, Ciro Cattuto, et al. +Mobile phone data for informing public health actions across the COVID-19 pandemic life +cycle. Science Advances, 6(23):eabc0764, 2020. +[13] Caroline O Buckee, Satchit Balsari, Jennifer Chan, Merc`e Crosas, Francesca Dominici, Urs +Gasser, Yonatan H Grad, Bryan Grenfell, M Elizabeth Halloran, Moritz UG Kraemer, et al. +Aggregated mobility data could help fight COVID-19. Science, 368(6487):145–146, 2020. +[14] Marino Gatto, Enrico Bertuzzo, Lorenzo Mari, Stefano Miccoli, Luca Carraro, Renato +Casagrandi, and Andrea Rinaldo. +Spread and dynamics of the COVID-19 epidemic in +Italy: Effects of emergency containment measures. Proceedings of the National Academy of +Sciences, 117(19):10484–10491, 2020. +[15] Estee Y Cramer, Evan L Ray, Velma K Lopez, Johannes Bracher, Andrea Brennen, Alvaro J +Castro Rivadeneira, Aaron Gerding, Tilmann Gneiting, Katie H House, Yuxin Huang, et al. +Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the +United States. Proceedings of the National Academy of Sciences, 119(15):e2113561119, 2022. +[16] Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky, +and Jure Leskovec. Mobility network models of COVID-19 explain inequities and inform +reopening. Nature, 589(7840):82–87, 2021. +5 + +[17] Lorenzo Lucchini, Simone Centellegher, Luca Pappalardo, Riccardo Gallotti, Filippo Privit- +era, Bruno Lepri, and Marco De Nadai. Living in a pandemic: changes in mobility routines, +social activity and adherence to COVID-19 protective measures. Scientific reports, 11(1):1– +12, 2021. +[18] Philippe Lemey, Andrew Rambaut, Trevor Bedford, Nuno Faria, Filip Bielejec, Guy Baele, +Colin A Russell, Derek J Smith, Oliver G Pybus, Dirk Brockmann, et al. Unifying viral +genetics and human transportation data to predict the global transmission dynamics of +human influenza h3n2. PLoS pathogens, 10(2):e1003932, 2014. +[19] Philippe Lemey, Samuel L Hong, Verity Hill, Guy Baele, Chiara Poletto, Vittoria Colizza, +´Aine O’toole, John T McCrone, Kristian G Andersen, Michael Worobey, et al. Accom- +modating individual travel history and unsampled diversity in bayesian phylogeographic +inference of sars-cov-2. Nature communications, 11(1):1–14, 2020. +[20] Moritz UG Kraemer, Verity Hill, Christopher Ruis, Simon Dellicour, Sumali Bajaj, John T +McCrone, Guy Baele, Kris V Parag, Anya Lindstr¨om Battle, Bernardo Gutierrez, et al. +Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. +Science, +373(6557):889–895, 2021. +[21] Jessica T Davis, Matteo Chinazzi, Nicola Perra, Kunpeng Mu, Ana Pastore y Piontti, Marco +Ajelli, Natalie E Dean, Corrado Gioannini, Maria Litvinova, Stefano Merler, et al. Cryptic +transmission of SARS-CoV-2 and the first COVID-19 wave. Nature, 600(7887):127–132, +2021. +[22] Philippe Lemey, Nick Ruktanonchai, Samuel L Hong, Vittoria Colizza, Chiara Poletto, Fred- +erik Van den Broeck, Mandev S Gill, Xiang Ji, Anthony Levasseur, Bas B Oude Munnink, +et al. Untangling introductions and persistence in covid-19 resurgence in europe. Nature, +595(7869):713–717, 2021. +[23] Matteo Chinazzi, Jessica T Davis, Marco Ajelli, Corrado Gioannini, Maria Litvinova, Ste- +fano Merler, Ana Pastore y Piontti, Kunpeng Mu, Luca Rossi, Kaiyuan Sun, et al. The +effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) out- +break. Science, 368(6489):395–400, 2020. +[24] Pedro S Peixoto, Diego Marcondes, Cl´audia Peixoto, and S´ergio M Oliva. Modeling future +spread of infections via mobile geolocation data and population dynamics. an application +to covid-19 in brazil. PloS one, 15(7):e0235732, 2020. +[25] Moritz UG Kraemer, Adam Sadilek, Qian Zhang, Nahema A Marchal, Gaurav Tuli, Emily L +Cohn, Yulin Hswen, T Alex Perkins, David L Smith, Robert C Reiner, et al. Mapping global +variation in human mobility. Nature Human Behaviour, 4(8):800–810, 2020. +6 + +[26] Jayson S Jia, Xin Lu, Yun Yuan, Ge Xu, Jianmin Jia, and Nicholas A Christakis. Population +flow drives spatio-temporal distribution of COVID-19 in China. Nature, 582(7812):389–394, +2020. +[27] Joel Persson, Jurriaan F Parie, and Stefan Feuerriegel. Monitoring the COVID-19 epidemic +with nationwide telecommunication data. Proceedings of the National Academy of Sciences, +118(26):e2100664118, 2021. +[28] Stefano Maria Iacus, Carlos Santamaria, Francesco Sermi, Spyros Spyratos, Dario Tarchi, +and Michele Vespe. Human mobility and COVID-19 initial dynamics. Nonlinear Dynamics, +101(3):1901–1919, 2020. +[29] Nishant Kishore, Aimee R Taylor, Pierre E Jacob, Navin Vembar, Ted Cohen, Caroline O +Buckee, and Nicolas A Menzies. Evaluating the reliability of mobility metrics from aggre- +gated mobile phone data as proxies for sars-cov-2 transmission in the usa: a population-based +study. The Lancet Digital Health, 2021. +[30] Sean Jewell, Joseph Futoma, Lauren Hannah, Andrew C Miller, Nicholas J Foti, and Emily B +Fox. +It’s complicated: Characterizing the time-varying relationship between cell phone +mobility and COVID-19 spread in the US. NPJ digital medicine, 4(1):1–11, 2021. +[31] Hamada S Badr and Lauren M Gardner. Limitations of using mobile phone data to model +COVID-19 transmission in the USA. The Lancet Infectious Diseases, 21(5):e113, 2021. +[32] Pierre Nouvellet, Sangeeta Bhatia, Anne Cori, Kylie EC Ainslie, Marc Baguelin, Samir +Bhatt, Adhiratha Boonyasiri, Nicholas F Brazeau, Lorenzo Cattarino, Laura V Cooper, +et al. Reduction in mobility and covid-19 transmission. Nature communications, 12(1):1–9, +2021. +[33] Alberto Aleta, David Martin-Corral, Ana Pastore y Piontti, Marco Ajelli, Maria Litvinova, +Matteo Chinazzi, Natalie E Dean, M Elizabeth Halloran, Ira M Longini Jr, Stefano Merler, +et al. Modelling the impact of testing, contact tracing and household quarantine on second +waves of COVID-19. Nature Human Behaviour, 4(9):964–971, 2020. +[34] Alberto Aleta, David Mart´ın-Corral, Michiel A Bakker, Ana Pastore y Piontti, Marco Ajelli, +Maria Litvinova, Matteo Chinazzi, Natalie E Dean, M Elizabeth Halloran, Ira M Longini Jr, +et al. Quantifying the importance and location of SARS-CoV-2 transmission events in large +metropolitan areas. Proceedings of the National Academy of Sciences, 119(26):e2112182119, +2022. +[35] Tanjona Ramiadantsoa, C Jessica E Metcalf, Antso Hasina Raherinandrasana, Santatra +Randrianarisoa, Benjamin L Rice, Amy Wesolowski, Fidiniaina Mamy Randriatsarafara, +and Fidisoa Rasambainarivo. Existing human mobility data sources poorly predicted the +spatial spread of SARS-CoV-2 in Madagascar. Epidemics, 38:100534, 2022. +7 + +[36] Nishant Kishore. Mobility data as a proxy for epidemic measures. Nature Computational +Science, 1(9):567–568, 2021. +[37] Roman Levin, Dennis L Chao, Edward A Wenger, and Joshua L Proctor. Insights into +population behavior during the COVID-19 pandemic from cell phone mobility data and +manifold learning. Nature Computational Science, 1(9):588–597, 2021. +[38] Thomas Schreiber. Measuring information transfer. Physical review letters, 85(2):461, 2000. +[39] Shankar Iyer, Brian Karrer, Daniel T Citron, Farshad Kooti, Paige Maas, Zeyu Wang, +Eugenia Giraudy, P Alex Dow, and Alex Pompe. Large-Scale Measurement of Aggregate +Human Colocation Patterns for Epidemiological Modeling. medRxiv, 2020. +[40] Eurostat. Eurostat. Your key to European Statistics. +[41] Ama¸c +Herda˘gdelen, +Alex +Dow, +Bogdan +State, +Payman +Mohassel, +and +Alex +Pompe. +Protecting +privacy +in +Facebook +mobility +data +dur- +ing +the +COVID-19 +response. +https://research.fb.com/blog/2020/06/ +protecting-privacy-in-facebook-mobility-data-during-the-covid-19-response/, +2020. Accessed: 2021-11-06. +[42] Facebook Data for Good. Movement range maps. https://data.humdata.org/dataset/ +movement-range-maps, 2020. Accessed: 2021-11-06. +[43] Terry Bossomaier, Lionel Barnett, Michael Harr´e, and Joseph T Lizier. Transfer entropy. +In An introduction to transfer entropy, pages 65–95. Springer, 2016. +[44] Robert Marschinski and Holger Kantz. Analysing the information flow between financial +time series. The European Physical Journal B-Condensed Matter and Complex Systems, +30(2):275–281, 2002. +[45] Zefan Zeng, Guang Jin, Chi Xu, Siya Chen, and Lu Zhang. Spacecraft telemetry anomaly de- +tection based on parametric causality and double-criteria drift streaming peaks over thresh- +old. Applied Sciences, 12(4):1803, 2022. +[46] Nick Wilson, Amanda Kvalsvig, Lucy Telfar Barnard, and Michael G Baker. Case-fatality +risk estimates for COVID-19 calculated by using a lag time for fatality. Emerging infectious +diseases, 26(6):1339, 2020. +[47] Manuela Fritz. Wave after wave: determining the temporal lag in Covid-19 infections and +deaths using spatial panel data from Germany. Journal of Spatial Econometrics, 3(1):1–30, +2022. +[48] Forrest W Crawford, Sydney A Jones, Matthew Cartter, Samantha G Dean, Joshua L +Warren, Zehang Richard Li, Jacqueline Barbieri, Jared Campbell, Patrick Kenney, Thomas +8 + +Valleau, et al. Impact of close interpersonal contact on covid-19 incidence: Evidence from +1 year of mobile device data. Science Advances, 8(1):eabi5499, 2022. +[49] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. +Advances in neural information processing systems, 30, 2017. +[50] Andreas Koher, Frederik Jørgensen, Michael Bang Petersen, and Sune Lehmann. Moni- +toring Public Behavior During a Pandemic Using Surveys: Proof-of-Concept Via Epidemic +Modelling. arXiv preprint arXiv:2210.01472, 2022. +[51] Jack Wardle, Sangeeta Bhatia, Moritz UG Kraemer, Pierre Nouvellet, and Anne Cori. Gaps +in mobility data and implications for modelling epidemic spread: a scoping review and +simulation study. medRxiv, 2022. +[52] Riccardo Gallotti, Davide Maniscalco, Marc Barthelemy, and Manlio De Domenico. The +distorting lens of human mobility data. arXiv preprint arXiv:2211.10308, 2022. +[53] Giovanni Bonaccorsi, Francesco Pierri, Matteo Cinelli, Andrea Flori, Alessandro Galeazzi, +Francesco Porcelli, Ana Lucia Schmidt, Carlo Michele Valensise, Antonio Scala, Walter +Quattrociocchi, et al. +Economic and social consequences of human mobility restrictions +under covid-19. +Proceedings of the National Academy of Sciences, 117(27):15530–15535, +2020. +[54] Alessandro Galeazzi, Matteo Cinelli, Giovanni Bonaccorsi, Francesco Pierri, Ana Lucia +Schmidt, Antonio Scala, Fabio Pammolli, and Walter Quattrociocchi. +Human mobility +in response to COVID-19 in France, Italy and UK. Scientific reports, 11(1):1–10, 2021. +[55] Mattia Mazzoli, Eugenio Valdano, and Vittoria Colizza. Projecting the COVID-19 epidemic +risk in France for the summer 2021. Journal of travel medicine, 28(7):taab129, 2021. +[56] Alex Smolyak, Giovanni Bonaccorsi, Andrea Flori, Fabio Pammolli, and Shlomo Havlin. +Effects of mobility restrictions during COVID19 in Italy. +Scientific reports, 11(1):1–15, +2021. +[57] Harry ER Shepherd, Florence S Atherden, Ho Man Theophilus Chan, Alexandra Loveridge, +and Andrew J Tatem. Domestic and international mobility trends in the united kingdom +during the covid-19 pandemic: an analysis of facebook data. International journal of health +geographics, 20(1):1–13, 2021. +[58] Kyra H Grantz, Hannah R Meredith, Derek AT Cummings, C Jessica E Metcalf, Bryan T +Grenfell, John R Giles, Shruti Mehta, Sunil Solomon, Alain Labrique, Nishant Kishore, +et al. The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. +Nature communications, 11(1):1–8, 2020. +9 + +[59] Marcello Ienca and Effy Vayena. On the responsible use of digital data to tackle the COVID- +19 pandemic. Nature medicine, 26(4):463–464, 2020. +[60] Emanuele Guidotti and David Ardia. COVID-19 Data Hub. Journal of Open Source Soft- +ware, 5(51):2376, 2020. +[61] David W Scott. Multivariate density estimation: theory, practice, and visualization. John +Wiley & Sons, 2015. +[62] Juan R Perilla and Thomas B Woolf. Towards the prediction of order parameters from molec- +ular dynamics simulations in proteins. The Journal of chemical physics, 136(16):04B619, +2012. +[63] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. SMOTE: +synthetic minority over-sampling technique. +Journal of artificial intelligence research, +16:321–357, 2002. +[64] Scott M Lundberg, Gabriel G Erion, and Su-In Lee. +Consistent individualized feature +attribution for tree ensembles. arXiv preprint arXiv:1802.03888, 2018. +10 + +Figure S2: +NETE values from contact rates to deaths in Austria. Only statistically +significant values are shown (p-value< 0.01). +11 + +Amsteten - +0.025748 +0.026068 +0.035190 +Brauneu ami Inn - +0.030781 +Bregenz - +0.032432 +0.063635 +0.079792 +0.073301 +0.051136 +Bruck-Murzzschlag - +0.048734 +0.047809 +Dornbim - +0.042606 +0.048633 +0.028192 +0.037263 +0.055011 +0.036085 +0.038355 +0.036506 +E998E0'0 +0.037540 +0.030327 +0.028564 +0.040716 +Grez [Stadt] - +0.037779 +0.076651 +0.097150 +0.055744 +Grez-Urngebung - +0.029600 +0.064492 +0.077311 +Innshruck-Land - +0.028612 +0.045289 +0.052419 +0.039591 +0.200 +Jerner'sdorf - +0.035306 +0.069850 +0.113048 +0.068616 +Kirchdorf an der Krem8- +0.065064 +0.080814 +Kitzbuhel - +0.031631 +0.068131 +0.175 +Klagerfurt am Worthersee (Sadi) +0.045755 +0.073913 +0.069748 +Korreuburg - +0.048235 +0.064034 +0.067645 +0.080225 +0.071908 +0.062741 +Kufstein , +0.084524 +0.078949 +0.050947 +0.036189 +0.028105 +0.040762 +0.043702 +Landeck - +0.047941 +0.106637 +0.088543 +Leibnibz - +0.026406 +0.125 +Leoben - +0.029500 +Province +Liezen - +0.033578 +DOL'O - +0.031302 +0.030106 +0.035957 +Midling - +0.029218 +ETEEEO'O +0.026258 +Neunkirchen - +0.040286 +0.075 +Reutte - +0.045268 +0.054860 +0.112349 +Ried in Innkreis - +0.032220 +0.041101 +0.069890 +0.060479 +0.041664 +0.024491 +0.050 +Rahrbach - +0.041602 +Sabzburg (Stadt) - +0.043210 +0.072274 +0.075024 +0.073098 +0.042898 +Sazburg-Umgebung - +0.041488 +0.032673 +0.025 +Sankt jahann im Pongau - +0.034971 +0.068717 +SchwEz - +0.038691 +0.091690 +0.184757 + 0.000 +Spittal an der Drau - +0.030718 +0.035796 +0.060162 +Steyr-Land - +0.056514 +0.062967 +0.069762 +0.067400 +0.066843 +0.064067 +0.055595 +Urfahr-Umgebung - +0.029842 +0.033754 +0.041654 +vbitsberg - +0.042787 +0.043992 +0.046677 +vbcklabruck - +0.045316 +EETEEOO +0.087363 +0.054894 +Weiz - +0.025742 +Webs (Stadt) - +E660E0'0 +0.025064 +Wen - +0.032377 +0.046296 +0.042533 +0.042002 +-1 +2 +m +4 +6 +8Figure S3: +NETE values from contact rates to deaths in France. Only statistically +significant values are shown (p-value¿0.01). +12 + +Areyron - +0.040657 +0.047058 +0.056892 +Bas- Rhin - +0.033482 +0.041585 +0.028520 +BDpBA(E0 +0.031260 +Carital - +0.024933 +0.058974 +0.043374 +Charente - +0.025404 +TZZ8E00 +0.040474 +Creue - +0.044353 +0.066560 +0.109015 +0.097901 +0.046231 +Cite-"or - +0.050804 +0.083634 +0.101878 +0.112566 +0.057215 +Douhs - +0.048890 +0.081594 +0.061416 +0.043711 +0.069546 +568E00 +Gard - +0.035540 +0.041388 +0.028707 +0.200 +Haut-Rhin - +0.029346 +0.032140 +0.031260 +0.059106 +TZTES00 +ZLTEEO0 +Haute-Garonne - +0.029910 +0.039255 +0.037786 +0.036558 +Haute-Loire - +0.034223 +EOLTEO'0 +0.175 +Haute-Marne +0.029728 +EZ9EE00 +Haute-Sevbie +0.040045 +0.077211 +0.057614 +9698E00 +0.023792 +0.151 +Haute-Seonie - +Haute-Vienre - +0.029789 +Hautes Pyrinees - +0.046039 +0.052797 +0.073291 +0.087177 +0.118157 +0.097759 +0.079092 +0.125 +0.024660 +0.027809 +- 22] +0.055111 +660600 +0.116728 +0.074720 +6580E0'0 +Province +- Eunr +0Z60E00 +EEL6Z00 +DOL'0 +Landes - +0.056405 +0.091173 +0.090549 +Lair-et-Cher - +0.027844 +5E68200 +Laire - +0.054201 +0.085214 +0.105839 +0.095344 +0.069573 +0.075 +Laire- Atlantique - +0.029233 +0.029794 +Lairet - +0.025703 +0.031137 +Lat-et-Garcne - +0.062904 +0.070896 +0.043991 +0.050 +Maine-et-Loire - +0.034822 +0.046020 +0.048480 +Marne - +0.025154 +Mayenne - +0666E00 +TES9E00 +- 0.025 +0.025244 +0.049144 +0.053130 +0.042279 +Moselle - +0.026739 +0.034717 +Nievre - +0.022348 +0.00 +Nard - +0.036407 +0.045561 +0.040334 +0.051478 +0.077228 +0.063907 +0.059029 +TZOEO0 +Pyrenees Alantiques - +0.062096 +0.092766 +0.145174 +0.132909 +0.102827 +0.042085 +0.059519 +0.055424 +Savaie - +0.034982 +0.060054 +0.057195 +Saane-et-Lnire - +0.031605 +0.065657 +0.092507 +EOLO0 +0.038865 +0.039947 +arn-et-Garanne - +0.045909 +8066L00 +0.109730 +0.065963 +vauckuse - +0.026052 +L9TOE00 +Wheges - +0.027052 +0.059475 +0.073040 +bnne - +0.028840 +i +2 +3 +4 +-5 +6 +1 +80Figure S4: NETE values from contact rates to deaths in Italy. Only statistically signifi- +cant values are shown (p-value< 0.01). +13 + +Agigento - +9880 +Alesaandria - +EESZO0 +0.026729 +0.036095 +EESE00 +6006200 +SSSt00 +ZE6600 +E09ZE00 +Aeti - +9218200 +0.037452 +Beri - +0.024441 +E6S00 +80t9200 +81E8Z00 + 66TZE00 +SLZOEO0 +0.047656 +886TS00 +E8L00 +0.047959 +0.051687 +0.043068 +0.032656 +E0 +0.026679 +Billa - +ESE6E00 +00 +0.058615 +EES00 +0.049609 +Bolpgne - +0.031410 +0.034686 +0.025180 +Brindisi +0.022450 +8Tt000 +2666200 +0.040166 +0.060407 +0.081030 +Caserta - +S6E00 +SEtOSO0 +0.054700 +EOESSO0 +LLE6500 +8L85E00 + Catenia - +60TE00 +0.077414 +0.112635 +0.117515 +0107535 +0.089910 +0.076614 +Caterzaro - +0.034300 +E200 +Cornn - +8TO00 +0.047368 +0.031005 +7 0.200 +QuneD - +0.042780 +8800 +0.057480 +0.052452 +0.043510 +Ferno - +0.028947 +0.074648 +Femra - +8689200 +LTS6Z00 +Firerze - +0.041079 +509t900 +0.086577 +0.08711 +0.044845 +0.175 +Fogpia- +0.052670 +EEt00 +0.035560 +ESS9Z00 +Genava - +0.046436 +00 +0.033568 +E6TTE00 +026000 +SST8500 +0.053584 +9L8500 +00LES00 +1t0800 +0.037490 +L6E620~0 +0.027724 +-0.151 +Isemia - +0.032211 +0.048660 +0.042584 +0.031698 +L'Aqula - +ST69E00 +EZ8500 +La Spezia - +ZtE00 +Lece - +0.125 +Livarnp - +0.033466 +0.055616 +0.071218 +0.048533 +0.029651 +0.048037 +Z9E00 +0.035697 +162600 +0.046853 +zz90500 +0.050894 +0.044390 +0.041952 + 0.100 +0.050407 +z0800 +0106961 +0.19485 +98 T600 +0.035414 +- ruapon +2618200 +0.41629 +0.043517 +TZOt00 +EtbE00 +0.042702 +- I iden +T9Z6E00 +0.047751 +0.048102 +ES6SE00 +Padova - +0.040434 +0.044515 +0.064084 +0.074209 +0.075150 +0.056965 +0.075 + Palerma - +0.028142 +Parma - +0.026819 +0.025800 +0.024981 +Perugia - +0.042104 +ESE800 +T6ESt00 +0.044093 +LL68E00 +EZOSZO0 +Pesaro e Uraind - +LE00 +TZ9SE0 0 +89E00 +0.029094 +6ET00 +0.050 +Farcenza - +0.034775 +L6SS00 +0.072717 +0.080463 +0.048326 +0.040556 + - +LL90S00 +0.066595 +8L8200 +0.091416 +LZ96600 +82L600 +ETT6500 + Portienane +0.029401 +0T0850 0 +#S690 0 +0.056462 +88T8E00 +0.037469 +Paternza - +0.038844 +- 0.025 +- snled +OE00 +0.039405 +0.026673 +Reggio di Calabria +0.036117 +0.047436 + 6E00 +0589E00 +SOtTE00 +T6TZE00 +0.046939 +Regi nleia - +E00 +0.038054 +0.042878 +0.037887 +0.023446 +- 0.00 +- n +E08E600 +0.102254 +0.085088 +0.047687 +Rarma - +0.043376 +0.052379 +0.044143 +6600 +Sracun - +0.028196 +0.041731 +LS6E00 +0.037220 +Eranto - +0.026919 +0.028592 +990TE00 +81 6200 +Erni - +ETts00 +0 +0.058842 +0.054448 +9T95E00 +- auyg +86E6E00 +EZ6t00 +9STES00 +65E00 +Tapani - +186500 +0.069576 +0103436 +0.106727 +TEZ900 +Tentb - +Z06SZ00 +S6S9E00 +0.047467 +0.040554 +Teva - +T969Z00 +606E00 +0.047955 +0.052642 +90ELt00 +- Bun +8868200 +Varese. +0.047314 +876 800 +0.093084 +TS95600 +0.081083 +EE9EE00 +vemezi +0.034065 +LE00 +OOEZEOO +SBZTEO0 +EGEb00 +056t00 +0.031813 +8060500 +LEZ600 +0.078072 +0.104887 +0.111805 +Micenzi - +8680200 +BELZ00 +L6TEE00 +0.033232 +Miterbo - +TS6E00 +0.072240 +50L8600 +E9ETO +0.087438 +ES6tE00 +1 +2 +3 +4 +5 +6 +8Figure S5: +NETE values from contact rates to deaths in Spain. +Only statistically +significant values are shown (p-value< 0.01). +14 + +Amerfa - +0.039917 +Aturias - +0.031993 +Bertcekang +0.064487 +0.049886 +0.035688 +Bizkain - +0.024587 +0.022016 +0.042866 +0.042032 +Caritabrin - +0.046025 +0.068889 +0.068396 +0.036596 +Castellon - +0.048737 +0.063084 +0.051995 +0.036042 +0.200 +Ciudad Real - +0.044180 +0.054436 +0.030186 +0.175 +Cirdaba - +0.032927 +0.038618 +0.065027 +0.036654 +0.15 +GipuzkD8 - +0.031801 +0.053539 +0.048215 +0.026072 +0.125 +Grenada - +0.032374 +0.081161 +0.103030 +0.079209 +0.032532 +Province +Huelva - +0.033040 +0.100 +Huesch - +0.046110 +0.031084 +0.075 +La Rinja - +0.028844 +Lerida - +0.033187 +0.041296 +DSIO - +Madrid +0.043627 +0.037621 + 0.025 +Murcia - +0.045269 +0.044486 +Neverre - +0.027031 +0.033968 +0.027792 + 0.000 +Palencia - +0.030504 +Pontevedra - +6008E0'0 +Sevill - +0.037439 +0.042436 +Earrapone - +0.045793 +0.079908 +BzaBeJZ +0.046435 +1 +-2 +-3 +-4 +-5 +15 + 00Figure S6: +NETE values from movements to deaths in Austria. +Only statistically +significant values are shown (p-value< 0.01). +Figure S7: NETE values from movements to deaths in France. Only statistically signif- +icant values are shown (p-value< 0.01). +15 + +Bregenz - +0.036345 +0.066033 +Dornbim - +0.043640 +0.067243 + Eferding - +0.035090 +Feldkirch - +0.037236 + Freistadt - +0.038373 +0.047605 +0.048796 +0.055328 +Gmunden - +0.031248 +Gmind - +0.023410 +0.030299 +0.027167 +0.029017 +0.200 + Hallein - +0.027033 +0.034264 +0.027311 +Imst - +0.029552 +0.175 +Innsruck-Stadt - +0.055188 +0.080702 +0.094913 +0.085118 +0.151 +Kitzbthel - +0.042733 +0.072762 +Krema an der Dcnau (Stadty) - +0.036128 +0.048300 +0.055608 +0.125 +Kufstein - +0.032149 +0.043879 +Province +Landeck - +0.029311 +0.040050 +0.072866 +0.061492 +DOLO- +Liezen - +0.025763 +0.048718 +0.034108 +0.D75 +Linz-Land - +Rahrbach - +0.036758 +0.044387 +0.050 +Sankt Polten (Stadt) - +0.034767 +0.041224 +0.042029 +0.043476 +0.044951 +0.038877 +Schwaz - +0.039763 +0.054913 +0.D25 +Scharding - +0.032939 +0.034910 +0.042464 +0.041187 + 0.000 +Steyr (Stadt) - +Steyr-Land - +0.035290 +0.035265 +0.039354 +TEamaweg - +0.060463 +Urfahr-Umgebung - +0.041795 +0.054897 +Waidhofen an der Ybba (Stadt] - +0.030619 +0.037978 +0.037335 +Wien - +0.021074 +0.022951 +Zell em See - +0.034330 +- +2 +1 +m +-+ +-5 +-9 +-1 +1 +-8Haute-Garonne - +0.039198 +Herault - +0.035912 +0.20 +Landes - +0.024899 +0.047341 +0.15 +g Pyrenees Aantiques - +0.040966 +0.081955 +0.10 +Pyrenees-Orienbales - +0.039209 +0.05 +- 2S1O.PH9n +0.027723 + 0.D0 +var - +0.037235 +vendee - +0.035500 +0.035709 +2 +1 +m +4 +5 +1 +1 +LpFigure S8: NETE values from movements to deaths in Italy. Only statistically significant +values are shown (p-value< 0.01). +16 + +Agnigento - +0.035274 +0.060209 +0.067456 +0.063766 +0.045358 +Aosta - +0.029482 +0.042370 +0.072343 +0.082323 +BolpgnB - +0.030139 +0.028636 +Brescin - +0.025976 +Brindisi - +0.026128 +Crobne - +0.030466 +0.040989 +0.058785 +0.075694 +0.055939 +Faggia - +0.021785 +Grsseto - +0.022906 +0.038876 +0.038155 +0.200 +Isernia - +0.030238 +0.032921 +L Spezia - +0.047417 +0.103764 +0.175 +Lecce - +0.036225 +0.036709 +0.036007 +Livane - +0.029951 +0.029072 +0.150 +Metera - +0.038031 +0.043266 +0.029986 +Miland - +0.038485 +0.060374 +0.090189 +0.111951 +0.119138 +0.076202 +0.043542 +0.125 + Napoli - +0.032169 +0.053370 +0.077585 +0.081536 +0.069873 +Province +Palerrma - +0.040487 +0.055997 +0.049803 +0.034437 +0.100 +Parmia - +0.020899 +SEEEEOO +0.045348 +Pescara - +0.035626 +0.053516 +0.048144 +0.075 +Fisa - +0.036115 +0.046651 +0.048108 +0.042774 +Ravenng - +0.032001 +0.050158 +0.054213 +0.044289 +0.023382 + 0.050 +Reggio nel'Emilia - +0.036432 +Salermo - +0.027822 +0.024835 +0.026877 +- 0.025 +Saana - +0.021183 +Sandrio - +0.025698 + 0.000 +Earanto - +0.041633 +0.042189 +0.028624 +0.027444 +0.033665 +0.035389 +Tevisn - +0.026159 +0.020877 +vercelli - +0.035478 +Vibo Valentia - +0.028121 +0.044249 +0.055201 +0.037209 +0.028612 +Micerzr - +0.022276 +0.022803 +viterbo - +0.047049 +-T +2- +4 +5 +-9 +-L +LpFigure S9: NETE values from movements to deaths in Spain. Only statistically significant +values are shown (p-value< 0.01). +Figure S10: +Comparison of NETE values computed on full time series and reduced +time series. NM→C computed between time series data collected including the vaccination +campaign (full) and not (reduced). The reduced study period ranges from September 1, 2020 to +January 31, 2021. The full study period extends up to July 31, 2021. We consider daily time +series only to address biases due to small samples. +17 + +A Coruia - +0.035725 +0.036865 +Balearea - +0.068768 +0.044550 +Bercekana - +0.039459 +0.035079 +0.030976 +Bizkain - +0.027029 +0.028069 +Burgos - +0.029288 +0.200 +Caritabrin - +0.033294 +0.047135 +0.056197 +0.039901 +Castell6n - +0.037745 +0.175 +0.030562 +0.037700 +- Bauar +0.043924 +0.076964 +0.088080 +0.037164 +0.15 +Oceres - +0.030211 +0.125 +Province +0.055756 +DOL'O- +Grenada - +0.033007 +Guadalajara - +0.034102 +0.036284 +0.075 +Lein - +0.037108 +0.050 +Lugo - +0.073411 +0.049612 +0.038789 + 0.025 +Lerida - +0.039123 +0.056995 +0.052213 +0.041481 +0010 - +Palencia - +0.049664 +0.033181 +0.034299 +0.037105 +Pontevedra +0.052307 +0.036459 +Segpvin - +0.033276 +0.054284 +0.059599 +0.050507 +0.035978 + pa +0.047631 +0.040222 +0.037340 +valencia - +0.057275 +0.040704 +-+ +-5 +2 +-9 +-8 +1 +LBp0.10 +0.08 +NMr-→c (reduced) +0.06 +0.04 +0.02 +Austria +France +0.00 +Spain +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +NMr→c (full)Figure S11: Spatial variations of normalized effective transfer entropy. Maps of NETE +values computed for different source time series and weekly COVID-19 deaths, in the provinces +of Austria: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7 +weeks, (c) source is short-range movement at lag l=7 weeks. (d) source is mid-range movement +at lag l=7 weeks. Dark grey indicates provinces with non-significant values of NETE (p > 0.01). +Provinces in white are excluded from our sample. +18 + +b +a +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +Nc→D +NcR→D +C +0.25 +0.25 +0.00 +0.05 +0.10 +0.15 +0.20 +0.30 +0.35 +0.00 +0.05 +0.10 +0.15 +0.20 +0.30 +0.35 +Nms→D +NM→DFigure S12: Spatial variations of normalized effective transfer entropy. Maps of NETE +values computed for different source time series and weekly COVID-19 deaths, in the provinces +of France: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7 +weeks, (c) source is short-range movement at lag l=7 weeks. (d) source is mid-range movement +at lag l=7 weeks. Dark grey indicates provinces with non-significant values of NETE (p > 0.01). +Provinces in white are excluded from our sample. +19 + +b +a +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +Nc→D +NcR→D +d +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.00 +0.30 +0.35 +Nms-D +NM→DFigure S13: Spatial variations of normalized effective transfer entropy. Maps of NETE +values computed for different source time series and weekly COVID-19 deaths, in the provinces +of Italy: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7 +weeks, (c) source is short-range movement at lag l=7 weeks. (d) source is mid-range movement +at lag l=7 weeks. Dark grey indicates provinces with non-significant values of NETE (p > 0.01). +Provinces in white are excluded from our sample. +20 + +b +a +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +Nc→D +NcR→D +d +C +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.00 +0.30 +0.35 +Nms-D +NM-DFigure S14: Percentage of statistically significant NETE values, disaggregated by +country and by mobility metric used as source variable. Target variables are: weekly +COVID-19 cases (panel a) and weekly COVID-19 deaths (panel b). +21 + +b +a +60 +CR +Ms +30 +M +40 +20 +E 20 +NETI +10 +0 +0 +Austria +Italy +Austria +Italy +France +Spain +France +Spain \ No newline at end of file diff --git a/1dE2T4oBgHgl3EQfigf6/content/tmp_files/load_file.txt b/1dE2T4oBgHgl3EQfigf6/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..0b9008f5de31a04ac3b6cf37df7e0afd430097d4 --- /dev/null +++ b/1dE2T4oBgHgl3EQfigf6/content/tmp_files/load_file.txt @@ -0,0 +1,1783 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf,len=1782 +page_content='The limits of human mobility traces to predict the spread of COVID-19 Federico Delussu1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Michele Tizzoni1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 †,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' and Laetitia Gauvin1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4† 1ISI Foundation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' via Chisola 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 10126,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Turin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Italy 2Department of Applied Mathematics and Computer Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' DTU,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Copenhagen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Denmark 3Department of Sociology and Social Research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' University of Trento,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Trento,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Italy 4Institute for Research on Sustainable DevelopmentIRD,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' UMR 215 Prodig,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 5 cours des Humanit´es,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' F-93 322 Aubervilliers Cedex,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' France †these authors contributed equally to this work Abstract Mobile phone data have been widely used to model the spread of COVID-19,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' however,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' quantifying and comparing their predictive value across different settings is challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Their quality is affected by various factors and their relationship with epidemiological in- dicators varies over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Here we adopt a model-free approach based on transfer entropy to quantify the relationship between mobile phone-derived mobility metrics and COVID- 19 cases and deaths in more than 200 European subnational regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We found that past knowledge of mobility does not provide statistically significant information on COVID-19 cases or deaths in most of the regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In the remaining ones, measures of contact rates were often more informative than movements in predicting the spread of the disease, while the most predictive metrics between mid-range and short-range movements depended on the region considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We finally identify geographic and demographic factors, such as users’ coverage and commuting patterns, that can help determine the best metric for predicting disease incidence in a particular location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Our approach provides epidemiologists and public health officials with a general framework to evaluate the usefulness of human mobility data in responding to epidemics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 1 Introduction The relationship between human movements and the spatial spread of infectious diseases has been recognized for a long time [1, 2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Human movement has been shown to play a key 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='03960v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='soc-ph] 10 Jan 2023 role in the dynamics of several pathogens, through two basic mechanisms: traveling infectious individuals may introduce a pathogen in a susceptible population, and, at the same time, human movement increase the contact rate between individuals, creating new opportunities for infection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In the past 15 years, the increasing availability of mobility data derived from mobile phones has fueled a large body of work aimed at identifying opportunities to use them for infectious disease modeling and surveillance [4, 5, 6, 7, 8, 9, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' More recently, during the COVID-19 pandemic, mobile phone-derived data have been exten- sively harnessed to monitor the effect of non-pharmaceutical interventions (NPIs) across coun- tries, understand the early dynamics of COVID-19 diffusion, and forecast its spread at different spatial scales, from countries to cities [11, 12, 13, 14, 15, 16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' By measuring human move- ments and combining them with phylogeography methods [18, 19], several studies shed light on the cryptic spread of new variants, their persistence over time and resurgence after the relaxation of NPIs [20, 21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Human mobility has been shown to strongly correlate with the spread of COVID-19 during the early phase of the outbreak in China and in many other countries [23, 24, 25, 26, 27, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' However, once COVID-19 established a foothold in a population, the relative importance of mobile phone-derived data to predict the epidemic dynamics on a local scale has been generally less understood and several studies have shown conflicting evidence about the use of mobility traces to model the spread of COVID-19 at later stages of the outbreak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' For instance, it has been shown that the explanatory power of mobility metrics in relation to the case growth rate in the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=', significantly declined in spring 2020, especially in rural areas [29, 30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Similar trends have been observed in Europe [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In parallel, mobile phone-derived data have been proven beneficial to model COVID-19 dynamics in largely populated urban areas of Western countries [33, 34], but less so in countries of the Global South [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Several reasons have been proposed to explain the varying relationship between mobility metrics and epidemic indicators [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Mobility metrics are generally derived from raw mobile positioning data through complex and customized processing pipelines that can significantly vary across data providers [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' How raw data are processed, and the specific definitions of mobility metrics can significantly impact their interpretation with respect to epidemic variables [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Moreover, the relationship between mobility and epidemic patterns often relies on model- ing assumptions, typically considering linear dependencies, that may not capture the complex interplay of these quantities [32, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Finally, mobile phone-derived metrics are generated from a sample of users who is generally not representative of the whole population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It is therefore of paramount importance to define standardized approaches that can quantify the added value of mobility metrics for epidemiological analysis, and make different metrics, across settings, directly comparable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Here, we extensively quantify the relationship between cell phone-derived mobility metrics and COVID-19 epidemiological indicators through a model-free approach, based on an information- theoretic measure, transfer entropy [38], adapted for small sample sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Leveraging granular 2 data provided by Meta that capture both users’ movements and colocation at a fine spatial scale [39], we measure the information flow between mobility metrics and time series of COVID-19 incidence and deaths in four European countries, at a subnational scale, over a one year period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We find that the relative information added by the past knowledge of mobility metrics to the knowledge of the current state of COVID-19 time series is often not statistically significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In statistically significant cases instead, we show that the relative information added by past knowledge of COVID-19 cases to the knowledge of current deaths is twice the information flow between past knowledge of mobility metrics and current deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We also show that the information flow of a given mobility metric to predict future COVID-19 incidence or deaths can be significant in one country but not in another, even if derived from the same original data source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Being a general framework, our approach provides a quantitative measure of the relative added explanation brought by mobile phone data to the prediction of epidemiological time series that does not depend on the choice of a specific forecasting model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It thus helps to better identify the most appropriate mobility metrics to use among those available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Our results can thus guide epidemiologists and public health practitioners in the evaluation of mobile phone-derived mobility metrics when they are interpreted as a precursor of epidemic activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 2 Results Here, we first describe and then apply our framework to measure the information flow between human mobility traces and the time evolution of COVID-19 in four European countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 A transfer entropy approach to link mobility behavior and COVID- 19 epidemiology With the aim of quantifying the information flow from mobility-derived data to COVID-19 data, we first gathered a set of mobility and epidemiological indicators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 1 provides an overview of the datasets used in the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In Materials and Methods, we provide a full description of all data sources and the data processing steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We considered four European countries – Austria, France, Italy, and Spain – and their administrative subdivisions at NUTS3 level [40] which is the lowest, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' the most granular, level of the standard hierarchy of administrative regions in Europe (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 1, leftmost column).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In all administrative regions, we collected indicators of the COVID-19 epidemic dynamics, namely, the weekly and daily numbers of new COVID-19 cases and deaths over the period, from September 2020 until July 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' During this period, the dynamics of COVID-19, exemplified by the incidence of new cases (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 1, rightmost column), displayed subsequent waves, as a result of the complex interaction between the spread of new variants, the adoption of non-pharmaceutical interventions, the introduction of vaccines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 3 Figure 1: Summary of behavioral and epidemiological indicators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In each country under study (from top to bottom: Italy, France, Austria and Spain), we consider three different types of indicators: contact rates, movements (here for the sake of simplicity we only show the short-range movements), and COVID-19 cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In each plot, the blue shaded area highlights the within-country variability, corresponding to time series in every administrative subdivision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The blue solid line represents the average value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' All curves are normalized between 0 and 1, corresponding to their maximum value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In each country, we also collected weekly and daily time series describing movements and colocation patterns made available by Meta [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We computed contact rates from colocation maps (see Material and Methods and the SI for details), which measure the probability that two users from two locations are found in the same location at the same time [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Colocation maps were generated by Meta on a weekly basis, only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To study human movement patterns, we considered movement range maps provided by Meta, which report the number of users who moved between any two 16-level Bing tiles with an 8 hour frequency [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To make colocation and movement patterns comparable in terms of scale, we focused on short-range movements, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' movements that occurred within the same tile, and we separately considered the mid-range movements, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' movements that occur between two different tiles in the same province.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4 Country Contact Rate Movement Cases 27 2 2 20 2 DecFigure 2: Illustration of study design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We computed the transfer entropy TEX→Y to measure the information flow between source X (on the left) and target time series Y (right), for a given time lag l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In the figure example, as target time series we consider the number of COVID-19 deaths, D(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As source time series, we consider either mobility indicators, M s(t), M(t), CR(t), or COVID-19 cases C(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Transfer entropy quantifies the amount of information that is added by past knowledge of mobility or cases (green and cyan bars, respectively) to current knowledge of deaths, with respect to the knowledge of past deaths only (blue bar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' After correcting the TE for small sample sizes, and normalizing by the reference value represented by the blue bar, we finally compare the Normalized Effective Transfer Entropy of mobility and cases (rightmost box).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We then processed the three datasets, starting from their raw form, to aggregate them at the NUTS3 resolution and create the time series: M s(t) for the short-range movements, M(t) for the mid-range movements and CR(t) for the contact rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' These time series were then used as source variables in the information-theoretic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In the remainder of the paper, we will generally refer to CR(t), M s(t), and M(t) as mobility time series as they are all derived from human mobility data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We will also generally refer to the NUTS3 units as provinces, although their nomenclature varies across countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 2 illustrates our study design based on the transfer entropy [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Transfer entropy is a metric that measures the directed statistical dependence between a source and a target time series and it has been applied to a wide range of research domains [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Here, our approach consists, first, in computing the transfer entropy between mobility time series, M s(t), M(t) and CR(t), and epidemiological time series such as the reported number of COVID-19 attributed deaths D(t) and cases C(t), in each administrative unit, and for different temporal lags l, using the definition of Shannon entropy, as described by the equations in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Intuitively, the transfer entropy between mobility and deaths, TEM s→D (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' TEM→D), can be interpreted as 5 informationflow mobility p(Dt+1|Dt) small sample correction [+↓ and normalization H(DD) cases p(Dt+1|D) 1± 1 deaths H(Dt+1Dl) = Zp(Dt+1, D) 1og p(D+1Dthe degree of uncertainty of the reported deaths, D, at time t that is solved jointly by the time series of deaths and mobility trends M s (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' M) and exceeds the current degree of uncertainty of D, which can be solved by D’s own past.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It is known that transfer entropy estimates suffer in case of small sample sizes and non- stationarity of the source and target time series [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Moreover, due to the non-parametric nature of the transfer entropy, values computed between different source-target time series are not directly comparable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To address these issues, we first adopted the definition of effective transfer entropy (ETE) [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' ETE is obtained by subtracting from the original definition of TE a reference TE value using a shuffled version of the target time series (see Methods for details), thus removing spurious contributions to TE due to fluctuations observed in small sample sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Also, to address biases due to small sample sizes, we applied a Kernel Density Estimation, before the time series discretization that is necessary to compute the transfer entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Second, we normalized the effective transfer entropy by the Shannon entropy of the target variable, defining a normalized effective transfer entropy (NETE) [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We obtain a metric that is always positive when it is statistically significant and whose zero value indicates the absence of information transfer between time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In the remainder of the article, we thus refer to the NETE between source X and target Y as our main quantity of interest, using the symbol NX→Y to denote it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To better understand the cause-effect relationship between mobility and COVID-19 deaths, which are encoded in the value of NM→D ,NM s→D and NCR→D, we compared them against the transfer entropy NC→D, where C is the time series of new COVID-19 cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As the causal relationship between the number of cases and deaths is established by definition, we used the transfer entropy NC→D as a benchmark to evaluate the added value of mobility indicators to predict COVID-19 deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As an example, similar values of NM s→D and NC→D would suggest knowledge of past COVID-19 incidence encodes a similar amount of information as knowledge of past mobility when it comes to predicting future deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 The information flow between COVID-19 incidence and deaths As previously mentioned, to gauge our transfer entropy analysis framework, we first looked at the causal relationship between the incidence of COVID-19 cases and reported death counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It is clearly expected that a major source of information that provides knowledge on future deaths is encoded in the time series of past case counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We used the NETE to quantify such information flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 3 shows the NETE between the weekly time series of COVID-19 cases and deaths in the four countries under study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In all countries, median values of NC→D increase from lags equal to 1 week up to a maximum of around 2-3 weeks, and then decline rapidly beyond the 3 weeks time lag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' This is in line with early estimates of the median time delay between case reporting and fatality, which was estimated to range between 7 and 20 days in different countries [46, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' At lag equal to 2 weeks, the mean relative explanation added by time series of cases with respect to deaths – that is how much of D(t) can be explained only by the past knowledge 6 Figure 3: Information flow between COVID-19 incidence and deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Normalized Effective Transfer Entropy (NETE) between COVID-19 weekly reported cases and deaths in the NUTS3 administrative subdivisions (provinces) of Austria, France, Italy and Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' NETE is computed for lags ranging from 1 to 8 weeks, on the x-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Boxplots are computed on the distribution of NETE values of all the administrative subdivisions in each country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The horizontal red line marks the value NC→D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' C(t − l) – is 14% (SD=8) in Spain, 8% (SD=6) in Italy, 7% (SD=5) in Austria, and 6% (SD=5) in France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Boxplots computed on the distribution of administrative units in each country show a substantial heterogeneity of NETE across regions for lags shorter than 4 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' This may be partially explained by spatial heterogeneities in case and death reporting, and in testing strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Also, NC→D values appear to be higher in Spain, with respect to the other countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' A transfer entropy analysis of daily time series of COVID-19 cases and deaths displays consistent results (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' S1), with NETE values that fall within the same range measured on a weekly time scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' These results suggest NETE estimates are robust with respect to the time scale at which source and target time series are compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Moreover, it provides a reference value for NETE, in terms of orders of magnitude, when the existence of a causal relationship between time series is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 Austria France 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='0 1 2 3 4 5 6 1 8 1 2 3 4 5 6 7 8 Lag (weeks) Lag (weeks) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='41 Italy Spain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 Nc Nc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 8 Lag (weeks) Lag (weeks)→ C(t)(%) → D(t)(%) l (weeks) CR(t) M(t) M s(t) CR(t) M(t) M s(t) C(t) 2 9 19 3 10 7 7 79 3 20 23 5 21 8 13 69 4 27 22 9 29 9 16 46 5 33 23 10 36 8 17 18 6 35 27 10 38 14 17 7 7 29 25 11 40 12 14 4 8 27 20 11 38 15 12 8 Table 1: Percentage of statistically significant NETE values across provinces in all the countries studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' This table shows the percentage of provinces, in all countries, in which the NETE is statistically significant (p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01) for lags (l) from 2 to 8 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 The information flow between mobility traces and COVID-19 dy- namics Having defined a benchmark of information transfer using NC→D, we measured the information flow between behavioral time series of mobility indicators and COVID-19 cases and deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4 summarizes the main results of our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Values of NX→D, with X being either short range movements, mid-range movements or contact rates, were substantially smaller than NC→D in all countries, for any given time lag l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In particular, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4a allows to compare the distributions of NC→D, NCR→D, NM s→D, and NM→D, at the time lag l that maximized the median NETE for weekly time series, for all indicators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We found the largest median values of the normalized transfer entropy at l = 7 weeks for both contact rates and movements (short-range and mid- range).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The upper quartile of the NETE distributions derived from the mobility traces generally fell below 5%, in all countries, while the lower quartile of NC→D was always above 5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Also, the distributions of normalized transfer entropy computed from movements were much narrower and often including the value N = 0 within their interquartile range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Values of NM→C, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4b, display a pattern similar to the normalized transfer entropy from the mobility time series to the death time series, with generally low values of NETE in all countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Compared to movement time series, contact rates led generally to relatively higher values of NETE with both targets, cases and deaths, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Our result confirms the additional value of measuring contact rates from mobile phone data, with respect to other movement metrics [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Besides, it shows that short-range mobility within a province had often a limited predictive power to capture time trends of COVID-19 spread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To obtain a more detailed picture of the predictive power of different mobility metrics in terms of NETE, we computed the percentage of provinces for which mobility time series provided significant relative information added, with respect to the past knowledge of epidemiological 8 Figure 4: Information flow from mobility data to COVID-19 incidence and deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Comparison between the normalized effective transfer entropy computed from source time series X and target time series of reported COVID-19 deaths D (a) and cases C (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Source time series are COVID-19 cases (only for deaths), contact rates, short range and mid-range movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Boxplots are computed from the distribution of NETE values for a given time delay, l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In panel a: l= 2 weeks for cases, 7 weeks for contact rates and movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In panel b: l= 6 weeks for short range and mid-range movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The horizontal red line marks the value NX→D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' indicators only (see Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' On the one hand, our framework effectively captured the existing causal relationship between the time evolution of cases counts and the number of deaths, as the NETE between these indicators was statistically significant (p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01) in about 80% of the provinces, at 2 weeks lag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' On the other hand, we observed a statistically significant information transfer from mobility time series to epidemiological ones in a much smaller fraction of provinces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Short-range movements NETE was significant in less than 20% of provinces when considered as a predictor of both cases and deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Mid-range movement time series and contact rates were significant in at most 27% and 40% of provinces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' This means that in most provinces, mobility traces did not provide any additional information to predict future COVID-19 cases or deaths, at any lag between 2 and 8 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Measures of contact rate extracted from colocation maps were more suitable than movement 9 a C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 CR Ms 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 M XN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='0 b Austria France Italy Spain CR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 Ms M 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 C 个 XN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='France ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='Italy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='Austria ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='Spain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='Country→ C(t)(%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='→ D(t)(%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='l (weeks) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='CR(t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='M(t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='M s(t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='CR(t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='M(t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='M s(t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='C(t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 (1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 (0) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 (1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 (1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='11 (6) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 (1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 (1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='9 (4) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 (3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 (3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 (3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 (3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 (3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 (2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 (3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 (3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 (1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='Table 2: NETE results across provinces in all the countries studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The table shows the average relative explanation added by source time series, with respect to past knowledge of the target only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Only provinces having a statistically significant NETE are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Numbers in parenthesis report the standard deviation computed over all provinces for which the NETE was statistically significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' data to capture behavioral patterns relevant to predict COVID-19 spread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' By focusing only on those provinces where we could identify a significant information flow between mobility traces and COVID-19 indicators, we observe that the averaged relative expla- nation added by mobility data with respect to the epidemiological data ranges between 4 − 6%, which is about half of the averaged relative explanation added by past knowledge of cases to the prediction of future deaths (see Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 2 and Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' S2-S9 in the SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As a sensitivity analysis, we also computed the NETE on a shorter time window, between September 2020 and January 2021, to exclude the confounding effect of the introduction of na- tionwide vaccination programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Since in those months all countries adopted mobility restrictions to mitigate the fall COVID-19 wave, we expect a stronger relationship between mobility and COVID-19 cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Indeed, during this time frame, the information flow between movement time series and COVID-19 cases was consistently higher than in the full study period (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' S10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' This result indicates that, provided with time series of adequate size, the NETE can effectively capture the time-varying relationship between human mobility time trends and COVID-19 dy- namics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 Identifying the determinants of mobility data predictive power for COVID-19 Maps of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 5 highlight the spatial heterogeneity of NX→D values observed within the same country, Spain, for a given time lag and different source time series (see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' S11 - S13 for the maps of Austria, France, and Italy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As previously mentioned, NC→D displays higher and significant values in most of the country (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 5a), with very few exceptions, while statistically 10 Figure 5: Spatial variations of normalized effective transfer entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Maps of NETE values computed for different source time series and weekly COVID-19 deaths, in the provinces of Spain: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7 weeks, (c) source is short-range movement at lag l=7 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' (d) source is mid-range movement at lag l=7 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Dark grey indicates provinces with non-significant values of NETE (p > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Provinces in white are excluded from our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' significant values of NM s→D are found only in 16 provinces out of 42 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 5c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To better understand the observed heterogeneity in NETE, and identify those features that can predict the likelihood to observe a statistically significant information transfer from mobility 11 b a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 Nc-→D NcR→D d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 Nms→D NM-Dp ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01 p <0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01 precision 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='90 recall 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='47 f1-score 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='62 (a) Movement p ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01 p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01 precision 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='92 recall 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='61 f1-score 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='74 (b) Contact rate Table 3: Classification performance metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Summary of model’s classification performance to predict the statistical significance of NETE at the p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01 threshold when the input source is short-range movement (a) or contact rate (b) and target variable are COVID-19 deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' to COVID-19 death counts, we resorted to a classification model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Namely, we used a random forest classifier to predict when the value NX→D is more likely to be statistically significant, using short-range movement and contact rate as source time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We focused on these two metrics as they are quantities measured at the same spatial scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Moreover, short-range movements represent on average 90% or more of all movements within a province (see Table S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As input features to the model, we considered a set of attributes of the provinces in each country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In particular,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' we investigated the effects of population size,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' province area in square kilometers,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' the density of Facebook users,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' the number of total cumulative deaths,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' the ratio between the number of commuters traveling from or to the province,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' and those who live and work there,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' as reported by the census (commuting flow),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' and the coverage consistency,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' that is the correlation over time between the number of Facebook users sharing their location and the number of Facebook users taken into account to compute the colocation maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The results summarized in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 3 show that the model achieves a good overall performance in terms of precision and recall, as indicated by f1-scores generally higher than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In particular, of all provinces that are classified by the model as characterized by a statistically significant value of NETE, 90% or more display a significant transfer of information, as shown by precision values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' On the other hand, the model’s recall is close to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='95 when it comes to identifying provinces characterized by a not statistically significant NETE, therefore the model correctly identifies 95% of those provinces where there is no actual transfer of information between mobility and deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To explore the importance of province features in our classification model, we examined the SHAP (SHapley Additive exPlanations) values associated with each, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' SHAP is a method based on a game theoretic approach to explaining the output of classification mod- els [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As expected, the choice of the time lag to compute the NETE is crucial in determining the presence of a significant information transfer between mobility metrics and epidemiological indicators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Indeed, lag is ranked as the most and second most important feature explaining the classification, for contact rate and short-range movement, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Commuting flow is the most important predictor of the statistical significance of NETE between short-range movements 12 (a) Movement (b) Contact rate Figure 6: SHAP plots of feature importance to predict the statistical significance of the NETE for all selected provinces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Color represents the feature value (blue is low and red is high).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Panel a describes the results for NM s→D, panel b for NCR→D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The SHAP value, on the horizontal axis, indicates the feature importance on the model output, with larger values corresponding to higher relevance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Each dot represents a single observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Features are ranked by importance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' and deaths: when the number of commuters leaving or entering a province represents an impor- tant fraction with respect to those who remain within the province, the relationship between short-range mobility and COVID-19 dynamics gets weaker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' However, the same feature has only a marginal impact on the NETE between contact rates and deaths, which suggests contact rate should be preferred over short-range movements to predict epidemic outcomes when a province is characterized by large population inflows/outflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Province area and population size have also a significant impact on the information transfer between short-range movement and COVID-19 deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Indeed, a larger area and population size correspond to a higher likelihood of NETE significance for short-range movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' This effect may partly explain why we observed NETE values that were statistically significant only in a few provinces of Austria, where spatial units were particularly small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' When looking at the information flow between contact rates and time series of deaths, the total cumulative deaths represent an important explanatory variable for the classification model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Besides the analysis presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 6 suggests that the coverage consistency needs to be sufficiently high in order to get a statistically significant transfer entropy from contact rate to deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In France, where in most provinces the coverage consistency is low and the commuting inflow and outflow are higher than in other countries (see Table S2), mid-range movements seem to provide a better alternative to contact rates and short-range movements to partially explain time trends of COVID-19 cases and deaths (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' S14 of the SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 13 High flow 6 Feature value area population cumulated deaths user density D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 SHAP value (impact on mpdel output)High lag cumulated deaths coverage consistency Feature value population flow area Wser density D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 SHAP value (impact on mpdel output)From our analysis, we thus conclude that NETE values computed using contact rates as source time series are less sensitive to the province’s geographic or demographic features, rather than to the noise of the target time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Given good coverage, and consistency over time, contact rates thus represent a better epidemiological predictor of future COVID-19 deaths than short-range movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 3 Discussion In this work, we have introduced a novel framework based on transfer entropy to quantify the amount of information that is transferred from mobile phone-derived mobility metrics to epi- demiological time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Given the important role that mobility indicators have played in the COVID-19 pandemic, we tested our approach on mobility and epidemic time series collected in four European countries, between 2020 and 2021, at a subnational scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We found that, in general, the relative explanation added by mobility time series to predict future epidemic trends, whether new cases or deaths, was relatively small, ranging between 4% and 6% on average, and not statistically significant in the large majority of the provinces we considered, for any mo- bility metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As a comparison, these values were about half of the relative explanation added by past knowledge of COVID-19 incidence to predict future deaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Our method allowed us to directly compare the relative explanation added by different mobile phone-derived metrics of mobility: short- and mid-range mobility, and contact rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We generally found a higher informa- tion transfer from contact rates than movement, in line with previous studies [48], however, we also observed significant heterogeneities within the same country and between countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' With a classification model, we identified spatial features that may explain such heterogeneities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In provinces characterized by large populations, good coverage consistency over time, and small commuting in- and outflows, short-range movements can represent a useful metric to predict disease dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Where commuting flows are large, such as in France, and Austria, mid-range movements, which represent less than 10% of the total movements, provided a better alternative to short-range ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Our results suggest the choice of the best mobility metric to inform epi- demic predictions can depend on a number of different factors, even when using one single data provider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Moreover, our findings show that cell phone mobility metrics do not always capture epidemiologically-relevant behaviors and alternative data sources could be more effective for this aim, as, for instance, the collection of survey data [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' There is an emerging common understanding that mobility indicators measured from mobile phone data present significant gaps and do not provide a consistent picture of mobility across countries, and data providers [51, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Previous studies have also highlighted the fact that cou- pling between mobility indicators and COVID-19 epidemiology is often weak, and it changes over time [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The approach we introduced here addresses the above challenges by providing a general framework to evaluate the quality of metrics derived from passively collected mobility traces as a predictor of epidemic outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Our framework has the advantage of being model-free, meaning 14 that it does not depend on modeling assumptions regarding the expected relationship between mobility and epidemic dynamics, nor it requires any parametrization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The normalized effective transfer entropy we adopted is a general method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It allows us to rigorously compare different mobility indicators, across epidemiological settings, by measuring the relative information added by mobility time series to the prediction of future disease incidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To this end, we release the code to reproduce our analysis between any two source and target time series (see Data and Code Availability).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Researchers can use this tool in any epidemiological context to gauge the added value of a specific mobile phone-derived behavioral measure for epidemic intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Our study comes with a number of limitations and opens new directions for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We considered mobility metrics derived from one data provider, Meta, whose user base is not rep- resentative of the population in the countries we considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' However, alternative data sources of mobility indicators in Europe with a similar breadth, such as Google or Apple, do not reach the same spatial granularity and provide their data only as relative changes with respect to a pre-pandemic baseline, thus limiting their use in a study like ours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' On the other hand, movement and colocation maps by Meta have been extensively used in several studies, including European countries [53, 54, 55, 56, 57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Here, we considered four countries with different public health systems, and that adopted different testing strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Observed differences in the predictive power of mobility metrics across countries may depend on the varying quality of their reporting systems, especially at the province level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' However, all four countries belong to the European Union and we expect very similar standards of surveillance during the pandemic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Overall, it will be important to assess our findings on mobility data from other providers, and, most im- portantly, in countries of the non-Western world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Finally, it is important to note that transfer entropy measurements become more accurate as the length of the source and target time series increases [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We worked with a relatively short time series, addressing the bias due to the small sample by adopting the effective transfer entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' However, we could not systematically investi- gate how the information transfer changed over time, performing our analysis over different time windows and comparing them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Future work could benefit from longer epidemic time series, over several years, to identify temporal changes in the information flow between human movements and COVID-19 dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Measures of human mobility inferred from mobile phone data have been a critical ingredient to inform the public health response during the COVID-19 pandemic [58] and they will be an important asset in the fight against future pandemics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' At the same time, their widespread use raises some relevant ethical concerns due to re-identification risks [59], therefore, it is fundamental to assess the added value of using cell phone mobility data in a given epidemic scenario and whether the benefits outweigh the risks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Our work provides a practical guide to identifying when and where mobile phone mobility metrics truly capture behavioral patterns that are relevant to predict disease dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 15 4 Materials and Methods 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 Epidemiological indicators We collected epidemiological time series in the 4 countries under study from 2 data sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Daily reported cumulative COVID-19 cases were collected from the COVID-19 Data Hub [60], an open source aggregator of up-to-date COVID-19 statistics, at the NUTS3 level in Austria, France, Italy, and Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Daily reported cumulative deaths in Austria, France, and Spain were also collected from the COVID-19 Data Hub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' For Italy, death statistics were only available on a weekly time scale from the public platform CovidStat (https://covid19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='infn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='it/iss/).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' For the analysis, we generated daily incidence time series from cumulative data by computing day-to-day differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Then, we further aggregated the daily time series of deaths and cases into weekly ones, to perform the transfer entropy analysis on a weekly scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 Mobility derived indicators In our study, we computed daily and weekly movement and contact rates from data provided by Meta through its Data for Good program [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Here, we first describe the raw data sources provided by Meta and then the data processing we applied to compute the time series for the transfer entropy analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 Raw data sources We collected the following datasets that were publicly released by Meta since the beginning of the COVID-19 pandemic, in Austria, France, Italy, and Spain: Movement range maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It reports the number of users who moved between any two 16-level Bing tiles, with an 8-hour frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Users’ population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It reports the number of active users in each tile with an 8-hour frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The tile resolution is 4800 x 4800 m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Colocation maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It estimates the probability that, given any two administrative regions, p1 and p2, a randomly chosen user from p1 and a randomly chosen user from p2 are simultaneously located in the same place during a randomly chosen minute in a given week [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The dataset also reports the number of users in p1 and p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Stay put.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It reports for a given administrative region the daily percentage of users staying put within a single location, defined at the 16-level Bing tile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We formalize the description of the above datasets with the notation described in Table 4: 16 Dataset name Xs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='t spatial resolution temporal resolution population users N (pop) t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='h t: tile (4800 x 4800 m2) h: 8 hour movement between tiles M(t1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='t2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='h (t1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='t2): tile pair (600 x 600 m2) h: 8 hour colocation probability Pp,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='w p: province w : week colocation users N (coloc) p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='w p: province w: week stay put Sr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='d r: region d: day Table 4: Summary of raw data sources as time series records Xs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' where s denotes the spatial resolution and t the temporal resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' original data spatial aggregation temporal aggregation aggregated data name N (pop) t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='h �(t ∈ p) h interpolation and mean (h ∈ w) N (pop) p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='w province population users M(t1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='t2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='h � (t1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' t2) ∈ p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' t1 = t2 mean (h ∈ w) M (within) p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='w within tile province movement M(t1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='t2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='h � (t1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' t2) ∈ p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' t1 ̸= t2 mean (h ∈ w) M (between) p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='w between tiles province movement Sr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='d ∀p ∈ r r = p mean (d ∈ w) Sp,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='w province stay put Table 5: Aggregation of data sources described in Table 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' to generate our metrics of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 Aggregation of raw data We then processed the raw data sources of Table 4 to obtain a set of time series having the same spatiotemporal resolution, that is weekly, at the NUTS3 scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Results of the aggregation process are described in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' More in detail: Province users population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' (1) we performed a spatial aggregation by summing the population of tiles belonging to province p, thus obtaining a population at a (province, hour) level: N (pop) p,h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' (2) we performed a linear interpolation of the temporal gaps that were present in N (pop) p,h (3) we performed a temporal aggregation by averaging in each province, the 8h population records within a week.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Within tile province movement (1) we first performed a temporal aggregation by averaging M(t1,t2),h for each pair (t1, t2) over a week and obtaining M(t1,t2),w (2) we then performed a spatial feature joining and assigned each pair (t1, t2) to the corresponding provinces (p1, p2) (3) from M(t1,t2),w we obtained a within tile province movement M (within) p,w , that is the sum of movements which occurred in the same province p and within the same tile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Between tiles province movement in the pipeline above, from step (3) we obtain a between tile province movement M (between) p,w , that is the sum of movements which occurred in the same province p and between two different tiles, (t1, t2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' By definition, the sum M (between) p,w + M (within) p,w represents the total volume of movements in a province, in a 17 week.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Province stay put (1) we performed a temporal aggregation on a weekly scale by perform- ing the average and obtaining Sr,w (2) we assign to each province p the regional stay-put time series Sr,w such that p ∈ r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 Computation of movement and contact rate We finally computed our metrics of interest, movement, and contact rates, as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The short-range movement rate is defined as: M s p,w = M (within) p,w N (pop) p,w (1) that is the proportion of users who moved within the same tile in a given province, in a given week.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The mid-range movement rate is defined as: Mp,w = M (between) p,w N (pop) p,w (2) representing the proportion of users who moved between different tiles in a given province, in a given week.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The contact rate is defined as: CR(t)p,w = ˆPp,w · N (pop) p,w (3) where ˆP denotes the colocation probability corrected by a factor that takes into account the overestimation of colocation probabilities due to the heterogeneous distribution of users across provinces and the presence of a significant fraction of static users in some periods of mobility restrictions [55] (see the SI for additional details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 Province sample selection The population of Facebook users who contribute to the generation of the movement and colo- cation time series varies across countries, and it changes over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Moreover, the metrics of movement (short- and mid-range) and colocation, are computed from different users’ samples of different sizes: N (pop) p,w and N (coloc) p,w , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In our analysis, to limit bias that may be caused by the little representativeness of the underlying sample of users, we selected NUTS3 regions in the 4 countries, according to the following criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' First, we considered only regions where the sample N (pop) p,w represented at least 3% of the census population to guarantee we had at least 500 users in each province.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Furthermore, we considered only those regions where the two sample sizes N (pop) p,w and N (coloc) p,w were always positively correlated over time, during the whole study period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We denote the Pearson’s correlation of weekly values of N (pop) p,w and N (coloc) p,w as coverage consistency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' After the selection, our analysis includes 47 provinces in Austria, 51 provinces in France, 93 provinces in Italy, and 42 provinces in Spain, for a total of 233 spatial units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 18 Given two discrete temporal signals represented as time series X and Y the Transfer Entropy (TE) [38] is a measure of the amount of information delivered from X to Y , defined as: TEXY = H(Y |Y (l)) − H(Y |Y (l), X(l)) , (4) where X(l), Y (l) are respectively the l-lagged time series of X and Y and TEXY is formulated as a difference between two conditional entropy terms, where conditional entropy is expressed as H(a|b) = H(a, b) − H(b), and H(·) is the Shannon Entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Given a discrete time series S, its observations can be expressed as the sample {si;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='., n}, and we obtain the discrete proba- bility distribution p(sj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We compute the Shannon Entropy as: H(S) = � j p(sj) · log2(p(sj)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Thus TEXY can be expressed as: TEXY = H(Y, Y (l)) − H(Y (l)) − H(Y, Y (l), X(l)) + H(Y (l), X(l)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' (5) The time series that we consider in our experiments are continuous, therefore they need to be dis- cretized before computing TEXY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We employ the Kernel Density Estimation (KDE) for Transfer Entropy estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' KDE method evaluates the entropy terms of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 from the discretized den- sity estimated from each of the four features sets: {(Y, Y (l)), Y (l), (Y, Y (l), X(l)), (Y (l), X(l))}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' KDE employs a Gaussian kernel for density estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Performing tests on synthetic datasets of different sizes, we checked this was the method the most adapted to small samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' For the selection of the kernel’s bandwidth, we use the Scott method [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The continuous density is then discretized with a grid obtained by an equal-width discretization of each feature’s density domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We select 20 as the number of bins for each feature’s domain discretization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The dis- cretized density is computed with the integral of the continuous probability density functions over each grid cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Concerning the implementation, for TE estimation we use the PyCausality Python package (https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='com/ZacKeskin/PyCausality).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Effective Transfer Entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We introduce the Effective Transfer Entropy (ETE) as a cor- rection to TE for small sample time series, as originally proposed by [44]: ETEXY = TEXY − 1 Ns Ns � j=1 TEX ˆ Yj , (6) where the correction term is obtained by performing Ns iterations of Y shuffling, obtaining ˆYj and computing the average of {TEX ˆ Yj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='., Ns}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In our experiments, we performed 500 shuffling iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Normalized Transfer Entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We would like to employ TE in order to compare a set of input signals {Xj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='., N} in terms of their Transfer Entropy TEXjY towards a specific output Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' From equation 4 we have that TEXjY is evaluated as a difference of conditional entropy where the first term H(Y |Y (l)) depends only on target Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In order to ensure comparability over the set {TEXjY ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='., N}, we reformulate the difference as a relative difference dividing by 19 H(Y |Y (l)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Thus the set of inputs are compared according to {TEXjY /H(Y |Y (l));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='., N} and we refer to TEXY /H(Y |Y (l)) as Normalized Transfer Entropy (NTE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Normalized Effective Transfer Entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' By combining the ETE and the NTE we can fi- nally introduce the Normalized Effective Transfer Entropy (NETE), which is obtained by dividing the ETE by the first conditional entropy term H(Y |Y (l)) as in [62]: NETEXY = TEXY − 1 Ns �Ns j=1 TEX ˆ Yj H(Y |Y (l)) (7) In this way, the NETE accounts both for bias in small sample time series and it ensures compa- rability between different input sources {Xj} in terms of information transfer to different targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Besides, it enables estimating the percentage of explanation value added with respect to only knowing the past of the time series used as a target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 Classification model The introduction of the ETE allows associating a p-value, a metric of statistical significance, to each NETE value computed between any pair of time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In our study, we investigated a number of explanatory features to better understand why in some provinces the NETE could not identify a significant transfer of information between mobility time series and epidemiological indicators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' More specifically, we trained a Random Forest classification model to predict the significance of NX→Y at the threshold of p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01, in each province under study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The random forest was performed with 100 decision tree classifiers on various sub-samples of the dataset and used averaging to improve the predictive accuracy and control for over-fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The function to measure the quality of a split was the Gini impurity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Before applying the random forest, the data were split between training and test sets (30%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To compensate for the imbalance of the datasets, we applied a Synthetic Minority Oversampling Technique [63] on the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As input to the classification model we used a set of features that characterize each province: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' population size (as reported by the latest available census);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' area (in km2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' density of Facebook users (measured as Np,w divided by area);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' total cumulative number of reported COVID-19 deaths during the study period;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' commuting flow;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' coverage consistency;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 20 The commuting flow is defined as the ratio between the total number of daily commuters who travel from or to a province and the total number of commuters who work and live in that province.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Commuting data were collected from the latest available census statistics in each country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The coverage consistency is the correlation over time between the users’ populations N (pop) p,w and N (coloc) p,w .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' To quantify the importance of different features in our classification model, we used their SHAP (SHapley Additive exPlanations) values [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' SHAP is a method to explain model pre- dictions based on Shapley Values from game theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In particular, we use TreeSHAP [64], an algorithm to compute SHAP values for tree ensemble models, such as the random forest classifier of our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 5 Data and code availability The data and code to reproduce our analysis are available at: https://zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='org/record/ 7464949#.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='Y6L0CfxKhNg 6 Funding F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' gratefully acknowledges support from the CRT Lagrange Fellowships in Data Science for Social Impact of the ISI Foundation, where this work was conducted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' acknowledge the Lagrange Project of the ISI Foundation funded by CRT Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The funders had no role in the study design, decision to publish, or preparation of the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 7 Acknowledgements We gratefully acknowledge Alex Pompe for his help to understand the details of mobility data from Meta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 8 Author contributions FD collected data, conducted experiments, interpreted the results, made figures, and contributed to the writing of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' MT and LG conceived and designed the study, conducted the statistical analysis, interpreted the results, made figures, and wrote the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' All authors read and approved the final version of the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 9 Competing interests The authors declare no competing interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 1 Supplementary Information Correction to the colocation probability Colocation maps provided by Meta is defined as the number of colocation events over the number of possible events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' This, by design, includes interactions between users staying within the same tile but not having actual contact with other users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' For this reason, we estimate the contact rate in each province by removing the contribution due to the users staying put.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We explain our approach to estimating such contribution in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Let us start by writing the original colocation probability P as: P = E N 2 (8) where: E is the number of colocation events within the province N is the number of province colocation users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The exact formula should be P = E N(N−1) but as N is large we approximate it to 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Let us denote R(c) the number of measured colocation events that are due to users who stay put only, then the corrected colocation probability should be written in the following way: ˆPp,w = E − R(c) N 2 (9) We estimate R(c) by using the stay-put probability S, which is the probability of a user staying put.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Let us call the tile population ratio probability distribution {ftl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='., Tl} where T is the number of tiles in a province.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' This gives us an estimate of the contribution of the users who stay put to the colocation probability, as: R(c) = T � t=1 N 2 · f 2 t · S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' (10) So we rewrite: ˆPp,w = P − S2 Tl � t=1 f 2 tl (11) We do not have access to the population of the tiles used for the colocation so we make an approximation using the population distribution given for each tile with dimensions 4800 m × 4800 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' As there are by definition 64 colocation tiles within a single population tile, the expression Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='11 can be formulated as: ˆPp,w = Pp,w − S2 p,w · T � t=1 64 · � f (p) t,w 64 �2 (12) where: 2 M s (%) M (%) Austria 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6 [97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='9 – 100] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='0 - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1] France 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 [88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 – 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='7] 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='8 [6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='3 – 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='9] Italy 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='9 [86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='4 – 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='8] 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 [7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='2 – 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='6] Spain 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 [86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1 – 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1] 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='5 [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='9 – 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='9] Table S6: Relative proportion of mobility components in each country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Each row dis- plays the proportion of movements, as a percentage of the total movements within each province, that are represented by the short-range mobility (M s(t)) and the mid-range mobility (M(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Each table entry reports the median value and the IQR, computed over all provinces, and all weeks of the study period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Short-range mobility represents the large majority of movements within a province, in all countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' coverage consistency commuting flow Austria 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='64 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='45–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='79] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='43–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='69] France 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='32 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='23–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='43] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='22–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='51] Italy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='63 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='42–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='77] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='21 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='12–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='29] Spain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='86 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='68–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='91] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='08 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10] Table S7: Coverage consistency and commuting flow distributions by country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Each table entry reports the median value and the IQR computed over all provinces, in each country, considered in the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' f (p) t,w = Nt,w Np,w ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' t ∈ p : tile t population frequency in province p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nt,w : population at (tile,week) resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It is obtained through mean temporal aggre- gation of Nt,h over the week interval denoted by w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Np,w : population at (province, week) resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It is obtained through sum spatial aggregation of Nt,w over the tiles belonging to province p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' T is the number of tiles 4800 m × 4800 m We can introduce the quantity Qp,w as the sum of squared frequencies of the province tile distribution Qp,w = � t∈p(f (p) t,w)2, so that, finally: ˆPp,w = Pp,w − S2 p,w · Qp,w 64 (13) References [1] Ira M Longini Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' A mathematical model for predicting the geographic spread of new infectious agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Mathematical Biosciences, 90(1-2):367–383, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 3 Figure S1: Comparison of NETE values computed on weekly and daily time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' NC→D computed between time series data collected on a weekly time scale (bottom row) and a daily one (top row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Daily time series were available only for Austria, France and Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [2] Aidan Findlater and Isaac I Bogoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Human mobility and the global spread of infectious diseases: a focus on air travel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Trends in parasitology, 34(9):772–783, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [3] Duygu Balcan, Bruno Gon¸calves, Hao Hu, Jos´e J Ramasco, Vittoria Colizza, and Alessandro Vespignani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Modeling the spatial spread of infectious diseases: The GLobal Epidemic and Mobility computational model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Journal of Computational Science, 1(3):132–145, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [4] Amy Wesolowski, Caroline O Buckee, Kenth Engø-Monsen, and Charlotte Jessica Eland Metcalf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Connecting mobility to infectious diseases: the promise and limits of mobile phone data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The Journal of infectious diseases, 214(suppl 4):S414–S420, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [5] Amy Wesolowski, Nathan Eagle, Andrew J Tatem, David L Smith, Abdisalan M Noor, Robert W Snow, and Caroline O Buckee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Quantifying the impact of human mobility on malaria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Science, 338(6104):267–270, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [6] Lorenzo Mari, Enrico Bertuzzo, Lorenzo Righetto, Renato Casagrandi, Marino Gatto, Igna- cio Rodriguez-Iturbe, and Andrea Rinaldo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Modelling cholera epidemics: the role of water- ways, human mobility and sanitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Journal of the Royal Society Interface, 9(67):376–388, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='40 Austria France Spain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 →D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 →D ON 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 14 21 28 35 42 49 56 14 21 28 35 42 49 56 14 21 28 35 42 49 56 7 Lag (days) Lag (days) Lag (days) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='40 France Austria Spain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 D D D 个 个 个 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 2 2 3 4 6 4 5 6 7 8 2 4 7 8 3 5 6 8 1 7 Lag (weeks) Lag (weeks) Lag (weeks)[7] Caroline O Buckee, Amy Wesolowski, Nathan N Eagle, Elsa Hansen, and Robert W Snow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Mobile phones and malaria: modeling human and parasite travel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Travel medicine and infectious disease, 11(1):15–22, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [8] Vivek Charu, Scott Zeger, Julia Gog, Ottar N Bjørnstad, Stephen Kissler, Lone Simonsen, Bryan T Grenfell, and C´ecile Viboud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Human mobility and the spatial transmission of influenza in the United States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' PLoS Computational Biology, 13(2):e1005382, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [9] Michele Tizzoni, Paolo Bajardi, Adeline Decuyper, Guillaume Kon Kam King, Christian M Schneider, Vincent Blondel, Zbigniew Smoreda, Marta C Gonz´alez, and Vittoria Colizza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' On the use of human mobility proxies for modeling epidemics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' PLoS Computational Biology, 10(7):e1003716, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [10] Corey M Peak, Amy Wesolowski, Elisabeth zu Erbach-Schoenberg, Andrew J Tatem, Erik Wetter, Xin Lu, Daniel Power, Elaine Weidman-Grunewald, Sergio Ramos, Simon Moritz, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Population mobility reductions associated with travel restrictions during the Ebola epidemic in Sierra Leone: use of mobile phone data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' International journal of epidemiology, 47(5):1562–1570, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [11] Mengxi Zhang, Siqin Wang, Tao Hu, Xiaokang Fu, Xiaoyue Wang, Yaxin Hu, Briana Hal- loran, Zhenlong Li, Yunhe Cui, Haokun Liu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Human mobility and COVID-19 trans- mission: a systematic review and future directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Annals of GIS, pages 1–14, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [12] Nuria Oliver, Bruno Lepri, Harald Sterly, Renaud Lambiotte, S´ebastien Deletaille, Marco De Nadai, Emmanuel Letouz´e, Albert Ali Salah, Richard Benjamins, Ciro Cattuto, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Science Advances, 6(23):eabc0764, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [13] Caroline O Buckee, Satchit Balsari, Jennifer Chan, Merc`e Crosas, Francesca Dominici, Urs Gasser, Yonatan H Grad, Bryan Grenfell, M Elizabeth Halloran, Moritz UG Kraemer, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Aggregated mobility data could help fight COVID-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Science, 368(6487):145–146, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [14] Marino Gatto, Enrico Bertuzzo, Lorenzo Mari, Stefano Miccoli, Luca Carraro, Renato Casagrandi, and Andrea Rinaldo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 117(19):10484–10491, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [15] Estee Y Cramer, Evan L Ray, Velma K Lopez, Johannes Bracher, Andrea Brennen, Alvaro J Castro Rivadeneira, Aaron Gerding, Tilmann Gneiting, Katie H House, Yuxin Huang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 119(15):e2113561119, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [16] Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky, and Jure Leskovec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Mobility network models of COVID-19 explain inequities and inform reopening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature, 589(7840):82–87, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 5 [17] Lorenzo Lucchini, Simone Centellegher, Luca Pappalardo, Riccardo Gallotti, Filippo Privit- era, Bruno Lepri, and Marco De Nadai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Living in a pandemic: changes in mobility routines, social activity and adherence to COVID-19 protective measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Scientific reports, 11(1):1– 12, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [18] Philippe Lemey, Andrew Rambaut, Trevor Bedford, Nuno Faria, Filip Bielejec, Guy Baele, Colin A Russell, Derek J Smith, Oliver G Pybus, Dirk Brockmann, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza h3n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' PLoS pathogens, 10(2):e1003932, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [19] Philippe Lemey, Samuel L Hong, Verity Hill, Guy Baele, Chiara Poletto, Vittoria Colizza, ´Aine O’toole, John T McCrone, Kristian G Andersen, Michael Worobey, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Accom- modating individual travel history and unsampled diversity in bayesian phylogeographic inference of sars-cov-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature communications, 11(1):1–14, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [20] Moritz UG Kraemer, Verity Hill, Christopher Ruis, Simon Dellicour, Sumali Bajaj, John T McCrone, Guy Baele, Kris V Parag, Anya Lindstr¨om Battle, Bernardo Gutierrez, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='7 emergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Science, 373(6557):889–895, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [21] Jessica T Davis, Matteo Chinazzi, Nicola Perra, Kunpeng Mu, Ana Pastore y Piontti, Marco Ajelli, Natalie E Dean, Corrado Gioannini, Maria Litvinova, Stefano Merler, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature, 600(7887):127–132, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [22] Philippe Lemey, Nick Ruktanonchai, Samuel L Hong, Vittoria Colizza, Chiara Poletto, Fred- erik Van den Broeck, Mandev S Gill, Xiang Ji, Anthony Levasseur, Bas B Oude Munnink, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Untangling introductions and persistence in covid-19 resurgence in europe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature, 595(7869):713–717, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [23] Matteo Chinazzi, Jessica T Davis, Marco Ajelli, Corrado Gioannini, Maria Litvinova, Ste- fano Merler, Ana Pastore y Piontti, Kunpeng Mu, Luca Rossi, Kaiyuan Sun, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) out- break.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Science, 368(6489):395–400, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [24] Pedro S Peixoto, Diego Marcondes, Cl´audia Peixoto, and S´ergio M Oliva.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Modeling future spread of infections via mobile geolocation data and population dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' an application to covid-19 in brazil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' PloS one, 15(7):e0235732, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [25] Moritz UG Kraemer, Adam Sadilek, Qian Zhang, Nahema A Marchal, Gaurav Tuli, Emily L Cohn, Yulin Hswen, T Alex Perkins, David L Smith, Robert C Reiner, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Mapping global variation in human mobility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature Human Behaviour, 4(8):800–810, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 6 [26] Jayson S Jia, Xin Lu, Yun Yuan, Ge Xu, Jianmin Jia, and Nicholas A Christakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Population flow drives spatio-temporal distribution of COVID-19 in China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature, 582(7812):389–394, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [27] Joel Persson, Jurriaan F Parie, and Stefan Feuerriegel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Monitoring the COVID-19 epidemic with nationwide telecommunication data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 118(26):e2100664118, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [28] Stefano Maria Iacus, Carlos Santamaria, Francesco Sermi, Spyros Spyratos, Dario Tarchi, and Michele Vespe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Human mobility and COVID-19 initial dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nonlinear Dynamics, 101(3):1901–1919, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [29] Nishant Kishore, Aimee R Taylor, Pierre E Jacob, Navin Vembar, Ted Cohen, Caroline O Buckee, and Nicolas A Menzies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Evaluating the reliability of mobility metrics from aggre- gated mobile phone data as proxies for sars-cov-2 transmission in the usa: a population-based study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The Lancet Digital Health, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [30] Sean Jewell, Joseph Futoma, Lauren Hannah, Andrew C Miller, Nicholas J Foti, and Emily B Fox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' It’s complicated: Characterizing the time-varying relationship between cell phone mobility and COVID-19 spread in the US.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' NPJ digital medicine, 4(1):1–11, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [31] Hamada S Badr and Lauren M Gardner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Limitations of using mobile phone data to model COVID-19 transmission in the USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The Lancet Infectious Diseases, 21(5):e113, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [32] Pierre Nouvellet, Sangeeta Bhatia, Anne Cori, Kylie EC Ainslie, Marc Baguelin, Samir Bhatt, Adhiratha Boonyasiri, Nicholas F Brazeau, Lorenzo Cattarino, Laura V Cooper, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Reduction in mobility and covid-19 transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature communications, 12(1):1–9, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [33] Alberto Aleta, David Martin-Corral, Ana Pastore y Piontti, Marco Ajelli, Maria Litvinova, Matteo Chinazzi, Natalie E Dean, M Elizabeth Halloran, Ira M Longini Jr, Stefano Merler, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature Human Behaviour, 4(9):964–971, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [34] Alberto Aleta, David Mart´ın-Corral, Michiel A Bakker, Ana Pastore y Piontti, Marco Ajelli, Maria Litvinova, Matteo Chinazzi, Natalie E Dean, M Elizabeth Halloran, Ira M Longini Jr, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 119(26):e2112182119, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [35] Tanjona Ramiadantsoa, C Jessica E Metcalf, Antso Hasina Raherinandrasana, Santatra Randrianarisoa, Benjamin L Rice, Amy Wesolowski, Fidiniaina Mamy Randriatsarafara, and Fidisoa Rasambainarivo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Existing human mobility data sources poorly predicted the spatial spread of SARS-CoV-2 in Madagascar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Epidemics, 38:100534, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 7 [36] Nishant Kishore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Mobility data as a proxy for epidemic measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature Computational Science, 1(9):567–568, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [37] Roman Levin, Dennis L Chao, Edward A Wenger, and Joshua L Proctor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Insights into population behavior during the COVID-19 pandemic from cell phone mobility data and manifold learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature Computational Science, 1(9):588–597, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [38] Thomas Schreiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Measuring information transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Physical review letters, 85(2):461, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [39] Shankar Iyer, Brian Karrer, Daniel T Citron, Farshad Kooti, Paige Maas, Zeyu Wang, Eugenia Giraudy, P Alex Dow, and Alex Pompe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Large-Scale Measurement of Aggregate Human Colocation Patterns for Epidemiological Modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' medRxiv, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [40] Eurostat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Eurostat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Your key to European Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [41] Ama¸c Herda˘gdelen, Alex Dow, Bogdan State, Payman Mohassel, and Alex Pompe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Protecting privacy in Facebook mobility data dur- ing the COVID-19 response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' https://research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='fb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='com/blog/2020/06/ protecting-privacy-in-facebook-mobility-data-during-the-covid-19-response/, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Accessed: 2021-11-06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [42] Facebook Data for Good.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Movement range maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' https://data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='humdata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='org/dataset/ movement-range-maps, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Accessed: 2021-11-06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [43] Terry Bossomaier, Lionel Barnett, Michael Harr´e, and Joseph T Lizier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Transfer entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' In An introduction to transfer entropy, pages 65–95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Springer, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [44] Robert Marschinski and Holger Kantz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Analysing the information flow between financial time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The European Physical Journal B-Condensed Matter and Complex Systems, 30(2):275–281, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [45] Zefan Zeng, Guang Jin, Chi Xu, Siya Chen, and Lu Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Spacecraft telemetry anomaly de- tection based on parametric causality and double-criteria drift streaming peaks over thresh- old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Applied Sciences, 12(4):1803, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [46] Nick Wilson, Amanda Kvalsvig, Lucy Telfar Barnard, and Michael G Baker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Case-fatality risk estimates for COVID-19 calculated by using a lag time for fatality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Emerging infectious diseases, 26(6):1339, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [47] Manuela Fritz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Wave after wave: determining the temporal lag in Covid-19 infections and deaths using spatial panel data from Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Journal of Spatial Econometrics, 3(1):1–30, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [48] Forrest W Crawford, Sydney A Jones, Matthew Cartter, Samantha G Dean, Joshua L Warren, Zehang Richard Li, Jacqueline Barbieri, Jared Campbell, Patrick Kenney, Thomas 8 Valleau, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Impact of close interpersonal contact on covid-19 incidence: Evidence from 1 year of mobile device data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Science Advances, 8(1):eabi5499, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [49] Scott M Lundberg and Su-In Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' A unified approach to interpreting model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [50] Andreas Koher, Frederik Jørgensen, Michael Bang Petersen, and Sune Lehmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Moni- toring Public Behavior During a Pandemic Using Surveys: Proof-of-Concept Via Epidemic Modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01472, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [51] Jack Wardle, Sangeeta Bhatia, Moritz UG Kraemer, Pierre Nouvellet, and Anne Cori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Gaps in mobility data and implications for modelling epidemic spread: a scoping review and simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' medRxiv, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [52] Riccardo Gallotti, Davide Maniscalco, Marc Barthelemy, and Manlio De Domenico.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The distorting lens of human mobility data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10308, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [53] Giovanni Bonaccorsi, Francesco Pierri, Matteo Cinelli, Andrea Flori, Alessandro Galeazzi, Francesco Porcelli, Ana Lucia Schmidt, Carlo Michele Valensise, Antonio Scala, Walter Quattrociocchi, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Economic and social consequences of human mobility restrictions under covid-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 117(27):15530–15535, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [54] Alessandro Galeazzi, Matteo Cinelli, Giovanni Bonaccorsi, Francesco Pierri, Ana Lucia Schmidt, Antonio Scala, Fabio Pammolli, and Walter Quattrociocchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Human mobility in response to COVID-19 in France, Italy and UK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Scientific reports, 11(1):1–10, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [55] Mattia Mazzoli, Eugenio Valdano, and Vittoria Colizza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Projecting the COVID-19 epidemic risk in France for the summer 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Journal of travel medicine, 28(7):taab129, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [56] Alex Smolyak, Giovanni Bonaccorsi, Andrea Flori, Fabio Pammolli, and Shlomo Havlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Effects of mobility restrictions during COVID19 in Italy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Scientific reports, 11(1):1–15, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [57] Harry ER Shepherd, Florence S Atherden, Ho Man Theophilus Chan, Alexandra Loveridge, and Andrew J Tatem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Domestic and international mobility trends in the united kingdom during the covid-19 pandemic: an analysis of facebook data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' International journal of health geographics, 20(1):1–13, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [58] Kyra H Grantz, Hannah R Meredith, Derek AT Cummings, C Jessica E Metcalf, Bryan T Grenfell, John R Giles, Shruti Mehta, Sunil Solomon, Alain Labrique, Nishant Kishore, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature communications, 11(1):1–8, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 9 [59] Marcello Ienca and Effy Vayena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' On the responsible use of digital data to tackle the COVID- 19 pandemic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Nature medicine, 26(4):463–464, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [60] Emanuele Guidotti and David Ardia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' COVID-19 Data Hub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Journal of Open Source Soft- ware, 5(51):2376, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [61] David W Scott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Multivariate density estimation: theory, practice, and visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' John Wiley & Sons, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [62] Juan R Perilla and Thomas B Woolf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Towards the prediction of order parameters from molec- ular dynamics simulations in proteins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The Journal of chemical physics, 136(16):04B619, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [63] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' SMOTE: synthetic minority over-sampling technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Journal of artificial intelligence research, 16:321–357, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' [64] Scott M Lundberg, Gabriel G Erion, and Su-In Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Consistent individualized feature attribution for tree ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' arXiv preprint arXiv:1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='03888, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 10 Figure S2: NETE values from contact rates to deaths in Austria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Only statistically significant values are shown (p-value< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 11 Amsteten - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025748 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035190 Brauneu ami Inn - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030781 Bregenz - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032432 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='063635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='079792 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='073301 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='051136 Bruck-Murzzschlag - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048734 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047809 Dornbim - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042606 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028192 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037263 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036085 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038355 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="036506 E998E0'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030327 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028564 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040716 Grez [Stadt] - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037779 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='076651 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='097150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055744 Grez-Urngebung - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='064492 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='077311 Innshruck-Land - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028612 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045289 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='052419 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039591 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="200 Jerner'sdorf - 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035306 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='069850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='113048 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='068616 Kirchdorf an der Krem8- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='065064 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='080814 Kitzbuhel - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031631 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='068131 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='175 Klagerfurt am Worthersee (Sadi) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045755 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='073913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='069748 Korreuburg - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048235 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='064034 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='067645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='080225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='071908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='062741 Kufstein , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='084524 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='078949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050947 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036189 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040762 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043702 Landeck - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='106637 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='088543 Leibnibz - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026406 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='125 Leoben - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029500 Province Liezen - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="033578 DOL'O - 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031302 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030106 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035957 Midling - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="029218 ETEEEO'O 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026258 Neunkirchen - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040286 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='075 Reutte - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045268 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='112349 Ried in Innkreis - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032220 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='069890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='060479 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041664 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='024491 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050 Rahrbach - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041602 Sabzburg (Stadt) - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043210 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='072274 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='075024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='073098 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042898 Sazburg-Umgebung - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032673 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025 Sankt jahann im Pongau - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034971 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='068717 SchwEz - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038691 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='091690 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='184757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='000 Spittal an der Drau - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030718 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035796 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='060162 Steyr-Land - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='056514 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='062967 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='069762 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='067400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='066843 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='064067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055595 Urfahr-Umgebung - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033754 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041654 vbitsberg - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042787 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043992 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046677 vbcklabruck - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045316 EETEEOO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='087363 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054894 Weiz - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="025742 Webs (Stadt) - E660E0'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025064 Wen - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032377 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046296 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042002 1 2 m 4 6 8Figure S3: NETE values from contact rates to deaths in France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Only statistically significant values are shown (p-value¿0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 12 Areyron - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040657 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047058 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='056892 Bas- Rhin - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033482 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041585 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028520 BDpBA(E0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031260 Carital - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='024933 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='058974 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043374 Charente - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025404 TZZ8E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040474 Creue - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044353 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='066560 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='109015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='097901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046231 Cite-"or - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050804 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='083634 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='101878 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='112566 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='057215 Douhs - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='081594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='061416 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043711 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='069546 568E00 Gard - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041388 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='200 Haut-Rhin - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029346 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031260 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='059106 TZTES00 ZLTEEO0 Haute-Garonne - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039255 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036558 Haute-Loire - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="034223 EOLTEO'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='175 Haute-Marne 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029728 EZ9EE00 Haute-Sevbie 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='077211 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='057614 9698E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='023792 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='151 Haute-Seonie - Haute-Vienre - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029789 Hautes Pyrinees - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046039 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='052797 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='073291 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='087177 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='118157 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='097759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='079092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='024660 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027809 22] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055111 660600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='116728 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="074720 6580E0'0 Province Eunr 0Z60E00 EEL6Z00 DOL'0 Landes - 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='056405 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='091173 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='090549 Lair-et-Cher - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027844 5E68200 Laire - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054201 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='085214 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='105839 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='095344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='069573 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='075 Laire- Atlantique - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029233 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029794 Lairet - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025703 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031137 Lat-et-Garcne - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='062904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='070896 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043991 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050 Maine-et-Loire - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048480 Marne - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025154 Mayenne - 0666E00 TES9E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025244 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='049144 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='053130 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042279 Moselle - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026739 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034717 Nievre - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='022348 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 Nard - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036407 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045561 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040334 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='051478 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='077228 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='063907 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='059029 TZOEO0 Pyrenees Alantiques - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='062096 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='092766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='145174 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='132909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='102827 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042085 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='059519 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055424 Savaie - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034982 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='060054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='057195 Saane-et-Lnire - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031605 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='065657 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='092507 EOLO0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039947 arn-et-Garanne - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045909 8066L00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='109730 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='065963 vauckuse - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026052 L9TOE00 Wheges - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027052 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='059475 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='073040 bnne - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028840 i 2 3 4 5 6 1 80Figure S4: NETE values from contact rates to deaths in Italy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Only statistically signifi- cant values are shown (p-value< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 13 Agigento - 9880 Alesaandria - EESZO0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036095 EESE00 6006200 SSSt00 ZE6600 E09ZE00 Aeti - 9218200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037452 Beri - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='024441 E6S00 80t9200 81E8Z00 66TZE00 SLZOEO0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047656 886TS00 E8L00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047959 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='051687 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032656 E0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026679 Billa - ESE6E00 00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='058615 EES00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='049609 Bolpgne - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031410 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034686 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025180 Brindisi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='022450 8Tt000 2666200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040166 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='060407 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='081030 Caserta - S6E00 SEtOSO0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054700 EOESSO0 LLE6500 8L85E00 Catenia - 60TE00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='077414 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='112635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='117515 0107535 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='089910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='076614 Caterzaro - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034300 E200 Cornn - 8TO00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047368 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031005 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='200 QuneD - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042780 8800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='057480 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='052452 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043510 Ferno - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028947 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='074648 Femra - 8689200 LTS6Z00 Firerze - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041079 509t900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='086577 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='08711 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='175 Fogpia- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='052670 EEt00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035560 ESS9Z00 Genava - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046436 00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033568 E6TTE00 026000 SST8500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='053584 9L8500 00LES00 1t0800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037490 L6E620~0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027724 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='151 Isemia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032211 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048660 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042584 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="031698 L'Aqula - ST69E00 EZ8500 La Spezia - ZtE00 Lece - 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='125 Livarnp - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033466 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055616 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='071218 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029651 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048037 Z9E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035697 162600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046853 zz90500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050894 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044390 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050407 z0800 0106961 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='19485 98 T600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035414 ruapon 2618200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='41629 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043517 TZOt00 EtbE00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042702 I iden T9Z6E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048102 ES6SE00 Padova - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040434 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044515 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='064084 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='074209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='075150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='056965 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='075 Palerma - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028142 Parma - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026819 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='024981 Perugia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042104 ESE800 T6ESt00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044093 LL68E00 EZOSZO0 Pesaro e Uraind - LE00 TZ9SE0 0 89E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029094 6ET00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050 Farcenza - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034775 L6SS00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='072717 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='080463 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048326 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040556 LL90S00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='066595 8L8200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='091416 LZ96600 82L600 ETT6500 Portienane 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029401 0T0850 0 #S690 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='056462 88T8E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037469 Paternza - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038844 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025 snled OE00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039405 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026673 Reggio di Calabria 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036117 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047436 6E00 0589E00 SOtTE00 T6TZE00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046939 Regi nleia - E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042878 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='023446 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 n E08E600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='102254 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='085088 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047687 Rarma - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043376 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='052379 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044143 6600 Sracun - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041731 LS6E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037220 Eranto - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026919 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028592 990TE00 81 6200 Erni - ETts00 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='058842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054448 9T95E00 auyg 86E6E00 EZ6t00 9STES00 65E00 Tapani - 186500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='069576 0103436 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='106727 TEZ900 Tentb - Z06SZ00 S6S9E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047467 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040554 Teva - T969Z00 606E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='052642 90ELt00 Bun 8868200 Varese.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047314 876 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='093084 TS95600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='081083 EE9EE00 vemezi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034065 LE00 OOEZEOO SBZTEO0 EGEb00 056t00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031813 8060500 LEZ600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='078072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='104887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='111805 Micenzi - 8680200 BELZ00 L6TEE00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033232 Miterbo - TS6E00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='072240 50L8600 E9ETO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='087438 ES6tE00 1 2 3 4 5 6 8Figure S5: NETE values from contact rates to deaths in Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Only statistically significant values are shown (p-value< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 14 Amerfa - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039917 Aturias - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031993 Bertcekang 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='064487 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='049886 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035688 Bizkain - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='024587 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='022016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042866 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042032 Caritabrin - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='068889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='068396 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036596 Castellon - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048737 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='063084 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='051995 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036042 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='200 Ciudad Real - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044180 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054436 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030186 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='175 Cirdaba - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032927 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038618 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='065027 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036654 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 GipuzkD8 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031801 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='053539 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048215 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='125 Grenada - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='081161 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='103030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='079209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032532 Province Huelva - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='100 Huesch - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046110 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031084 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='075 La Rinja - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028844 Lerida - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033187 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041296 DSIO - Madrid 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043627 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037621 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025 Murcia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045269 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044486 Neverre - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027031 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033968 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027792 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='000 Palencia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="030504 Pontevedra - 6008E0'0 Sevill - 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037439 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042436 Earrapone - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045793 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='079908 BzaBeJZ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046435 1 2 3 4 5 15 00Figure S6: NETE values from movements to deaths in Austria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Only statistically significant values are shown (p-value< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Figure S7: NETE values from movements to deaths in France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Only statistically signif- icant values are shown (p-value< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 15 Bregenz - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='066033 Dornbim - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043640 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='067243 Eferding - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035090 Feldkirch - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037236 Freistadt - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038373 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047605 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048796 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055328 Gmunden - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='031248 Gmind - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='023410 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030299 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027167 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='200 Hallein - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034264 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027311 Imst - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029552 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='175 Innsruck-Stadt - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055188 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='080702 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='094913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='085118 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='151 Kitzbthel - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042733 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='072762 Krema an der Dcnau (Stadty) - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055608 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='125 Kufstein - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032149 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043879 Province Landeck - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029311 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='072866 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='061492 DOLO- Liezen - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025763 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048718 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='D75 Linz-Land - Rahrbach - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036758 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044387 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050 Sankt Polten (Stadt) - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034767 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041224 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043476 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038877 Schwaz - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039763 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='D25 Scharding - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042464 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041187 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='000 Steyr (Stadt) - Steyr-Land - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035290 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035265 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039354 TEamaweg - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='060463 Urfahr-Umgebung - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041795 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054897 Waidhofen an der Ybba (Stadt] - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030619 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037978 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037335 Wien - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='021074 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='022951 Zell em See - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034330 2 1 m + 5 9 1 1 8Haute-Garonne - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039198 Herault - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035912 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 Landes - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='024899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047341 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 g Pyrenees Aantiques - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040966 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='081955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 Pyrenees-Orienbales - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 2S1O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='PH9n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027723 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='D0 var - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037235 vendee - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035709 2 1 m 4 5 1 1 LpFigure S8: NETE values from movements to deaths in Italy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Only statistically significant values are shown (p-value< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 16 Agnigento - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035274 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='060209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='067456 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='063766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045358 Aosta - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029482 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042370 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='072343 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='082323 BolpgnB - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030139 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028636 Brescin - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025976 Brindisi - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026128 Crobne - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030466 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040989 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='058785 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='075694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055939 Faggia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='021785 Grsseto - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='022906 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038155 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='200 Isernia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030238 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032921 L Spezia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047417 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='103764 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='175 Lecce - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036007 Livane - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='150 Metera - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038031 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043266 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029986 Miland - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038485 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='060374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='090189 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='111951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='119138 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='076202 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043542 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='125 Napoli - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032169 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='053370 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='077585 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='081536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='069873 Province Palerrma - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040487 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055997 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='049803 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034437 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='100 Parmia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='020899 SEEEEOO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='045348 Pescara - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035626 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='053516 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048144 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='075 Fisa - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036115 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='046651 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='048108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042774 Ravenng - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='032001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050158 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054213 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044289 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='023382 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="050 Reggio nel'Emilia - 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036432 Salermo - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='024835 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026877 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025 Saana - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='021183 Sandrio - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025698 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='000 Earanto - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='042189 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027444 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033665 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035389 Tevisn - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='026159 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='020877 vercelli - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035478 Vibo Valentia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028121 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044249 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='055201 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028612 Micerzr - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='022276 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='022803 viterbo - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047049 T 2- 4 5 9 L LpFigure S9: NETE values from movements to deaths in Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Only statistically significant values are shown (p-value< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Figure S10: Comparison of NETE values computed on full time series and reduced time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' NM→C computed between time series data collected including the vaccination campaign (full) and not (reduced).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The reduced study period ranges from September 1, 2020 to January 31, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' The full study period extends up to July 31, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' We consider daily time series only to address biases due to small samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 17 A Coruia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036865 Balearea - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='068768 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='044550 Bercekana - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039459 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035079 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030976 Bizkain - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='027029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='028069 Burgos - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='029288 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='200 Caritabrin - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033294 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047135 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='056197 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039901 Castell6n - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037745 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='175 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030562 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037700 Bauar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='043924 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='076964 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='088080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 Oceres - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='030211 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='125 Province 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content="055756 DOL'O- Grenada - 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033007 Guadalajara - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036284 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='075 Lein - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050 Lugo - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='073411 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='049612 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='038789 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='025 Lerida - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='039123 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='056995 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='052213 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='041481 0010 - Palencia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='049664 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033181 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='034299 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037105 Pontevedra 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='052307 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='036459 Segpvin - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='033276 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='054284 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='059599 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='050507 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='035978 pa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='047631 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040222 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='037340 valencia - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='057275 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='040704 + 5 2 9 8 1 LBp0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='08 NMr-→c (reduced) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='02 Austria France 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 Spain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 NMr→c (full)Figure S11: Spatial variations of normalized effective transfer entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Maps of NETE values computed for different source time series and weekly COVID-19 deaths, in the provinces of Austria: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7 weeks, (c) source is short-range movement at lag l=7 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' (d) source is mid-range movement at lag l=7 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Dark grey indicates provinces with non-significant values of NETE (p > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Provinces in white are excluded from our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 18 b a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 Nc→D NcR→D C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 Nms→D NM→DFigure S12: Spatial variations of normalized effective transfer entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Maps of NETE values computed for different source time series and weekly COVID-19 deaths, in the provinces of France: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7 weeks, (c) source is short-range movement at lag l=7 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' (d) source is mid-range movement at lag l=7 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Dark grey indicates provinces with non-significant values of NETE (p > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Provinces in white are excluded from our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 19 b a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 Nc→D NcR→D d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 Nms-D NM→DFigure S13: Spatial variations of normalized effective transfer entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Maps of NETE values computed for different source time series and weekly COVID-19 deaths, in the provinces of Italy: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7 weeks, (c) source is short-range movement at lag l=7 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' (d) source is mid-range movement at lag l=7 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Dark grey indicates provinces with non-significant values of NETE (p > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Provinces in white are excluded from our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 20 b a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 Nc→D NcR→D d C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content='35 Nms-D NM-DFigure S14: Percentage of statistically significant NETE values, disaggregated by country and by mobility metric used as source variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' Target variables are: weekly COVID-19 cases (panel a) and weekly COVID-19 deaths (panel b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} +page_content=' 21 b a 60 CR Ms 30 M 40 20 E 20 NETI 10 0 0 Austria Italy Austria Italy France Spain France Spain' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf'} diff --git a/1tAzT4oBgHgl3EQf8_4M/vector_store/index.faiss b/1tAzT4oBgHgl3EQf8_4M/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..6d753162d5c90c4ebfc96e3872b62dd24b593799 --- /dev/null +++ b/1tAzT4oBgHgl3EQf8_4M/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f4254aac0720250dfa77b55e7f0b2516a8e1f47c3af3279fc9037e99afd73f6f +size 2162733 diff --git a/2tAyT4oBgHgl3EQfb_cv/content/tmp_files/2301.00272v1.pdf.txt b/2tAyT4oBgHgl3EQfb_cv/content/tmp_files/2301.00272v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a78391d694f57b298345df7572c4812ea5fcf4ec --- /dev/null +++ b/2tAyT4oBgHgl3EQfb_cv/content/tmp_files/2301.00272v1.pdf.txt @@ -0,0 +1,428 @@ +arXiv:2301.00272v1 [hep-ph] 31 Dec 2022 +Quark spectral functions from spectra of mesons and vice versa +V. ˇSauli1, ∗ +1Department of Theoretical Physics, Institute of Nuclear Physics Rez near Prague, CAS, Czech Republic +Within the QCD functional formalism, having the approximations controlled by physical masses +and decays of pseudoscalar mesons, we extract spectral function of quarks from which the meson +are composed. We choose the pion for the case of light quarks and ηc(N) for the extraction of +charm quark spectral function. +For this purpose we solved improved ladder-rainbow truncation +of the spectral Dyson-Schwinger equations for quarks coupled to Bethe-Salpeter equation for the +pion and the pseudoscalar charmonia. We begin with indefinite gauge fixing method for class of +covariant linear gauges and search for its optimal value in given fixed truncation of Dyson-Schwinger +equations. All kernels are represented self-consistently by known or extrapolated solutions known +form lattice or QCD DSEs solutions. +We require the formalism gives us the spectral functions +with arbitrarily high numerical accuracy, while providing known experimental properties of mesons +simultaneously. , we found that the ladder rainbow approximation can serve for this purpose when +the Yennie gauge is employed. Properties of such spectral functions are shown and its connection +with confinement is discussed. +PACS numbers: 11.10.St, 11.15.Tk +I. +INTRODUCTION +QCD is a rigid part the Standard Model already for half century and passed many nontrivial tests when compared to +the experiment. The knowledge of correlation functions at time-like momentum region is crucial for the first principle +determination of hadronic resonances and understanding of production of hadrons [1, 2]. Lattice theory is formulated +in the Euclidean space where it is also solved, however the analytical continuation to the timelike Minkowski subspace +represents is quite often an ill defined numerical problem. +A complementary and very attractive approach is the spectral functional formalism, where the analytical contin- +uation is performed at very beginning and the set of Dyson-Schwinger equations is solved for spectral function in +Minkowski space. Such method is appreciated quite recently [1, 3–7] and includes the topics of spectral renormal- +ization - primary or secondary subtractions technique performed at the timelike momentum scale. A Yang-Mills +sector of SU(3) gauge theory was considered in [8, 9] bringing a new insights in the conventional Landau gauge. In +order to get agreement with lattice data, the importance of transverse vertices in pure gluodynamics was shown [4]. +A meaningful comparison to recent lattice data was missing when the first spectral DSEs study [10] has appeared. +Nowadays, the transverse QCD vertices are known to be very important in the quark as well as in the gluon sector in +the Landau gauge and they are responsible for a large enhancement (suppression) of the propagator (proper selfener- +gies) in infrared domain. How to incorporate transverse vertices in spectral quark sector was only suggested in [1] for +the case of quark-photon vertex but not yet implemented in practice. The purpose of presented paper is not a jump +to bandwagon or chasing the train of DSEs scheduled in the Euclidean space [11, 12], but to push theory of spectral +DSEs in its own direction. +Since the relativity is less urgent for mutual interaction of heavy quarks Q = c, b inside heavy mesons, nonrelativistic +quantum mechanic was widely used to describe quarkonia and their transitions ( for a review see [16]) instead. History +tell us, that in addition to perturbative Coulomb “one gluon exchange” potential, the linear rising potential have been +proposed to explain spectra of excited quarkonia [17]. If fine tuned and ignoring quark content mixing and ignoring +resonant character of excited states, such models reasonably describe static spectra of strangeonia [18] as well. In +lattice QCD, a confining potential for a static quark-antiquark pair are computed with Wilson loops. This technique +lies aside of quark-antiquark scattering kernel used in the DSE/BSEs heavy quarkonia studies [13–15]). To match +the two different approaches -the DSEs and Wilsonian static quark potential together, is longstanding desire but +unfinished story (for attempts see [19]). +Actually, to the author best knowledge, there is not known truncation of DSES, which naturally offer the interaction +kernels, which is consistent with string picture of confinement. The string-like interaction is either introduced by hand +∗Electronic address: sauli@ujf.cas.cz + +2 +[14, 15] or even completely avoided by the use of auxiliary entire function [13]. In all cases, the approximations made +turns to be odd from perspective of spectral quark functions. +Before presenting the details of truncation, which complies with the existence of quark spectral function, let us +mention here the so called hindered transitions , which were measured at various channels [20–22]. The large discrep- +ancy between of measured rate with nonrelativistic theory prediction were usually attributed to missing relativistic +corrections. To explain the quarkonia and their transitions, a very recent treatments based either on BSE/DSEs +formalism, nonrelativistic quantum mechanic or other techniques [23–32] still represent very different approaches with +not completely clear connection to QCD. To this point, a systematically improvable truncation of DSEs with a clear +bridge to analytic properties of S-matrix could be a reliable candidate. Notably the formalism of spectral DSEs we +present here, leads to the dispersion relation for hadronic form factors (including the hindered transitions as well). +The main aims of presented work is twofold: we solve the spectral quark DSE and extract thus information on the +quark spectral function. Simultaneously, within the obtained quark propagators we solve the BSE for mesons and +check the solution against the experimental data. We employ the calculation scheme, which gives us solution with +desired analytical properties for physical meson from the very beginning. We expect the ladder-rainbow approximation +gives the first estimate of spectra for both light and heavy mesons. For this purpose we leave popular Landau gauge +and extrapolate known spectral solution obtained recently [4] into other linear gauges. Enchantingly, it turns out the +pion and heavy quarkonium (pseudoscalar charmonia) can be described within the same kernel. A correctly obtained +meson properties thus control reliability of obtained quark spectral functions. An on shell peak is washout specifically +and anomalous branch point is generated, which naturally explains a large contribution of seemingly unphysical +gauge term in considered approximation. We discuss the limitation methods as well as we suggest future prospects +and directions where the method can provide useful results. +II. +TRUNCATION OF SDES SYSTEM FOR THE PION +For purpose of completeness we write down all necessary equations here. The appropriate quark DSE for the quark +propagator S can be written in the following way +S−1(q, µ) = A(µ) ̸ q − Bq(µ) − [ΣR(q) − ΣR(µ)] , +ΣR(q) = i4 +3 +� +dDk +(2π)D γµS(k)ΓνGµν(k − q) , +(2.1) +where for the product of the quark-gluon vertex Γ and the gluon propagator G we take +ΓνGµν(p) = γνN(ξ) +� +−gµν + pµpν +p2 +� � +do +ρT (o) +p2 − o + iǫ − ξg2 +p2 +pµpν +p2 +, +(2.2) +where ρT is the gluon spectral function obtained with Landau gauge in the paper [4]. +We adopt a conventional renormalization condition and we take ℜA(µ) = 1 ℜB(µ) = 300MeV at the timelike +subtracting point µ2 = 0.5GeV 2, noting that the imaginary parts of functions A, B, which completely characterize +the quark propagator +S−1(p) ≠ pA(p) − B(p) +(2.3) +do note take arbitrary value at the timelike renormalization point, but they are matter of numerical search. The +letter R stands for the fact that the quark selfenergy was (or can be) regularized before the secondary subtractive +renormalization takes its place. Proper regularization is more crucial and unavoidable step in gluon sector of DSEs +in order to prevent violation of gauge invariance by inappropriate numeric. +The last term in the Eq. (2.2) is aforementioned gauge term appearing in the product with the gauge coupling +g2. The prefactor N(ξ) nonlinearly depends on the coupling as well as on the gauge parameter ξ. The lattice data +for the gluon propagator are known only for ξ gauge parameter ξ being smaller then 0.5 [33, 34] in QCD without +quark. Solving a Nielsen identities the solution of truncated system of Yang-Mills DSEs has been obtained in [35]. +Both studies show the gluon propagator is suppressed gradually in the infrared domain when ξ is getting larger. We +exploit this and perform a very simple extrapolation of our DSE kernel into other gauges. +The overall prefactor N(ξ) the Eq. (2.2) is varied and represents the only change when we extrapolate to nontrivial +value of the gauge parameter ξ. Gauge term is not getting dressed, due to the unbroken gauge invariance in QCD and +ξ appears linearly in our LRA employed. The extrapolation to other gauges is implicit since the ratio of the transverse +and gauge term is adjusted by the solution of Bethe-Salpeter equation for the pion. Hence we can estimate the gauge +only at the end of (quite nontrivial) search of solution. Nevertheless, for the first time we provide the first naive guess + +3 +0 +0.5 +1 +1.5 + [GeV] +0 +2 +4 +6 + σ v,s [GeV +-2,GeV +-1] +u,d - s +u,d - v +charm v +charm s +u,d +c +FIG. 1: Quark spectral functions, solid line stand for the functions σv, , dashed line for σs plotted against the energy . The +left two blobs are for light quarks, the one on the right for the charm quark. +————————————————————————————- +ξ ≃ 3, which is based on comparison with solutions of Yang-Mills system [35] performed for various gauge parameters. +Notably, the agreement of both solutions [1] and [35] with lattice data [36] in Landau gauge in the infrared domain +is enough for our rough estimate of the gauge parameter. Further approximation we describe in the next text could +not be crucial since the meson physics is not sensitive to UV tails. +The gluonic spectral function is a continuous function starting to be nonzero at p2 = 0, showing the violation of +passivity bellow several GeV . Here however, in order to reduce number of numerical integration in our pioneering +study we use a simplified (UV finite) fit for the gluonic spectral function +ρT (o) = −δ(o − m2 +g) + δ(o − Λ2) +(2.4) +with mg = 0.6GeV and Λ = 2GeV . +Thus we have estimated the gauge only at the end of (quite nontrivial) search of solution for the pion BSE which +produces the correct pion mass mπ = 140MeV . The gauge choice for which the pion properties are obtained most +effectively corresponds numerically with the following rate +g2ξ +N(ξ) = 3 +(2.5) +while for the absolute value we get 4N(ξ) +3(4π)2 = 16 +3 , ( 4g2ξ +3(4π)2 = 16). +It is tentative to identify our gauge with a Yennie gauge. Our guess is certainly naive, since based on comparison +with different truncation of DSEs for the Yang-Mills system [35] performed for various gauge parameters, including +the Landau gauge as well. +The agreement of both solutions [1] and [35] with lattice data [36] in Landau gauge +in the infrared domain is only approximate, also a further approximation represented by Eq. (2.4) calls for better +identification of the gauge parameter if needed for any future purpose. As we have checked, the realistic picture can +be obtained for the other rates (2.5), providing the range of our estimate ξ = 3 ± 1. Let us stress for clarity that +extreme cases like Landau gauge ξ = 0 or complete neglections of the first term N(ξ) = 0 do not lead to satisfactory +picture at all. +As the name indicates, the spectral DSE is nothing else but rewritten original DSE in a way that it can be solved +for the two quark spectral functions σv(o) and σs(o) , rather then for the propagator in momentum space. The quark +propagator then can be calculated through its spectral representation: +S(p) = +� ∞ +0 +do̸ pσv(o) + σs(o) +p2 − o + iǫ +(2.6) +in the entire complex plane of square momentum p2 ( real value p2 > 0 correspond with Minkowski space domain in +our metric choice). +The solution of spectral DSE is described in details in series of papers [1, 3, 4] and the only change is improved +numeric for purpose of presented paper. We use two Gaussian integrator, the first is adjusted to fit the dominant peak + +4 +0 +0.5 +1 +1.5 +2 +2.5 +o +1/2 [GeV] +0 +0.5 +1 +1.5 +2 +DLSF +charm v +charm s +u,d -v +u,d -s +FIG. 2: Dimensionless quark spectral functions oσv(o) (solid line) and +� +(o)σs(o) (dashed line) for the light and charm quark. +At larger (smaller) energy scale the broad peak for the charm flavor (u,d) quark spectral function develops. +————————————————————————————- +in the quark spectral function, the second one has been suitably mapped to the rest of infinite interval of spectral +variable o. The deviation from assumed analyticity σ2 as established in [3, 4], it can be arbitrarily minimized when +approaching the correct values of imaginary parts of the functions A(µ) and B(µ) at renormalized point µ. The value +σ2 = 10−6 can be achieved easily and seems to be limited by numeric rather then systematics. +The BSE for the pion has been solved for the dominant BS vertex component by eigenvalue method in complex +momentum space. Such single component approximation is working well not only for the ground state [44] but with +a slight modification for the excited states as well [15]. The BSE involves product of the scalar functions Sv(k + +P/2)Sv(k −P/2) and Ss(k +P/2)Ss(k −P/2) evaluated at complex momenta (kE is real Euclidean momentum, while +the total momentum PE = (im, 0) in rest of the pion), which we evaluate within the use the spectral representation +2.6). Since the shape of spectral functions is difficult to control (at least at this stage), we do not use some numerical +fit and implement additional integration over the spectral representation to determine products SiSi i. As usually, +numerical codes either for BSE and DSE are available for public [37]. An alternative way to solve BSE in Minkowski +space are known, till now used simplified systems (e.g. for constituent quark models[38–40]). The method could be +necessary if one evaluates the resonant hadronic form factor [1], however as the BSE is converted into more dimensional +integro-differential equations, we prefer to solve BSE defined in the complex Euclidean space for purpose of presented +paper. +The resulting spectral functions for the the light quarks are shown in the figure 1. We work in the izospin limit +and ignore electromagnetic interaction, thus the spectral function for the up quark is identical to the d quark one. +According to broad shapes of both functions σv,s, they describe confined objects- the light quark excitations. The +quarks continuously change colors inside hadrons by exchanging of gluons, hence a width of the main peak can be +interpreted as the inverse of mean time τu,d ≃ 0.2GeV −1, which the quark of given flavor spent with a given color. +Similarly to quark weak decays, they do not represent observable, we avoid the name “decay width” in this context. +Attentive reader has surely noticed that the on-shell delta functions are absent in the spectrum. Consequently the +thresholds vanishes at evaluated form factors, which is in expected accordance with Wilsonian area law. Such behavior +is intuitively expected, and in fact it has been mimic in [41–43] by the introduction of certain infrared cutoff in the +Feynman(Schwinger) parameter in various evaluations of hadronic form factors. +III. +ηc(N) QUARKONIA +The same QCD kernel that govern interaction between quark-antiquark in the light meson is used to calculate the +heavy quarkonia. However as the interaction is not flavor universal- it constitute by the quark-gluon vertex as well, +a changes, e.g. softening of the interaction is expected. +It can be done by a change of effective mass parameters which now takes rescaled values by the factor r = 0.721, +more precisely they take the values +mc +g = 0.433 GeV ; mc +Λ = 1.442 GeV ; +(3.1) +while the dimensionless couplings like g; ξ do not change their values. We renormalize such that ℜAc(µ) = 1 and + +5 +BSE EXP. +2980 2980 +3442 3638 +4150 3810 +4720 +– +TABLE I: Comparison with PDG data (second column) and calculated spectrum. +ReBc(µ) = r1.3GeV . The search gives for the the imaginary parts ℑAc(µ) = 0.113 and ℑBc(µ) = 0.106rGeV at +renormalization point µ2 = r20.5GeV 2. +The kernel is not further tuned however as the excited states ranges over the relatively large scale, small further +change we need is to incorporate the total momentum into the kernel. Elsewhere more important diamond diagrams +(the diagrams with interupted quark horizontal lines by gluon lines) should contribute to the kernel with substantially +small effect (note M(ηc) ≃ M(J/ψ) Instead of evaluating these complicated diagrams we mimic their small effect and +insert the following prefactor +fη = +1 +√ +2 +� +1 + M(ηc(2))2 +P 2 +. +(3.2) +This formally leaves the BSE for ηc(2) completely identical to the pion case, while the couplings are softened by few +percentage for higher excited states. +Thus as expected for charmonium, the two mutually opposite poles of the kernel are getting closer, which suppress +the metric term when comparing to the pion. Nevertheless, the entire effect on the charm quark spectral function is +very the same as for the light quark. The resulting charm quark spectral functions are added into the fig. 1. Since +the spectral function are dimensinfull object, we introduce the dimensionless quantity +� +(o)σs(o) and oσv(o) for a +better comparison of spectral function of different flavors. These object are compared in the figure 2. The on-shell +singularity is washout to a broad peak and heavy free quark excitation does not exists at all. A picture of confinement +that emerge in spectral framework of DSEs is very the same for the light as well for the heavy quarks. A scalar string +interaction governed by a linear potential is not actually needed at any quark sector. +The spectra of bottomonia can be obtained by a similar fashion, however our two mutually beating poles turns +to be cruel approximation at bottomonium scale and slightly more honest approximation is required. We plan to +perform more comprehensive study of BB system in the future. +The obtained masses are tabled in the Tab I further predicted and not yet observed states we only list here: +5436,6186,7030MeV,... Recal, those above the first excitation all they lie above open charm threshold and they +become broad resonance and our predicted values ignores coupling to D mesons completely. Interestingly, not the +sure of mass but the mass itself is linear in principal value N , not supporting the string/Regge trajectory at all. +Furthermore, the vertex functions are not orthogonal in sense two states with different N can be produced in single +photon annihilation of e+e− (this is a bit free extension of quantum mechanical orthogonality, it obviously relies on +the formula for normalization of BSE). We also show our ultimate numerical search for eigenvalue λ and the deviation +σ2 in the figure 3. A single point shown in this figure costed one day of work of recent single processor. Even working +with multiprocessor machines the reader can imagine the time consumed before the truncation of DSE/BSE has been +established. +IV. +CONCLUSION +Using indefinite gauge fixing we have solved coupled set of spectral quark Dyson-Schwinger equations and Bethe- +Salpeter equation for the pion and we have extended the method to the heavy quarks sector represented by pseudoscalar +charmonia. +Facing the resulting spectral functions we get simple picture of confinement of the light as well as the heavy quarks: +quarks are never on-shell inside the hadrons, the inverse of quark propagator never gets zero for a real momenta. The +sharp singularity is completely wash out due to the imaginary part which is gradually growing from the anomalous +thresholds- the zero momenta. +Notably, the interaction of heavy quarks in quarkonium is far from conventional +historical wisdom: it does not lead color coulomb plus linear potential in the nonrelativistic limit. +For the pion case the solution presented here has been already obtained for kindred model, albeit the renormalization +and the kernels slightly differ numerically. That description of both - the light and heavy meson systems is possible + +6 +3000 +3500 +4000 +4500 +5000 +M [MeV] +1e-06 +0.0001 +0.01 +1 + σ +2 : + λ : + η c (3) + η c (2) + η c (4) + η c (1) +FIG. 3: The eigenvalue λ and the numerical error σ from the solution of BSE the solution for the ground state and the the +first three excited state of pseudoscalar charmonium. The definitions can be find in [15], the bound states are for λ → 1 σ → 0 +when satisfied simultaneously for the meson mass M. +————————————————————————————- +within DSEs/BSEs formalism is not surprising fact [13]. However the use of almost identical kernel used for the +charmonium and for the pion case is astonishing. Notably, the interaction of heavy quarks in quarkonium is far from +conventional historical wisdom: it does not lead to static color coulomb plus linear potential in the nonrelativistic +limit. The gauge term, which is not contribution for on-shell scattering fermions at all, turns to be important part.The +form of kernels suggest that our gauge choice is very close to the Yennie gauge ξ = 3, known because of cancellation of +infrared infinities in perturbation theory in this gauge. However here it comes out due to its perspective in truncation +convergence of QCD gap equations. +Obviously, using of spectral representation can be seen as heavy hammer tool for calculation of form factor for +spacelike argument. There, the convenient calculation within the use of Euclidean metric works sufficiently irrespective +of analytical property of the kernels. We also expect no big improvements when Isgur-Wise functions [45, 46] are +calculated within the use of presented formalism as well. There are likely other quantities insensitive to the issue of +confinement especially if vertices and quarks lines lie outside the timelike domain of momenta. On the other side, the +methodology of calculation of form factor at resonant region is a challenge where spectral DSEs will take their correct +place. Within the truncation presented here one can get the celebrated dispersion relation form [48] for Vacuum +Hadron Polarization as well as one can enjoy the resulting dispersion relation for the electromagnetic meson form +factor [1]. +At last but at not least we could stress again the reasoning and strategy of our indefinite gauge method. Obviously, +If the quark SR exist in a given gauge, it is natural to expect that it exists in some other gauges as well. However to +reach the resulting SR with the simultaneous reliable solution for meson spectra requires very different effort when +one goes from one gauge choice to another one (here we the kernels are QCD vertices itself and they are not crippled +presence by ad hoc auxiliar functions ). It is well known that LRA -Γµ = gT γµ- with the lattice gluon propagator +obtained in Landau gauge, does not provide a good starting point for the calculation of mesons. +That such LRA does not receive a proper strength one can see also from DSE solution alone. It has been checked +that decreasing the fixing parameters, one gradually observe the growth of the peak in the quark spectral function +and the dirac delta function is formed after passing through the critical coupling ξg2 with a lattice gluon propagator +matched to the transverse (or metric tensor) part of interaction. At this critical point one gets non-confining (NC) +propagator solution of familiar form +SNC(p) = +R +̸ p − mp ++ +� ∞ +th +doσv(o) ̸ p + σs(o) +(p2 − o + iǫ) +(4.1) +with two continuous spectral functions σv,s being nonzero only from the threshold (being identical to the fermion pole +mass mp, if one allows nontrivial gluon spectral function). Such solution typically arise at non-confining theory like +QED, being preserved for not large coupling in toy quantum field models [47]. With the value R ≃ 0.75 the authors + +7 +of [6] obtained such solution for fermion propagator within LRA and lattice Landau gauge gluon data. +[1] V. Sauli, Phys. Rev. D 106, 3, 034030 (2022). +[2] V. Sauli, Phys. Rev. D 1021, 014049 (2020). +[3] V. Sauli, Few Body Syst. 61 (2020). +[4] V. Sauli, Phys. Rev.D 106, 9, 094022 (2022). +[5] E.L. Solis, C.S.R. Costa, V.V. Luiz, G. Krein, Few Body Syst. 60 3, 49 (2019). +[6] J. Horak, J. M. Pawlowski, N. Wink, arXiv:2210.07597. +[7] C. Mezrag, G. Salm`e, Eur. Phys. J. C 81 1, 34 (2021). +[8] J. Horak, J. M. Pawlowski, N. Wink, arXiv:2202.09333 +[9] J. Horak, J. Papavassiliou , J. M. Pawlowski, N. Wink, Phys. Rev. D 104,074017 (2021). +[10] J.M. Cornwall, Phys. Rev. D 26,1453 (1982). +[11] C. D. Roberts and A. G. Williams C. Roberts and A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994). +[12] R. Alkofer, L. von Smekal, Phys. Rept. 353 281 (2001). +[13] T. Hilger, C. Popovici, M. Gomez-Rocha, A. Krassnigg, Phys. Rev. D 91 3,034013 (2015). +[14] V. Sauli, Phys. Rev. D 90, 016005 (2014). +[15] V.Sauli,Phys. Rev. D 86, 096004 (2012). +[16] E. Eichten, S. Godfrey, H. Mahlke, J. L. Rosner, Rev. Mod. Phys. 80 1161, (2008). +[17] J. Kogut and L. Susskind, Phys. Rev. D10 3468 (1974). +[18] Qi Li, Long-Cheng Gui, Ming-Sheng Liu, Qi-Fang L¨u, Xian-Hui Zhong, Chin. Phys. C 45 2, 023116 (2021). +[19] P.Bicudo, G. Marques, M. Cardoso, N. Cardoso, O. Oliveira, PoS QCD-TNT09 003 (2009); ArXive: 0912.1274. +[20] R. E. Mitchell et al. [CLEO Collaboration], Phys. Rev. Lett. 102, 011801 (2009). +[21] M. Ablikim et al. BESIII Collaboration, Phys. Rev. D 106, 112002 (2022). +[22] BESIII collaboration: M. AblikimBESIII Collaboration et al., Phys. Rev. D 96, 3, 032001 (2017). +[23] V. Guleria, E. Gebrehana, S. Bhatnagar, Phys. Rev. D 104, 9, 094045 (2021). +[24] Jun-Kang He, Hua-Zhong, Chao-Jie Fan, Phys. Rev. D 103, 11, 114006 (2021). +[25] R. Bruschini, P. Gonz´alez, Phys. Rev. D 101,1 014027 (2020). +[26] S. Bhatnagar, E. Gebrehana, Phys. Rev. D 102, 9, 094024 (2020). +[27] I. Babiarz, V. P. Goncalves, R. Pasechnik, W. Sch¨afer, A. Szczurek, Phys. Rev. D 100 5, 054018 (2019). +[28] N.R. Soni, B.R. Joshi, R.P. Shah, H.R. Chauhan, J.N. Pandya, Eur.Phys.J. C 78, 7, 592 (2018). +[29] Meijian Li, Yang Li, P. Maris, J. P. Vary, Phys. Rev. D 98 3, 034024 (2018). +[30] Wei-Jun Deng, Hui Liu, Long-Cheng Gui, Xian-Hui Zhong, Phys. Rev. D 95 3, 034026 (2017). +[31] D. Becirevic, F. Sanfilippo, JHEP 01, 028 (2013). +[32] Gang Li, Qiang Zhao, Phys. Rev. D 84 074005 (2011). +[33] P. Bicudo, D. Binosi, N. Cardoso, O. Oliveira, P. J. Silva, Phys. Rev. D 92 11, 114514 (2015). +[34] P. Bicudo, D. Binosi, N. Cardoso, O. Oliveira, P. J. Silva, talk at Lattice 2015, PoS LATTICE2015 (2016) 317; e-Print: +1509.06737. +[35] M Napetschnig, R. Alkofer, M. Q. Huber, J. M. Pawlowski Phys. Rev. D 104, 054003 (2021). +[36] A. F. Falc˜ao, O. Oliveira, P. J. Silva, Phys. Rev. D 102, 114518 (2020). +[37] author web pages at: gemma.ujf.cas.cz +[38] V. Sauli, J. Phys. G 35, 035005 (2008). +[39] T. Frederico, G. Salme, M. Viviani, Phys. Rev. D 89, 016010 (2014). +[40] J. Carbonell, V. A. Karmanov, Eur. Phys. J. A 46,387 (2010). +[41] T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. K¨orner, and V. E. Lyubovitskij, Phys. Rev. D 81, 034010 (2010). +[42] G. Ganbold, T. Gutsche, M. A. Ivanov, and V. E. Lyubovitskij, Phys. Rev. D 104, 094048 (2021). +[43] S. Dubnicka, A. Z. Dubnickova, M.A Ivanov , A. Liptaj, Phys. Rev. D 106 033006 (2022). +[44] C.S. Fischer, D. Nickel, R. Williams, Eur. Phys. J. C60, 49 (2009). +[45] N. Isgur and M. Wise , Phys. Lett. B232 (1989). +[46] N. Isgur and M. Wise, Phys. Lett. B237, 527 (1990). +[47] V. Sauli, JHEP 02,001 (2003). +[48] N. Cabibbo and R. Gatto, Phys. Rev. 224 , 1577 (1961). + diff --git a/2tAyT4oBgHgl3EQfb_cv/content/tmp_files/load_file.txt b/2tAyT4oBgHgl3EQfb_cv/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a8c4313ae3a241647b1318bb3b1466b079b7c8bb --- /dev/null +++ b/2tAyT4oBgHgl3EQfb_cv/content/tmp_files/load_file.txt @@ -0,0 +1,506 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf,len=505 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='00272v1 [hep-ph] 31 Dec 2022 Quark spectral functions from spectra of mesons and vice versa V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' ˇSauli1, ∗ 1Department of Theoretical Physics, Institute of Nuclear Physics Rez near Prague, CAS, Czech Republic Within the QCD functional formalism, having the approximations controlled by physical masses and decays of pseudoscalar mesons, we extract spectral function of quarks from which the meson are composed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We choose the pion for the case of light quarks and ηc(N) for the extraction of charm quark spectral function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' For this purpose we solved improved ladder-rainbow truncation of the spectral Dyson-Schwinger equations for quarks coupled to Bethe-Salpeter equation for the pion and the pseudoscalar charmonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We begin with indefinite gauge fixing method for class of covariant linear gauges and search for its optimal value in given fixed truncation of Dyson-Schwinger equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' All kernels are represented self-consistently by known or extrapolated solutions known form lattice or QCD DSEs solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We require the formalism gives us the spectral functions with arbitrarily high numerical accuracy, while providing known experimental properties of mesons simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' , we found that the ladder rainbow approximation can serve for this purpose when the Yennie gauge is employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Properties of such spectral functions are shown and its connection with confinement is discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' PACS numbers: 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='St, 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='Tk I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' INTRODUCTION QCD is a rigid part the Standard Model already for half century and passed many nontrivial tests when compared to the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The knowledge of correlation functions at time-like momentum region is crucial for the first principle determination of hadronic resonances and understanding of production of hadrons [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Lattice theory is formulated in the Euclidean space where it is also solved, however the analytical continuation to the timelike Minkowski subspace represents is quite often an ill defined numerical problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A complementary and very attractive approach is the spectral functional formalism, where the analytical contin- uation is performed at very beginning and the set of Dyson-Schwinger equations is solved for spectral function in Minkowski space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Such method is appreciated quite recently [1, 3–7] and includes the topics of spectral renormal- ization - primary or secondary subtractions technique performed at the timelike momentum scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A Yang-Mills sector of SU(3) gauge theory was considered in [8, 9] bringing a new insights in the conventional Landau gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' In order to get agreement with lattice data, the importance of transverse vertices in pure gluodynamics was shown [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A meaningful comparison to recent lattice data was missing when the first spectral DSEs study [10] has appeared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Nowadays, the transverse QCD vertices are known to be very important in the quark as well as in the gluon sector in the Landau gauge and they are responsible for a large enhancement (suppression) of the propagator (proper selfener- gies) in infrared domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' How to incorporate transverse vertices in spectral quark sector was only suggested in [1] for the case of quark-photon vertex but not yet implemented in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The purpose of presented paper is not a jump to bandwagon or chasing the train of DSEs scheduled in the Euclidean space [11, 12], but to push theory of spectral DSEs in its own direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Since the relativity is less urgent for mutual interaction of heavy quarks Q = c, b inside heavy mesons, nonrelativistic quantum mechanic was widely used to describe quarkonia and their transitions ( for a review see [16]) instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' History tell us, that in addition to perturbative Coulomb “one gluon exchange” potential, the linear rising potential have been proposed to explain spectra of excited quarkonia [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' If fine tuned and ignoring quark content mixing and ignoring resonant character of excited states, such models reasonably describe static spectra of strangeonia [18] as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' In lattice QCD, a confining potential for a static quark-antiquark pair are computed with Wilson loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' This technique lies aside of quark-antiquark scattering kernel used in the DSE/BSEs heavy quarkonia studies [13–15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' To match the two different approaches -the DSEs and Wilsonian static quark potential together, is longstanding desire but unfinished story (for attempts see [19]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Actually, to the author best knowledge, there is not known truncation of DSES, which naturally offer the interaction kernels, which is consistent with string picture of confinement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The string-like interaction is either introduced by hand ∗Electronic address: sauli@ujf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='cas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='cz 2 [14, 15] or even completely avoided by the use of auxiliary entire function [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' In all cases, the approximations made turns to be odd from perspective of spectral quark functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Before presenting the details of truncation, which complies with the existence of quark spectral function, let us mention here the so called hindered transitions , which were measured at various channels [20–22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The large discrep- ancy between of measured rate with nonrelativistic theory prediction were usually attributed to missing relativistic corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' To explain the quarkonia and their transitions, a very recent treatments based either on BSE/DSEs formalism, nonrelativistic quantum mechanic or other techniques [23–32] still represent very different approaches with not completely clear connection to QCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' To this point, a systematically improvable truncation of DSEs with a clear bridge to analytic properties of S-matrix could be a reliable candidate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Notably the formalism of spectral DSEs we present here, leads to the dispersion relation for hadronic form factors (including the hindered transitions as well).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The main aims of presented work is twofold: we solve the spectral quark DSE and extract thus information on the quark spectral function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Simultaneously, within the obtained quark propagators we solve the BSE for mesons and check the solution against the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We employ the calculation scheme, which gives us solution with desired analytical properties for physical meson from the very beginning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We expect the ladder-rainbow approximation gives the first estimate of spectra for both light and heavy mesons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' For this purpose we leave popular Landau gauge and extrapolate known spectral solution obtained recently [4] into other linear gauges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Enchantingly, it turns out the pion and heavy quarkonium (pseudoscalar charmonia) can be described within the same kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A correctly obtained meson properties thus control reliability of obtained quark spectral functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' An on shell peak is washout specifically and anomalous branch point is generated, which naturally explains a large contribution of seemingly unphysical gauge term in considered approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We discuss the limitation methods as well as we suggest future prospects and directions where the method can provide useful results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' TRUNCATION OF SDES SYSTEM FOR THE PION For purpose of completeness we write down all necessary equations here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The appropriate quark DSE for the quark propagator S can be written in the following way S−1(q, µ) = A(µ) ̸ q − Bq(µ) − [ΣR(q) − ΣR(µ)] , ΣR(q) = i4 3 � dDk (2π)D γµS(k)ΓνGµν(k − q) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='1) where for the product of the quark-gluon vertex Γ and the gluon propagator G we take ΓνGµν(p) = γνN(ξ) � −gµν + pµpν p2 � � do ρT (o) p2 − o + iǫ − ξg2 p2 pµpν p2 , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='2) where ρT is the gluon spectral function obtained with Landau gauge in the paper [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We adopt a conventional renormalization condition and we take ℜA(µ) = 1 ℜB(µ) = 300MeV at the timelike subtracting point µ2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5GeV 2, noting that the imaginary parts of functions A, B, which completely characterize the quark propagator S−1(p) ≠ pA(p) − B(p) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='3) do note take arbitrary value at the timelike renormalization point, but they are matter of numerical search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The letter R stands for the fact that the quark selfenergy was (or can be) regularized before the secondary subtractive renormalization takes its place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Proper regularization is more crucial and unavoidable step in gluon sector of DSEs in order to prevent violation of gauge invariance by inappropriate numeric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The last term in the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='2) is aforementioned gauge term appearing in the product with the gauge coupling g2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The prefactor N(ξ) nonlinearly depends on the coupling as well as on the gauge parameter ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The lattice data for the gluon propagator are known only for ξ gauge parameter ξ being smaller then 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5 [33, 34] in QCD without quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Solving a Nielsen identities the solution of truncated system of Yang-Mills DSEs has been obtained in [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Both studies show the gluon propagator is suppressed gradually in the infrared domain when ξ is getting larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We exploit this and perform a very simple extrapolation of our DSE kernel into other gauges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The overall prefactor N(ξ) the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='2) is varied and represents the only change when we extrapolate to nontrivial value of the gauge parameter ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Gauge term is not getting dressed, due to the unbroken gauge invariance in QCD and ξ appears linearly in our LRA employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The extrapolation to other gauges is implicit since the ratio of the transverse and gauge term is adjusted by the solution of Bethe-Salpeter equation for the pion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Hence we can estimate the gauge only at the end of (quite nontrivial) search of solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Nevertheless, for the first time we provide the first naive guess 3 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5 [GeV] 0 2 4 6 σ v,s [GeV 2,GeV 1] u,d - s u,d - v charm v charm s u,d c FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 1: Quark spectral functions, solid line stand for the functions σv, , dashed line for σs plotted against the energy .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The left two blobs are for light quarks, the one on the right for the charm quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' ————————————————————————————- ξ ≃ 3, which is based on comparison with solutions of Yang-Mills system [35] performed for various gauge parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Notably, the agreement of both solutions [1] and [35] with lattice data [36] in Landau gauge in the infrared domain is enough for our rough estimate of the gauge parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Further approximation we describe in the next text could not be crucial since the meson physics is not sensitive to UV tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The gluonic spectral function is a continuous function starting to be nonzero at p2 = 0, showing the violation of passivity bellow several GeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Here however, in order to reduce number of numerical integration in our pioneering study we use a simplified (UV finite) fit for the gluonic spectral function ρT (o) = −δ(o − m2 g) + δ(o − Λ2) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='4) with mg = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='6GeV and Λ = 2GeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Thus we have estimated the gauge only at the end of (quite nontrivial) search of solution for the pion BSE which produces the correct pion mass mπ = 140MeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The gauge choice for which the pion properties are obtained most effectively corresponds numerically with the following rate g2ξ N(ξ) = 3 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5) while for the absolute value we get 4N(ξ) 3(4π)2 = 16 3 , ( 4g2ξ 3(4π)2 = 16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' It is tentative to identify our gauge with a Yennie gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Our guess is certainly naive, since based on comparison with different truncation of DSEs for the Yang-Mills system [35] performed for various gauge parameters, including the Landau gauge as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The agreement of both solutions [1] and [35] with lattice data [36] in Landau gauge in the infrared domain is only approximate, also a further approximation represented by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='4) calls for better identification of the gauge parameter if needed for any future purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' As we have checked, the realistic picture can be obtained for the other rates (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5), providing the range of our estimate ξ = 3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Let us stress for clarity that extreme cases like Landau gauge ξ = 0 or complete neglections of the first term N(ξ) = 0 do not lead to satisfactory picture at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' As the name indicates, the spectral DSE is nothing else but rewritten original DSE in a way that it can be solved for the two quark spectral functions σv(o) and σs(o) , rather then for the propagator in momentum space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The quark propagator then can be calculated through its spectral representation: S(p) = � ∞ 0 do̸ pσv(o) + σs(o) p2 − o + iǫ (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='6) in the entire complex plane of square momentum p2 ( real value p2 > 0 correspond with Minkowski space domain in our metric choice).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The solution of spectral DSE is described in details in series of papers [1, 3, 4] and the only change is improved numeric for purpose of presented paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We use two Gaussian integrator, the first is adjusted to fit the dominant peak 4 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5 o 1/2 [GeV] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5 2 DLSF charm v charm s u,d -v u,d -s FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 2: Dimensionless quark spectral functions oσv(o) (solid line) and � (o)σs(o) (dashed line) for the light and charm quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' At larger (smaller) energy scale the broad peak for the charm flavor (u,d) quark spectral function develops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' ————————————————————————————- in the quark spectral function, the second one has been suitably mapped to the rest of infinite interval of spectral variable o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The deviation from assumed analyticity σ2 as established in [3, 4], it can be arbitrarily minimized when approaching the correct values of imaginary parts of the functions A(µ) and B(µ) at renormalized point µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The value σ2 = 10−6 can be achieved easily and seems to be limited by numeric rather then systematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The BSE for the pion has been solved for the dominant BS vertex component by eigenvalue method in complex momentum space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Such single component approximation is working well not only for the ground state [44] but with a slight modification for the excited states as well [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The BSE involves product of the scalar functions Sv(k + P/2)Sv(k −P/2) and Ss(k +P/2)Ss(k −P/2) evaluated at complex momenta (kE is real Euclidean momentum, while the total momentum PE = (im, 0) in rest of the pion), which we evaluate within the use the spectral representation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Since the shape of spectral functions is difficult to control (at least at this stage), we do not use some numerical fit and implement additional integration over the spectral representation to determine products SiSi i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' As usually, numerical codes either for BSE and DSE are available for public [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' An alternative way to solve BSE in Minkowski space are known, till now used simplified systems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' for constituent quark models[38–40]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The method could be necessary if one evaluates the resonant hadronic form factor [1], however as the BSE is converted into more dimensional integro-differential equations, we prefer to solve BSE defined in the complex Euclidean space for purpose of presented paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The resulting spectral functions for the the light quarks are shown in the figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We work in the izospin limit and ignore electromagnetic interaction, thus the spectral function for the up quark is identical to the d quark one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' According to broad shapes of both functions σv,s, they describe confined objects- the light quark excitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The quarks continuously change colors inside hadrons by exchanging of gluons, hence a width of the main peak can be interpreted as the inverse of mean time τu,d ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='2GeV −1, which the quark of given flavor spent with a given color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Similarly to quark weak decays, they do not represent observable, we avoid the name “decay width” in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Attentive reader has surely noticed that the on-shell delta functions are absent in the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Consequently the thresholds vanishes at evaluated form factors, which is in expected accordance with Wilsonian area law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Such behavior is intuitively expected, and in fact it has been mimic in [41–43] by the introduction of certain infrared cutoff in the Feynman(Schwinger) parameter in various evaluations of hadronic form factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' ηc(N) QUARKONIA The same QCD kernel that govern interaction between quark-antiquark in the light meson is used to calculate the heavy quarkonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' However as the interaction is not flavor universal- it constitute by the quark-gluon vertex as well, a changes, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' softening of the interaction is expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' It can be done by a change of effective mass parameters which now takes rescaled values by the factor r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='721, more precisely they take the values mc g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='433 GeV ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' mc Λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='442 GeV ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='1) while the dimensionless couplings like g;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' ξ do not change their values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We renormalize such that ℜAc(µ) = 1 and 5 BSE EXP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 2980 2980 3442 3638 4150 3810 4720 – TABLE I: Comparison with PDG data (second column) and calculated spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' ReBc(µ) = r1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='3GeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The search gives for the the imaginary parts ℑAc(µ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='113 and ℑBc(µ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='106rGeV at renormalization point µ2 = r20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='5GeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The kernel is not further tuned however as the excited states ranges over the relatively large scale, small further change we need is to incorporate the total momentum into the kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Elsewhere more important diamond diagrams (the diagrams with interupted quark horizontal lines by gluon lines) should contribute to the kernel with substantially small effect (note M(ηc) ≃ M(J/ψ) Instead of evaluating these complicated diagrams we mimic their small effect and insert the following prefactor fη = 1 √ 2 � 1 + M(ηc(2))2 P 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='2) This formally leaves the BSE for ηc(2) completely identical to the pion case, while the couplings are softened by few percentage for higher excited states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Thus as expected for charmonium, the two mutually opposite poles of the kernel are getting closer, which suppress the metric term when comparing to the pion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Nevertheless, the entire effect on the charm quark spectral function is very the same as for the light quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The resulting charm quark spectral functions are added into the fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Since the spectral function are dimensinfull object, we introduce the dimensionless quantity � (o)σs(o) and oσv(o) for a better comparison of spectral function of different flavors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' These object are compared in the figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The on-shell singularity is washout to a broad peak and heavy free quark excitation does not exists at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A picture of confinement that emerge in spectral framework of DSEs is very the same for the light as well for the heavy quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A scalar string interaction governed by a linear potential is not actually needed at any quark sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The spectra of bottomonia can be obtained by a similar fashion, however our two mutually beating poles turns to be cruel approximation at bottomonium scale and slightly more honest approximation is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We plan to perform more comprehensive study of BB system in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The obtained masses are tabled in the Tab I further predicted and not yet observed states we only list here: 5436,6186,7030MeV,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Recal, those above the first excitation all they lie above open charm threshold and they become broad resonance and our predicted values ignores coupling to D mesons completely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Interestingly, not the sure of mass but the mass itself is linear in principal value N , not supporting the string/Regge trajectory at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Furthermore, the vertex functions are not orthogonal in sense two states with different N can be produced in single photon annihilation of e+e− (this is a bit free extension of quantum mechanical orthogonality, it obviously relies on the formula for normalization of BSE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We also show our ultimate numerical search for eigenvalue λ and the deviation σ2 in the figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A single point shown in this figure costed one day of work of recent single processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Even working with multiprocessor machines the reader can imagine the time consumed before the truncation of DSE/BSE has been established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' CONCLUSION Using indefinite gauge fixing we have solved coupled set of spectral quark Dyson-Schwinger equations and Bethe- Salpeter equation for the pion and we have extended the method to the heavy quarks sector represented by pseudoscalar charmonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Facing the resulting spectral functions we get simple picture of confinement of the light as well as the heavy quarks: quarks are never on-shell inside the hadrons, the inverse of quark propagator never gets zero for a real momenta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The sharp singularity is completely wash out due to the imaginary part which is gradually growing from the anomalous thresholds- the zero momenta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Notably, the interaction of heavy quarks in quarkonium is far from conventional historical wisdom: it does not lead color coulomb plus linear potential in the nonrelativistic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' For the pion case the solution presented here has been already obtained for kindred model, albeit the renormalization and the kernels slightly differ numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' That description of both - the light and heavy meson systems is possible 6 3000 3500 4000 4500 5000 M [MeV] 1e-06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='01 1 σ 2 : λ : η c (3) η c (2) η c (4) η c (1) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 3: The eigenvalue λ and the numerical error σ from the solution of BSE the solution for the ground state and the the first three excited state of pseudoscalar charmonium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The definitions can be find in [15], the bound states are for λ → 1 σ → 0 when satisfied simultaneously for the meson mass M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' ————————————————————————————- within DSEs/BSEs formalism is not surprising fact [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' However the use of almost identical kernel used for the charmonium and for the pion case is astonishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Notably, the interaction of heavy quarks in quarkonium is far from conventional historical wisdom: it does not lead to static color coulomb plus linear potential in the nonrelativistic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' The gauge term, which is not contribution for on-shell scattering fermions at all, turns to be important part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='The form of kernels suggest that our gauge choice is very close to the Yennie gauge ξ = 3, known because of cancellation of infrared infinities in perturbation theory in this gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' However here it comes out due to its perspective in truncation convergence of QCD gap equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Obviously, using of spectral representation can be seen as heavy hammer tool for calculation of form factor for spacelike argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' There, the convenient calculation within the use of Euclidean metric works sufficiently irrespective of analytical property of the kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' We also expect no big improvements when Isgur-Wise functions [45, 46] are calculated within the use of presented formalism as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' There are likely other quantities insensitive to the issue of confinement especially if vertices and quarks lines lie outside the timelike domain of momenta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' On the other side, the methodology of calculation of form factor at resonant region is a challenge where spectral DSEs will take their correct place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Within the truncation presented here one can get the celebrated dispersion relation form [48] for Vacuum Hadron Polarization as well as one can enjoy the resulting dispersion relation for the electromagnetic meson form factor [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' At last but at not least we could stress again the reasoning and strategy of our indefinite gauge method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Obviously, If the quark SR exist in a given gauge, it is natural to expect that it exists in some other gauges as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' However to reach the resulting SR with the simultaneous reliable solution for meson spectra requires very different effort when one goes from one gauge choice to another one (here we the kernels are QCD vertices itself and they are not crippled presence by ad hoc auxiliar functions ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' It is well known that LRA -Γµ = gT γµ- with the lattice gluon propagator obtained in Landau gauge, does not provide a good starting point for the calculation of mesons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' That such LRA does not receive a proper strength one can see also from DSE solution alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' It has been checked that decreasing the fixing parameters, one gradually observe the growth of the peak in the quark spectral function and the dirac delta function is formed after passing through the critical coupling ξg2 with a lattice gluon propagator matched to the transverse (or metric tensor) part of interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' At this critical point one gets non-confining (NC) propagator solution of familiar form SNC(p) = R ̸ p − mp + � ∞ th doσv(o) ̸ p + σs(o) (p2 − o + iǫ) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='1) with two continuous spectral functions σv,s being nonzero only from the threshold (being identical to the fermion pole mass mp, if one allows nontrivial gluon spectral function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Such solution typically arise at non-confining theory like QED, being preserved for not large coupling in toy quantum field models [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' With the value R ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='75 the authors 7 of [6] obtained such solution for fermion propagator within LRA and lattice Landau gauge gluon data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [1] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Sauli, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 106, 3, 034030 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [2] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Sauli, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 1021, 014049 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [3] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Sauli, Few Body Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 61 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [4] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Sauli, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='D 106, 9, 094022 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Solis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Costa, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Luiz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Krein, Few Body Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 60 3, 49 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Horak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Pawlowski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Wink, arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='07597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Mezrag, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Salm`e, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' C 81 1, 34 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Horak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Pawlowski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Wink, arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='09333 [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Horak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Papavassiliou , J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Pawlowski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Wink, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 104,074017 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Cornwall, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 26,1453 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Roberts and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Williams C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Roberts and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Williams, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 33, 477 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Alkofer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' von Smekal, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 353 281 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Hilger, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Popovici, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Gomez-Rocha, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Krassnigg, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 91 3,034013 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [14] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Sauli, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 90, 016005 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [15] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='Sauli,Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 86, 096004 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [16] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Eichten, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Godfrey, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Mahlke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rosner, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 80 1161, (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Kogut and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Susskind, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D10 3468 (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [18] Qi Li, Long-Cheng Gui, Ming-Sheng Liu, Qi-Fang L¨u, Xian-Hui Zhong, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' C 45 2, 023116 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='Bicudo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Marques, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Cardoso, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Cardoso, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Oliveira, PoS QCD-TNT09 003 (2009);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' ArXive: 0912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='1274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Mitchell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [CLEO Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 102, 011801 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Ablikim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' BESIII Collaboration, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 106, 112002 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [22] BESIII collaboration: M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' AblikimBESIII Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 96, 3, 032001 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [23] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Guleria, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Gebrehana, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Bhatnagar, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 104, 9, 094045 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [24] Jun-Kang He, Hua-Zhong, Chao-Jie Fan, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 103, 11, 114006 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [25] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Bruschini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Gonz´alez, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 101,1 014027 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [26] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Bhatnagar, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Gebrehana, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 102, 9, 094024 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [27] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Babiarz, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Goncalves, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Pasechnik, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Sch¨afer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Szczurek, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 100 5, 054018 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [28] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Soni, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Joshi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Shah, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Chauhan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Pandya, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' C 78, 7, 592 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [29] Meijian Li, Yang Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Maris, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Vary, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 98 3, 034024 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [30] Wei-Jun Deng, Hui Liu, Long-Cheng Gui, Xian-Hui Zhong, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 95 3, 034026 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Becirevic, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Sanfilippo, JHEP 01, 028 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [32] Gang Li, Qiang Zhao, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 84 074005 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [33] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Bicudo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Binosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Cardoso, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Oliveira, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Silva, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 92 11, 114514 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [34] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Bicudo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Binosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Cardoso, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Oliveira, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Silva, talk at Lattice 2015, PoS LATTICE2015 (2016) 317;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' e-Print: 1509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='06737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [35] M Napetschnig, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Alkofer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Huber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Pawlowski Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 104, 054003 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Falc˜ao, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Oliveira, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Silva, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 102, 114518 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [37] author web pages at: gemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='ujf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='cas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='cz [38] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Sauli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' G 35, 035005 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [39] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Frederico, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Salme, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Viviani, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 89, 016010 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Carbonell, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Karmanov, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A 46,387 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [41] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Branz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Faessler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Gutsche, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Ivanov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' K¨orner, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Lyubovitskij, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 81, 034010 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [42] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Ganbold, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Gutsche, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Ivanov, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Lyubovitskij, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 104, 094048 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [43] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Dubnicka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Dubnickova, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='A Ivanov , A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Liptaj, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' D 106 033006 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [44] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Fischer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Nickel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Williams, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' C60, 49 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [45] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Isgur and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Wise , Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' B232 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [46] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Isgur and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Wise, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' B237, 527 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [47] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Sauli, JHEP 02,001 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' [48] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Cabibbo and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Gatto, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} +page_content=' 224 , 1577 (1961).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'} diff --git a/2tAzT4oBgHgl3EQfuP3I/content/tmp_files/2301.01689v1.pdf.txt b/2tAzT4oBgHgl3EQfuP3I/content/tmp_files/2301.01689v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..4edd419982f4b261e45f9becde6db1afa4e3e1ef --- /dev/null +++ b/2tAzT4oBgHgl3EQfuP3I/content/tmp_files/2301.01689v1.pdf.txt @@ -0,0 +1,1910 @@ +1 +Process Variation-Aware Compact Model of Strip +Waveguides for Photonic Circuit Simulation +Aneek James, Anthony Rizzo, Yuyang Wang, Asher Novick, Songli Wang, Robert Parsons, Kaylx Jang, +Maarten Hattink, and Keren Bergman +Abstract—We report a novel process variation-aware compact +model of strip waveguides that is suitable for circuit-level sim- +ulation of waveguide-based process design kit (PDK) elements. +The model is shown to describe both loss and—using a novel +expression for the thermo-optic effect in high index contrast +materials—the thermo-optic behavior of strip waveguides. A +novel group extraction method enables modeling the effective +index’s (neff) sensitivity to local process variations without the +presumption of variation source. Use of Euler-bend Mach- +Zehnder interferometers (MZIs) fabricated in a 300 mm wafer +run allow model parameter extraction at widths up to 2.5 µm +(highly multi-mode) with strong suppression of higher-order +mode excitation. Experimental results prove the reported model +can self-consistently describe waveguide phase, loss, and thermo- +optic behavior across all measured devices over an unprecedented +range of optical bandwidth, waveguide widths, and temperatures. +Index Terms—Silicon photonics, compact modeling, process +variation. +I. INTRODUCTION +S +ILICON photonics (SiPh) has seen explosive growth in +demand as a technology platform, driven by its adoption +in data centers (DC), high performance computing (HPC) [1]– +[3], quantum computing [4]–[8], and radio-frequency com- +munication systems [9]–[11]. SiPh’s rapid rise and matura- +tion has been enabled by its ability to leverage decades of +research in the complementary metal–oxide–semiconductor +(CMOS) industry, drastically reducing the typical research and +development (R&D) costs associated with new semiconductor +technologies [12]–[14]. SiPh, however, has not yet been able +to mimic CMOS yield prediction tools for evaluating photonic +integrated circuits (PICs). Yield is a ubiquitous metric used +across semiconductor manufacturing, with improvements in +yield being strongly correlated with reductions in the time +and costs associated with PIC design cycles [15]–[17]. The +need for predictive yield models can be mitigated to some +This work was supported in part by the U.S. Advanced Research Projects +Agency–Energy under ENLITENED Grant DE-AR000843 and in part by +the U.S. Defense Advanced Research Projects Agency under PIPES Grant +HR00111920014. +A. James, Y. Wang, A. Novick, S. Wang, R. Parsons, K. Jang, M. Hattink, +and K. Bergman are with the Department of Electrical Engineering, Columbia +University, New York, NY 10027, USA. (Corresponding author: Aneek James, +e-mail: aej2149@columbia.edu). +A. Rizzo is with the Air Force Research Laboratory Information Directorate, +Rome, NY 13441, USA. +© 2023 IEEE. Personal use of this material is permitted. Permission from +IEEE must be obtained for all other uses, in any current or future media, +including reprinting/republishing this material for advertising or promotional +purposes, creating new collective works, for resale or redistribution to servers +or lists, or reuse of any copyrighted component of this work in other works. +TABLE I +FEATURES FOR MODELING STRIP WAVEGUIDE PERFORMANCE. THE +MODEL IN THIS WORK DESCRIBES PHASE, LOSS AND THERMAL BEHAVIOR +EFFECTS OVER A BROAD RANGE OF WAVELENGTHS AND WAVEGUIDE +GEOMETRIES. +Model Features +[25] +[26] +This Work +Wavelength [nm] +1550 +1520–1570 +1450–1650 +Nominal Width Range [nm] +480 +480–500 +400–2500 +Considered Variation Sources +w,t +w,t +Arbitrary +Statistical Parameter Variations + + + +Waveguide Scattering Losses + + + +Thermo-optic Effect + + + +w - Waveguide Width Variations +t - Waveguide Thickness Variations +degree by designing variation-robust devices [18] or PICs +such that performance variations can be tolerated or cor- +rected for post fabrication [19], [20]. In each of these cases, +however, quantitative yield data cannot be determined prior +to fabrication—an obstacle that will be exacerbated as the +number of components per PIC in silicon is projected to +scale well into the millions within the next decade [21]. +Circuit designers also need tools to optimize system-level +performance through device-level design choices [22]. To meet +rising circuit design complexity, commercial foundries must +develop process design kits (PDKs) that include compact +models that are both parameterized over a wide range of +relevant design and environmental variables and describe all +important device figures of merit [23], [24]. It is essential +that strip waveguides in particular—a critical component of +most SiPh circuits—are accurately modeled according to their +expected fabricated performance. +Broadly speaking, there are three ways to construct compact +models: (i) look up table-based models, obtained directly from +measurements or device simulations, (ii) models based on +empirical fit functions, and (iii) physics-based models [23]. +Most previously reported work falls under the look-up table- +based category [25]–[29]. These models can be parameterized +using look-up tables (LUTs), where interpolation is used to +predict the performance of designs not explicitly defined in +the table. Ensuring that LUT models are accurate over a wide +range of input parameters, however, requires measuring all +waveguide figures of merit for every combination of input +parameters; a task that scales exponentially with the number of +modeled independent variables. Prior demonstrations methods +also require the explicit connection of the measured effective +and group index variations to a predefined number of process +variation sources, introducing the possibility of error if any +arXiv:2301.01689v1 [physics.optics] 4 Jan 2023 + +2 +Fig. 1. +a, Example electric field profile taken from Lumerical MODE. b, +Simulated (scatter) and modeled (dashed) effective index vs wavelength for +several waveguide widths. Each waveguide was simulated with a thickness of +220 nm. +systemic deviations exist between the simulation configuration +and the realities of the fabrication process. +In this paper, we report to the best of our knowledge, the first +geometry-parameterized compact model of strip waveguides +that can capture device performance over a wide range of +wavelengths and waveguide geometries (see Table I). Using a +novel derivation of the thermo-optic effect that is accurate for +high-index contrast waveguides, we demonstrate our model’s +ability to describe both scattering loss and the thermo-optic +effect as a function of both design and statistical parameters. +A novel group-extraction-based method allows the characteri- +zation of process variations without presumption of a source or +its associated sensitivity. This extraction methodology is used +to construct a model from dozens of geometric variations of +Mach-Zehnder Interferometers (MZIs) fabricated in a 300 mm +commercial foundry. These use of Euler bends in these MZIs +permits the characterization of wide waveguide performance +with minimal higher-order mode excitation. Experimental re- +sults validate the model’s accuracy in describing the phase, +loss, and thermo-optic performance across the entire wafer. +The model is also implemented in Verilog-A to demonstrate +compatibility with electronic-photonic co-simulation environ- +ments [30]–[32]. This work represents a key step toward +the modeling of waveguide-based PDK components, enabling +true-to-measurement circuit simulation at massive integration +densities. +II. PHYSICS-AWARE MODEL DEVELOPMENT +Because the mode condition of an optical waveguide +is +described +via +a +transcendental +equation, +completely +generalized analytical solutions for the effective index (neff) +are impossible to derive [33]. We therefore propose, as +discussed in [34], finding a behavioral model that accurately +captures its dependence on all design parameters over the +relevant ranges of interest. In this section, we develop +dependency models for the design parameters available. +Fig. 2. a-c, Plot of simulated (scatter) and modeled (dashed) neff parameters +� +∂2neff/∂λ2, ∂neff/∂λ, neff,0 +� +vs waveguide width (respectively). These +values were for a waveguide with a thickness of 220 nm at a wavelength +of 1550 nm. d, Comparison of the model (dashed) and simulated (scatter) +neff vs waveguide width for different thicknesses. Simulated at 1550 nm. +The semi-physical nature of the model is then leveraged +to describe both the scattering loss and the thermo-optic +coefficient. Process variations, whether of a design parameter +or not, will be covered in Section IV. +A. Wavelength Dependence +The wavelength dependence of the waveguide neff is first +considered. The neff of several silicon-on-insulator (SOI) +waveguide geometries were simulated in Lumerical MODE +(Fig. 1a). From the results, it is shown that the wavelength +dependence over the S-, C-, and L-bands for all geometries is +well-approximated by a second-order Taylor expansion for a +wide range of waveguide widths sufficiently above the cutoff +condition (Fig. 1b): +neff, model(λ) = +2 +� +i=0 +1 +i! +∂ineff +∂λi +���� +λ=λ0 +(λ − λ0)i. +(1) +B. Geometric Dependence +As the Taylor expansion only captures the wavelength- +dependence, it is clear that the fitting parameters ∂2neff/∂λ2, +∂neff/∂λ and ∂0neff/∂λ0 (hereafter referred to as neff,0) are +responsible for capturing the dependence on waveguide geom- +etry. With respect to width, all three fitting parameters were +previously found in [35] to be well described by the following +behavioral model: +∂ineff +∂λi (w) = pi0 · w2 + pi1w + pi2 +w2 + pi3w + pi4 +, +(2) +for a total of fifteen model parameters. To verify correctness +of the model, all three parameters were fitted to the simu- +lation data with (1)-(2) using ordinary least squares (OLS) + +a +Thickness +Width +2.8 +2.6 +neff +2.4 +2.2 +1450 +1500 +1550 +1600 +1650 +Wavelength [nm] +400 nm +580 nm + 760 nm +940 nm215 nm +235 nm +255 nm +275 nm +295 nm3 +Fig. 3. Comparison between modeled (dashed) and simulated (scatter) neff +for higher order modes and the fundamental TM mode. All waveguides were +simulated with a thickness of 220 nm. +regression. The model was able to match all three parameters +over the entire range of the width sweep (Fig. 2a-c). The +close matching of the modeled and extracted Taylor parameters +means that our modification of (2) still preserves its ability to +match the behavior of effective index as a function of wave- +length. By extension, these three Taylor parameters allow for +a robust description of neff as a function of waveguide width +(Fig. 2d). The data also demonstrates this agreement is not +unique to any particular waveguide thickness, with different +thicknesses producing different sub-parameter fits. Finally, it +should be noted that both the numerator and denominator in +(2) are polynomials of equal order. Our model consequently +predicts that, for a given wavelength, the effective index will +asymptotically approach a constant value as w approaches +infinity. The value that the model approaches as w tends +towards infinity can be interpreted as the equivalent neff of +an infinite slab of the same thickness: +lim +w→∞ neff(λ, w) = nslab(λ). +(3) +In this way, our behavioral model can elegantly capture all +significant features of effective index for the design parameters +of interest. The model’s accuracy holds true for higher order +modes as well, provided that they are sufficiently far away +from their respective waveguide cutoff condition (Fig. 3). +C. Scattering Loss +Scattering loss due to sidewall roughness (SWR) can be a +significant source of loss in most reported waveguide designs, +making it critical for designers to accurately model [36]. In this +section, we demonstrate our model’s ability to capture SWR +loss as a function of waveguide geometry. It was first noted +in [37] that the traditional Payne and Lacey model of SWR- +induced loss [38], [39] was found to be identical in behavior to +the derivative of the effective index with respect to waveguide +width: +αSWR(λ, w) = R ∂ +∂w [neff(λ, w)] , +(4) +where R is a proportionality constant. As our model can +describe neff as a function of width, a closed-form repre- +sentation of ∂neff/∂w can be exactly derived. This equation +Fig. 4. +a, Graphical representation of a waveguide simulated with some +sidewall roughness. The inset is a magnified view of the waveguide to clarify +the definition of σrms. b, Scattering losses estimated from FDTD compared +to the fit using our model based on Lumerical MODE data. +can then be fitted to measured waveguide loss data to extract +the proportionality constant. We validate this by fitting (4) +to the scattering loss of a 7 µm long SOI waveguide with +some SWR wall roughness in Lumerical 3D-FDTD (Fig. 4a). +The roughness Root Mean Square (RMS) and correlation +length were arbitrarily chosen to be σrms += 5 nm and +Lcorr = 1 µm respectively. These parameters were then used to +generate a random, anisotropic SWR on the waveguide walls +[40]. Propagation losses were simulated for waveguide widths +ranging from 450 nm to 850 nm. The results of the fitting are +shown in Fig. 4b, with our model closely matching trend of +the scattering loss behavior extracted from FDTD simulations. +D. Thermo-Optic Effect +Our model can also completely describe the thermo-optic +coefficient of an arbitrary waveguide geometry without the +need for any thermal measurements. The thermo-optic co- +efficient of a waveguide mode most importantly requires +knowledge of the confinement factor, which is the fraction of +a mode’s power confined within each constituent waveguide +material. Kawakami showed in [41] that for a waveguide +made up of N materials, each with with an index nk and a +confinement factor Γk: +N +� +k +Γkn2 +k = ngneff +(5a) +� +k +Γk = 1, +(5b) +where (5b) is derived from noting that the sum of all con- +finement factors must equal unity due to power conservation. + +2.5 +n +2.0 +TEO +TE1 +TE2 +TMO +0.5 +1.0 +1.5 +2.0 +WG Width [um]20m +Width +SOl Waveguide4 +A closed-form of the confinement factor for a two-material +waveguide (e.g. SOI wires) can then be derived: +Γcore = ngneff − n2 +clad +n2 +core − n2 +clad +(6a) +Γclad = n2 +core − ngneff +n2 +core − n2 +clad +, +(6b) +where Γcore is the power contained in the waveguide core and +Γclad is the power contained in the cladding. +Next, we must obtain an expression that describes the +thermo-optic effect on neff in terms of the confinement factor. +A common approximation of the thermo-optic coefficient of +neff is +∂neff +∂T +≈ Γ1 +∂n1 +∂T + Γ2 +∂n2 +∂T + . . . , +(7) +where δ represents a small perturbation in the values, Γn is +the confinement of the mode within material n and ∂nn/∂T +is the thermo-optic coefficient of material n [42]. Though +this equation is widely used [43]–[45] and may be accurate +in certain scenarios, to the authors’ knowledge it has never +been demonstrated to be a generally accurate approximation. +We therefore start from first principles and consider a general +perturbation of the wave equation [46]: +δ +� +β2 +eff +� += Γcore +ω2 +c2 δ +� +n2 +core +� ++ Γclad +ω2 +c2 δ +� +n2 +clad +� +, +(8) +where βeff is the effective wavenumber, Γcore is the con- +finement in the waveguide core, Γclad is the confinement in +the waveguide cladding, and ncore and nclad are the core and +cladding indices respectively. Carrying this operation through +and combining with (1) (see Appendix A for details) yields: +neff(λ, w, T) ≈ neff,T0(λ, w) + ∂neff +∂T (T − T0) +(9a) +∂neff +∂T += Γcore +ncore +neff, T0 +∂ncore +∂T ++ Γclad +nclad +neff, T0 +∂nclad +∂T +, +(9b) +where neff,T0 is the neff at some reference temperature T0. The +key addition to (9) compared to prior literature is the scaling +of each thermo-optic term by ratio between the material and +effective indices. As the index contrast between the core and +cladding decreases, our model will approach the (7). Thus +it is clear that our model will outperform (7) in accuracy +when describing high index contrast materials, such as the +SOI waveguide geometries prevalent in SiPh. +With these expressions, our confinement factor and the +thermo-optic coefficient models can be validated. The simu- +lated confinement factor is compared to our model prediction +at 1550 nm in Fig. 5a. The optical properties of silicon and +silicon dioxide used in our model were taken directly from +[47]. There was a near perfect agreement between the modeled +and simulated confinement factor, showing that the general +behavior of confinement factor is captured by our model +(Fig. 5a). The modeled thermo-optic coefficient is validated +by simulating how the neff of a SOI waveguide varies with +temperature using Lumerical MODE (Fig. 5b). Silicon was +assumed to have a thermo-optic coefficient of 1.9 × 10−4 K−1 +[48] and SiO2 was assumed to have a thermo-optic coefficient +of 1 × 10−5 K−1 [49]. The model and simulations show +Fig. 5. +a Modeled (dashed) and simulated (scatter) confinement factor vs +waveguide width for different thicknesses. b, Comparison between simulated +(scatter), previously reported model (dotted, Eq. (7)) and our work (dashed +line, Eq. (9)) describing neff vs Temperature of a 480 x 220 nm waveguide. +exceptional agreement from 300 - 1200 K, despite the fact that +our model does not require any data from thermal simulations +or measurements. As predicted, the previously reported model +of the thermo-optic effect (7) significantly under-predicts the +expected change in neff. It should be noted that in real devices, +waveguide geometry itself is a function of T due to thermal +expansion. This can be accounted for by modeling w as a func- +tion of T. Experimental results in Section V-C, however, show +that assuming a constant width geometry provides sufficient +accuracy. +Having a model of the thermo-optic effect that is accurate +over a wide range of conditions like this one holds a great +deal of potential to enable more robust design exploration, +such as evaluating photonic waveguide heater designs [50], +[51], characterizing self-heating in micro-resonators [52], or +studying the effect of ambient temperature fluctuations in a +system. +E. Parameter Extraction +The practical utility of a compact model is greatly deter- +mined by the associated parameter extraction procedure to +connect the model to a given foundry process. This is particu- +larly important when developing statistical models, as accurate +parameter extraction is the only way to guarantee that process +variations are accurately reflected in the model. A popular +solution is to leverage the phase-sensitivity of interferometric +optical filters—such as Mach-Zehnder interferometers (MZIs), +microresonators, or arrayed waveguide gratings (AWGs)—to +monitor process variations across a wafer. Regardless of the +chosen device, a shared difficulty lies in accurately guessing +what particular interference fringe position corresponds to a +particular fringe order [25], [26], [53]. Our method is based on + +a +0.80 +0.75 +210 nm +220 nm +230 nm +215 nm +225 nm +0.4 +0.6 +0.8 +1.0 +WG Width [um] +b +2.7 +neff +2.6 +400 +600 +800 +1000 +1200 +Temperature [K] +This Work - Previous Model + Simulated5 +the curve-fitting method presented in [25] and [54], with some +additional steps described to include waveguide dispersion as +an extracted parameter. +The first step in parameter extraction is to characterize +the group index (ng) of a fabricated interferometer from +a wavelength sweep of the device. To enable this, (1) is +rearranged into a more suitable form: +neff(λ) = 1 +2 +∂2neff +∂λ2 λ2 + Bλ + C +(10a) +B = ∂neff +∂λ − ∂2neff +∂λ2 λ0 +(10b) +C = 1 +2 +∂2neff +∂λ2 λ2 +0 − ∂neff +∂λ λ0 + neff,0, +(10c) +where B and C are fitting parameters that aggregate the 1st and +0th order terms from (1) respectively. Following the procedure +described in [54], it is first noted that the fringe condition of +an inteferometric device is described by +φ = 2π +λ neff(λ)L = 2πm, +(11) +where φ is the phase difference between the interferometry +arms, L is the path length of the interferometer, λ is a partic- +ular fringe wavelength, and m is an integer corresponding to +the particular fringe order. To extract our model parameters, +a wavelength sweep of the interferometric device is required. +Once this is performed, a peak finding algorithm can be used +to detect the wavelength of all detected fringes. A function that +relates the relative fringe locations to the ng of the waveguide +is now required. This can be done by defining a continuous +function that will yield an integer value at each of the detected +fringe locations. Let m0 represent the particular fringe order +corresponding to an arbitrarily chosen reference fringe located +at λ0. The fringe order m of any other fringe can be defined +relative to this reference as +m = m0 + +� λ +λ0 +dm +dλ dλ = m0 + ngL · +� 1 +λ − 1 +λ0 +� +. +(12) +This continuous function now allows us to redefine the mea- +sured fringes into a form suitable for parameter extraction. +A reference fringe variable n is now defined by letting +m = (m0 + n). Inserting this back into (12) produces: +n = ngL · +� 1 +λn +− 1 +λ0 +� +, +(13) +where each relative fringe n is located at an associated +wavelength λn. Using (13), the ng of the measured device +is now directly related to the measured fringe locations. This +fitting equation must now be extended to our specific model +parameters. The ng of a waveguide is defined to be +ng = neff − λ∂neff +∂λ . +(14) +Combining with (10a) yields an expression for ng in terms of +our compact model: +ng = C − 1 +2 +∂2neff +∂λ2 λ2. +(15) +Fig. 6. a, Captured spectrum of simulated MZI used for parameter extraction. +The waveguide mode was simulated in Lumerical MODE, and then exported +to a MZI waveguide simulation block in Lumerical INTERCONNECT. b, +Linear Regression of fringe wavelengths to extract the ng performed on the +detected fringes from a. c, Possible neff solutions (black, dashed), along with +the actual solution (red), determined by the ng extracted in b. +By inserting (15) back into (13), we can derive an OLS +regression-compatible expression: +n = CΛC − ∂2neff +∂λ2 ΛS +(16a) +ΛC = L · +� 1 +λn +− 1 +λ0 +� +(16b) +ΛS = L +2 · +� +λn − λ2 +n +λ0 +� +, +(16c) +where [ΛC, ΛS] are explanatory variables. Performing an OLS +regression between n and [ΛC, ΛS] gives us two of our three +fitting parameters in (10). Finally, B can be calculated by +combining equations (11) and (10a): +B = m +L − 1 +2 +∂2neff +∂λ2 λm − C +λm +, +(17) +where the only uncertainty is what fringe order m corresponds +to each measured fringe λm. Once B is determined from (17), +(10b) and (10c) can be used to determine the original fitting +parameters in (1). It should be noted that each detected fringe +(m, λm) location will yield very small variations in the B value +due to resolution-based uncertainty in the exact value for λm. +For a best guess, all values Bm taken from each measured +fringe λm should be averaged together. +To validate this method under ideal conditions, an MZI +constructed using 480 nm x 220 nm waveguides is simulated in +Lumerical INTERCONNECT. To ensure accuracy, the wave- +guide’s neff was first simulated in MODE and then exported +to a MODE Waveguide element in INTERCONNECT. As the +full-width half-maximum (FWHM) of the MZI does not affect +the extracted neff, the waveguides were arbitrarily assumed to +have a 2.5 dB/cm loss and the coupling coefficient was chosen +to ensure critical coupling. The spectrum of the simulated MZI + +a +Power [dBm] +20 +b +10 +C +2.5 +neff +2.4 +2.3 +1500 +1550 +1600 +1650 +Wavelength [nm]6 +is shown in Fig. 6a. Fringe locations were extracted using +a peak finding algorithm. The fringe located closest to the +center of the sweep was arbitrarily chosen as n = 0. Using +(16), OLS regression found ∂2neff/∂λ2 = −0.136 µm−2 and +C = 3.9215 (Fig. 6b). From here, the family of solutions for +neff is plotted in Fig. 6c. Each particular solution corresponds +to a different guess on the fringe orders detected, e.g. m0 = 52 +vs. m0 = 53. The separation between each neff solution plotted +in 6c is determined by the free-spectral range (FSR) of the +interferometer, with a larger FSR corresponding more widely +separated solutions. +To determine the correct fringe order of the reference we +use the fact that, from the simulations performed in Section +II, we know the waveguide geometry has an neff of 2.411 at +the reference fringe location. In Section III we explain how +to increase the accuracy of this estimation to avoid errors +introduced by this simulation. From this, the reference fringe +order is found to be m0 ≈ 114.03. Since fringe orders must +be integer numbers, the result is rounded to the nearest integer +114. By combining (10a)-(10c), the original fitting coefficients +are found to be ∂neff/∂λ = −1.078 µm−1 and neff,0 = 2.411. +To evaluate accuracy of our extraction, we define the relative +error between the extracted and simulated neff’s σerror by: +σerror = +�� +(neff, model − neff, sim)2 dλ +� +n2 +eff, simdλ +, +(18) +where neff, sim is the effective index from the MODE simula- +tion, used as a reference to quantify our method’s accuracy, +and neff, model is the result from applying our extraction method +to the simulated MZI. Upon evaluation, the total relative error +was found to be 0.017%. Since the order of the reference +fringe is correct, the remaining model error is attributed to +inaccuracies in the initial regression fit using (16a)-(16c). +III. MORE ROBUST neff EXTRACTION UNDER PROCESS +VARIABILITY +The reliability of the extraction is highly sensitive to the +guessed value of the reference fringe order. For the example +in Section II-E, we used a priori knowledge of the neff at the +reference fringe to estimate its order. Therefore, any deviation +between the assumed and actual waveguide dimensions risks +introducing error. By noting that the initial order estimate +rounded to the nearest integer, we can use (11) to define +a boundary beyond which our fringe order guess will be +incorrect [25]: +|∆m| = |neff, actual − neff, guess| ≤ λm0 +2L . +(19) +We can see that, to raise confidence in the guessed fringe order, +either the accuracy of our neff guess must be increased or the +interferometric path length must be decreased. As explained in +Section II-E, our extraction method begins by directly extract- +ing the ng of a given interferometer via optical sweep. Process +variations will therefore appear as variations in the extracted +values for ∂2neff/∂λ2 and C. By measuring several devices +of the same drawn width across the all measured dies, wafers, +and lots, the influence of the random width and thickness +variations can be eliminated by averaging their extracted fitting +Fig. 7. a, Plot of the ng error function for one sample. The error function +shows a minimum at roughly 491.5 nm, which closely agrees with the actual +waveguide width of 490 nm. b, Convergence of the etch bias estimate for +different numbers of samples averaged. +parameters. As the sample size becomes sufficiently large— +with the necessary sample size being a function of the severity +of the process variations—any remaining deviation between +the nominal and averaged parameters will be the result of a +systemic etch biases on the waveguide width. We therefore +propose estimating this etch bias by creating a preliminary neff +model based on the results of a photonic mode solver, such as +Lumerical MODE. Using this model, an equivalent waveguide +width can be found by minimizing the error function +min +w +�� +[ng, model(w, λ) − ng, meas(λ)]2 dλ +� +n2g, meas(λ)dλ +, +(20) +where ng, meas is the extracted model of ng using the averaged +extracted parameters and ng, model is the simulation-based, +width-dependent a priori model of neff. The neff of our +equivalent waveguide width can then be plugged into the a pri- +ori model to provide a more accurate fringe order estimate. +In this way, we can increase the accuracy of our guessed +effective index, regardless of whether the modeled waveguide +composition is accurate to the virtual device composition. +We now discuss the robustness of this optimization routine +in the presence of other systemic non-idealities and its ability +to perform etch bias correction. To do this, we need a ’ground +truth’ value for neff, which we obtain by simulating all the +non-idealities in Lumerical MODE. Subsequently we perform +the parameter extraction using Lumerical INTERCONNECT. +By comparing the extracted neff to the known simulated +value for neff, we can directly evaluate the robustness of our +methodology. +A. Statistical Geometric Variation +To test the extraction procedure’s accuracy under process +variations, a simulation of 100 random variations on the + +a +2 +Actual +Guess +Error Function +! +460 +480 +500 +520 +540 +Guessed Widths [nm] +b +4 nm +26 nm +Etch Bias [nm] +Estimated +11 nm +33 nm +15 +18 nm +40 nm +10 +20 +40 +60 +80 +100 +Number of Samples7 +Fig. 8. Plot of mean error in neff over the simulation bandwidth per simulated +device. Each FSR was simulated with 100 random deviations from the target +waveguide geometries. Both width and thickness were assumed to have a +3σ = 5 nm. +waveguide geometry was run. The nominal waveguide di- +mensions were assumed to be 480 x 220 nm. To simulate +systemic variations, each waveguide was arbitrarily assumed +to have an etch bias of +10 nm. Random fluctuations were +simulated by subjecting each device to a normally distributed +variation of 3σ = 5 nm on both the waveguide width and +thickness, as this value is consistent with the worst-case +reported values for geometric variations [25]–[27]. Each mode +profile was then exported to INTERCONNECT and simulated +with interferometer FSRs ranging from 4 - 40 nm to investigate +the effect this had on the extraction error. The resulting error +function for one of these samples, with a ground truth width of +490nm, is shown in Fig. 7a. We see the convergence behavior +of the etch bias estimate evolves as a function of device sample +size increases for several FSR designs in Fig. 7b. It can be seen +that all FSR designs can yield at least an estimated etch bias +within 2 nm of the actual value, indicating the utility of our +etch bias correction. +Fig. 8 shows the relationship between the average, per sam- +ple error and the interferometer FSR. The error is measured +in three scenarios: i.) a ‘na¨ıve’ case, where the fringe order is +estimated assuming no etch bias; ii.) where the fringe order is +estimated through our etch bias prediction methodology, based +on 30 measured samples; and iii.) where the exact neff from +simulations is used to determine the actual fringe orders. The +last scenario, that produced an average per sample error of +roughly 0.017% represents an error floor for the first two. +This error floor is completely determined by errors in the +initial ng regression, as well as any fundamental limitations +in our chosen behavioral model. As the FSR is increased, +the average per sample error in both cases improves steadily +until it reaches the aforementioned floor. This is consistent +with (19), indicating that a larger FSR corresponds to a wider +margin of error for the fringe order estimate. For both the na¨ıve +and bias compensation methods, there is a critical FSR value +beyond which the fringe order is correctly estimated for all +samples. It is clear, however, that estimating the presence of +any etch biases drastically improves the fringe order accuracy, +reaching the error floor for a much smaller FSR than when +using the na¨ıve method. +Fig. 9. +a, ng relative error vs simulated sidewall angle. b, Comparison +between the simulated (scatter) and estimated (dashed) neff for different +sidewall angles. +B. Sidewall Angle +We now consider how the parameter extraction behaves +when used for waveguides with some sidewall angle. Up +to this point, our simulations assumed the waveguides to +have no sidewall angle. Real waveguides, however, typically +deviate from this ideal [55]. To study how our bias correction +behaves under these conditions, a SOI waveguide with the +same nominal (480 x 220 nm) design as before was simulated +with a series of sidewall angles from 85 to 90 degrees as +this is a range typical of foundries [25], [56]. As only the +aggregate behavior is being studied, width and thickness +variations were not included. As seen in Fig. 9a, the minimum +of the error function optimized in the etch bias estimation step +remain roughly constant for all considered sidewall angles. +This results in very accurate predictions of the effective index +from our model, even though the fundamental geometry is +different. We interpret this as our optimization routine is +picking an ‘equivalent’ waveguide width that matches the +extracted ng profile. This equivalent width always seems to +result in a waveguide design with a similar confinement factor +and effective index—and therefore behavior—as seen in Fig. +9b. +C. Material Variation +This method for increasing the accuracy of the guessed neff +relies on the assumption that the material properties of the +fabricated waveguides generally match the assumed material +properties used in the simulation data used to construct the +model. In practice, however, there can be a great deal of +deviation between the assumed and actual optical properties of +the waveguide materials. As a workaround, the authors suggest +extracting and building a model based around the dispersion +of the waveguide ∂2neff/∂λ2, as this waveguide parameter + +Naive +0.75 +Bias Correction +neff Error [%] +Exact +0.50 +0.25 +0.00 +10 +20 +30 +40 +Target FSR [nm]Naive +Bias Correction +0 =90.0 +0 =87.5 +0 =85.08 +Fig. 10. a, Illustration of measured reticles on a custom 300 mm wafer, with a blown-up microscopic image of a die with 135 MZIs. b, Nominal neff and +ng model extracted from device measurements. c, Width-based model extraction for each die tested. d, Total model parameter µm variance σ explained vs +number of principal components included.e, Plot of the width-independent subparameters for neff,0, ∂neff/∂λ0,and ∂2neff/∂λ2 +0 vs V . +can be extracted exactly from measurements. The nominal +model of ∂2neff/∂λ2 can then replace ng in (20) to estimate +the width of the measured device. This width can then be +used in conjunction with simulation data to assign it an neff +guess. Though the limits of such a technique are unclear to the +authors, experimental results in Section V demonstrate to be +effective enough for describing the neff, loss, and thermo-optic +effect for all measured device performance. +IV. EXTRACTING LOCAL PARAMETER VARIATIONS +Process variations (e.g. thickness variation, cladding and +core index variations) will appear in our model as varia- +tions in the fifteen model parameters that comprise Eq. (1). +Capturing these variations requires the ability to extract their +value locally, which cannot be done just by looking at the +performance of any individual device. It is commonly assumed +in prior literature that most process parameters slowly vary +across the entire wafer [25]. This assumption implies that +the values of the parameters comprising our model also +vary slowly across the wafer. The authors therefore propose +analyzing the performance of several waveguide width designs +in close proximity to each other to locally extract all of the +fifteen model parameters. Each local extraction serves as the +observations of each model parameter that are tracked across +the entire wafer. +The simplest way to create a statistical model is to treat each +of fifteen sub-parameters as independent statistical variables. +This is not ideal, however, as each additional variable drasti- +cally increases the number of required iterations for accurate +Monte Carlo simulations. To minimize model complexity, we +would like to represent each sub-parameter as a linear function +of an ensemble of variables: +pni = pni,avg. + ⃗s · ⃗V . +(21) +⃗V is the vector of variables that represent the process varia- +tions. Minimizing model complexity would be the equivalent +of minimizing the size of ⃗V . ⃗s describes the corresponding +sensitivities of a given parameter to each element in ⃗V . To +minimize the size of ⃗V , we leverage the fact that each extracted +model parameter will be strongly correlated to one another. +This is because the variations in each model parameter share +common origins such as wafer thickness, annealing time, +etc. We therefore propose using principal component analysis +(PCA), a technique for transforming a number of possibly +correlated variables into a smaller number of uncorrelated +variables (i.e principal components) [57], to minimize model +complexity. The chosen principal components are then the +variables that make up ⃗V . The chosen principal components +are then the variables that make up ⃗V . The number of +components in ⃗V is flexible (see Appendix B for details). +Since our waveguide geometry is primarily a function of two +process variables—waveguide width and thickness—we use +only the first principal component to preserve its physical +interpretation. The result is a model of effective index as a +function of width and our process variations–∆w, representing +width variations and an additional variable we will call V , +representing an aggregate of other process variations, including +thickness variation: +neff,model(w + ∆w, V ). +(22) +This full model of neff is then used in the local optimization +and re-extraction of each measured device. The cost function + +b +d +2.75 +%1 +100 +2 +neff +2.50 +Explained [ +15 +7 +17 +73 +24 +26 +75 +4.25 +4.00 +6 +3.75 +357 +9111315 +1000 +2000 +Number of Components +Width [um] +c +e +17 +24 +26 +2 +5 +13 +0.25 +re/Heue +aneff/a2 +-0.75 +.00 +.25 +neff,0 +2.50 +2.25 +2 0.4 +2 0.4 +-0.5 +0.4 +2 0.4 +2 +-1.0 +0.0 +0.5 +2 0.4 2 0.4 2 0.4 +WG Width [um] +V9 +Fig. 11. a, Measured vs modeled optical spectrum of a 480 nm waveguide MZI with ∆L = 100 µm. b, (i) Histogram of extracted V data along with its +associated Gaussian distribution (red, dashed) overlaid on top. (ii) Spatial map of the average value for V per measured die across the wafer. c, Mean and +standard deviation of ∆w, neff, and ng. +is defined as the sum of the relative neff and ng errors to match +both the measured fringe locations and FSR respectively. +Thus, we can employ a two-stage direct statistical com- +pact model extraction procedure [24]. In the first stage, we +use group extraction to obtain the complete set of fifteen +parameters for a uniform device. In a second step, a subset +of model parameters are re-extracted for each member of a +large ensemble of devices measurements. This approach will +be the most accurate representation of how device performance +varies across the wafer without any presumption of variation +source, statistical distribution, correlation, and the resulting +model sensitivity to the variation. An inherent strength of +this approach over others is that it is potentially useful for +modeling other waveguide geometries as well. This potential +is due to the model designer having the option of picking +the number of principal components based on a physical +assumption on the key process variables or optimize the +percentage of explained parameter variance (see Appendix B). +While further investigation would be required to confirm this, +the methodology’s flexibility holds a great deal of promise. +V. EXPERIMENTAL DEMONSTRATION +We measured 7 reticles, each with 135 MZIs consisting +of 27 different waveguide widths (w) from 400 nm to 2500 +nm and 5 different arm length delays (∆L) from 100 nm to +500 nm, fabricated on a custom 300 mm full wafer through +AIM Photonics (Fig. 10a). All 135 MZI were measured on +reticle 2 while a smaller subset of 30 MZIs were measured +on each of the remaining reticles, totaling 315 measured +devices. Devices with the same waveguide width are placed +adjacently to minimize the impact of local process variations +on device performance. All MZIs have a nominal waveguide +height of 220 nm, and grating couplers designed for quasi-TE +polarization are utilized for optical I/O. The two arms of each +MZIs consist of symmetric waveguide bends to mitigate the +impact of bending on the ng. For devices with waveguides +beyond the single-mode cutoff width, Euler bends are used to +maintain single mode operation and high mode isolation [18]. +A tunable laser was swept from 1450–1610 nm at a 10 pm +resolution to characterize the transmission spectrum of each +MZI. +A. Nominal Extraction +A nominal model neff is created by averaging the extracted +parameters for all measured devices as shown in Fig. 10b. We +apply the extraction method described in Section II-E to every +collected transmission spectrum. A preliminary model is built +using the simulation data described in Section II to estimate +the expected device FSR for each waveguide width variation. +This estimated FSR is then fed into a peak finding algorithm +to extract the ng parameters, and then estimate fringe orders— +and, therefore the neff—of each measured device. As the +measured ng deviated a great deal from the simulated values, +the technique described in Section III-C is employed where a +preliminary model based on ∂2neff/∂λ2 is created and used +to estimate waveguide geometry to estimate the fringe order. +All three Taylor-expansion parameters are then derived using +(10a)-(10c), and then averaged across for each width variation +across the entire wafer to create a nominal experimental model. +The extraction is then repeated locally for devices that are +close in proximity to one another to extract local values for +the model’s sub-parameters (Fig. 10c). +Fig. 10d shows that using (31) this first principal component +can explain 62.7% of all variance in the sub-parameter values +across the wafer. The authors determined that due to the clear +connection between the V and the three model parameters + +a +0 +100 +(i) +(ii) +Power [dBm] +100 +μAw +MVo +C +50 +50 +-100 +Measurement +Model +0.1 +(!) +(iv) +1500 +1550 +1600 +yauo +2.50 +Wavelength [nm] +b +2.25 +(i) +(ii) +0.0 +-0.38 +(v) +(vi) +4.25 +0.010 +-0.20 +0.07 +Ong +4.00 +0.005 +-1 +0.47 +3.75 +0.30 +0.75 +2 +1 +1 +2 +-2 +0 +Width [um] +Width [um] +V10 +Fig. 12. a, Measured thermo-optic response of a measured MZI device. b, +Extracted value of ∂Tchip/∂Theater vs waveguide width using (9). +that determine device behavior as w → ∞, this principal +component was likely capturing width-independent sources of +variance such as thickness variations (Fig. 10e). The authors +will now show that this provides a model robust enough for +capturing statistical behavior while preserving the goal for +clear physical interpretation. +B. Statistical Extraction +The sum of the relative neff and ng errors is optimized using +the Nelder-Mead algorithm [58]. The drawn waveguide width +and the extracted V from the local extraction performed in +Fig. 10c are used as the initial guesses for w and V . Despite +the limited sample size of collected data, we can already see +several notable preliminary statistical trends in ∆w as a result +of our model. The model of neff extracted from each local +optimization was found to result in a close agreement between +the measured and modeled MZI performance. The extracted +values for V exhibits the intended physical behavior of process +parameter that varies slowly across the wafer (Fig. 11b). Local +optimization yielded a total, average intra-die, and average +local device standard deviation σV of 0.603, 0.386, and 0.167 +respectively, showing a correlation between device proximity +and their extracted V values. The mean values of V for die +both (i) in close proximity to each other and (ii) equidistant +from the center of the wafer tend to be similar in value, as +shown in the inset of Fig. 11b. +Decoupling the process variations of V from the width +variations ∆w enables extraction of width-dependent systemic +effects, as shown in Fig. 11c(i). Our method estimates that +waveguide widths with smaller mean errors also tend to have +smaller σ∆w (Fig. 11c(ii)). This carries over as an explanation +Fig. 13. a, Microscopic image of a die with waveguide spiral test structures +for measuring width-dependent loss. Inset: magnified image showing three of +the test structures. b, Propagation loss measurement and fit data for a 440 nm +waveguide. +for why for w = 2µm, neff varies more than for w = 1.2µm, +allowing insight on what waveguide geometry best minimizes +both σneff and σng. This sort of process insight for circuit +designers is only possible due to the group benchmarking of +all device performance within a localized area. +C. Thermo-optic Effect Model Validation +To validate the thermo-optic effect model developed in +Section II-D, we re-characterized the MZI transmission spectra +from a single die of the chip shown in Fig. 10a. The thermal +characterization was performed by adhering a Thorlabs TLK- +H polyimide heater to the side of the chip stage. The heater +was controlled by a Thorlabs TC200 Temperature Controller to +set the heater temperature. Thermal paste was applied between +the chip and the chip stage to minimize thermal resistance +between the chip and the heater. The thermal response of one +of the tested MZI is shown in Fig. 12. The fringe closest to +1550 nm is tracked at each temperature step and plotted against +temperature to extract ∂λ/∂T. This value is then compared to +our predicted value for ∂λ/∂T gained by taking the derivative +of λ in (11) with respect to temperature +∂λ +∂Tchip += +∆L +m +∂neff +∂Tchip +∂Tchip +Theater +1 − ∆L +m +∂neff,model +∂λ +, +(23) +where m is the order of the tracked fringe, ∆L is the path +length difference between the two arms, and ∂Tchip/∂Theater +represents the heat transfer efficiency from the heater to the +chip itself. This last term is included as the authors only know + +0 +a +Power [dBm] +10 +31.8 °C +20 +36.8 °C +41.7°C +0.073 nm/K +-30 +44.9 °C +1527 +1528 +1529 +1530 +1531 +1532 +Wavelength [nm] +b +0.90 +0.85 +0.80 +500 +1000 +1500 +2000 +Width [nm]a + COLUMBIA UNIVERSITY +DARPA +IN THE CITY OF NEW YORI +ch Lightwave Research Laborato +1CM +Power [dBm] +-10 +-15 +α = 1.916 dB/cm +2 +4 +Spiral Length [cm] +400 um11 +Fig. 14. +a, Plot of measured (scatter) and modeled (line) propagation loss +vs ∂neff/∂w. Slope of fit represents R in (4), while the intercept represents +non-SWR loss. b, Plot of measured (scatter) and modeled (line) propagation +loss vs waveguide width. +the temperature of the resistive heater rather than the chip +temperature itself. We know ∂Tchip/∂Theater ≤ 1 as heater +cannot raise the temperature of the chip to a value higher than +its own. The extracted parameters for ∆w and V are used in +calculating (23). +On average, the measured thermo-optic effect was found to +be 0.91× our model’s (9) prediction. This value was found to +be independent of waveguide geometry with the exception of +400 nm (Fig. 12b). This error for 400 nm is assumed to be be- +cause this width is close enough to the cutoff condition for our +model to lose accuracy. In contrast, the measured thermo-optic +effect was 1.21× the previously reported model’s prediction. +This implies that either the chip’s change in temperature is +greater than the heater’s or the previously reported model is +incorrect. The change in temperature of the PIC can only ever +be smaller than the heater’s temperature delta, making the old +model’s prediction clearly nonphysical. +D. Scattering Loss Model Validation +To validate the scattering loss model, we measured a die +with 25 spiral loss structures consisting of 5 different wave- +guide widths (w) from 400 nm to 500 nm and 5 different spiral +lengths (∆L) from 1 cm to 5 cm, fabricated on a custom 300 +mm full wafer through AIM Photonics (Fig. 13). Again, all +spiral structures have a nominal waveguide height of 220 nm, +and grating couplers designed for quasi-TE polarization are +utilized for optical I/O. The losses of each spiral length were +recorded, and then fit to a linear equation. The slope of the +this fit was taken to be the propagation loss associated with +each waveguide width. The results of our model fit are shown +in Fig. 14. The model built in Section V-B was used to build +a model of ∂neff/∂w. Fitting our modeled ∂neff/∂w to the +measured propagation loss yields proportionality constant of +R = 6.206 × 10−8 cm and (Fig. 14a). The intercept of the loss +Fig. 15. a, Cadence Virtuoso schematic of the MZI test circuit. All circuit +models were written in Verilog-A. The optical stimulus is provided by +a continuous-wave (CW) Laser and detected with a photodetector (PD). +b, Comparison of measured and simulated performance for an MZI with +w = 2 µm and ∆L = 100 µm. +fit is interpreted as the aggregate non-SWR loss, with a value +of 0.901 dB. Fig. 14b shows the excellent agreement between +our model and the data, predicting the similar propagation +losses of both the 440 nm and 460 nm waveguides. As +mentioned in Section V-B, both 400 and 420 nm waveguide +widths are likely near the cutoff condition. Since (4) is only +valid sufficiently far away from this condition, those data +points are not included in the plot. +E. Verilog-A Implementation +To demonstrate its compatibility with electronic-photonic +co-simulation, the circuit model was implemented in Verilog- +A within Cadence Virtuoso (Fig. 15a). As Verilog-A does not +inherently support optical signals, some compatibility code as +well as a small library of photonic device models were built +based upon on previously reported demonstrations [32], [59], +[60]. +VI. CONCLUSION +In summary, we have demonstrated a novel compact model +that can greatly expand the accuracy of circuit-level simulation +capabilities of silicon PICs. In contrast to prior work that +focused on providing metrology information that could be use +to fabrication engineers [26], [61], [62], we present this PDK +model as a tool suitable for true-to-measurement circuit simu- +lation and optimization. By leveraging this underlying physical +behavior and locally extracting process variations by perform- +ing group extraction, we have demonstrated a framework for +building a model of neff that is entirely driven by measurement +data. This model was shown to accurately describing the phase, + +a +Loss [dB/cm] +R = 6.206e-08 cm +1.9 +αnon-SwWR = 0.901 dB +1.8 +1.7 +2.2 +2.3 +2.4 +2.5 +2.6 +2.7 +neff/Ow [um-1] +b +Loss [dB/cm] +1.9 +1.8 +1.7 +440 +450 +460 +470 +480 +490 +500 +Width [nm]a +ght<0:3 +50:50 Coupler +50:50 Coupler +Waveguides +eftLig1<0:3> +rightLig1<0:3> +leftLig1<0:3> +rightLig1<:3> +leftLig2<0:3> +coupler +coupler +rightLig2<0:3> +eftLig2<0:3> +rightLig2<0:3> +inLight<0:3tatic_waveguide_R2_d1outLight<0:3> +CW Laser +lastightout<0:3 +PD +b +Transmission [dB] +-20 +Measured +VerilogA +1520 +1530 +1540 +1550 +1560 +Wavelength [nm]12 +loss, and thermo-optic behavior of the measured integrated +waveguides over 4× the optical bandwidth and over 80× +the range of waveguides widths reported in prior work. We +envision that the advancement over prior demonstrations this +work represents can support the development of waveguide- +based PDK components and enable the robust optimization of +next generation PICs. +VII. ACKNOWLEDGEMENTS +This work was supported in part by the U.S. Advanced +Research Projects Agency–Energy under ENLITENED Grant +DE-AR000843 and in part by the U.S. Defense Advanced Re- +search Projects Agency under PIPES Grant HR00111920014. +The authors thank AIM Photonics for chip fabrication. +APPENDIX +A. Derivation of Thermo-Optic Model +Starting from (8) from [46], the effect of a thermal pertur- +bation on the effective index is investigated. Carrying out this +perturbation and following the chain rule yields: +2β ∂β +∂T = 2Γcore +ω2 +c2 ncore +∂ncore +∂T ++ 2Γclad +ω2 +c2 nclad +∂nclad +∂T +. +(24) +Noting that β = ωneff/c and inserting above, the relationship +simplifies to (25). Combining with (1) yields: +neff = neff, T0 + ∂neff +∂T (T − T0) +(25a) +∂neff +∂T += Γcore +ncore +neff +∂ncore +∂T ++ Γclad +nclad +neff +∂nclad +∂T +. +(25b) +It is noted that neff appears on both sides of the equation. +Multiplying both sides by effective index yields a quadratic +equation whose solution is: +neff = neff, T0 +2 ++ 1 +2 +� +n2 +eff, T0 + 4n +′(T − T0) +(26a) +n +′ = Γcorencore +∂ncore +∂T ++ Γcladnclad +∂nclad +∂T +. +(26b) +The expression can be simplified by noting that n2 +eff, T0 ≫ 4n +′ +for typical values for the thermo-optic coefficients. Under- +standing this, it is clear that the behavior of the square root +term is approximately linear. The 1st order Taylor expansion +of the square root term is: +neff, T0 + 1 +2 +4n +′ +� +n2 +eff, T0 + 4n +′(T − T0) +(T − T0). +(27) +Noting again that n2 +eff, T0 ≫ 4n +′, (27) simplifies to: +neff, T0 + +2n +′ +neff, T0 +(T − T0). +(28) +Replacing the square root term in (26) with this expression +and simplifying will then yield (9). +B. Principal Component Analysis +To start, we form a matrix X our of our list of local sub- +parameter extractions, where each column represents a model +parameter and each row is an observation of said parameter: +X = +� +������ +∂0neff +∂λ0 +0,1 +∂0neff +∂λ0 +1,1 +· · · +∂2neff +∂λ2 +4,1 +∂0neff +∂λ0 +0,2 +∂0neff +∂λ0 +1,2 +· · · +∂2neff +∂λ2 +4,2 +... +... +... +... +∂0neff +∂λ0 +0,n +∂0neff +∂λ0 +1,n +· · · +∂2neff +∂λ2 +4,n +� +������ +. +(29) +A covariance matrix S is then created from X and find its +eigenvectors: +S = +� +���� +⃗v0 +⃗v1 +... +⃗vn +� +���� +� +���� +λ0 +0 +· · · +0 +0 +λ1 +· · · +0 +... +... +... +... +0 +0 +· · · +λn +� +���� +� +���� +⃗v0 +⃗v1 +... +⃗vn +� +���� +−1 +, +(30) +where +[v0, v1, · · · , vn] +lists +the +eigenvectors +and +[λ0, λ1, · · · , λn] +are +their +associated +eigenvalues. +The +eigenvectors of the correlation matrix represent the directions +of the axes where there is the most variance (i.e. the most +information). Each eigenvalue λi is proportional to how much +variance is captured by its associated principal component +vi. Picking the eigenvectors with the largest eigenvalues +allows us to reduce data dimensionality at the expense of +some accuracy. The percentage of variability explained by a +principal component is calculated as +�M +i=0 λi +�N +i=0 λi +, +(31) +where λi is the eigenvalue for each eigenvector, M is the +number of principal components the designer has chosen +to include, and N is the maximum number of principal +components. +REFERENCES +[1] A. Rizzo, S. Daudlin, A. Novick, A. James, V. Gopal, V. Murthy, +Q. Cheng, B. Y. Kim, X. Ji, Y. Okawachi, M. van Niekerk, V. Deena- +dayalan, G. Leake, M. Fanto, S. Preble, M. Lipson, A. Gaeta, and +K. Bergman, “Petabit-scale silicon photonic interconnects with inte- +grated kerr frequency combs,” IEEE Journal of Selected Topics in +Quantum Electronics, vol. 29, no. 1: Nonlinear Integrated Photonics, +pp. 1–20, 2023. +[2] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent +advances in optical technologies for data centers: a review,” Optica, +vol. 5, no. 11, pp. 1354–1370, Nov 2018. +[3] M. Wade, E. Anderson, S. Ardalan, P. Bhargava, S. Buchbinder, M. L. +Davenport, J. Fini, H. Lu, C. Li, R. Meade et al., “Teraphy: a chiplet +technology for low-power, high-bandwidth in-package optical i/o,” IEEE +Micro, vol. 40, no. 2, pp. 63–71, 2020. +[4] G. Moody, V. J. Sorger, D. J. Blumenthal, P. W. Juodawlkis, W. Loh, +C. Sorace-Agaskar, A. E. Jones, K. C. Balram, J. C. Matthews, A. Laing +et al., “2022 roadmap on integrated quantum photonics,” Journal of +Physics: Photonics, vol. 4, no. 1, p. 012501, 2022. +[5] G. R. Steinbrecher, J. P. Olson, D. Englund, and J. Carolan, “Quantum +optical neural networks,” npj Quantum Information, vol. 5, no. 1, pp. +1–9, 2019. +[6] S. Takeda and A. Furusawa, “Toward large-scale fault-tolerant universal +photonic quantum computing,” APL Photonics, vol. 4, no. 6, p. 060902, +2019. + +13 +[7] N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, +M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale +quantum photonic circuits in silicon,” Nanophotonics, vol. 5, no. 3, pp. +456–468, 2016. +[8] J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, +T. Matsuura, D. Su, B. Q. Baragiola, S. Guha, G. Dauphinais et al., +“Blueprint for a scalable photonic fault-tolerant quantum computer,” +Quantum, vol. 5, p. 392, 2021. +[9] D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photon- +ics,” Nature photonics, vol. 13, no. 2, pp. 80–90, 2019. +[10] Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, +M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics +for on-chip communication,” Nature Photonics, vol. 14, no. 7, pp. 446– +451, 2020. +[11] B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, and J. Wang, “6g +technologies: Key drivers, core requirements, system architectures, and +enabling technologies,” IEEE Vehicular Technology Magazine, vol. 14, +no. 3, pp. 18–27, 2019. +[12] W. Shi, Y. Tian, and A. Gervais, “Scaling capacity of fiber-optic +transmission systems via silicon photonics,” Nanophotonics, vol. 9, +no. 16, pp. 4629–4663, 2020. +[13] Z. Zhou, R. Chen, X. Li, and T. Li, “Development trends in silicon +photonics for data centers,” Optical Fiber Technology, vol. 44, pp. 13– +23, 2018. +[14] R. Sabella, “Silicon photonics for 5g and future networks,” IEEE Journal +of Selected Topics in Quantum Electronics, vol. 26, no. 2, pp. 1–11, +2019. +[15] R. Gardner, J. Bieker, and S. Elwell, “Solving tough semiconductor man- +ufacturing problems using data mining,” in 2000 IEEE/SEMI Advanced +Semiconductor Manufacturing Conference and Workshop. ASMC 2000 +(Cat. No. 00CH37072). +IEEE, 2000, pp. 46–55. +[16] N. Kumar, K. Kennedy, K. Gildersleeve, R. Abelson, C. Mastrangelo, +and D. Montgomery, “A review of yield modelling techniques for +semiconductor manufacturing,” International Journal of Production Re- +search, vol. 44, no. 23, pp. 5019–5036, 2006. +[17] W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: +methods, tools and challenges,” Laser & Photonics Reviews, vol. 12, +no. 4, p. 1700237, 2018. +[18] A. Rizzo, U. Dave, A. Novick, A. Freitas, S. P. Roberts, A. James, +M. Lipson, and K. Bergman, “Fabrication-robust silicon photonic +devices in standard sub-micron silicon-on-insulator processes,” Opt. +Lett., vol. 48, no. 2, pp. 215–218, Jan 2023. [Online]. Available: +https://opg.optica.org/ol/abstract.cfm?URI=ol-48-2-215 +[19] Y. Wang, P. Sun, J. Hulme, M. A. Seyedi, M. Fiorentino, R. G. +Beausoleil, and K.-T. Cheng, “Energy efficiency and yield optimization +for optical interconnects via transceiver grouping,” J. Lightwave +Technol., vol. 39, no. 6, pp. 1567–1578, Mar 2021. [Online]. Available: +http://opg.optica.org/jlt/abstract.cfm?URI=jlt-39-6-1567 +[20] A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, +H. Thacker, I. Shubin, Y. Luo, K. Raj et al., “Exploiting cmos man- +ufacturing to reduce tuning requirements for resonant optical devices,” +IEEE Photonics Journal, vol. 3, no. 3, pp. 567–579, 2011. +[21] N. Margalit, C. Xiang, S. M. Bowers, A. Bjorlin, R. Blum, and J. E. +Bowers, “Perspective on the future of silicon photonics and electronics,” +Applied Physics Letters, vol. 118, no. 22, p. 220501, 2021. +[22] Y. Wang, S. Wang, A. Novick, A. James, R. Parsons, A. Rizzo, and +K. Bergman, “Dispersion-engineered and fabrication-robust soi waveg- +uides for ultra-broadband dwdm,” in 2023 Optical Fiber Communica- +tions Conference and Exhibition (OFC) [To appear], 2023, pp. 1–3. +[23] R. Woltjer, L. Tiemeijer, and D. Klaassen, “An industrial view on +compact modeling,” in 2006 European Solid-State Device Research +Conference. +IEEE, 2006, pp. 41–48. +[24] N. Moezi, “Statistical compact model strategies for nano cmos transis- +tors subject of atomic scale variability,” Ph.D. dissertation, University +of Glasgow, 2012. +[25] Y. Xing, J. Dong, S. Dwivedi, U. Khan, and W. Bogaerts, “Accurate +extraction of fabricated geometry using optical measurement,” Photonics +Research, vol. 6, no. 11, pp. 1008–1020, 2018. +[26] Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and +L. Chrostowski, “Performance prediction for silicon photonics integrated +circuits with layout-dependent correlated manufacturing variability,” +Optics express, vol. 25, no. 9, pp. 9712–9733, 2017. +[27] W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics +manufacturing,” Optics express, vol. 18, no. 23, pp. 23 598–23 607, 2010. +[28] Z. Zhang, S. I. El-Henawy, C. R´ıos, and D. S. Boning, “Inference of +process variations in silicon photonics from characterization measure- +ments,” in CLEO: Science and Innovations. +Optica Publishing Group, +2022, pp. SF3O–5. +[29] T. H. Stievater, N. F. Tyndall, M. W. Pruessner, D. A. Kozak, and W. S. +Rabinovich, “Optical and geometric parameter extraction for photonic +integrated circuits,” Optics Express, vol. 30, no. 9, pp. 14 453–14 460, +2022. +[30] M. J. Shawon and V. Saxena, “Rapid simulation of photonic integrated +circuits using verilog-a compact models,” IEEE Transactions on Circuits +and Systems I: Regular Papers, vol. 67, no. 10, pp. 3331–3341, 2020. +[31] Z. Zhang, R. Wu, Y. Wang, C. Zhang, E. J. Stanton, C. L. Schow, K.- +T. Cheng, and J. E. Bowers, “Compact modeling for silicon photonic +heterogeneously integrated circuits,” Journal of Lightwave Technology, +vol. 35, no. 14, pp. 2973–2980, 2017. +[32] C. Sorace-Agaskar, J. Leu, M. R. Watts, and V. Stojanovic, “Electro- +optical co-simulation for integrated cmos photonic circuits with ver- +iloga,” Optics express, vol. 23, no. 21, pp. 27 180–27 203, 2015. +[33] B. E. Saleh and M. C. Teich, Fundamentals of photonics. +John Wiley +& Sons, 2019. +[34] A. James, Y. Wang, A. Rizzo, and K. Bergman, “Flexible, process-aware +compact model of effective index in silicon waveguides for commercial +foundries,” in 2022 International Conference on Numerical Simulation +of Optoelectronic Devices (NUSOD). +IEEE, 2022, pp. 173–174. +[35] A. E. James, A. Wang, S. Wang, and K. Bergman, “Evaluating +regression-based techniques for modelling fabrication variations in sili- +con photonic waveguides,” in Applications of Machine Learning 2021, +vol. 11843. +International Society for Optics and Photonics, 2021, p. +1184305. +[36] M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. +Bowers, “Ultra-low loss waveguide platform and its integration with +silicon photonics,” Laser & Photonics Reviews, vol. 8, no. 5, pp. 667– +686, 2014. +[37] D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: +guiding light through imperfections,” Advances in Optics and Photonics, +vol. 6, no. 2, pp. 156–224, 2014. +[38] J. Lacey and F. Payne, “Radiation loss from planar waveguides with +random wall imperfections,” IEE Proceedings J-Optoelectronics, vol. +137, no. 4, pp. 282–288, 1990. +[39] F. Payne and J. Lacey, “A theoretical analysis of scattering loss from +planar optical waveguides,” Optical and Quantum Electronics, vol. 26, +no. 10, pp. 977–986, 1994. +[40] E. Jaberansary, T. M. B. Masaud, M. Milosevic, M. Nedeljkovic, G. Z. +Mashanovich, and H. M. Chong, “Scattering loss estimation using +2-d fourier analysis and modeling of sidewall roughness on optical +waveguides,” IEEE Photonics Journal, vol. 5, no. 3, pp. 6 601 010– +6 601 010, 2013. +[41] S. Kawakami, “Relation between dispersion and power-flow distribution +in a dielectric waveguide,” JOSA, vol. 65, no. 1, pp. 41–45, 1975. +[42] N. Y. Winnie, J. Michel, L. C. Kimerling, and L. Eldada, “Polymer- +cladded athermal high-index-contrast waveguides,” in Optoelectronic +Integrated Circuits X, vol. 6897. +International Society for Optics and +Photonics, 2008, p. 68970S. +[43] P. Jean, A. Douaud, T. Thibault, S. LaRochelle, Y. Messaddeq, and +W. Shi, “Sulfur-rich chalcogenide claddings for athermal and high-q +silicon microring resonators,” Optical Materials Express, vol. 11, no. 3, +pp. 913–925, 2021. +[44] H. Zhang, J. Chen, J. Jin, J. Lin, L. Zhao, Z. Bi, A. Huang, and Z. Xiao, +“On-chip modulation for rotating sensing of gyroscope based on ring +resonator coupled with mach-zehnder interferometer,” Scientific reports, +vol. 6, no. 1, pp. 1–9, 2016. +[45] Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy con- +sumption in silicon photonic devices and systems,” Photonics Research, +vol. 3, no. 5, pp. B28–B46, 2015. +[46] A. Yariv and P. Yeh, Photonics: optical electronics in modern commu- +nications. +Oxford university press, 2007. +[47] E. D. Palik, Handbook of optical constants of solids. +Academic press, +1998, vol. 3. +[48] B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent +refractive index of silicon and germanium,” in SPIE Proceedings, +E. Atad-Ettedgui, J. Antebi, and D. Lemke, Eds. +SPIE, jun 2006. +[Online]. Available: https://doi.org/10.1117%2F12.672850 +[49] A. W. Elshaari, I. E. Zadeh, K. D. J¨ons, and V. Zwiller, “Thermo- +optic characterization of silicon nitride resonators for cryogenic photonic +circuits,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–9, 2016. +[50] D. Coenen, H. Oprins, Y. Ban, F. Ferraro, M. Pantouvaki, J. Van Camp- +enhout, and I. De Wolf, “Thermal modelling of silicon photonic ring +modulator with substrate undercut,” Journal of Lightwave Technology, +2022. + +14 +[51] M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, and D. V. Plant, +“Optimization of thermo-optic phase-shifter design and mitigation of +thermal crosstalk on the soi platform,” Optics express, vol. 27, no. 8, +pp. 10 456–10 471, 2019. +[52] M. de Cea, A. H. Atabaki, and R. J. Ram, “Power handling of +silicon microring modulators,” Opt. Express, vol. 27, no. 17, pp. +24 274–24 285, Aug 2019. [Online]. Available: https://opg.optica.org/ +oe/abstract.cfm?URI=oe-27-17-24274 +[53] C. Oton, C. Manganelli, F. Bontempi, M. Fournier, D. Fowler, and +C. Kopp, “Silicon photonic waveguide metrology using mach-zehnder +interferometers,” Optics express, vol. 24, no. 6, pp. 6265–6270, 2016. +[54] Q. Deng, L. Liu, X. Li, J. Michel, and Z. Zhou, “Linear-regression- +based approach for loss extraction from ring resonators,” Opt. Lett., +vol. 41, no. 20, pp. 4747–4750, Oct 2016. [Online]. Available: +http://opg.optica.org/ol/abstract.cfm?URI=ol-41-20-4747 +[55] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Ku- +mar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and +R. Baets, “Silicon microring resonators,” Laser & Photonics Reviews, +vol. 6, no. 1, pp. 47–73, 2012. +[56] W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, +and N. G. Tarr, “Birefringence control using stress engineering in +silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology, +vol. 23, no. 3, pp. 1308–1318, 2005. +[57] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley +interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433– +459, 2010. +[58] S. Singer and J. Nelder, “Nelder-mead algorithm,” Scholarpedia, vol. 4, +no. 7, p. 2928, 2009. +[59] E. Kononov, “Modeling photonic links in verilog-a,” Ph.D. dissertation, +Massachusetts Institute of Technology, 2013. +[60] J. C. Leu, “Integrated silicon photonic circuit simulation,” Ph.D. disser- +tation, Massachusetts Institute of Technology, 2018. +[61] Y. Xing, M. Wang, A. Ruocco, J. Geessels, U. Khan, and W. Bogaerts, +“Compact silicon photonics circuit to extract multiple parameters +for process control monitoring,” OSA Continuum, vol. 3, no. 2, pp. +379–390, Feb 2020. [Online]. Available: https://opg.optica.org/osac/ +abstract.cfm?URI=osac-3-2-379 +[62] D. S. Boning, S. I. El-Henawy, and Z. Zhang, “Variation-aware methods +and models for silicon photonic design-for-manufacturability,” Journal +of Lightwave Technology, vol. 40, no. 6, pp. 1776–1783, 2022. +Aneek James received his B.S. in Electrical and Electronics Engineering from +the University of Georgia, Athens, GA in 2017 and his M.S., and M.Phil., in +Electrical Engineering from Columbia University, New York, NY in 2019 +and 2021, respectively. He is working as a Ph.D. candidate in Electrical +Engineering in the Lightwave Research Laboratory under Professor Keren +Bergman. His research interests include modeling fabrication variations in +silicon photonic devices, as well as the testing and automated control of silicon +photonic systems for high-throughput optical interconnects. +Anthony Rizzo received his B.S. in Physics from Haverford College, +Haverford, PA in 2017 and his M.S., M.Phil., and Ph.D., all in Electrical +Engineering, from Columbia University, New York, NY in 2019, 2021, and +2022, respectively. He completed his doctoral research in the Lightwave +Research Laboratory at Columbia University under Professor Keren Bergman, +where he led the first demonstration of data transmission using an integrated +Kerr frequency comb source and silicon photonic transmitter. He is currently a +Research Scientist at the Air Force Research Laboratory (AFRL) Information +Directorate in Rome, NY, with a focus in large-scale silicon photonic systems +for quantum information processing and artificial intelligence. +Yuyang Wang received the B.Eng. degree in electronic engineering from +Tsinghua University, Beijing, China in 2015, and the M.S. and PhD degrees +in computer engineering from the University of California, Santa Barbara +(UCSB), CA, USA, in 2018 and 2021 respectively. He is currently a post- +doctoral researcher in the Lightwave Research Laboratory under Professor +Keren Bergman. He was a Design Engineering Intern at Cadence Design +Systems in 2018 and a Visiting Intern at the Hong Kong University of +Science and Technology in 2019. His research interests include variation- +aware modeling, design, and optimization of silicon photonic interconnects +and systems. +Asher Novick received his M.Eng. and B.S. degrees in Electrical and +Computer Engineering from Cornell University, Ithaca, NY, USA, in 2016 and +2015,respectively. Between 2016 and 2019, he was at Panduit’s Fiber Research +Lab, where he researched and developed new patentable technologies for +optical fiber-based communication in data center and enterprise applications. +He is currently working toward his Ph.D. degree in Electrical Engineering +in the Lightwave Research Laboratory at Columbia University in the City +of New York. His current research interest is in the modeling, design, and +testing of silicon photonic systems and devices for scalable and efficient link +architectures. +Songli Wang received his B.Eng. in Optoelectronic Information Science and +Engineering from Harbin Institute of Technology, Harbin, China, in 2019 +and his M.S. in Electrical Engineering from Columbia University, New York, +NY in 2020. He is currently working towards the Ph.D. degree in Electrical +Engineering in the Lightwave Research Laboratory at Columbia University. +His current research interests include modeling, design and testing of silicon +photonic devices and systems. +Robert Parsons received the B.S. degree in biomedical engineering from +George Washington University, Washington, D.C., USA, and the M.S. degree +in electrical engineering from Columbia University, New York, NY, USA, in +2020 and 2022, respectively. He is currently working toward the Ph.D. degree +in electrical engineering with the Lightwave Research Laboratory, Columbia +University under Professor Keren Bergman. His research interests include the +modeling, testing, and co-optimization of link architectures and constituent +silicon photonic devices for high-bandwidth, energy-efficient optical inter- +connects. +Kaylx Jang received his B.S. in Electrical Engineering from the University +of California, Irvine, CA in 2020 and his M.S. in Electrical Engineering from +Columbia University in 2022. In 2019 and 2020, he interned in the testing +department at Ayar Labs and in 2021 did a co-op in the Silicon Photonics +Design team at Nokia (former Elenion). He is working as a Ph.D. student +in Electrical Engineering in the Lightwave Research Lab under Professor +Keren Bergman. His research interests include modeling, design, and testing +of high-performance silicon photonic devices for energy efficient and scalable +link architectures. +Maarten Hattink is a graduate student with Columbia University, New +York, NY, USA. He received the B.S. and M.S. degrees from the Eindhoven +University of Technology, The Netherlands, in 2015 and 2017, respectively. +While pursuing these degrees, he worked at Prodrive Technologies B.V. as +a Software and FPGA Engineer. He is currently working toward the Ph.D. +degree and his research interest lies in photonic device integration and thermal +control. + +15 +Keren Bergman (S’87–M’93–SM’07–F’09) received the B.S. degree from +Bucknell University, Lewisburg, PA, in 1988, and the M.S. and Ph.D. degrees +from the Massachusetts Institute of Technology, Cambridge, in 1991 and +1994, respectively, all in electrical engineering. Dr. Bergman is currently a +Charles Batchelor Professor at Columbia University, New York, NY, where she +also directs the Lightwave Research Laboratory. She leads multiple research +programs on optical interconnection networks for advanced computing sys- +tems, data centers, optical packet switched routers, and chip multiprocessor +nanophotonic networks-on-chip. Dr. Bergman is a Fellow of the IEEE and +Optica. + diff --git a/2tAzT4oBgHgl3EQfuP3I/content/tmp_files/load_file.txt b/2tAzT4oBgHgl3EQfuP3I/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c945795eef57b974ddb651da968d90ff26162dfb --- /dev/null +++ b/2tAzT4oBgHgl3EQfuP3I/content/tmp_files/load_file.txt @@ -0,0 +1,1353 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf,len=1352 +page_content='1 Process Variation-Aware Compact Model of Strip Waveguides for Photonic Circuit Simulation Aneek James, Anthony Rizzo, Yuyang Wang, Asher Novick, Songli Wang, Robert Parsons, Kaylx Jang, Maarten Hattink, and Keren Bergman Abstract—We report a novel process variation-aware compact model of strip waveguides that is suitable for circuit-level sim- ulation of waveguide-based process design kit (PDK) elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The model is shown to describe both loss and—using a novel expression for the thermo-optic effect in high index contrast materials—the thermo-optic behavior of strip waveguides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A novel group extraction method enables modeling the effective index’s (neff) sensitivity to local process variations without the presumption of variation source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Use of Euler-bend Mach- Zehnder interferometers (MZIs) fabricated in a 300 mm wafer run allow model parameter extraction at widths up to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 µm (highly multi-mode) with strong suppression of higher-order mode excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Experimental results prove the reported model can self-consistently describe waveguide phase, loss, and thermo- optic behavior across all measured devices over an unprecedented range of optical bandwidth, waveguide widths, and temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Index Terms—Silicon photonics, compact modeling, process variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' INTRODUCTION S ILICON photonics (SiPh) has seen explosive growth in demand as a technology platform, driven by its adoption in data centers (DC), high performance computing (HPC) [1]– [3], quantum computing [4]–[8], and radio-frequency com- munication systems [9]–[11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' SiPh’s rapid rise and matura- tion has been enabled by its ability to leverage decades of research in the complementary metal–oxide–semiconductor (CMOS) industry, drastically reducing the typical research and development (R&D) costs associated with new semiconductor technologies [12]–[14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' SiPh, however, has not yet been able to mimic CMOS yield prediction tools for evaluating photonic integrated circuits (PICs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yield is a ubiquitous metric used across semiconductor manufacturing, with improvements in yield being strongly correlated with reductions in the time and costs associated with PIC design cycles [15]–[17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The need for predictive yield models can be mitigated to some This work was supported in part by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Advanced Research Projects Agency–Energy under ENLITENED Grant DE-AR000843 and in part by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Defense Advanced Research Projects Agency under PIPES Grant HR00111920014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' James, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Novick, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Parsons, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Jang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Hattink, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bergman are with the Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (Corresponding author: Aneek James, e-mail: aej2149@columbia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='edu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Rizzo is with the Air Force Research Laboratory Information Directorate, Rome, NY 13441, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' © 2023 IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Personal use of this material is permitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' TABLE I FEATURES FOR MODELING STRIP WAVEGUIDE PERFORMANCE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' THE MODEL IN THIS WORK DESCRIBES PHASE, LOSS AND THERMAL BEHAVIOR EFFECTS OVER A BROAD RANGE OF WAVELENGTHS AND WAVEGUIDE GEOMETRIES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Model Features [25] [26] This Work Wavelength [nm] 1550 1520–1570 1450–1650 Nominal Width Range [nm] 480 480–500 400–2500 Considered Variation Sources w,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='t w,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='t Arbitrary Statistical Parameter Variations \x13 \x13 \x13 Waveguide Scattering Losses \x17 \x17 \x13 Thermo-optic Effect \x17 \x17 \x13 w - Waveguide Width Variations t - Waveguide Thickness Variations degree by designing variation-robust devices [18] or PICs such that performance variations can be tolerated or cor- rected for post fabrication [19],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In each of these cases, however, quantitative yield data cannot be determined prior to fabrication—an obstacle that will be exacerbated as the number of components per PIC in silicon is projected to scale well into the millions within the next decade [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Circuit designers also need tools to optimize system-level performance through device-level design choices [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To meet rising circuit design complexity, commercial foundries must develop process design kits (PDKs) that include compact models that are both parameterized over a wide range of relevant design and environmental variables and describe all important device figures of merit [23], [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' It is essential that strip waveguides in particular—a critical component of most SiPh circuits—are accurately modeled according to their expected fabricated performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Broadly speaking, there are three ways to construct compact models: (i) look up table-based models, obtained directly from measurements or device simulations, (ii) models based on empirical fit functions, and (iii) physics-based models [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Most previously reported work falls under the look-up table- based category [25]–[29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' These models can be parameterized using look-up tables (LUTs), where interpolation is used to predict the performance of designs not explicitly defined in the table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Ensuring that LUT models are accurate over a wide range of input parameters, however, requires measuring all waveguide figures of merit for every combination of input parameters;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a task that scales exponentially with the number of modeled independent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Prior demonstrations methods also require the explicit connection of the measured effective and group index variations to a predefined number of process variation sources, introducing the possibility of error if any arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='01689v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='optics] 4 Jan 2023 2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Example electric field profile taken from Lumerical MODE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Simulated (scatter) and modeled (dashed) effective index vs wavelength for several waveguide widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Each waveguide was simulated with a thickness of 220 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' systemic deviations exist between the simulation configuration and the realities of the fabrication process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In this paper, we report to the best of our knowledge, the first geometry-parameterized compact model of strip waveguides that can capture device performance over a wide range of wavelengths and waveguide geometries (see Table I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Using a novel derivation of the thermo-optic effect that is accurate for high-index contrast waveguides, we demonstrate our model’s ability to describe both scattering loss and the thermo-optic effect as a function of both design and statistical parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A novel group-extraction-based method allows the characteri- zation of process variations without presumption of a source or its associated sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This extraction methodology is used to construct a model from dozens of geometric variations of Mach-Zehnder Interferometers (MZIs) fabricated in a 300 mm commercial foundry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' These use of Euler bends in these MZIs permits the characterization of wide waveguide performance with minimal higher-order mode excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Experimental re- sults validate the model’s accuracy in describing the phase, loss, and thermo-optic performance across the entire wafer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The model is also implemented in Verilog-A to demonstrate compatibility with electronic-photonic co-simulation environ- ments [30]–[32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This work represents a key step toward the modeling of waveguide-based PDK components, enabling true-to-measurement circuit simulation at massive integration densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' PHYSICS-AWARE MODEL DEVELOPMENT Because the mode condition of an optical waveguide is described via a transcendental equation, completely generalized analytical solutions for the effective index (neff) are impossible to derive [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We therefore propose, as discussed in [34], finding a behavioral model that accurately captures its dependence on all design parameters over the relevant ranges of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In this section, we develop dependency models for the design parameters available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a-c, Plot of simulated (scatter) and modeled (dashed) neff parameters � ∂2neff/∂λ2, ∂neff/∂λ, neff,0 � vs waveguide width (respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' These values were for a waveguide with a thickness of 220 nm at a wavelength of 1550 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' d, Comparison of the model (dashed) and simulated (scatter) neff vs waveguide width for different thicknesses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Simulated at 1550 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The semi-physical nature of the model is then leveraged to describe both the scattering loss and the thermo-optic coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Process variations, whether of a design parameter or not, will be covered in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wavelength Dependence The wavelength dependence of the waveguide neff is first considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The neff of several silicon-on-insulator (SOI) waveguide geometries were simulated in Lumerical MODE (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' From the results, it is shown that the wavelength dependence over the S-, C-, and L-bands for all geometries is well-approximated by a second-order Taylor expansion for a wide range of waveguide widths sufficiently above the cutoff condition (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1b): neff, model(λ) = 2 � i=0 1 i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' ∂ineff ∂λi ���� λ=λ0 (λ − λ0)i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (1) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Geometric Dependence As the Taylor expansion only captures the wavelength- dependence, it is clear that the fitting parameters ∂2neff/∂λ2, ∂neff/∂λ and ∂0neff/∂λ0 (hereafter referred to as neff,0) are responsible for capturing the dependence on waveguide geom- etry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' With respect to width, all three fitting parameters were previously found in [35] to be well described by the following behavioral model: ∂ineff ∂λi (w) = pi0 · w2 + pi1w + pi2 w2 + pi3w + pi4 , (2) for a total of fifteen model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To verify correctness of the model, all three parameters were fitted to the simu- lation data with (1)-(2) using ordinary least squares (OLS) a Thickness Width 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='6 neff 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='2 1450 1500 1550 1600 1650 Wavelength [nm] 400 nm 580 nm 760 nm 940 nm215 nm 235 nm 255 nm 275 nm 295 nm3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Comparison between modeled (dashed) and simulated (scatter) neff for higher order modes and the fundamental TM mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' All waveguides were simulated with a thickness of 220 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The model was able to match all three parameters over the entire range of the width sweep (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2a-c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The close matching of the modeled and extracted Taylor parameters means that our modification of (2) still preserves its ability to match the behavior of effective index as a function of wave- length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' By extension, these three Taylor parameters allow for a robust description of neff as a function of waveguide width (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The data also demonstrates this agreement is not unique to any particular waveguide thickness, with different thicknesses producing different sub-parameter fits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Finally, it should be noted that both the numerator and denominator in (2) are polynomials of equal order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Our model consequently predicts that, for a given wavelength, the effective index will asymptotically approach a constant value as w approaches infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The value that the model approaches as w tends towards infinity can be interpreted as the equivalent neff of an infinite slab of the same thickness: lim w→∞ neff(λ, w) = nslab(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (3) In this way, our behavioral model can elegantly capture all significant features of effective index for the design parameters of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The model’s accuracy holds true for higher order modes as well, provided that they are sufficiently far away from their respective waveguide cutoff condition (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Scattering Loss Scattering loss due to sidewall roughness (SWR) can be a significant source of loss in most reported waveguide designs, making it critical for designers to accurately model [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In this section, we demonstrate our model’s ability to capture SWR loss as a function of waveguide geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' It was first noted in [37] that the traditional Payne and Lacey model of SWR- induced loss [38], [39] was found to be identical in behavior to the derivative of the effective index with respect to waveguide width: αSWR(λ, w) = R ∂ ∂w [neff(λ, w)] , (4) where R is a proportionality constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As our model can describe neff as a function of width, a closed-form repre- sentation of ∂neff/∂w can be exactly derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This equation Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Graphical representation of a waveguide simulated with some sidewall roughness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The inset is a magnified view of the waveguide to clarify the definition of σrms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Scattering losses estimated from FDTD compared to the fit using our model based on Lumerical MODE data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' can then be fitted to measured waveguide loss data to extract the proportionality constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We validate this by fitting (4) to the scattering loss of a 7 µm long SOI waveguide with some SWR wall roughness in Lumerical 3D-FDTD (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The roughness Root Mean Square (RMS) and correlation length were arbitrarily chosen to be σrms = 5 nm and Lcorr = 1 µm respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' These parameters were then used to generate a random, anisotropic SWR on the waveguide walls [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Propagation losses were simulated for waveguide widths ranging from 450 nm to 850 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The results of the fitting are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4b, with our model closely matching trend of the scattering loss behavior extracted from FDTD simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Thermo-Optic Effect Our model can also completely describe the thermo-optic coefficient of an arbitrary waveguide geometry without the need for any thermal measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The thermo-optic co- efficient of a waveguide mode most importantly requires knowledge of the confinement factor, which is the fraction of a mode’s power confined within each constituent waveguide material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kawakami showed in [41] that for a waveguide made up of N materials, each with with an index nk and a confinement factor Γk: N � k Γkn2 k = ngneff (5a) � k Γk = 1, (5b) where (5b) is derived from noting that the sum of all con- finement factors must equal unity due to power conservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='0 TEO TE1 TE2 TMO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='0 WG Width [um]20m Width SOl Waveguide4 A closed-form of the confinement factor for a two-material waveguide (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' SOI wires) can then be derived: Γcore = ngneff − n2 clad n2 core − n2 clad (6a) Γclad = n2 core − ngneff n2 core − n2 clad , (6b) where Γcore is the power contained in the waveguide core and Γclad is the power contained in the cladding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Next, we must obtain an expression that describes the thermo-optic effect on neff in terms of the confinement factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A common approximation of the thermo-optic coefficient of neff is ∂neff ∂T ≈ Γ1 ∂n1 ∂T + Γ2 ∂n2 ∂T + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' , (7) where δ represents a small perturbation in the values, Γn is the confinement of the mode within material n and ∂nn/∂T is the thermo-optic coefficient of material n [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Though this equation is widely used [43]–[45] and may be accurate in certain scenarios, to the authors’ knowledge it has never been demonstrated to be a generally accurate approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We therefore start from first principles and consider a general perturbation of the wave equation [46]: δ � β2 eff � = Γcore ω2 c2 δ � n2 core � + Γclad ω2 c2 δ � n2 clad � , (8) where βeff is the effective wavenumber, Γcore is the con- finement in the waveguide core, Γclad is the confinement in the waveguide cladding, and ncore and nclad are the core and cladding indices respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Carrying this operation through and combining with (1) (see Appendix A for details) yields: neff(λ, w, T) ≈ neff,T0(λ, w) + ∂neff ∂T (T − T0) (9a) ∂neff ∂T = Γcore ncore neff, T0 ∂ncore ∂T + Γclad nclad neff, T0 ∂nclad ∂T , (9b) where neff,T0 is the neff at some reference temperature T0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The key addition to (9) compared to prior literature is the scaling of each thermo-optic term by ratio between the material and effective indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As the index contrast between the core and cladding decreases, our model will approach the (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Thus it is clear that our model will outperform (7) in accuracy when describing high index contrast materials, such as the SOI waveguide geometries prevalent in SiPh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' With these expressions, our confinement factor and the thermo-optic coefficient models can be validated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The simu- lated confinement factor is compared to our model prediction at 1550 nm in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The optical properties of silicon and silicon dioxide used in our model were taken directly from [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' There was a near perfect agreement between the modeled and simulated confinement factor, showing that the general behavior of confinement factor is captured by our model (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The modeled thermo-optic coefficient is validated by simulating how the neff of a SOI waveguide varies with temperature using Lumerical MODE (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Silicon was assumed to have a thermo-optic coefficient of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='9 × 10−4 K−1 [48] and SiO2 was assumed to have a thermo-optic coefficient of 1 × 10−5 K−1 [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The model and simulations show Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a Modeled (dashed) and simulated (scatter) confinement factor vs waveguide width for different thicknesses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Comparison between simulated (scatter), previously reported model (dotted, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (7)) and our work (dashed line, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (9)) describing neff vs Temperature of a 480 x 220 nm waveguide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' exceptional agreement from 300 - 1200 K, despite the fact that our model does not require any data from thermal simulations or measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As predicted, the previously reported model of the thermo-optic effect (7) significantly under-predicts the expected change in neff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' It should be noted that in real devices, waveguide geometry itself is a function of T due to thermal expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This can be accounted for by modeling w as a func- tion of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Experimental results in Section V-C, however, show that assuming a constant width geometry provides sufficient accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Having a model of the thermo-optic effect that is accurate over a wide range of conditions like this one holds a great deal of potential to enable more robust design exploration, such as evaluating photonic waveguide heater designs [50], [51], characterizing self-heating in micro-resonators [52], or studying the effect of ambient temperature fluctuations in a system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Parameter Extraction The practical utility of a compact model is greatly deter- mined by the associated parameter extraction procedure to connect the model to a given foundry process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This is particu- larly important when developing statistical models, as accurate parameter extraction is the only way to guarantee that process variations are accurately reflected in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A popular solution is to leverage the phase-sensitivity of interferometric optical filters—such as Mach-Zehnder interferometers (MZIs), microresonators, or arrayed waveguide gratings (AWGs)—to monitor process variations across a wafer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Regardless of the chosen device, a shared difficulty lies in accurately guessing what particular interference fringe position corresponds to a particular fringe order [25], [26], [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Our method is based on a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='75 210 nm 220 nm 230 nm 215 nm 225 nm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='0 WG Width [um] b 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='7 neff 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='6 400 600 800 1000 1200 Temperature [K] This Work - Previous Model Simulated5 the curve-fitting method presented in [25] and [54], with some additional steps described to include waveguide dispersion as an extracted parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The first step in parameter extraction is to characterize the group index (ng) of a fabricated interferometer from a wavelength sweep of the device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To enable this, (1) is rearranged into a more suitable form: neff(λ) = 1 2 ∂2neff ∂λ2 λ2 + Bλ + C (10a) B = ∂neff ∂λ − ∂2neff ∂λ2 λ0 (10b) C = 1 2 ∂2neff ∂λ2 λ2 0 − ∂neff ∂λ λ0 + neff,0, (10c) where B and C are fitting parameters that aggregate the 1st and 0th order terms from (1) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Following the procedure described in [54], it is first noted that the fringe condition of an inteferometric device is described by φ = 2π λ neff(λ)L = 2πm, (11) where φ is the phase difference between the interferometry arms, L is the path length of the interferometer, λ is a partic- ular fringe wavelength, and m is an integer corresponding to the particular fringe order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To extract our model parameters, a wavelength sweep of the interferometric device is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Once this is performed, a peak finding algorithm can be used to detect the wavelength of all detected fringes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A function that relates the relative fringe locations to the ng of the waveguide is now required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This can be done by defining a continuous function that will yield an integer value at each of the detected fringe locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Let m0 represent the particular fringe order corresponding to an arbitrarily chosen reference fringe located at λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The fringe order m of any other fringe can be defined relative to this reference as m = m0 + � λ λ0 dm dλ dλ = m0 + ngL · � 1 λ − 1 λ0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (12) This continuous function now allows us to redefine the mea- sured fringes into a form suitable for parameter extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A reference fringe variable n is now defined by letting m = (m0 + n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Inserting this back into (12) produces: n = ngL · � 1 λn − 1 λ0 � , (13) where each relative fringe n is located at an associated wavelength λn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Using (13), the ng of the measured device is now directly related to the measured fringe locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This fitting equation must now be extended to our specific model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The ng of a waveguide is defined to be ng = neff − λ∂neff ∂λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (14) Combining with (10a) yields an expression for ng in terms of our compact model: ng = C − 1 2 ∂2neff ∂λ2 λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (15) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Captured spectrum of simulated MZI used for parameter extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The waveguide mode was simulated in Lumerical MODE, and then exported to a MZI waveguide simulation block in Lumerical INTERCONNECT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Linear Regression of fringe wavelengths to extract the ng performed on the detected fringes from a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' c, Possible neff solutions (black, dashed), along with the actual solution (red), determined by the ng extracted in b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' By inserting (15) back into (13), we can derive an OLS regression-compatible expression: n = CΛC − ∂2neff ∂λ2 ΛS (16a) ΛC = L · � 1 λn − 1 λ0 � (16b) ΛS = L 2 · � λn − λ2 n λ0 � , (16c) where [ΛC, ΛS] are explanatory variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Performing an OLS regression between n and [ΛC, ΛS] gives us two of our three fitting parameters in (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Finally, B can be calculated by combining equations (11) and (10a): B = m L − 1 2 ∂2neff ∂λ2 λm − C λm , (17) where the only uncertainty is what fringe order m corresponds to each measured fringe λm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Once B is determined from (17), (10b) and (10c) can be used to determine the original fitting parameters in (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' It should be noted that each detected fringe (m, λm) location will yield very small variations in the B value due to resolution-based uncertainty in the exact value for λm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' For a best guess, all values Bm taken from each measured fringe λm should be averaged together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To validate this method under ideal conditions, an MZI constructed using 480 nm x 220 nm waveguides is simulated in Lumerical INTERCONNECT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To ensure accuracy, the wave- guide’s neff was first simulated in MODE and then exported to a MODE Waveguide element in INTERCONNECT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As the full-width half-maximum (FWHM) of the MZI does not affect the extracted neff, the waveguides were arbitrarily assumed to have a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 dB/cm loss and the coupling coefficient was chosen to ensure critical coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The spectrum of the simulated MZI a Power [dBm] 20 b 10 C 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 neff 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='3 1500 1550 1600 1650 Wavelength [nm]6 is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fringe locations were extracted using a peak finding algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The fringe located closest to the center of the sweep was arbitrarily chosen as n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Using (16), OLS regression found ∂2neff/∂λ2 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='136 µm−2 and C = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='9215 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' From here, the family of solutions for neff is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Each particular solution corresponds to a different guess on the fringe orders detected, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' m0 = 52 vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' m0 = 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The separation between each neff solution plotted in 6c is determined by the free-spectral range (FSR) of the interferometer, with a larger FSR corresponding more widely separated solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To determine the correct fringe order of the reference we use the fact that, from the simulations performed in Section II, we know the waveguide geometry has an neff of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='411 at the reference fringe location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In Section III we explain how to increase the accuracy of this estimation to avoid errors introduced by this simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' From this, the reference fringe order is found to be m0 ≈ 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Since fringe orders must be integer numbers, the result is rounded to the nearest integer 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' By combining (10a)-(10c), the original fitting coefficients are found to be ∂neff/∂λ = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='078 µm−1 and neff,0 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To evaluate accuracy of our extraction, we define the relative error between the extracted and simulated neff’s σerror by: σerror = �� (neff, model − neff, sim)2 dλ � n2 eff, simdλ , (18) where neff, sim is the effective index from the MODE simula- tion, used as a reference to quantify our method’s accuracy, and neff, model is the result from applying our extraction method to the simulated MZI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Upon evaluation, the total relative error was found to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='017%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Since the order of the reference fringe is correct, the remaining model error is attributed to inaccuracies in the initial regression fit using (16a)-(16c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' MORE ROBUST neff EXTRACTION UNDER PROCESS VARIABILITY The reliability of the extraction is highly sensitive to the guessed value of the reference fringe order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' For the example in Section II-E, we used a priori knowledge of the neff at the reference fringe to estimate its order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Therefore, any deviation between the assumed and actual waveguide dimensions risks introducing error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' By noting that the initial order estimate rounded to the nearest integer, we can use (11) to define a boundary beyond which our fringe order guess will be incorrect [25]: |∆m| = |neff, actual − neff, guess| ≤ λm0 2L .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (19) We can see that, to raise confidence in the guessed fringe order, either the accuracy of our neff guess must be increased or the interferometric path length must be decreased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As explained in Section II-E, our extraction method begins by directly extract- ing the ng of a given interferometer via optical sweep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Process variations will therefore appear as variations in the extracted values for ∂2neff/∂λ2 and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' By measuring several devices of the same drawn width across the all measured dies, wafers, and lots, the influence of the random width and thickness variations can be eliminated by averaging their extracted fitting Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Plot of the ng error function for one sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The error function shows a minimum at roughly 491.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 nm, which closely agrees with the actual waveguide width of 490 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Convergence of the etch bias estimate for different numbers of samples averaged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As the sample size becomes sufficiently large— with the necessary sample size being a function of the severity of the process variations—any remaining deviation between the nominal and averaged parameters will be the result of a systemic etch biases on the waveguide width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We therefore propose estimating this etch bias by creating a preliminary neff model based on the results of a photonic mode solver, such as Lumerical MODE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Using this model, an equivalent waveguide width can be found by minimizing the error function min w �� [ng, model(w, λ) − ng, meas(λ)]2 dλ � n2g, meas(λ)dλ , (20) where ng, meas is the extracted model of ng using the averaged extracted parameters and ng, model is the simulation-based, width-dependent a priori model of neff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The neff of our equivalent waveguide width can then be plugged into the a pri- ori model to provide a more accurate fringe order estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In this way, we can increase the accuracy of our guessed effective index, regardless of whether the modeled waveguide composition is accurate to the virtual device composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We now discuss the robustness of this optimization routine in the presence of other systemic non-idealities and its ability to perform etch bias correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To do this, we need a ’ground truth’ value for neff, which we obtain by simulating all the non-idealities in Lumerical MODE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Subsequently we perform the parameter extraction using Lumerical INTERCONNECT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' By comparing the extracted neff to the known simulated value for neff, we can directly evaluate the robustness of our methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Statistical Geometric Variation To test the extraction procedure’s accuracy under process variations, a simulation of 100 random variations on the a 2 Actual Guess Error Function !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 460 480 500 520 540 Guessed Widths [nm] b 4 nm 26 nm Etch Bias [nm] Estimated 11 nm 33 nm 15 18 nm 40 nm 10 20 40 60 80 100 Number of Samples7 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Plot of mean error in neff over the simulation bandwidth per simulated device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Each FSR was simulated with 100 random deviations from the target waveguide geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Both width and thickness were assumed to have a 3σ = 5 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' waveguide geometry was run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The nominal waveguide di- mensions were assumed to be 480 x 220 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To simulate systemic variations, each waveguide was arbitrarily assumed to have an etch bias of +10 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Random fluctuations were simulated by subjecting each device to a normally distributed variation of 3σ = 5 nm on both the waveguide width and thickness, as this value is consistent with the worst-case reported values for geometric variations [25]–[27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Each mode profile was then exported to INTERCONNECT and simulated with interferometer FSRs ranging from 4 - 40 nm to investigate the effect this had on the extraction error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The resulting error function for one of these samples, with a ground truth width of 490nm, is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 7a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We see the convergence behavior of the etch bias estimate evolves as a function of device sample size increases for several FSR designs in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 7b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' It can be seen that all FSR designs can yield at least an estimated etch bias within 2 nm of the actual value, indicating the utility of our etch bias correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 8 shows the relationship between the average, per sam- ple error and the interferometer FSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The error is measured in three scenarios: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=') a ‘na¨ıve’ case, where the fringe order is estimated assuming no etch bias;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=') where the fringe order is estimated through our etch bias prediction methodology, based on 30 measured samples;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' and iii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=') where the exact neff from simulations is used to determine the actual fringe orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The last scenario, that produced an average per sample error of roughly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='017% represents an error floor for the first two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This error floor is completely determined by errors in the initial ng regression, as well as any fundamental limitations in our chosen behavioral model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As the FSR is increased, the average per sample error in both cases improves steadily until it reaches the aforementioned floor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This is consistent with (19), indicating that a larger FSR corresponds to a wider margin of error for the fringe order estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' For both the na¨ıve and bias compensation methods, there is a critical FSR value beyond which the fringe order is correctly estimated for all samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' It is clear, however, that estimating the presence of any etch biases drastically improves the fringe order accuracy, reaching the error floor for a much smaller FSR than when using the na¨ıve method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, ng relative error vs simulated sidewall angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Comparison between the simulated (scatter) and estimated (dashed) neff for different sidewall angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Sidewall Angle We now consider how the parameter extraction behaves when used for waveguides with some sidewall angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Up to this point, our simulations assumed the waveguides to have no sidewall angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Real waveguides, however, typically deviate from this ideal [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To study how our bias correction behaves under these conditions, a SOI waveguide with the same nominal (480 x 220 nm) design as before was simulated with a series of sidewall angles from 85 to 90 degrees as this is a range typical of foundries [25], [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As only the aggregate behavior is being studied, width and thickness variations were not included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 9a, the minimum of the error function optimized in the etch bias estimation step remain roughly constant for all considered sidewall angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This results in very accurate predictions of the effective index from our model, even though the fundamental geometry is different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We interpret this as our optimization routine is picking an ‘equivalent’ waveguide width that matches the extracted ng profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This equivalent width always seems to result in a waveguide design with a similar confinement factor and effective index—and therefore behavior—as seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 9b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Material Variation This method for increasing the accuracy of the guessed neff relies on the assumption that the material properties of the fabricated waveguides generally match the assumed material properties used in the simulation data used to construct the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In practice, however, there can be a great deal of deviation between the assumed and actual optical properties of the waveguide materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As a workaround, the authors suggest extracting and building a model based around the dispersion of the waveguide ∂2neff/∂λ2, as this waveguide parameter Naive 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='75 Bias Correction neff Error [%] Exact 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='00 10 20 30 40 Target FSR [nm]Naive Bias Correction 0 =90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='0 0 =87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 0 =85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='08 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Illustration of measured reticles on a custom 300 mm wafer, with a blown-up microscopic image of a die with 135 MZIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Nominal neff and ng model extracted from device measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' c, Width-based model extraction for each die tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' d, Total model parameter µm variance σ explained vs number of principal components included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='e, Plot of the width-independent subparameters for neff,0, ∂neff/∂λ0,and ∂2neff/∂λ2 0 vs V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' can be extracted exactly from measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The nominal model of ∂2neff/∂λ2 can then replace ng in (20) to estimate the width of the measured device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This width can then be used in conjunction with simulation data to assign it an neff guess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Though the limits of such a technique are unclear to the authors, experimental results in Section V demonstrate to be effective enough for describing the neff, loss, and thermo-optic effect for all measured device performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' EXTRACTING LOCAL PARAMETER VARIATIONS Process variations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' thickness variation, cladding and core index variations) will appear in our model as varia- tions in the fifteen model parameters that comprise Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Capturing these variations requires the ability to extract their value locally, which cannot be done just by looking at the performance of any individual device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' It is commonly assumed in prior literature that most process parameters slowly vary across the entire wafer [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This assumption implies that the values of the parameters comprising our model also vary slowly across the wafer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The authors therefore propose analyzing the performance of several waveguide width designs in close proximity to each other to locally extract all of the fifteen model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Each local extraction serves as the observations of each model parameter that are tracked across the entire wafer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The simplest way to create a statistical model is to treat each of fifteen sub-parameters as independent statistical variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This is not ideal, however, as each additional variable drasti- cally increases the number of required iterations for accurate Monte Carlo simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To minimize model complexity, we would like to represent each sub-parameter as a linear function of an ensemble of variables: pni = pni,avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' + ⃗s · ⃗V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (21) ⃗V is the vector of variables that represent the process varia- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Minimizing model complexity would be the equivalent of minimizing the size of ⃗V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' ⃗s describes the corresponding sensitivities of a given parameter to each element in ⃗V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' To minimize the size of ⃗V , we leverage the fact that each extracted model parameter will be strongly correlated to one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This is because the variations in each model parameter share common origins such as wafer thickness, annealing time, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We therefore propose using principal component analysis (PCA), a technique for transforming a number of possibly correlated variables into a smaller number of uncorrelated variables (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='e principal components) [57], to minimize model complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The chosen principal components are then the variables that make up ⃗V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The chosen principal components are then the variables that make up ⃗V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The number of components in ⃗V is flexible (see Appendix B for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Since our waveguide geometry is primarily a function of two process variables—waveguide width and thickness—we use only the first principal component to preserve its physical interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The result is a model of effective index as a function of width and our process variations–∆w, representing width variations and an additional variable we will call V , representing an aggregate of other process variations, including thickness variation: neff,model(w + ∆w, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (22) This full model of neff is then used in the local optimization and re-extraction of each measured device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The cost function b d 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='75 %1 100 2 neff 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='50 Explained [ 15 7 17 73 24 26 75 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='25 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='00 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='75 357 9111315 1000 2000 Number of Components Width [um] c e 17 24 26 2 5 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='25 re/Heue aneff/a2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='75 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='00 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='25 neff,0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='50 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='25 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 WG Width [um] V9 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Measured vs modeled optical spectrum of a 480 nm waveguide MZI with ∆L = 100 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, (i) Histogram of extracted V data along with its associated Gaussian distribution (red, dashed) overlaid on top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (ii) Spatial map of the average value for V per measured die across the wafer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' c, Mean and standard deviation of ∆w, neff, and ng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' is defined as the sum of the relative neff and ng errors to match both the measured fringe locations and FSR respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Thus, we can employ a two-stage direct statistical com- pact model extraction procedure [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In the first stage, we use group extraction to obtain the complete set of fifteen parameters for a uniform device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In a second step, a subset of model parameters are re-extracted for each member of a large ensemble of devices measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This approach will be the most accurate representation of how device performance varies across the wafer without any presumption of variation source, statistical distribution, correlation, and the resulting model sensitivity to the variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' An inherent strength of this approach over others is that it is potentially useful for modeling other waveguide geometries as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This potential is due to the model designer having the option of picking the number of principal components based on a physical assumption on the key process variables or optimize the percentage of explained parameter variance (see Appendix B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' While further investigation would be required to confirm this, the methodology’s flexibility holds a great deal of promise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' EXPERIMENTAL DEMONSTRATION We measured 7 reticles, each with 135 MZIs consisting of 27 different waveguide widths (w) from 400 nm to 2500 nm and 5 different arm length delays (∆L) from 100 nm to 500 nm, fabricated on a custom 300 mm full wafer through AIM Photonics (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' All 135 MZI were measured on reticle 2 while a smaller subset of 30 MZIs were measured on each of the remaining reticles, totaling 315 measured devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Devices with the same waveguide width are placed adjacently to minimize the impact of local process variations on device performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' All MZIs have a nominal waveguide height of 220 nm, and grating couplers designed for quasi-TE polarization are utilized for optical I/O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The two arms of each MZIs consist of symmetric waveguide bends to mitigate the impact of bending on the ng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' For devices with waveguides beyond the single-mode cutoff width, Euler bends are used to maintain single mode operation and high mode isolation [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A tunable laser was swept from 1450–1610 nm at a 10 pm resolution to characterize the transmission spectrum of each MZI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Nominal Extraction A nominal model neff is created by averaging the extracted parameters for all measured devices as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We apply the extraction method described in Section II-E to every collected transmission spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A preliminary model is built using the simulation data described in Section II to estimate the expected device FSR for each waveguide width variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This estimated FSR is then fed into a peak finding algorithm to extract the ng parameters, and then estimate fringe orders— and, therefore the neff—of each measured device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As the measured ng deviated a great deal from the simulated values, the technique described in Section III-C is employed where a preliminary model based on ∂2neff/∂λ2 is created and used to estimate waveguide geometry to estimate the fringe order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' All three Taylor-expansion parameters are then derived using (10a)-(10c), and then averaged across for each width variation across the entire wafer to create a nominal experimental model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The extraction is then repeated locally for devices that are close in proximity to one another to extract local values for the model’s sub-parameters (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10d shows that using (31) this first principal component can explain 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='7% of all variance in the sub-parameter values across the wafer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The authors determined that due to the clear connection between the V and the three model parameters a 0 100 (i) (ii) Power [dBm] 100 μAw MVo C 50 50 100 Measurement Model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='1 (!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=') (iv) 1500 1550 1600 yauo 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='50 Wavelength [nm] b 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='25 (i) (ii) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='38 (v) (vi) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='07 Ong 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='005 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='47 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='75 2 1 1 2 2 0 Width [um] Width [um] V10 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Measured thermo-optic response of a measured MZI device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Extracted value of ∂Tchip/∂Theater vs waveguide width using (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' that determine device behavior as w → ∞, this principal component was likely capturing width-independent sources of variance such as thickness variations (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The authors will now show that this provides a model robust enough for capturing statistical behavior while preserving the goal for clear physical interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Statistical Extraction The sum of the relative neff and ng errors is optimized using the Nelder-Mead algorithm [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The drawn waveguide width and the extracted V from the local extraction performed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10c are used as the initial guesses for w and V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Despite the limited sample size of collected data, we can already see several notable preliminary statistical trends in ∆w as a result of our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The model of neff extracted from each local optimization was found to result in a close agreement between the measured and modeled MZI performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The extracted values for V exhibits the intended physical behavior of process parameter that varies slowly across the wafer (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 11b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Local optimization yielded a total, average intra-die, and average local device standard deviation σV of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='603, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='386, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='167 respectively, showing a correlation between device proximity and their extracted V values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The mean values of V for die both (i) in close proximity to each other and (ii) equidistant from the center of the wafer tend to be similar in value, as shown in the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 11b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Decoupling the process variations of V from the width variations ∆w enables extraction of width-dependent systemic effects, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 11c(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Our method estimates that waveguide widths with smaller mean errors also tend to have smaller σ∆w (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 11c(ii)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This carries over as an explanation Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Microscopic image of a die with waveguide spiral test structures for measuring width-dependent loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Inset: magnified image showing three of the test structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Propagation loss measurement and fit data for a 440 nm waveguide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' for why for w = 2µm, neff varies more than for w = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='2µm, allowing insight on what waveguide geometry best minimizes both σneff and σng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This sort of process insight for circuit designers is only possible due to the group benchmarking of all device performance within a localized area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Thermo-optic Effect Model Validation To validate the thermo-optic effect model developed in Section II-D, we re-characterized the MZI transmission spectra from a single die of the chip shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The thermal characterization was performed by adhering a Thorlabs TLK- H polyimide heater to the side of the chip stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The heater was controlled by a Thorlabs TC200 Temperature Controller to set the heater temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Thermal paste was applied between the chip and the chip stage to minimize thermal resistance between the chip and the heater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The thermal response of one of the tested MZI is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The fringe closest to 1550 nm is tracked at each temperature step and plotted against temperature to extract ∂λ/∂T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This value is then compared to our predicted value for ∂λ/∂T gained by taking the derivative of λ in (11) with respect to temperature ∂λ ∂Tchip = ∆L m ∂neff ∂Tchip ∂Tchip Theater 1 − ∆L m ∂neff,model ∂λ , (23) where m is the order of the tracked fringe, ∆L is the path length difference between the two arms, and ∂Tchip/∂Theater represents the heat transfer efficiency from the heater to the chip itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This last term is included as the authors only know 0 a Power [dBm] 10 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='8 °C 20 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='8 °C 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='7°C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='073 nm/K 30 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='9 °C 1527 1528 1529 1530 1531 1532 Wavelength [nm] b 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='80 500 1000 1500 2000 Width [nm]a COLUMBIA UNIVERSITY DARPA IN THE CITY OF NEW YORI ch Lightwave Research Laborato 1CM Power [dBm] 10 15 α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='916 dB/cm 2 4 Spiral Length [cm] 400 um11 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Plot of measured (scatter) and modeled (line) propagation loss vs ∂neff/∂w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Slope of fit represents R in (4), while the intercept represents non-SWR loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Plot of measured (scatter) and modeled (line) propagation loss vs waveguide width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' the temperature of the resistive heater rather than the chip temperature itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We know ∂Tchip/∂Theater ≤ 1 as heater cannot raise the temperature of the chip to a value higher than its own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The extracted parameters for ∆w and V are used in calculating (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' On average, the measured thermo-optic effect was found to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='91× our model’s (9) prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This value was found to be independent of waveguide geometry with the exception of 400 nm (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 12b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This error for 400 nm is assumed to be be- cause this width is close enough to the cutoff condition for our model to lose accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In contrast, the measured thermo-optic effect was 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='21× the previously reported model’s prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This implies that either the chip’s change in temperature is greater than the heater’s or the previously reported model is incorrect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The change in temperature of the PIC can only ever be smaller than the heater’s temperature delta, making the old model’s prediction clearly nonphysical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Scattering Loss Model Validation To validate the scattering loss model, we measured a die with 25 spiral loss structures consisting of 5 different wave- guide widths (w) from 400 nm to 500 nm and 5 different spiral lengths (∆L) from 1 cm to 5 cm, fabricated on a custom 300 mm full wafer through AIM Photonics (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Again, all spiral structures have a nominal waveguide height of 220 nm, and grating couplers designed for quasi-TE polarization are utilized for optical I/O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The losses of each spiral length were recorded, and then fit to a linear equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The slope of the this fit was taken to be the propagation loss associated with each waveguide width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The results of our model fit are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The model built in Section V-B was used to build a model of ∂neff/∂w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fitting our modeled ∂neff/∂w to the measured propagation loss yields proportionality constant of R = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='206 × 10−8 cm and (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 14a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The intercept of the loss Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' a, Cadence Virtuoso schematic of the MZI test circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' All circuit models were written in Verilog-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The optical stimulus is provided by a continuous-wave (CW) Laser and detected with a photodetector (PD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' b, Comparison of measured and simulated performance for an MZI with w = 2 µm and ∆L = 100 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' fit is interpreted as the aggregate non-SWR loss, with a value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='901 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 14b shows the excellent agreement between our model and the data, predicting the similar propagation losses of both the 440 nm and 460 nm waveguides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As mentioned in Section V-B, both 400 and 420 nm waveguide widths are likely near the cutoff condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Since (4) is only valid sufficiently far away from this condition, those data points are not included in the plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Verilog-A Implementation To demonstrate its compatibility with electronic-photonic co-simulation, the circuit model was implemented in Verilog- A within Cadence Virtuoso (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 15a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' As Verilog-A does not inherently support optical signals, some compatibility code as well as a small library of photonic device models were built based upon on previously reported demonstrations [32], [59], [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' CONCLUSION In summary, we have demonstrated a novel compact model that can greatly expand the accuracy of circuit-level simulation capabilities of silicon PICs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In contrast to prior work that focused on providing metrology information that could be use to fabrication engineers [26], [61], [62], we present this PDK model as a tool suitable for true-to-measurement circuit simu- lation and optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' By leveraging this underlying physical behavior and locally extracting process variations by perform- ing group extraction, we have demonstrated a framework for building a model of neff that is entirely driven by measurement data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' This model was shown to accurately describing the phase, a Loss [dB/cm] R = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='206e-08 cm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='9 αnon-SwWR = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='901 dB 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='7 neff/Ow [um-1] b Loss [dB/cm] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='7 440 450 460 470 480 490 500 Width [nm]a ght<0:3 50:50 Coupler 50:50 Coupler Waveguides eftLig1<0:3> rightLig1<0:3> leftLig1<0:3> rightLig1<:3> leftLig2<0:3> coupler coupler rightLig2<0:3> eftLig2<0:3> rightLig2<0:3> inLight<0:3tatic_waveguide_R2_d1outLight<0:3> CW Laser lastightout<0:3 PD b Transmission [dB] 20 Measured VerilogA 1520 1530 1540 1550 1560 Wavelength [nm]12 loss,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' and thermo-optic behavior of the measured integrated waveguides over 4× the optical bandwidth and over 80× the range of waveguides widths reported in prior work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' We envision that the advancement over prior demonstrations this work represents can support the development of waveguide- based PDK components and enable the robust optimization of next generation PICs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' ACKNOWLEDGEMENTS This work was supported in part by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Advanced Research Projects Agency–Energy under ENLITENED Grant DE-AR000843 and in part by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Defense Advanced Re- search Projects Agency under PIPES Grant HR00111920014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The authors thank AIM Photonics for chip fabrication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Derivation of Thermo-Optic Model Starting from (8) from [46], the effect of a thermal pertur- bation on the effective index is investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Carrying out this perturbation and following the chain rule yields: 2β ∂β ∂T = 2Γcore ω2 c2 ncore ∂ncore ∂T + 2Γclad ω2 c2 nclad ∂nclad ∂T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (24) Noting that β = ωneff/c and inserting above, the relationship simplifies to (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Combining with (1) yields: neff = neff, T0 + ∂neff ∂T (T − T0) (25a) ∂neff ∂T = Γcore ncore neff ∂ncore ∂T + Γclad nclad neff ∂nclad ∂T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (25b) It is noted that neff appears on both sides of the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Multiplying both sides by effective index yields a quadratic equation whose solution is: neff = neff, T0 2 + 1 2 � n2 eff, T0 + 4n ′(T − T0) (26a) n ′ = Γcorencore ∂ncore ∂T + Γcladnclad ∂nclad ∂T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (26b) The expression can be simplified by noting that n2 eff, T0 ≫ 4n ′ for typical values for the thermo-optic coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Under- standing this, it is clear that the behavior of the square root term is approximately linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The 1st order Taylor expansion of the square root term is: neff, T0 + 1 2 4n ′ � n2 eff, T0 + 4n ′(T − T0) (T − T0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (27) Noting again that n2 eff, T0 ≫ 4n ′, (27) simplifies to: neff, T0 + 2n ′ neff, T0 (T − T0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (28) Replacing the square root term in (26) with this expression and simplifying will then yield (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Principal Component Analysis To start, we form a matrix X our of our list of local sub- parameter extractions, where each column represents a model parameter and each row is an observation of said parameter: X = � ������ ∂0neff ∂λ0 0,1 ∂0neff ∂λ0 1,1 · · ∂2neff ∂λ2 4,1 ∂0neff ∂λ0 0,2 ∂0neff ∂λ0 1,2 · · ∂2neff ∂λ2 4,2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' ∂0neff ∂λ0 0,n ∂0neff ∂λ0 1,n · · ∂2neff ∂λ2 4,n � ������ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' (29) A covariance matrix S is then created from X and find its eigenvectors: S = � ���� ⃗v0 ⃗v1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' ⃗vn � ���� � ���� λ0 0 · · 0 0 λ1 · · 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 0 0 · · λn � ���� � ���� ⃗v0 ⃗v1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' ⃗vn � ���� −1 , (30) where [v0, v1, · · · , vn] lists the eigenvectors and [λ0, λ1, · · · , λn] are their associated eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The eigenvectors of the correlation matrix represent the directions of the axes where there is the most variance (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' the most information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Each eigenvalue λi is proportional to how much variance is captured by its associated principal component vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Picking the eigenvectors with the largest eigenvalues allows us to reduce data dimensionality at the expense of some accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' The percentage of variability explained by a principal component is calculated as �M i=0 λi �N i=0 λi , (31) where λi is the eigenvalue for each eigenvector, M is the number of principal components the designer has chosen to include, and N is the maximum number of principal components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' REFERENCES [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Rizzo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Daudlin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Novick, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' James, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Gopal, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Murthy, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Cheng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kim, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Ji, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Okawachi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' van Niekerk, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Deena- dayalan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Leake, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fanto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Preble, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lipson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Gaeta, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bergman, “Petabit-scale silicon photonic interconnects with inte- grated kerr frequency combs,” IEEE Journal of Selected Topics in Quantum Electronics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1: Nonlinear Integrated Photonics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1–20, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [2] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Cheng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bahadori, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Glick, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Rumley, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bergman, “Recent advances in optical technologies for data centers: a review,” Optica, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1354–1370, Nov 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wade, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Anderson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Ardalan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bhargava, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Buchbinder, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Davenport, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fini, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Li, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Meade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', “Teraphy: a chiplet technology for low-power, high-bandwidth in-package optical i/o,” IEEE Micro, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 63–71, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [4] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Moody, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Sorger, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Blumenthal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Juodawlkis, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Loh, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Sorace-Agaskar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Jones, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Balram, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Matthews, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Laing et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', “2022 roadmap on integrated quantum photonics,” Journal of Physics: Photonics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 012501, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Steinbrecher, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Olson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Englund, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Carolan, “Quantum optical neural networks,” npj Quantum Information, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1–9, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Takeda and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Furusawa, “Toward large-scale fault-tolerant universal photonic quantum computing,” APL Photonics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 060902, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 13 [7] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Harris, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bunandar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Pant, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Steinbrecher, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Mower, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Prabhu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Baehr-Jones, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Hochberg, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 456–468, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bourassa, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Alexander, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Vasmer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Patil, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Tzitrin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Matsuura, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Su, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Baragiola, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Guha, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Dauphinais et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', “Blueprint for a scalable photonic fault-tolerant quantum computer,” Quantum, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 392, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Marpaung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Capmany, “Integrated microwave photon- ics,” Nature photonics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 80–90, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [10] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yamagami, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Pitchappa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Webber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fujita, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Nagatsuma, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Singh, “Terahertz topological photonics for on-chip communication,” Nature Photonics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 446– 451, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [11] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Duan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, “6g technologies: Key drivers, core requirements, system architectures, and enabling technologies,” IEEE Vehicular Technology Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 18–27, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [12] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Shi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Tian, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Gervais, “Scaling capacity of fiber-optic transmission systems via silicon photonics,” Nanophotonics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 16, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4629–4663, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [13] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhou, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Li, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Li, “Development trends in silicon photonics for data centers,” Optical Fiber Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 44, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 13– 23, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Sabella, “Silicon photonics for 5g and future networks,” IEEE Journal of Selected Topics in Quantum Electronics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1–11, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Gardner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bieker, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Elwell, “Solving tough semiconductor man- ufacturing problems using data mining,” in 2000 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' ASMC 2000 (Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 00CH37072).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' IEEE, 2000, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 46–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [16] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kumar, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kennedy, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Gildersleeve, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Abelson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Mastrangelo, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Montgomery, “A review of yield modelling techniques for semiconductor manufacturing,” International Journal of Production Re- search, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 44, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 23, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5019–5036, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [17] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bogaerts and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser & Photonics Reviews, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1700237, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Rizzo, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Dave, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Novick, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Freitas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Roberts, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' James, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lipson, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bergman, “Fabrication-robust silicon photonic devices in standard sub-micron silicon-on-insulator processes,” Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 48, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 215–218, Jan 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Available: https://opg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='org/ol/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='URI=ol-48-2-215 [19] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Hulme, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Seyedi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fiorentino, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Beausoleil, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Cheng, “Energy efficiency and yield optimization for optical interconnects via transceiver grouping,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lightwave Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 39, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1567–1578, Mar 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Available: http://opg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='org/jlt/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='URI=jlt-39-6-1567 [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Krishnamoorthy, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zheng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Pinguet, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Mekis, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Thacker, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Shubin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Luo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Raj et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', “Exploiting cmos man- ufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 567–579, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [21] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Margalit, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Xiang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bowers, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bjorlin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Blum, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bowers, “Perspective on the future of silicon photonics and electronics,” Applied Physics Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 118, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 22, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 220501, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Novick, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' James, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Parsons, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Rizzo, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bergman, “Dispersion-engineered and fabrication-robust soi waveg- uides for ultra-broadband dwdm,” in 2023 Optical Fiber Communica- tions Conference and Exhibition (OFC) [To appear], 2023, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [23] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Woltjer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Tiemeijer, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Klaassen, “An industrial view on compact modeling,” in 2006 European Solid-State Device Research Conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' IEEE, 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 41–48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [24] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Moezi, “Statistical compact model strategies for nano cmos transis- tors subject of atomic scale variability,” Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' dissertation, University of Glasgow, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [25] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Xing, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Dong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Dwivedi, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Khan, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bogaerts, “Accurate extraction of fabricated geometry using optical measurement,” Photonics Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1008–1020, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [26] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Jhoja, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Klein, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Flueckiger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Pond, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Optics express, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 9712–9733, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [27] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zortman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Trotter, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Watts, “Silicon photonics manufacturing,” Optics express, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 23, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 23 598–23 607, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [28] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' El-Henawy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' R´ıos, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Boning, “Inference of process variations in silicon photonics from characterization measure- ments,” in CLEO: Science and Innovations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Optica Publishing Group, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' SF3O–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [29] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Stievater, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Tyndall, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Pruessner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kozak, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Rabinovich, “Optical and geometric parameter extraction for photonic integrated circuits,” Optics Express, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 14 453–14 460, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Shawon and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Saxena, “Rapid simulation of photonic integrated circuits using verilog-a compact models,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3331–3341, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [31] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Stanton, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Schow, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='- T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Cheng, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bowers, “Compact modeling for silicon photonic heterogeneously integrated circuits,” Journal of Lightwave Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 35, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 14, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2973–2980, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [32] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Sorace-Agaskar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Leu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Watts, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Stojanovic, “Electro- optical co-simulation for integrated cmos photonic circuits with ver- iloga,” Optics express, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 21, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 27 180–27 203, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [33] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Saleh and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Teich, Fundamentals of photonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' John Wiley & Sons, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' James, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Rizzo, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bergman, “Flexible, process-aware compact model of effective index in silicon waveguides for commercial foundries,” in 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' IEEE, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 173–174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' James, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bergman, “Evaluating regression-based techniques for modelling fabrication variations in sili- con photonic waveguides,” in Applications of Machine Learning 2021, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 11843.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' International Society for Optics and Photonics, 2021, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1184305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Heck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bauters, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Davenport, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Spencer, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser & Photonics Reviews, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 667– 686, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [37] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Melati, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Melloni, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Morichetti, “Real photonic waveguides: guiding light through imperfections,” Advances in Optics and Photonics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 156–224, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [38] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lacey and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proceedings J-Optoelectronics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 137, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 282–288, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [39] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Payne and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Optical and Quantum Electronics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 977–986, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [40] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Jaberansary, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Masaud, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Milosevic, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Nedeljkovic, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Mashanovich, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photonics Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6 601 010– 6 601 010, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [41] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kawakami, “Relation between dispersion and power-flow distribution in a dielectric waveguide,” JOSA, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 65, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 41–45, 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [42] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Winnie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Michel, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kimerling, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Eldada, “Polymer- cladded athermal high-index-contrast waveguides,” in Optoelectronic Integrated Circuits X, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6897.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' International Society for Optics and Photonics, 2008, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 68970S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [43] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Jean, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Douaud, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Thibault, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' LaRochelle, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Messaddeq, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Shi, “Sulfur-rich chalcogenide claddings for athermal and high-q silicon microring resonators,” Optical Materials Express, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 913–925, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [44] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Jin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Huang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Xiao, “On-chip modulation for rotating sensing of gyroscope based on ring resonator coupled with mach-zehnder interferometer,” Scientific reports, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1–9, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [45] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhou, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yin, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Deng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Cui, “Lowering the energy con- sumption in silicon photonic devices and systems,” Photonics Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' B28–B46, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [46] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yariv and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yeh, Photonics: optical electronics in modern commu- nications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Oxford university press, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [47] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Palik, Handbook of optical constants of solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Academic press, 1998, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [48] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Frey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Leviton, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Madison, “Temperature-dependent refractive index of silicon and germanium,” in SPIE Proceedings, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Atad-Ettedgui, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Antebi, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lemke, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' SPIE, jun 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='1117%2F12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='672850 [49] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Elshaari, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zadeh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J¨ons, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zwiller, “Thermo- optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photonics Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1–9, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [50] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Coenen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Oprins, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Ban, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Ferraro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Pantouvaki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Van Camp- enhout, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' De Wolf, “Thermal modelling of silicon photonic ring modulator with substrate undercut,” Journal of Lightwave Technology, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 14 [51] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Jacques, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Samani, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' El-Fiky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Patel, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Xing, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Plant, “Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the soi platform,” Optics express, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 10 456–10 471, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [52] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' de Cea, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Atabaki, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Ram, “Power handling of silicon microring modulators,” Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Express, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 17, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 24 274–24 285, Aug 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Available: https://opg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='org/ oe/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='URI=oe-27-17-24274 [53] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Oton, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Manganelli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bontempi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fournier, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Fowler, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kopp, “Silicon photonic waveguide metrology using mach-zehnder interferometers,” Optics express, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 24, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6265–6270, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [54] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Deng, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Michel, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhou, “Linear-regression- based approach for loss extraction from ring resonators,” Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 41, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 20, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4747–4750, Oct 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Available: http://opg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='org/ol/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='URI=ol-41-20-4747 [55] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bogaerts, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' De Heyn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Van Vaerenbergh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' De Vos, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Ku- mar Selvaraja, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Claes, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Dumon, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bienstman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Van Thourhout, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Baets, “Silicon microring resonators,” Laser & Photonics Reviews, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 47–73, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [56] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Ye, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Xu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Janz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Cheben, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Picard, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Lamontagne, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1308–1318, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [57] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Abdi and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Williams, “Principal component analysis,” Wiley interdisciplinary reviews: computational statistics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 433– 459, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [58] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Singer and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Nelder, “Nelder-mead algorithm,” Scholarpedia, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 7, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2928, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [59] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kononov, “Modeling photonic links in verilog-a,” Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' dissertation, Massachusetts Institute of Technology, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [60] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Leu, “Integrated silicon photonic circuit simulation,” Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' disser- tation, Massachusetts Institute of Technology, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [61] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Xing, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Ruocco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Geessels, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Khan, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bogaerts, “Compact silicon photonics circuit to extract multiple parameters for process control monitoring,” OSA Continuum, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 379–390, Feb 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Available: https://opg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='org/osac/ abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='URI=osac-3-2-379 [62] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Boning, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' El-Henawy, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Zhang, “Variation-aware methods and models for silicon photonic design-for-manufacturability,” Journal of Lightwave Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 1776–1783, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Aneek James received his B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' in Electrical and Electronics Engineering from the University of Georgia, Athens, GA in 2017 and his M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', in Electrical Engineering from Columbia University, New York, NY in 2019 and 2021, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He is working as a Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' candidate in Electrical Engineering in the Lightwave Research Laboratory under Professor Keren Bergman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' His research interests include modeling fabrication variations in silicon photonic devices, as well as the testing and automated control of silicon photonic systems for high-throughput optical interconnects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Anthony Rizzo received his B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' in Physics from Haverford College, Haverford, PA in 2017 and his M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', and Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', all in Electrical Engineering, from Columbia University, New York, NY in 2019, 2021, and 2022, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He completed his doctoral research in the Lightwave Research Laboratory at Columbia University under Professor Keren Bergman, where he led the first demonstration of data transmission using an integrated Kerr frequency comb source and silicon photonic transmitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He is currently a Research Scientist at the Air Force Research Laboratory (AFRL) Information Directorate in Rome, NY, with a focus in large-scale silicon photonic systems for quantum information processing and artificial intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Yuyang Wang received the B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degree in electronic engineering from Tsinghua University, Beijing, China in 2015, and the M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' and PhD degrees in computer engineering from the University of California, Santa Barbara (UCSB), CA, USA, in 2018 and 2021 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He is currently a post- doctoral researcher in the Lightwave Research Laboratory under Professor Keren Bergman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He was a Design Engineering Intern at Cadence Design Systems in 2018 and a Visiting Intern at the Hong Kong University of Science and Technology in 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' His research interests include variation- aware modeling, design, and optimization of silicon photonic interconnects and systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Asher Novick received his M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degrees in Electrical and Computer Engineering from Cornell University, Ithaca, NY, USA, in 2016 and 2015,respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Between 2016 and 2019, he was at Panduit’s Fiber Research Lab, where he researched and developed new patentable technologies for optical fiber-based communication in data center and enterprise applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He is currently working toward his Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degree in Electrical Engineering in the Lightwave Research Laboratory at Columbia University in the City of New York.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' His current research interest is in the modeling, design, and testing of silicon photonic systems and devices for scalable and efficient link architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Songli Wang received his B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' in Optoelectronic Information Science and Engineering from Harbin Institute of Technology, Harbin, China, in 2019 and his M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' in Electrical Engineering from Columbia University, New York, NY in 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He is currently working towards the Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degree in Electrical Engineering in the Lightwave Research Laboratory at Columbia University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' His current research interests include modeling, design and testing of silicon photonic devices and systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Robert Parsons received the B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degree in biomedical engineering from George Washington University, Washington, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=', USA, and the M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degree in electrical engineering from Columbia University, New York, NY, USA, in 2020 and 2022, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He is currently working toward the Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degree in electrical engineering with the Lightwave Research Laboratory, Columbia University under Professor Keren Bergman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' His research interests include the modeling, testing, and co-optimization of link architectures and constituent silicon photonic devices for high-bandwidth, energy-efficient optical inter- connects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Kaylx Jang received his B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' in Electrical Engineering from the University of California, Irvine, CA in 2020 and his M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' in Electrical Engineering from Columbia University in 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' In 2019 and 2020, he interned in the testing department at Ayar Labs and in 2021 did a co-op in the Silicon Photonics Design team at Nokia (former Elenion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He is working as a Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' student in Electrical Engineering in the Lightwave Research Lab under Professor Keren Bergman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' His research interests include modeling, design, and testing of high-performance silicon photonic devices for energy efficient and scalable link architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Maarten Hattink is a graduate student with Columbia University, New York, NY, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He received the B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degrees from the Eindhoven University of Technology, The Netherlands, in 2015 and 2017, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' While pursuing these degrees, he worked at Prodrive Technologies B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' as a Software and FPGA Engineer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' He is currently working toward the Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degree and his research interest lies in photonic device integration and thermal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' 15 Keren Bergman (S’87–M’93–SM’07–F’09) received the B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degree from Bucknell University, Lewisburg, PA, in 1988, and the M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' and Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' degrees from the Massachusetts Institute of Technology, Cambridge, in 1991 and 1994, respectively, all in electrical engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bergman is currently a Charles Batchelor Professor at Columbia University, New York, NY, where she also directs the Lightwave Research Laboratory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' She leads multiple research programs on optical interconnection networks for advanced computing sys- tems, data centers, optical packet switched routers, and chip multiprocessor nanophotonic networks-on-chip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} +page_content=' Bergman is a Fellow of the IEEE and Optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf'} diff --git a/5NAzT4oBgHgl3EQfu_1f/content/tmp_files/2301.01699v1.pdf.txt b/5NAzT4oBgHgl3EQfu_1f/content/tmp_files/2301.01699v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..029661c77ec55283b42db588ebfd722dbe40bbb4 --- /dev/null +++ b/5NAzT4oBgHgl3EQfu_1f/content/tmp_files/2301.01699v1.pdf.txt @@ -0,0 +1,1534 @@ +Received: +Added at production +Revised: +Added at production +Accepted: +Added at production +DOI: xxx/xxxx +RESEARCH ARTICLE +Data-driven modelling of turbine wake interactions and flow +resistance in large wind farms +Andrew Kirby*1 | François-Xavier Briol2 | Thomas D. Dunstan3 | Takafumi Nishino1 +1Department of Engineering Science, +University of Oxford, Oxford, UK +2Department of Statistical Science, +University College London, London, UK +3Informatics Lab, UK MetOffice, Exeter, +UK +Correspondence +*Andrew Kirby, Department of +Engineering Science, University of +Oxford, Oxford, OX1 3PJ, UK. Email: +andrew.kirby@trinity.ox.ac.uk +Abstract +Turbine wake and local blockage effects are known to alter wind farm power production in +two different ways: (1) by changing the wind speed locally in front of each turbine; and (2) +by changing the overall flow resistance in the farm and thus the so-called farm blockage +effect. To better predict these effects with low computational costs, we develop data-driven +emulators of the ‘local’ or ‘internal’ turbine thrust coefficient C∗ +T as a function of turbine +layout. We train the model using a multi-fidelity Gaussian Process (GP) regression with a +combination of low (engineering wake model) and high-fidelity (Large-Eddy Simulations) +simulations of farms with different layouts and wind directions. A large set of low-fidelity +data speeds up the learning process and the high-fidelity data ensures a high accuracy. The +trained multi-fidelity GP model is shown to give more accurate predictions of C∗ +T compared +to a standard (single-fidelity) GP regression applied only to a limited set of high-fidelity +data. We also use the multi-fidelity GP model of C∗ +T with the two-scale momentum theory +(Nishino & Dunstan 2020, J. Fluid Mech. 894, A2) to demonstrate that the model can be +used to give fast and accurate predictions of large wind farm performance under various +mesoscale atmospheric conditions. This new approach could be beneficial for improving +annual energy production (AEP) calculations and farm optimisation in the future. +KEYWORDS: +Class file; LATEX 2ε; Wiley NJD +1 +INTRODUCTION +The installed capacity of wind energy is projected to increase rapidly in the next decades. A major challenge in the optimisation +of wind farm design is the accurate prediction of wind farm performance 1. Existing wind farm models struggle to make accurate +predictions of wind farm power production. This is partly because the ‘global blockage effect’ reduces the velocity upstream of large +farms and hence the energy yield 2. It remains unclear how global blockage should be modelled and this is the subject of a large-scale +field campaign 3. +Wind farms are typically modelled using engineering ‘wake’ models. These models predict the velocity deficit in the wakes behind +turbines 4 5. To account for interactions between multiple turbines, the wake velocity deficits are superposed 6,7. Simple wake models +can give predictions of wind farm performance with very low computational cost ( 10−3 CPU hours per simulation 1). However, wake +arXiv:2301.01699v1 [physics.flu-dyn] 4 Jan 2023 + +2 +KIRBY et al +models do not account for the response of the atmospheric boundary layer (ABL) to the wind farm which is likely to be important +for large wind farms 8. It has been found that wake models compare poorly to Large-Eddy Simulations (LES) of large wind farms 9. +Wind farms are also modelled in numerical weather prediction (NWP) models using farm parameterisation schemes. In these pa- +rameterisations, farms are often modelled as a momentum sink and a source of turbulent kinetic energy 10. Turbine-wake interactions +cannot be adequately predicted using these schemes. A new scheme was proposed 11 which uses a correction factor to model turbine +interactions. More recently, data-driven approaches have been proposed 12 to model these effects in wind farm parameterisations. +Data-driven modelling of wind farm flows is a promising new approach 13. Data from high-fidelity simulations with complex flow +physics can be used to make predictions with low computational cost. Recent studies have applied machine learning techniques +to data from a single turbine or from an existing wind farm. The data for these studies are from measurements 14,15,16,17, LES 18 or +Reynolds-Averaged Navier-Stokes (RANS) simulations 19,20,21. A limitation of these approaches is that they are not generalisable to +different turbine layouts unless they rely on wake superposition techniques to model farm flows. Another approach is modelling +the effect of turbine layout using geometric parameters 17 or using the layout as a graph input to a neural network 22,23. However, +these alternative approaches may struggle to fully capture the complex two-way interaction with the ABL as it seems impractical to +prepare a data set that covers the entire range of scales involved in wind farm flows 1. +The problem of modelling wind farm flows can be split into ‘internal’ turbine-scale and ‘external’ farm-scale problems 24. The +‘internal’ problem is to determine a ‘local’ or ‘internal’ turbine thrust coefficient, C∗ +T , which represents the flow resistance inside a +wind farm, i.e., how the turbine thrust changes with wind speed within the farm. Nishino 25 proposed an analytical model for an upper +limit of C∗ +T by using an analogy to the classic Betz analysis. This analytical model is a function of turbine-scale induction factor but +is independent of turbine layout and wind direction. Previous studies 24 25 8 showed that C∗ +T is usually lower than the limit predicted +by Nishino’s model and can vary significantly with turbine layout due to wake and turbine blockage effects. +The aim of this study is to develop statistical emulators of C∗ +T as a function of turbine layout and wind direction. The novelty of +this approach is that we are modelling the effect of turbine-wake interactions on C∗ +T rather than turbine power. Both turbine-scale +flows (e.g., wake effects) and farm-scale flows (e.g. farm blockage and mesoscale atmospheric response) affect turbine power within +a farm. Therefore to create an emulator of turbine power, either (1) a very large set of expensive data such as finite-size wind farm +LES is needed which covers a range of large-scale atmospheric conditions or (2) the model would not be generalisable to different +mesoscale atmospheric responses. An emulator of C∗ +T is however applicable to different atmospheric responses modelled separately, +following the concept of the two-scale momentum theory 24 8. +In section 2 we give the definitions of key wind farm parameters in the two-scale momentum theory 24. Section 3 summarises +the methodology of the LES and wake model simulations, followed by the machine learning approaches to develop the emulators +in section 4. In section 5 we present the results from the trained emulators. These results are discussed in section 6 and concluding +remarks are given in section 7. +2 +TWO-SCALE MOMENTUM THEORY +By considering the conservation of momentum for a control volume with and without a large wind farm over the land or sea surface, +the following non-dimensional farm momentum (NDFM) equation can be derived 24, +C∗ +T +λ +Cf0 +β2 + βγ = M +(1) +where β is the farm wind-speed reduction factor defined as β ≡ UF /UF 0 (with UF defined as the average wind speed in the nominal +wind farm-layer of height HF , and UF 0 is the farm-layer-averaged speed without the wind farm present); λ is the array density +defined as λ ≡ nA/SF (where n is the number of turbines in the farm, A is the rotor swept area and SF is the farm footprint area); + +KIRBY et al +3 +C∗ +T is the internal turbine thrust coefficient defined as C∗ +T ≡ �n +i=1 Ti/ 1 +2 ρU2 +F nA (where Ti is thrust of turbine i in the farm and ρ +is the air density); Cf0 is the natural friction coefficient of the surface defined as Cf0 ≡ ⟨τw0⟩/ 1 +2 ρU2 +F 0 (where τw0 is the bottom +shear stress without the farm present); γ is the bottom friction exponent defined as γ ≡ logβ(⟨τw⟩/τw0) (where ⟨τw⟩ is the bottom +shear stress averaged across the farm); M is the momentum availability factor defined as, +M = +Momentum supplied by the atmosphere to the farm site with turbines +Momentum supplied by the atmosphere to the farm site without turbines. +(2) +noting that this includes pressure gradient forcing, Coriolis force, net injection of streamwise momentum through top and side +boundaries and time-dependent changes in streamwise velocity 24. The height of the farm-layer, HF , is used to define the reference +velocities UF and UF 0. Equation 1 is valid so long as the same of HF is used for both the internal and external problem. HF is typically +between 2Hhub and 3Hhub 8 (where Hhub is the turbine hub-height) and in this study we use a fixed definition of HF = 2.5Hhub. +Patel 26 used an NWP model to demonstrate that, for most cases, M varied almost linearly with β (for a realistic range of β +between 0.8 and 1). Therefore, M can be approximated by +M = 1 + ζ(1 − β) +(3) +where ζ is the ‘momentum response’ factor or ‘wind extractability’ factor. Patel 26 found ζ to be time-dependent and vary between +5 and 25 for a typical offshore site (note that ζ = 0 corresponds to the case where momentum available to the farm site is assumed +to be fixed, i.e., M = 1). +Nishino 25 proposed an analytical model for C∗ +T given by, +C∗ +T = 4α(1 − α) = +16C′ +T +(4 + C′ +T )2 +(4) +where α is the turbine-scale wind speed reduction factor defined as α ≡ UT /UF (UT is the streamwise velocity averaged over the +rotor swept area) and C′ +T ≡ T/ 1 +2 ρU2 +T A is a turbine resistance coefficient describing the turbine operating conditions. +For a given farm configuration at a farm site (i.e., for given set of C∗ +T , λ, Cf0, γ and ζ) the farm wind-speed reduction factor β +can be calculated using equation 1. The (farm-averaged) power coefficient Cp is defined as Cp ≡ �n +i=1 Pi/ 1 +2 ρU3 +F 0nA (Pi is power +of turbine i in the farm). Using the calculated value of β, Cp can be calculated by using the expression, +Cp = β3C∗ +p +(5) +where C∗ +p is the (farm-averaged) ‘local’ or ‘internal’ turbine power coefficient defined as C∗ +p ≡ �n +i=1 Pi/ 1 +2 ρU3 +F nA. +3 +WIND FARM SIMULATIONS +In this study we model wind farms as arrays of actuator discs (or aerodynamically ideal turbines operating below the rated wind +speed). This is because, in real wind farms, the effects of turbine wake interactions on the farm performance are most significant +when they operate below the rated wind speed. The ‘internal’ thrust coefficient C∗ +T is an important wind farm parameter which +includes the effect of turbine interactions (including both wake and local blockage effects). In this study we will be modelling the +effect of turbine layout on C∗ +T for aligned turbine layouts with various wind directions and a fixed turbine resistance of C′ +T = 1.33. +We chose C′ +T = 1.33 because it leads to a turbine induction factor of 1/4 which is close to a typical value for modern large wind +turbines. As such we will be considering +C∗ +T = f(Sx, Sy, θ) +(6) + +4 +KIRBY et al +Figure 1 Design of numerical experiments: a) input parameters, b) maximin design of LES. +where Sx is the turbine spacing in the x direction, Sy is the turbine spacing in the y direction and θ is the wind direction relative +to the x direction (see figure 1a). However the true function C∗ +T cannot be easily evaluated so we will instead investigate C∗ +T using +computer codes. One computer code we will use is LES (see section 3.1) to estimate C∗ +T +C∗ +T,LES = fLES(Sx, Sy, θ). +(7) +We assume that the function fLES is close to the true function f because of the accuracy of LES to model wind farm flows. We will +also use a wake model (see section 3.2) to provide cheap approximations of C∗ +T according to +C∗ +T,wake = fwake(Sx, Sy, θ). +(8) +Engineering problems are often investigated using complex computer models. Evaluating the output of such computer models +for a given input can be very computationally expensive. Therefore a common objective is to create a cheap statistical model of +the expensive computer model; this is commonly known as emulation of computer models 27 28. In this study we aim to develop a +statistical emulator which can cheaply emulate fLES. +The emulators will only be valid for aligned layouts of wind turbines and for a given turbine resistance (here we use C′ +T = 1.33). +We consider the input parameters for a realistic range of turbine spacings 1: Sx ∈ [5D, 10D], Sy ∈ [5D, 10D] and θ ∈ [0o, 45o] +where D is the diameter of the turbine rotor swept area. In this study D is set as 100m and the turbine hub height is also 100m. We +only need to consider wind directions of θ ∈ [0o, 45o] because of symmetry in the aligned turbine layouts. If θ is negative than the +turbine layout given by (Sx, Sy, θ) is exactly the same as (Sx, Sy, −θ). When θ > 45o, then (Sx, Sy, θ) and (Sy, Sx, 90o − θ) give +identical layouts. +In this study we build several emulators to predict fLES. The models are trained using data from low-fidelity (wake model) +and high fidelity (LES) wind farm simulations. One evaluation of C∗ +T,wake takes approximately 130 seconds on a single CPU and +C∗ +T,LES requires around 400 CPU hours on a supercomputer. We use a space filling maximin design 29 30 to select training points +in the parameter space. The maximin algorithm selects points which maximises the minimum distance to other points and to the +boundaries. This provides a good coverage of the domain which ensures that the emulators can give good predictions across the +whole of the domain 31. Figure 1b shows the LES training points in the parameter space. + +b) +a) +10 +40 +9 +Wind +30 +200 +10 +5 +0 +6 +8 +10 +S/DKIRBY et al +5 +Figure 2 LES a) instantaneous and b) time-averaged flow fields over a periodic turbine array (Sx/D = 7.59, Sy/D = 5.47 and +θ = 37.6o). +3.1 +Large-Eddy Simulations +This study uses the data from 50 high-fidelity (LES) simulations of wind farms published in a previous study 8. Here we give a brief +summary of the LES methodology. The LES models a neutrally stratified atmospheric boundary layer over a periodic array of actuator +discs, which face the wind direction θ and exert uniform thrust. The resolution is 24.5m in the horizontal directions (4 points across +the rotor diameter) and 7.87m in the vertical. This is a coarse horizontal resolution; however using a correction factor for the turbine +thrust 32 makes the C∗ +T,LES values insensitive to horizontal resolution 8. For all simulations the vertical domain size was fixed at +1km and the horizontal extent varied with turbine layout but was at least 3.14km. The horizontal boundary conditions were periodic +(essentially an infinitely-large wind farm). The bottom boundary used a no-slip condition with the value of eddy viscosity specified +following the Monin-Obukhov similarity theory for a surface roughness length of z0 = 1 × 10−4m. The top boundary had a slip +condition with zero vertical velocity. The flow was driven by a pressure gradient forcing which was constant and in the direction θ +throughout the domain. Figure 2 shows the instantaneous and time-averaged hub height velocities from one wind farm LES. See the +original paper 8 for further details of the LES. +3.2 +Wake model simulations +Wake models are a cheap low-fidelity approach to modelling wind farm aerodynamics compared to expensive high-fidelity LES +simulations 1. We use the wake model proposed by Niayafar and Porté-Agel 33 to evaluate C∗ +T,wake as a cheap approximation of C∗ +T . +We use the Python package PyWake 34 to implement the wake model. The turbine thrust coefficient CT is needed as an input for +the wake model. We use the value of C∗ +T predicted by equation 4 as the value of CT . For the turbine operating conditions used in +this study (C′ +T = 1.33) the wake model has CT equal to 0.75 for all turbines. To model actuator discs, we consider a hypothetical +turbine which has a constant CT for all wind speeds. We calculate C∗ +T,wake for a single turbine at the back of a large farm (marked X +in figure 3). The farm simulated using the wake model is 10km long in the streamwise direction and 4km long in the cross-streamwise +direction. The farm size was chosen so that C∗ +T no longer varied with increasing farm size. The wake growth parameter is calculated +using k∗ = 0.38I +0.004 where I is the local streamwise turbulence velocity. The local streamwise turbulence intensity is estimated +using the model proposed by Crespo and Hernández 35. The background turbulence intensity (TI) is set as a typical value of 10%. +The velocity incident to the turbine is calculated by averaging the velocity across the disc area. We use a 4×3 cartesian grid with +Gaussian quadrature coordinates and weights on the disc to average the velocity. The disc-averaged velocity, UT is then calculated +by multiplying the averaged incident velocity by (1 − a) where a is the turbine induction factor set by the value of C′ +T (using the +expression a = C′ +T /(4 + C′ +T )). To calculate the farm-average velocity, UF , we average the velocity across a volume around the + +b) +a) +0.4 +30 +30 +0.3 +20 +20 +D +D +n/n +9 +9 +0.2 +10 +10 +0.1 +0 +0 +20 +0 +20 +c/ D +c/ D6 +KIRBY et al +Figure 3 Example of wind farm layout for wake model simulations. +single turbine. The volume has dimensions of Sy in the y direction, Sx in the x direction and 250m in the z direction (the height of +the nominal farm layer used in the previous LES study 8). To calculate the average velocity, we discretise the volume into 200 points +in the horizontal directions and 20 points in the vertical. This was sufficient for the calculation of C∗ +T,wake to not vary with further +discretisation. Figure 3 shows an example of the farm layout for the wake model simulations. +4 +MACHINE LEARNING METHODOLOGY +4.1 +Gaussian Process regression +We will use Gaussian process (GP) regression 36 to build statistical emulators of fLES. A Gaussian process is a stochastic process +g ∼ GP(m, k) described by a mean function m(v) = E[g(v)] and a covariance function k(v, v′) = E[(g(v) − m(v))(g(v′) − m(v′)]. +In our case v = (Sx, Sy, θ). We will use such a stochastic process as a model of fLES, the true mapping from v to C∗ +T,LES. Each +realisation from this process will therefore be a function which could plausibly represent this mapping. The mean function represents +the expected output value at an input v = (Sx, Sy, θ). The covariance function gives the covariance between output values at v and +v′. Examples of covariance functions include squared exponential, rational quadratic and periodic functions 36. Different covariance +functions will give differently shaped GPs. For example the squared exponential covariance function will give very smooth GPs +whereas the periodic function will give GPs with a periodic structure. Other types of structure, for example symmetry, can also be +encoded in the covariance function. Therefore the expected shape (for example smoothness) of the expected relationship and any +properties (for example discontinuities or symmetries) need to be considered when choosing a covariance function for GP regression. +Let V = (v1, ..., vn)T be a collection of design points then mV = (m(v1), ..., m(vn))T is the mean vector and kV V = (k(vi, vj)) +is the covariance matrix. We will start by positing a GP model with mean m and covariance k (called the ‘prior GP’), then condition +this GP on LES observations; the outcome is a new GP (called the ‘posterior GP’). This gives the posterior distribution g|V, C∗ +T,LES ∼ +GP(mσ2, kσ2). mσ2 is the posterior mean function given by mσ2(v) = m(v) + kvV (kV V + σ2In×n)−1(C∗ +T,LES − mV ) where +kvV = (k(v, v1), ..., k(v, vn)) and In×n is the identity matrix of size n. The posterior mean function mσ2 is used to make predictions +at v = (Sx, Sy, θ). The posterior covariance function kσ2 quantifies the uncertainty in our prediction at v = (Sx, Sy, θ). The +posterior covariance function is given by kσ2(v, v′) = k(v, v′) − kvV (kV V + σ2In×n)−1kV v′. +Often in GP regression a zero prior mean is used. However, using an informative prior mean can improve the accuracy of the +trained model. By using a prior mean, many of the trends in fLES can be incorporated into our model prior to making expensive + +Volume for +UF calculation +10 km +X +WindKIRBY et al +7 +Figure 4 Demonstration of basic GP regression: a) shows the prior mean and covariance function prior to fitting with 3 GPs drawn +from the distribution shown in colour; b) shows the effect of decreasing the lengthscale hyperparameter; c) the effect of variance +hyperparameter; and d) the posterior mean and covariance functions. +evaluations of C∗ +T,LES. Therefore, after training our model will likely better describe the true relationship between Sx, Sy, θ and +fLES. In this study, we will use both C∗ +T,wake and the analytical model of C∗ +T as the prior mean for the standard GP regression. For +the wake model prior mean we also vary the specified ambient TI input parameter. +We expect fLES to be a smooth function of input variables Sx, Sy and θ, and to vary more rapidly with θ than Sx or Sy. Therefore +we will use an anisotropic squared-exponential covariance function, +k(v, v′) = σ2 +f exp +� +− (Sx − S′ +x)2 +2l2 +1 +� +exp +� +− +(Sy − S′ +y)2 +2l2 +2 +� +exp +� +− (θ − θ′)2 +2l2 +3 +� +(9) +where σ2 +f > 0 is the signal variance hyperparameter and li > 0 is the lengthscale hyperparameter for each dimension. This is also +called an ARD (automatic relevance detection) kernel. If we consider v = v′ then we can see that σ2 +f determines the variance of g(v). +Therefore σ2 +f determines the prior uncertainty the model has about the value of g(v). As the lengthscale hyperparameter li gets +smaller then k(v, v′) decreases (for v ̸= v′). Equally if li increases then k(v, v′) will also increase. A GP with a small li will therefore +vary more rapidly across the parameter space in the ith dimension. +Due to numerical issues associated with the matrix inversion/linear system solve operations in the formulae for the posterior GP, +it is common to add a nugget σ2 > 0 to the kernel matrix. The hyperparameters σ2 +f and li are selected automatically during the +fitting process by maximising the log marginal likelihood 36. This approach selects the model which maximises the fit to the data. +Figure 4 shows the impact of the hyperparameters in an example GP regression setting (using the squared exponential covariance +function). The mean function and 95% credible interval (+/-1.96 times the standard deviation) prior to fitting are shown in figure +4a with 3 GPs drawn from the distribution (coloured lines). The effect of decreasing the lengthscale hyperparameter li is shown in +figure 4b. The prior mean and 95% credible interval are unchanged however the example GPs drawn vary more rapidly because of +the shorter lengthscale. Figure 4c shows the same setup as figure 4a but with a smaller value of σ2 +f. The example GPs still vary slowly +but the magnitude of the variations is now smaller. Figure 4d shows the GPs conditioned on observations with hyperparameters +selected by maximising the log marginal likelihood. + +a) α = 1.0, l = 1.0 +b) α² = 1.0, l = 0.5 +2 +2 +9 +0 +9 +0 +-2 +-2 +0 +2 +4 +6 +0 +2 +4 +6 +c) ² = 0.5, l = 1.0 +d)o += 1.41. = 1.57 +2 +2 +9 +0 +-2 +-2 +0 +6 +0 +2 +2 +4 +4 +6 +Observations +Mean function +95% credible interval8 +KIRBY et al +Figure 5 Demonstration of a) basic GP regression and b) multi-fidelity GP regression. In this example f(x) = 1 + sin(6x) for the +high-fidelity data and f(x) = −0.5 + 0.5sin(6x) for the low-fidelity data. +4.2 +Non-linear multi-fidelity Gaussian Process regression +In many applications there are several computational models available. These models can have varying accuracies and computational +costs. The models which are more computationally expensive typically give more accurate predictions. The GP regression frame- +work can be extended to combine information from low and high-fidelity models 37. This type of modelling uses the low-fidelity +observations to speed up the learning process and the high-fidelity observations to ensure accuracy. In our scenario we will com- +bine evaluations of from a low-fidelity (C∗ +T,wake) and a high-fidelity (C∗ +T,LES) model. Note that for the multi-fidelity models in this +study we set the ambient TI to 10% for the wake model and use a zero prior mean. We will keep the number of high-fidelity training +points fixed at 50 and we will vary the number of low-fidelity training points used. +We combine information from our high and low-fidelity models using a nonlinear information fusion algorithm 38. The framework +is based on the autoregressive multi-fidelity scheme given by: +ghigh(v) = ρ(glow(v)) + δ(v) +(10) +where glow(v) is a model with a GP denoted fwake and ghigh(v) is a model with a GP denoted fLES. ρ is a model with a GP +which maps the low-fidelity output to the high-fidelity output and δ(v) is a model with a GP which is a bias term. The non-linear +multi-fidelity framework can learn non-linear space-dependent correlations between models of different accuracies. To reduce the +computational cost and complexity of implementation the autoregressive scheme given by equation 10 is simplified. Firstly, the GP +prior glow(v) is replaced by the GP posterior glow,∗(v) and secondly the GPs ρ and δ are assumed to be independent. Equation 10 +can then be summarised as +ghigh(v) = hhigh(v, glow,∗(v)) +(11) +where hhigh is a model with a GP which has both v and glow,∗(v) as inputs. More details of hhigh and the implementation of the +multi-fidelity framework are given in Perdikaris et. al. 38. +Figure 5 shows an example of how a multi-fidelity GP can outperform a standard GP regression. We implement the non-linear +multi-fidelity framework using the ‘emukit’ package 39. We first maximise the log marginal likelihood whilst keeping the Gaussian +noise variance fixed at a low value of 1 × 10−6. The fitting process is then repeated whilst allowing the Gaussian noise variance to +be optimised too. This is to prevent a high noise local optima from being selected. + +a) +b) +3 +3 +High fidelity +High fidelity +2 +2 +1 +1 +9 +9 +0 +0 +-1 +-1 +Low fidelity +2 +2 +-0.5 +0.0 +0.5 +-1.0 +1.0 +-1.0 +-0.5 +0.0 +0.5 +1.0 +True function +Observations +Posterior mean function +95% credible intervalKIRBY et al +9 +5 +RESULTS +In this study, we build various statistical emulators of fLES using different techniques and compare the performance. A summary +of the techniques is shown in the list below: +1 Standard Gaussian Process regression (see section 4.1) +a GP-analytical-prior: Gaussian Process using analytical model (equation 4) prior mean +b GP-wake-TI10-prior: Gaussian Process using wake model (section 3.2) with ambient TI=10% prior mean +c GP-wake-TI1-prior: Gaussian Process using wake model with ambient TI=1% prior mean +d GP-wake-TI5-prior: Gaussian Process using wake model with ambient TI=5% prior mean +e GP-wake-TI15-prior: Gaussian Process using wake model with ambient TI=15% prior mean +2 Non-linear multi-fidelity Gaussian Process regression (see section 4.2) +a MF-GP-nlow500: multi-fidelity Gaussian Process using 500 low-fidelity training points +b MF-GP-nlow250: multi-fidelity Gaussian Process using 250 low-fidelity training points +c MF-GP-nlow1000: multi-fidelity Gaussian Process using 1000 low-fidelity training points +The code used to produce the results in this section is available open-access at the following GitHub repository: https://github. +com/AndrewKirby2/ctstar_statistical_model. +5.1 +Performance of standard GP regression +We first assessed the accuracy of the standard GP models (section 4.1) by performing leave-one-out cross-validation (LOOCV). This +is a method of estimating the accuracy of a statistical model when making predictions on data not used to train the model. We trained +our model on 49 of the 50 training points and then calculated the prediction accuracy for the single high-fidelity data point which is +excluded from the training set. This is then repeated for all data points in turn, and we took the average accuracy as an estimate of +the model test accuracy. The standard GP models were implemented using the ‘GPy’ package 40. +The standard GP gave accurate predictions of fLES with average errors of less than 2%. Table 1 shows the accuracy of the stan- +dard GP models compared to the analytical and wake models. We calculated the errors by using the expression |mσ2 −C∗ +T,LES|/0.75 +where mσ2 is the posterior mean function of the emulator. The reference value for C∗ +T of 0.75 was chosen because this is the pre- +diction from the analytical model. Both GP models give similar maximum errors of approximately 6%. Using the wake model as a prior +mean gave a lower mean absolute error of 1.26%. The GP models reduced the average prediction error and significantly reduced +the maximum error compared to the wake model and analytical model of C∗ +T . +Table 1 Accuracy of models for C∗ +T prediction. +Model +MAE (%) +Maximum error (%) +GP-analytical-prior +1.87 +6.09 +GP-wake-TI10-prior +1.26 +6.11 +Analytical model +5.26 +22.0 +Wake model (TI=10%) +4.60 +9.28 + +10 +KIRBY et al +Figure 6 Posterior variance function of GP-wake-TI10-prior model. +Figure 7 Sensitivity of fitted GP models to the ambient TI chosen for wake model prior means. +The model GP-wake-TI10-prior has a high degree of confidence when making predictions in regions of the parameter space. +Figure 6 shows the square root of the posterior covariance function kσ2, which quantities the uncertainty of the emulator. The +uncertainty is uniform throughout the parameter space with regions of slightly higher uncertainty at θ = 0o and 45o. +We also assessed the sensitivity of the model accuracy to the ambient TI used in the wake model prior mean. Figure 7 shows +the impact of ambient TI on the wake model prior mean and the fitted GP model. Increasing the ambient TI increased the value of +C∗ +T,wake. This is because of the enhanced wake recovery behind wind turbines. Increasing the ambient TI in the wake model results +in C∗ +T,wake overpredicting C∗ +T,LES. The MAE from the LOOCV procedure for each fitted GP is shown in the bottom right corner. + +b)=5° +c)=100 +d) =15° +a)=00 +e)=200 +10 +10 +10 +10 +10 +Dβ +8 +8 +8 +8 +6 +6 +6 +6 +6 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +f) =250 +g) =300 +h)=35° +i)=40° +j)=45° +10 +10 +10 +10 +10 +D +8 +8 +8 +8 +6 +6 +6 +6 +6 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +Sα/D +Sα/D +Sα/D +Sα/D +Sαc/D +0.000 +0.005 +0.010 +0.015 +0.020 +0.025 +0.030 +Vk.2a) Ambient TI=1% +b) Ambient TI=5% +0.8 +0.8 +0.7 +0.7 +* +山秋 +0.6 +0.6 +GP-wake-TI1-prior +.· +GP-wake-TI5-prior +0.5 +0.5 +MAE=3.02% +MAE=2.16% +0.55 +0.60 +0.65 +0.70 +0.75 +0.80 +0.55 +0.60 +0.65 +0.70 +0.75 +0.80 +CT,LES +C*,LES +c) Ambient TI=10% +d) Ambient TI=15% +0.8 +0.8 +0.7 +0.7 +0.6 +0.6 +GP-wake-TI10-prior +GP-wake-TI15-prior +0.5 +0.5 +MAE=1.25% +MAE=1.04% +0.60 +0.65 +0.55 +0.70 +0.75 +0.80 +0.55 +0.60 +0.65 +0.70 +0.75 +0.80 +Wake model prior mean +Standard GP modelKIRBY et al +11 +The fitted GPs became more accurate when the wake model ambient TI was increased. Increasing the ambient TI for the wake +model causes the wakes to recover faster. The wakes become shorter in the streamwise direction and wider in the spanwise direction. +As such, C∗ +T,wake becomes less sensitive to the turbine layout. When an ambient TI of 1% and 5% is used for the wake model, +C∗ +T,wake is more sensitive to turbine layout than C∗ +T,LES (figures 7a and 7b). When the ambient TI is increased to 10% and above, +the relationship between C∗ +T,wake and C∗ +T,LES becomes simpler (figures 7c and 7d). This seems to explain why the fitted GPs +become more accurate. +5.2 +Performance of non-linear multi-fidelity GP regression +We then assessed the accuracy of the multi-fidelity GP models (section 4.2). All models used the 50 high-fidelity (C∗ +T,LES) training +points and a varying number of low-fidelity (C∗ +T,wake) training points (using an ambient TI of 10% for C∗ +T,wake). The results from +LOOCV are shown in table 2. For the LOOCV we train our model on 49 out of the 50 high-fidelity data points and all low-fidelity +data points. Then we average the error in predicting the high-fidelity data point left of the training set and repeat this in turn for +data points. Increasing the number of low-fidelity training points from 250 to 500 reduced the mean and maximum error. However, +increasing this to 1000 low-fidelity training points did not increase accuracy and increased the fitting and prediction time. This is +because the number of high-fidelity training points is fixed. There is a threshold where the model of the relationship between fLES +and fwake, denoted ρ, limits the final accuracy of the emulator of fLES. +The posterior mean mσ2 of glow(v) is an emulator of fwake and ghigh(v) is an emulator of fLES. Figure 8 gives the predictions +from the posterior mean of ghigh(v) (for MF-GP-nlow500). The lowest mσ2 values were for a wind direction of θ = 0o. mσ2 +Table 2 Performance of the multi-fidelity Gaussian Process models. +Model +MAE (%) +Maximum error (%) +Training time (s) +Prediction time (s) +MF-GP-nlow250 +1.46 +7.12 +6.15 +0.00157 +MF-GP-nlow500 +0.828 +3.75 +9.73 +0.00167 +MF-GP-nlow1000 +0.866 +3.55 +26.8 +0.00236 +Figure 8 Posterior mean function for ghigh(v) of MF-GP-nlow500. + +b)=50 +d) =15° +a)=00 +c)=100 +e)=200 +10 +10 +10 +10 +10 +Dβ +8 +8 +8 +8 +6 +6 +6 +6 +6 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +f) =250 +g) =300 +h) =35° +i)=40° +j))θ =45° +10 +10 +10 +10 +10 +D +8 +8 +8 +8 +6 +6 +6 +6 +6 +5 +10 +10 +5 +10 +5 +10 +5 +5 +10 +Sα/D +Sα/D +Sα/D +Sα/D +Sαc/D +0.50 +0.55 +0.60 +0.65 +0.70 +0.75 +0.80 +mg212 +KIRBY et al +Figure 9 Posterior variance function for ghigh(v) of MF-GP-nlow500. +increased rapidly with θ reaching a maximum of slightly over 0.75 at θ = 10o. For large values of θ (above θ = 25o) there were +local minima in mσ2 which appear in figure 8 as diagonal strips of low mσ2 values. The main diagonal strip occurs along the line +of Sy = Sx tan(θ). There are two smaller strips either side of with positions given by Sy = 2 tan(θ) and Sy = 0.5 tan(θ) (this is +discussed further in section 6). +The uncertainty the model MF-GP-nlow500 has in predicting fLES is shown in figure 9. The model uncertainty is uni- +form throughout the parameter space with slightly higher values at θ = 0o and 45o. Compared to the posterior variance of +GP-wake-TI10-prior (shown in figure 6) the uncertainty is lower. By incorporating information from C∗ +T,wake, the multi-fidelity GP +model has more confidence about predicting fLES. +The prediction errors from the LOOCV (for MF-GP-nlow500) are shown in figure 10. The box plot of prediction errors in figure +10a shows that this model had no significant bias whereas both the wake and analytical models systemically overestimated C∗ +T,LES. +Figures 10b-d show that for the statistical model there appears to be no part of the parameter space which had larger errors. +The multi-fidelity approach used in this study builds a statistical model of both the low-fidelity (fwake) and high-fidelity (fLES) +model. We can use the posterior means of glow(v) and ghigh(v) to see the differences between the wake model and LES. The +posterior mean for both models are shown in figure 11. For the wake model the change in mσ2 with θ is greater than for the LES +(especially between θ = 0o and 10o). For larger values of θ, there is a larger difference in mσ2 between waked and unwaked layouts +for the low-fidelity model compared to the high-fidelity one. This suggests than the wake model is more sensitive to changes in wind +directions than the LES. + +a) =00 +b) =5° +c)=100 +d)θ=15° +e)=20° +10 +10 +10 +10 +10 +D∞ +8 +8 +8 +8 +6 +6 +6 +6 +6 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +f)θ =25° +g) =300 +h) =350 +i)=40° +j)θ=45° +10 +10 +10 +10 +10 +Dβ +8 +8 +8 +8 +6 +6 +6 +6 +6 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +Sα/D +Sα/D +Sα/D +Sα/D +S/D +0.000 +0.005 +0.010 +0.015 +0.020 +0.025 +0.030 +Vkg?KIRBY et al +13 +Figure 10 Comparison of LOOCV prediction errors (%) for different models a) and LOOCV prediction error (%) of MF-GP-nlow500 +against input parameters b) Sx/D, c) Sy/D and d) θ(o). Note that for the box plot in a) the orange line is the median LOOCV error +and the box is the interquartile range of LOOCV error. +Figure 11 Posterior mean function of MF-GP-nlow500 for different values of θ for a) to e) ghigh(v) and f) to j) glow(v). +5.3 +Prediction of wind farm performance +We use the predicted values of C∗ +T,LES from the emulators to predict the power output of wind farms under various mesoscale +atmospheric conditions, following the concept of the two-scale momentum theory. We predict the (farm-averaged) turbine power +coefficient Cp using C∗ +T,LES predictions from MF-GP-nlow500. We call this prediction of farm performance Cp,model. Firstly, we +use the C∗ +T,LES prediction from the LOOCV procedure as C∗ +T in equation 1 to calculate β for a given value of wind extractability ζ. +We substitute this value of β into the expression Cp = β3C∗ +T +3 +2 C′ +T +− 1 +2 (which is only valid for actuator discs) to calculate Cp,model. +We compare the value of Cp,model with the turbine power coefficient recorded in the LES, Cp,LES. The effect of the coarse LES + +a) +b) +5.0 +20 +(%) +Overprediction +Overprediction +Prediction errors ( +l errors +2.5 +10 +0.0 +0 +2.5 +Underprediction +Underprediction +10 +5.0 +MF-GP-nlow500 +Wake +Analytical +5 +6 +7 +8 +9 +10 +model +model +Sα/D +d) +c) +5.0 +5.0 +Prediction errors +2.5 +errors +2.5 +0.0 +0.0 +Prediction +2.5 +2.5 +5.0 +1 +5.0 +5 +6 +7 +8 +9 +10 +10 +20 +30 +40 +0 +Sy/D + (°)b)=100 +d) =300 +a)=00 +c)=200 +e)=400 +10 +10 +10 +10 +10 +Dβ +8 +8 +8 +8 +6 +6 +6 +6 +6 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +f)=0° +g)=100 +h)=20° +i)=300 +j)=40° +10 +10 +10 +10 +10 +D +8 +8 +8 +8 +6 +6 +6 +6 +6 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +Sα/D +Sα/D +Sα/D +Sα/D +Sαc/D +0.50 +0.55 +0.60 +0.65 +0.70 +0.75 +0.80 +mg214 +KIRBY et al +Figure 12 Comparison of Cp predictions with LES results for a realistic range of ζ values. +resolution on turbine thrust (and hence also ABL response and Cp) has already been corrected 8. The LES was performed with +periodic horizontal boundary conditions and a fixed momentum supply, i.e., ζ = 0. However, the Cp,LES has also been adjusted for +a given ζ by scaling the velocity fields assuming Reynolds number independence 8. +Similarly, the analytical model of C∗ +T can be used to give a theoretical prediction of wind farm performance called Cp,Nishino 8, +which is given by +Cp,Nishino = +64C′ +T +(4 + C′ +T )3 +� +��� +−ζ + +� +ζ2 + 4 +� +16C′ +T +(4+C′ +T )2 +λ +Cf0 + 1 +� +(1 + ζ) +2 +� +16C′ +T +(4+C′ +T )2 +λ +Cf0 + 1 +� +� +��� +3 +. +(12) +We will compare the accuracy of both Cp,model and Cp,Nishino in predicting Cp,LES. +Both Cp,model and Cp,LES are shown in figure 12 for a realistic range of wind extractability factors, along with the results from +Cp,Nishino (equation 12). Cp,Nishino provides an approximate upper limit of farm-averaged Cp as it predicts very well the effects +of array density and large-scale atmospheric response. The statistical model accurately predicts the effect of turbine layout on farm +performance which becomes more important with larger ζ values. As ζ increases, there is a larger difference between Cp,LES and +Cp,Nishino. Also, Cp,model becomes slightly less accurate when ζ increases. +Table 3 shows the average prediction errors of Cp,model and Cp,Nishino. We quantified the mean absolute error using two +different reference powers. Using Cp,LES as the reference power, Cp,Nishino had an error of around 5% and the error increases + +a)(=0 +b)(=5 +X +0.04 +A +0.15 += 0.03 +P +C +C +4 +0.02 +0.10 +0.01 +5 +10 +15 +20 +5 +10 +15 +20 +>/Cf0 +入/Cf0 += 10 +d)( += 15 +)( +0.25 +0.30 +△ +K +△ +0.25 +0.20 +A +C +A +0.20 +0.15 +0.15 +A +A +0.10 +1 +5 +10 +15 +20 +5 +10 +15 +20 +>/Cf0 +入/Cfo +e)(= 20 +f)( += 25 +0.35 +必 +0.35 +X +X +0.30 +△ +AA +△ +≥ 0.30 +公 +0.25 +X +0.25 +又 +0.20 +0.20 +5 +10 +15 +20 +5 +10 +15 +20 +>/Cf0 +入/Cf0 +Cp,LES +C +X +△ +p,NishinoKIRBY et al +15 +Table 3 Comparison of models for Cp prediction. +1 +50 +�50 +i=1 |Cp,i − Cp,LES|/Cp,LES +1 +50 +�50 +i=1 |Cp,i − Cp,LES|/Cp,Betz +ζ +Cp,Nishino +Cp,model +ζ +Cp,Nishino +Cp,model +0 +2.82% +2.15% +0 +0.142% +0.108% +5 +4.38% +1.48% +5 +0.954% +0.338% +10 +5.16% +1.35% +10 +1.67% +0.459% +15 +5.66% +1.30% +15 +2.24% +0.542% +20 +6.02% +1.26% +20 +2.72% +0.601% +25 +6.30% +1.24% +25 +3.11% +0.648% +with ζ. The mean absolute error of Cp,model was typically less than 1.5% and this decreased slightly as ζ increases (due to the +reference power Cp,LES increasing). We also use the power of an isolated ideal turbine, Cp,Betz, as a reference power. Cp,Betz is +calculated using the actuator disc theory with the expression Cp,Betz = 64C′ +T /(4 + C′ +T )3 (note that in this study C′ +T = 1.33 and +hence Cp,Betz = 0.563). In this case the mean absolute error increased with ζ for both Cp,model and Cp,Nishino. However, the +average prediction error of Cp,model remained below 0.65%. +6 +DISCUSSION +Data-driven modelling of the internal turbine thrust coefficient C∗ +T is a novel approach to modelling turbine-wake interactions. Data- +driven models of wind farm performance typically focus on predicting the power output, which, however, depends on flow physics +across a wide range of scales. Current data-driven approaches are either not generalisable to different atmospheric responses, or +would require a very large set of expensive training data, such as finite-size wind farm LES data. Data-driven models of C∗ +T captures +the effects of turbine-wake interactions, whilst also being applicable to different atmospheric responses (following the concept of +the two-scale momentum theory). +The statistical emulator of C∗ +T developed in this study was able to predict the farm power Cp of Kirby et. al. 8 with an average error +of less than 0.65%. The high accuracy and very low computational cost of this approach shows the potential of this approach for +modelling turbine-wake interactions. It has several advantages over traditional approaches using the superposition of wake models. +Information from turbulence-resolving LES is included which ensures a high accuracy. It will also be more advantageous as wind +farms become larger because wake models struggle to capture the complex multi-scale flows physics which are important for large +farms. The statistical model of C∗ +T may therefore allow fast and accurate predictions of wind farm performance. +All emulators developed in this study gave substantially better predictions of C∗ +T,LES compared to the analytical and wake +models. Both the mean and maximum prediction errors were reduced by the emulators. The standard GP regression approach had +a mean prediction error of 1.26% and maximum error of approximately 6%. The accuracy depends on the size of the LES data set +and could be further decreased with a larger training set. The multi-fidelity GP approach gave more accurate predictions of C∗ +T,LES +compared to the standard GP regression. This is because non-linear information fusion algorithm has incorporated information from +many low-fidelity data points to improve the emulator of the high-fidelity (LES) model. This approach has the advantage that, unlike +the standard GP regression approach, it is not necessary to evaluate the prior mean before making a prediction. Therefore, to predict +C∗ +T it is only necessary to evaluate the posterior mean of the high-fidelity emulator for a specific turbine layout. +The shape of the posterior mean in figure 8 gives insights into the physics of turbine-wake interactions. This is because C∗ +T,LES +is low when a layout has a high degree of turbine-wake interactions. For the turbine operating conditions used, C∗ +T,LES is close to +0.75 when a layout has a small degree of wake interactions. Figure 8a shows C∗ +T,LES when the wind direction is perfectly aligned + +16 +KIRBY et al +Figure 13 Alignment of turbines for different combinations of Sx, Sy and θ. +with the rows of turbines (θ = 0). This gives wind farms with a high degree of wake interactions which results in low C∗ +T,LES values. +For θ = 0o, increasing Sx/D increases C∗ +T because there is a larger streamwise distance between turbines for the wakes to recover. +When the cross-streamwise spacing (Sy/D) is increased the degree of wake interactions increases, i.e., C∗ +T,LES decreases. This is +because there is a lower array density which results in a lower turbulence intensity within the farm and hence slower wake recovery. +Yang 41 found that increasing the cross-streamwise spacing in infinitely-large wind farms increased the power of individual turbines +and concluded that this was due to reduced wake interactions. However, the increase in turbine power found by Yang 41 may be also +explained by to a faster farm-averaged wind speed caused by a reduced array density rather than reduced wake interactions. +When the wind direction θ increases, C∗ +T,LES increases to a maximum of just over 0.75 at θ = 10o (figure 8c). This result agrees +qualitatively with another study 42 in which it was found that the maximum farm power was produced by an intermediate wind +direction. When θ increases above 20o regions of low C∗ +T,LES appear diagonally (see figures 8f-j). The regions of low C∗ +T,LES are +centred on the surfaces given by Sy = 2Sx tan(θ), Sy = Sx tan(θ) and Sy = 0.5Sx tan(θ). These regions correspond to turbines +being aligned along different axes throughout the farm (see figure 13). There are longer streamwise distance between turbines for +these arrangements (compared to θ = 0o) and so the C∗ +T,LES values are higher than for θ = 0o. +The accuracy of the statistical emulators could be further improved in future studies. Both the standard and multi-fidelity GP +models can be improved by adding more evaluations of C∗ +T,LES. From table 2, the accuracy of the multi-fidelity GP models did not +improve once we used more than 500 C∗ +T,wake evaluations. This shows that the error in predicting C∗ +T,LES for MF-GP-nlow500 is +not due to the model of fwake. Instead the error arises from the learnt relationship between fwake and fLES. +The statistical emulators developed are not applicable to all wind farms because of the limited nature of our data set. A limitation +of the developed model is that it is only applicable to farms with perfectly aligned layouts. It should also be noted that our model +was trained on data from simulations of a neutrally stratified boundary layer. Therefore a larger LES data set with an extended +parameter space would be required to account for the effect of atmospheric stability on wake interactions and the resulting C∗ +T . +Another limitation of our model is that it assumes all turbines have the same resistance coefficient C′ +T . It is likely that this condition +can be strictly satisfied only in the fully developed region of a large farm where the wind speed does not change in the streamwise +or cross-streamwise directions. +Although we considered only actuator discs in this study for demonstration, the proposed approach using a data-driven model +of CT ∗ can be applied to power prediction of real turbines as well in future studies. In this study, we calculate Cp,model using the +expression Cp,model = β3C∗ +T +3 +2 C′ +T +− 1 +2 . This assumes that the relationship between C∗ +p and C′ +T is given by C∗ +p = C∗ +T +3 +2 C′ +T +− 1 +2 , which +is only valid for actuator discs. For real turbines, the relationship between C∗ +p and C′ +T can be calculated using BEM theory 43 according +to the turbine design and operating conditions (noting that the turbine induction factor can still be estimated as a = C′ +T /(4 + C′ +T )). +Cp,model can then be calculated using equation 5 with β found using equation 1. However, for a data-driven model of C∗ +T to be +applicable to real turbines, it will be necessary to model the impact of a variable C′ +T rather than assuming a fixed C′ +T value as in this +study. + +b) Su = Sαtan(0) += 2Stan(0KIRBY et al +17 +7 +CONCLUSIONS +In this study we proposed a new data-driven approach to modelling turbine wake interactions and resulting flow resistance in large +wind farms. We developed statistical emulators of the farm-internal turbine thrust coefficient C∗ +T,LES as a function of turbine layout +and wind direction. C∗ +T represents the flow resistance within a wind farm and reflects the characteristics of the turbine-scale flows +including wake and turbine blockage effects. We developed several emulators using both standard GP regression and multi-fidelity +GP regression. The standard GP was trained using data from 50 infinitely-large wind farm LES (and using a low-fidelity wake model +as a prior mean). The multi-fidelity GP was trained using data from both LES and wake model simulations. We estimated the test +accuracy of the model by performing leave-one-out cross-validation and assessed the error in predicting C∗ +T,LES. All emulators had +a mean test error of less than 2% for predicting C∗ +T,LES. The multi-fidelity GP gave the best performance with a mean prediction +error of 0.849% and maximum prediction error of 3.78% with no bias for under or over-prediction. This is low compared to the mean +error of the wake model (4.60%) and analytical C∗ +T model (5.26%) which both had a bias for overpredicting C∗ +T,LES. +We used an emulator of C∗ +T,LES to make predictions of wind farm performance under various mesoscale atmospheric conditions +(characterised by the wind extractability factor ζ) using the two-scale momentum theory 24. Our predictions of farm power produc- +tion had an average error of less than 1.5% under realistic wind extractability scenarios compared to the LES. When the error in +power prediction is expressed relative to the power of an isolated ideal turbine the average prediction error is less than 0.7%. We +also used a previously proposed analytical model of C∗ +T +25 to predict farm power output with an average error of less than 3.5% (with +the power of an isolated turbine as the reference power). The analytical model correctly predicts the trends in farm performance +with array density under different scenarios of large-scale atmospheric response, although it tends to overpredict the power where +turbine-wake interactions are important. Using statistical emulators of C∗ +T is a new approach to modelling turbine-wake interactions +and flow resistance within large wind farms. The approach can be extended in future studies by increasing the size of the training +data set, for example, to account for the effects of C′ +T and atmospheric stability conditions on C∗ +T . The very low computational cost +and high accuracy of the model could be beneficial for future wind farm optimisation. +ACKNOWLEDGMENTS +The first author (AK) acknowledges the NERC-Oxford Doctoral Training Partnership in Environmental Research (NE/S007474/1) for +funding and training. +Author contributions +T.N. derived the theory. A.K. and T.D.D. performed the simulations. F-X.B. provided assistance and guidance for the machine learning +methodology. A.K. wrote the paper with corrections from T.N., F-X.B and T.D.D. +Financial disclosure +None reported. +Conflict of interest +The authors report no conflict of interest. + +18 +KIRBY et al +Data availability statement +The data and code that support the findings of this study are openly available at https://github.com/AndrewKirby2/ctstar_statistical_ +model. This includes the results from the wind farm LES and wake model simulations. The repository also includes the code for the +results presented in sections 5.1, 5.2 and 5.3. +Author ORCID +A. Kirby, https://orcid.org/0000-0001-8389-1619; F-X. Briol https://orcid.org/0000-0002-0181-2559; T. Nishino, https://orcid. +org/0000-0001-6306-7702. +References +1. Porté-Agel F, Bastankhah M, Shamsoddin S. Wind-Turbine and Wind-Farm Flows: A Review. Boundary-Layer Meteorology 2020; +174: 1-59. doi: 10.1007/s10546-019-00473-0 +2. Bleeg J, Purcell M, Ruisi R, Traiger E. Wind farm blockage and the consequences of neglecting its impact on energy production. +Energies 2018; 11: 1609. doi: 10.3390/en11061609 +3. Carbon Trust . Global Blockage Effect in Offshore Wind (GloBE) [accessed 07/11/2022]. https://www.carbontrust.com/ +our-projects/large-scale-rd-projects-offshore-wind/global-blockage-effect-in-offshore-wind-globe; 2022. +4. Jensen NO. A note on wind generator interaction. Risø-M-2411 Risø National Laboratory Roskilde 1983. +5. Bastankhah M, Porté-Agel F. A new analytical model for wind-turbine wakes. Renewable Energy 2014; 70: 116-123. +doi: +10.1016/j.renene.2014.01.002 +6. Katic I, Hojstrup J, Jensen NO. A simple model for cluster efficiency. Proceedings of the European wind energy association +conference and exhibition, Rome, Italy 1986: 407-409. +7. Zong H, Porté-Agel F. A momentum-conserving wake superposition method for wind farm power prediction. Journal of Fluid +Mechanics 2020; 889: A8. doi: 10.1017/jfm.2020.77 +8. Kirby A, Nishino T, Dunstan TD. Two-scale interaction of wake and blockage effects in large wind farms. Journal of Fluid Mechanics +2022; 953: A39. doi: 10.1017/jfm.2022.979 +9. Stevens RJAM, Gayme DF, Meneveau C. Effects of turbine spacing on the power output of extended wind-farms. Wind Energy +2016; 19: 359-370. doi: 10.1002/we.1835 +10. Fitch AC, Olson JB, Lundquist JK, et al. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. +Monthly Weather Review 2012; 140. doi: 10.1175/MWR-D-11-00352.1 +11. Abkar M, Porté-Agel F. A new wind-farm parameterization for large-scale atmospheric models. Journal of Renewable and +Sustainable Energy 2015; 7. doi: 10.1063/1.4907600 +12. Pan Y, Archer CL. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models. Boundary-Layer Meteorology 2018; +168: 469-495. doi: 10.1007/s10546-018-0351-9 + +KIRBY et al +19 +13. Zehtabiyan-Rezaie N, Iosifidis A, Abkar M. Data-driven fluid mechanics of wind farms: A review. Journal of Renewable and +Sustainable Energy 2022; 14: 32703. doi: 10.1063/5.0091980 +14. Renganathan SA, Maulik R, Letizia S, Iungo GV. Data-driven wind turbine wake modeling via probabilistic machine learning. +Neural Computing and Applications 2022; 34: 6171-6186. doi: 10.1007/s00521-021-06799-6 +15. Optis M, Perr-Sauer J. The importance of atmospheric turbulence and stability in machine-learning models of wind farm power +production. Renewable and Sustainable Energy Reviews 2019; 112: 27-41. doi: 10.1016/j.rser.2019.05.031 +16. Japar F, Mathew S, Narayanaswamy B, Lim CM, Hazra J. Estimating the wake losses in large wind farms: A machine learning +approach. ISGT 2014 2014: 1-5. doi: 10.1109/ISGT.2014.6816427 +17. Yan C, Pan Y, Archer CL. A general method to estimate wind farm power using artificial neural networks. Wind Energy 2019; 22: +1421-1432. doi: 10.1002/we.2379 +18. Zhang J, Zhao X. Wind farm wake modeling based on deep convolutional conditional generative adversarial network. Energy +2022; 238: 121747. doi: https://doi.org/10.1016/j.energy.2021.121747 +19. Wilson B, Wakes S, Mayo M. Surrogate modeling a computational fluid dynamics-based wind turbine wake simulation using +machine learning. 2017 IEEE Symposium Series on Computational Intelligence (SSCI) 2017: 1-8. doi: 10.1109/SSCI.2017.8280844 +20. Ti Z, Deng XW, Yang H. Wake modeling of wind turbines using machine learning. Applied Energy 2020; 257: 114025. doi: +https://doi.org/10.1016/j.apenergy.2019.114025 +21. Ti Z, Deng XW, Zhang M. Artificial Neural Networks based wake model for power prediction of wind farm. Renewable energy +2021; 172: 618-631. doi: https://doi.org/10.1016/j.renene.2021.03.030 +22. Park J, Park J. Physics-induced graph neural network: An application to wind-farm power estimation. Energy 2019; 187. doi: +10.1016/j.energy.2019.115883 +23. Bleeg J. A Graph Neural Network Surrogate Model for the Prediction of Turbine Interaction Loss. Journal of Physics: Conference +Series 2020; 1618. doi: 10.1088/1742-6596/1618/6/062054 +24. Nishino T, Dunstan TD. Two-scale momentum theory for time-dependent modelling of large wind farms. Journal of Fluid +Mechanics 2020; 894: A2. doi: 10.1017/jfm.2020.252 +25. Nishino T. Two-scale momentum theory for very large wind farms. Journal of Physics: Conference Series 2016; 753: 032054. doi: +10.1088/1742-6596/753/3/032054 +26. Patel K, Dunstan TD, Nishino T. Time-dependent upper limits to the performance of large wind farms due to mesoscale +atmospheric response. Energies 2021; 14: 6437. doi: 10.3390/en14196437 +27. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Statistical Science 1989; 4: 409-423. +doi: 10.1214/ss/1177012413 +28. Currin C, Mitchell T, Morris M, Ylvisaker D. Bayesian prediction of deterministic functions, with applications to the de- +sign and analysis of computer experiments. Journal of the American Statistical Association 1991; 86: 953-963. +doi: +10.1080/01621459.1991.10475138 + +20 +KIRBY et al +29. Johnson ME, Moore LM, Ylvisaker D. Minimax and maximin distance designs. Journal of Statistical Planning and Inference 1990; +26: 131-148. doi: 10.1016/0378-3758(90)90122-B +30. Santner TJ, Williams BJ, Notz W. The design and analysis of computer experiments. second ed. 2018. +31. Wynne G, Briol FX, Girolami M. Convergence guarantees for gaussian process means with misspecified likelihoods and +smoothness. Journal of Machine Learning Research 2021; 22. +32. Shapiro CR, Gayme DF, Meneveau C. Filtered actuator disks: Theory and application to wind turbine models in large eddy +simulation. Wind Energy 2019; 22: 1414-1420. doi: 10.1002/we.2376 +33. Niayifar A, Porté-Agel F. Analytical modeling of wind farms: A new approach for power prediction. Energies 2016; 9. +doi: +10.3390/en9090741 +34. Pedersen MM, Laan v. dP, Friis-Møller M, Rinker J, Réthoré PE. DTUWindEnergy/PyWake: PyWake. 2021. doi: 10.5281/zen- +odo.2562662 +35. Crespo A, Hernández J. Turbulence characteristics in wind-turbine wakes. Journal of Wind Engineering and Industrial Aerodynamics +1996; 61: 71-85. doi: 10.1016/0167-6105(95)00033-X +36. Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning. the MIT Press . 2018 +37. Peherstorfer B, Willcox K, Gunzburger M. Survey of multifidelity methods in uncertainty propagation, inference, and optimiza- +tion. SIAM Review 2018; 60. doi: 10.1137/16M1082469 +38. Perdikaris P, Raissi M, Damianou A, Lawrence ND, Karniadakis GE. Nonlinear information fusion algorithms for data-efficient +multi-fidelity modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2017; 473. +doi: +10.1098/rspa.2016.0751 +39. Paleyes A, Pullin M, Mahsereci M, Lawrence N, González J. Emulation of physical processes with Emukit. 2019. +40. GPy . GPy: A Gaussian process framework in python. http://github.com/SheffieldML/GPy; since 2012. +41. Yang X, Kang S, Sotiropoulos F. Computational study and modeling of turbine spacing effects infinite aligned wind farms. Physics +of Fluids 2012; 24: 11510. doi: 10.1063/1.4767727 +42. Stevens RJAM, Gayme DF, Meneveau C. Large eddy simulation studies of the effects of alignment and wind farm length. Journal +of Renewable and Sustainable Energy 2014; 6: 023105. doi: 10.1063/1.4869568 +43. Nishino T, Hunter W. Tuning turbine rotor design for very large wind farms. Proceedings of the Royal Society A: Mathematical, +Physical and Engineering Sciences 2018; 474(2220): 1–20. doi: 10.1098/rspa.2018.0237 +How to cite this article: Kirby A., Briol F-X., Dunstan T.D., and Nishino T. (2022), Data-driven modelling of wind turbine wake +interactions in large wind farms, Wind Energy, xxxx. + diff --git a/5NAzT4oBgHgl3EQfu_1f/content/tmp_files/load_file.txt b/5NAzT4oBgHgl3EQfu_1f/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7a35f0ffd76a0b3345f8f1ea5935bce3bb8e2ac1 --- /dev/null +++ b/5NAzT4oBgHgl3EQfu_1f/content/tmp_files/load_file.txt @@ -0,0 +1,976 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf,len=975 +page_content='Received: Added at production Revised: Added at production Accepted: Added at production DOI: xxx/xxxx RESEARCH ARTICLE Data-driven modelling of turbine wake interactions and flow resistance in large wind farms Andrew Kirby*1 | François-Xavier Briol2 | Thomas D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Dunstan3 | Takafumi Nishino1 1Department of Engineering Science, University of Oxford, Oxford, UK 2Department of Statistical Science, University College London, London, UK 3Informatics Lab, UK MetOffice, Exeter, UK Correspondence Andrew Kirby, Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Email: andrew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='kirby@trinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='ox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='uk Abstract Turbine wake and local blockage effects are known to alter wind farm power production in two different ways: (1) by changing the wind speed locally in front of each turbine;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' and (2) by changing the overall flow resistance in the farm and thus the so-called farm blockage effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' To better predict these effects with low computational costs, we develop data-driven emulators of the ‘local’ or ‘internal’ turbine thrust coefficient C∗ T as a function of turbine layout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We train the model using a multi-fidelity Gaussian Process (GP) regression with a combination of low (engineering wake model) and high-fidelity (Large-Eddy Simulations) simulations of farms with different layouts and wind directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A large set of low-fidelity data speeds up the learning process and the high-fidelity data ensures a high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The trained multi-fidelity GP model is shown to give more accurate predictions of C∗ T compared to a standard (single-fidelity) GP regression applied only to a limited set of high-fidelity data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We also use the multi-fidelity GP model of C∗ T with the two-scale momentum theory (Nishino & Dunstan 2020, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 894, A2) to demonstrate that the model can be used to give fast and accurate predictions of large wind farm performance under various mesoscale atmospheric conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This new approach could be beneficial for improving annual energy production (AEP) calculations and farm optimisation in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' KEYWORDS: Class file;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' LATEX 2ε;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wiley NJD 1 INTRODUCTION The installed capacity of wind energy is projected to increase rapidly in the next decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A major challenge in the optimisation of wind farm design is the accurate prediction of wind farm performance 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Existing wind farm models struggle to make accurate predictions of wind farm power production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is partly because the ‘global blockage effect’ reduces the velocity upstream of large farms and hence the energy yield 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' It remains unclear how global blockage should be modelled and this is the subject of a large-scale field campaign 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wind farms are typically modelled using engineering ‘wake’ models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' These models predict the velocity deficit in the wakes behind turbines 4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' To account for interactions between multiple turbines, the wake velocity deficits are superposed 6,7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Simple wake models can give predictions of wind farm performance with very low computational cost ( 10−3 CPU hours per simulation 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' However, wake arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='01699v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='flu-dyn] 4 Jan 2023 2 KIRBY et al models do not account for the response of the atmospheric boundary layer (ABL) to the wind farm which is likely to be important for large wind farms 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' It has been found that wake models compare poorly to Large-Eddy Simulations (LES) of large wind farms 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wind farms are also modelled in numerical weather prediction (NWP) models using farm parameterisation schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In these pa- rameterisations, farms are often modelled as a momentum sink and a source of turbulent kinetic energy 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Turbine-wake interactions cannot be adequately predicted using these schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A new scheme was proposed 11 which uses a correction factor to model turbine interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' More recently, data-driven approaches have been proposed 12 to model these effects in wind farm parameterisations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Data-driven modelling of wind farm flows is a promising new approach 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Data from high-fidelity simulations with complex flow physics can be used to make predictions with low computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Recent studies have applied machine learning techniques to data from a single turbine or from an existing wind farm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The data for these studies are from measurements 14,15,16,17, LES 18 or Reynolds-Averaged Navier-Stokes (RANS) simulations 19,20,21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A limitation of these approaches is that they are not generalisable to different turbine layouts unless they rely on wake superposition techniques to model farm flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Another approach is modelling the effect of turbine layout using geometric parameters 17 or using the layout as a graph input to a neural network 22,23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' However, these alternative approaches may struggle to fully capture the complex two-way interaction with the ABL as it seems impractical to prepare a data set that covers the entire range of scales involved in wind farm flows 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The problem of modelling wind farm flows can be split into ‘internal’ turbine-scale and ‘external’ farm-scale problems 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The ‘internal’ problem is to determine a ‘local’ or ‘internal’ turbine thrust coefficient, C∗ T , which represents the flow resistance inside a wind farm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', how the turbine thrust changes with wind speed within the farm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Nishino 25 proposed an analytical model for an upper limit of C∗ T by using an analogy to the classic Betz analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This analytical model is a function of turbine-scale induction factor but is independent of turbine layout and wind direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Previous studies 24 25 8 showed that C∗ T is usually lower than the limit predicted by Nishino’s model and can vary significantly with turbine layout due to wake and turbine blockage effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The aim of this study is to develop statistical emulators of C∗ T as a function of turbine layout and wind direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The novelty of this approach is that we are modelling the effect of turbine-wake interactions on C∗ T rather than turbine power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Both turbine-scale flows (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', wake effects) and farm-scale flows (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' farm blockage and mesoscale atmospheric response) affect turbine power within a farm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Therefore to create an emulator of turbine power, either (1) a very large set of expensive data such as finite-size wind farm LES is needed which covers a range of large-scale atmospheric conditions or (2) the model would not be generalisable to different mesoscale atmospheric responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' An emulator of C∗ T is however applicable to different atmospheric responses modelled separately, following the concept of the two-scale momentum theory 24 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In section 2 we give the definitions of key wind farm parameters in the two-scale momentum theory 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Section 3 summarises the methodology of the LES and wake model simulations, followed by the machine learning approaches to develop the emulators in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In section 5 we present the results from the trained emulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' These results are discussed in section 6 and concluding remarks are given in section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 2 TWO-SCALE MOMENTUM THEORY By considering the conservation of momentum for a control volume with and without a large wind farm over the land or sea surface,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' the following non-dimensional farm momentum (NDFM) equation can be derived 24,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' C∗ T λ Cf0 β2 + βγ = M (1) where β is the farm wind-speed reduction factor defined as β ≡ UF /UF 0 (with UF defined as the average wind speed in the nominal wind farm-layer of height HF ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' and UF 0 is the farm-layer-averaged speed without the wind farm present);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' λ is the array density defined as λ ≡ nA/SF (where n is the number of turbines in the farm, A is the rotor swept area and SF is the farm footprint area);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' KIRBY et al 3 C∗ T is the internal turbine thrust coefficient defined as C∗ T ≡ �n i=1 Ti/ 1 2 ρU2 F nA (where Ti is thrust of turbine i in the farm and ρ is the air density);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Cf0 is the natural friction coefficient of the surface defined as Cf0 ≡ ⟨τw0⟩/ 1 2 ρU2 F 0 (where τw0 is the bottom shear stress without the farm present);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' γ is the bottom friction exponent defined as γ ≡ logβ(⟨τw⟩/τw0) (where ⟨τw⟩ is the bottom shear stress averaged across the farm);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' M is the momentum availability factor defined as, M = Momentum supplied by the atmosphere to the farm site with turbines Momentum supplied by the atmosphere to the farm site without turbines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' (2) noting that this includes pressure gradient forcing, Coriolis force, net injection of streamwise momentum through top and side boundaries and time-dependent changes in streamwise velocity 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The height of the farm-layer, HF , is used to define the reference velocities UF and UF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Equation 1 is valid so long as the same of HF is used for both the internal and external problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' HF is typically between 2Hhub and 3Hhub 8 (where Hhub is the turbine hub-height) and in this study we use a fixed definition of HF = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5Hhub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Patel 26 used an NWP model to demonstrate that, for most cases, M varied almost linearly with β (for a realistic range of β between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='8 and 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Therefore, M can be approximated by M = 1 + ζ(1 − β) (3) where ζ is the ‘momentum response’ factor or ‘wind extractability’ factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Patel 26 found ζ to be time-dependent and vary between 5 and 25 for a typical offshore site (note that ζ = 0 corresponds to the case where momentum available to the farm site is assumed to be fixed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', M = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Nishino 25 proposed an analytical model for C∗ T given by, C∗ T = 4α(1 − α) = 16C′ T (4 + C′ T )2 (4) where α is the turbine-scale wind speed reduction factor defined as α ≡ UT /UF (UT is the streamwise velocity averaged over the rotor swept area) and C′ T ≡ T/ 1 2 ρU2 T A is a turbine resistance coefficient describing the turbine operating conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For a given farm configuration at a farm site (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', for given set of C∗ T , λ, Cf0, γ and ζ) the farm wind-speed reduction factor β can be calculated using equation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The (farm-averaged) power coefficient Cp is defined as Cp ≡ �n i=1 Pi/ 1 2 ρU3 F 0nA (Pi is power of turbine i in the farm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Using the calculated value of β, Cp can be calculated by using the expression, Cp = β3C∗ p (5) where C∗ p is the (farm-averaged) ‘local’ or ‘internal’ turbine power coefficient defined as C∗ p ≡ �n i=1 Pi/ 1 2 ρU3 F nA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 3 WIND FARM SIMULATIONS In this study we model wind farms as arrays of actuator discs (or aerodynamically ideal turbines operating below the rated wind speed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is because, in real wind farms, the effects of turbine wake interactions on the farm performance are most significant when they operate below the rated wind speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The ‘internal’ thrust coefficient C∗ T is an important wind farm parameter which includes the effect of turbine interactions (including both wake and local blockage effects).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In this study we will be modelling the effect of turbine layout on C∗ T for aligned turbine layouts with various wind directions and a fixed turbine resistance of C′ T = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We chose C′ T = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='33 because it leads to a turbine induction factor of 1/4 which is close to a typical value for modern large wind turbines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' As such we will be considering C∗ T = f(Sx, Sy, θ) (6) 4 KIRBY et al Figure 1 Design of numerical experiments: a) input parameters, b) maximin design of LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' where Sx is the turbine spacing in the x direction, Sy is the turbine spacing in the y direction and θ is the wind direction relative to the x direction (see figure 1a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' However the true function C∗ T cannot be easily evaluated so we will instead investigate C∗ T using computer codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' One computer code we will use is LES (see section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1) to estimate C∗ T C∗ T,LES = fLES(Sx, Sy, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' (7) We assume that the function fLES is close to the true function f because of the accuracy of LES to model wind farm flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We will also use a wake model (see section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2) to provide cheap approximations of C∗ T according to C∗ T,wake = fwake(Sx, Sy, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' (8) Engineering problems are often investigated using complex computer models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Evaluating the output of such computer models for a given input can be very computationally expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Therefore a common objective is to create a cheap statistical model of the expensive computer model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' this is commonly known as emulation of computer models 27 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In this study we aim to develop a statistical emulator which can cheaply emulate fLES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The emulators will only be valid for aligned layouts of wind turbines and for a given turbine resistance (here we use C′ T = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We consider the input parameters for a realistic range of turbine spacings 1: Sx ∈ [5D, 10D], Sy ∈ [5D, 10D] and θ ∈ [0o, 45o] where D is the diameter of the turbine rotor swept area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In this study D is set as 100m and the turbine hub height is also 100m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We only need to consider wind directions of θ ∈ [0o, 45o] because of symmetry in the aligned turbine layouts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' If θ is negative than the turbine layout given by (Sx, Sy, θ) is exactly the same as (Sx, Sy, −θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' When θ > 45o, then (Sx, Sy, θ) and (Sy, Sx, 90o − θ) give identical layouts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In this study we build several emulators to predict fLES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The models are trained using data from low-fidelity (wake model) and high fidelity (LES) wind farm simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' One evaluation of C∗ T,wake takes approximately 130 seconds on a single CPU and C∗ T,LES requires around 400 CPU hours on a supercomputer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We use a space filling maximin design 29 30 to select training points in the parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The maximin algorithm selects points which maximises the minimum distance to other points and to the boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This provides a good coverage of the domain which ensures that the emulators can give good predictions across the whole of the domain 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 1b shows the LES training points in the parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' b) a) 10 40 9 Wind 30 200 10 5 0 6 8 10 S/DKIRBY et al 5 Figure 2 LES a) instantaneous and b) time-averaged flow fields over a periodic turbine array (Sx/D = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='59, Sy/D = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='47 and θ = 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='6o).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1 Large-Eddy Simulations This study uses the data from 50 high-fidelity (LES) simulations of wind farms published in a previous study 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Here we give a brief summary of the LES methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The LES models a neutrally stratified atmospheric boundary layer over a periodic array of actuator discs, which face the wind direction θ and exert uniform thrust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The resolution is 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5m in the horizontal directions (4 points across the rotor diameter) and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='87m in the vertical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is a coarse horizontal resolution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' however using a correction factor for the turbine thrust 32 makes the C∗ T,LES values insensitive to horizontal resolution 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For all simulations the vertical domain size was fixed at 1km and the horizontal extent varied with turbine layout but was at least 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='14km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The horizontal boundary conditions were periodic (essentially an infinitely-large wind farm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The bottom boundary used a no-slip condition with the value of eddy viscosity specified following the Monin-Obukhov similarity theory for a surface roughness length of z0 = 1 × 10−4m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The top boundary had a slip condition with zero vertical velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The flow was driven by a pressure gradient forcing which was constant and in the direction θ throughout the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 2 shows the instantaneous and time-averaged hub height velocities from one wind farm LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' See the original paper 8 for further details of the LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2 Wake model simulations Wake models are a cheap low-fidelity approach to modelling wind farm aerodynamics compared to expensive high-fidelity LES simulations 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We use the wake model proposed by Niayafar and Porté-Agel 33 to evaluate C∗ T,wake as a cheap approximation of C∗ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We use the Python package PyWake 34 to implement the wake model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The turbine thrust coefficient CT is needed as an input for the wake model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We use the value of C∗ T predicted by equation 4 as the value of CT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For the turbine operating conditions used in this study (C′ T = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='33) the wake model has CT equal to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 for all turbines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' To model actuator discs, we consider a hypothetical turbine which has a constant CT for all wind speeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We calculate C∗ T,wake for a single turbine at the back of a large farm (marked X in figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The farm simulated using the wake model is 10km long in the streamwise direction and 4km long in the cross-streamwise direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The farm size was chosen so that C∗ T no longer varied with increasing farm size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The wake growth parameter is calculated using k∗ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='38I +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='004 where I is the local streamwise turbulence velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The local streamwise turbulence intensity is estimated using the model proposed by Crespo and Hernández 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The background turbulence intensity (TI) is set as a typical value of 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The velocity incident to the turbine is calculated by averaging the velocity across the disc area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We use a 4×3 cartesian grid with Gaussian quadrature coordinates and weights on the disc to average the velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The disc-averaged velocity, UT is then calculated by multiplying the averaged incident velocity by (1 − a) where a is the turbine induction factor set by the value of C′ T (using the expression a = C′ T /(4 + C′ T )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' To calculate the farm-average velocity, UF , we average the velocity across a volume around the b) a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='4 30 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='3 20 20 D D n/n 9 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2 10 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1 0 0 20 0 20 c/ D c/ D6 KIRBY et al Figure 3 Example of wind farm layout for wake model simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' single turbine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The volume has dimensions of Sy in the y direction, Sx in the x direction and 250m in the z direction (the height of the nominal farm layer used in the previous LES study 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' To calculate the average velocity, we discretise the volume into 200 points in the horizontal directions and 20 points in the vertical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This was sufficient for the calculation of C∗ T,wake to not vary with further discretisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 3 shows an example of the farm layout for the wake model simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 4 MACHINE LEARNING METHODOLOGY 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1 Gaussian Process regression We will use Gaussian process (GP) regression 36 to build statistical emulators of fLES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A Gaussian process is a stochastic process g ∼ GP(m, k) described by a mean function m(v) = E[g(v)] and a covariance function k(v, v′) = E[(g(v) − m(v))(g(v′) − m(v′)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In our case v = (Sx, Sy, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We will use such a stochastic process as a model of fLES, the true mapping from v to C∗ T,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Each realisation from this process will therefore be a function which could plausibly represent this mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The mean function represents the expected output value at an input v = (Sx, Sy, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The covariance function gives the covariance between output values at v and v′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Examples of covariance functions include squared exponential, rational quadratic and periodic functions 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Different covariance functions will give differently shaped GPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For example the squared exponential covariance function will give very smooth GPs whereas the periodic function will give GPs with a periodic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Other types of structure, for example symmetry, can also be encoded in the covariance function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Therefore the expected shape (for example smoothness) of the expected relationship and any properties (for example discontinuities or symmetries) need to be considered when choosing a covariance function for GP regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Let V = (v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', vn)T be a collection of design points then mV = (m(v1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', m(vn))T is the mean vector and kV V = (k(vi, vj)) is the covariance matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We will start by positing a GP model with mean m and covariance k (called the ‘prior GP’), then condition this GP on LES observations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' the outcome is a new GP (called the ‘posterior GP’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This gives the posterior distribution g|V, C∗ T,LES ∼ GP(mσ2, kσ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' mσ2 is the posterior mean function given by mσ2(v) = m(v) + kvV (kV V + σ2In×n)−1(C∗ T,LES − mV ) where kvV = (k(v, v1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', k(v, vn)) and In×n is the identity matrix of size n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The posterior mean function mσ2 is used to make predictions at v = (Sx, Sy, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The posterior covariance function kσ2 quantifies the uncertainty in our prediction at v = (Sx, Sy, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The posterior covariance function is given by kσ2(v, v′) = k(v, v′) − kvV (kV V + σ2In×n)−1kV v′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Often in GP regression a zero prior mean is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' However, using an informative prior mean can improve the accuracy of the trained model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' By using a prior mean, many of the trends in fLES can be incorporated into our model prior to making expensive Volume for UF calculation 10 km X WindKIRBY et al 7 Figure 4 Demonstration of basic GP regression: a) shows the prior mean and covariance function prior to fitting with 3 GPs drawn from the distribution shown in colour;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' b) shows the effect of decreasing the lengthscale hyperparameter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' c) the effect of variance hyperparameter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' and d) the posterior mean and covariance functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' evaluations of C∗ T,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Therefore, after training our model will likely better describe the true relationship between Sx, Sy, θ and fLES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In this study, we will use both C∗ T,wake and the analytical model of C∗ T as the prior mean for the standard GP regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For the wake model prior mean we also vary the specified ambient TI input parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We expect fLES to be a smooth function of input variables Sx, Sy and θ, and to vary more rapidly with θ than Sx or Sy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Therefore we will use an anisotropic squared-exponential covariance function, k(v, v′) = σ2 f exp � − (Sx − S′ x)2 2l2 1 � exp � − (Sy − S′ y)2 2l2 2 � exp � − (θ − θ′)2 2l2 3 � (9) where σ2 f > 0 is the signal variance hyperparameter and li > 0 is the lengthscale hyperparameter for each dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is also called an ARD (automatic relevance detection) kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' If we consider v = v′ then we can see that σ2 f determines the variance of g(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Therefore σ2 f determines the prior uncertainty the model has about the value of g(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' As the lengthscale hyperparameter li gets smaller then k(v, v′) decreases (for v ̸= v′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Equally if li increases then k(v, v′) will also increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A GP with a small li will therefore vary more rapidly across the parameter space in the ith dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Due to numerical issues associated with the matrix inversion/linear system solve operations in the formulae for the posterior GP, it is common to add a nugget σ2 > 0 to the kernel matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The hyperparameters σ2 f and li are selected automatically during the fitting process by maximising the log marginal likelihood 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This approach selects the model which maximises the fit to the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 4 shows the impact of the hyperparameters in an example GP regression setting (using the squared exponential covariance function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The mean function and 95% credible interval (+/-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='96 times the standard deviation) prior to fitting are shown in figure 4a with 3 GPs drawn from the distribution (coloured lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The effect of decreasing the lengthscale hyperparameter li is shown in figure 4b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The prior mean and 95% credible interval are unchanged however the example GPs drawn vary more rapidly because of the shorter lengthscale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 4c shows the same setup as figure 4a but with a smaller value of σ2 f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The example GPs still vary slowly but the magnitude of the variations is now smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 4d shows the GPs conditioned on observations with hyperparameters selected by maximising the log marginal likelihood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' a) α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0, l = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 b) α² = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0, l = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 2 2 9 0 9 0 2 2 0 2 4 6 0 2 4 6 c) ² = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5, l = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 d)o = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='57 2 2 9 0 2 2 0 6 0 2 2 4 4 6 Observations Mean function 95% credible interval8 KIRBY et al Figure 5 Demonstration of a) basic GP regression and b) multi-fidelity GP regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In this example f(x) = 1 + sin(6x) for the high-fidelity data and f(x) = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5sin(6x) for the low-fidelity data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2 Non-linear multi-fidelity Gaussian Process regression In many applications there are several computational models available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' These models can have varying accuracies and computational costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The models which are more computationally expensive typically give more accurate predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The GP regression frame- work can be extended to combine information from low and high-fidelity models 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This type of modelling uses the low-fidelity observations to speed up the learning process and the high-fidelity observations to ensure accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In our scenario we will com- bine evaluations of from a low-fidelity (C∗ T,wake) and a high-fidelity (C∗ T,LES) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Note that for the multi-fidelity models in this study we set the ambient TI to 10% for the wake model and use a zero prior mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We will keep the number of high-fidelity training points fixed at 50 and we will vary the number of low-fidelity training points used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We combine information from our high and low-fidelity models using a nonlinear information fusion algorithm 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The framework is based on the autoregressive multi-fidelity scheme given by: ghigh(v) = ρ(glow(v)) + δ(v) (10) where glow(v) is a model with a GP denoted fwake and ghigh(v) is a model with a GP denoted fLES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' ρ is a model with a GP which maps the low-fidelity output to the high-fidelity output and δ(v) is a model with a GP which is a bias term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The non-linear multi-fidelity framework can learn non-linear space-dependent correlations between models of different accuracies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' To reduce the computational cost and complexity of implementation the autoregressive scheme given by equation 10 is simplified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Firstly, the GP prior glow(v) is replaced by the GP posterior glow,∗(v) and secondly the GPs ρ and δ are assumed to be independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Equation 10 can then be summarised as ghigh(v) = hhigh(v, glow,∗(v)) (11) where hhigh is a model with a GP which has both v and glow,∗(v) as inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' More details of hhigh and the implementation of the multi-fidelity framework are given in Perdikaris et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 5 shows an example of how a multi-fidelity GP can outperform a standard GP regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We implement the non-linear multi-fidelity framework using the ‘emukit’ package 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We first maximise the log marginal likelihood whilst keeping the Gaussian noise variance fixed at a low value of 1 × 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The fitting process is then repeated whilst allowing the Gaussian noise variance to be optimised too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is to prevent a high noise local optima from being selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' a) b) 3 3 High fidelity High fidelity 2 2 1 1 9 9 0 0 1 1 Low fidelity 2 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 True function Observations Posterior mean function 95% credible intervalKIRBY et al 9 5 RESULTS In this study, we build various statistical emulators of fLES using different techniques and compare the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A summary of the techniques is shown in the list below: 1 Standard Gaussian Process regression (see section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1) a GP-analytical-prior: Gaussian Process using analytical model (equation 4) prior mean b GP-wake-TI10-prior: Gaussian Process using wake model (section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2) with ambient TI=10% prior mean c GP-wake-TI1-prior: Gaussian Process using wake model with ambient TI=1% prior mean d GP-wake-TI5-prior: Gaussian Process using wake model with ambient TI=5% prior mean e GP-wake-TI15-prior: Gaussian Process using wake model with ambient TI=15% prior mean 2 Non-linear multi-fidelity Gaussian Process regression (see section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2) a MF-GP-nlow500: multi-fidelity Gaussian Process using 500 low-fidelity training points b MF-GP-nlow250: multi-fidelity Gaussian Process using 250 low-fidelity training points c MF-GP-nlow1000: multi-fidelity Gaussian Process using 1000 low-fidelity training points The code used to produce the results in this section is available open-access at the following GitHub repository: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' com/AndrewKirby2/ctstar_statistical_model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1 Performance of standard GP regression We first assessed the accuracy of the standard GP models (section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1) by performing leave-one-out cross-validation (LOOCV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is a method of estimating the accuracy of a statistical model when making predictions on data not used to train the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We trained our model on 49 of the 50 training points and then calculated the prediction accuracy for the single high-fidelity data point which is excluded from the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is then repeated for all data points in turn, and we took the average accuracy as an estimate of the model test accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The standard GP models were implemented using the ‘GPy’ package 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The standard GP gave accurate predictions of fLES with average errors of less than 2%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Table 1 shows the accuracy of the stan- dard GP models compared to the analytical and wake models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We calculated the errors by using the expression |mσ2 −C∗ T,LES|/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 where mσ2 is the posterior mean function of the emulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The reference value for C∗ T of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 was chosen because this is the pre- diction from the analytical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Both GP models give similar maximum errors of approximately 6%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Using the wake model as a prior mean gave a lower mean absolute error of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='26%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The GP models reduced the average prediction error and significantly reduced the maximum error compared to the wake model and analytical model of C∗ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Table 1 Accuracy of models for C∗ T prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Model MAE (%) Maximum error (%) GP-analytical-prior 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='87 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='09 GP-wake-TI10-prior 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='26 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='11 Analytical model 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='26 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 Wake model (TI=10%) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='60 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='28 10 KIRBY et al Figure 6 Posterior variance function of GP-wake-TI10-prior model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 7 Sensitivity of fitted GP models to the ambient TI chosen for wake model prior means.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The model GP-wake-TI10-prior has a high degree of confidence when making predictions in regions of the parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 6 shows the square root of the posterior covariance function kσ2, which quantities the uncertainty of the emulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The uncertainty is uniform throughout the parameter space with regions of slightly higher uncertainty at θ = 0o and 45o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We also assessed the sensitivity of the model accuracy to the ambient TI used in the wake model prior mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 7 shows the impact of ambient TI on the wake model prior mean and the fitted GP model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Increasing the ambient TI increased the value of C∗ T,wake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is because of the enhanced wake recovery behind wind turbines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Increasing the ambient TI in the wake model results in C∗ T,wake overpredicting C∗ T,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The MAE from the LOOCV procedure for each fitted GP is shown in the bottom right corner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' b)=5° c)=100 d) =15° a)=00 e)=200 10 10 10 10 10 Dβ 8 8 8 8 6 6 6 6 6 5 10 5 10 5 10 5 10 5 10 f) =250 g) =300 h)=35° i)=40° j)=45° 10 10 10 10 10 D 8 8 8 8 6 6 6 6 6 5 10 5 10 5 10 5 10 5 10 Sα/D Sα/D Sα/D Sα/D Sαc/D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='030 Vk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2a) Ambient TI=1% b) Ambient TI=5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='7 山秋 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='6 GP-wake-TI1-prior .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='· GP-wake-TI5-prior 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 MAE=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='02% MAE=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='16% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='80 CT,LES C*,LES c) Ambient TI=10% d) Ambient TI=15% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='6 GP-wake-TI10-prior GP-wake-TI15-prior 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 MAE=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='25% MAE=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='04% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='80 Wake model prior mean Standard GP modelKIRBY et al 11 The fitted GPs became more accurate when the wake model ambient TI was increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Increasing the ambient TI for the wake model causes the wakes to recover faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The wakes become shorter in the streamwise direction and wider in the spanwise direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' As such, C∗ T,wake becomes less sensitive to the turbine layout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' When an ambient TI of 1% and 5% is used for the wake model, C∗ T,wake is more sensitive to turbine layout than C∗ T,LES (figures 7a and 7b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' When the ambient TI is increased to 10% and above, the relationship between C∗ T,wake and C∗ T,LES becomes simpler (figures 7c and 7d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This seems to explain why the fitted GPs become more accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2 Performance of non-linear multi-fidelity GP regression We then assessed the accuracy of the multi-fidelity GP models (section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' All models used the 50 high-fidelity (C∗ T,LES) training points and a varying number of low-fidelity (C∗ T,wake) training points (using an ambient TI of 10% for C∗ T,wake).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The results from LOOCV are shown in table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For the LOOCV we train our model on 49 out of the 50 high-fidelity data points and all low-fidelity data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Then we average the error in predicting the high-fidelity data point left of the training set and repeat this in turn for data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Increasing the number of low-fidelity training points from 250 to 500 reduced the mean and maximum error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' However, increasing this to 1000 low-fidelity training points did not increase accuracy and increased the fitting and prediction time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is because the number of high-fidelity training points is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' There is a threshold where the model of the relationship between fLES and fwake, denoted ρ, limits the final accuracy of the emulator of fLES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The posterior mean mσ2 of glow(v) is an emulator of fwake and ghigh(v) is an emulator of fLES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 8 gives the predictions from the posterior mean of ghigh(v) (for MF-GP-nlow500).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The lowest mσ2 values were for a wind direction of θ = 0o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' mσ2 Table 2 Performance of the multi-fidelity Gaussian Process models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Model MAE (%) Maximum error (%) Training time (s) Prediction time (s) MF-GP-nlow250 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='46 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='12 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='00157 MF-GP-nlow500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='828 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='00167 MF-GP-nlow1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='866 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='55 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='00236 Figure 8 Posterior mean function for ghigh(v) of MF-GP-nlow500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' b)=50 d) =15° a)=00 c)=100 e)=200 10 10 10 10 10 Dβ 8 8 8 8 6 6 6 6 6 5 10 5 10 5 10 5 10 5 10 f) =250 g) =300 h) =35° i)=40° j))θ =45° 10 10 10 10 10 D 8 8 8 8 6 6 6 6 6 5 10 10 5 10 5 10 5 5 10 Sα/D Sα/D Sα/D Sα/D Sαc/D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='80 mg212 KIRBY et al Figure 9 Posterior variance function for ghigh(v) of MF-GP-nlow500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' increased rapidly with θ reaching a maximum of slightly over 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 at θ = 10o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For large values of θ (above θ = 25o) there were local minima in mσ2 which appear in figure 8 as diagonal strips of low mσ2 values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The main diagonal strip occurs along the line of Sy = Sx tan(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' There are two smaller strips either side of with positions given by Sy = 2 tan(θ) and Sy = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 tan(θ) (this is discussed further in section 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The uncertainty the model MF-GP-nlow500 has in predicting fLES is shown in figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The model uncertainty is uni- form throughout the parameter space with slightly higher values at θ = 0o and 45o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Compared to the posterior variance of GP-wake-TI10-prior (shown in figure 6) the uncertainty is lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' By incorporating information from C∗ T,wake, the multi-fidelity GP model has more confidence about predicting fLES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The prediction errors from the LOOCV (for MF-GP-nlow500) are shown in figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The box plot of prediction errors in figure 10a shows that this model had no significant bias whereas both the wake and analytical models systemically overestimated C∗ T,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figures 10b-d show that for the statistical model there appears to be no part of the parameter space which had larger errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The multi-fidelity approach used in this study builds a statistical model of both the low-fidelity (fwake) and high-fidelity (fLES) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We can use the posterior means of glow(v) and ghigh(v) to see the differences between the wake model and LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The posterior mean for both models are shown in figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For the wake model the change in mσ2 with θ is greater than for the LES (especially between θ = 0o and 10o).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For larger values of θ, there is a larger difference in mσ2 between waked and unwaked layouts for the low-fidelity model compared to the high-fidelity one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This suggests than the wake model is more sensitive to changes in wind directions than the LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' a) =00 b) =5° c)=100 d)θ=15° e)=20° 10 10 10 10 10 D∞ 8 8 8 8 6 6 6 6 6 5 10 5 10 5 10 5 10 5 10 f)θ =25° g) =300 h) =350 i)=40° j)θ=45° 10 10 10 10 10 Dβ 8 8 8 8 6 6 6 6 6 5 10 5 10 5 10 5 10 5 10 Sα/D Sα/D Sα/D Sα/D S/D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='030 Vkg?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='KIRBY et al 13 Figure 10 Comparison of LOOCV prediction errors (%) for different models a) and LOOCV prediction error (%) of MF-GP-nlow500 against input parameters b) Sx/D, c) Sy/D and d) θ(o).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Note that for the box plot in a) the orange line is the median LOOCV error and the box is the interquartile range of LOOCV error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 11 Posterior mean function of MF-GP-nlow500 for different values of θ for a) to e) ghigh(v) and f) to j) glow(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='3 Prediction of wind farm performance We use the predicted values of C∗ T,LES from the emulators to predict the power output of wind farms under various mesoscale atmospheric conditions, following the concept of the two-scale momentum theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We predict the (farm-averaged) turbine power coefficient Cp using C∗ T,LES predictions from MF-GP-nlow500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We call this prediction of farm performance Cp,model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Firstly, we use the C∗ T,LES prediction from the LOOCV procedure as C∗ T in equation 1 to calculate β for a given value of wind extractability ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We substitute this value of β into the expression Cp = β3C∗ T 3 2 C′ T − 1 2 (which is only valid for actuator discs) to calculate Cp,model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We compare the value of Cp,model with the turbine power coefficient recorded in the LES, Cp,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The effect of the coarse LES a) b) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 20 (%) Overprediction Overprediction Prediction errors ( l errors 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 Underprediction Underprediction 10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 MF-GP-nlow500 Wake Analytical 5 6 7 8 9 10 model model Sα/D d) c) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 Prediction errors 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 errors 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 Prediction 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0 5 6 7 8 9 10 10 20 30 40 0 Sy/D (°)b)=100 d) =300 a)=00 c)=200 e)=400 10 10 10 10 10 Dβ 8 8 8 8 6 6 6 6 6 5 10 5 10 5 10 5 10 5 10 f)=0° g)=100 h)=20° i)=300 j)=40° 10 10 10 10 10 D 8 8 8 8 6 6 6 6 6 5 10 5 10 5 10 5 10 5 10 Sα/D Sα/D Sα/D Sα/D Sαc/D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='80 mg214 KIRBY et al Figure 12 Comparison of Cp predictions with LES results for a realistic range of ζ values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' resolution on turbine thrust (and hence also ABL response and Cp) has already been corrected 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The LES was performed with periodic horizontal boundary conditions and a fixed momentum supply, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', ζ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' However, the Cp,LES has also been adjusted for a given ζ by scaling the velocity fields assuming Reynolds number independence 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Similarly, the analytical model of C∗ T can be used to give a theoretical prediction of wind farm performance called Cp,Nishino 8, which is given by Cp,Nishino = 64C′ T (4 + C′ T )3 � ��� −ζ + � ζ2 + 4 � 16C′ T (4+C′ T )2 λ Cf0 + 1 � (1 + ζ) 2 � 16C′ T (4+C′ T )2 λ Cf0 + 1 � � ��� 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' (12) We will compare the accuracy of both Cp,model and Cp,Nishino in predicting Cp,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Both Cp,model and Cp,LES are shown in figure 12 for a realistic range of wind extractability factors, along with the results from Cp,Nishino (equation 12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Cp,Nishino provides an approximate upper limit of farm-averaged Cp as it predicts very well the effects of array density and large-scale atmospheric response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The statistical model accurately predicts the effect of turbine layout on farm performance which becomes more important with larger ζ values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' As ζ increases, there is a larger difference between Cp,LES and Cp,Nishino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Also, Cp,model becomes slightly less accurate when ζ increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Table 3 shows the average prediction errors of Cp,model and Cp,Nishino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We quantified the mean absolute error using two different reference powers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Using Cp,LES as the reference power, Cp,Nishino had an error of around 5% and the error increases a)(=0 b)(=5 X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='04 A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='15 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='03 P C C 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='01 5 10 15 20 5 10 15 20 >/Cf0 入/Cf0 = 10 d)( = 15 )( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='30 △ K △ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='20 A C A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='15 A A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='10 1 5 10 15 20 5 10 15 20 >/Cf0 入/Cfo e)(= 20 f)( = 25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='35 必 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='35 X X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='30 △ AA △ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='30 公 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='25 X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='25 又 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='20 5 10 15 20 5 10 15 20 >/Cf0 入/Cf0 Cp,LES C X △ p,NishinoKIRBY et al 15 Table 3 Comparison of models for Cp prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 1 50 �50 i=1 |Cp,i − Cp,LES|/Cp,LES 1 50 �50 i=1 |Cp,i − Cp,LES|/Cp,Betz ζ Cp,Nishino Cp,model ζ Cp,Nishino Cp,model 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='82% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='15% 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='142% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='108% 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='38% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='48% 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='954% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='338% 10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='16% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='35% 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='67% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='459% 15 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='66% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='30% 15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='24% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='542% 20 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='02% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='26% 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='72% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='601% 25 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='30% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='24% 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='11% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='648% with ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The mean absolute error of Cp,model was typically less than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5% and this decreased slightly as ζ increases (due to the reference power Cp,LES increasing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We also use the power of an isolated ideal turbine, Cp,Betz, as a reference power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Cp,Betz is calculated using the actuator disc theory with the expression Cp,Betz = 64C′ T /(4 + C′ T )3 (note that in this study C′ T = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='33 and hence Cp,Betz = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='563).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In this case the mean absolute error increased with ζ for both Cp,model and Cp,Nishino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' However, the average prediction error of Cp,model remained below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='65%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 6 DISCUSSION Data-driven modelling of the internal turbine thrust coefficient C∗ T is a novel approach to modelling turbine-wake interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Data- driven models of wind farm performance typically focus on predicting the power output, which, however, depends on flow physics across a wide range of scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Current data-driven approaches are either not generalisable to different atmospheric responses, or would require a very large set of expensive training data, such as finite-size wind farm LES data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Data-driven models of C∗ T captures the effects of turbine-wake interactions, whilst also being applicable to different atmospheric responses (following the concept of the two-scale momentum theory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The statistical emulator of C∗ T developed in this study was able to predict the farm power Cp of Kirby et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 8 with an average error of less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='65%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The high accuracy and very low computational cost of this approach shows the potential of this approach for modelling turbine-wake interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' It has several advantages over traditional approaches using the superposition of wake models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Information from turbulence-resolving LES is included which ensures a high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' It will also be more advantageous as wind farms become larger because wake models struggle to capture the complex multi-scale flows physics which are important for large farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The statistical model of C∗ T may therefore allow fast and accurate predictions of wind farm performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' All emulators developed in this study gave substantially better predictions of C∗ T,LES compared to the analytical and wake models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Both the mean and maximum prediction errors were reduced by the emulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The standard GP regression approach had a mean prediction error of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='26% and maximum error of approximately 6%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The accuracy depends on the size of the LES data set and could be further decreased with a larger training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The multi-fidelity GP approach gave more accurate predictions of C∗ T,LES compared to the standard GP regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is because non-linear information fusion algorithm has incorporated information from many low-fidelity data points to improve the emulator of the high-fidelity (LES) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This approach has the advantage that, unlike the standard GP regression approach, it is not necessary to evaluate the prior mean before making a prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Therefore, to predict C∗ T it is only necessary to evaluate the posterior mean of the high-fidelity emulator for a specific turbine layout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The shape of the posterior mean in figure 8 gives insights into the physics of turbine-wake interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is because C∗ T,LES is low when a layout has a high degree of turbine-wake interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For the turbine operating conditions used, C∗ T,LES is close to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 when a layout has a small degree of wake interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Figure 8a shows C∗ T,LES when the wind direction is perfectly aligned 16 KIRBY et al Figure 13 Alignment of turbines for different combinations of Sx, Sy and θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' with the rows of turbines (θ = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This gives wind farms with a high degree of wake interactions which results in low C∗ T,LES values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For θ = 0o, increasing Sx/D increases C∗ T because there is a larger streamwise distance between turbines for the wakes to recover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' When the cross-streamwise spacing (Sy/D) is increased the degree of wake interactions increases, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', C∗ T,LES decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is because there is a lower array density which results in a lower turbulence intensity within the farm and hence slower wake recovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Yang 41 found that increasing the cross-streamwise spacing in infinitely-large wind farms increased the power of individual turbines and concluded that this was due to reduced wake interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' However, the increase in turbine power found by Yang 41 may be also explained by to a faster farm-averaged wind speed caused by a reduced array density rather than reduced wake interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' When the wind direction θ increases, C∗ T,LES increases to a maximum of just over 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='75 at θ = 10o (figure 8c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This result agrees qualitatively with another study 42 in which it was found that the maximum farm power was produced by an intermediate wind direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' When θ increases above 20o regions of low C∗ T,LES appear diagonally (see figures 8f-j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The regions of low C∗ T,LES are centred on the surfaces given by Sy = 2Sx tan(θ), Sy = Sx tan(θ) and Sy = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5Sx tan(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' These regions correspond to turbines being aligned along different axes throughout the farm (see figure 13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' There are longer streamwise distance between turbines for these arrangements (compared to θ = 0o) and so the C∗ T,LES values are higher than for θ = 0o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The accuracy of the statistical emulators could be further improved in future studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Both the standard and multi-fidelity GP models can be improved by adding more evaluations of C∗ T,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' From table 2, the accuracy of the multi-fidelity GP models did not improve once we used more than 500 C∗ T,wake evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This shows that the error in predicting C∗ T,LES for MF-GP-nlow500 is not due to the model of fwake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Instead the error arises from the learnt relationship between fwake and fLES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The statistical emulators developed are not applicable to all wind farms because of the limited nature of our data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A limitation of the developed model is that it is only applicable to farms with perfectly aligned layouts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' It should also be noted that our model was trained on data from simulations of a neutrally stratified boundary layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Therefore a larger LES data set with an extended parameter space would be required to account for the effect of atmospheric stability on wake interactions and the resulting C∗ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Another limitation of our model is that it assumes all turbines have the same resistance coefficient C′ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' It is likely that this condition can be strictly satisfied only in the fully developed region of a large farm where the wind speed does not change in the streamwise or cross-streamwise directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Although we considered only actuator discs in this study for demonstration, the proposed approach using a data-driven model of CT ∗ can be applied to power prediction of real turbines as well in future studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' In this study, we calculate Cp,model using the expression Cp,model = β3C∗ T 3 2 C′ T − 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This assumes that the relationship between C∗ p and C′ T is given by C∗ p = C∗ T 3 2 C′ T − 1 2 , which is only valid for actuator discs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' For real turbines, the relationship between C∗ p and C′ T can be calculated using BEM theory 43 according to the turbine design and operating conditions (noting that the turbine induction factor can still be estimated as a = C′ T /(4 + C′ T )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Cp,model can then be calculated using equation 5 with β found using equation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' However, for a data-driven model of C∗ T to be applicable to real turbines, it will be necessary to model the impact of a variable C′ T rather than assuming a fixed C′ T value as in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' b) Su = Sαtan(0) = 2Stan(0KIRBY et al 17 7 CONCLUSIONS In this study we proposed a new data-driven approach to modelling turbine wake interactions and resulting flow resistance in large wind farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We developed statistical emulators of the farm-internal turbine thrust coefficient C∗ T,LES as a function of turbine layout and wind direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' C∗ T represents the flow resistance within a wind farm and reflects the characteristics of the turbine-scale flows including wake and turbine blockage effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We developed several emulators using both standard GP regression and multi-fidelity GP regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The standard GP was trained using data from 50 infinitely-large wind farm LES (and using a low-fidelity wake model as a prior mean).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The multi-fidelity GP was trained using data from both LES and wake model simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We estimated the test accuracy of the model by performing leave-one-out cross-validation and assessed the error in predicting C∗ T,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' All emulators had a mean test error of less than 2% for predicting C∗ T,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The multi-fidelity GP gave the best performance with a mean prediction error of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='849% and maximum prediction error of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='78% with no bias for under or over-prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This is low compared to the mean error of the wake model (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='60%) and analytical C∗ T model (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='26%) which both had a bias for overpredicting C∗ T,LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We used an emulator of C∗ T,LES to make predictions of wind farm performance under various mesoscale atmospheric conditions (characterised by the wind extractability factor ζ) using the two-scale momentum theory 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Our predictions of farm power produc- tion had an average error of less than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5% under realistic wind extractability scenarios compared to the LES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' When the error in power prediction is expressed relative to the power of an isolated ideal turbine the average prediction error is less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='7%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' We also used a previously proposed analytical model of C∗ T 25 to predict farm power output with an average error of less than 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5% (with the power of an isolated turbine as the reference power).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The analytical model correctly predicts the trends in farm performance with array density under different scenarios of large-scale atmospheric response, although it tends to overpredict the power where turbine-wake interactions are important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Using statistical emulators of C∗ T is a new approach to modelling turbine-wake interactions and flow resistance within large wind farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The approach can be extended in future studies by increasing the size of the training data set, for example, to account for the effects of C′ T and atmospheric stability conditions on C∗ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The very low computational cost and high accuracy of the model could be beneficial for future wind farm optimisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' ACKNOWLEDGMENTS The first author (AK) acknowledges the NERC-Oxford Doctoral Training Partnership in Environmental Research (NE/S007474/1) for funding and training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Author contributions T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' derived the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' performed the simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' F-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' provided assistance and guidance for the machine learning methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' wrote the paper with corrections from T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', F-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='B and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Financial disclosure None reported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Conflict of interest The authors report no conflict of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 18 KIRBY et al Data availability statement The data and code that support the findings of this study are openly available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='com/AndrewKirby2/ctstar_statistical_ model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' This includes the results from the wind farm LES and wake model simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The repository also includes the code for the results presented in sections 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Author ORCID A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Kirby, https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='org/0000-0001-8389-1619;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' F-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Briol https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='org/0000-0002-0181-2559;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Nishino, https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' org/0000-0001-6306-7702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Porté-Agel F, Bastankhah M, Shamsoddin S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wind-Turbine and Wind-Farm Flows: A Review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Boundary-Layer Meteorology 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 174: 1-59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1007/s10546-019-00473-0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Bleeg J, Purcell M, Ruisi R, Traiger E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wind farm blockage and the consequences of neglecting its impact on energy production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Energies 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 11: 1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='3390/en11061609 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Carbon Trust .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Global Blockage Effect in Offshore Wind (GloBE) [accessed 07/11/2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='carbontrust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='com/ our-projects/large-scale-rd-projects-offshore-wind/global-blockage-effect-in-offshore-wind-globe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Jensen NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A note on wind generator interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Risø-M-2411 Risø National Laboratory Roskilde 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Bastankhah M, Porté-Agel F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A new analytical model for wind-turbine wakes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Renewable Energy 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 70: 116-123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='renene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='002 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Katic I, Hojstrup J, Jensen NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A simple model for cluster efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Proceedings of the European wind energy association conference and exhibition, Rome, Italy 1986: 407-409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Zong H, Porté-Agel F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A momentum-conserving wake superposition method for wind farm power prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Fluid Mechanics 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 889: A8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1017/jfm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='77 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Kirby A, Nishino T, Dunstan TD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Two-scale interaction of wake and blockage effects in large wind farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Fluid Mechanics 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 953: A39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1017/jfm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='979 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Stevens RJAM, Gayme DF, Meneveau C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Effects of turbine spacing on the power output of extended wind-farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wind Energy 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 19: 359-370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1002/we.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1835 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Fitch AC, Olson JB, Lundquist JK, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Monthly Weather Review 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1175/MWR-D-11-00352.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Abkar M, Porté-Agel F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A new wind-farm parameterization for large-scale atmospheric models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Renewable and Sustainable Energy 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='4907600 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Pan Y, Archer CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Boundary-Layer Meteorology 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 168: 469-495.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1007/s10546-018-0351-9 KIRBY et al 19 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Zehtabiyan-Rezaie N, Iosifidis A, Abkar M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Data-driven fluid mechanics of wind farms: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Renewable and Sustainable Energy 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 14: 32703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0091980 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Renganathan SA, Maulik R, Letizia S, Iungo GV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Data-driven wind turbine wake modeling via probabilistic machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Neural Computing and Applications 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 34: 6171-6186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1007/s00521-021-06799-6 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Optis M, Perr-Sauer J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Renewable and Sustainable Energy Reviews 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 112: 27-41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='rser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='031 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Japar F, Mathew S, Narayanaswamy B, Lim CM, Hazra J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Estimating the wake losses in large wind farms: A machine learning approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' ISGT 2014 2014: 1-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1109/ISGT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='6816427 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Yan C, Pan Y, Archer CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A general method to estimate wind farm power using artificial neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wind Energy 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 22: 1421-1432.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1002/we.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2379 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Zhang J, Zhao X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wind farm wake modeling based on deep convolutional conditional generative adversarial network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Energy 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 238: 121747.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='121747 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wilson B, Wakes S, Mayo M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Surrogate modeling a computational fluid dynamics-based wind turbine wake simulation using machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 2017 IEEE Symposium Series on Computational Intelligence (SSCI) 2017: 1-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1109/SSCI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='8280844 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Ti Z, Deng XW, Yang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wake modeling of wind turbines using machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Applied Energy 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 257: 114025.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='apenergy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='114025 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Ti Z, Deng XW, Zhang M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Artificial Neural Networks based wake model for power prediction of wind farm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Renewable energy 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 172: 618-631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='renene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='030 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Park J, Park J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Physics-induced graph neural network: An application to wind-farm power estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Energy 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 187.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='115883 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Bleeg J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' A Graph Neural Network Surrogate Model for the Prediction of Turbine Interaction Loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Physics: Conference Series 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 1618.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1088/1742-6596/1618/6/062054 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Nishino T, Dunstan TD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Two-scale momentum theory for time-dependent modelling of large wind farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Fluid Mechanics 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 894: A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1017/jfm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='252 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Nishino T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Two-scale momentum theory for very large wind farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Physics: Conference Series 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 753: 032054.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1088/1742-6596/753/3/032054 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Patel K, Dunstan TD, Nishino T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Time-dependent upper limits to the performance of large wind farms due to mesoscale atmospheric response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Energies 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 14: 6437.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='3390/en14196437 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Sacks J, Welch WJ, Mitchell TJ, Wynn HP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Design and analysis of computer experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Statistical Science 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 4: 409-423.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1214/ss/1177012413 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Currin C, Mitchell T, Morris M, Ylvisaker D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Bayesian prediction of deterministic functions, with applications to the de- sign and analysis of computer experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of the American Statistical Association 1991;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 86: 953-963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1080/01621459.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='10475138 20 KIRBY et al 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Johnson ME, Moore LM, Ylvisaker D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Minimax and maximin distance designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Statistical Planning and Inference 1990;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 26: 131-148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1016/0378-3758(90)90122-B 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Santner TJ, Williams BJ, Notz W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' The design and analysis of computer experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' second ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wynne G, Briol FX, Girolami M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Convergence guarantees for gaussian process means with misspecified likelihoods and smoothness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Machine Learning Research 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Shapiro CR, Gayme DF, Meneveau C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Filtered actuator disks: Theory and application to wind turbine models in large eddy simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Wind Energy 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 22: 1414-1420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1002/we.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2376 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Niayifar A, Porté-Agel F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Analytical modeling of wind farms: A new approach for power prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Energies 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='3390/en9090741 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Pedersen MM, Laan v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' dP, Friis-Møller M, Rinker J, Réthoré PE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' DTUWindEnergy/PyWake: PyWake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='5281/zen- odo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2562662 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Crespo A, Hernández J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Turbulence characteristics in wind-turbine wakes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Wind Engineering and Industrial Aerodynamics 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 61: 71-85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1016/0167-6105(95)00033-X 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Rasmussen CE, Williams CKI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Gaussian Processes for Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' the MIT Press .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 2018 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Peherstorfer B, Willcox K, Gunzburger M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Survey of multifidelity methods in uncertainty propagation, inference, and optimiza- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' SIAM Review 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1137/16M1082469 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Perdikaris P, Raissi M, Damianou A, Lawrence ND, Karniadakis GE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 473.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1098/rspa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0751 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Paleyes A, Pullin M, Mahsereci M, Lawrence N, González J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Emulation of physical processes with Emukit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' GPy .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' GPy: A Gaussian process framework in python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' http://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='com/SheffieldML/GPy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' since 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Yang X, Kang S, Sotiropoulos F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Computational study and modeling of turbine spacing effects infinite aligned wind farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Physics of Fluids 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 24: 11510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='4767727 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Stevens RJAM, Gayme DF, Meneveau C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Large eddy simulation studies of the effects of alignment and wind farm length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Journal of Renewable and Sustainable Energy 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 6: 023105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='4869568 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Nishino T, Hunter W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Tuning turbine rotor design for very large wind farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' 474(2220): 1–20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='1098/rspa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='0237 How to cite this article: Kirby A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', Briol F-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', Dunstan T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=', and Nishino T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} +page_content=' (2022), Data-driven modelling of wind turbine wake interactions in large wind farms, Wind Energy, xxxx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfu_1f/content/2301.01699v1.pdf'} diff --git a/5dE2T4oBgHgl3EQfOgbi/content/tmp_files/2301.03750v1.pdf.txt b/5dE2T4oBgHgl3EQfOgbi/content/tmp_files/2301.03750v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..7e7551b678700885812ec887d31b050296a054f2 --- /dev/null +++ b/5dE2T4oBgHgl3EQfOgbi/content/tmp_files/2301.03750v1.pdf.txt @@ -0,0 +1,5252 @@ +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE +INTEGRALS +ETHAN SUSSMAN +Abstract. We discuss the meromorphic continuation of certain hypergeometric integrals modeled +on the Selberg integral, including the 3-point and 4-point functions of BPZ’s minimal models of +2D CFT as described by Felder & Silvotti and Dotsenko & Fateev (the “Coulomb gas formalism”). +This is accomplished via a geometric analysis of the singularities of the integrands. In the case +that the integrand is symmetric (as in the Selberg integral itself) or, more generally, what we call +“DF-symmetric,” we show that a number of apparent singularities are removable, as required for the +construction of the minimal models via these methods. +Contents +1. +Introduction +1 +2. +Associahedra +10 +3. +Meromorphic continuation +26 +4. +Removing singularities +40 +Appendix A. +The N = 2 case +48 +Appendix B. +Explicit coordinates on [0, 1)N +tb +52 +References +55 +1. Introduction +Let +△N = {(x1, . . . , xN) ∈ [0, 1]N : x1 ≤ · · · ≤ xN} +(1) +denote the standard N-simplex, which we consider as a subset of CN. We study in this note +Selberg-like integrals, by which we mean definite integrals of the form +SN[F](α, β, γ) = +� +△N +� N +� +j=1 +xαj +j (1 − xj)βj +�� +� +1≤j 1 case. +Moreover, while a fair amount of work has gone into the study of general hypergeometric integrals +associated to hyperplane arrangements — the literature on this topic is large, so we just cite +[Var95][AK11] — it does not seem possible to deduce the specific, concrete results below from results +in the current literature. +We will identify indexed collections of complex numbers (and tuples thereof) with column vectors. +For example, we identify γ with an element of CN(N−1)/2 and +(α, β, γ) ∈ CN × CN × CN(N−1)/2 +(3) +with an element of C2N+N(N−1)/2. Similar identifications will be made throughout the rest of the +paper without further comment. Let +ΩN = +� +(α, β, γ) ∈ C2N+N(N−1)/2 : +N +� +j=1 +xαj +j (1 − xj)βj +� +1≤j −j} +� +∩ +� N +� +j=1 +{ℜβj,∗ > −j} +� +∩ +� +� +1≤j −(k − j)} +� +. +(7) +So, ΩN is nonempty, open, and convex (in particular, connected) and contains all (α, β, γ) ∈ +C2N+N(N−1)/2 such that the real parts of the components of α, β, γ are sufficiently large. +To simplify the formula above, let γ0,k,∗ = αk,∗ and γN+1−j,N+1,∗ = βj,∗. Then +ΩN = +� +0≤j −(k − j)}. +(8) +Our first goal is to prove that SN[F] can be analytically continued to a subset +˙ΩN ⊆ C2N+N(N−1)/2 +(9) +having full measure in C2N+N(N−1)/2. +In order to describe precisely the structure of the singularity at C2N+N(N−1)/2\ ˙ΩN, we introduce +some terminology. Let T(N) denote the collection of maximal families I of consecutive subsets +I ⊊ {0, . . . , N + 1} such that +• 2 ≤ |I| ≤ N + 1 for all I ∈ I and +• if I, I′ ∈ I satisfy I ∩ I′ ̸= ∅, then either I ⊆ I′ or I′ ⊆ I. +“T” stands either for “tree” in “full binary trees” or “Tamari” in Tamari lattice [Tam62][Gey94], and +the elements of T(N) can be thought of as specifying the valid ways of adding a maximal number of +nonredundant parentheses to a string of N + 2 identical characters. There are #T(N) = CN+1 such +ways, where CN+1 is the (N + 1)st Catalan number. To each I ∈ I, we associate the facet +fI = {(x1, . . . , xN) ∈ △N : xj = xk for all j, k ∈ I} +(10) +of △N, where x0 = 0 and xN+1 = 1. Let oI ∈ N denote the order of vanishing of F at fI. (So, +oI = 0 unless F is vanishing identically at fI.) +Theorem 1.1. There exist entire functions SN;reg,I[F] : C2N+N(N−1)/2 → C associated to the +I ∈ T(N) such that +SN[F](α, β, γ) = +� +I∈T(N) +� � +I∈I +Γ(oI + |I| − 1 + γmin I,max I,∗) +� +SN;reg,I[F](α, β, γ) +(11) +for all (α, β, γ) ∈ ΩN. +■ +Here, Γ : C\{−n : n ∈ N} → C is the Gamma function. As a consequence of the theorem, there +exists an entire function SN;reg[F] : C2N+N(N−1)/2 → C such that +SN[F](α, β, γ) = +� +� +0≤j −1 via the definite integral and then extended meromorphically via +the formula on the right-hand side above (or via another method). This is Euler’s β-function. One +method of meromorphic continuation involves the “Pochhammer contour” +b−1a−1ba ∈ π1(C\{0, 1}), +(17) +where a, b are the generators of π1(C\{0, 1}) corresponding to one (say, counterclockwise) circuit +around each of 0, 1 respectively. +0 +1 +Figure 1. The Pochhammer contour in C\{0, 1}, up to homotopy. +Then, b−1a−1ba can be lifted to a closed contour p in the cover M of C\{0, 1} corresponding to +the commutator subgroup of π1(C\{0, 1}). Then, choosing the basepoint of p appropriately, +B(α, β) = +1 +1 − e−2πiα +1 +1 − e−2πiβ +� +p +xα(1 − x)β dx, +(18) +where we are now considering xα(1 − x)β as an analytic function on M. The theorem above tells us +that there exist entire S1;reg,(••)•, S1;reg,•(••) such that +B(α, β) = Γ(1 + α)S1;reg,(••)•(α, β) + Γ(1 + β)S1;reg,•(••)(α, β). +(19) +This splitting is not so obvious from the formula B(α, β) = Γ(1 + α)Γ(1 + β)/Γ(2 + α + β). +■ +Example. Now consider the case when N = 2 and F = 1. It can be computed that the Selberg-like +integral is then +S2(α, β, γ) = Γ(1 + α1)Γ(1 + β2)Γ(2 + 2γ1,2 + α1 + α2)Γ(1 + 2γ1,2) +Γ(2 + α1 + 2γ1,2)Γ(3 + α1 + α2 + β2 + 2γ1,2) +3F2(a, b; 1), +(20) +where a = (a1, a2, a3) = (1 + α1, −β1, 2 + 2γ1,2 + α1 + α2) and b = (b1, b2) = (2 + α1 + 2γ1,2, 3 + +α1 + α2 + β2 + 2γ1,2), where pFq denotes the generalized hypergeometric function. For N = 2, the +theorem above reads +S2(α, β, γ) = Γ(1 + α1)Γ(2 + α1 + α2 + 2γ1,2)S2;reg,((••)•)•(α, β, γ)+ +Γ(1 + α1)Γ(1 + β2)S2;reg,(••)(••)(α, β, γ) + Γ(1 + β2)Γ(2 + β1 + β2 + 2γ1,2)S2;reg,•(•(••))(α, β, γ) ++ Γ(1 + 2γ1,2)Γ(2 + β1 + β2 + 2γ1,2)S2;reg,•((••)•)(α, β, γ) ++ Γ(1 + 2γ1,2)Γ(2 + α1 + α2 + 2γ1,2)S2;reg,(•(••))•(α, β, γ), +(21) + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +5 +but once again this splitting is not so obvious from the exact formula eq. (20). This example is +explored more in the appendix. +■ +The proof below is lower-brow than the twisted homological constructions of [KT86a, §5][KT86b] +and Aomoto [Aom87], as it is based on the method described in [Var95, Chp. 10]. This involves +the geometric analysis of the singularities of the Selberg(-like) integrand. The key observation is +that if the N-simplex is blown up to the N-dimensional associahedron [Sta63][MSS02, §1.6][Pos09] +(see Figure 2, Figure 6), then the Selberg integrand – which is not polyhomogeneous on △N – +becomes one-step polyhomogeneous (a.k.a “classical”) on the resolution. See §2 for details. This +observation appears, in an essentially equivalent form (albeit with different terminology), already in +[KT86a][KT86b][MY03], though the term “associahedron” does not appear there. Closely related +observations have appeared in the physics literature [Miz17][CKW18][CMT19][Miz20]. +The application of polyhomogeneity to the proof of the theorem above is given in §3. In a nutshell, +the classicality of the lift of the Selberg integrand on the associahedron allows us to reduce the +problem to what is essentially a product of one-dimensional cases. The faces of the associahedron +are in bijective correspondence with the quantities defined in eq. (5), eq. (6). The correspondence is +depicted in Figure 2 in the case N = 3. The quantities αj,∗, βj,∗, γj,k,∗ are the orders of the Selberg +α1 + α2 + α3 + 2γ1,2 + 2γ1,3 + 2γ2,3 +2γ2,3 +α1 + α2 + 2γ1,2 +2γ1,2 + 2γ1,3 + 2γ2,3 +α1 +2γ1,2 +β1 + β2 + β3 + 2γ1,2 + 2γ1,3 + 2γ2,3 +β3 +β2 + β3 + 2γ2,3 +Figure 2. The 3-dimensional associahedron, with its faces labeled by the associated +functions in eq. (5), eq. (6). The C4 = 14 vertices are in correspondence with the 14 +elements T(3). +integrand at the corresponding faces. Each I ∈ T(N) is associated with a minimal facet of the +associahedron, and the I ∈ I are associated with the faces containing that facet. Thus, we have a +geometric interpretation of each of the terms in eq. (11). +Note that ˙ΩN does not contain (α, β, γ) with γj,k = −1 for |j − k| = 1, so the theorem above is +insufficient for the construction of the minimal models. Moreover, the theorem cannot be sharpened +while maintaining generality. Indeed, the proof of the theorem shows that if F > 0 everywhere in +△N (including the boundary), then +SN;reg[F](α, β, γ) ̸= 0 +(22) +for any (α, β, γ) ∈ R2N+N(N−1)/2 for which both of +• γj,k,∗ ∈ Z≤−(k−j) for precisely one pair of j, k ∈ {0, . . . , N + 1} with j < k, +• γj,k,∗ > −(k − j) for all other j, k +hold, as for such (α, β, γ) the quantity SN;reg[F](α, β, γ) is proportional to a convergent integral of a +positive integrand over the corresponding face of the associahedron. Consequently, SN[F] : ΩN → C +cannot be analytically continued to the complement of any strictly smaller collection of hyperplanes +than that in eq. (13). + +6 +ETHAN SUSSMAN +However, for the desired application, we do not need full generality. Of special importance is the +case when α, β, γ are each “constant,” meaning that, for some α, β, γ ∈ C, +• αi = α and βi = β for all i ∈ {1, . . . , N}, and +• γj,k = γ for all j, k ∈ {1, . . . , N} with j < k. +In this case, we simply write +SN[F](α, β, γ) = +� +△N +� N +� +j=1 +xα +j (1 − xj)β�� +� +1≤j −1 − δj[F] and +ℜj(β + (j − 1)γ) > −1 − +δ +j[F] for all j ∈ {1, . . . , N}, and ℜγ > − +1 +N − 1 +� +, +(24) +which contains +UN = UN[1] = +� +(α, β, γ) ∈ C3 : min{ℜα, ℜβ}+min{0, (N −1)γ} > −1 and ℜγ > − +1 +N − 1 +� +. (25) +An immediate corollary of the theorem above is that the function SN[F] : UN[F] → C defined by +eq. (23) admits an analytic continuation ˙SN[F](α, β, γ) : ˙UN[F] → C to the domain ˙UN[F] ⊋ UN[F] +given by +˙UN[F] = C3 +α,β,γ +��� N +� +j=1 +{j(α + (j − 1)γ) ∈ Z≤−j−δj} +� +∪ +� N +� +j=1 +{j(β + (j − 1)γ) ∈ Z≤−j− +δ +j} +� +∪ +� N−1 +� +j=1 +{j(j + 1)γ ∈ Z−j} +�� +. +(26) +Example. Consider F = 1, i.e. the Selberg integral. In this case, Selberg proved in [Sel44] that +SN(α, β, γ) = SN[1](α, β, γ) is given by +SN(α, β, γ) = 1 +N! +� N +� +j=1 +Γ(1 + α + (j − 1)γ)Γ(1 + β + (j − 1)γ)Γ(1 + jγ) +Γ(2 + α + β + (N + j − 2)γ)Γ(1 + γ) +� +. +(27) +See [FW08] for a review of the history of this result. +■ +The example of the Selberg integral suggests that, in the symmetric case, eq. (26) is not the +maximal domain of analyticity. Set +degj[F] = max{d1 + · · · + dj : [F]d1,...,dj,dj+1,...,dN ̸= 0 for some dj+1, . . . , dN ∈ N}. +(28) +(Since F is symmetric, degj[F] = degj[F ◦ refl].) Then: + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +7 +Theorem 1.2. For any F ∈ C[x1, . . . , xN]SN , there exists an entire function SN;Reg[F] : C3 +α,β,γ → C +such that +SN[F](α, β, γ) = +� N +� +j=1 +Γ(1 + ¯δj + α + (j − 1)γ)Γ(1 + ¯ +δ +j + β + (j − 1)γ)Γ(1 + jγ) +Γ(2 + ¯dj + α + β + (N + j − 2)γ)Γ(1 + γ) +� +× SN;Reg[F](α, β, γ) +(29) +for all (α, β, γ) ∈ UN, where ¯δj = ⌈j−1δj[F]⌉, ¯ +δ +j = ⌈j−1 +δ +j[F]⌉, and ¯dj = ⌊(N − j + 1)−1 degj[F]⌋ +for each j ∈ {1, . . . , N}. +■ +Thus, SN[F](α, β, γ) admits an analytic continuation ˚SN[F](α, β, γ) : ˚UN[F] → C to the domain +˚UN[F] ⊋ ˙UN[F] defined by +˚UN[F] = C3 +α,β,γ +��� N +� +j=1 +{α + ¯δj + (j − 1)γ ∈ Z≤−1} +� +∪ +� N +� +j=1 +{β + ¯ +δ +j + (j − 1)γ ∈ Z≤−1} +� +∪ +� N−1 +� +j=1 +{(j + 1)γ ∈ Z≤−1, γ /∈ Z} +�� +. +(30) +Observe that eq. (30) allows γ = −1. +The Γ(2+ ¯dj+α+β+(N+j−2)γ) term in the denominator of eq. (29) implies that ˚SN[F](α, β, γ) = +0 for all +(α, β, γ) ∈ ˚UN[F] ∩ {α + β + (N + j − 2)γ ∈ Z≤−2− ¯dj for some j ∈ {1, . . . , N}}. +(31) +When constructing the 3-point coefficients of the BPZ minimal models, this is one mechanism +preventing the fusion of (0, s)-primary fields (which are not included in the model) with the primary +fields that are included. In BPZ’s terminology, this is the truncation of the operator algebras, as +originally derived via the constraint of OPE associativity — see [BPZ84, §6][PM97, Chp. 7.3.2]. +In the case of the original Selberg integral, Theorem 1.2 describes precisely the singularities +and zeroes of the meromorphic continuation of the original integral, and SN;Reg = SN;Reg[1] is just +constant. The functions S2[F] and S2;Reg[F] are explored in §A. +The proof of the theorem above consists of three steps: +(1) The first step is the removal of the fictitious singularities of ˙SN[F](α, β, γ) only in γ (as +required e.g. in the Coulomb gas formalism with both kinds of screening charges). +The basic idea is to employ the relation – which can be found in a heuristic form in +[DF85a, Ap. A] – between the symmetrization of SN[F](α, β, γ) and the “DF-like” integral +IN[F](α, β, γ) = +� +□N +� N +� +j=1 +xαj +j (1 − xj)βj +� +× +� +� +1≤j 1 case, so a statement about the singularities +is the best we can do. +The simplex △N ⊂ RN can be thought of as a subset of +(C\{0, 1})N = (CP 1\{0, 1, ∞})N +(33) +via the embedding R �→ C �→ CP 1, and the rough idea of this step of the proof is to relate +the integrals above to the result of replacing △N with L⊠N△N for L one of the six linear +fractional transformations preserving CP 1\{0, 1, ∞}. Only three of these are essentially +different, and one of these three is just the identity and therefore uninteresting. The other +two integrals each have meromorphic extensions with different manifest singularities. Using +Proposition 4.2, these functions can be related to each other, and this can be used to +remove most of the apparent singularities that are not present in all three functions. Some +singularities are present in the relations between the integrals, and these cannot be removed. +(3) The third step is the application of Hartog’s theorem to remove the remaining removable +singularities, which now lie on a codimension two subvariety of C3. +This argument is carried out in §4.1. The version more relevant to [DF85a] (with the additional +steps needed) is in §4.2. +We call IN[F] a “DF-like” integral because similar integrals appear, albeit at a somewhat formal +level, in [DF85a]. A similar construction appears in [Fel89]. Let ΣT(N) denote the collection of +maximal collections I of pairs (x0, S) of x0 ∈ {0, 1} and nonempty subsets S ⊆ {1, . . . , N} such +that, given (x0, S), (x0, Q) ∈ I, either S ⊆ Q or Q ⊆ S. +Theorem 1.3. There exist entire functions IN;reg,I[F] : C2N+N(N−1)/2 +α,β,γ +→ C associated to the +I ∈ ΣT(N) such that +IN[F](α, β, γ) = +� +I∈ΣT(N) +� +� +(1,S)∈I +Γ +� +|S| + +� +j∈S +βj + 2 +� +j,k∈S,j 0} and −1/t serving as a bdf for {−∞} in {t < 0}. +2.1. The Associahedra Kℓ,m,n. We now define the mwc Kℓ,m,n for ℓ, m, n ∈ N not all zero. The +blowup procedure below is a generalization of that in [KT86a]. We begin with the set +△ℓ,m,n = {(x1, . . . , xN) ∈ RN : x1 ≤ · · · ≤ xℓ ≤ 0 +≤ xℓ+1 ≤ · · · ≤ xℓ+m ≤ 1 ≤ xℓ+m+1 ≤ · · · ≤ xN}, +(54) +where N = ℓ + m + n. This is a compact sub-mwc of RN. Naturally, +△ℓ,m,n ∼= △ℓ,0,0 × △0,m,0 × △0,0,n. +(55) +Also, △ℓ,0,0 ∼= △ℓ, △0,m,0 ∼= △m, and △0,0,n ∼= △n. +For example, in the case N = 2, we have six cases. These are △2,0,0, △0,2,0, △0,0,2, each of which +is diffeomorphic to the triangle △2, and △1,1,0, △1,0,1, △0,1,1, each of which is diffeomorphic to the +square □2. +If ℓ, n = 0, in which case m = N, then △ℓ,m,n is just the standard N-simplex △N. + +12 +ETHAN SUSSMAN +We call a subset I ⊆ Z/(N + 3)Z consecutive if it is of the form {k mod (N + 3), · · · , k + +κ mod (N + 3)Z} for some k ∈ Z/(N + 3)Z and κ ∈ N. (Thus, the empty set will not be considered +consecutive.) +We label the facets (of any codimension, possibly zero) of △ℓ,m,n using (unordered) partitions I +of Z/(N + 3)Z into consecutive subsets I, with no two of 0, ℓ + 1, ℓ + m + 2 ∈ Z/(N + 3)Z appearing +together in any element I ∈ I. Specifically, +f0,I = +� +(x1, . . . , xN) ∈ △ℓ,m,n : +� +I ∈ I ⇒ +� +j ∈ I ⇒ tj = ±∞ +(0 ∈ I) +j, k ∈ I ⇒ tj = tk +(0 /∈ I) +�� +, +(56) +where +• tj = xj for j = 1, . . . , ℓ, +• tℓ+1 = 0, +• tℓ+1+j = xℓ+j for j = 1, . . . , m, +• tℓ+m+2 = 1, and +• tℓ+m+2+j = xℓ+m+j for j = 1, . . . , n. +The dimension of f0,I is given by +dim f0,I = |I| − 3. +(57) +For notational simplicity, if I0 ⊆ I is I with the singletons removed, then we define fI0 = f0,I. Thus, +f∅ denotes the “bulk” of △ℓ,m,n, and the faces of △ℓ,m,n are of the form f{I} for I a consecutive +pair. Rephrasing eq. (57), +codim fI = +� +I∈I +(|I| − 1). +(58) +As a bdf of f{I} for I = {k mod Z/(N + 3)Z, k + 1 mod Z/(N + 3)} when k ∈ {1, . . . , N + 1}, we +can take +xf{I} = tk+1 − tk. +(59) +For the remaining two cases of F{0,1} (which only exists if ℓ ≥ 1) and f{N+2,N+3} (which only exists +if n ≥ 1), we can take xf{0,1} = −1/x1 and xf{N+2,N+3} = 1/xN. +Let Fℓ,m,n = Fℓ,m,n(△) denote the family of facets fI of △ℓ,m,n such that I = {I} for some +consecutive subset I ⊂ Z/(N + 3)Z of size |I| ≥ 2 not containing any two of 0, ℓ + 1, ℓ + m + 2. +In other words, Fℓ,m,n is the set of facets fI for I defining a partition of Z/(N + 3)Z into a single +interval of length at least two (not containing any two of 0, ℓ + 1, ℓ + m + 2) and a number of +singletons which are being omitted from the notation. +For each d ∈ {0, . . . , N}, let Fℓ,m,n;d denote the set of elements of Fℓ,m,n of dimension d. Then, +the mwc Kℓ,m,n is defined by the iterated blowup +Kℓ,m,n = [△ℓ,m,n; Fℓ,m,n,0; · · · ; Fℓ,m,n,N] = [· · · [△ℓ,m,n; Fℓ,m,n;0] · · · ; Fℓ,m,n;N]. +(60) +I.e., we first blow up the elements of the collection Fℓ,m,n;0 (which may be empty, e.g. if ℓ, m, n are +all nonzero), and then, proceeding from higher to lower codimension, iteratively blow up the lifts of +the facets in Fℓ,m,n;d (meaning the closures of the lifts of the interiors). +We should check that the blowup eq. (60) is well-defined, which concretely means that, for each +d, the blow-ups in the step in which we blow up the lifts of the elements of Fℓ,m,n;d commute. This +can be done via a somewhat tedious inductive argument, which we only sketch. +When the time has come to blow up the facets f ̸= f′ in the lifted Fℓ,m,n;d, their intersection is – +if nonempty – either a point (which we denote K0,0,0) or else an associahedron Kℓ∩,m∩,n∩ (which +will not change upon performing further blowups) of dimension < N, and a neighborhood thereof is +diffeomorphic to +[0, 1)N−d +t +× Kℓ∩,m∩,n∩ × [0, 1)N−d +t′ +, +(61) + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +13 +with f corresponding to {t = 0} and f′ corresponding to {t′ = 0}; the blowups of these two faces in +the product above commute, with the result being naturally diffeomorphic to +[[0, 1)N−d +t +, {0}] × Kℓ∩,m∩,n∩ × [[0, 1)N−d +t′ +; {0}]. +(62) +In order to prove the claimed decomposition, eq. (61), it is first useful to note when f ∩ f′ = ∅. If +I, I′ satisfy |I| = N − d + 1 = |I′| and I ∩ I′ ̸= ∅, then the corresponding facets +f = cl[△ℓ,m,n;Fℓ,m,n,0;··· ;Fℓ,m,n,d−1]f◦ +{I} +(63) +f′ = cl[△ℓ,m,n;Fℓ,m,n,0;··· ;Fℓ,m,n,d−1]f◦ +{I′} +(64) +of [△ℓ,m,n; Fℓ,m,n,0; · · · ; Fℓ,m,n,d−1] satisfy f ∩ f′ = ∅. Indeed, I ∩ I′ ̸= ∅ implies +f{I} ∩ f{I′} = f{I∪I′} ∈ Fℓ,m,n(△), +(65) +and since this is blown up in an earlier stage of the construction, f and f′ cannot intersect. +So, if our two facets f, f′ to be blown up have nonempty intersection, then they must be the +lifts of f{I} and f{I′} for I, I′ satisfying I ∩ I′ = ∅. The intersection f ∩ f′ lies in the preimage of +f{I} ∩ f{I′} = f{I,I′}. This facet of △ℓ,m,n is of the form △ℓ∩,m∩,n∩ for ℓ∩ + m∩ + n∩ = 2d − N ≥ 0. +As seen inductively, the lift of this facet after performing the blow-ups so far is Kℓ∩,m∩,n∩, although +this is not crucial for the proof that the construction is well-defined. Since this has dimension +2d − N, a neighborhood of this facet in our partially blown-up manifold automatically has the form +[0, 1)2N−2d × Kℓ∩,m∩,n∩, +(66) +so it just needs to be checked that f, f′ sit inside of this in the expected way. Indeed, the projections +of f, f′ onto the [0, 1)2N−2d factor are necessarily transversal. With the fact that they both have +dimension d, this implies that we can decompose +[0, 1)2N−2d = [0, 1)N−d +t +× [0, 1)N−d +t′ +(67) +such that f corresponds to {t = 0} and f′ corresponds to {t′ = 0}. This completes our sketch. +We now discuss the combinatorial structure of Kℓ,m,n. All of the faces of △ℓ,m,n are in Fℓ,m,n;N−1, +so every face of Kℓ,m,n is the front face of one of our blowups. So, the faces of Kℓ,m,n are in bijection +with the elements of Fℓ,m,n and thus with I as above. Such a subset is uniquely specified by its +endpoints j, k ∈ Z/(N + 3)Z, since only two consecutive subsets of Z/(N + 3)Z have the same +endpoints as I, namely I itself and I∁ ∪ {j, k}, and the latter contains two of 0, ℓ + 1, ℓ + m + 2. +Let Jℓ,m,n denote the set of unordered pairs {j, k} arising in this way. For {j, k} ∈ Jℓ,m,n, let +I(j, k) = I(k, j) denote the unique consecutive subset of Z/(N + 3)Z having these endpoints and +containing at most one member of {0, ℓ + 1, ℓ + m + 2}. For such j, k, let Fj,k = Fk,j denote the +corresponding face of Kℓ,m,n, and let xFj,k = xFk,j denote a bdf of that face constructed inductively +as in the introduction to this section. (Note that these bdfs may depend on the particular order in +which the elements of the Fℓ,m,n;d are blown up.) +There are 2−1N(N + 3) faces in Kℓ,m,n. +Example. Consider the case N = 2. Then, up to essential equivalence, the cases to consider are +K1,1,0 and K0,2,0. These are depicted in Figure 3. The mwc K1,1,0 is identical to A1,1,0; in §2.2 +we introduce notation for labeling the faces of the Aℓ,m,n, and this notation appears in Figure 4 +alongside that used for the Kℓ,m,n. We have introduced an additional notation for the faces of +Kℓ,m,n, indicating I in the subscript using the following conventions: +• The elements 0, ℓ + 1, ℓ + m + 2 ∈ Z/5Z are depicted using a ‘◦,’ and 0 is omitted if not +included in I. +• The other elements of Z/5Z are depicted using a ‘•.’ +• Except for 0, the elements of Z/5Z are depicted in order. If 0 is to be depicted, it is listed +either first or last. +The elements included in I are enclosed in parentheses. +■ + +14 +ETHAN SUSSMAN +F3,4 = F•◦(•◦) +F2,3 = F•(◦•)◦ +F0,1 = F(◦•)◦•◦ +F1,2 = F(•◦)•◦ +F1,3 = F(•◦•)◦ +x2 +w1 +F1,2 = F(◦•)•◦ +F3,4 = F◦•(•◦) +F2,3 = F◦(••)◦ +F1,3 = F(◦••)◦ +F2,4 = F◦(••◦) +1 − x2 +x1 +Figure 3. The associahedra K1,1,0 (left) and K0,2,0 (right), realized as polyhedra +roughly in accordance with the blowup procedure. In the first figure, the horizontal +axis is roughly w1 = 1/(1 − x1), increasing to the right. In the second figure, it is +just (roughly) x1. In both figures, the vertical axis is (roughly) x2. +F4,5 = F•◦•(◦•) = F{3},∅;1 +F0,1 = F(◦•)◦•◦• = F{1},∅;∞ +F1,5 = F◦•)◦•◦(• = F{1},{3};∞ +F2,3 = F•(◦•)◦• = F{2},∅;0 +x2 +y3 +w1 +F1,3 = F(•◦•)◦• = F{1},{2};0 +F3,4 = F•◦(•◦)• = F{2},{∅};1 +F3,5 = F•◦(•◦•) = F{2},{3};1 +F1,2 = F(•◦)•◦• = F{1},{∅};0 +F0,5 = F5,6 = F•◦•◦(•◦) = F∅,{3};∞ +Figure 4. The mwc K1,1,1, with labeled faces, realized as a polyhedron roughly in +accordance with the blowup procedure. Here w1 = 1/(1 − x1) and y3 = (x3 − 1)/x3. +The faces in the line of sight are F1,2 = F(•◦)•◦•, F1,3 = F(•◦•)◦•, F3,4 = F•◦(•◦)•, +F3,5 = F•◦(•◦•), and F0,5 = F•◦•◦(•◦). +Example. Consider the case N = 3. Then, up to essential equivalence, the cases to consider are +K1,1,1, K1,2,0, and K0,3,0. These are depicted in Figure 4, Figure 5, Figure 6. The mwc K1,1,1 is +identical to A1,1,1. +We have modified the “•” notation from the previous example and used it to label the faces in +the figures, alongside the notation used in the rest of this section. For instance, when considering +K0,3,0, “◦(• • •)◦” denotes {2, 3, 4} ⊂ Z/6Z. When considering K1,2,0, “◦(• ◦ •)• ◦” denotes {1, 2, 3}. +When considering K1,1,1, “•) ◦ • ◦ (•◦” denotes {0, 1, 5}. +■ +The Kℓ,m,n satisfy the following “universal property:” +• For any subsets S ⊆ {1, . . . , ℓ}, Q ⊆ {ℓ + 1, . . . , ℓ + m}, R ⊆ {ℓ + m + 1, . . . , N} that are not +all empty, let forg : △ℓ,m,n → △|S|,|Q|,|R| denote the forgetful map forgetting the variables xj +for j /∈ S ∪ Q ∪ R. Then, forg lifts to a smooth b-map [Mel] +forg : Kℓ,m,n → K|S|,|Q|,|R|. +(68) +Given any face F of K|S|,|Q|,|R|, forg +∗xF vanishes to first order at each face in forg +−1(F). +This can be proven by inducting on the number of blowups. + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +15 +Figure 5. The mwc K1,2,0, with +labeled faces, realized as a polyhe- +dron roughly in accordance with +the blowup procedure. As above, +w1 = 1/(1 − x1). +The faces +in the line of site are F1,2 = +F(•◦)••◦, F1,3 += F(•◦•)•◦, and +F4,5 = F•◦•(•◦). +F3,4 = F•◦(••)◦ +F2,3 = F•(◦•)•◦ +F0,1 = F(◦•)◦••◦ +F3,5 = F•◦(••◦) +F1,4 = F(•◦••)◦ +F2,4 = F•(◦••)◦ +x2 +x3 − x2 +w1 +F4,5 = F•◦•(•◦) +F1,2 = F(•◦)••◦ +F1,3 = F(•◦•)•◦ +Figure 6. The mwc K0,3,0, with +labeled faces, realized as a polyhe- +dron roughly in accordance with +the blowup procedure. The faces +in the line of sight are F4,5 = +F◦••(•◦) and F3,5 = F◦•(••◦). Cf. +[KT86a, Fig. 5.2], where the full +blowup procedure is depicted. +F1,4 = F(◦•••)◦ +F3,4 = F◦•(••)◦ +F1,3 = F(◦••)•◦ +F2,4 = F◦(•••)◦ +F1,2 = F(◦•)••◦ +F2,3 = F◦(••)•◦ +F2,5 = F◦(•••◦) +x2 − x1 +x3 − x2 +x1 +F4,5 = F◦••(•◦) +F3,5 = F◦•(••◦) +Proposition 2.1. Suppose that µ ∈ C∞(△ℓ,m,n; Ω△ℓ,m,n) is a strictly positive smooth density on +△ℓ,m,n. Then, the lift of µ to Kℓ,m,n has the form +� +� +{j,k}∈Jℓ,m,n +x|j−k|−1 +Fj,k +� +µ +(69) +for a strictly positive µ ∈ C∞(Kℓ,m,n; ΩKℓ,m,n). Here, for j, k ∈ Z/(N + 3)Z, we use the notation +|j − k| = min{|j0 − k0|, |k0 − j0| : j0, k0 ∈ Z : j0 ≡ j mod (N + 3), k0 ≡ k mod (N + 3)}. +■ +In the product, each unordered pair is counted only once. +Proof. We recall the following lemma: +• Suppose that M is a mwc and µ ∈ C∞(M; ΩM) is a strictly positive smooth density on M. +Then, if f is a facet of M of codimension d ∈ N+, the lift of µ to [M; f] has the form xd−1 +ff +ν +and ν a strictly positive smooth density on [M; f]. +Working in local coordinates, this follows from the case of blowing up a facet in [0, ∞)N. In this +case, we can use cylindrical coordinates (that is, spherical coordinates if the facet we are blowing up +is the corner). The result follows from the form of the Lebesgue measure in cylindrical coordinates. +The proposition follows from an inductive application of the lemma, once we note that |j − k| is +the codimension of Fj,k. +□ +Proposition 2.2. The Lebesgue measure on RN, which defines a strictly positive smooth density +on △◦ +ℓ,m,n, has the form +� +ℓ +� +j=1 +(1 − xj)2�� +N +� +j=ℓ+m+1 +x2 +j +� +µ +(70) +for µ ∈ C∞(△ℓ,m,n; Ω△ℓ,m,n) a strictly positive smooth density on △ℓ,m,n. +■ + +16 +ETHAN SUSSMAN +Proof. It is the case that the 1-form dxj ∈ Ω1△◦ +ℓ,m,n defines an extendable 1-form on △ℓ,m,n if +j ∈ {ℓ + 1, · · · , ℓ + m}, and the extension is nonvanishing. The same holds for +• dwj = (1 − xj)−2 dxj for wj = 1/(1 − xj) if j ∈ {1, . . . , ℓ} and +• dyj = x−2 +j +dxj for yj = (xj − 1)/xj if j ∈ {ℓ + m + 1, · · · , N}, +since △ℓ,m,n is a submanifold of RN. The µ in eq. (70) can therefore be taken to be |dw1 ∧ · · · ∧ +dwℓ ∧ dxℓ+1 ∧ · · · ∧ dxℓ+m ∧ dyℓ+m+1 ∧ · · · ∧ dyN|, which lies in C∞(△ℓ,m,n; Ω△ℓ,m,n) and is strictly +positive. +□ +We now record the results of lifting the factors xi, 1 − xi, and xj − xk comprising the Selberg +integrand to Kℓ,m,n. Beginning with the first two cases: +• If i ∈ {1, . . . , ℓ}, then +−xi ∈ +� +N+3 +� +j=ℓ+m+3 +ℓ +� +k=i +x−1 +Fj,k +�� +i� +j=1 +ℓ+m+1 +� +k=ℓ+1 +xFj,k +� +C∞(Kℓ,m,n; R+), +(71) +(1 − xi) ∈ +� +N+3 +� +j=ℓ+m+3 +ℓ +� +k=i +x−1 +Fj,k +� +C∞(Kℓ,m,n; R+). +(72) +• If i ∈ {ℓ + 1, . . . , ℓ + m}, then +xi ∈ +� ℓ+1 +� +j=1 +ℓ+m+1 +� +k=i+1 +xFj,k +� +C∞(Kℓ,m,n; R+), +(73) +(1 − xi) ∈ +� +i+1 +� +j=ℓ+2 +N+2 +� +k=ℓ+m+2 +xFj,k +� +C∞(Kℓ,m,n; R+). +(74) +• If i ∈ {ℓ + m + 1, . . . , N}, then +xi ∈ +� +i+2 +� +j=ℓ+m+3 +ℓ +� +k=0 +x−1 +Fj,k +� +C∞(Kℓ,m,n; R+), +(75) +−(1 − xi) ∈ +� +i+2 +� +j=ℓ+m+3 +ℓ +� +k=0 +x−1 +Fj,k +�� ℓ+m+2 +� +j=ℓ+2 +N+2 +� +k=i+2 +xFj,k +� +C∞(Kℓ,m,n; R+). +(76) +If N = 1, then these are all trivial to prove. By applying the universal property of the associahedra, +the N ≥ 2 case follows from the N = 1 case. +In a similar manner, by working out the case of K0,2,0 in detail and applying the universal +property, we get, for k > j: +• If j, k ∈ {ℓ + 1, . . . , ℓ + m}, then +(xk − xj) ∈ +� ℓ+1 +� +j0=1 +ℓ+m+1 +� +k0=k+1 +xFj0,k0 +�� +j+1 +� +j0=ℓ+2 +N+2 +� +k0=k+1 +xFj0,k0 +� +C∞(Kℓ,m,n; R+). +(77) +Indeed, in the case of ℓ, n = 0 and m = 2, this says that x2 − x1 ∈ xF1,3xF2,3xF2,4C∞(K0,2,0; R+). +Indeed, if we construct K0,2,0 by first blowing up F1,3 and then blowing up F2,4, we get +xF1,3 = x2, +xF2,3 = +x2 − x1 +2x2 − x2 +2 − x1 +, +xF2,4 = 2x2 − x2 +2 − x1 +x2 +, +(78) +so that xF1,3xF2,3xF2,4 = x2 − x1, on the nose. On the other hand, if we reverse the order of the +blowups, then we get +xF1,3 = x2 − x2 +1 +1 − x1 +, +xF2,3,0 = x2 − x1 +x2 − x2 +1 +, +xF2,4 = 1 − x1, +(79) + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +17 +so we still get xF1,3xF2,3xF2,4 = x2 − x1. +From this, we can deduce the following. +• If j, k ∈ {1, . . . , ℓ}, then, in terms of wi = −xi/(1−xi), (xk−xj) = (1−wj)−1(1−wk)−1(wj − +wk), so, +(xk − xj) ∈ +� +ℓ +� +j0=j +N+3 +� +k0=ℓ+m+3 +x−1 +Fj0,k0 +�� +j� +j0=1 +ℓ+m+1 +� +k0=k +xFj0,k0 +� +C∞(Kℓ,m,n; R+). +(80) +• If j, k ∈ {ℓ + m + 1, . . . , N}, then, in terms of yi = 1/xi, (xk − xj) = y−1 +j y−1 +k (yj − yk), so +(xk − xj) ∈ +� +j+2 +� +j0=ℓ+2 +N+2 +� +k0=k+2 +xFj0,k0 +�� +k+2 +� +j0=ℓ+m+3 +ℓ +� +k0=0 +x−1 +Fj0,k0 +� +C∞(Kℓ,m,n; R+). +(81) +The next three follow from the K1,1,0, K1,0,1, and K0,1,1 cases. We illustrate the K1,1,0 case, and +the others are similar. +• If j ∈ {1, . . . , ℓ} and k ∈ {ℓ + 1, . . . , ℓ + m}, then (xk − xj) = (1 − wj)−1(wj + xk − xkwj), so +(xk − xj) ∈ +� +ℓ +� +j0=j +N+3 +� +k0=ℓ+m+3 +x−1 +Fj0,k0 +�� +j� +j0=1 +ℓ+m+1 +� +k0=k+1 +xFj0,k0 +� +C∞(Kℓ,m,n; R+). +(82) +In the case ℓ, m = 1, n = 0, this says that (x2 − x1) ∈ x−1 +F1,5xF1,3C∞(K1,1,0; R+). Indeed, +the bdf xF1,3 of F1,3 in K1,1,0 is defined by +xF1,3 = (1 − w1) + x2 = − +x1 +1 − x1 ++ x2, +(83) +and xF1,5 = xF0,1 = w1 = 1/(1 − x1). So, +x−1 +F1,5xF1,3 = x2 − x1 − x1x2. +(84) +The supposed C∞(K1,1,0; R+) term above is therefore (x2 − x1)(x2 − x1 − x1x2)−1 = +(1 − x2x1/(x2 − x1))−1. One way (besides checking in a system of local coordinate charts) +to see that this is smooth (and positive) on K1,1,0 is the identity +− +x2x1 +x2 − x1 += +xF1,2xF1,3xF2,3 +xF1,2 + xF2,3xF0,1 +. +(85) +The faces F0,1, F2,3 are disjoint from F1,2 (see Figure 3), so the denominator on the right-hand +side of eq. (85) is nonvanishing, so the quotient is indeed smooth. +Likewise: +• If j ∈ {ℓ + 1, . . . , ℓ + m} and k ∈ {ℓ + m + 1, . . . , N}, then (xk − xj) = y−1 +k (1 − xjyk), so +(xk − xj) ∈ +� +j+1 +� +j0=ℓ+2 +N+2 +� +k0=k+2 +xFj0,k0 +�� +ℓ +� +j0=0 +k+2 +� +k0=ℓ+m+3 +x−1 +Fj0,k0 +� +C∞(Kℓ,m,n; R+). +(86) +• If j ∈ {1, . . . , ℓ} and k ∈ {ℓ + m + 1, . . . , N}, then (xk − xj) = y−1 +k (1 − wj)−1(1 − wj + wjyk), +so +(xk − xj) ∈ +� +ℓ +� +j0=j +N+3 +� +k0=k+3 +x−1 +Fj0,k0 +�� +ℓ +� +j0=0 +k+2 +� +k0=ℓ+m+3 +x−1 +Fj0,k0 +� +C∞(Kℓ,m,n; R+). +(87) +We associate to each face F• ∈ F(Kℓ,m,n) an affine functional +ρ• : C2N+N(N−1)/2 ∋ (α, β, γ) �→ ρ•(α, β, γ) ∈ C. +(88) +Suppose that we are given some α, β ∈ CN and γ = {γj,k = γk,j}1≤jk +γj,k. +(122) +• For S ⊆ {ℓ + 1, . . . , ℓ + m} and Q ⊆ {ℓ + m + 1, . . . , N}, +ϱS,Q;1 = |S| + |Q| − 1 + +� +j∈S∪Q +βj + 2 +� +j,k∈S∪Q +j>k +γj,k. +(123) +• For S ⊆ {ℓ + m + 1, . . . , N} and Q ⊆ {1, . . . , ℓ}, +ϱS,Q;∞ = −|S| − |Q| − 1 − +� +j∈S∪Q +αj − +� +j∈S∪Q +βj − 2 +� +j>k +j∈S∪Q or k∈S∪Q +γj,k. +(124) +Then, letting ∆ ⊂ □ℓ,m,n be defined by ∆ = ∪3 +•=1 ∪j̸=k,j,k∈I• {xj = xk}: +Proposition 2.7. Given any α, β ∈ CN and γ = {γj,k = γk,j}1≤j 1. +This is certainly true for p ∈ □◦ +ℓ,m,n, as dyk,j ∝ dxk − dxj on □◦ +ℓ,m,n ∩ Hj,k, where the coefficient +of proportionality is positive. Indeed, by the results above, +xk − xj = fj,kyk.j +(133) +for some fj,k ∈ C∞(Aℓ,m,n; R≥0) that is nonvanishing in the interior, so +dyk,j = f−1 +j,k (dxk − dxj) − f−1 +j,k yk,j dfj,k +(134) +in □◦ +ℓ,m,n, which is equal to f−1 +j,k (dxk − dxj) on Hj,k ∩ □◦ +ℓ,m,n, as claimed. This argument does not +work for p ∈ ∂Aℓ,m,n, as fj,k may vanish there. +A homogeneity argument can be used to show that, for any p ∈ ∂Aℓ,m,n, there exists a tubular +neighborhood T : U → U0 of a neighborhood U0 ⊂ F0 of p in F0, where F0 is the smallest facet +containing p, such that the intersections U ∩ P of this neighborhood with the P ∈ P are all vertical +subsets, meaning of the form T −1(B) for some B ⊂ U0. This implies that if the 1-form above +vanishes at p, then it also vanishes on the fiber of the tubular neighborhood over p and hence +somewhere in □◦ +ℓ,m,n ∩Hj,k∋p Hj,k. +□ +We illustrate the preceding argument with an example. Consider the case when the only one +of ℓ, m, n that is nonzero is m, and consider p ∈ ∩Hj,k∈PHj,k. The set ∩Hj,k∈PHj,k ⊂ A0,N,0 (the +“small diagonal”) is a p-submanifold located away from all but the very first two blowups involved +in the construction of A0,N,0. Near this p-submanifold, A0,N,0 is canonically diffeomorphic to +[□0,N,0, {0}, {1}], the result of blowing up two opposite corners of the N-cube. We consider the +situation near the blowup of +{0} = F∅,∅,{1,...,N},∅,∅,∅, +(135) +and the situation near the opposite corner is similar. In the interior of the front face of that blowup, +we can use ϱ = x1 as a bdf and coordinates ˆxj = xj/x1 for j = 2, . . . , N as parametrizing the face +itself. In terms of these coordinates, +∩Hj,k∈P Hj,k = {ˆx2, · · · , ˆxN = 1} +(136) +locally, and, for 1 ≤ j < k ≤ N, we can write yk,j = ˜yk,jC∞(A0,N,0; R+) for ˜yk,j given locally by +˜yk,j = ϱ−1(xk − xj) = ˆxk − ˆxj, where ˆx1 = 1. This satisfies +d˜yk,j = +� +dˆxk +(j = 1), +dˆxk − dˆxj +(j ̸= 1). +(137) +So, if λk,j ≥ 0, then � +1≤j 0. We apply abbreviations for +Dotsenko–Fateev-like integrals that are analogous to those used for Selberg-like integrals. +Let Wℓ,m,n[•] denote the set of (α, β, γ) ∈ C3 such that (α, β, γ) ∈ Vℓ,m,n[•] holds when α = α, +β = β, and γ = γ. Let W DF0 +ℓ,m,n[F] denote the set of (α−, α+, β−, β+, γ−, γ0, γ+) ∈ C7 such that +(αDF0, βDF0, γDF0) ∈ Vℓ,m,n[F]. Let +IDF0;S +ℓ,m,n [F](α−, α+, β−, β+, γ−, γ0, γ+) = Iℓ,m,n[F](αDF0, βDF0, γDF0). +(152) +This section is split into many short subsections. The general analytic framework in which the +extension is performed is discussed in §3.1, and the specific application to Selberg-like integrals +is contained in §3.2. We prove a family of identities relating Iℓ,m,n, Iℓ,n,m, In,ℓ,m, · · · in §3.3. As +preparation for our discussion of singularity removal in the DF-symmetric case, we discuss in §3.4 an +alternative regularization procedure suggested by Dotsenko–Fateev that works for some suboptimal +range of parameters (in particular allowing γ0 = −1, but not allowing the real parts of α−, α+, β−, β+ +to be too negative). The Iℓ,m,n are related to the Selberg-like integrals Sℓ,m,n in §3.5. A key lemma +used in the removal of singularities is in §3.6. This lemma is a generalization of a result proven by +Aomoto [Aom87] and discussed heuristically by Dotsenko–Fateev [DF85a]. For completeness and + +28 +ETHAN SUSSMAN +later convenience, we record in §3.7 the symmetric and DF-symmetric cases of the results in §3.2 +regarding the Dotsenko–Fateev integrals. +Let Sℓ,m,n = Sℓ × Sm × Sn, which we consider as the subgroup of SN leaving each of I1, I2, I3 +invariant, where I1, I2, I3 are as in the previous section. Given a permutation σ ∈ Sℓ,m,n, let +Iℓ,m,n[F](α, β, γ)σ = +� +□ℓ,m,n +� N +� +i=1 +|xi|αi|1−xi|βi +�� +� +1≤j −1, +for which the right-hand side of eq. (160) is a well-defined integral. +Let +O(Ck × Cκ; C∞ +c (Rk +t1,··· ,tk; E′(RN−k +tk+1,··· ,tN ))) = +� +m,s∈R +O(Ck × Cκ; C∞ +c (Rk +t1,··· ,tk; Hm,s +sc,c (RN−k))), (162) +endowed with the strongest topology such that the inclusions +O(Ck × Cκ; C∞ +c (Rk +t1,··· ,tk; Hm,s +sc,c (RN−k))) �→ O(Ck × Cκ; C∞ +c (Rk +t1,··· ,tk; E′(RN−k +tk+1,··· ,tN ))) +(163) +are all continuous. + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +29 +Proposition 3.1. Suppose that, for each ρ ∈ Ck and δ ∈ Cκ, we are given some ψ(−; ρ, δ) as in +eq. (159), depending entirely on ρ, δ in the sense that the map +Ck × Cκ ∋ (ρ, δ) �→ ψ ∈ C∞ +c (Rk; E′(RN−k)) +(164) +is entire, i.e. lies in O(Ck × Cκ; C∞ +c (Rk +t1,··· ,tk; E′(RN−k +tk+1,··· ,tN ))). Define +IN,k,κ[ψ](ρ, δ) = IN,k,κ[ψ(ρ, δ)](ρ). +(165) +Then, the function JN,k,κ[ψ] defined by +IN,k,κ[ψ](ρ, δ) = +� +k +� +j=1 +Γ(ρj + 1) +� +JN,k,κ[ψ](ρ, δ) +(166) +extends to an entire function on Ck +ρ × Cκ +δ. Moreover, the function +JN,k,κ[−] : O(Ck × Cκ; C∞ +c (Rk +t1,...,tk; E′(RN−k +tk+1,...,tN ))) ∋ ψ �→ JN,k,κ[ψ] ∈ O(Ck × Cκ) +(167) +is continuous. +■ +Cf. [GS64][Var95, Lemma 10.7.9]. +Proof. The k = 0 case is essentially tautologous. +We now proceed inductively on k. Let k ≥ 1, and assume that we have proven the result for +smaller k. Expanding ψ in Taylor series around t1 = 0, there exist +ψ(j) ∈ O(Ck × Cκ; C∞ +c (Rk−1 +t2,...,tk; E′(RN−k +tk+1,...,tN ))) +(168) +E(j) ∈ O(Ck × Cκ; C∞(Rt1; C∞ +c (Rk−1 +t2,...,tk; E′(RN−k +tk+1,...,tN )))) +(169) +such that +ψ(t1, · · · , tN; ρ, δ) = +J +� +j=0 +tj +1ψ(j)(t2, · · · , tN; ρ, δ) + tJ+1 +1 +E(J+1)(t1, · · · , tN; ρ, δ) +(170) +for all J ∈ N. Let K ⊂ Ck+κ be an arbitrary nonempty compact set. There exists some T > 0 +such that supp ψ(−; ρ, δ) ⊆ {−T ≤ t1 ≤ T} for all (ρ, δ) ∈ K. Then, if ℜρ1, · · · , ℜρk > −1 and +(ρ, δ) ∈ K, +IN,k,κ[ψ](ρ, δ) = +J +� +j=0 +IN−1,k−1,κ[ψ(j)]( ˆρ, δ) +ρ1 + j + 1 +T ρ1+j+1 + +� T +0 +tρ1+J+1 +1 +IN−1,k−1[E(J+1)(t1, −)]( ˆρ, δ) dt1, +(171) +where ˆρ = (ρ2, · · · , ρk). We now define JN,k,κ[ψ](ρ, δ) : {ℜρ1 > −2 − J} × Cκ +δ → C by +JN,k,κ[ψ](ρ, δ) = +1 +Γ(ρ1 + 1) +J +� +j=0 +JN−1,k−1,κ[ψ(j)]( ˆρ, δ) +ρ1 + j + 1 +T ρ1+j+1 ++ +1 +Γ(ρ1 + 1) +� T +0 +tρ1+J+1 +1 +JN−1,k−1[E(J+1)(t1, −)]( ˆρ, δ) dt1. +(172) +By construction, eq. (166) holds when ℜρ1, · · · , ℜρk > −1. +By the continuity clause of the +inductive hypothesis, the integral in eq. (171) is a well-defined Bochner integral, for each individual +(ρ, δ) ∈ {ℜρ1 > −2 − J} × Cκ. Moreover, the right-hand side of eq. (172) depends analytically on +(ρ, δ) ∈ {ℜρ1 > −1 − J} × Cκ. By the inductive hypothesis, this is true for the sum on the first line +(multiplied by Γ(ρ1 + 1)−1), as the simple poles due to the factors of 1/(ρ1 + j + 1) cancel with those + +30 +ETHAN SUSSMAN +of Γ(ρ1 + 1). So, in order to show that the whole right-hand side of eq. (172) depends analytically +on (ρ, δ) in this domain, we can show it for +� T +0 +tρ1+J+1 +1 +JN−1,k−1[E(J+1)(t1, −)]( ˆρ, δ) dt1. +(173) +Justifying differentiation under the integral sign, this is a C1-function of (ℜρ1, ℑρ1) ∈ {(u, v) ∈ +R2, u > −1 − J}, and it satisfies the Cauchy-Riemann equations, so it follows that the integral in +eq. (173) is analytic as a function of ρ1 ∈ {ℜρ1 > −1 − J}, for each fixed ˆρ ∈ Ck−1 and δ ∈ Cκ. +Adding ˆρ, δ-dependence does not change the argument. +So, the formula eq. (171) yields an analytic extension of IN,k,κ, and we can take a union over all +J ∈ N, the various partial extensions agreeing with each other via analyticity. The continuity clause +is evident from the formula eq. (172) and the inductive hypothesis. +□ +Consequently, IN,k,κ[ψ] admits an analytic continuation ˙IN,k,κ[ψ] : Ω → C to the set Ω = +(Ck +ρ\ � +j∈{1,...,k}{ρj ∈ Z≤−1}) × Cκ +δ, and the map +˙IN,k,κ[−] : O(Ck × Cκ; C∞ +c (Rk +t1,...,tk; E′(RN−k +tk+1,...,tN ))) ∋ ψ �→ ˙IN,k,κ[ψ] ∈ O(Ω) +(174) +is continuous. +If P is a consistently orientable collection of codimension-1 interior p-submanifolds on a mwc M, +then, letting xF for F ∈ F(M) denote a bdf of the face F, it is the case that, for any δ ∈ CP and +ρ ∈ CF(M), the product +ω(ρ, δ) = +� +F∈F(M) +xρF +F +� +P∈P +(yP + i0)δP : ˙C∞ +c (M; ΩM) ∋ µ �→ lim +ε→0+ +� +M +� +F∈F(M) +� +P∈P +xρF +F (yP + iε)δP µ +(175) +is a well-defined classical distribution on M, where {yP }P∈P are consistently oriented defining +functions. (Here, ˙C∞ +c (M; ΩM) is the set of compactly supported smooth densities on M that are +Schwartz at each boundary hypersurface.) That is, ω is an extendable distribution on M and defines, +for small ϵ > 0, an element of C∞([0, ϵ)xF; D′(F)) for each face F. We write the right-hand side of +eq. (175) as +� +M ω(ρ, δ)µ. More generally, if µ ∈ C∞ +c (M; ΩM), then +lim +ε→0+ +� +M +� +F∈F(M) +� +P∈P +xρF +F (yP + iε)δP µ = +� +M +ω(ρ, δ)µ +(176) +exists whenever ρF > −1 for all F ∈ F(M). +Let κ ∈ N. Suppose that we are given some entire family +µ : CF(M) × CP × Cκ → C∞ +c (M; ΩM) +(177) +of compactly supported smooth densities µ(ρ, δ, λ) ∈ C∞ +c (M; ΩM) on M. Consider the function +I[M, µ](ρ, δ, λ) : {(ρ, δ, λ) ∈ CF(M) × CP × Cκ : ρF > −1 for all F ∈ F(M)} → C +(178) +defined by +I[M, µ](ρ, δ, λ) = +� +M +ω(ρ, δ)µ(ρ, δ, λ). +(179) +Proposition 3.2. Suppose that, for some N0 ∈ N+, we are given an affine map L = (L1, L2, L3) : +CN0 +ϱ +→ CF(M) +ρ +× CP +δ × Cκ +λ such that, for each F ∈ F(M), the affine functional +(L•)F : CN0 ∋ ϱ �→ (L1ϱ)F ∈ C +(180) +is nonconstant. Then, there exist entire functions Ireg,f[M, µ](L•) : CN0 +ϱ +→ C associated to the +minimal facets f of M such that +I[M, µ](Lϱ) = +� +f +� +� +F∈F(M),F⊇f +Γ(1 + (Lϱ)F) +� +Ireg,f[M, µ](Lϱ) +(181) + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +31 +for all ϱ ∈ CN0 for which the left-hand side is defined by eq. (179). +■ +Proof. Pass to a partition of unity subordinate to a system of coordinate charts on M and apply +Proposition 3.1 locally. +□ +Then, letting L = {(L•)F : F ∈ F(M)}, +� � +Λ∈L +1 +Γ(1 + Λ(ϱ))#Λ +� +I[M, µ](Lϱ) +(182) +extends to an entire function CN0 +ϱ +→ C, where #Λ ∈ N+ is the maximum size of any set S ⊆ F(M) +of faces such that ∩F∈SF ̸= ∅ and (L•)F = Λ for all F ∈ S. Indeed, this follows from the proposition +above since, for each facet f, +� � +Λ∈L +1 +Γ(1 + Λ(ϱ))#Λ +� +� +F∈F(M),F⊇f +Γ(1 + (Lϱ)F) +(183) +is entire. +3.2. Specialization to Generic Selberg- and DF-like Integrals. We now apply the results of +the previous section to the specific case of the integrals eq. (144) and eq. (150). Fix ℓ, m, n ∈ N +satisfying ℓ + m + n = N, N ∈ N+. +3.2.1. The Selberg case. Fix F ∈ AD(Kℓ,m,n). Let ρj,k = ρj,k(α, β, γ) be defined by eq. (89), eq. (90), +eq. (91), and eq. (92). Recalling the definition of T(ℓ, m, n) given in §2.1: +Proposition 3.3. There exist entire functions +Sℓ,m,n;reg,I,{dF}F∈F(Kℓ,m,n)[F] : C2N+N(N−1)/2 +α,β,γ +→ C, +(184) +associated to pairs of minimal facets f of Kℓ,m,n and collections {dF}F∈F(ℓ,m,n) ∈ D of weights such +that +Sℓ,m,n[F](α, β, γ) = +� +I∈T(ℓ,m,n) +� +{dF}F∈F(Kℓ,m,n)∈D +� +� +I(j,k)∈I +Γ(1 + ρj,k + dFj,k) +� +× Sℓ,m,n;reg,I,{dF}F∈F(Kℓ,m,n)[F](α, β, γ) +(185) +for all (α, β, γ) ∈ Ωℓ,m,n[D]. +■ +Proof. This is a corollary of Proposition 2.3 and Proposition 3.2, using the fact that the minimal +facets of Kℓ,m,n are in correspondence with the elements of T(ℓ, m, n) via eq. (98). +□ +Consequently, there exists an analytic extension ˙Sℓ,m,n[F] : +˙Ωℓ,m,n[D] → C of Sℓ,m,n[F] : +Ωℓ,m,n[D] → C, where +˙Ωℓ,m,n[D] = C2N+N(N−1)/2 +α,β,γ +�� +� +{dF}F∈F(Kℓ,m,n)∈D +� +� +{j,k}∈Jℓ,m,n +{ρj,k + dFj,k ∈ Z≤−1} +�� +. +(186) +This is an open and connected subset of full measure; namely, it is the complement of a locally finite +collection of complex (affine) hyperplanes in C2N+N(N−1)/2. In the case m = N, this agrees with +eq. (13). +As a corollary of the previous proposition, there exists an entire function +Sℓ,m,n;reg[F] : C2N+N(N−1)/2 +α,β,γ +→ C +(187) +such that +Sℓ,m,n[F](α, β, γ) = +� +� +{j,k}∈Jℓ,m,n +Γ(1 + ρj,k + dmin +Fj,k) +� +Sℓ,m,n;reg[F](α, β, γ) +(188) + +32 +ETHAN SUSSMAN +holds for all (α, β, γ) ∈ Ωℓ,m,n[D], where dmin +F += min{dF : {dF0}F0∈F(Kℓ,m,n) ∈ D}. +The case of the proposition above where m = N gives Theorem 1.1. Indeed, if F ∈ C∞(△N), F +lifts to an element of C∞(K0,N,0), and the orders of vanishing of F at the relevant facets of △N +imply the same order of vanishing at the lift in K0,N,0. +3.2.2. The Dotsenko–Fateev case. Fix F ∈ AD(Aℓ,m,n), where D is now a collection of orders for +the faces of Aℓ,m,n. Recalling the definition of ΣT(ℓ, m, n) given in §2.2: +Proposition 3.4. There exist entire functions +Iℓ,m,n;reg,I,{dF}F∈F(Aℓ,m,n)[F] : C2N+N(N−1)/2 +α,β,γ +→ C +(189) +associated to the I ∈ ΣT(ℓ, m, n) such that +Iℓ,m,n[F](α, β, γ) = +� +I∈ΣT(ℓ,m,n) +� +{dF}F∈F(Aℓ,m,n)∈D +�� +� +(x0,S)∈I +Γ(1 + ϱS,Q;x0 + dFS,Q;x0) +� +× Iℓ,m,n;reg,I{dF}F∈F(Aℓ,m,n)[F](α, β, γ) +� +(190) +for all (α, β, γ) ∈ Vℓ,m,n[D], where we have abbreviated I1 ∩ S, I2 ∩ S, and I3 ∩ S as S or Q as +appropriate. +■ +Proof. Follows from Proposition 2.7 and Proposition 3.2. +□ +Consequently, Iℓ,m,n[F] : Vℓ,m,n[D] → C admits an analytic continuation ˙Iℓ,m,n[F] : ˙Vℓ,m,n[D] → C, +where +˙Vℓ,m,n[D] = C2N+N(N−1)/2 +α,β,γ +� +� +{dF}F∈F(Aℓ,m,n) +� +x0∈{0,1,∞} +� +S,Q +{ϱS,Q;x0 + dFS,Q;x0 ∈ Z≤−1}. +(191) +Note that ˙Vℓ,m,n[F] ⊇ ∩σ∈Sℓ,m,n ˙Ωℓ,m,n[F]σ, as every functional (α, β, γ) �→ ϱS,Q;x0(α, β, γ) has the +form ρj,k(ασ, βσ, γσ) for some σ ∈ Sℓ,m,n and {j, k} ∈ Jℓ,m,n. +As a corollary of the previous proposition, there exists a function +Iℓ,m,n;reg[F] : C2N+N(N−1)/2 +α,β,γ +→ C +(192) +such that, for all (α, β, γ) ∈ Vℓ,m,n[D], +Iℓ,m,n[F](α, β, γ) = +� +� +x0∈{0,1,∞} +� +S,Q +Γ(1 + ϱS,Q;x0 + dmin +FS,Q;x0) +� +Iℓ,m,n;reg[F](α, β, γ), +(193) +where S, Q vary over subsets of I1 = {1, . . . , ℓ}, I2 = {ℓ+1, . . . , ℓ+m}, and I3 = {ℓ+m+1, . . . , N}, +depending on x0. +The m = N case of the previous proposition is Theorem 1.3. +3.3. A simple identity. For each permutation σ of {0, 1, ∞}. Let +(ℓ′, m′, n′) = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +(ℓ, m, n) +(σ = 1), +(n, m, ℓ) +(σ = (0 1)), +(ℓ, n, m) +(σ = (0 ∞)), +(m, ℓ, n) +(σ = (1 ∞)), +(n, ℓ, m) +(σ = (0 1 ∞)), +(m, n, ℓ) +(σ = (1 0 ∞)). +(194) +In other words, if the elements of {0, 1, ∞} label the vertices of a triangle and the edges are labeled +accordingly – that is, ‘ℓ’ labels the edge between 0 and ∞, ‘m’ labels the edge between 0 and 1, and + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +33 +‘n’ labels the edge between 1 and ∞ – then (ℓ′, m′, n′) is the permutation of (ℓ, m, n) resulting from +applying σ to the triangle and reading off the new labels. +Let Tσ : CP 1 → CP 1 denote the unique automorphism acting on {0, 1, ∞} via σ. These are +T1(z) = z, +T(0 1)(z) = 1 − z, +T(0 ∞)(z) = 1 +z , +T(1 ∞)(z) = − +z +1 − z , +(195) +T(0 1 ∞)(z) = +1 +1 − z , +T(0 ∞ 1)(z) = z − 1 +z +. +(196) +Let σparam : C2N+N(N−1)/2 → C2N+N(N−1)/2 denote the affine map +σparam(α, β, γ) = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +(α, β, γ) +(σ = 1), +(β, α, γ) +(σ = (0 1)), +(−2 − α − β − 2γ⌟1, β, γ) +(σ = (0 ∞)), +(α, −2 − α − β − 2γ⌟1, γ) +(σ = (1 ∞)), +(−2 − α − β − 2γ⌟1, α, γ) +(σ = (0 1 ∞)), +(β, −2 − α − β − 2γ⌟1, γ) +(σ = (1 0 ∞)), +(197) +where γ⌟1 ∈ CN has jth component � +k̸=j γj,k. +Let rev ∈ Sℓ′,m′,n′ denote the permutation +that reverses the order of the elements in each of the sets {1, . . . , ℓ′}, {ℓ′ + 1, . . . , ℓ′ + m′}, and +{ℓ′ + m′ + 1, . . . , N}. Let |σ| denote the order of σ. +Proposition 3.5. If (α, β, γ) ∈ ˙Vℓ,m,n, then σparam(α, β, γ) ∈ ˙Vℓ′,m′,n′, and if (α, β, γ) ∈ ˙Ωℓ,m,n, +then σparam(α, β, γ) ∈ ˙Ωrev|σ| +ℓ′,m′,n′, and +˙Iℓ,m,n[1](α, β, γ) = ˙Iℓ′,m′,n′[1](σparam(α, β, γ))rev|σ|, +˙Sℓ,m,n[1](α, β, γ) = ˙Sℓ′,m′,n′[1](σparam(α, β, γ))rev|σ| +(198) +for all (α, β, γ) ∈ ˙Ωℓ,m,n. +■ +Proof. It can be checked case-by-case that +{ϱS,Q;• ◦ σparam : • ∈ {0, 1, ∞}, S, Q as above} = {ϱS,Q;• : • ∈ {0, 1, ∞}, S, Q as above}, +(199) +where on the left-hand side (S, Q) varies over appropriate pairs of subsets of {1, . . . , ℓ′}, {ℓ′ + +1, . . . , ℓ′ + m′}, and {ℓ′ + m′ + 1, . . . , N} and on the right-hand side (S, Q) varies over appropriate +pairs of subsets {1, . . . , ℓ}, {ℓ + 1, . . . , ℓ + m}, and {ℓ + m + 1, . . . , N}, depending on •. It can be +seen from eq. (199) that +˙Vℓ,m,n = (σparam)−1( ˙Vℓ′,m′,n′). +(200) +The case of ˙Ωℓ,m,n is similar but more complicated. +Equation (198) can be proven for (α, β, γ) ∈ Ωℓ,m,n by way of a change-of-variables by substituting +x = Tσ−1(y). The full result follows via analytic continuation. +□ +3.4. An imperfect alternative. For I ∈ {(−∞, 0], [0, 1], [1, ∞)} and r > 0, let ΓI,±,r : (0, 1) → C +be defined by +Γ[0,1],±,r(t) = +� +� +� +� +� +� +� +t ± irt +(t ∈ (0, 1/3)), +t ± ir/3 +(t ∈ [1/3, 2/3]), +t ± ir/3 ∓ ir(t − 2/3) +(t ∈ (2/3, 1)), +(201) +Γ[1,∞),±,r(t) = Γ[0,1],∓,r(1 − t)−1, and Γ(−∞,0],±,r(t) = 1 − Γ[1,∞),∓,r(1 − t). Note that the images of +these contours are permuted amongst themselves by the transformations Tσ above. + +34 +ETHAN SUSSMAN +ℑz +ℜz +Γ[0,1],+,1 +Γ[0,1],+,4 +0 +1 +Γ[1,∞),+,1 +Γ(−∞,0],+,1 +Figure 10. The contours Γ(−∞,0],+,1, Γ[0,1],+,1, Γ[0,1],+,4, Γ[1,∞),+,1. Cf. [DF85a, +Figure 16]. (For our purposes, the contours drawn by Dotsenko & Fateev approach +±∞ with imaginary part too small. This is why our ΓI,±,r look different for I ̸= [0, 1]. +Suppose that F ∈ C[x1, x−1 +1 , . . . , xN, x−1 +N ]. For any compact K ⋐ C with nonempty interior, let +O = O[F, K] denote the set, which depends on ℓ, m, n ∈ N, though we suppress this dependence +notationally, of (α, β) ∈ C2N such that +� +Γ(−∞,0],+,0 +· · · +� +Γ(−∞,0],+,ℓ−1 +� � +Γ[0,1],+,0 +· · · +� +Γ[0,1],+,m−1 +� � +Γ[1,∞),+,0 +· · · +� +Γ[1,∞),+,n−1 +� N +� +j=1 +zαj +j (1 − zj)βj +� +� +1≤jσ(k)γj,k. +■ +Proof. By analyticity, it suffices to prove the result when the quantities above are well-defined +Lebesgue integrals. Decomposing □ℓ,m,n into ℓ!m!n! copies of △ℓ,m,n, +Iℓ,m,n[F](α, β, γ) = +� +σ∈Sℓ,m,n +� +△ℓ,m,n +N +� +j=1 +|xj|ασ(j)|1 − xj|βσ(j) +� +1≤j 0. For each ϝ1, ϝ2, ϝ3 > 0 and γ, γ ∈ (−(N −1)−1, 0) with γ < γ, let ℧0,ϝ,γ,γ (suppressing +the ℓ, m, n dependence for brevity) denote the set of (α, β, γ) ∈ C2N+N(N−1)/2 such that +• γ < ℜγj,k < γ for all j, k ∈ {1, . . . , N} with j ̸= k, +• ϝ1 < ℜαj < ϝ2 for each j ∈ {2, . . . , ℓ}, ℜαj > ϝ1 for each j ∈ {ℓ + 1, . . . , ℓ + m}, and +ℜαj < −ϝ3 for each j ∈ {ℓ + m + 1, . . . , N}, +• ϝ1 < ℜβj < ϝ2 for each j ∈ {ℓ + m + 1, . . . , N}, ℜβj > ϝ1 for each j ∈ {ℓ + 1, . . . , ℓ + m}, +and ℜβj < −ϝ3 for j ∈ {2, . . . , ℓ}, + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +37 +where ϝ = (ϝ1, ϝ2, ϝ3). The set ℧0,ϝ,γ,γ is open and nonempty. By eq. (7) and the analogue of +eq. (7) for the m < N case, there exist ϝ00, ϝ0, ϝ01 > 0 (depending on ℓ, m, n, γ, γ) such that +℧ϝ,γ,γ +def += {(α, β, γ) ∈ ℧0,ϝ,γ,γ and (α1, β1) ∈ Ω1,0,0 ∩ Ω0,1,0 ∩ Ω0,0,1} ⊂ ℧ℓ,m,n +(216) +whenever ϝ2 > ϝ1 > ϝ0 and ϝ3 > ϝ01ϝ2 + ϝ00. Observe that Ω1,0,0 ∩ Ω0,1,0 ∩ Ω0,0,1 is the subset +of C2 +α,β defined by the inequalities −1 < ℜα, ℜβ and ℜα + ℜβ < −1. The set +{(r1, r2) ∈ R2 : −1 < r1, r2 and r1 + r2 < −1} +(217) +is a nonempty triangle. So, ℧ϝ,γ,γ is an open and nonempty subset of C2N+N(N−1)/2 and moreover +of ˙℧ℓ,m,n. +For such ϝ and (α, β, γ) ∈ ℧ϝ,γ,γ, eq. (214) (with F = 1) just reads +0 = +ℓ +� +j=1 +e±iθjSℓ,m,n[1](α, β, γ)σj + +ℓ+m +� +j=ℓ +e±iϑjSℓ−1,m+1,n[1](α, β, γ)σj ++ +N +� +j=ℓ+m +e±iϕjSℓ−1,m,n+1[1](α, β, γ)σj +(218) +(note the absence of the dots over the S’s). By the analyticity of all of the functions in eq. (214) on +˙℧ℓ,m,n, it suffices to prove that eq. (218) holds for such (α, β, γ). +By Fubini’s theorem, the right-hand side of eq. (218) is +� +△ℓ−1,m,n +ω(x2, . . . , xN) +� � +∞ +−∞ +(−x1 ± i0)α1(1 − x1 ± i0)β1� N +� +j=2 +(xj − x ± i0)2γ1,j +� +dx +� +dx2 · · · dxN, +(219) +where ω(x2, . . . , xN) = [�N +j=2 |xj|αj|1 − xj|βj] � +2≤j +max{|x1|, . . . , |xN−1|}, +0 = +� +Γ∓(R) +(−z ± i0)α(1 − z ± i0)β +N +� +j=2 +(xj − z ± i0)2γj dz, +(221) +where Γ±(R) = Γ±(R)(x2, . . . , xN) ⊂ C is the semicircular contour (with N + 1 semicircular insets +placed so that the contour avoids x2, . . . , xN) connecting −R and +R, with the arc and semicircular +insets in the half-plane {z ∈ C : ±ℑz ≥ 0}. See Figure 11. In eq. (221), the integrand is defined +taking the branch cut along the negative real axis, so +(x − z ± i0)2γj = +� +exp(2γj(log |x − z| + i arg(x − z))) +(+ case, ℑz ≤ 0), +exp(2γj(log |x − z| − 2πi + i arg(x − z))) +(− case, ℑz ≥ 0), +(222) +for any x ∈ R, where arg(x − z) ∈ [0, 2π). We orient Γ+ counter-clockwise and Γ− clockwise. + +38 +ETHAN SUSSMAN +ℑz +ℜz +0 +1 +x2 +x1 +x3 +−R +R +Figure 11. The contour Γ+(R) in the case ℓ = 2, m = 1, n = 0. +Let Γ++(R) denote the large arc of Γ+(R) and Γ+0(R) denote the rest, and likewise let Γ−−(R) +denote the large arc of Γ−(R) and Γ−0(R) denote the rest. Then, +I± = lim +R→∞ +� +Γ∓0(R) +(−z ± i0)α(1 − z ± i0)β +N +� +j=2 +(xj − z ± i0)2γj dz. +(223) +On the other hand, for R sufficiently large, +��� +� +Γ∓∓(R) +(−z ± i0)α(1 − z ± i0)β +N +� +j=2 +(xj − z ± i0)2γj dx +��� ≤ π(2R)1+ℜα+ℜβ = O(R−ε) +(224) +for some ε > 0 depending on (α, β) ∈ Ω1,0,0 ∩ Ω0,1,0 ∩ Ω0,0,1. Combining eq. (221), eq. (223), and +eq. (224), we get I± = 0. +□ +Proposition 3.10. For any F ∈ C[x1, x−1 +1 , . . . , xN, x−1 +N ], +0 = ˙Iℓ,m,n[F](α, β, γ) + e+πi(α+2�ℓ +j=2 γ1,j) ˙Iℓ−1,m+1,n[F](α, β, γ)σℓ ++ e+πi(α+β+2�ℓ+m +j=2 γ1,j) ˙Iℓ−1,m,n+1[F](α, β, γ)σℓ+m +(225) +0 = ˙Iℓ,m,n[F](α, β, γ)σℓ + e−πi(α+2�ℓ +j=2 γ1,j) ˙Iℓ−1,m+1,n[F](α, β, γ)σℓ+m ++ e−πi(α+β+2�ℓ+m +j=2 γ1,j) ˙Iℓ−1,m,n+1[F](α, β, γ)σN +(226) +both hold, for all (α, β, γ) ∈ ˙Λℓ,m,n[F]. +■ +Proof. Via analyticity, it suffices to prove this for all (α, β, γ) ∈ ∩σ∈Sℓ,m,n s.t. σ(1)=1 ˙℧ℓ,m,n[F]σ. For +such (α, β, γ), we can cite the previous proposition to get +0 = +� +σ∈Sℓ,m,n s.t. σ(1)=1 +eπiΘ(σ−1)� +ℓ +� +j=1 +e±iθσ +j ˙Sℓ,m,n[F](α, β, γ)σjσ ++ +ℓ+m +� +j=ℓ +e±iϑσ +j ˙Sℓ−1,m+1,n[F](α, β, γ)σjσ + +N +� +j=ℓ+m +e±iϕσ +j ˙Sℓ−1,m,n+1[F](α, β, γ)σjσ� +, +(227) +where θσ +j = 2π � +2≤j0≤j γ1,σ(j0), ϑσ +j = πα+2π � +2≤j0≤j γ1,σ(j0), and ϕσ +j = πα+πβ+2π � +2≤j0≤j γ1,σ(j0). +The order of multiplication is such that σjσ is a permutation satisfying (σjσ)(1) = j. In eq. (227), +Θ is defined as in Proposition 3.7. + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +39 +Every σ0 ∈ Sℓ,m,n has the form σ0 = σjσ for some j ∈ {1, . . . , N} and σ ∈ Sℓ,m,n satisfying +σ(1) = 1. It can be seen that +Θ(σ−1 +0 ) = Θ(σ−1) + θσ +j . +(228) +Using Proposition 3.7, we check that the two cases of eq. (227) yield the two results, eq. (225) and +eq. (226). For instance, +� +σ∈Sℓ,m,n s.t. σ(1)=1 +eπiΘ(σ−1) +ℓ +� +j=1 +e+iθσ +j ˙Sℓ,m,n[F](α, β, γ)σjσ = +� +σ∈Sℓ,m,n +eπiΘ(σ−1) ˙Sℓ,m,n[F](α, β, γ)σ += ˙Iℓ,m,n[F](α, β, γ). +(229) +Similar statements apply to the other two sums in eq. (227) in the ‘+’ case, thus yielding eq. (225). +Similar computations apply to the ‘−’ case. +□ +3.7. The symmetric and DF-symmetric cases. Fix F ∈ AD(Aℓ,m,n), not necessarily symmetric. +We assume that dFS,Q;• ∈ Z for all FS,Q;• ∈ F(Aℓ,m,n). Let +δk = min{dFS,Q;0 : S ⊆ I1, Q ⊆ I2, |S ∪ Q| = k} +(230) +for each k ∈ {1, . . . , ℓ + m}, +δ +k = min{dFS,Q;1 : S ⊆ I2, Q ⊆ I3, |S ∪ Q| = k} +(231) +for each k ∈ {1, . . . , m + n}, and +dk = − min{dFS,Q;∞ : S ⊆ I3, Q ⊆ I1, |S ∪ Q| = k} +(232) +for each k ∈ {1, . . . , ℓ + n}. Here, we are ranging over all {dF}F∈F(Aℓ,m,n) ∈ D. +Let ˙Wℓ,m,n[D] denote the set of (α, β, γ) ∈ C3 such that (α, β, γ) ∈ ˙Vℓ,m,n[D] whenever α, β, γ +have components given by αj = α and βj = β for all indices j ∈ {1, . . . , N} and γj,k = γ for all +j, k ∈ {1, . . . , N} with j < k. +Proposition 3.11. There exists an entire function Iℓ,m,n;Reg[F] : C3 → C such that +˙Iℓ,m,n[F](α, β, γ) = +� ℓ+m +� +k=1 +Γ(δk + k(1 + α + (k − 1)γ)) +�� m+n +� +k=1 +Γ( +δ +k + k(1 + β + (k − 1)γ)) +� +× +� ℓ+n +� +k=1 +Γ(−dk − k(1 + α + β + (2N − k − 1)γ)) +� +Iℓ,m,n;Reg[F](α, β, γ) +(233) +for all (α, β, γ) ∈ ˙Wℓ,m,n[D]. +■ +Proof. Follows from Proposition 3.4. +□ +For later reference, consider the special case F ∈ C[x1, . . . , xN]SN . Referring to eq. (14), eq. (15), +and eq. (28), set dFS,Q;0 = δj[F], dFS,Q;1 = +δ +j[F], and dFS,Q;∞ = degj[F], for S, Q ⊆ {1, . . . , N} as +usual, where, for each S and Q, j = |S ∪ Q|. Then, as follows straightforwardly from eq. (71), +eq. (73), eq. (75), +F ∈ +� +F∈F(Aℓ,m,n) +xdF +F C∞(Aℓ,m,n). +(234) +Thus, letting D denote the collection of the integers above, F ∈ AD(Aℓ,m,n). We can therefore apply +the results above, with δj = δj[F], +δ +j = +δ +j[F], and dj = − degj[F]. +We now turn to the “DF0-symmetric” case. For any S ⊆ {1, . . . , N}, let +˙W DF0,S +ℓ,m,n [F] = {(α−, α+, β−, β+, γ−, γ0, γ+) ∈ C7 : (αDF0, βDF0, γDF0) ∈ ˙Vℓ,m,n[F]}. +(235) + +40 +ETHAN SUSSMAN +This is a dense, open, and connected subset of C7 and depends on S only through the numbers +|S ∩ Ij|. Actually, we need a slightly refined version of this later; let +˙W DF1,S +ℓ,m,n [F] = {(α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ−, γ0, γ+) ∈ C9 +: (αDF1, βDF1, γDF0) ∈ ˙Vℓ,m,n[F]}, +(236) +where αDF1, βDF1 are defined as their DF0-counterparts, but defining the jth component using +α+,ν in place of α+ and β+,ν in place of β+ for ν ∈ Iν. +For (α−, α+, β−, β+, γ−, γ0, γ+) ∈ ˙W DF0,S +ℓ,m,n [F], let +˙IDF0;S +ℓ,m,n [F](α−, α+, β−, β+, γ−, γ0, γ+) = ˙Iℓ,m,n[F](αDF0, βDF0, γDF0). +(237) +Let ℓ+ = S ∩ I1, ℓ− = ℓ − ℓ+, m+ = S ∩ I2, m− = m − m+, n+ = S ∩ I3, and n− = n − n+. Set +N+ = |S| and N− = N − N+. +Suppose now that F ∈ AD(Aℓ,m,n) is symmetric in the variables {xi}i∈S and {xi}i/∈S separately. +Let +δj−,j+ = min{dFS,Q;0 : S ⊆ I1, Q ⊆ I2, |(S ∪ Q)\S| = j−, |(S ∪ Q) ∩ S| = j+} +(238) +for j− ∈ {1, . . . , ℓ− + m−} and j+ ∈ {1, . . . , ℓ+ + m+}, +δ +j−,j+ = min{dFS,Q;1 : S ⊆ I2, Q ⊆ I3, |(S ∪ Q)\S| = j−, |(S ∪ Q) ∩ S| = j+} +(239) +for j− ∈ {1, . . . , m− + n−} and j+ ∈ {1, . . . , m+ + n+}, and +dj−,j+ = − min{dFS,Q;∞ : S ⊆ I3, Q ⊆ I1, |(S ∪ Q)\S| = j−, |(S ∪ Q) ∩ S| = j+} +(240) +for j− ∈ {1, . . . , ℓ− + n−} and j+ ∈ {1, . . . , ℓ+ + n+}. A similar argument to that above yields: +Proposition 3.12. There exists an entire function IDF0;S +ℓ,m,n;Reg[F] : C7 → C such that +˙IDF0 +ℓ,m,n[F](α−, α+, β−, β+, γ−, γ0, γ+) = IDF0 +ℓ,m,n;Reg[F](α−, α+, β−, β+, γ−, γ0, γ+) +× +� ℓ−+m− +� +j−=1 +ℓ++m+ +� +j+=1 +Γ(δj−,j+ + j−(1 + α− + (j− − 1)γ−) + j+(1 + α+ + (j+ − 1)γ+) + 2γ0j−j+) +� +× +� m−+n− +� +j−=1 +m++n+ +� +j+=1 +Γ( +δ +j−,j+ + j−(1 + β− + (j− − 1)γ−) + j+(1 + β+ + (j+ − 1)γ+) + 2γ0j−j+) +� +× +� ℓ−+n− +� +j−=1 +ℓ++n+ +� +j+=1 +Γ(−dj−,j+ − j−(1 + α− + β− + (2N− − j− − 1)γ−) +− j+(1 + α+ + β+ + (2N+ − j+ − 1)γ+) − 2γ0j−j+) +� +(241) +holds whenever (α−, α+, β−, β+, γ−, γ0, γ+) ∈ ˙W DF0 +ℓ,m,n[F]. +■□ +4. Removing singularities +As in previous sections, fix ℓ, m, n ∈ N not all zero, and let N = ℓ + m + n and I1 = {1, . . . , ℓ}, +I2 = {ℓ + 1, . . . , ℓ + m}, and I3 = {ℓ + m + 1, . . . , N}. For k ∈ N, let +ϝk : Cγ\{kγ ∈ Z≤−1 and γ /∈ Z} → C +(242) +denote the analytic function given by ϝk(γ) = Γ(1 + γ)−1Γ(1 + kγ) for kγ /∈ Z≤−1. We can consider +ϝ−1 +k +as an entire function. + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +41 +4.1. The symmetric case. Fix F ∈ C[x1, . . . , xN]SN , and let δj, +δ +j, dj ∈ N be as above. +Let ˙Uℓ,m,n[F] denote the set of (α, β, γ) ∈ C3 such that (α, β, γ) ∈ ˙Ωℓ,m,n[F] whenever α, β, γ +have components given by αj = α and βj = β for all indices j ∈ {1, . . . , N} and γj,k = γ for all +j < k. Thus, we can define +˙Sℓ,m,n[F](α, β, γ) = ˙Sℓ,m,n[F](α, β, γ) +(243) +for any (α, β, γ) ∈ ˙Uℓ,m,n[F]. +Proposition 4.1. The function Sreg +ℓ,m,n[F] : ˙Uℓ,m,n[F] → C defined by +Sreg +ℓ,m,n[F](α, β, γ) = +� ℓ+m +� +k=1 +Γ(δk + k(1 + α + (k − 1)γ)) +�−1 +� m+n +� +k=1 +Γ( +δ +k + k(1 + β + (k − 1)γ)) +�−1� ℓ+n +� +k=1 +Γ(−dk − k(1 + α + β + (N + k − 2)γ)) +�−1 +� +ℓ +� +k=1 +1 +ϝk(γ) +�� m +� +k=1 +1 +ϝk(γ) +�� +n +� +k=1 +1 +ϝk(γ) +� ˙Sℓ,m,n[F](α, β, γ) +(244) +extends to an entire function C3 +α,β,γ → C. +■ +Proof. +• Since the prefactor on the right-hand side of eq. (244) consisting of all of the Γ- +function reciprocals is entire, Sreg +ℓ,m,n[F] extends to an analytic function on ˙Uℓ,m,n[F], the +domain of ˙Sℓ,m,n[F](α, β, γ). +• For all (α, β, γ) ∈ ˙Uℓ,m,n[F], we have +� +ℓ +� +k=1 +1 − e2πikγ +1 − e2πiγ ϝk(γ) +�� m +� +k=1 +1 − e2πikγ +1 − e2πiγ ϝk(γ) +�� +n +� +k=1 +1 − e2πikγ +1 − e2πiγ ϝk(γ) +� +Sreg +ℓ,m,n[F](α, β, γ) += Iℓ,m,n;Reg[F](α, β, γ) +(245) +by Proposition 3.8. By Proposition 3.11, this extends to an entire function C3 +α,β,γ → C. +The product ϝk(γ)(1 − e2πikγ)(1 − e2πiγ)−1, with its removable singularities removed, +vanishes if and only if kγ ∈ N and γ /∈ N. Thus, Sreg +ℓ,m,n[F] extends to an analytic function on +C3 +α,β,γ\ ∪M +k=2 {kγ ∈ N, γ /∈ N}, +(246) +where M = max{ℓ, m, n}. +Combining these two observations, Sreg +ℓ,m,n[F] extends to an analytic function on ˙Uℓ,m,n[F] ∪ +(C3 +α,β,γ\ ∪M +k=2 {kγ ∈ N, γ /∈ N}). +The set ∪M +k=2{kγ ∈ N, γ /∈ N} is a union of hyperplanes, and it is disjoint from +N +� +k=1 +{k(k + 1)γ ∈ Z≤−k}, +(247) +so ˙Uℓ,m,n[F]∪(C3 +α,β,γ\∪M +k=2 {kγ ∈ N, γ /∈ N}) is the complement in C3 +α,β,γ of a locally finite collection +of complex codimension-2 affine subspaces of C3. The result therefore follows from Hartog’s extension +theorem. +□ +For any ℓ ∈ N+ and m, n ∈ N, +{(α, β, γ) ∈ C3 : (α, β, γ) ∈ ˙℧ℓ,m,n[F]} = ˙Uℓ,m,n[F] ∩ ˙Uℓ−1,m+1,n[F] ∩ ˙Uℓ−1,m,n+1[F]. +(248) + +42 +ETHAN SUSSMAN +The symmetric case of Proposition 3.9 reads, after multiplying through by 1 − e±2iγ, +0 = (1 − e±2πiℓγ) ˙Sℓ,m,n[F](α, β, γ) + e±πi(α+2(ℓ−1)γ)(1 − e±2πi(m+1)γ) ˙Sℓ−1,m+1,n[F](α, β, γ) ++ e±πi(α+β+2(ℓ−1+m)γ)(1 − e±2πi(n+1)γ) ˙Sℓ−1,m,n+1[F](α, β, γ) +(249) +for all (α, β, γ) in the set defined by eq. (248). Define +ON;0 = {(α, β, γ) ∈ C3 : α + mγ /∈ Z for any j ∈ {0, . . . , N − 1}}, +(250) +ON;1 = {(α, β, γ) ∈ C3 : β + mγ /∈ Z for any j ∈ {0, . . . , N − 1}}. +(251) +Proposition 4.2 (Cf. [DF85a][Aom87][FW08]). +• For all (α, β, γ) ∈ ˙UN,0,0[F] ∩ ˙U0,N,0[F] ∩ ON;1, +˙S0,N,0[F](α, β, γ) = (−1)N� N−1 +� +m=0 +sin(π(α + β + (N + m − 1)γ)) +sin(π(β + mγ)) +� ˙SN,0,0[F](α, β, γ). +(252) +• For all (α, β, γ) ∈ ˙U0,N,0[F] ∩ ˙U0,0,N[F] ∩ ON;0, +˙S0,N,0[F](α, β, γ) = (−1)N� N−1 +� +m=0 +sin(π(α + β + (N + m − 1)γ)) +sin(π(α + mγ)) +� ˙S0,0,N[F](α, β, γ). +(253) +■ +Proof. We prove the second claim, and the proof of the first is similar. Suppose that +(α, β, γ) ∈ +N +� +n=0 +˙U0,N−n,n[F] ∩ +N−1 +� +n=0 +˙U1,N−1−n,n[F]. +(254) +We can apply eq. (249) for ℓ = 1 and all pairs of m, n ∈ {0, . . . , N − 1} such that m + n = N − 1. +Combining the plus and minus cases of eq. (249) to eliminate the ˙S1,N−n−1,n[F] term, +1 +2i +� +e+πiα 1 − e+2πi(m+1)γ +1 − e+2πiγ +− e−πiα 1 − e−2πi(m+1)γ +1 − e−2πiγ +� ˙S0,N−n,n[F](α, β, γ) += − 1 +2i +� +e+πi(α+β+2(N−n−1)γ) 1 − e+2πi(n+1)γ +1 − e+2πiγ +− e−πi(α+β+2(N−n−1)γ) 1 − e−2πi(n+1)γ +1 − e−2πiγ +� +× ˙S0,N−n−1,n+1[F](α, β, γ) +(255) +if γ /∈ Z. We calculate: +1 +2i +� +e+πiα 1 − e+2πi(N−n)γ +1 − e+2πiγ +−e−πiα 1 − e−2πi(N−n)γ +1 − e−2πiγ +� += 2s(γ)s(α + (N − n − 1)γ)s((N − n)γ) +1 − cos(2πγ) +(256) +and +1 +2i +� +e+πi(α+β+2(N−n−1)γ) 1 − e+2πi(n+1)γ +1 − e+2πiγ +− e−πi(α+β+2(N−n−1)γ) 1 − e−2πi(n+1)γ +1 − e−2πiγ +� += +2s(γ) +1 − cos(2πγ)s(α + β + (2N − n − 2)γ)s((n + 1)γ), +(257) +where s(t) = sin(πt). So, for (α, β, γ) as above such that none of the trigonometric factors on the +right-hand side of eq. (256) vanish, +˙S0,N−n,n[F](α, β, γ) = −s(α + β + (2N − n − 2)γ)s((n + 1)γ) +s(α + (N − n − 1)γ)s((N − n)γ) +˙S0,N−1−n,n+1[F](α, β, γ) +(258) +Applying this recursively for n = 0, . . . , N − 1, we end up with eq. (253). + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +43 +Figure 12. The sets in S1, S2, S3 in R3 +α,β,γ ∩ {β = 1/5} in the case N = 2. +In summary, eq. (253) holds for a nonempty, open subset of (α, β, γ) ∈ ˙U0,N,0[F]∩ ˙U0,0,N[F]∩ON;0. +By analyticity, the result follows. +□ +Proposition 4.3. The function SN;Reg[F](α, β, γ) defined by +SN;Reg[F](α, β, γ) = +� N +� +j=1 +Γ(2 + ¯dj + α + β + (N + j − 2)γ) +Γ(1 + ¯δj + α + (j − 1)γ)Γ(1 + ¯ +δ +j + β + (j − 1)γ)ϝj(γ) +� +SN[F](α, β, γ) +(259) +extends to an entire function SN;Reg[F] : C3 +α,β,γ → C. +■ +Proof. We begin by defining the following open (and dense) subsets of C3: +QN;0 = {(α, β, γ) ∈ C3 : ¯δj + α + (j − 1)γ /∈ N for any j ∈ {1, . . . , N}}, +QN;1 = {(α, β, γ) ∈ C3 : ¯ +δ +j + β + (j − 1)γ /∈ N for any j ∈ {1, . . . , N}}, +QN;∞ = {(α, β, γ) ∈ C3 : ¯dj + α + β + (N + j − 2)γ /∈ Z≤−2 for any j ∈ {1, . . . , N}}, +UN;0 = {(α, β, γ) ∈ C3 : δj + j(α + (j − 1)γ) /∈ Z≤−j for any j ∈ {1, . . . , N}}, +UN;1 = {(α, β, γ) ∈ C3 : +δ +j + j(β + (j − 1)γ) /∈ Z≤−j for any j ∈ {1, . . . , N}}, +UN;∞ = {(α, β, γ) ∈ C3 : −dj − j(1 + α + β + (N + j − 2)γ) /∈ Z≤0 for any j ∈ {1, . . . , N}} += {(α, β, γ) ∈ C3 : dj + j(1 + α + β + (N + j − 2)γ) /∈ N for any j ∈ {1, . . . , N}}. +(260) +We write +SN;Reg[F](α, β, γ) = Υ0(α, β, γ)Υ1(α, β, γ) +× +� N +� +j=1 +Γ(δj + j(1 + α + (j − 1)γ))Γ( +δ +j + j(1 + β + (j − 1)γ))ϝj(γ) +�−1 +SN[F](α, β, γ) +(261) +for +Υ0(α, β, γ) = +� N +� +j=1 +Γ(δj + j(1 + α + (j − 1)γ))Γ( +δ +j + j(1 + β + (j − 1)γ)) +Γ(1 + ¯δj + α + (j − 1)γ)Γ(1 + ¯ +δ +j + β + (j − 1)γ) +� +, +(262) +Υ1(α, β, γ) = +� N +� +j=1 +Γ(2 + ¯dj + α + β + (N + j − 2)γ) +� +. +(263) + +S1 +4 +2 +0 +-4 +-2 +0 +2 +4 +QS2 +4 +2 +0 +-2 +-4 +-4 +-2 +0 +2 +4S3 +4 +2 +0 +-2 +-4 +-4 +-2 +0 +2 +444 +ETHAN SUSSMAN +By Proposition 4.1, the second line on the right-hand side of eq. (261) defines an entire function. +Since Υ0 extends to an analytic function on UN;0 ∩ UN;1 and Υ1 extends to an analytic function on +QN;∞, SN;Reg[F] extends to an analytic function on UN;0 ∩ UN;1 ∩ QN;∞. +In ON;0 ∩ ˙U0,N,0 ∩ ˙U0,0,N, Proposition 4.2 gives +SN;Reg[F](α, β, γ) = (−1)NΥ2(α, β, γ)Υ3(α, β, γ) +× +� N +� +j=1 +Γ(−dj − j(1 + α + β + (N + j − 2)γ))Γ( +δ +j + j(1 + β + (j − 1)γ))ϝj(γ) +�−1 ˙S0,0,N[F](α, β, γ), +(264) +where +Υ2 = +� N +� +j=1 +Γ( +δ +j + j(1 + β + (j − 1)γ)) +s(α + (j − 1)γ)Γ(1 + ¯δj + α + (j − 1)γ)Γ(1 + ¯ +δ +j + β + (j − 1)γ) +� +(265) +Υ3 = +� N +� +j=1 +s(α + β + (N + j − 2)γ)Γ(2 + ¯dj + α + β + (N + j − 2)γ) +× Γ(−dj − j(1 + α + β + (N + j − 2)γ)) +� +. +(266) +By Proposition 4.1, the function on the second line of eq. (264) extends to an entire function of +α, β, γ. On the other hand, Υ2 extends to an analytic function on QN;0 ∩ UN;1, and Υ3 extends to +an analytic function on UN;∞. Combining these observations, SN;Reg[F] analytically continues to +QN;0 ∩ UN;1 ∩ UN;∞. +Likewise, SN;Reg[F] extends analytically to UN;0 ∩ QN;1 ∩ UN;∞, using ON;1 in place of ON;0 and +the other part of Proposition 4.2. +So, SN;Reg[F](α, β, γ) analytically continues to +U = (UN;0 ∩ UN;1 ∩ QN;∞) ∪ (UN;0 ∩ QN;1 ∩ UN;∞) ∪ (QN;0 ∩ UN;1 ∩ UN;∞). +(267) +This is +U = C3��� +� +H1∈S1,H2∈S2,H3∈S3 +H1 ∩ H2 ∩ H3) +� +, +(268) +where +• S1 is the set of hyperplanes that are contained in the complement of one of UN;0, UN;1, QN;∞, +• S2 is the set of hyperplanes that are contained in the complement of one of UN;0, QN;1, UN;∞, +and +• S3 is the set of hyperplanes that are contained in the complement of one of QN;0, UN;1, UN;∞. +Let +H = {H1 ∩ H2 ∩ H3 ̸= ∅ : H1 ∈ S1, H2 ∈ S2, H3 ∈ S3}, +(269) +so that SN;Reg[F] defines an analytic function on U = C3\∪H∈HH. Observe that every H ∈ H is +an affine subspace of C3 of complex codimension two or three (since S1 ∩ S2 ∩ S3 = ∅), and the +collection H is locally finite. +Hartog’s theorem therefore implies that SN;Reg[F] analytically continues to the entirety of C3. +□ +This completes the proof of Theorem 1.2. + +THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS +45 +4.2. The DF-symmetric case. Given γ+ ∈ C\{0, 1} and α+, β+ ∈ C, let γ− = γ−1 ++ , α− = −γ−α+, +and β− = −γ−β+ as in the introduction. Fix S ⊆ {1, . . . , N}. +Given γ+ ̸= 0, 1 and F ∈ DFSym(N; S, λ) for λ = γ−1 ++ (γ+ − 1), let ˙W DF,S +ℓ,m,n[F; γ+] denote the set +of (α+, β+) ∈ C2 such that +(α−, α+, β−, β+, γ−, −1, γ+) ∈ ˙W DF0,S +ℓ,m,n [F]. +(270) +For (α+, β+) ∈ ˙W DF,S +ℓ,m,n[F; γ+], let +˙IDF;S +ℓ,m,n[F](α+, β+, γ+) = IDF0;S +ℓ,m,n [F](α−, α+, β−, β+, γ−, −1, γ+). +(271) +Then, as adumbrated by Dotsenko and Fateev: +Proposition 4.4. For any σ ∈ Sℓ,m,n, +˙IDF;S +ℓ,m,n[F](α+, β+, γ+) = ˙IDF;S +ℓ,m,n[F](α+, β+, γ+)σ +(272) +for all (α+, β+) ∈ ˙W DF,S +ℓ,m,n[F; γ+]. +■ +Since ˙W DF,S +ℓ,m,n[F] depends only on S through |S ∩ I1|, |S ∩ I2|, |S ∩ I3|, +˙W DF,S +ℓ,m,n[F; γ+] = ˙W DF,S +ℓ,m,n[F; γ+]σ, +(273) +so the right-hand side of eq. (272) is defined for any (α+, β+) ∈ ˙W DF,S +ℓ,m,n[F; γ+]. +Proof. Since Sℓ,m,n is generated by transpositions τ of adjacent elements of I1, I2, I3, it suffices to +consider the case when σ is such a transposition, τ. For notational simplicity, we consider the case +when τ is a transposition of some j, j + 1 ∈ I2 and j ∈ S. The other cases are similar but involve +some notational changes. +Let ˙W DF,1,S +ℓ,m,n [F; γ+] ⊆ C6 denote the set of (α1,+, α2,+, α3,+, β1,+, β2,+, β3,+) ∈ C6 such that +(α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ−, −1, γ+) ∈ ˙W DF1,S +ℓ,m,n [F], +(274) +where α−,ν = −γ−α+,ν and β−,ν = −γ−β+,ν. It suffices to prove that, for any σ ∈ Sℓ,m,n, +˙IDF,1,;S +ℓ,m,n [F](α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ+) += ˙IDF,1;S +ℓ,m,n [F](α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ+)σ +(275) +for all (α1,+, α2,+, α3,+, β1,+, β2,+, β3,+) ∈ ˙W DF,1,S +ℓ,m,n [F; γ+], where +˙IDF,1;S +ℓ,m,n [F](α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ+) = +˙Iℓ,m,n[F](αDF,1, βDF,1, γDF), +(276) +where αDF,1, βDF,1 are defined as αDF1, βDF1, using α−,ν = −γ−α+,ν and β−,ν = −γ−β+,ν. +First observe that there exists a nonempty, open subset +O ⊂ ˙W DF,1,S +ℓ,m,n [F; γ+] +(277) +(containing an affine cone) such that (αDF,1, βDF,1, γDF) ∈ O{1,τ} whenever (α+,1, . . . , β+,3) ∈ O, +where O{1,τ} is defined as in §3.4. We can choose O such that ℜα±,2, ℜβ±,2 > 0 everywhere in O. +Since ˙W DF,S +ℓ,m,n[F; γ+] is connected, it suffices via analyticity to prove the result for +(α1,+, α2,+, α3,+, β1,+, β2,+, β3,+) ∈ O. +(278) +We write α± in place of α±,2 and β± in place of β±,2 below. + +46 +ETHAN SUSSMAN +We can apply Proposition 3.6 for (α+,1, . . . , β+,3) ∈ O. By Proposition 3.6, it suffices to check +that, whenever all of the zk’s besides zj and zj+1 are somewhere in the interior of the corresponding +contour in eq. (205), +� +Γ[0,1],+,j−ℓ +� +zα+ +j +(1 − zj)β+zα− +j+1(1 − zj+1)β−� +� +1≤j0